Defining the core Arabidopsis thaliana root microbiome

Nature 488, 86-90 DOI: 10.1038/nature11237

Citation Report

#	Article	IF	CITATIONS
1	Microbial life in the phyllosphere. Nature Reviews Microbiology, 2012, 10, 828-840.	13.6	1,600
3	Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature, 2012, 488, 91-95.	13.7	2,127
4	Wired to the roots. Plant Signaling and Behavior, 2012, 7, 1598-1604.	1.2	14
5	Cell Biology — Building blocks for dynamic development and behaviors. Current Opinion in Plant Biology, 2012, 15, 575-577.	3.5	0
6	Who's who in the plant root microbiome?. Nature Biotechnology, 2012, 30, 961-962.	9.4	176
7	The Impact of Beneficial Plant-Associated Microbes on Plant Phenotypic Plasticity. Journal of Chemical Ecology, 2013, 39, 826-839.	0.9	180
8	Volatile Organic Compound Mediated Interactions at the Plant-Microbe Interface. Journal of Chemical Ecology, 2013, 39, 810-825.	0.9	209
9	Plant-Soil Feedbacks and Soil Sickness: From Mechanisms to Application in Agriculture. Journal of Chemical Ecology, 2013, 39, 232-242.	0.9	248
10	Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME Journal, 2013, 7, 2248-2258.	4.4	468
11	Migrate or evolve: options for plant pathogens under climate change. Global Change Biology, 2013, 19, 1985-2000.	4.2	121
12	Practical innovations for high-throughput amplicon sequencing. Nature Methods, 2013, 10, 999-1002.	9.0	787
13	Microbial natural products: molecular blueprints for antitumor drugs. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 1181-1210.	1.4	60
14	Plant Microbe Symbiosis: Fundamentals and Advances. , 2013, , .		25
15	UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 2013, 10, 996-998.	9.0	13,193
16	The mixotrophic nature of photosynthetic plants. Functional Plant Biology, 2013, 40, 425.	1.1	33
17	Minimization of chloroplast contamination in 16S rRNA gene pyrosequencing of insect herbivore bacterial communities. Journal of Microbiological Methods, 2013, 95, 149-155.	0.7	181
18	Microbial community structure in fermentation process of Shaoxing rice wine by Illumina-based metagenomic sequencing. Journal of the Science of Food and Agriculture, 2013, 93, 3121-3125.	1.7	39
19	Culture-Independent Molecular Tools for Soil and Rhizosphere Microbiology. Diversity, 2013, 5, 581-612.	0.7	88

ATION RE

#	Article	IF	CITATIONS
20	Effects of actinobacteria on plant disease suppression and growth promotion. Applied Microbiology and Biotechnology, 2013, 97, 9621-9636.	1.7	323
21	Mycorrhizosphere Complexity. Developments in Environmental Science, 2013, 13, 151-177.	0.5	5
22	Inside the root microbiome: Bacterial root endophytes and plant growth promotion. American Journal of Botany, 2013, 100, 1738-1750.	0.8	500
23	Culture dependent and independent analysis of bacterial communities associated with commercial salad leaf vegetables. BMC Microbiology, 2013, 13, 274.	1.3	176
24	Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology, 2013, 11, 789-799.	13.6	2,669
25	Plant–bacteria interactions in the removal of pollutants. Current Opinion in Biotechnology, 2013, 24, 467-473.	3.3	118
26	Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proceedings of the United States of America, 2013, 110, 6548-6553.	3.3	1,594
27	The plant microbiome. Genome Biology, 2013, 14, 209.	3.8	1,028
28	Relationships between <i>Arabidopsis</i> genotype-specific biomass accumulation and associated soil microbial communities. Botany, 2013, 91, 123-126.	0.5	46
29	Symbiosis and the social network of higher plants. Current Opinion in Plant Biology, 2013, 16, 118-127.	3.5	130
30	Gut and Root Microbiota Commonalities. Applied and Environmental Microbiology, 2013, 79, 2-9.	1.4	92
31	Opinion – Nickel and urease in plants: Still many knowledge gaps. Plant Science, 2013, 199-200, 79-90.	1.7	122
32	Hydrolytic enzymes and quorum sensing inhibitors from endophytic fungi of Ventilago madraspatana Gaertn. Biocatalysis and Agricultural Biotechnology, 2013, 2, 120-124.	1.5	37
33	Structure and Functions of the Bacterial Microbiota of Plants. Annual Review of Plant Biology, 2013, 64, 807-838.	8.6	2,589
34	The molecular architecture of the plant nuclear pore complex. Journal of Experimental Botany, 2013, 64, 823-832.	2.4	78
35	Arbuscular mycorrhizal fungi reduce growth and infect roots of the nonâ€host plant <i><scp>A</scp>rabidopsis thaliana</i> . Plant, Cell and Environment, 2013, 36, 1926-1937.	2.8	97
36	Back to the basics: The need for ecophysiological insights to enhance our understanding of microbial behaviour in the rhizosphere. Plant and Soil, 2013, 373, 1-15.	1.8	34
37	Tomato Below Ground–Above Ground Interactions: <i>Trichoderma longibrachiatum</i> Affects the Performance of <i>Macrosiphum euphorbiae</i> and Its Natural Antagonists. Molecular Plant-Microbe Interactions, 2013, 26, 1249-1256.	1.4	103

		CITATION REPOR	т	
#	Article	IF	Citatic	ONS
38	The endophytic mycobiota of Arabidopsis thaliana. Fungal Diversity, 2013, 60, 71-89.	4.7	51	
39	Soil microbiomes vary in their ability to confer drought tolerance to Arabidopsis. Applied Soil Ecology, 2013, 68, 1-9.	2.1	207	
40	Evolution of the plant–microbe symbiotic â€~toolkit'. Trends in Plant Science, 2013, 18,	298-304. 4.3	159	
41	Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavio Phytologist, 2013, 198, 264-273.	pr. New 3.5	245	
42	The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pat microorganisms. FEMS Microbiology Reviews, 2013, 37, 634-663.	hogenic 3.9	1,929	
44	The root microbiota—a fingerprint in the soil?. Plant and Soil, 2013, 370, 671-686.	1.8	84	
45	Sniffing on Microbes: Diverse Roles of Microbial Volatile Organic Compounds in Plant Health. Molecular Plant-Microbe Interactions, 2013, 26, 835-843.	1.4	269	
46	Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge fo global prediction. Trends in Microbiology, 2013, 21, 641-651.	r 3.5	429	
47	Effects of the symbiosis between fungal endophytes and Atractylodes lancea on rhizosphere a phyllosphere microbial communities. Symbiosis, 2013, 61, 23-36.	nd 1.2	13	
48	The rhizosphere revisited: root microbiomics. Frontiers in Plant Science, 2013, 4, 165.	1.7	372	
49	Crosstalk between endophytes and a plant host within information-processing networks. Biop and Cell, 2013, 29, 234-243.	olymers 0.1	. 16	
50	Genetic Mapping of Specific Interactions between Aedes aegypti Mosquitoes and Dengue Viru Genetics, 2013, 9, e1003621.	ses. PLoS 1.5	105	
51	Plant growth in Arabidopsis is assisted by compost soil-derived microbial communities. Frontie Plant Science, 2013, 4, 235.	rs in 1.7	48	
52	Reconstructing the Genomic Content of Microbiome Taxa through Shotgun Metagenomic Deconvolution. PLoS Computational Biology, 2013, 9, e1003292.	1.5	41	
53	Microscopic elucidation of abundant endophytic bacteria colonizing the cell wall–plasma me peri-space in the shoot-tip tissue of banana. AoB PLANTS, 2013, 5, .	mbrane 1.2	57	-
54	Multiple control levels of root system remodeling in arbuscular mycorrhizal symbiosis. Frontier Plant Science, 2013, 4, 204.	s in 1.7	121	
55	Application of Natural Blends of Phytochemicals Derived from the Root Exudates of Arabidopsi the Soil Reveal That Phenolic-related Compounds Predominantly Modulate the Soil Microbiomo Journal of Biological Chemistry, 2013, 288, 4502-4512.	s to 2. 1.6	452	-
56	Two-way plant mediated interactions between root-associated microbes and insects: from eco mechanisms. Frontiers in Plant Science, 2013, 4, 414.	logy to 1.7	110	

#	ARTICLE	IF	CITATIONS
57	Belowground biotic complexity drives aboveground dynamics: a test of the soil community feedback model. New Phytologist, 2013, 197, 1300-1310.	3.5	96
58	Bacterial communities associated with <i><scp>B</scp>rassica napus</i> â€ <scp>L</scp> . grown on trace elementâ€contaminated and nonâ€contaminated fields: a genotypic and phenotypic comparison. Microbial Biotechnology, 2013, 6, 371-384.	2.0	75
59	Exploring the maize rhizosphere microbiome in the field: A glimpse into a highly complex system. Communicative and Integrative Biology, 2013, 6, e25177.	0.6	31
60	Unraveling Root Developmental Programs Initiated by Beneficial <i>Pseudomonas</i> spp. Bacteria Â. Plant Physiology, 2013, 162, 304-318.	2.3	288
61	Engineering Applied to the Wine Fermentation Industry. , 2013, , 168-190.		0
62	Different bacterial communities in ectomycorrhizae and surrounding soil. Scientific Reports, 2013, 3, 3471.	1.6	77
63	Next-Generation Bio-Products Sowing the Seeds of Success for Sustainable Agriculture. Agronomy, 2013, 3, 648-656.	1.3	150
64	A Multifactor Analysis of Fungal and Bacterial Community Structure in the Root Microbiome of Mature Populus deltoides Trees. PLoS ONE, 2013, 8, e76382.	1.1	315
65	Effects of Plant Genotype and Nitrogen Level on Bacterial Communities in Rice Shoots and Roots. Microbes and Environments, 2013, 28, 391-395.	0.7	34
66	Bacterial Communities Associated with the Leaves and the Roots of Arabidopsis thaliana. PLoS ONE, 2013, 8, e56329.	1.1	679
67	Truffle Brûlés Have an Impact on the Diversity of Soil Bacterial Communities. PLoS ONE, 2013, 8, e61945.	1.1	55
68	The Antimicrobial Compound Xantholysin Defines a New Group of Pseudomonas Cyclic Lipopeptides. PLoS ONE, 2013, 8, e62946.	1.1	84
69	Comparative Genomic Analysis Indicates that Niche Adaptation of Terrestrial Flavobacteria Is Strongly Linked to Plant Glycan Metabolism. PLoS ONE, 2013, 8, e76704.	1.1	95
70	Bespoke microbiome therapy to manage plant diseases. Frontiers in Microbiology, 2013, 4, 355.	1.5	77
71	Vertical transmission explains the specific Burkholderia pattern in Sphagnum mosses at multi-geographic scale. Frontiers in Microbiology, 2013, 4, 394.	1.5	43
72	Catch the Best: Novel Screening Strategy to Select Stress Protecting Agents for Crop Plants. Agronomy, 2013, 3, 794-815.	1.3	38
73	Analysis of Plant-Bacteria Interactions in Their Native Habitat: Bacterial Communities Associated with Wild Tobacco Are Independent of Endogenous Jasmonic Acid Levels and Developmental Stages. PLoS ONE, 2014, 9, e94710.	1.1	43
74	Acetobixan, an Inhibitor of Cellulose Synthesis Identified by Microbial Bioprospecting. PLoS ONE, 2014, 9, e95245.	1.1	12

#	Article	IF	CITATIONS
75	Changes in the Bacterial Community of Soybean Rhizospheres during Growth in the Field. PLoS ONE, 2014, 9, e100709.	1.1	243
76	Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce. Frontiers in Microbiology, 2014, 5, 144.	1.5	320
77	Pinus flexilis and Piceae engelmannii share a simple and consistent needle endophyte microbiota with a potential role in nitrogen fixation. Frontiers in Microbiology, 2014, 5, 333.	1.5	81
78	Water Content Differences Have Stronger Effects than Plant Functional Groups on Soil Bacteria in a Steppe Ecosystem. PLoS ONE, 2014, 9, e115798.	1.1	11
79	Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops. Plant Biotechnology Journal, 2014, 12, 1193-1206.	4.1	238
80	Unraveling the Dark Septate Endophyte Functions: Insights from the Arabidopsis Model. , 2014, , 115-141.		27
81	Impact of swapping soils on the endophytic bacterial communities of pre-domesticated, ancient and modern maize. BMC Plant Biology, 2014, 14, 233.	1.6	89
82	Live cell imaging reveals extensive intracellular cytoplasmic colonization of banana by normally non-cultivable endophytic bacteria. AoB PLANTS, 2014, 6, .	1.2	58
83	Unraveling the plant microbiome: looking back and future perspectives. Frontiers in Microbiology, 2014, 5, 148.	1.5	498
84	Pyrosequencing detects human and animal pathogenic taxa in the grapevine endosphere. Frontiers in Microbiology, 2014, 5, 327.	1.5	32
85	A Synthetic Community Approach Reveals Plant Genotypes Affecting the Phyllosphere Microbiota. PLoS Genetics, 2014, 10, e1004283.	1.5	369
86	The potential for give and take in plantââ,¬â€œmicrobiome relationships. Frontiers in Plant Science, 2014, 5, 287.	1.7	106
87	Experimental approaches to study plant cell walls during plant-microbe interactions. Frontiers in Plant Science, 2014, 5, 540.	1.7	21
88	A Vavilovian approach to discovering crop-associated microbes with potential to enhance plant immunity. Frontiers in Plant Science, 2014, 5, 492.	1.7	22
89	Linking Bacterial Endophytic Communities to Essential Oils: Clues from <i>Lavandula angustifolia</i> Mill. Evidence-based Complementary and Alternative Medicine, 2014, 2014, 1-16.	0.5	23
90	Toward a systems understanding of plantââ,¬â€œmicrobe interactions. Frontiers in Plant Science, 2014, 5, 423.	1.7	42
91	Effects of bacterial inoculants on the indigenous microbiome and secondary metabolites of chamomile plants. Frontiers in Microbiology, 2014, 5, 64.	1.5	123
92	Ecological Succession and Stochastic Variation in the Assembly of Arabidopsis thaliana Phyllosphere Communities. MBio, 2014, 5, e00682-13.	1.8	252

#	Article	IF	CITATIONS
93	Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13715-13720.	3.3	457
94	Intraspecific plant–soil feedback and intraspecific overyielding in <i><scp>A</scp>rabidopsis thaliana</i> . Ecology and Evolution, 2014, 4, 2533-2545.	0.8	44
95	Seasonal dynamics of fungal communities in a temperate oak forest soil. New Phytologist, 2014, 201, 269-278.	3.5	300
96	The interâ€kingdom volatile signal indole promotes root development by interfering with auxin signalling. Plant Journal, 2014, 80, 758-771.	2.8	162
97	An increasing opine carbon bias in artificial exudation systems and genetically modified plant rhizospheres leads to an increasing reshaping of bacterial populations. Molecular Ecology, 2014, 23, 4846-4861.	2.0	33
98	Detection and quantification of native microbial populations on soil-grown rice roots by catalyzed reporter deposition-fluorescence <i>in situ</i> hybridization. FEMS Microbiology Ecology, 2014, 87, 390-402.	1.3	66
99	An introduction to the analysis of shotgun metagenomic data. Frontiers in Plant Science, 2014, 5, 209.	1.7	446
100	Analysis of plant microbe interactions in the era of next generation sequencing technologies. Frontiers in Plant Science, 2014, 5, 216.	1.7	194
101	Diet disparity among sympatric herbivorous cichlids in the same ecomorphs in Lake Tanganyika: amplicon pyrosequences on algal farms and stomach contents. BMC Biology, 2014, 12, 90.	1.7	23
102	Endophytic Actinobacteria: Diversity and Ecology. , 2014, , 27-59.		30
103	Reducing carbon: phosphorus ratio can enhance microbial phytin mineralization and lessen competition with maize for phosphorus. Journal of Plant Interactions, 2014, 9, 850-856.	1.0	33
104	Different behaviour of methanogenic archaea and <i>Thaumarchaeota</i> in rice field microcosms. FEMS Microbiology Ecology, 2014, 87, 18-29.	1.3	40
105	Plant genetics and interspecific competitive interactions determine ectomycorrhizal fungal community responses to climate change. Molecular Ecology, 2014, 23, 1379-1391.	2.0	58
106	Plant genetic effects on soils under climate change. Plant and Soil, 2014, 379, 1-19.	1.8	52
107	Inducible expression of p50 from TMV for increased resistance to bacterial crown gall disease in tobacco. Plant Molecular Biology, 2014, 84, 111-123.	2.0	11
108	Composition and activity of rhizosphere microbial communities associated with healthy and diseased greenhouse tomatoes. Plant and Soil, 2014, 380, 337-347.	1.8	62
109	Defensive symbiosis: a microbial perspective. Functional Ecology, 2014, 28, 293-298.	1.7	79
110	An Affinity–Effect Relationship for Microbial Communities in Plant–Soil Feedback Loops. Microbial Ecology, 2014, 67, 866-876.	1.4	13

#	Article	IF	CITATIONS
111	Genomic variability as a driver of plant–pathogen coevolution?. Current Opinion in Plant Biology, 2014, 18, 24-30.	3.5	119
112	Indole-3-acetic acid producing root-associated bacteria on growth of Brazil Pine (Araucaria) Tj ETQq1 1 0.784314	rgBT /Ove	erlock 10 T ^E 5
113	A systems-wide comparison of red rice (Oryza longistaminata) tissues identifies rhizome specific genes and proteins that are targets for cultivated rice improvement. BMC Plant Biology, 2014, 14, 46.	1.6	43
114	De-coupling of root–microbiome associations followed by antagonist inoculation improves rhizosphere soil suppressiveness. Biology and Fertility of Soils, 2014, 50, 217-224.	2.3	66
115	Synthetic biology approaches to engineering the nitrogen symbiosis in cereals. Journal of Experimental Botany, 2014, 65, 1939-1946.	2.4	160
116	Diversity and dynamics of microbial communities at each step of treatment plant for potable water generation. Water Research, 2014, 52, 218-230.	5.3	135
117	When the forest dies: the response of forest soil fungi to a bark beetle-induced tree dieback. ISME Journal, 2014, 8, 1920-1931.	4.4	125
118	Nature Biotechnology's academic spinouts of 2013. Nature Biotechnology, 2014, 32, 229-238.	9.4	9
119	Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany, 2014, 92, 267-275.	0.5	547
120	Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecology Letters, 2014, 17, 717-726.	3.0	266
121	Decreased abundance of type III secretion system-inducing signals in <i>Arabidopsis mkp1</i> enhances resistance against <i>Pseudomonas syringae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6846-6851.	3.3	97
122	Increasing phytoremediation efficiency and reliability using novel omics approaches. Trends in Biotechnology, 2014, 32, 271-280.	4.9	148
123	The foliar microbiome. Trends in Plant Science, 2014, 19, 278-280.	4.3	103
124	Quantitative divergence of the bacterial root microbiota in <i>Arabidopsis thaliana</i> relatives. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 585-592.	3.3	539
125	Interkingdom Transfer of the Acne-Causing Agent, Propionibacterium acnes, from Human to Grapevine. Molecular Biology and Evolution, 2014, 31, 1059-1065.	3.5	54
126	Diffuse symbioses: roles of plant–plant, plant–microbe and microbe–microbe interactions in structuring the soil microbiome. Molecular Ecology, 2014, 23, 1571-1583.	2.0	143
127	Spatial distribution analyses of natural phyllosphereâ€colonizing bacteria on <scp><i>A</i></scp> <i>rabidopsis thaliana</i> revealed by fluorescence <i>in situ</i> hybridization. Environmental Microbiology, 2014, 16, 2329-2340.	1.8	125
128	Anatomy of Root from Eyes of a Microbiologist. Soil Biology, 2014, , 3-22.	0.6	34

#	Article	IF	CITATIONS
129	Detection of a novel intracellular microbiome hosted in arbuscular mycorrhizal fungi. ISME Journal, 2014, 8, 257-270.	4.4	128
130	Compositional differences in soybeans on the market: Glyphosate accumulates in Roundup Ready GM soybeans. Food Chemistry, 2014, 153, 207-215.	4.2	234
131	Orchestration of plant defense systems: genes to populations. Trends in Plant Science, 2014, 19, 250-255.	4.3	18
132	Microbial expression profiles in the rhizosphere of willows depend on soil contamination. ISME Journal, 2014, 8, 344-358.	4.4	229
133	Symbiosis as a General Principle in Eukaryotic Evolution. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016113-a016113.	2.3	123
134	Rhizosphere microbiome assemblage is affected by plant development. ISME Journal, 2014, 8, 790-803.	4.4	1,128
135	Simultaneous profiling of seedâ€associated bacteria and fungi reveals antagonistic interactions between microorganisms within a shared epiphytic microbiome on <i><scp>T</scp>riticum</i> and <i><scp>B</scp>rassica</i> seeds. New Phytologist, 2014, 202, 542-553.	3.5	149
136	Microbial <i>terroir</i> for wine grapes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5-6.	3.3	221
137	Endophyte consortia for xenobiotic phytoremediation: the root to success?. Plant and Soil, 2014, 385, 389-394.	1.8	22
138	Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nature Communications, 2014, 5, 5320.	5.8	322
139	Diazotrophic potential among bacterial communities associated with wild and cultivated <i>Agave</i> species. FEMS Microbiology Ecology, 2014, 90, 844-857.	1.3	71
140	Functional Soil Microbiome: Belowground Solutions to an Aboveground Problem Â. Plant Physiology, 2014, 166, 689-700.	2.3	299
141	Niche and host-associated functional signatures of the root surface microbiome. Nature Communications, 2014, 5, 4950.	5.8	305
142	Microbial genome-enabled insights into plant–microorganism interactions. Nature Reviews Genetics, 2014, 15, 797-813.	7.7	187
143	Diversity of Plant Associated Actinobacteria. Sustainable Development and Biodiversity, 2014, , 41-99.	1.4	14
144	Conducting a Microbiome Study. Cell, 2014, 158, 250-262.	13.5	625
145	Shaping Bacterial Symbiosis With Legumes by Experimental Evolution. Molecular Plant-Microbe Interactions, 2014, 27, 956-964.	1.4	33
146	Microbial priming of plant and animal immunity: symbionts as developmental signals. Trends in Microbiology, 2014, 22, 607-613.	3.5	100

#	Article	IF	Citations
147	Bacterial Community Assemblages Associated with the Phyllosphere, Dermosphere, and Rhizosphere of Tree Species of the Atlantic Forest are Host Taxon Dependent. Microbial Ecology, 2014, 68, 567-574.	1.4	92
148	Simultaneous specific in planta visualization of root-colonizing fungi using fluorescence in situ hybridization (FISH). Mycorrhiza, 2014, 24, 259-266.	1.3	25
149	Bacterial Diversity in the Rhizosphere of Cucumbers Grown in Soils Covering a Wide Range of Cucumber Cropping Histories and Environmental Conditions. Microbial Ecology, 2014, 68, 794-806.	1.4	59
150	Host signature effect on plant rootâ€associated microbiomes revealed through analyses of resident <i>vs</i> . active communities. Environmental Microbiology, 2014, 16, 2157-2167.	1.8	158
151	Potential Role of Flavobacterial Gliding-Motility and Type IX Secretion System Complex in Root Colonization and Plant Defense. Molecular Plant-Microbe Interactions, 2014, 27, 1005-1013.	1.4	49
152	Induced Systemic Resistance by Beneficial Microbes. Annual Review of Phytopathology, 2014, 52, 347-375.	3.5	2,193
153	Illumina-based analysis of endophytic bacterial diversity and space-time dynamics in sugar beet on the north slope of Tianshan mountain. Applied Microbiology and Biotechnology, 2014, 98, 6375-6385.	1.7	115
154	Taxonomical and functional microbial community selection in soybean rhizosphere. ISME Journal, 2014, 8, 1577-1587.	4.4	633
155	Filamentous pathogen effector functions: of pathogens, hosts and microbiomes. Current Opinion in Plant Biology, 2014, 20, 96-103.	3.5	242
156	Characterization of rhizosphere and endophytic bacterial communities from leaves, stems and roots of medicinal Stellera chamaejasme L Systematic and Applied Microbiology, 2014, 37, 376-385.	1.2	108
157	Exploring interactions of plant microbiomes. Scientia Agricola, 2014, 71, 528-539.	0.6	122
158	Characterization of Early Microbial Communities on Volcanic Deposits along a Vegetation Gradient on the Island of Miyake, Japan. Microbes and Environments, 2014, 29, 38-49.	0.7	26
159	21st century agriculture: integration of plant microbiomes for improved crop production and food security. Microbial Biotechnology, 2015, 8, 32-33.	2.0	101
160	Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nature Plants, 2015, 1, .	4.7	345
161	Removal of floral microbiota reduces floral terpene emissions. Scientific Reports, 2014, 4, 6727.	1.6	73
162	Metagenomic insights into communities, functions of endophytes and their associates with infection by root-knot nematode, Meloidogyne incognita, in tomato roots. Scientific Reports, 2015, 5, 17087.	1.6	185
163	The core microbiome bonds the Alpine bog vegetation to a transkingdom metacommunity. Molecular Ecology, 2015, 24, 4795-4807.	2.0	74
164	Early rhizosphere microbiome composition is related to the growth and <scp><scp>Zn</scp> uptake of willows introduced to a former landfill. Environmental Microbiology, 2015, 17, 3025-3038.</scp>	1.8	61

#	Article	IF	CITATIONS
165	Why we need more algal metagenomes 1. Journal of Phycology, 2015, 51, 1029-1036.	1.0	13
166	Root-associated bacterial endophytes from Ralstonia solanacearum resistant and susceptible tomato cultivars and their pathogen antagonistic effects. Frontiers in Microbiology, 2015, 6, 255.	1.5	84
167	Metatranscriptome analysis reveals host-microbiome interactions in traps of carnivorous Genlisea species. Frontiers in Microbiology, 2015, 6, 526.	1.5	23
168	Primer and platform effects on 16S rRNA tag sequencing. Frontiers in Microbiology, 2015, 6, 771.	1.5	435
169	Microbiomes: unifying animal and plant systems through the lens of community ecology theory. Frontiers in Microbiology, 2015, 6, 869.	1.5	118
170	Bacterial endophyte communities in the foliage of coast redwood and giant sequoia. Frontiers in Microbiology, 2015, 6, 1008.	1.5	49
171	Metabolic functions of Pseudomonas fluorescens strains from Populus deltoides depend on rhizosphere or endosphere isolation compartment. Frontiers in Microbiology, 2015, 6, 1118.	1.5	60
172	Responses of soil microeukaryotic communities to short-term fumigation-incubation revealed by MiSeq amplicon sequencing. Frontiers in Microbiology, 2015, 6, 1149.	1.5	23
173	Prokaryotes in Subsoil—Evidence for a Strong Spatial Separation of Different Phyla by Analysing Co-occurrence Networks. Frontiers in Microbiology, 2015, 6, 1269.	1.5	49
174	The Scion/Rootstock Genotypes and Habitats Affect Arbuscular Mycorrhizal Fungal Community in Citrus. Frontiers in Microbiology, 2015, 6, 1372.	1.5	24
175	Transplanting Soil Microbiomes Leads to Lasting Effects on Willow Growth, but not on the Rhizosphere Microbiome. Frontiers in Microbiology, 2015, 6, 1436.	1.5	98
176	Biotic Stress Shifted Structure and Abundance of Enterobacteriaceae in the Lettuce Microbiome. PLoS ONE, 2015, 10, e0118068.	1.1	51
177	Baseline Survey of Root-Associated Microbes of Taxus chinensis (Pilger) Rehd. PLoS ONE, 2015, 10, e0123026.	1.1	14
178	A Legume Genetic Framework Controls Infection of Nodules by Symbiotic and Endophytic Bacteria. PLoS Genetics, 2015, 11, e1005280.	1.5	97
179	The olive knot disease as a model to study the role of interspecies bacterial communities in plant disease. Frontiers in Plant Science, 2015, 6, 434.	1.7	69
180	Characterization of culturable bacterial endophytes and their capacity to promote plant growth from plants grown using organic or conventional practices. Frontiers in Plant Science, 2015, 6, 490.	1.7	135
181	Signaling in the phytomicrobiome: breadth and potential. Frontiers in Plant Science, 2015, 6, 709.	1.7	73
182	Pseudomonas spp. as models for plant-microbe interactions. Frontiers in Plant Science, 2015, 6, 787.	1.7	45

#	Article	IF	CITATIONS
183	Epigenetic Mechanisms and Microbiota as a Toolbox for Plant Phenotypic Adjustment to Environment. Frontiers in Plant Science, 2015, 6, 1159.	1.7	41
184	Root Microbiome Assemblage is Modulated by Plant Host Factors. Advances in Botanical Research, 2015, 75, 57-79.	0.5	28
185	The Water Cycle, a Potential Source of the Bacterial Pathogen <i>Bacillus cereus</i> . BioMed Research International, 2015, 2015, 1-15.	0.9	20
186	Planting molecular functions in an ecological context with Arabidopsis thaliana. ELife, 2015, 4, .	2.8	50
187	Exploring the Feasibility of Transferring Nitrogen Fixation to Cereal Crops. , 2015, , 403-410.		3
188	The bacterial rhizobiome of hyperaccumulators: future perspectives based on omics analysis and advanced microscopy. Frontiers in Plant Science, 2014, 5, 752.	1.7	61
189	Antibiotic resistance genes in manure-amended soil and vegetables at harvest. Journal of Hazardous Materials, 2015, 299, 215-221.	6.5	263
190	Microbiota and Host Nutrition across Plant and Animal Kingdoms. Cell Host and Microbe, 2015, 17, 603-616.	5.1	628
191	Microbiomics: An Approach to Community Microbiology. , 2015, , 633-653.		1
192	Rhizobacterial volatiles and photosynthesisâ€related signals coordinate <i><scp>MYB</scp>72</i> expression in Arabidopsis roots during onset of induced systemic resistance and ironâ€deficiency responses. Plant Journal, 2015, 84, 309-322.	2.8	171
193	Halotolerant PGPRs Prevent Major Shifts in Indigenous Microbial Community Structure Under Salinity Stress. Microbial Ecology, 2015, 70, 196-208.	1.4	37
194	The Ecology of the Soil Biota and their Function. , 2015, , 273-309.		24
195	Understanding and managing soil biodiversity: a major challenge in agroecology. Agronomy for Sustainable Development, 2015, 35, 67-81.	2.2	93
196	The importance of the microbiome of the plant holobiont. New Phytologist, 2015, 206, 1196-1206.	3.5	1,509
197	Root surface as a frontier for plant microbiome research. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2299-2300.	3.3	110
199	Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biology and Fertility of Soils, 2015, 51, 403-415.	2.3	658
200	Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E911-20.	3.3	2,016
201	Different Bacterial Populations Associated with the Roots and Rhizosphere of Rice Incorporate Plant-Derived Carbon. Applied and Environmental Microbiology, 2015, 81, 2244-2253.	1.4	114

ARTICLE IF CITATIONS Introduction to Plant Growth-promoting Bacteria., 2015, , 1-28. 202 21 Influence of cyanobacterial inoculation on the culturable microbiome and growth of rice. 2.5 Microbiological Research, 2015, 171, 78-89. Uncovering potential â€~herbal probiotics' in Juzen-taiho-to through the study of associated bacterial 204 1.0 18 populations. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 466-469. Composition of fungal and bacterial communities in forest litter and soil is largely determined by 495 dominant trees. Soil Biology and Biochemistry, 2015, 84, 53-64. Towards a holistic understanding of the beneficial interactions across the <i>Populus</i> 206 3.5 131 microbiome. New Phytologist, 2015, 205, 1424-1430. Greater than the sum of their parts: characterizing plant microbiomes at the community-level. Current Opinion in Plant Biology, 2015, 24, 82-86. 208 3.5 Pairwise Transcriptomic Analysis of the Interactions Between the Ectomycorrhizal Fungus Laccaria 209 bicolor S238N and Three Beneficial, Neutral and Antagonistic Soil Bacteria. Microbial Ecology, 2015, 1.4 30 69, 146-159. Pseudomonas fluorescens Pirates both Ferrioxamine and Ferricoelichelin Siderophores from 210 1.4 Streptomyces ambofaciens. Applied and Environmental Microbiology, 2015, 81, 3132-3141. Belowground environmental effects of transgenic crops: a soil microbial perspective. Research in 211 1.0 77 Microbiology, 2015, 166, 121-131. Structure and Function of the Bacterial Root Microbiota in Wild and Domesticated Barley. Cell Host 5.1 1,102 and Microbe, 2015, 17, 392-403. Does plant immunity play a critical role during initiation of the legume-rhizobium symbiosis?. 213 1.7 69 Frontiers in Plant Science, 2015, 06, 401. Nitric Oxide in Azospirillum and Related Bacteria: Production and Effects., 2015, , 155-180. Roots Shaping Their Microbiome: Global Hotspots for Microbial Activity. Annual Review of 216 3.5 595 Phytopathology, 2015, 53, 403-424. Not Just Sweet Talkers. Advances in Botanical Research, 2015, , 1-20. 217 24 Roots from distinct plant developmental stages are capable of rapidly selecting their own microbiome 218 without the influence of environmental and soil edaphic factors. Soil Biology and Biochemistry, 2015, 4.2 69 89, 206-209. Natural Products as Pharmaceuticals and Sources for Lead Structures**Note: This chapter reflects the opinions of the authors, not necessarily those of the US Government., 2015, 101-139. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining 220 2.9 1,895 Functioning of Microbial Endophytes. Microbiology and Molecular Biology Reviews, 2015, 79, 293-320. Estimating beta diversity for under-sampled communities using the variably weighted Odum 1.8 dissimilarity index and OTUshuff. Bioinformatics, 2015, 31, 3451-3459.

		CITATION REPORT	Т
#	ARTICLE Microbiomes of Streptophyte Algae and Bryophytes Suggest That a Functional Suite of Microbiota	IF	CITATIONS
222	Fostered Plant Colonization of Land. International Journal of Plant Sciences, 2015, 176, 405-420.	0.6	88
223	Learning Microbial Interaction Networks from Metagenomic Count Data. Lecture Notes in Comput Science, 2015, , 32-43.	er 1.0	10
224	Rhizobiales as functional and endosymbiontic members in the lichen symbiosis of Lobaria pulmona L. Frontiers in Microbiology, 2015, 6, 53.	ria 1.5	196
225	Microbial population dynamics in response to Pectobacterium atrosepticum infection in potato tubers. Scientific Reports, 2015, 5, 11606.	1.6	67
226	Metagenomics of Plant–Microbe Interactions. , 2015, , 135-153.		0
227	Supraspecies genetic systems. Biology Bulletin Reviews, 2015, 5, 179-189.	0.3	3
228	Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science, 20 349, 860-864.	15, 6.0	957
229	Methylotrophs in natural habitats: current insights through metagenomics. Applied Microbiology a Biotechnology, 2015, 99, 5763-5779.	nd 1.7	109
230	Exercising influence: distinct biotic interactions shape root microbiomes. Current Opinion in Plant Biology, 2015, 26, 32-36.	3.5	18
231	Stability and succession of the rhizosphere microbiota depends upon plant type and soil compositi ISME Journal, 2015, 9, 2349-2359.	on. 4.4	302
232	Role of root microbiota in plant productivity. Journal of Experimental Botany, 2015, 66, 2167-2175	. 2.4	171
233	Host genotype is an important determinant of the cereal phyllosphere mycobiome. New Phytologis 2015, 207, 1134-1144.	t, 3.5	179
234	Wounding of Arabidopsis halleri leaves enhances cadmium accumulation that acts as a defense against herbivory. BioMetals, 2015, 28, 521-528.	1.8	25
235	Site and Clone Effects on the Potato Root-Associated Core Microbiome and its Relationship to Tub Yield and Nutrients. American Journal of Potato Research, 2015, 92, 1-9.	er 0.5	26
236	The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME Journal, 2015, 9, 2261-2274.	4.4	548
237	Assessment of Ustilago maydis as a fungal model for root infection studies. Fungal Biology, 2015, 145-153.	119, 1.1	15
238	Soils naturally suppressive to banana Fusarium wilt disease harbor unique bacterial communities. Plant and Soil, 2015, 393, 21-33.	1.8	112
239	Theories, Mechanisms and Patterns of Microbiome Species Coexistence in an Era of Climate Chang SpringerBriefs in Ecology, 2015, , 13-53.	e0.2	11

#	Article	IF	CITATIONS
240	Mutualismââ,¬â€œparasitism paradigm synthesized from results of root-endophyte models. Frontiers in Microbiology, 2014, 5, 776.	1.5	106
241	Biodiversity and Microbial Ecosystems Functioning. , 2015, , 261-291.		3
242	The significance and scope of evolutionary developmental biology: a vision for the 21st century. Evolution & Development, 2015, 17, 198-219.	1.1	92
243	Handbook for Azospirillum. , 2015, , .		30
245	Rhizosphere microbial community manipulated by 2Âyears of consecutive biofertilizer application associated with banana Fusarium wilt disease suppression. Biology and Fertility of Soils, 2015, 51, 553-562.	2.3	175
246	Housing helpful invaders: the evolutionary and molecular architecture underlying plant root-mutualist microbe interactions. Journal of Experimental Botany, 2015, 66, 2177-2186.	2.4	27
247	Impacts of bulk soil microbial community structure on rhizosphere microbiomes of Zea mays. Plant and Soil, 2015, 392, 115-126.	1.8	155
248	The bacterial community inhabiting temperate deciduous forests is vertically stratified and undergoes seasonal dynamics. Soil Biology and Biochemistry, 2015, 87, 43-50.	4.2	112
249	Bacterial diversity amplifies nutrientâ€based plant–soil feedbacks. Functional Ecology, 2015, 29, 1341-1349.	1.7	78
250	The Soil Microbiome Influences Grapevine-Associated Microbiota. MBio, 2015, 6, .	1.8	747
252	Engineering Microbiomes to Improve Plant and Animal Health. Trends in Microbiology, 2015, 23, 606-617.	3.5	486
253	Successional Trajectories of Rhizosphere Bacterial Communities over Consecutive Seasons. MBio, 2015, 6, e00746.	1.8	232
254	Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nature Communications, 2015, 6, 8413.	5.8	384
255	Unearthing the genomes of plant-beneficial Pseudomonas model strains WCS358, WCS374 and WCS417. BMC Genomics, 2015, 16, 539.	1.2	184
256	Plant microbiome blueprints. Science, 2015, 349, 788-789.	6.0	42
257	Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5013-20.	3.3	336
258	Composition of soil microbial communities in the rhizosphere of cucumber cultivars with differing nitrogen acquisition efficiency. Applied Soil Ecology, 2015, 95, 90-98.	2.1	13
259	Functional overlap of the Arabidopsis leaf and root microbiota. Nature, 2015, 528, 364-369.	13.7	1,062

#	Article	IF	Citations
260	Curating communities from plants. Nature, 2015, 528, 340-341.	13.7	34
261	The principle of genome complementarity in the enhancement of plant adaptive capacities. Russian Journal of Genetics, 2015, 51, 831-846.	0.2	12
262	In wild tobacco, <i>Nicotiana attenuata</i> , variation among bacterial communities of isogenic plants is mainly shaped by the local soil microbiota independently of the plants' capacity to produce jasmonic acid. Communicative and Integrative Biology, 2015, 8, e1017160.	0.6	8
263	Relocation, highâ€latitude warming and host genetic identity shape the foliar fungal microbiome of poplars. Molecular Ecology, 2015, 24, 235-248.	2.0	125
264	Bacterial networks and coâ€occurrence relationships in the lettuce root microbiota. Environmental Microbiology, 2015, 17, 239-252.	1.8	241
265	The Plant Microbiome at Work. Molecular Plant-Microbe Interactions, 2015, 28, 212-217.	1.4	493
266	Spatial structuring of bacterial communities within individual <scp><i>G</i></scp> <i>inkgo biloba</i> trees. Environmental Microbiology, 2015, 17, 2352-2361.	1.8	94
267	Principles of Plant-Microbe Interactions. , 2015, , .		89
268	Plant-Soil Biota Interactions. , 2015, , 311-338.		46
269	Plant community richness and microbial interactions structure bacterial communities in soil. Ecology, 2015, 96, 134-142.	1.5	196
270	Metabolic engineering to enhance the value of plants as green factories. Metabolic Engineering, 2015, 27, 83-91.	3.6	65
271	Evolution of bacterial communities in the wheat crop rhizosphere. Environmental Microbiology, 2015, 17, 610-621.	1.8	297
273	Selection on soil microbiomes reveals reproducible impacts on plant function. ISME Journal, 2015, 9, 980-989.	4.4	549
274	Reviving of the endophytic bacterial community as a putative mechanism of plant resistance. Plant and Soil, 2015, 388, 367-377.	1.8	96
275	Reduced dependence of rhizosphere microbiome on plant-derived carbon in 32-year long-term inorganic and organic fertilized soils. Soil Biology and Biochemistry, 2015, 80, 70-78.	4.2	176
276	Microbial Community Structure in the Rhizosphere of Rice Plants. Frontiers in Microbiology, 2015, 6, 1537.	1.5	148
277	The Cacti Microbiome: Interplay between Habitat-Filtering and Host-Specificity. Frontiers in Microbiology, 2016, 7, 150.	1.5	219
278	Towards an Enhanced Understanding of Plant–Microbiome Interactions to Improve Phytoremediation: Engineering the Metaorganism. Frontiers in Microbiology, 2016, 7, 341.	1.5	213

#	Article	IF	CITATIONS
279	Rhizosphere Microbiomes of European + Seagrasses Are Selected by the Plant, But Are Not Species Specific. Frontiers in Microbiology, 2016, 7, 440.	1.5	153
280	Chitin Mixed in Potting Soil Alters Lettuce Growth, the Survival of Zoonotic Bacteria on the Leaves and Associated Rhizosphere Microbiology. Frontiers in Microbiology, 2016, 7, 565.	1.5	76
281	Performance of 16s rDNA Primer Pairs in the Study of Rhizosphere and Endosphere Bacterial Microbiomes in Metabarcoding Studies. Frontiers in Microbiology, 2016, 7, 650.	1.5	237
282	Commentary: Agroforestry leads to shifts within the gammaproteobacterial microbiome of banana plants cultivated in Central America. Frontiers in Microbiology, 2016, 7, 656.	1.5	5
283	Evaluation of Strategies to Separate Root-Associated Microbial Communities: A Crucial Choice in Rhizobiome Research. Frontiers in Microbiology, 2016, 7, 773.	1.5	69
284	Salicornia strobilacea (Synonym of Halocnemum strobilaceum) Grown under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth. Frontiers in Microbiology, 2016, 7, 1286.	1.5	51
285	Aboveground Whitefly Infestation-Mediated Reshaping of the Root Microbiota. Frontiers in Microbiology, 2016, 7, 1314.	1.5	74
286	Microbiome Selection Could Spur Next-Generation Plant Breeding Strategies. Frontiers in Microbiology, 2016, 7, 1971.	1.5	175
287	Dynamics in the Strawberry Rhizosphere Microbiome in Response to Biochar and Botrytis cinerea Leaf Infection. Frontiers in Microbiology, 2016, 7, 2062.	1.5	59
288	Characterization of Uncultured Genome Fragment from Soil Metagenomic Library Exposed Rare Mismatch of Internal Tetranucleotide Frequency. Frontiers in Microbiology, 2016, 7, 2081.	1.5	19
289	Root Exudation: The Ecological Driver of Hydrocarbon Rhizoremediation. Agronomy, 2016, 6, 19.	1.3	119
290	Plant-Endophyte Partnerships to Assist Petroleum Hydrocarbon Remediation. , 2016, , 1-34.		2
291	Microbiome and Exudates of the Root and Rhizosphere of Brachypodium distachyon, a Model for Wheat. PLoS ONE, 2016, 11, e0164533.	1.1	211
292	Assessing Bacterial Diversity in the Rhizosphere of Thymus zygis Growing in the Sierra Nevada National Park (Spain) through Culture-Dependent and Independent Approaches. PLoS ONE, 2016, 11, e0146558.	1.1	47
293	Specific Microbial Communities Associate with the Rhizosphere of Welwitschia mirabilis, a Living Fossil. PLoS ONE, 2016, 11, e0153353.	1.1	41
294	Ecologically Different Fungi Affect Arabidopsis Development: Contribution of Soluble and Volatile Compounds. PLoS ONE, 2016, 11, e0168236.	1.1	26
295	Two Poplar-Associated Bacterial Isolates Induce Additive Favorable Responses in a Constructed Plant-Microbiome System. Frontiers in Plant Science, 2016, 7, 497.	1.7	113
296	Cadaverine's Functional Role in Plant Development and Environmental Response. Frontiers in Plant Science, 2016, 7, 870.	1.7	82

#	Article	IF	CITATIONS
297	Rhizospheric Bacterial Community of Endemic Rhododendron arboreum Sm. Ssp. delavayi along Eastern Himalayan Slope in Tawang. Frontiers in Plant Science, 2016, 07, 1345.	1.7	14
298	Giving back to the community: microbial mechanisms of plant–soil interactions. Functional Ecology, 2016, 30, 1043-1052.	1.7	89
299	The core root microbiome of sugarcanes cultivated under varying nitrogen fertilizer application. Environmental Microbiology, 2016, 18, 1338-1351.	1.8	149
300	Naturally Occurring Isoleucyl-tRNA Synthetase without tRNA-dependent Pre-transfer Editing. Journal of Biological Chemistry, 2016, 291, 8618-8631.	1.6	14
301	Contrasting microbial biogeographical patterns between anthropogenic subalpine grasslands and natural alpine grasslands. New Phytologist, 2016, 209, 1196-1207.	3.5	28
302	The <i>Sphagnum</i> microbiome: new insights from an ancient plant lineage. New Phytologist, 2016, 211, 57-64.	3.5	123
303	Plant–soil feedbacks: connecting ecosystem ecology and evolution. Functional Ecology, 2016, 30, 1032-1042.	1.7	83
304	Analysis of single root tip microbiomes suggests that distinctive bacterial communities are selected by <scp><i>P</i></scp> <i>inus sylvestris</i> roots colonized by different ectomycorrhizal fungi. Environmental Microbiology, 2016, 18, 1470-1483.	1.8	79
305	Terroir is a key driver of seedâ€associated microbial assemblages. Environmental Microbiology, 2016, 18, 1792-1804.	1.8	150
306	The local environment determines the assembly of root endophytic fungi at a continental scale. Environmental Microbiology, 2016, 18, 2418-2434.	1.8	123
307	Rice bacterial endophytes: isolation of a collection, identification of beneficial strains and microbiome analysis. Environmental Microbiology Reports, 2016, 8, 388-398.	1.0	75
308	Cadmiumâ€induced and transâ€generational changes in the cultivable and total seed endophytic community of <i>Arabidopsis thaliana</i> . Plant Biology, 2016, 18, 376-381.	1.8	41
309	Growth Promotion Features of the Maize Microbiome: From an Agriculture Perspective. , 2016, , 345-374.		11
310	Multiplex amplicon sequencing for microbe identification in community-based culture collections. Scientific Reports, 2016, 6, 29543.	1.6	57
311	Shifts in plant foliar and floral metabolomes in response to the suppression of the associated microbiota. BMC Plant Biology, 2016, 16, 78.	1.6	40
312	Wheat seed embryo excision enables the creation of axenic seedlings and Koch's postulates testing of putative bacterial endophytes. Scientific Reports, 2016, 6, 25581.	1.6	45
313	Examining Biochar Impacts on Soil Abiotic and Biotic Processes and Exploring the Potential for Pyrosequencing Analysis. , 2016, , 133-162.		4
315	Integrated analysis of root microbiomes of soybean and wheat from agricultural fields. Scientific Reports, 2016, 6, 28084.	1.6	198

		ITATION REPORT	
#	Article	IF	CITATIONS
316	Endemic plants harbour specific Trichoderma communities with an exceptional potential for biocontrol of phytopathogens. Journal of Biotechnology, 2016, 235, 162-170.	1.9	37
317	Influence of plant genotype on the cultivable fungiÂassociated to tomato rhizosphere and roots in different soils. Fungal Biology, 2016, 120, 862-872.	1.1	39
318	Biological, physicochemical and plant health responses in lettuce and strawberry in soil or peat amended with biochar. Applied Soil Ecology, 2016, 107, 1-12.	2.1	122
319	Illumina-based analysis of core actinobacteriome in roots, stems, and grains of rice. Microbiological Research, 2016, 190, 12-18.	2.5	34
320	A Friend in Need (of Nutrients) Is a…. Cell, 2016, 165, 269-271.	13.5	5
321	Effect of biochar on the growth of <i>Poncirus trifoliata</i> (L.) Raf. seedlings in Gannan acidic red soil. Soil Science and Plant Nutrition, 2016, 62, 194-200.	0.8	25
322	Stable isotope probing of carbon flow in the plant holobiont. Current Opinion in Biotechnology, 2016, 41, 9-13.	3.3	98
323	Bacterial populations in juvenile maize rhizospheres originate from both seed and soil. Plant and Soi 2016, 405, 337-355.	l, 1.8	207
324	Assessment of Bacterial Communities and Predictive Functional Profiling in Soils Subjected to Short-Term Fumigation-Incubation. Microbial Ecology, 2016, 72, 240-251.	1.4	22
325	The bacterial community in the rhizosphere of Kimchi cabbage restructured by volatile compounds emitted from rhizobacterium Proteus vulgaris JBLS202. Applied Soil Ecology, 2016, 105, 48-56.	2.1	11
326	Structural and functional differentiation of the root-associated bacterial microbiomes of perennial ryegrass. Soil Biology and Biochemistry, 2016, 98, 1-10.	4.2	99
327	Organic Farming, Soil Health, and Food Quality: Considering Possible Links. Advances in Agronomy, 2016, 137, 319-367.	2.4	95
328	Plants of the fynbos biome harbour host species-specific bacterial communities. FEMS Microbiology Letters, 2016, 363, fnw122.	0.7	16
329	Cross-species comparisons of host genetic associations with the microbiome. Science, 2016, 352, 532-535.	6.0	233
330	Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens. Science, 2016, 352 535-538.		341
331	Illumina-based analysis of the rhizosphere microbial communities associated with healthy and wilted Lanzhou lily (Lilium davidii var. unicolor) plants grown in the field. World Journal of Microbiology and Biotechnology, 2016, 32, 95.	1.7	48
332	Evolution and Ecology of <i>Actinobacteria</i> and Their Bioenergy Applications. Annual Review of Microbiology, 2016, 70, 235-254.	2.9	249
333	The Genetics Underlying Natural Variation in the Biotic Interactions of Arabidopsis thaliana. Current Topics in Developmental Biology, 2016, 119, 111-156.	1.0	39

#	Article	IF	CITATIONS
334	Plant–Microbiota Interactions as a Driver of the Mineral Turnover in the Rhizosphere. Advances in Applied Microbiology, 2016, 95, 1-67.	1.3	105
335	Advances in the rhizosphere: stretching the interface of life. Plant and Soil, 2016, 407, 1-8.	1.8	78
336	Systems-level Proteomics of Two Ubiquitous Leaf Commensals Reveals Complementary Adaptive Traits for Phyllosphere Colonization. Molecular and Cellular Proteomics, 2016, 15, 3256-3269.	2.5	48
337	The Microbial Signature Provides Insight into the Mechanistic Basis of Coral Success across Reef Habitats. MBio, 2016, 7, .	1.8	175
338	Isolation of Endophytic Plant Growth-Promoting Bacteria Associated with the Halophyte Salicornia europaea and Evaluation of their Promoting Activity Under Salt Stress. Current Microbiology, 2016, 73, 574-581.	1.0	126
339	Effect of Wild and Cultivated Rice Genotypes on Rhizosphere Bacterial Community Composition. Rice, 2016, 9, 42.	1.7	75
340	Microbially Mediated Plant Salt Tolerance and Microbiome-based Solutions for Saline Agriculture. Biotechnology Advances, 2016, 34, 1245-1259.	6.0	315
341	Microbiome Networks: A Systems Framework for Identifying Candidate Microbial Assemblages for Disease Management. Phytopathology, 2016, 106, 1083-1096.	1.1	250
342	Comparative analysis of bacterial diversity in the rhizosphere of tomato by culture-dependent and -independent approaches. Journal of Microbiology, 2016, 54, 823-831.	1.3	62
343	Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nature Communications, 2016, 7, 12151.	5.8	754
344	The Plant Microbiota: Systems-Level Insights and Perspectives. Annual Review of Genetics, 2016, 50, 211-234.	3.2	627
345	Highâ€resolution community profiling of arbuscular mycorrhizal fungi. New Phytologist, 2016, 212, 780-791.	3.5	104
346	Chronic nitrogen additions fundamentally restructure the soil fungal community in a temperate forest. Fungal Ecology, 2016, 23, 48-57.	0.7	172
347	Root nodule symbiosis in <i>Lotus japonicus</i> drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7996-E8005.	3.3	258
348	Specialized Microbiome of a Halophyte and its Role in Helping Non-Host Plants to Withstand Salinity. Scientific Reports, 2016, 6, 32467.	1.6	181
349	Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Scientific Reports, 2016, 6, 28774.	1.6	269
350	Climate and edaphic controllers influence rhizosphere community assembly for a wild annual grass. Ecology, 2016, 97, 1307-1318.	1.5	111
351	The effects of host age and spatial location on bacterial community composition in the English Oak tree (<i>Quercus robur</i>). Environmental Microbiology Reports, 2016, 8, 649-658.	1.0	33

#	Article	IF	CITATIONS
352	Learning Microbial Interaction Networks from Metagenomic Count Data. Journal of Computational Biology, 2016, 23, 526-535.	0.8	39
353	<i>Streptomyces</i> as a plant's best friend?. FEMS Microbiology Ecology, 2016, 92, fiw119.	1.3	228
354	<i>Caenorhabditis elegans</i> responses to bacteria from its natural habitats. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3941-9.	3.3	317
355	Tree species select diverse soil fungal communities expressing different sets of lignocellulolytic enzyme-encoding genes. Soil Biology and Biochemistry, 2016, 100, 149-159.	4.2	19
356	Endophytic bacterial and fungal microbiota in sprouts, roots and stems of rice (Oryza sativa L.). Microbiological Research, 2016, 188-189, 1-8.	2.5	102
357	Using Ecology, Physiology, and Genomics to Understand Host Specificity in <i>Xanthomonas</i> . Annual Review of Phytopathology, 2016, 54, 163-187.	3.5	157
358	Dead fungal mycelium in forest soil represents a decomposition hotspot and a habitat for a specific microbial community. New Phytologist, 2016, 210, 1369-1381.	3.5	190
359	The use of propidium monoazide in conjunction with qPCR and Illumina sequencing to identify and quantify live yeasts and bacteria. International Journal of Food Microbiology, 2016, 234, 53-59.	2.1	22
360	The <i>rpb2</i> gene represents a viable alternative molecular marker for the analysis of environmental fungal communities. Molecular Ecology Resources, 2016, 16, 388-401.	2.2	66
361	Engineering the Rhizosphere. Trends in Plant Science, 2016, 21, 266-278.	4.3	203
362	High-Throughput Sequencing Analysis of the Endophytic Bacterial Diversity and Dynamics in Roots of the Halophyte Salicornia europaea. Current Microbiology, 2016, 72, 557-562.	1.0	20
363	The effects of the growth substrate on cultivable and total endophytic assemblages of Arabidopsis thaliana. Plant and Soil, 2016, 405, 325-336.	1.8	22
364	Root Endophyte Colletotrichum tofieldiae Confers Plant Fitness Benefits that Are Phosphate Status Dependent. Cell, 2016, 165, 464-474.	13.5	510
365	Bioprospecting plant-associated microbiomes. Journal of Biotechnology, 2016, 235, 171-180.	1.9	53
366	Disentangling the factors shaping microbiota composition across the plant holobiont. New Phytologist, 2016, 209, 454-457.	3.5	97
367	Unlocking the Secrets of the Rhizosphere. Trends in Plant Science, 2016, 21, 169-170.	4.3	39
368	Beneficial Microbes Affect Endogenous Mechanisms Controlling Root Development. Trends in Plant Science, 2016, 21, 218-229.	4.3	298
369	Lignin engineering in field-grown poplar trees affects the endosphere bacterial microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2312-2317.	3.3	99

# 370	ARTICLE Signaling in the Rhizosphere. Trends in Plant Science, 2016, 21, 187-198.	lF 4.3	Citations 465
371	Root–Root Interactions: Towards A Rhizosphere Framework. Trends in Plant Science, 2016, 21, 209-217.	4.3	149
372	Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria. Plant Molecular Biology, 2016, 90, 623-634.	2.0	140
373	Elucidating the role of the host genome in shaping microbiome composition. Gut Microbes, 2016, 7, 178-184.	4.3	76
374	Network modules and hubs in plant-root fungal biomes. Journal of the Royal Society Interface, 2016, 13, 20151097.	1.5	100
375	Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biology, 2016, 90, 575-587.	2.0	523
376	Tools for the Microbiome: Nano and Beyond. ACS Nano, 2016, 10, 6-37.	7.3	137
377	The interaction between iron nutrition, plant species and soil type shapes the rhizosphere microbiome. Plant Physiology and Biochemistry, 2016, 99, 39-48.	2.8	182
378	The plant microbiome explored: implications for experimental botany. Journal of Experimental Botany, 2016, 67, 995-1002.	2.4	424
379	Description of Vogesella oryzae sp. nov., isolated from the rhizosphere of saline tolerant pokkali rice. Systematic and Applied Microbiology, 2016, 39, 20-24.	1.2	27
380	Plant growth-promoting bacterial endophytes. Microbiological Research, 2016, 183, 92-99.	2.5	1,194
381	Nicotiana Roots Recruit Rare Rhizosphere Taxa as Major Root-Inhabiting Microbes. Microbial Ecology, 2016, 71, 469-472.	1.4	71
382	Plant compartment and biogeography affect microbiome composition in cultivated and native <i>Agave</i> species. New Phytologist, 2016, 209, 798-811.	3.5	663
383	Microbial Community Analysis with Ribosomal Gene Fragments from Shotgun Metagenomes. Applied and Environmental Microbiology, 2016, 82, 157-166.	1.4	73
384	Can functional hologenomics aid tackling current challenges in plant breeding?. Briefings in Functional Genomics, 2016, 15, 288-297.	1.3	52
385	Evaluation of tomato seedling root-associated bacterial endophytes towards organic seedling production. Organic Agriculture, 2016, 6, 89-98.	1.2	7
386	Endophytic bacterial community composition in wheat (Triticum aestivum) is determined by plant tissue type, developmental stage and soil nutrient availability. Plant and Soil, 2016, 405, 381-396.	1.8	128
387	Combined pre-seed treatment with microbial inoculants and Mo nanoparticles changes composition of root exudates and rhizosphere microbiome structure of chickpea (Cicer arietinum L.) plants. Symbiosis, 2017, 73, 57-69.	1.2	39

#	Article	IF	CITATIONS
388	Chatting With a Tiny Belowground Member of the Holobiome. Advances in Botanical Research, 2017, , 135-160.	0.5	22
389	Effects of jasmonic acid signalling on the wheat microbiome differ between body sites. Scientific Reports, 2017, 7, 41766.	1.6	105
390	Two cultivated legume plants reveal the enrichment process of the microbiome in the rhizocompartments. Molecular Ecology, 2017, 26, 1641-1651.	2.0	134
391	A Culture-Independent Approach to Enrich Endophytic Bacterial Cells from Sugarcane Stems for Community Characterization. Microbial Ecology, 2017, 74, 453-465.	1.4	20
392	Evaluating the core microbiota in complex communities: A systematic investigation. Environmental Microbiology, 2017, 19, 1450-1462.	1.8	187
393	Divergent functional isoforms drive niche specialisation for nutrient acquisition and use in rumen microbiome. ISME Journal, 2017, 11, 932-944.	4.4	70
394	Colonization and beneficial effects on annual ryegrass by mixed inoculation with plant growth promoting bacteria. Microbiological Research, 2017, 198, 47-55.	2.5	48
395	A distinctive root-inhabiting denitrifying community with high N2O/(N2O+N2) product ratio. Soil Biology and Biochemistry, 2017, 109, 118-123.	4.2	29
396	Plant cultivars imprint the rhizosphere bacterial community composition and association networks. Soil Biology and Biochemistry, 2017, 109, 145-155.	4.2	191
397	Endophytic actinomycetes: promising source of novel bioactive compounds. Journal of Antibiotics, 2017, 70, 514-519.	1.0	114
398	Simplified and representative bacterial community of maize roots. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2450-E2459.	3.3	487
399	Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome, 2017, 5, 25.	4.9	406
400	Microbial inoculation of seeds characteristically shapes the rhizosphere microbiome in desi and kabuli chickpea types. Journal of Soils and Sediments, 2017, 17, 2040-2053.	1.5	14
401	Specificity of root microbiomes in nativeâ€grown <i>Nicotiana attenuata</i> and plant responses to <scp>UVB</scp> increase <i>Deinococcus</i> colonization. Molecular Ecology, 2017, 26, 2543-2562.	2.0	23
402	Use of Endophytic and Rhizosphere Bacteria To Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica. Applied and Environmental Microbiology, 2017, 83, .	1.4	105
403	Deciphering composition and function of the root microbiome of a legume plant. Microbiome, 2017, 5, 2.	4.9	152
404	Impact of Next-Generation Sequencing Technology in Plant–Microbe Interaction Study. , 2017, , 269-294.		5
405	Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change. Microbiology and Molecular Biology Reviews, 2017, 81, .	2.9	456

#	Article	IF	CITATIONS
406	The unseen rhizosphere root–soil–microbe interactions for crop production. Current Opinion in Microbiology, 2017, 37, 8-14.	2.3	250
407	Microbial communities associated with plants: learning from nature to apply it in agriculture. Current Opinion in Microbiology, 2017, 37, 29-34.	2.3	94
408	Ecological patterns of seed microbiome diversity, transmission, and assembly. Current Opinion in Microbiology, 2017, 37, 15-22.	2.3	331
409	Life in earth – the root microbiome to the rescue?. Current Opinion in Microbiology, 2017, 37, 23-28.	2.3	61
410	Unique Rhizosphere Micro-characteristics Facilitate Phytoextraction of Multiple Metals in Soil by the Hyperaccumulating Plant <i>Sedum alfredii</i> . Environmental Science & Technology, 2017, 51, 5675-5684.	4.6	158
411	Endophytic bacteria associated with banana cultivars and their inoculation effect on plant growth. Journal of Horticultural Science and Biotechnology, 2017, 92, 568-576.	0.9	28
412	The state of rhizospheric science in the era of multi-omics: A practical guide to omics technologies. Rhizosphere, 2017, 3, 212-221.	1.4	66
413	Plastic potential: how the phenotypes and adaptations of pathogens are influenced by microbial interactions within plants. Current Opinion in Plant Biology, 2017, 38, 78-83.	3.5	9
414	Future directions and priorities for Arctic bryophyte research. Arctic Science, 2017, 3, 475-497.	0.9	20
415	Making a microbiome: the many determinants of host-associated microbial community composition. Current Opinion in Microbiology, 2017, 35, 23-29.	2.3	201
416	Defining the Core Microbiome in Corals' Microbial Soup. Trends in Microbiology, 2017, 25, 125-140.	3.5	281
417	Microbial Strategies for Vegetable Production. , 2017, , .		14
418	Understanding and exploiting plant beneficial microbes. Current Opinion in Plant Biology, 2017, 38, 155-163.	3.5	538
419	Diversity and Function of Endophytic Microbial Community of Plants with Economical Potential. , 2017, , 209-243.		12
420	Application of Struvite Alters the Antibiotic Resistome in Soil, Rhizosphere, and Phyllosphere. Environmental Science & Technology, 2017, 51, 8149-8157.	4.6	196
421	Ecological diversity and co-occurrence patterns of bacterial community through soil profile in response to long-term switchgrass cultivation. Scientific Reports, 2017, 7, 3608.	1.6	50
422	Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiology Reviews, 2017, 41, 392-416.	3.9	337
423	Bacterial Rhizoplane Colonization Patterns of Buchloe dactyloides Growing in Metalliferous Mine Tailings Reflect Plant Status and Biogeochemical Conditions. Microbial Ecology, 2017, 74, 853-867.	1.4	20

#	Article	IF	CITATIONS
424	Adaptation, specialization, and coevolution within phytobiomes. Current Opinion in Plant Biology, 2017, 38, 109-116.	3.5	51
425	Does functional soil microbial diversity contribute to explain withinâ€site plant βâ€diversity in an alpine grassland and a <i>dehesa</i> meadow in Spain?. Journal of Vegetation Science, 2017, 28, 1018-1027.	1.1	8
426	Let the Core Microbiota Be Functional. Trends in Plant Science, 2017, 22, 583-595.	4.3	317
427	Relative roles of competition, environmental selection and spatial processes in structuring soil bacterial communities in the Qinghai-Tibetan Plateau. Applied Soil Ecology, 2017, 117-118, 223-232.	2.1	24
428	Diversity and Benefits of Microorganisms from the Tropics. , 2017, , .		14
430	Mobilization of Iron by Plant-Borne Coumarins. Trends in Plant Science, 2017, 22, 538-548.	4.3	156
431	Shining a light on the dark world of plant root–microbe interactions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4281-4283.	3.3	49
432	Small molecules belowâ€ground: the role of specialized metabolites in the rhizosphere. Plant Journal, 2017, 90, 788-807.	2.8	193
433	Live imaging of root–bacteria interactions in a microfluidics setup. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4549-4554.	3.3	233
434	Emerging Culture-Independent Tools to Enhance Our Understanding of Soil Microbial Ecology. , 2017, , 207-225.		0
435	Biotechnological Intervention to Enhance the Potential Ability of Bioenergy Plants for Phytoremediation. , 2017, , 387-408.		0
436	Defining the Core Citrus Leaf- and Root-Associated Microbiota: Factors Associated with Community Structure and Implications for Managing Huanglongbing (Citrus Greening) Disease. Applied and Environmental Microbiology, 2017, 83, .	1.4	78
437	Phytoremediation Potential of Bioenergy Plants. , 2017, , .		23
438	Root microbiota drive direct integration of phosphate stress and immunity. Nature, 2017, 543, 513-518.	13.7	669
439	Quantitative Resistance: More Than Just Perception of a Pathogen. Plant Cell, 2017, 29, 655-665.	3.1	179
440	Mechanisms to Mitigate the Trade-Off between Growth and Defense. Plant Cell, 2017, 29, 666-680.	3.1	436
441	Plenty Is No Plague: Streptomyces Symbiosis with Crops. Trends in Plant Science, 2017, 22, 30-37.	4.3	98
442	Identification and genomic analysis of antifungal property of a tomato root endophyte Pseudomonas sp. p21. Antonie Van Leeuwenhoek, 2017, 110, 387-397.	0.7	16

#	Article	IF	CITATIONS
443	Identifying the plantâ€associated microbiome across aquatic and terrestrial environments: the effects of amplification method on taxa discovery. Molecular Ecology Resources, 2017, 17, 931-942.	2.2	25
444	Innovations continuously enhance crop breeding and demand new strategic planning. Global Food Security, 2017, 12, 15-21.	4.0	8
445	Rhizosphere microbiomes of potato cultivated in the High Andes show stable and dynamic core microbiomes with different responses to plant development. FEMS Microbiology Ecology, 2017, 93, fiw242.	1.3	114
447	Ecology and Habitat Distribution of Actinobacteria. , 2017, , 123-149.		13
448	Root-associated fungal microbiota of nonmycorrhizal <i>Arabis alpina</i> and its contribution to plant phosphorus nutrition. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9403-E9412.	3.3	239
449	Bacterial microbiomes of individual ectomycorrhizal <i>Pinus sylvestris</i> roots are shaped by soil horizon and differentially sensitive to nitrogen addition. Environmental Microbiology, 2017, 19, 4736-4753.	1.8	35
450	Role of Endophytic Bacteria in Stress Tolerance of Agricultural Plants: Diversity of Microorganisms and Molecular Mechanisms. , 2017, , 1-29.		13
451	Exploring the Plant Microbiome Through Multi-omics Approaches. , 2017, , 233-268.		11
452	Current Scenario of Root Exudate–Mediated Plant-Microbe Interaction and Promotion of Plant Growth. , 2017, , 349-369.		10
453	Soil Microbiome and Their Effects on Nutrient Management for Plants. , 2017, , 117-143.		7
455	Xerotolerance of Penicillium and Phialocephala fungi, dominant taxa of fine lateral roots of woody plants in the intermountain Pacific Northwest, USA. Rhizosphere, 2017, 4, 94-103.	1.4	12
456	Gaining Insight into Plant Responses to Beneficial and Pathogenic Microorganisms Using Metabolomic and Transcriptomic Approaches. , 2017, , 113-140.		4
457	Functional Importance of the Plant Endophytic Microbiome: Implications for Agriculture, Forestry, and Bioenergy. , 2017, , 1-5.		6
458	Functional Importance of the Plant Microbiome. , 2017, , .		20
459	Plant Microbiome: Composition and Functions in Plant Compartments. , 2017, , 7-20.		24
460	"l've Got the Magic in Meâ€: The Microbiome of Conventional vs Organic Production Systems. , 2017, , 85-95.		5
461	Urban habitat restoration provides a human health benefit through microbiome rewilding: the Microbiome Rewilding Hypothesis. Restoration Ecology, 2017, 25, 866-872.	1.4	129
462	Metagenomics of Plant Microbiomes. , 2017, , 179-200.		7

#	Article	IF	CITATIONS
463	Interactions of plant growth-promoting rhizobacteria and soil factors in two leguminous plants. Applied Microbiology and Biotechnology, 2017, 101, 8485-8497.	1.7	76
464	Taxonomic structure and functional association of foxtail millet root microbiome. GigaScience, 2017, 6, 1-12.	3.3	1,228
465	Native arbuscular mycorrhizal symbiosis alters foliar bacterial community composition. Mycorrhiza, 2017, 27, 801-810.	1.3	15
466	Plant Microbiome Identification and Characterization. Current Protocols in Plant Biology, 2017, 2, 135-146.	2.8	7
467	The Effects of Low Concentrations of Silver Nanoparticles on Wheat Growth, Seed Quality, and Soil Microbial Communities. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	41
468	Evolutionary conservation of a core root microbiome across plant phyla along a tropical soil chronosequence. Nature Communications, 2017, 8, 215.	5.8	244
469	Insights into the functionality of endophytic actinobacteria with a focus on their biosynthetic potential and secondary metabolites production. Scientific Reports, 2017, 7, 11809.	1.6	123
470	Identifying the Active Microbiome Associated with Roots and Rhizosphere Soil of Oilseed Rape. Applied and Environmental Microbiology, 2017, 83, .	1.4	141
471	What makes rhizobia rhizosphere colonizers?. Environmental Microbiology, 2017, 19, 4379-4381.	1.8	1
472	Structural and functional variability in root-associated bacterial microbiomes of Cd/Zn hyperaccumulator Sedum alfredii. Applied Microbiology and Biotechnology, 2017, 101, 7961-7976.	1.7	52
474	Taxonomic and functional shifts in the beech rhizosphere microbiome across a natural soil toposequence. Scientific Reports, 2017, 7, 9604.	1.6	77
475	Isolation of Cultivation-Resistant Oomycetes, First Detected as Amplicon Sequences, from Roots of Herbicide-Terminated Winter Rye. Phytobiomes Journal, 2017, 1, 24-35.	1.4	34
476	Metagenomic evidence of stronger effect of stylo (legume) than bahiagrass (grass) on taxonomic and functional profiles of the soil microbial community. Scientific Reports, 2017, 7, 10195.	1.6	17
477	The Omics Era and Host Microbiomes. , 2017, , 3-12.		1
478	Metagenome of Rhizosphere and Endophytic Ecosystem. , 2017, , 125-156.		5
479	Understanding the holobiont: the interdependence of plants and their microbiome. Current Opinion in Microbiology, 2017, 38, 188-196.	2.3	230
480	Drought Stress Results in a Compartment-Specific Restructuring of the Rice Root-Associated Microbiomes. MBio, 2017, 8, .	1.8	336
481	Toward a Resilient, Functional Microbiome: Drought Tolerance-Alleviating Microbes for Sustainable Agriculture. Methods in Molecular Biology, 2017, 1631, 69-84.	0.4	26

#	Article	IF	Citations
482	Metabolite profiling of nonâ€sterile rhizosphere soil. Plant Journal, 2017, 92, 147-162.	2.8	141
483	Steering Soil Microbiomes to Suppress Aboveground Insect Pests. Trends in Plant Science, 2017, 22, 770-778.	4.3	193
484	Drought and host selection influence bacterial community dynamics in the grass root microbiome. ISME Journal, 2017, 11, 2691-2704.	4.4	464
485	The effect of crop rotation between wetland rice and upland maize on the microbial communities associated with roots. Plant and Soil, 2017, 419, 435-445.	1.8	40
486	Bacterial communities incorporating plant-derived carbon in the soybean rhizosphere in Mollisols that differ in soil organic carbon content. Applied Soil Ecology, 2017, 119, 375-383.	2.1	18
487	Development of a novel bio-organic fertilizer for plant growth promotion and suppression of rhizome rot in ginger. Biological Control, 2017, 114, 97-105.	1.4	33
488	Establishing Causality: Opportunities of Synthetic Communities for Plant Microbiome Research. Cell Host and Microbe, 2017, 22, 142-155.	5.1	404
491	Deciphering the Effects of Microbiome on Plants Using Computational Methods. , 2017, , 329-345.		0
492	Phytomicrobiome: A Reservoir for Sustainable Agriculture. , 2017, , 117-132.		4
493	Soil Microbiome for Enhanced Crop Productivity. , 2017, , 227-247.		2
494	Rhizosphere Microbiome Metagenomics: Elucidating the Abditive Microflora. , 2017, , 11-27.		1
495	Shifts in microbial communities in soil, rhizosphere and roots of two major crop systems under elevated CO2 and O3. Scientific Reports, 2017, 7, 15019.	1.6	75
496	Effects of discrete bioactive microbial volatiles on plants and fungi. Plant, Cell and Environment, 2017, 40, 2042-2067.	2.8	138
497	Impact of salicylic acid- and jasmonic acid-regulated defences on root colonization by <i>Trichoderma harzianum</i> T-78. Plant Signaling and Behavior, 2017, 12, e1345404.	1.2	47
498	High taxonomic diversity of cultivation-recalcitrant endophytic bacteria in grapevine field shoots, their in vitro introduction, and unsuspected persistence. Planta, 2017, 246, 879-898.	1.6	17
499	The Variation in the Rhizosphere Microbiome of Cotton with Soil Type, Genotype and Developmental Stage. Scientific Reports, 2017, 7, 3940.	1.6	205
500	Emerging Significance of Rhizospheric Probiotics and Its Impact on Plant Health: Current Perspective Towards Sustainable Agriculture. , 2017, , 233-251.		6
501	Effector-Mediated Communication of Filamentous Plant Pathogens With Their Hosts. Advances in Botanical Research, 2017, , 161-185.	0.5	4

#	Article	IF	Citations
502	Beneficial traits of bacterial endophytes belonging to the core communities of the tomato root microbiome. Agriculture, Ecosystems and Environment, 2017, 247, 149-156.	2.5	81
503	Competition assays and physiological experiments of soil and phyllosphere yeasts identify Candida subhashii as a novel antagonist of filamentous fungi. BMC Microbiology, 2017, 17, 4.	1.3	77
504	Evaluation of environmental bacterial communities as a factor affecting the growth of duckweed Lemna minor. Biotechnology for Biofuels, 2017, 10, 62.	6.2	64
505	Diurnal cycling of rhizosphere bacterial communities is associated with shifts in carbon metabolism. Microbiome, 2017, 5, 65.	4.9	62
506	Linking rhizosphere microbiome composition of wild and domesticated <i>Phaseolus vulgaris</i> to genotypic and root phenotypic traits. ISME Journal, 2017, 11, 2244-2257.	4.4	298
507	Drivers of yeast community composition in the litter and soil of a temperate forest. FEMS Microbiology Ecology, 2017, 93, fiw223.	1.3	73
508	Thirty-one years of rice-rice-green manure rotations shape the rhizosphere microbial community and enrich beneficial bacteria. Soil Biology and Biochemistry, 2017, 104, 208-217.	4.2	205
509	Cultivation Versus Molecular Analysis of Banana (Musa sp.) Shoot-Tip Tissue Reveals Enormous Diversity of Normally Uncultivable Endophytic Bacteria. Microbial Ecology, 2017, 73, 885-899.	1.4	25
510	Exploring the diversity of the root-associated microbiome of Ilex paraguariensis St. Hil. (Yerba Mate). Applied Soil Ecology, 2017, 109, 23-31.	2.1	21
511	The nutrient preference of plants influences their rhizosphere microbiome. Applied Soil Ecology, 2017, 110, 146-150.	2.1	37
512	Fungal endophytes and their interactions with plants in phytoremediation: A review. Chemosphere, 2017, 168, 1100-1106.	4.2	219
513	Biocharâ€stimulated plant performance is strongly linked to microbial diversity and metabolic potential in the rhizosphere. New Phytologist, 2017, 213, 1393-1404.	3.5	201
514	Emergence of plant and rhizospheric microbiota as stable interactomes. Protoplasma, 2017, 254, 617-626.	1.0	34
515	Root microbiota dynamics of perennial <i>Arabis alpina</i> are dependent on soil residence time but independent of flowering time. ISME Journal, 2017, 11, 43-55.	4.4	133
516	High-throughput sequencing-based analysis of the composition and diversity of endophytic bacterial community in seeds of "Beijing―hybrid maize planted in China. Plant Growth Regulation, 2017, 81, 317-324.	1.8	37
517	Root-associated bacteria promote grapevine growth: from the laboratory to the field. Plant and Soil, 2017, 410, 369-382.	1.8	40
518	Distinct environmental variables drive the community composition of mycorrhizal and saprotrophic fungi at the alpine treeline ecotone. Fungal Ecology, 2017, 27, 116-124.	0.7	30
519	Root isoflavonoids and hairy root transformation influence key bacterial taxa in the soybean rhizosphere. Environmental Microbiology, 2017, 19, 1391-1406.	1.8	42

		CITATION REPORT		
#	Article		IF	CITATIONS
520	Endophytes of Jatropha curcas promote growth of maize. Rhizosphere, 2017, 3, 20-28.		1.4	16
521	Microbial community composition but not diversity changes along succession in arctic Environmental Microbiology, 2017, 19, 698-709.	sand dunes.	1.8	32
522	Shared and hostâ€specific microbiome diversity and functioning of grapevine and accorplants. Environmental Microbiology, 2017, 19, 1407-1424.	mpanying weed	1.8	100
523	Plant domestication and the assembly of bacterial and fungal communities associated the common sunflower, <i>Helianthus annuus</i> . New Phytologist, 2017, 214, 412-4	with strains of 23.	3.5	185
524	Phylogenetic relatedness, phenotypic similarity and plant–soil feedbacks. Journal of F 786-800.	Ecology, 2017, 105,	1.9	50
525	Harnessing the microbiomes of Brassica vegetables for health issues. Scientific Reports	, 2017, 7, 17649.	1.6	47
526	Plant Communication With Associated Microbiota in the Spermosphere, Rhizosphere a Advances in Botanical Research, 2017, , 101-133.	ndÂPhyllosphere.	0.5	54
527	Cowpea Nodules Harbor Non-rhizobial Bacterial Communities that Are Shaped by Soil 7 Plant Genotype. Frontiers in Plant Science, 2016, 7, 2064.	ype Rather than	1.7	85
528	Community Structure, Species Variation, and Potential Functions of Rhizosphere-Assoc of Different Winter Wheat (Triticum aestivum) Cultivars. Frontiers in Plant Science, 20	iated Bacteria 17, 8, 132.	1.7	137
529	Dominant Groups of Potentially Active Bacteria Shared by Barley Seeds become Less Al Associated Microbiome. Frontiers in Plant Science, 2017, 8, 1005.	pundant in Root	1.7	70
530	Pearl Millet Genetic Traits Shape Rhizobacterial Diversity and Modulate Rhizosphere Ag Frontiers in Plant Science, 2017, 8, 1288.	gregation.	1.7	23
531	Rhizosphere Microbiome Recruited from a Suppressive Compost Improves Plant Fitnes Protection against Vascular Wilt Pathogens of Tomato. Frontiers in Plant Science, 201	s and Increases 7, 8, 2022.	1.7	82
532	Biostimulant Action of Protein Hydrolysates: Unraveling Their Effects on Plant Physiolo Microbiome. Frontiers in Plant Science, 2017, 8, 2202.	gy and	1.7	367
533	Bacterial Endophyte Colonization and Distribution within Plants. Microorganisms, 201	7, 5, 77.	1.6	426
534	Transmission of Bacterial Endophytes. Microorganisms, 2017, 5, 70.		1.6	308
535	Advances in Eco-Efficient Agriculture: The Plant-Soil Mycobiome. Agriculture (Switzerla	nd), 2017, 7, 14.	1.4	39
536	The Value of a Comparative Approach to Understand the Complex Interplay between N Host Immunity. Frontiers in Immunology, 2017, 8, 1114.	1icrobiota and	2.2	8
537	Comparative Evaluation of Four Bacteria-Specific Primer Pairs for 16S rRNA Gene Surve Microbiology, 2017, 8, 494.	ys. Frontiers in	1.5	242

#	Article	IF	CITATIONS
538	Bacterial Root Microbiome of Plants Growing in Oil Sands Reclamation Covers. Frontiers in Microbiology, 2017, 8, 849.	1.5	80
539	A Small Number of Low-abundance Bacteria Dominate Plant Species-specific Responses during Rhizosphere Colonization. Frontiers in Microbiology, 2017, 8, 975.	1.5	87

540 Crop Establishment Practices Are a Driver of the Plant Microbiota in Winter Oilseed Rape (Brassica) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

541	Analysing Microbial Community Composition through Amplicon Sequencing: From Sampling to Hypothesis Testing. Frontiers in Microbiology, 2017, 8, 1561.	1.5	265
542	Characterization of Bacterial and Fungal Community Dynamics by High-Throughput Sequencing (HTS) Metabarcoding during Flax Dew-Retting. Frontiers in Microbiology, 2017, 8, 2052.	1.5	32
543	Functionality of Root-Associated Bacteria along a Salt Marsh Primary Succession. Frontiers in Microbiology, 2017, 8, 2102.	1.5	18
544	Inner Plant Values: Diversity, Colonization and Benefits from Endophytic Bacteria. Frontiers in Microbiology, 2017, 8, 2552.	1.5	488
545	Which of soil microbes is in positive correlation to yields of maize (Zea mays L.)?. Plant, Soil and Environment, 2017, 63, 574-580.	1.0	9
546	Similar levels of gene content variation observed for Pseudomonas syringae populations extracted from single and multiple host species. PLoS ONE, 2017, 12, e0184195.	1.1	8
547	Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biology, 2017, 15, e2001793.	2.6	640
548	Huanglongbing impairs the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome. Microbiome, 2017, 5, 97.	4.9	177
549	The structure of the Brassica napus seed microbiome is cultivar-dependent and affects the interactions of symbionts and pathogens. Microbiome, 2017, 5, 104.	4.9	144
550	Bacterial Structure of Agricultural Soils with High and Low Yields. Journal of Plant Pathology & Microbiology, 2017, 08, .	0.3	4
551	Image-Based Analysis to Dissect Vertical Distribution and Horizontal Asymmetry of Conspecific Root System Interactions in Response to Planting Densities, Nutrients and Root Exudates in Arabidopsis thaliana. Plants, 2017, 6, 46.	1.6	3
552	Plant-Microbe Ecology: Interactions of Plants and Symbiotic Microbial Communities. , 0, , .		15
553	Microbial communities in sediment from <i>Zostera marina</i> patches, but not the <i>Z.Âmarina</i> leaf or root microbiomes, vary in relation to distance from patch edge. PeerJ, 2017, 5, e3246.	0.9	115
554	Bulk soil and maize rhizosphere resistance genes, mobile genetic elements and microbial communities are differently impacted by organic and inorganic fertilization. FEMS Microbiology Ecology, 2018, 94, .	1.3	31
555	Engineering chemical interactions in microbial communities. Chemical Society Reviews, 2018, 47, 1705-1729.	18.7	25

	CITATION N	LEPORT	
#	Article	IF	CITATIONS
556	Impact of root system architecture on rhizosphere and root microbiome. Rhizosphere, 2018, 6, 47-51.	1.4	213
557	Commonalities and Differences in Controlling Multipartite Intracellular Infections of Legume Roots by Symbiotic Microbes. Plant and Cell Physiology, 2018, 59, 666-677.	1.5	21
558	Plant growth and oil contamination alter the diversity and composition of bacterial communities in agricultural soils across China. Land Degradation and Development, 2018, 29, 1660-1671.	1.8	17
559	Harnessing plant-bacteria-fungi interactions to improve plant growth and degradation of organic pollutants. Journal of Plant Interactions, 2018, 13, 119-130.	1.0	65
560	Soil Microbiology Research in the Coming Decades: Translational Research Opportunities. Microorganisms for Sustainability, 2018, , 1-8.	0.4	2
561	Meta-scale mountain grassland observatories uncover commonalities as well as specific interactions among plant and non-rhizosphere soil bacterial communities. Scientific Reports, 2018, 8, 5758.	1.6	15
562	MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5213-E5222.	3.3	608
563	Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4284-E4293.	3.3	391
564	Investigation of the core microbiome in main soil types from the East European plain. Science of the Total Environment, 2018, 631-632, 1421-1430.	3.9	43
565	Mycobiota of maize seeds revealed by <scp>rDNA</scp> â€ <scp>ITS</scp> sequence analysis of samples with varying storage times. MicrobiologyOpen, 2018, 7, e00609.	1.2	26
566	Soil abiotic variables are more important than Salicaceae phylogeny or habitat specialization in determining soil microbial community structure. Molecular Ecology, 2018, 27, 2007-2024.	2.0	44
567	The effects of host species and sexual dimorphism differ among root, leaf and flower microbiomes of wild strawberries in situ. Scientific Reports, 2018, 8, 5195.	1.6	56
568	Using Cultivated Microbial Communities To Dissect Microbiome Assembly: Challenges, Limitations, and the Path Ahead. MSystems, 2018, 3, .	1.7	34
569	Root microbiota shift in rice correlates with resident time in the field and developmental stage. Science China Life Sciences, 2018, 61, 613-621.	2.3	204
570	Apportioning bacterial carbon source utilization in soil using ¹⁴ C isotope analysis of FISHâ€ŧargeted bacterial populations sorted by fluorescence activated cell sorting (FACS): ¹⁴ Câ€FISHâ€FACS. Environmental Microbiology Reports, 2018, 10, 245-254.	1.0	3
571	Biogeography and ecological processes affecting root-associated bacterial communities in soybean fields across China. Science of the Total Environment, 2018, 627, 20-27.	3.9	53
572	Structure and assembly cues for rhizospheric nirK- and nirS-type denitrifier communities in long-term fertilized soils. Soil Biology and Biochemistry, 2018, 119, 32-40.	4.2	100
573	Soil protists: a fertile frontier in soil biology research. FEMS Microbiology Reviews, 2018, 42, 293-323.	3.9	368

#	Article	IF	CITATIONS
574	Root-Associated Bacterial and Fungal Community Profiles of <i>Arabidopsis thaliana</i> Are Robust Across Contrasting Soil P Levels. Phytobiomes Journal, 2018, 2, 24-34.	1.4	37
575	Rhizobia: from saprophytes to endosymbionts. Nature Reviews Microbiology, 2018, 16, 291-303.	13.6	395
576	Comparative analysis of microbial diversity and bacterial seedling diseaseâ€suppressive activity in organicâ€farmed and standardized commercial conventional soils for rice nursery cultivation. Journal of Phytopathology, 2018, 166, 249-264.	0.5	10
577	Legume, Microbiome, and Regulatory Functions of miRNAs in Systematic Regulation of Symbiosis. Microorganisms for Sustainability, 2018, , 255-282.	0.4	8
578	Native soils with their microbiotas elicit a state of alert in tomato plants. New Phytologist, 2018, 220, 1296-1308.	3.5	93
579	Harnessing the Plant Microbiome for Improved Abiotic Stress Tolerance. Microorganisms for Sustainability, 2018, , 21-43.	0.4	35
580	Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome, 2018, 6, 14.	4.9	399
581	Assembly and ecological function of the root microbiome across angiosperm plant species. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1157-E1165.	3.3	739
582	Inter- and intracellular colonization of Arabidopsis roots by endophytic actinobacteria and the impact of plant hormones on their antimicrobial activity. Antonie Van Leeuwenhoek, 2018, 111, 679-690.	0.7	54
583	Key microbial taxa in the rhizosphere of sorghum and sunflower grown in crop rotation. Science of the Total Environment, 2018, 624, 530-539.	3.9	69
584	Long-term fertilization changes bacterial diversity and bacterial communities in the maize rhizosphere of Chinese Mollisols. Applied Soil Ecology, 2018, 125, 88-96.	2.1	94
585	Co-occurrence patterns of soybean rhizosphere microbiome at a continental scale. Soil Biology and Biochemistry, 2018, 118, 178-186.	4.2	258
586	Genomic features of bacterial adaptation to plants. Nature Genetics, 2018, 50, 138-150.	9.4	480
587	Field study reveals core plant microbiota and relative importance of their drivers. Environmental Microbiology, 2018, 20, 124-140.	1.8	255
588	Soil contamination alters the willow root and rhizosphere metatranscriptome and the root $\hat{a} \in \hat{a}$ roid	4.4	91
589	Specificity in Arabidopsis thaliana recruitment of root fungal communities from soil and rhizosphere. Fungal Biology, 2018, 122, 231-240.	1.1	58
590	Strong associations between plant genotypes and bacterial communities in a natural salt marsh. Ecology and Evolution, 2018, 8, 4721-4730.	0.8	24
591	Metagenomic analysis of microbial community and function involved in cd-contaminated soil. BMC Microbiology, 2018, 18, 11.	1.3	148

#	Article	IF	CITATIONS
592	A genetically and functionally diverse group of non-diazotrophic Bradyrhizobium spp. colonizes the root endophytic compartment of Arabidopsis thaliana. BMC Plant Biology, 2018, 18, 61.	1.6	26
593	Microbial interactions within the plant holobiont. Microbiome, 2018, 6, 58.	4.9	833
594	From Mycorrhizosphere to Rhizosphere Microbiome: The Paradigm Shift. Soil Biology, 2018, , 487-500.	0.6	10
595	Genotypic variation in Pinus radiata responses to nitrogen source are related to changes in the root microbiome. FEMS Microbiology Ecology, 2018, 94, .	1.3	6
596	Core microbiomes for sustainable agroecosystems. Nature Plants, 2018, 4, 247-257.	4.7	639
597	Not only priming: Soil microbiota may protect tomato from root pathogens. Plant Signaling and Behavior, 2018, 13, 1-9.	1.2	8
598	Diversity of <i>Bacillus</i> -like bacterial community in the rhizospheric and non-rhizospheric soil of halophytes (<i>Salsola stocksii</i> and <i>Atriplex amnicola</i>), and characterization of osmoregulatory genes in halophilic <i>Bacilli</i> . Canadian Journal of Microbiology, 2018, 64, 567-579.	0.8	25
599	Of genes and microbes: solving the intricacies in host genomes. Protein and Cell, 2018, 9, 446-461.	4.8	34
600	Subterranean infestation by Holotrichia parallela larvae is associated with changes in the peanut (Arachis hypogaea L.) rhizosphere microbiome. Microbiological Research, 2018, 211, 13-20.	2.5	26
601	Niche Construction and Exploitation by Agrobacterium: How to Survive and Face Competition in Soil and Plant Habitats. Current Topics in Microbiology and Immunology, 2018, 418, 55-86.	0.7	28
602	Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiology, 2018, 3, 470-480.	5.9	1,268
603	Broad-spectrum inhibition of Phytophthora infestans by fungal endophytes. FEMS Microbiology Ecology, 2018, 94, .	1.3	14
604	Finding a needle in a haystack: <i>Bacteroides fragilis</i> polysaccharide A as the archetypical symbiosis factor. Annals of the New York Academy of Sciences, 2018, 1417, 116-129.	1.8	47
605	The Cucurbita pepo seed microbiome: genotype-specific composition and implications for breeding. Plant and Soil, 2018, 422, 35-49.	1.8	131
606	A seed-recruited microbiome protects developing seedlings from disease by altering homing responses of Pythium aphanidermatum zoospores. Plant and Soil, 2018, 422, 209-222.	1.8	19
607	Using Illumina-Based Sequence Analysis to Guide Probiotic Candidate Selection and Isolation. Probiotics and Antimicrobial Proteins, 2018, 10, 478-484.	1.9	3
608	Extensive Overlap of Tropical Rainforest Bacterial Endophytes between Soil, Plant Parts, and Plant Species. Microbial Ecology, 2018, 75, 88-103.	1.4	37
609	Temporal carryâ€over effects in sequential plant–soil feedbacks. Oikos, 2018, 127, 220-229.	1.2	33

#	Article	IF	CITATIONS
610	Is there foul play in the leaf pocket? The metagenome of floating fern <i>Azolla</i> reveals endophytes that do not fix N ₂ but may denitrify. New Phytologist, 2018, 217, 453-466.	3.5	42
611	Rhizosphereâ€associated <i>Pseudomonas</i> induce systemic resistance to herbivores at the cost of susceptibility to bacterial pathogens. Molecular Ecology, 2018, 27, 1833-1847.	2.0	58
612	Protists are an integral part of the <i>Arabidopsis thaliana</i> microbiome. Environmental Microbiology, 2018, 20, 30-43.	1.8	85
613	Influence of resistance breeding in common bean on rhizosphere microbiome composition and function. ISME Journal, 2018, 12, 212-224.	4.4	296
614	Feed Your Friends: Do Plant Exudates Shape the Root Microbiome?. Trends in Plant Science, 2018, 23, 25-41.	4.3	1,256
615	The plant circadian clock influences rhizosphere community structure and function. ISME Journal, 2018, 12, 400-410.	4.4	106
616	Assembly of seed-associated microbial communities within and across successive plant generations. Plant and Soil, 2018, 422, 67-79.	1.8	91
617	Host Genotype and Nitrogen Form Shape the Root Microbiome of Pinus radiata. Microbial Ecology, 2018, 75, 419-433.	1.4	58
618	Variation in the bacteriome of the tropical liverwort, Marchantia inflexa, between the sexes and across habitats. Symbiosis, 2018, 75, 93-101.	1.2	12
619	Sustained Bauxite Residue Rehabilitation with Gypsum and Organic Matter 16 years after Initial Treatment. Environmental Science & Technology, 2018, 52, 152-161.	4.6	79
620	Chemical signaling involved in plant–microbe interactions. Chemical Society Reviews, 2018, 47, 1652-1704.	18.7	149
621	Response of soil microbial community dynamics to Robinia pseudoacacia L. afforestation in the loess plateau: a chronosequence approach. Plant and Soil, 2018, 423, 327-338.	1.8	78
622	Contrasting the microbiomes from forest rhizosphere and deeper bulk soil from an Amazon rainforest reserve. Gene, 2018, 642, 389-397.	1.0	46
623	Chemical communication: An evidence for co-evolution between plants and soil organisms. Applied Soil Ecology, 2018, 123, 409-415.	2.1	30
624	Root type and soil phosphate determine the taxonomic landscape of colonizing fungi and the transcriptome of field $\hat{a} \in \hat{g}$ rown maize roots. New Phytologist, 2018, 217, 1240-1253.	3.5	80
625	Illumina-Based Sequencing Analysis Directed Selection for Actinobacterial Probiotic Candidates for Banana Plants. Probiotics and Antimicrobial Proteins, 2018, 10, 284-292.	1.9	12
626	Plant community evenness responds to spatial plant–soil feedback heterogeneity primarily through the diversity of soil conditioning. Functional Ecology, 2018, 32, 509-521.	1.7	35
627	Quantifying the Spatiotemporal Dynamics of Plant Root Colonization by Beneficial Bacteria in a Microfluidic Habitat. Advanced Biology, 2018, 2, 1800048.	3.0	31

#	Article	IF	CITATIONS
628	Below-ground-above-ground Plant-microbial Interactions: Focusing on Soybean, Rhizobacteria and Mycorrhizal Fungi. Open Microbiology Journal, 2018, 12, 261-279.	0.2	78
629	Quantitative Genetics of the Maize Leaf Microbiome. Phytobiomes Journal, 2018, 2, 208-224.	1.4	110
630	Witches' broom resistant genotype CCN51 shows greater diversity of symbiont bacteria in its phylloplane than susceptible genotype catongo. BMC Microbiology, 2018, 18, 194.	1.3	9
631	Desert plant bacteria reveal host influence and beneficial plant growth properties. PLoS ONE, 2018, 13, e0208223.	1.1	76
632	A Review on Genetically Modified Plants Designed to Phytoremediate Polluted Soils: Biochemical Responses and International Regulation. Pedosphere, 2018, 28, 697-712.	2.1	14
633	Matching source and sink: An environmentally tailored fungal endophyte consortium increases yield in three field-grown barley cultivars. Cogent Food and Agriculture, 2018, 4, 1484599.	0.6	3
635	The structure and function of the global citrus rhizosphere microbiome. Nature Communications, 2018, 9, 4894.	5.8	304
636	Walking Ecosystems in Microbiome-Inspired Green Infrastructure: An Ecological Perspective on Enhancing Personal and Planetary Health. Challenges, 2018, 9, 40.	0.9	56
638	The Role of Host Genetic Signatures on Root–Microbe Interactions in the Rhizosphere and Endosphere. Frontiers in Plant Science, 2018, 9, 1896.	1.7	45
639	Responses of the Endophytic Bacterial Communities of Juncus acutus to Pollution With Metals, Emerging Organic Pollutants and to Bioaugmentation With Indigenous Strains. Frontiers in Plant Science, 2018, 9, 1526.	1.7	35
640	Bacterial Diversity Associated With the Rhizosphere and Endosphere of Two Halophytes: Glaux maritima and Salicornia europaea. Frontiers in Microbiology, 2018, 9, 2878.	1.5	73
641	Gene mutation associated with esl mediates shifts on fungal community composition in rhizosphere soil of rice at grain-filling stage. Scientific Reports, 2018, 8, 17521.	1.6	2
642	Diversity of Plant Endophytic Volatile Organic Compound (VOC) and Their Potential Applications. Reference Series in Phytochemistry, 2018, , 1-27.	0.2	0
643	Practical considerations for sampling and data analysis in contemporary metagenomics-based environmental studies. Journal of Microbiological Methods, 2018, 154, 14-18.	0.7	12
644	Exploration of the Biosynthetic Potential of the <i>Populus</i> Microbiome. MSystems, 2018, 3, .	1.7	34
645	Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nature Biotechnology, 2018, 36, 1100-1109.	9.4	506
646	Beneficial Soil Microbiome for Sustainable Agriculture Production. Sustainable Agriculture Reviews, 2018, , 443-481.	0.6	27
647	On the Road to Breeding 4.0: Unraveling the Good, the Bad, and the Boring of Crop Quantitative Genomics. Annual Review of Genetics, 2018, 52, 421-444.	3.2	182
#	Article	IF	CITATIONS
-----	---	----------	--------------
	Biocontrol Rhizobacterium Pseudomonas sp. 23S Induces Systemic Resistance in Tomato (Solanum) Tj ETQq0 0 C	rgBT /Ov	erlock 10 Tf
648	Microbiology, 2018, 9, 2119.	1.5	59
649	Plant Growth-Promoting Rhizobacteria: Context, Mechanisms of Action, and Roadmap to Commercialization of Biostimulants for Sustainable Agriculture. Frontiers in Plant Science, 2018, 9, 1473.	1.7	1,088
650	Comparative Genomics of Aspergillus flavus S and L Morphotypes Yield Insights into Niche Adaptation. G3: Genes, Genomes, Genetics, 2018, 8, 3915-3930.	0.8	23
651	Fungal Endophytic Communities of Two Wild Rosa Varieties With Different Powdery Mildew Susceptibilities. Frontiers in Microbiology, 2018, 9, 2462.	1.5	18
652	RHIZOSPHERE MICROBIOME: AN EMERGING FRONTIER IN CAUSING AND CURING INFECTIOUS DISEASES. Asian Journal of Pharmaceutical and Clinical Research, 2018, 11, 65.		2
653	Diversity of fungi and bacteria in species-rich grasslands increases with plant diversity in shoots but not in roots and soil. FEMS Microbiology Ecology, 2019, 95, .	1.3	24
654	Metaproteomic characterization of Vitis vinifera rhizosphere. FEMS Microbiology Ecology, 2019, 95, .		26
655	Deciphering the bacterial composition in the rhizosphere of Baphicacanthus cusia (NeeS) Bremek. Scientific Reports, 2018, 8, 15831.		15
656	Microbial Interkingdom Interactions in Roots Promote Arabidopsis Survival. Cell, 2018, 175, 973-983.e14.	13.5	707
657	G3 PhyloChip Analysis Confirms the Promise of Plant-Based Culture Media for Unlocking the Composition and Diversity of the Maize Root Microbiome and for Recovering Unculturable Candidate Divisions/Phyla. Microbes and Environments, 2018, 33, 317-325.	0.7	21
658	A Comparative Analysis of Microbial DNA Preparation Methods for Use With Massive and Branching Coral Growth Forms. Frontiers in Microbiology, 2018, 9, 2146.		15
659	Relationship between foliar endophytes and apple cultivar disease resistance in an organic orchard. Biological Control, 2018, 127, 139-144.	1.4	20
660	Host species identity in annual Brassicaceae has a limited effect on the assembly of root-endophytic fungal communities. Plant Ecology and Diversity, 2018, 11, 569-580.	1.0	16
661	Characteristics of bulk and rhizosphere soil microbial community in an ancient Platycladus orientalis forest. Applied Soil Ecology, 2018, 132, 91-98.	2.1	29
662	Response of the rhizosphere microbial community to fine root and soil parameters following Robinia pseudoacacia L. afforestation. Applied Soil Ecology, 2018, 132, 11-19.	2.1	36
663	Cultivar-specific response of bacterial community to cadmium contamination in the rhizosphere of rice (Oryza sativa L.). Environmental Pollution, 2018, 241, 63-73.	3.7	67
664	Roles of Plant-Associated Microbiota in Traditional Herbal Medicine. Trends in Plant Science, 2018, 23, 559-562.	4.3	91
665	In situ relationships between microbiota and potential pathobiota in <i>Arabidopsis thaliana</i> . ISME	4.4	73

#	Article	IF	Citations
666	Agro-Ecosystem Diversity in Petroleum and Natural Gas Explored Sites in Assam State, North-Eastern India: Socio-Economic Perspectives. Sustainable Agriculture Reviews, 2018, , 37-60.	0.6	3
667	Bacterial endophyte communities in Pinus flexilis are structured by host age, tissue type, and environmental factors. Plant and Soil, 2018, 428, 335-352.	1.8	32
668	Antimicrobial peptide expression in a wild tobacco plant reveals the limits of host-microbe-manipulations in the field. ELife, 2018, 7, .	2.8	19
669	Endophytes and Forest Health. Forestry Sciences, 2018, , 261-282.	0.4	14
670	Tackling maize fusariosis: in search of Fusarium graminearum biosuppressors. Archives of Microbiology, 2018, 200, 1239-1255.	1.0	15
671	Exploring the resilience of wheat crops grown in short rotations through minimising the build-up of an important soil-borne fungal pathogen. Scientific Reports, 2018, 8, 9550.	1.6	12
672	Genetic variability and ontogeny predict microbiome structure in a disease-challenged montane amphibian. ISME Journal, 2018, 12, 2506-2517.	4.4	49
674	Effects of tree species and soil properties on the composition and diversity of the soil bacterial community following afforestation. Forest Ecology and Management, 2018, 427, 342-349.	1.4	74
675	Species-Associated Differences in the Below-Ground Microbiomes of Wild and Domesticated Setaria. Frontiers in Plant Science, 2018, 9, 1183.	1.7	31
676	Rhizosphere Microbiome Modulators: Contributions of Nitrogen Fixing Bacteria towards Sustainable Agriculture. International Journal of Environmental Research and Public Health, 2018, 15, 574.	1.2	161
677	A Hypothetical Bottleneck in the Plant Microbiome. Frontiers in Microbiology, 2018, 9, 1645.	1.5	64
678	Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota. PLoS Biology, 2018, 16, e2006352.	2.6	236
679	A Community-Based Culture Collection for Targeting Novel Plant Growth-Promoting Bacteria from the Sugarcane Microbiome. Frontiers in Plant Science, 2017, 8, 2191.	1.7	99
680	Drought Stress and Root-Associated Bacterial Communities. Frontiers in Plant Science, 2017, 8, 2223.	1.7	417
681	Trichoderma-Inoculated Miscanthus Straw Can Replace Peat in Strawberry Cultivation, with Beneficial Effects on Disease Control. Frontiers in Plant Science, 2018, 9, 213.	1.7	28
682	Core Microbiome of Medicinal Plant Salvia miltiorrhiza Seed: A Rich Reservoir of Beneficial Microbes for Secondary Metabolism?. International Journal of Molecular Sciences, 2018, 19, 672.	1.8	109
683	Diversity of Bacterial Microbiota of Coastal Halophyte Limonium sinense and Amelioration of Salinity Stress Damage by Symbiotic Plant Growth-Promoting Actinobacterium Glutamicibacter halophytocola KLBMP 5180. Applied and Environmental Microbiology, 2018, 84, .	1.4	90
684	Bacterial Production of Indole Related Compounds Reveals Their Role in Association Between Duckweeds and Endophytes. Frontiers in Chemistry, 2018, 6, 265.	1.8	75

#	Article	IF	CITATIONS
685	Metatranscriptome Analysis Deciphers Multifunctional Genes and Enzymes Linked With the Degradation of Aromatic Compounds and Pesticides in the Wheat Rhizosphere. Frontiers in Microbiology, 2018, 9, 1331.	1.5	45
686	Structural development and assembly patterns of the root-associated microbiomes during phytoremediation. Science of the Total Environment, 2018, 644, 1591-1601.	3.9	60
687	Rhizoremediation of petroleum hydrocarbons: a model system for plant microbiome manipulation. Microbial Biotechnology, 2018, 11, 819-832.	2.0	88
688	Leaf-FISH: Microscale Imaging of Bacterial Taxa on Phyllosphere. Frontiers in Microbiology, 2017, 8, 2669.	1.5	39
689	Diversity of the Bacterial Microbiome in the Roots of Four Saccharum Species: S. spontaneum, S. robustum, S. barberi, and S. officinarum. Frontiers in Microbiology, 2018, 9, 267.	1.5	56
690	Maize Endophytic Bacterial Diversity as Affected by Soil Cultivation History. Frontiers in Microbiology, 2018, 9, 484.	1.5	107
691	Crop Rotation and Straw Application Impact Microbial Communities in Italian and Philippine Soils and the Rhizosphere of Zea mays. Frontiers in Microbiology, 2018, 9, 1295.	1.5	74
692	Identification of Major Rhizobacterial Taxa Affected by a Glyphosate-Tolerant Soybean Line via Shotgun Metagenomic Approach. Genes, 2018, 9, 214.	1.0	9
693	Network hubs in root-associated fungal metacommunities. Microbiome, 2018, 6, 116.	4.9	112
694	Compatibility between Legumes and Rhizobia for the Establishment of a Successful Nitrogen-Fixing Symbiosis. Genes, 2018, 9, 125.	1.0	93
695	The Impact of Genetic Changes during Crop Domestication. Agronomy, 2018, 8, 119.	1.3	146
696	Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nature Communications, 2018, 9, 2738.	5.8	861
697	Opportunities and limitations for DNA metabarcoding in Australasian plant-pathogen biosecurity. Australasian Plant Pathology, 2018, 47, 467-474.	0.5	19
698	Microbial communities in the rhizosphere and the root of lettuce as affected by Salmonella-contaminated irrigation water. FEMS Microbiology Ecology, 2018, 94, .	1.3	13
699	Microbial community response to growing season and plant nutrient optimisation in a boreal Norway spruce forest. Soil Biology and Biochemistry, 2018, 125, 197-209.	4.2	64
700	A microorganisms' journey between plant generations. Microbiome, 2018, 6, 79.	4.9	75
701	The rhizosphere microbiome: Significance in rhizoremediation of polyaromatic hydrocarbon contaminated soil. Journal of Environmental Management, 2018, 217, 858-870.	3.8	86
702	Oilseed rape cultivation increases the microbial richness and diversity in soils contaminated with cadmium. Journal of Soils and Sediments, 2018, 18, 2451-2462.	1.5	6

#	Article	IF	CITATIONS
703	An Endophytic Bacterial Consortium modulates multiple strategies to improve Arsenic Phytoremediation Efficacy in Solanum nigrum. Scientific Reports, 2018, 8, 6979.	1.6	40
704	Endophytic fungi from the roots of horseradish (Armoracia rusticana) and their interactions with the defensive metabolites of the glucosinolate - myrosinase - isothiocyanate system. BMC Plant Biology, 2018, 18, 85.	1.6	34
705	Mycobiome analysis of asymptomatic and symptomatic Norway spruce trees naturally infected by the conifer pathogens <i>Heterobasidion</i> spp Environmental Microbiology Reports, 2018, 10, 532-541.	1.0	43
706	Isolation and Analysis of Microbial Communities in Soil, Rhizosphere, and Roots in Perennial Grass Experiments. Journal of Visualized Experiments, 2018, , .	0.2	57
707	Enhancing photosynthesis in plants: the light reactions. Essays in Biochemistry, 2018, 62, 85-94.	2.1	90
708	Marchantia liverworts as a proxy to plants' basal microbiomes. Scientific Reports, 2018, 8, 12712.	1.6	46
709	Challenges and Approaches in Microbiome Research: From Fundamental to Applied. Frontiers in Plant Science, 2018, 9, 1205.	1.7	127
710	Nitrogen Fixation in Cereals. Frontiers in Microbiology, 2018, 9, 1794.	1.5	180
711	VOCs-mediated hormonal signaling and crosstalk with plant growth promoting microbes. Critical Reviews in Biotechnology, 2018, 38, 1277-1296.	5.1	85
712	The culturable endophytic fungal communities of switchgrass grown on a coal-mining site and their effects on plant growth. PLoS ONE, 2018, 13, e0198994.	1.1	20
713	Temporal shifts of fungal communities in the rhizosphere and on tubers in potato fields. Fungal Biology, 2018, 122, 928-934.	1.1	33
714	Ethylene induced plant stress tolerance by Enterobacter sp. SA187 is mediated by 2â€ketoâ€4â€methylthiobutyric acid production. PLoS Genetics, 2018, 14, e1007273.	1.5	95
715	The Microbiome of Desert CAM Plants: Lessons From Amplicon Sequencing and Metagenomics. , 2018, , 231-254.		25
716	Endophytes of industrial hemp (<i>Cannabis sativa</i> L.) cultivars: identification of culturable bacteria and fungi in leaves, petioles, and seeds. Canadian Journal of Microbiology, 2018, 64, 664-680.	0.8	61
717	Insights into Endophytic Bacterial Community Structures of Seeds Among Various Oryza sativa L. Rice Genotypes. Journal of Plant Growth Regulation, 2019, 38, 93-102.	2.8	44
718	Soil-plant compartments affect fungal microbiome diversity and composition in grapevine. Fungal Ecology, 2019, 41, 234-244.	0.7	85
719	Metagenomic insights into the diversity and functions of microbial assemblages in lakes. , 2019, , 175-223.		3
720	Exploring Diversity of Bacterial Endophyte Communities Using Advanced Sequencing Technology. , 2019, , 447-481.		5

#	Article	IF	CITATIONS
721	Environmental pollution effects on plant microbiota: the case study of poplar bacterial-fungal response to silver nanoparticles. Applied Microbiology and Biotechnology, 2019, 103, 8215-8227.	1.7	21
722	Prospecting Crop Wild Relatives for Beneficial Endophytes. , 2019, , 390-410.		4
723	Perceptions of Microbe–Microbe and Plant–Microbiome Interfaces: The Metagenomic Maneuver. , 2019, , 483-505.		0
724	Microbes: An Important Resource for Sustainable Agriculture. , 2019, , 53-77.		2
725	Community Structures and Antifungal Activity of Root-Associated Endophytic Actinobacteria of Healthy and Diseased Soybean. Microorganisms, 2019, 7, 243.	1.6	38
726	Floweringâ€mediated rootâ€fungus symbiosis loss is related to jasmonateâ€dependent root soluble sugar deprivation. Plant, Cell and Environment, 2019, 42, 3208-3226.	2.8	21
727	Metagenomics as a Tool to Explore New Insights from Plant-Microbe Interface. , 2019, , 271-289.		4
729	Plant-Endophyte Partnerships to Assist Petroleum Hydrocarbon Remediation. , 2019, , 123-156.		0
730	Diversity-triggered deterministic bacterial assembly constrains community functions. Nature Communications, 2019, 10, 3833.	5.8	232
731	Peat substrate amended with chitin modulates the N-cycle, siderophore and chitinase responses in the lettuce rhizobiome. Scientific Reports, 2019, 9, 9890.	1.6	50
732	Continuous Monoculture Shapes Root and Rhizosphere Fungal Communities of Corn and Soybean in Soybean Cyst Nematode-Infested Soil. Phytobiomes Journal, 2019, 3, 300-314.	1.4	10
733	Rhizobacteria-Mediated Activation of the Fe Deficiency Response in Arabidopsis Roots: Impact on Fe Status and Signaling. Frontiers in Plant Science, 2019, 10, 909.	1.7	28
734	An Apple a Day: Which Bacteria Do We Eat With Organic and Conventional Apples?. Frontiers in Microbiology, 2019, 10, 1629.	1.5	87
735	Enrichments/Derichments of Root-Associated Bacteria Related to Plant Growth and Nutrition Caused by the Growth of an EPSPS-Transgenic Maize Line in the Field. Frontiers in Microbiology, 2019, 10, 1335.	1.5	18
736	The Evolution, Ecology, and Mechanisms of Infection by Gram-Positive, Plant-Associated Bacteria. Annual Review of Phytopathology, 2019, 57, 341-365.	3.5	38
737	Orchard Conditions and Fruiting Body Characteristics Drive the Microbiome of the Black Truffle Tuber aestivum. Frontiers in Microbiology, 2019, 10, 1437.	1.5	31
738	Genome Sequences of a Plant Beneficial Synthetic Bacterial Community Reveal Genetic Features for Successful Plant Colonization. Frontiers in Microbiology, 2019, 10, 1779.	1.5	36
739	The postharvest microbiome: The other half of sustainability. Biological Control, 2019, 137, 104025.	1.4	38

#	Article	IF	CITATIONS
740	Genome evolution and hostâ€microbiome shifts correspond with intraspecific niche divergence within harmful algal bloomâ€forming <i>Microcystis aeruginosa</i> . Molecular Ecology, 2019, 28, 3994-4011.	2.0	29
741	Engineering transkingdom signalling in plants to control gene expression in rhizosphere bacteria. Nature Communications, 2019, 10, 3430.	5.8	93
742	Interactions and Coadaptation in Plant Metaorganisms. Annual Review of Phytopathology, 2019, 57, 483-503.	3.5	28
743	A preliminary examination of bacterial, archaeal, and fungal communities inhabiting different rhizocompartments of tomato plants under real-world environments. Scientific Reports, 2019, 9, 9300.	1.6	91
744	Site-specific cleavage of bacterial MucD by secreted proteases mediates antibacterial resistance in Arabidopsis. Nature Communications, 2019, 10, 2853.	5.8	35
745	The Composition and Assembly of Bacterial Communities across the Rhizosphere and Phyllosphere Compartments of Phragmites Australis. Diversity, 2019, 11, 98.	0.7	21
747	Compositional response of Phaseolus vulgaris rhizomicrobiome to a changing soil environment is regulated by long-distance plant signaling. Plant and Soil, 2019, 442, 257-269.	1.8	4
748	Negative Plant-Soil Feedback Driven by Re-assemblage of the Rhizosphere Microbiome With the Growth of Panax notoginseng. Frontiers in Microbiology, 2019, 10, 1597.	1.5	72
749	Plant Symbionts Are Engineers of the Plant-Associated Microbiome. Trends in Plant Science, 2019, 24, 905-916.	4.3	93
750	Characterization and variation of the rhizosphere fungal community structure of cultivated tetraploid cotton. PLoS ONE, 2019, 14, e0207903.	1.1	23
751	Diazotroph Diversity and Nitrogen Fixation in Summer Active Perennial Grasses in a Mediterranean Region Agricultural Soil. Frontiers in Molecular Biosciences, 2019, 6, 115.	1.6	34
752	A Bioinformatics Guide to Plant Microbiome Analysis. Frontiers in Plant Science, 2019, 10, 1313.	1.7	54
753	Root-AssociatedStreptomycesIsolates HarboringmelCGenes Demonstrate Enhanced Plant Colonization. Phytobiomes Journal, 2019, 3, 165-176.	1.4	11
754	Endophyte Bacillus subtilis evade plant defense by producing lantibiotic subtilomycin to mask self-produced flagellin. Communications Biology, 2019, 2, 368.	2.0	44
755	Impacts of Maize Domestication and Breeding on Rhizosphere Microbial Community Recruitment from a Nutrient Depleted Agricultural Soil. Scientific Reports, 2019, 9, 15611.	1.6	91
756	Host–endophytes cross-talk: an essential prerequisite for plant ecosystem functioning. , 2019, , 307-317.		1
757	Abundance-occupancy distributions to prioritize plant core microbiome membership. Current Opinion in Microbiology, 2019, 49, 50-58.	2.3	136
758	Next generation microbiome applications for crop production — limitations and the need of knowledge-based solutions. Current Opinion in Microbiology, 2019, 49, 59-65.	2.3	59

#	Article		CITATIONS
759	Reductionist synthetic community approaches in root microbiome research. Current Opinion in Microbiology, 2019, 49, 97-102.	2.3	105
760	Microbial secondary metabolites and plant–microbe communications in the rhizosphere. , 2019, , 93-111.		5
761	Computationally Guided Discovery and Experimental Validation of Indole-3-acetic Acid Synthesis Pathways. ACS Chemical Biology, 2019, 14, 2867-2875.	1.6	8
762	Effect of aridity and dune type on rhizosphere soil bacterial communities of Caragana microphylla in desert regions of northern China. PLoS ONE, 2019, 14, e0224195.	1.1	31
763	Relatively rare root endophytic bacteria drive plant resource allocation patterns and tissue nutrient concentration in unpredictable ways. American Journal of Botany, 2019, 106, 1423-1434.	0.8	9
764	Editorial Commentary: The Truth about Peripheral Nerve Blocks and Hip Arthroscopy. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2019, 35, 2617-2618.	1.3	3
765	Soil domestication by rice cultivation results in plant-soil feedback through shifts in soil microbiota. Genome Biology, 2019, 20, 221.	3.8	54
767	Effect of Re-acidification on Buffalo Grass Rhizosphere and Bulk Microbial Communities During Phytostabilization of Metalliferous Mine Tailings. Frontiers in Microbiology, 2019, 10, 1209.	1.5	24
768	Does Soil Contribute to the Human Gut Microbiome?. Microorganisms, 2019, 7, 287.	1.6	95
769	Nitrogenâ€dependent bacterial community shifts in root, rhizome and rhizosphere of nutrientâ€efficient <i>Miscanthus</i> x <i>giganteus</i> from longâ€ŧerm field trials. GCB Bioenergy, 2019, 11, 1334-1347.	2.5	30
770	Variations in phyllosphere microbial community along with the development of angular leaf-spot of cucumber. AMB Express, 2019, 9, 76.	1.4	34
771	Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly. BMC Microbiology, 2019, 19, 201.	1.3	194
772	Conservation of Endophyte Bacterial Community Structure Across Two Panicum Grass Species. Frontiers in Microbiology, 2019, 10, 2181.	1.5	19
773	Root-Associated Microbial Communities of Abies nordmanniana: Insights Into Interactions of Microbial Communities With Antioxidative Enzymes and Plant Growth. Frontiers in Microbiology, 2019, 10, 1937.	1.5	24
774	Mediterranean Native Leguminous Plants: A Reservoir of Endophytic Bacteria with Potential to Enhance Chickpea Growth under Stress Conditions. Microorganisms, 2019, 7, 392.	1.6	20
775	Initial soil microbiome composition and functioning predetermine future plant health. Science Advances, 2019, 5, eaaw0759.	4.7	314
776	Rice root Fe plaque enhances paddy soil N2O emissions via Fe(II) oxidation-coupled denitrification. Soil Biology and Biochemistry, 2019, 139, 107610.	4.2	18
777	Beyond pathogens: microbiota interactions with the plant immune system. Current Opinion in Microbiology, 2019, 49, 7-17.	2.3	171

#	Article	IF	CITATIONS
778	Soil parameters, land use, and geographical distance drive soil bacterial communities along a European transect. Scientific Reports, 2019, 9, 605.	1.6	56
779	Contribution of Microbial Inter-kingdom Balance to Plant Health. Molecular Plant, 2019, 12, 148-149.	3.9	12
780	Non-Targeted Metabolomics Reveals Sorghum Rhizosphere-Associated Exudates are Influenced by the Belowground Interaction of Substrate and Sorghum Genotype. International Journal of Molecular Sciences, 2019, 20, 431.	1.8	43
781	Bacterial communities associated to Chilean altiplanic native plants from the Andean grasslands soils. Scientific Reports, 2019, 9, 1042.	1.6	32
782	Streptomyces pactum Act12 controls tomato yellow leaf curl virus disease and alters rhizosphere microbial communities. Biology and Fertility of Soils, 2019, 55, 149-169.	2.3	25
783	Enrichment of soil rare bacteria in root by an invasive plant Ageratina adenophora. Science of the Total Environment, 2019, 683, 202-209.	3.9	28
784	Diversity, distribution and multiâ€functional attributes of bacterial communities associated with the rhizosphere and endosphere of timothy (<i>Phleum pratense</i> L.). Journal of Applied Microbiology, 2019, 127, 794-811.	1.4	10
785	When We Stop Thinking about Microbes as Cells. Journal of Molecular Biology, 2019, 431, 2487-2492.	2.0	9
786	Systems Biology of Plant-Microbiome Interactions. Molecular Plant, 2019, 12, 804-821.	3.9	299
787	Rhizobacteria Mediate the Phytotoxicity of a Range of Biorefineryâ€Relevant Compounds. Environmental Toxicology and Chemistry, 2019, 38, 1911-1922.	2.2	7
788	Biocontrol of Cereal Crop Diseases Using Streptomycetes. Pathogens, 2019, 8, 78.	1.2	91
789	Abundance of Plant-Associated Gammaproteobacteria Correlates with Immunostimulatory Activity of Angelica sinensis. Medicines (Basel, Switzerland), 2019, 6, 62.	0.7	3
790	Sphingomonas sp. Cra20 Increases Plant Growth Rate and Alters Rhizosphere Microbial Community Structure of Arabidopsis thaliana Under Drought Stress. Frontiers in Microbiology, 2019, 10, 1221.	1.5	100
791	Complexity of bacterial communities within the rhizospheres of legumes drives phenanthrene degradation. Geoderma, 2019, 353, 1-10.	2.3	20
792	Pseudomonas strains isolated from different environmental niches exhibit different antagonistic ability. Ethology Ecology and Evolution, 2019, 31, 399-420.	0.6	13
793	Metagenomic survey of the bacterial communities in the rhizosphere of three Andean tuber crops. Symbiosis, 2019, 79, 141-150.	1.2	7
794	Plant-derived coumarins shape the composition of an <i>Arabidopsis</i> synthetic root microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12558-12565.	3.3	313
795	Monitoring Bacterial Colonization and Maintenance on Arabidopsis thaliana Roots in a Floating Hydroponic System. Journal of Visualized Experiments, 2019, , .	0.2	4

#	Article	IF	CITATIONS
796	Role of Vertical Transmission of Shoot Endophytes in Root-Associated Microbiome Assembly and Heavy Metal Hyperaccumulation in <i>Sedum alfredii</i> . Environmental Science & Technology, 2019, 53, 6954-6963.	4.6	88
797	Diversity of Plant Endophytic Volatile Organic Compound (VOC) and Their Potential Applications. Reference Series in Phytochemistry, 2019, , 307-333.	0.2	6
798	Microbial community structure in the rhizosphere of the orphan legume Kersting's groundnut [Macrotyloma geocarpum (Harms) Marechal & Baudet]. Molecular Biology Reports, 2019, 46, 4471-4481.	1.0	11
799	A specialized metabolic network selectively modulates <i>Arabidopsis</i> root microbiota. Science, 2019, 364, .	6.0	470
800	The Systems Biology of Lateral Root Formation: Connecting the Dots. Molecular Plant, 2019, 12, 784-803.	3.9	56
801	Rhizosphere microbiomes diverge among Populus trichocarpa plant-host genotypes and chemotypes, but it depends on soil origin. Microbiome, 2019, 7, 76.	4.9	109
802	Exploring the diversity and dynamic of bacterial community vertically distributed in Tongguling National Nature Reserve in Hainan Island, China. Brazilian Journal of Microbiology, 2019, 50, 729-737.	0.8	1
803	Searching for Novel Fungal Biological Control Agents for Plant Disease Control Among Endophytes. , 2019, , 25-51.		29
804	Meta-Omics Approach to Unravel the Endophytic Bacterial Communities of <i>Brassica napus</i> and Other Agronomically Important Crops in Response to Agricultural Practices. , 2019, , 232-249.		4
805	Rhizocompartments and environmental factors affect microbial composition and variation in native plants. Journal of Microbiology, 2019, 57, 550-561.	1.3	8
806	Effect of Drought Stress and Developmental Stages on Microbial Community Structure and Diversity in Peanut Rhizosphere Soil. International Journal of Molecular Sciences, 2019, 20, 2265.	1.8	63
807	Recently duplicated sesterterpene (C25) gene clusters in Arabidopsis thaliana modulate root microbiota. Science China Life Sciences, 2019, 62, 947-958.	2.3	52
808	Ecology and Evolution of Plant Microbiomes. Annual Review of Microbiology, 2019, 73, 69-88.	2.9	379
809	Pakchoi Antioxidant Improvement and Differential Rhizobacterial Community Composition under Organic Fertilization. Sustainability, 2019, 11, 2424.	1.6	4
810	Characterizing Structure and Potential Function of Bacterial and Fungal Root Microbiota in Hulless Barley Cultivars. Journal of Soil Science and Plant Nutrition, 2019, 19, 420-429.	1.7	5
811	Plant Stage, Not Drought Stress, Determines the Effect of Cultivars on Bacterial Community Diversity in the Rhizosphere of Broomcorn Millet (Panicum miliaceum L.). Frontiers in Microbiology, 2019, 10, 828.	1.5	31
812	Regional and Microenvironmental Scale Characterization of the Zostera muelleri Seagrass Microbiome. Frontiers in Microbiology, 2019, 10, 1011.	1.5	53
813	Functional Fungal Endophytes in Coleus forskohlii Regulate Labdane Diterpene Biosynthesis for Elevated Forskolin Accumulation in Roots. Microbial Ecology, 2019, 78, 914-926.	1.4	45

#	Article	IF	CITATIONS
814	Long-term N fertilization altered 13C-labeled fungal community composition but not diversity in wheat rhizosphere of Chinese black soil. Soil Biology and Biochemistry, 2019, 135, 117-126.	4.2	21
815	Mealworm frass as a potential biofertilizer and abiotic stress tolerance-inductor in plants. Applied Soil Ecology, 2019, 142, 110-122.	2.1	92
816	NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nature Biotechnology, 2019, 37, 676-684.	9.4	641
817	Effect of longâ€ŧerm organic and mineral fertilization strategies on rhizosphere microbiota assemblage and performance of lettuce. Environmental Microbiology, 2019, 21, 2426-2439.	1.8	42
818	Identification and Characterization of the Core Rice Seed Microbiome. Phytobiomes Journal, 2019, 3, 148-157.	1.4	73
819	Plant terpenes that mediate belowâ€ground interactions: prospects for bioengineering terpenoids for plant protection. Pest Management Science, 2019, 75, 2368-2377.	1.7	52
820	Submergence and Waterlogging Stress in Plants: A Review Highlighting Research Opportunities and Understudied Aspects. Frontiers in Plant Science, 2019, 10, 340.	1.7	219
821	Beneficial effects of endophytic fungi colonization on plants. Applied Microbiology and Biotechnology, 2019, 103, 3327-3340.	1.7	157
822	Factors Influencing Leaf- and Root-Associated Communities of Bacteria and Fungi Across 33 Plant Orders in a Grassland. Frontiers in Microbiology, 2019, 10, 241.	1.5	51
823	Insight into the Bacterial Endophytic Communities of Peach Cultivars Related to Crown Gall Disease Resistance. Applied and Environmental Microbiology, 2019, 85, .	1.4	42
824	Plant growth promoting bacteria in agriculture: Two sides of a coin. Applied Soil Ecology, 2019, 138, 10-18.	2.1	174
825	Temporal dynamics of bacterial and fungal communities during the infection of Brassica rapa roots by the protist Plasmodiophora brassicae. PLoS ONE, 2019, 14, e0204195.	1.1	45
826	Fungal-Bacterial Networks in the Populus Rhizobiome Are Impacted by Soil Properties and Host Genotype. Frontiers in Microbiology, 2019, 10, 481.	1.5	71
827	Soil Fungal Community in Norway Spruce Forests under Bark Beetle Attack. Forests, 2019, 10, 109.	0.9	14
828	The effect of environment on the microbiome associated with the roots of a native woody plant under different climate types in China. Applied Microbiology and Biotechnology, 2019, 103, 3899-3913.	1.7	11
829	The soybean rhizosphere: Metabolites, microbes, and beyond—A review. Journal of Advanced Research, 2019, 19, 67-73.	4.4	119
830	Foliar-feeding insects acquire microbiomes from the soil rather than the host plant. Nature Communications, 2019, 10, 1254.	5.8	135
831	From Imaging to Functional Traits in Interactions Between Roots and Microbes. Rhizosphere Biology, 2019, , 227-239.	0.4	1

		CITATION RE	PORT	
#	Article		IF	Citations
832	Exploitation of Rhizosphere Microbiome Services. Rhizosphere Biology, 2019, , 105-132.		0.4	9
833	Native and Invading Yellow Starthistle (Centaurea solstitialis) Microbiomes Differ in Com Diversity of Bacteria. MSphere, 2019, 4, .	position and	1.3	20
834	Rhizobacterial Community Assembly Patterns Vary Between Crop Species. Frontiers in N 2019, 10, 581.	icrobiology,	1.5	42
835	Root endophytic fungi show low levels of interspecific competition in planta. Fungal Eco 39, 184-191.	ogy, 2019,	0.7	13
836	Lime and ammonium carbonate fumigation coupled with bioâ€organic fertilizer applicati banana rhizosphere to assemble a unique microbiome against Panama disease. Microbia Biotechnology, 2019, 12, 515-527.	on steered	2.0	23
837	Antibiotic Resistomes in Plant Microbiomes. Trends in Plant Science, 2019, 24, 530-541.		4.3	233
838	Plant selection initiates alternative successional trajectories in the soil microbial commun disturbance. Ecological Monographs, 2019, 89, e01367.	nity after	2.4	31
839	Maize synthesized benzoxazinoids affect the host associated microbiome. Microbiome, 2	2019, 7, 59.	4.9	185
840	Spatial patterns of fungal endophytes in a subtropical montane rainforest of northern Ta Fungal Ecology, 2019, 39, 316-327.	iwan.	0.7	13
841	Diversity analysis of the rhizospheric and endophytic bacterial communities of <i>Senecivulgaris</i> L. (Asteraceae) in an invasive range. PeerJ, 2019, 6, e6162.	0	0.9	26
842	Agave Seed Endophytes: Ecology and Impacts on Root Architecture, Nutrient Acquisitior Stress Tolerance. , 2019, , 139-170.	, and Cold		14
843	Distinct endophytes are used by diverse plants for adaptation to karst regions. Scientific 2019, 9, 5246.	Reports,	1.6	26
844	Consortia of anti-nematode fungi and bacteria in the rhizosphere of soybean plants atta root-knot nematodes. Royal Society Open Science, 2019, 6, 181693.	cked by	1.1	30
845	Flowering plant immune repertoires expand under mycorrhizal symbiosis. Plant Direct, 2	019, 3, e00125.	0.8	2
846	Role of the Plant Root Microbiome in Abiotic Stress Tolerance. , 2019, , 273-311.			20
847	Metabolic regulation of the maize rhizobiome by benzoxazinoids. ISME Journal, 2019, 13	, 1647-1658.	4.4	210
848	Priority effects of wheat seed endophytes on a rhizosphere symbiosis. Symbiosis, 2019,	78, 19-31.	1.2	40
849	Microbial Correlates of <i>Fusarium</i> Load and Deoxynivalenol Content in Individual V Kernels. Phytopathology, 2019, 109, 993-1002.	Vheat	1.1	11

#	Article	IF	Citations
850	Plant hosts control microbial denitrification activity. FEMS Microbiology Ecology, 2019, 95, .	1.3	30
851	Diversity and Functionality of Culturable Endophytic Bacterial Communities in Chickpea Plants. Plants, 2019, 8, 42.	1.6	49
852	Methods in Metagenomics and Environmental Biotechnology. Environmental Chemistry for A Sustainable World, 2019, , 85-113.	0.3	3
853	Metabarcoding reveals that rhizospheric microbiota of Quercus pyrenaica is composed by a relatively small number of bacterial taxa highly abundant. Scientific Reports, 2019, 9, 1695.	1.6	23
854	Culturable endophytic fungal communities associated with plants in organic and conventional farming systems and their effects on plant growth. Scientific Reports, 2019, 9, 1669.	1.6	62
855	Convergent gain and loss of genomic islands drive lifestyle changes in plant-associated <i>Pseudomonas</i> . ISME Journal, 2019, 13, 1575-1588.	4.4	84
856	Unlocking a high bacterial diversity in the coralloid root microbiome from the cycad genus Dioon. PLoS ONE, 2019, 14, e0211271.	1.1	37
857	6. Practical overview of bioinformatics data mining in environmental genomics. , 2019, , 127-150.		Ο
858	Divulging diazotrophic bacterial community structure in Kuwait desert ecosystems and their N2-fixation potential. PLoS ONE, 2019, 14, e0220679.	1.1	14
859	Plant-Microbiome Interaction and the Effects of Biotic and Abiotic Components in Agroecosystem. , 2019, , 517-546.		6
860	Single-Cell RNA Sequencing of Plant-Associated Bacterial Communities. Frontiers in Microbiology, 2019, 10, 2452.	1.5	10
861	Characterization and comprehensive analysis of the ecological interaction networks of bacterial communities in Paullinia cupana var. sorbilis by 16S rRNA gene metabarcoding. World Journal of Microbiology and Biotechnology, 2019, 35, 182.	1.7	2
862	The effects of soil phosphorus content on plant microbiota are driven by the plant phosphate starvation response. PLoS Biology, 2019, 17, e3000534.	2.6	126
863	Genome-Resolved Proteomic Stable Isotope Probing of Soil Microbial Communities Using 13CO2 and 13C-Methanol. Frontiers in Microbiology, 2019, 10, 2706.	1.5	23
864	Possible Roles of Rhizospheric and Endophytic Microbes to Provide a Safe and Affordable Means of Crop Biofortification. Agronomy, 2019, 9, 764.	1.3	38
865	Rhizosphere Metagenomics of Paspalum scrobiculatum L. (Kodo Millet) Reveals Rhizobiome Multifunctionalities. Microorganisms, 2019, 7, 608.	1.6	20
866	Changes of Root Endophytic Bacterial Community Along a Chronosequence of Intensively Managed Lei Bamboo (Phyllostachys praecox) Forests in Subtropical China. Microorganisms, 2019, 7, 616.	1.6	10
867	Niche differentiation rather than biogeography shapes the diversity and composition of microbiome of Cycas panzhihuaensis. Microbiome, 2019, 7, 152.	4.9	86

#	Article	IF	CITATIONS
868	Cultivar-Dependent Variation of the Cotton Rhizosphere and Endosphere Microbiome Under Field Conditions. Frontiers in Plant Science, 2019, 10, 1659.	1.7	49
870	Rhizoplane Bacteria and Plant Species Co-determine Phosphorus-Mediated Microbial Legacy Effect. Frontiers in Microbiology, 2019, 10, 2856.	1.5	17
872	Systematic processing of ribosomal RNA gene amplicon sequencing data. GigaScience, 2019, 8, .	3.3	49
873	A Stable Genetic Transformation System and Implications of the Type IV Restriction System in the Nitrogen-Fixing Plant Endosymbiont Frankia alni ACN14a. Frontiers in Microbiology, 2019, 10, 2230.	1.5	12
874	Land Management and Microbial Seed Load Effect on Rhizosphere and Endosphere Bacterial Community Assembly in Wheat. Frontiers in Microbiology, 2019, 10, 2625.	1.5	18
875	Plant growth promoting bacteria increases biomass, effective constituent, and modifies rhizosphere bacterial communities of Panax ginseng. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2019, 69, 135-146.	0.3	4
876	Diverse cellular colonizing endophytic bacteria in field shoots and in vitro cultured papaya with physiological and functional implications. Physiologia Plantarum, 2019, 166, 729-747.	2.6	14
877	Microbiome Diversity in Cotton Rhizosphere Under Normal and Drought Conditions. Microbial Ecology, 2019, 77, 429-439.	1.4	102
878	Building plant microbiome vault: a future biotechnological resource. Symbiosis, 2019, 77, 1-8.	1.2	9
879	Distribution of antibiotic resistance genes in soils and crops. A field study in legume plants (Vicia faba) Tj ETQq1	1 0.78431 3.7	4 rgBT /Over
880	Isolation and characterization of culturable endophytic bacterial community of stripe rust–resistant and stripe rust–susceptible Pakistani wheat cultivars. International Microbiology, 2019, 22, 191-201.	1.1	12
881	Root microbiome response to treated wastewater irrigation. Science of the Total Environment, 2019, 655, 899-907.	3.9	54
882	Rootstocks Shape the Rhizobiome: Rhizosphere and Endosphere Bacterial Communities in the Grafted Tomato System. Applied and Environmental Microbiology, 2019, 85, .	1.4	77
883	Mutual interplay between phytopathogenic powdery mildew fungi and other microorganisms. Molecular Plant Pathology, 2019, 20, 463-470.	2.0	35
884	Analysis of the community composition and bacterial diversity of the rhizosphere microbiome across different plant taxa. MicrobiologyOpen, 2019, 8, e00762.	1.2	41
885	Resilience and Assemblage of Soil Microbiome in Response to Chemical Contamination Combined with Plant Growth. Applied and Environmental Microbiology, 2019, 85, .	1.4	46
886	Isolation and characterization of bacteria associated with the rhizosphere of halophytes (Salsola) Tj ETQq0 0 0 rg Microbiology, 2019, 50, 85-97.	BT /Overlo 0.8	ck 10 Tf 50 48
887	Characterizing both bacteria and fungi improves understanding of the Arabidopsis root microbiome.	1.6	135

#	Article	IF	CITATIONS
888	Endophytic bacterial communities in peels and pulp of five root vegetables. PLoS ONE, 2019, 14, e0210542.	1.1	21
889	Comprehensive insights into the key components of bacterial assemblages in pharmaceutical wastewater treatment plants. Science of the Total Environment, 2019, 651, 2148-2157.	3.9	25
890	Developmental stage has a greater effect than Cry1Ac expression in transgenic cotton on the phyllosphere mycobiome. Canadian Journal of Microbiology, 2019, 65, 116-125.	0.8	2
891	Plant adaptation and speciation studied by population genomic approaches. Development Growth and Differentiation, 2019, 61, 12-24.	0.6	18
892	Plant compartment and genetic variation drive microbiome composition in switchgrass roots. Environmental Microbiology Reports, 2019, 11, 185-195.	1.0	65
893	Apple rootstocks of different nitrogen tolerance affect the rhizosphere bacterial community composition. Journal of Applied Microbiology, 2019, 126, 595-607.	1.4	15
894	Soil Characteristics Overwhelm Cultivar Effects on the Structure and Assembly of Root-Associated Microbiomes of Modern Maize. Pedosphere, 2019, 29, 360-373.	2.1	37
895	Adaptation of plants to high-calcium content kart regions: possible involvement of symbiotic microorganisms and underlying mechanisms. Brazilian Journal of Biology, 2020, 80, 209-214.	0.4	2
896	Diversity and specificity of arbuscular mycorrhizal fungi in the rhizosphere of six plants in the Songnen grassland, China. Ecoscience, 2020, 27, 11-21.	0.6	4
897	Host-Associated Quantitative Abundance Profiling Reveals the Microbial Load Variation of Root Microbiome. Plant Communications, 2020, 1, 100003.	3.6	38
898	The aeroponic rhizosphere microbiome: community dynamics in early succession suggest strong selectional forces. Antonie Van Leeuwenhoek, 2020, 113, 83-99.	0.7	10
899	The plant microbiome: A missing link for the understanding of community dynamics and multifunctionality in forest ecosystems. Applied Soil Ecology, 2020, 145, 103345.	2.1	22
900	Interactive Effects of Microbes and Nitrogen on <i>Panicum virgatum</i> Root Functional Traits and Patterns of Phenotypic Selection. International Journal of Plant Sciences, 2020, 181, 20-32.	0.6	10
901	Phyllosphere Colonization by a Soil <i>Streptomyces</i> sp. Promotes Plant Defense Responses Against Fungal Infection. Molecular Plant-Microbe Interactions, 2020, 33, 223-234.	1.4	29
902	In Planta Colonization and Role of T6SS in Two Rice <i>Kosakonia</i> Endophytes. Molecular Plant-Microbe Interactions, 2020, 33, 349-363.	1.4	30
903	Corn and Soybean Host Root Endophytic Fungi with Toxicity Toward the Soybean Cyst Nematode. Phytopathology, 2020, 110, 603-614.	1.1	10
904	Antimycotal Activity of <i>Collimonas</i> Isolates and Synergy-Based Biological Control of Fusarium Wilt of Tomato. Phytobiomes Journal, 2020, 4, 64-74.	1.4	13
905	Inhibitory and nutrient use phenotypes among coexisting <i>Fusarium</i> and <i>Streptomyces</i> populations suggest local coevolutionary interactions in soil. Environmental Microbiology, 2020, 22, 976-985.	1.8	16

#	Article	IF	CITATIONS
906	Bacterial rhizosphere community profile at different growth stages of Umorok (Capsicum chinense) and its response to the root exudates. International Microbiology, 2020, 23, 241-251.	1.1	10
907	Root Endophytes of Coffee (<i>Coffea arabica</i>): Variation Across Climatic Gradients and Relationships with Functional Traits. Phytobiomes Journal, 2020, 4, 27-39.	1.4	41
908	Manure Application Did Not Enrich Antibiotic Resistance Genes in Root Endophytic Bacterial Microbiota of Cherry Radish Plants. Applied and Environmental Microbiology, 2020, 86, .	1.4	25
909	Long-term organic fertilization improves the productivity of kiwifruit (Actinidia chinensis Planch.) through increasing rhizosphere microbial diversity and network complexity. Applied Soil Ecology, 2020, 147, 103426.	2.1	56
910	Rhizosphere bacteria assembly derived from fumigation and organic amendment triggers the direct and indirect suppression of tomato bacterial wilt disease. Applied Soil Ecology, 2020, 147, 103364.	2.1	34
911	Drivers of the composition of active rhizosphere bacterial communities in temperate grasslands. ISME Journal, 2020, 14, 463-475.	4.4	141
912	Analysis of leaf microbiome composition of nearâ€isogenic maize lines differing in broadâ€spectrum disease resistance. New Phytologist, 2020, 225, 2152-2165.	3.5	42
913	Investigating the endophytic bacterial diversity and community structures in seeds of genetically related maize (Zea mays L.) genotypes. 3 Biotech, 2020, 10, 27.	1.1	20
914	Distinct factors drive the assembly of quinoa-associated microbiomes along elevation. Plant and Soil, 2020, 448, 55-69.	1.8	21
915	Unique bacterial assembly, composition, and interactions in a parasitic plant and its host. Journal of Experimental Botany, 2020, 71, 2198-2209.	2.4	22
916	Root microbiota assembly and adaptive differentiation among European Arabidopsis populations. Nature Ecology and Evolution, 2020, 4, 122-131.	3.4	157
917	Plant cover of Ammopiptanthus mongolicus and soil factors shape soil microbial community and catabolic functional diversity in the arid desert in Northwest China. Applied Soil Ecology, 2020, 147, 103389.	2.1	17
918	Steering root microbiomes of a commercial horticultural crop with plant-soil feedbacks. Applied Soil Ecology, 2020, 150, 103468.	2.1	26
919	Mechanisms of water regime effects on uptake of cadmium and nitrate by two ecotypes of water spinach (Ipomoea aquatica Forsk.) in contaminated soil. Chemosphere, 2020, 246, 125798.	4.2	24
920	Leaf-derived bacterial communities adapt to the local environment. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 808-810.	3.3	9
921	Apple rootstocks with different phosphorus efficiency exhibit alterations in rhizosphere bacterial structure. Journal of Applied Microbiology, 2020, 128, 1460-1471.	1.4	7
922	Assembly of root-associated microbial community of typical rice cultivars in different soil types. Biology and Fertility of Soils, 2020, 56, 249-260.	2.3	65
923	Endophytic bacteria Arthrobacter agilis UMCV2 and Bacillus methylotrophicus M4-96 stimulate achene germination, in vitro growth, and greenhouse yield of strawberry (Fragaria × ananassa). Scientia Horticulturae, 2020, 261, 109005.	1.7	21

#	Article	IF	CITATIONS
924	Endophytic bacterial communities of oilseed rape associate with genotype-specific resistance against Verticillium longisporum. FEMS Microbiology Ecology, 2020, 96, .	1.3	8
925	A Tripartite Interaction among the Basidiomycete <i>Rhodotorula mucilaginosa</i> , N ₂ -Fixing Endobacteria, and Rice Improves Plant Nitrogen Nutrition. Plant Cell, 2020, 32, 486-507.	3.1	29
926	Host identity determines plant associated resistomes. Environmental Pollution, 2020, 258, 113709.	3.7	23
927	The role of rhizodeposits in shaping rhizomicrobiome. Environmental Microbiology Reports, 2020, 12, 160-172.	1.0	56
928	Rhizosphere modelling reveals spatiotemporal distribution of daidzein shaping soybean rhizosphere bacterial community. Plant, Cell and Environment, 2020, 43, 1036-1046.	2.8	63
929	Tomato RNA-seq Data Mining Reveals the Taxonomic and Functional Diversity of Root-Associated Microbiota. Microorganisms, 2020, 8, 38.	1.6	15
930	Tomato Genotype Modulates Selection and Responses to Root Microbiota. Phytobiomes Journal, 2020, 4, 314-326.	1.4	17
931	Framework for Quantification of the Dynamics of Root Colonization by Pseudomonas fluorescens Isolate SBW25. Frontiers in Microbiology, 2020, 11, 585443.	1.5	6
932	Root-Secreted Coumarins and the Microbiota Interact to Improve Iron Nutrition in Arabidopsis. Cell Host and Microbe, 2020, 28, 825-837.e6.	5.1	199
933	Afforestation of cropland fundamentally alters the soil fungal community. Plant and Soil, 2020, 457, 279-292.	1.8	11
934	The invisible life inside plants: Deciphering the riddles of endophytic bacterial diversity. Biotechnology Advances, 2020, 44, 107614.	6.0	79
935	Antagonistic Interaction between Auxin and SA Signaling Pathways Regulates Bacterial Infection through Lateral Root in Arabidopsis. Cell Reports, 2020, 32, 108060.	2.9	38
936	Breeding selection imposed a differential selective pressure on the wheat root-associated microbiome. FEMS Microbiology Ecology, 2020, 96, .	1.3	24
937	Biological and Molecular Control Tools in Plant Defense. Progress in Biological Control, 2020, , 3-43.	0.5	2
938	Temporal and Cultivar-Specific Effects on Potato Root and Soil Fungal Diversity. Agronomy, 2020, 10, 1535.	1.3	8
939	Effects of <i>Hedysarum</i> leguminous plants on soil bacterial communities in the Mu Us Desert, northwest China. Ecology and Evolution, 2020, 10, 11423-11439.	0.8	15
940	Bark decomposition in white oak soil outperforms eastern hemlock soil, while bark type leads to consistent changes in soil microbial composition. Biogeochemistry, 2020, 150, 329-343.	1.7	8
941	Interkingdom signaling in plant-rhizomicrobiome interactions for sustainable agriculture. Microbiological Research, 2020, 241, 126589.	2.5	64

			0
#		IF	CITATIONS
942	Rhizosphere, 2020, 16, 100249.	1.4	55
943	Life in mine tailings: microbial population structure across the bulk soil, rhizosphere, and roots of boreal species colonizing mine tailings in northwestern Québec. Annals of Microbiology, 2020, 70, .	1.1	19
944	Cooperation between <i>Broussonetia papyrifera</i> and Its Symbiotic Fungal Community To Improve Local Adaptation of the Host. Applied and Environmental Microbiology, 2020, 86, .	1.4	7
945	Plant Microbiomes: Understanding the Aboveground Benefits. , 2020, , 51-80.		2
946	Wheat Microbiome: Present Status and Future Perspective. , 2020, , 191-223.		12
947	Diversity, function and assembly of mangrove root-associated microbial communities at a continuous fine-scale. Npj Biofilms and Microbiomes, 2020, 6, 52.	2.9	68
948	Metagenomic Insights into Rhizospheric Microbiome Profiling in Lentil Cultivars Unveils Differential Microbial Nitrogen and Phosphorus Metabolism under Rice-Fallow Ecology. International Journal of Molecular Sciences, 2020, 21, 8895.	1.8	14
949	Opportunities and Challenges in Studies of Host-Pathogen Interactions and Management of Verticillium dahliae in Tomatoes. Plants, 2020, 9, 1622.	1.6	22
950	Survival of the weakest in non-transitive asymmetric interactions among strains of E. coli. Nature Communications, 2020, 11, 6055.	5.8	23
951	Structure and Function of Bacterial Microbiota in Eucommia ulmoides Bark. Current Microbiology, 2020, 77, 3623-3632.	1.0	15
952	Soil microbiota influences clubroot disease by modulating <i>Plasmodiophora brassicae</i> and <i>Brassica napus</i> transcriptomes. Microbial Biotechnology, 2020, 13, 1648-1672.	2.0	22
953	Bacillus. , 2020, , 107-132.		7
954	Climatic Aridity Gradient Modulates the Diversity of the Rhizosphere and Endosphere Bacterial Microbiomes of Opuntia ficus-indica. Frontiers in Microbiology, 2020, 11, 1622.	1.5	25
955	Impact of Quorum Sensing Molecules on Plant Growth and Immune System. Frontiers in Microbiology, 2020, 11, 1545.	1.5	46
956	Desert Microbes for Boosting Sustainable Agriculture in Extreme Environments. Frontiers in Microbiology, 2020, 11, 1666.	1.5	87
957	Iron Supplementation Eliminates Antagonistic Interactions Between Root-Associated Bacteria. Frontiers in Microbiology, 2020, 11, 1742.	1.5	9
958	Profiling the <i>Lolium perenne</i> Microbiome: From Seed to Seed. Phytobiomes Journal, 2020, 4, 281-289.	1.4	34
959	Phylogenetic signal of host plants in the bacterial and fungal root microbiomes of cultivated angiosperms. Plant Journal, 2020, 104, 522-531.	2.8	19

#	Article	IF	CITATIONS
960	Influence of Citrus Scion/Rootstock Genotypes on Arbuscular Mycorrhizal Community Composition under Controlled Environment Condition. Plants, 2020, 9, 901.	1.6	9
961	The endosphere bacteriome of diseased and healthy tomato plants. Archives of Microbiology, 2020, 202, 202, 2629-2642.	1.0	10
962	Domestication-driven changes in plant traits associated with changes in the assembly of the rhizosphere microbiota in tetraploid wheat. Scientific Reports, 2020, 10, 12234.	1.6	38
963	Plant–microbiome interactions: from community assembly to plant health. Nature Reviews Microbiology, 2020, 18, 607-621.	13.6	1,381
964	Physiological change alters endophytic bacterial community in clubroot of tumorous stem mustard infected by Plasmodiophora brassicae. BMC Microbiology, 2020, 20, 244.	1.3	9
965	Trifolium repens-Associated Bacteria as a Potential Tool to Facilitate Phytostabilization of Zinc and Lead Polluted Waste Heaps. Plants, 2020, 9, 1002.	1.6	13
966	Changes in the core endophytic mycobiome of carrot taproots in response to crop management and genotype. Scientific Reports, 2020, 10, 13685.	1.6	11
968	Reducing host DNA contamination in 16S rRNA gene surveys of anthozoan microbiomes using PNA clamps. Coral Reefs, 2020, 39, 1817-1827.	0.9	14
969	Microbiome manipulation by a soil-borne fungal plant pathogen using effector proteins. Nature Plants, 2020, 6, 1365-1374.	4.7	118
970	Testing the Two-Step Model of Plant Root Microbiome Acquisition Under Multiple Plant Species and Soil Sources. Frontiers in Microbiology, 2020, 11, 542742.	1.5	20
971	Definition of Core Bacterial Taxa in Different Root Compartments of Dactylis glomerata, Grown in Soil under Different Levels of Land Use Intensity. Diversity, 2020, 12, 392.	0.7	7
972	Sampling the control bulk soil for rhizosphere and drilosphere microbial studies. Geoderma, 2020, 380, 114674.	2.3	10
973	Effect of Inorganic N Top Dressing and Trichoderma harzianum Seed-Inoculation on Crop Yield and the Shaping of Root Microbial Communities of Wheat Plants Cultivated Under High Basal N Fertilization. Frontiers in Plant Science, 2020, 11, 575861.	1.7	32
974	Identification and functional assessment of endophytic bacterial diversity in Ageratina adenophora (Sprengel) and their interactions with the host plant. South African Journal of Botany, 2020, 134, 99-108.	1.2	2
975	Soil Microbiomes From Fallow Fields Have Species-Specific Effects on Crop Growth and Pest Resistance. Frontiers in Plant Science, 2020, 11, 1171.	1.7	16
976	Effects of Plant and Soil Characteristics on Phyllosphere and Rhizosphere Fungal Communities During Plant Development in a Copper Tailings Dam. Frontiers in Microbiology, 2020, 11, 556002.	1.5	15
977	Growth of Arabidopsis thaliana in rhizobox culture system evaluated through the lens of root microbiome. Plant and Soil, 2020, 455, 467-487.	1.8	2
978	Functional compensation dominates the assembly of plant rhizospheric bacterial community. Soil Biology and Biochemistry, 2020, 150, 107968.	4.2	48

#	Article	IF	CITATIONS
979	The volatile organic compounds of Floccularia luteovirens modulate plant growth and metabolism in Arabidopsis thaliana. Plant and Soil, 2020, 456, 207-221.	1.8	16
980	Root Fungal Endophytes and Microbial Extracellular Enzyme Activities Show Patterned Responses in Tall Fescues under Drought Conditions. Agronomy, 2020, 10, 1076.	1.3	9
981	Alteration of Bacterial Wilt Resistance in Tomato Plant by Microbiota Transplant. Frontiers in Plant Science, 2020, 11, 1186.	1.7	36
982	Colonization by dark septate endophytes improves the growth of Hedysarum scoparium under multiple inoculum levels. Symbiosis, 2020, 82, 201-214.	1.2	16
983	Dynamic Changes in the Microbiome of Rice During Shoot and Root Growth Derived From Seeds. Frontiers in Microbiology, 2020, 11, 559728.	1.5	29
984	Soil potassium is correlated with root secondary metabolites and root-associated core bacteria in licorice of different ages. Plant and Soil, 2020, 456, 61-79.	1.8	33
985	910 metagenome-assembled genomes from the phytobiomes of three urban-farmed leafy Asian greens. Scientific Data, 2020, 7, 278.	2.4	17
986	What is the Molecular Basis of Nonhost Resistance?. Molecular Plant-Microbe Interactions, 2020, 33, 1253-1264.	1.4	47
987	Comparative study of neighboring Holm oak and olive trees-belowground microbial communities subjected to different soil management. PLoS ONE, 2020, 15, e0236796.	1.1	10
988	A core phyllosphere microbiome exists across distant populations of a tree species indigenous to New Zealand. PLoS ONE, 2020, 15, e0237079.	1.1	20
989	A hyperaccumulator plant Sedum alfredii recruits Cd/Zn-tolerant but not Pb-tolerant endospheric bacterial communities from its rhizospheric soil. Plant and Soil, 2020, 455, 257-270.	1.8	12
990	From Forest Soil to the Canopy: Increased Habitat Diversity Does Not Increase Species Richness of Cercozoa and Oomycota in Tree Canopies. Frontiers in Microbiology, 2020, 11, 592189.	1.5	7
991	Bacterial Community Members Increase <i>Bacillus subtilis</i> Maintenance on the Roots of <i>Arabidopsis thaliana</i> . Phytobiomes Journal, 2020, 4, 303-313.	1.4	12
992	The need to study the holobiome for gainful uses of endophytes. Fungal Biology Reviews, 2020, 34, 144-150.	1.9	8
993	Microbial assemblages associated with the rhizosphere and endosphere of an herbage, <i>Leymus chinensis</i> . Microbial Biotechnology, 2020, 13, 1390-1402.	2.0	30
994	Tree Root Zone Microbiome: Exploring the Magnitude of Environmental Conditions and Host Tree Impact. Frontiers in Microbiology, 2020, 11, 749.	1.5	20
995	Dynamics Relationship of Phyllosphere and Rhizosphere Bacterial Communities During the Development of Bothriochloa ischaemum in Copper Tailings. Frontiers in Microbiology, 2020, 11, 869.	1.5	5
996	Cold plasma treatment of <i>Arabidopsis thaliana</i> (L.) seeds modulates plant-associated microbiome composition. Applied Physics Express, 2020, 13, 076001.	1.1	13

#	Article	IF	CITATIONS
997	Microbe-Mediated Mitigation of Plant Stress. , 2020, , 271-282.		0
998	Insights into factors driving the transmission of antibiotic resistance from sludge compost-amended soil to vegetables under cadmium stress. Science of the Total Environment, 2020, 729, 138990.	3.9	30
999	Nitrogen Substrate Utilization in Three Rhizosphere Bacterial Strains Investigated Using Proteomics. Frontiers in Microbiology, 2020, 11, 784.	1.5	6
1000	Community dynamics of duckweed-associated bacteria upon inoculation of plant growth-promoting bacteria. FEMS Microbiology Ecology, 2020, 96, .	1.3	22
1001	Rhizosphere microbiome functional diversity and pathogen invasion resistance build up during plant development. Environmental Microbiology, 2020, 22, 5005-5018.	1.8	69
1002	Heterosis of leaf and rhizosphere microbiomes in fieldâ€grown maize. New Phytologist, 2020, 228, 1055-1069.	3.5	66
1003	The Plant Microbiome: From Ecology to Reductionism and Beyond. Annual Review of Microbiology, 2020, 74, 81-100.	2.9	225
1004	Community structure and diversity of the microbiomes of two microhabitats at the root–soil interface: implications of meta-analysis of the root-zone soil and root endosphere microbial communities in Xiong'an New Area. Canadian Journal of Microbiology, 2020, 66, 605-622.	0.8	10
1005	Simple methods to remove microbes from leaf surfaces. Journal of Basic Microbiology, 2020, 60, 730-734.	1.8	14
1006	Culturable Bacterial Endophytes From Sedimentary Humic Acid-Treated Plants. Frontiers in Plant Science, 2020, 11, 837.	1.7	17
1007	Host-specific and tissue-dependent orchestration of microbiome community structure in traditional rice paddy ecosystems. Plant and Soil, 2020, 452, 379-395.	1.8	14
1008	Using soil bacterial communities to predict physico-chemical variables and soil quality. Microbiome, 2020, 8, 79.	4.9	137
1009	Engineering CRISPR/Cas9 to mitigate abundant host contamination for 16S rRNA gene-based amplicon sequencing. Microbiome, 2020, 8, 80.	4.9	27
1010	Soil metabolome correlates with bacterial diversity and co-occurrence patterns in root-associated soils on the Tibetan Plateau. Science of the Total Environment, 2020, 735, 139572.	3.9	26
1011	<i>Streptomyces</i> Endophytes Promote Host Health and Enhance Growth across Plant Species. Applied and Environmental Microbiology, 2020, 86, .	1.4	44
1012	Heterogeneity of the rice microbial community of the Chinese centuriesâ€old Honghe Hani rice terraces system. Environmental Microbiology, 2020, 22, 3429-3445.	1.8	8
1013	Natural Holobiome Engineering by Using Native Extreme Microbiome to Counteract the Climate Change Effects. Frontiers in Bioengineering and Biotechnology, 2020, 8, 568.	2.0	51
1014	Phytopathogenic Rhodococcus Have Diverse Plasmids With Few Conserved Virulence Functions. Frontiers in Microbiology, 2020, 11, 1022.	1.5	18

#	Article	IF	CITATIONS
1015	Drought Drives Spatial Variation in the Millet Root Microbiome. Frontiers in Plant Science, 2020, 11, 599.	1.7	42
1016	Phyto-Microbiome in Stress Regulation. Environmental and Microbial Biotechnology, 2020, , .	0.4	17
1017	Influences of Climate on Phyllosphere Endophytic Bacterial Communities of Wild Poplar. Frontiers in Plant Science, 2020, 11, 203.	1.7	25
1018	Research Advances of Beneficial Microbiota Associated with Crop Plants. International Journal of Molecular Sciences, 2020, 21, 1792.	1.8	48
1019	Plant Microbiomes for Sustainable Agriculture. Sustainable Development and Biodiversity, 2020, , .	1.4	134
1020	An amplification-selection model for quantified rhizosphere microbiota assembly. Science Bulletin, 2020, 65, 983-986.	4.3	64
1021	Tailoring plant-associated microbial inoculants in agriculture: a roadmap for successful application. Journal of Experimental Botany, 2020, 71, 3878-3901.	2.4	118
1022	Fungal endophytes: Futuristic tool in recent research area of phytoremediation. South African Journal of Botany, 2020, 134, 285-295.	1.2	17
1023	Rhizosphere Microbial Community Structure Is Selected by Habitat but Not Plant Species in Two Tropical Seagrass Beds. Frontiers in Microbiology, 2020, 11, 161.	1.5	33
1024	AgNO3 Sterilizes Grains of Barley (Hordeum vulgare) without Inhibiting Germination—A Necessary Tool for Plant–Microbiome Research. Plants, 2020, 9, 372.	1.6	4
1025	Entry, colonization, and distribution of endophytic microorganisms in plants. , 2020, , 1-33.		24
1026	Spatio-Temporal and Cultivar-Dependent Variations in the Cannabis Microbiome. Frontiers in Microbiology, 2020, 11, 491.	1.5	28
1027	Surveying the Sweetpotato Rhizosphere, Endophyte, and Surrounding Soil Microbiomes at Two North Carolina Farms Reveals Underpinnings of Sweetpotato Microbiome Community Assembly. Phytobiomes Journal, 2020, 4, 75-89.	1.4	7
1028	Unlocking the Microbiome Communities of Banana (Musa spp.) under Disease Stressed (Fusarium wilt) and Non-Stressed Conditions. Microorganisms, 2020, 8, 443.	1.6	36
1029	Plant Microbe Symbiosis. , 2020, , .		13
1030	Impact of plants on the diversity and activity of methylotrophs in soil. Microbiome, 2020, 8, 31.	4.9	35
1031	Fungal diversity and community composition of wheat rhizosphere and non-rhizosphere soils from three different agricultural production regions of South Africa. Applied Soil Ecology, 2020, 151, 103543.	2.1	32
1032	Community Composition, Antifungal Activity and Chemical Analyses of Ant-Derived Actinobacteria. Frontiers in Microbiology, 2020, 11, 201.	1.5	29

#	Article	IF	CITATIONS
1033	Scientific Prospects for Cannabis-Microbiome Research to Ensure Quality and Safety of Products. Microorganisms, 2020, 8, 290.	1.6	30
1034	Mutualistic Outcomes Across Plant Populations, Microbes, and Environments in the Duckweed Lemna minor. Microbial Ecology, 2020, 80, 384-397.	1.4	31
1035	Life-long dynamics of the swine gut microbiome and their implications in probiotics development and food safety. Gut Microbes, 2020, 11, 1824-1832.	4.3	38
1036	Unveiling the Microbiota Diversity of the Xerophyte Argania spinosa L. Skeels Root System and Residuesphere. Microbial Ecology, 2020, 80, 822-836.	1.4	8
1037	The Effect of Plant Geographical Location and Developmental Stage on Root-Associated Microbiomes of Gymnadenia conopsea. Frontiers in Microbiology, 2020, 11, 1257.	1.5	30
1038	Plant Root-Exudates Recruit Hyperparasitic Bacteria of Phytonematodes by Altered Cuticle Aging: Implications for Biological Control Strategies. Frontiers in Plant Science, 2020, 11, 763.	1.7	20
1039	From toilet to agriculture: Fertilization with microalgal biomass from wastewater impacts the soil and rhizosphere active microbiomes, greenhouse gas emissions and plant growth. Resources, Conservation and Recycling, 2020, 161, 104924.	5.3	42
1040	Quantitative comparison between the rhizosphere effect of <i>Arabidopsis thaliana</i> and co-occurring plant species with a longer life history. ISME Journal, 2020, 14, 2433-2448.	4.4	27
1041	Prairie plants harbor distinct and beneficial root-endophytic bacterial communities. PLoS ONE, 2020, 15, e0234537.	1.1	0
1042	Control of mRNA translation by dynamic ribosome modification. PLoS Genetics, 2020, 16, e1008837.	1.5	13
1043	Seasonal Microbial Community Characteristic and Its Driving Factors in a Copper Tailings Dam in the Chinese Loess Plateau. Frontiers in Microbiology, 2020, 11, 1574.	1.5	18
1044	Changes of endophytic bacterial community and pathogens in pepper (Capsicum annuum L.) as affected by reclaimed water irrigation. Applied Soil Ecology, 2020, 156, 103627.	2.1	20
1045	Plant microbiome–an account of the factors that shape community composition and diversity. Current Plant Biology, 2020, 23, 100161.	2.3	213
1046	Duckweed hosts a taxonomically similar bacterial assemblage as the terrestrial leaf microbiome. PLoS ONE, 2020, 15, e0228560.	1.1	51
1047	Core microbiomes: Characterization and identification. , 2020, , 43-84.		0
1048	Molecular mechanism of plant-microbe interactions. , 2020, , 85-136.		1
1049	Early Stage Root-Associated Fungi Show a High Temporal Turnover, but Are Independent of Beech Progeny. Microorganisms, 2020, 8, 210.	1.6	5
1050	Rhizosphere Microbiome of Arid Land Medicinal Plants and Extra Cellular Enzymes Contribute to Their Abundance. Microorganisms, 2020, 8, 213.	1.6	37

#	Article	IF	CITATIONS
1051	Community Structure, Diversity and Potential of Endophytic Bacteria in the Primitive New Zealand Medicinal Plant Pseudowintera colorata. Plants, 2020, 9, 156.	1.6	19
1052	An endophytic strain of the genus Bacillus isolated from the seeds of maize (Zea mays L.) has antagonistic activity against maize pathogenic strains. Microbial Pathogenesis, 2020, 142, 104074.	1.3	34
1053	Size Variability in Seed Lot Impact Seed Nutritional Balance, Seedling Vigor, Microbial Composition and Plant Performance of Common Corn Hybrids. Agronomy, 2020, 10, 157.	1.3	12
1054	Specialized bacteriome uncovered in the coralloid roots of the epiphytic gymnosperm, <i>Zamia pseudoparasitica</i> . Environmental DNA, 2020, 2, 418-428.	3.1	22
1055	Core endophyte communities of different citrus varieties from citrus growing regions in China. Scientific Reports, 2020, 10, 3648.	1.6	32
1056	Network analysis infers the wilt pathogen invasion associated with non-detrimental bacteria. Npj Biofilms and Microbiomes, 2020, 6, 8.	2.9	68
1057	A core microbiota of the plant-earthworm interaction conserved across soils. Soil Biology and Biochemistry, 2020, 144, 107754.	4.2	34
1058	The effect of plant compartments on the Broussonetia papyrifera-associated fungal and bacterial communities. Applied Microbiology and Biotechnology, 2020, 104, 3627-3641.	1.7	16
1059	Myxobacterial Response to Methyljasmonate Exposure Indicates Contribution to Plant Recruitment of Micropredators. Frontiers in Microbiology, 2020, 11, 34.	1.5	10
1060	Characteristics of bacterial community in root-associated soils of the mining ecotype of Polygonum hydropiper, a P-accumulating herb. Applied Soil Ecology, 2020, 150, 103477.	2.1	8
1061	The influence of hostâ€plant connectivity on fungal assemblages in the root microbiota of Brachypodium pinnatum. Ecology, 2020, 101, e02976.	1.5	10
1062	Woody Plant Declines. What's Wrong with the Microbiome?. Trends in Plant Science, 2020, 25, 381-394.	4.3	48
1063	Microbiome Dynamics Associated With the Atacama Flowering Desert. Frontiers in Microbiology, 2019, 10, 3160.	1.5	29
1064	Clonality as a key but overlooked driver of biotic interactions in plants. Perspectives in Plant Ecology, Evolution and Systematics, 2020, 43, 125510.	1.1	31
1065	The variability of bacterial communities in both the endosphere and ectosphere of different niches in Chinese chives (Allium tuberosum). PLoS ONE, 2020, 15, e0227671.	1.1	7
1066	Bacterial endophyte mediated plant tolerance to salinity: growth responses and mechanisms of action. World Journal of Microbiology and Biotechnology, 2020, 36, 26.	1.7	57
1067	Revealing the Variation and Stability of Bacterial Communities in Tomato Rhizosphere Microbiota. Microorganisms, 2020, 8, 170.	1.6	57
1068	Modulation of the Root Microbiome by Plant Molecules: The Basis for Targeted Disease Suppression and Plant Growth Promotion. Frontiers in Plant Science, 2019, 10, 1741.	1.7	354

#	Article	IF	CITATIONS
1069	Shifts in plant–microbe interactions over community succession and their effects on plant resistance to herbivores. New Phytologist, 2020, 226, 1144-1157.	3.5	35
1070	Insight into the assembly of root-associated microbiome in the medicinal plant Polygonum cuspidatum. Industrial Crops and Products, 2020, 145, 112163.	2.5	38
1071	Rhizosphere microbiome mediates systemic root metabolite exudation by root-to-root signaling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3874-3883.	3.3	326
1072	Core and Differentially Abundant Bacterial Taxa in the Rhizosphere of Field Grown Brassica napus Genotypes: Implications for Canola Breeding. Frontiers in Microbiology, 2019, 10, 3007.	1.5	39
1073	Probiotic Consortia: Reshaping the Rhizospheric Microbiome and Its Role in Suppressing Root-Rot Disease of Panax notoginseng. Frontiers in Microbiology, 2020, 11, 701.	1.5	43
1074	Distinct microbial communities among different tissues of citrus tree Citrus reticulata cv. Chachiensis. Scientific Reports, 2020, 10, 6068.	1.6	15
1075	Plant growth enhancement is not a conserved feature in the Caulobacter genus. Plant and Soil, 2020, 449, 81-95.	1.8	17
1076	Co-inoculation effect of plant-growth-promoting rhizobacteria and rhizobium on EDDS assisted phytoremediation of Cu contaminated soils. Chemosphere, 2020, 254, 126724.	4.2	76
1077	The plant-growth promoting bacteria promote cadmium uptake by inducing a hormonal crosstalk and lateral root formation in a hyperaccumulator plant Sedum alfredii. Journal of Hazardous Materials, 2020, 395, 122661.	6.5	67
1078	Responses of soil bacterial community and Cd phytoextraction to a Sedum alfredii-oilseed rape (Brassica napus L. and Brassica juncea L.) intercropping system. Science of the Total Environment, 2020, 723, 138152.	3.9	61
1079	Root filtering, rather than host identity or age, determines the composition of root-associated fungi and oomycetes in three naturally co-occurring Brassicaceae. Soil Biology and Biochemistry, 2020, 146, 107806.	4.2	28
1080	Rhizosphere Microbiome Assembly and Its Impact on Plant Growth. Journal of Agricultural and Food Chemistry, 2020, 68, 5024-5038.	2.4	238
1081	Influence of plant genotype and soil on the wheat rhizosphere microbiome: evidences for a core microbiome across eight African and European soils. FEMS Microbiology Ecology, 2020, 96, .	1.3	123
1082	Applying the core microbiome to understand host–microbe systems. Journal of Animal Ecology, 2020, 89, 1549-1558.	1.3	200
1083	Microbiomes Reduce Their Hostâ \in ™s Sensitivity to Interspecific Interactions. MBio, 2020, 11, .	1.8	17
1084	Toward Comprehensive Plant Microbiome Research. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	35
1085	Composition, Predicted Functions and Co-occurrence Networks of Rhizobacterial Communities Impacting Flowering Desert Events in the Atacama Desert, Chile. Frontiers in Microbiology, 2020, 11, 571.	1.5	22
1086	Molecular Analysis of the Rhizosphere Microbial Communities from Gramineous Plants Grown on Contrasting Soils. Microbiology, 2020, 89, 231-241.	0.5	15

		CITATION REP	ORT	
#	Article		IF	CITATIONS
1087	Overexpression of Strigolactone-Associated Genes Exerts Fine-Tuning Selection on Soyl Rhizosphere Bacterial and Fungal Microbiome. Phytobiomes Journal, 2020, 4, 239-251.	bean	1.4	30
1088	Complete Genome Sequence of Pandoraea pnomenusa TF-18, a Multidrug-Resistant Or from the Rhizosphere of Rice (Oryza sativa L. subsp. japonica). Microbiology Resource Announcements, 2020, 9, .	ganism Isolated	0.3	1
1089	Endophytic microbial assemblage in grapevine. FEMS Microbiology Ecology, 2020, 96, .		1.3	60
1090	Improved establishment of Miscanthus × giganteus stem propagation by Herbaspirillu Industrial Crops and Products, 2020, 150, 112339.	m inoculation.	2.5	9
1091	Elucidation of the rhizosphere microbiome linked to Spartina alterniflora phenotype in a on Skidaway Island, Georgia, USA. FEMS Microbiology Ecology, 2020, 96, .	salt marsh	1.3	21
1092	High heterogeneity of bacterioplankton community shaped by spatially structured envir factors in West Lake, a typical urban lake in eastern China. Environmental Science and F Research, 2020, 27, 42283-42293.	onmental Pollution	2.7	7
1093	Overview and challenges in the implementation of plant beneficial microbes. , 2020, , 1	-18.		3
1094	Volatile organic compounds mediated plant-microbe interactions in soil. , 2020, , 209-2	19.		6
1095	Control of productivity of agrocenosis. BIO Web of Conferences, 2020, 17, 00138.		0.1	2
1096	Insights into the community structure and lifestyle of the fungal root endophytes of to combining amplicon sequencing and isolation approaches with phytohormone profiling Microbiology Ecology, 2020, 96, .	nato by . FEMS	1.3	31
1097	Tapping into the maize root microbiome to identify bacteria that promote growth unde conditions. Microbiome, 2020, 8, 54.	r chilling	4.9	63
1098	Assessment of endophytic bacterial diversity in rose by high-throughput sequencing and ONE, 2020, 15, e0230924.	alysis. PLoS	1.1	12
1099	Litterbox—A gnotobiotic Zeolite-Clay System to Investigate Arabidopsis–Microbe In Microorganisms, 2020, 8, 464.	teractions.	1.6	12
1100	Rhizosphere microbial diversity and community dynamics during potato cultivation. Eur of Soil Biology, 2020, 98, 103176.	opean Journal	1.4	60
1101	Rhizoremediation as a green technology for the remediation of petroleum hydrocarbon soils. Journal of Hazardous Materials, 2021, 401, 123282.	contaminated	6.5	94
1102	Root microbiome assembly of Asâ€hyperaccumulator <scp><i>Pteris vittata</i></scp> arsenic requisition. Environmental Microbiology, 2021, 23, 1959-1971.	and its efficacy in	1.8	25
1103	Assembly and variation of root-associated microbiota of rice during their vegetative gro with and without lindane pollutant. Soil Ecology Letters, 2021, 3, 207-219.	wth phase	2.4	19
1104	Colonization and performance of a pyrene-degrading bacterium Mycolicibacterium sp. F surfaces of white clover. Chemosphere, 2021, 263, 127918.	yr9 on root	4.2	25

#	Article	IF	Citations
1105	Synthetic community with six <i>Pseudomonas</i> strains screened from garlic rhizosphere microbiome promotes plant growth. Microbial Biotechnology, 2021, 14, 488-502.	2.0	66
1106	Community succession of the grapevine fungal microbiome in the annual growth cycle. Environmental Microbiology, 2021, 23, 1842-1857.	1.8	69
1107	CO2 is a key constituent of the plant growth-promoting volatiles generated by bacteria in a sealed system. Plant Cell Reports, 2021, 40, 59-68.	2.8	8
1108	Pinpointing secondary metabolites that shape the composition and function of the plant microbiome. Journal of Experimental Botany, 2021, 72, 57-69.	2.4	124
1109	Synthetic biological circuit tested in spaceflight. Life Sciences in Space Research, 2021, 28, 57-65.	1.2	2
1110	Host specificity of microbiome assembly and its fitness effects in phytoplankton. ISME Journal, 2021, 15, 774-788.	4.4	48
1111	The Switchgrass Microbiome: A Review of Structure, Function, and Taxonomic Distribution. Phytobiomes Journal, 2021, 5, 14-28.	1.4	29
1112	Spatial variation of the soil bacterial community in major apple producing regions of China. Journal of Applied Microbiology, 2021, 130, 1294-1306.	1.4	7
1113	Rhizobacterial communities, enzyme activity, and soil properties affect rice seedling's nitrogen use. Agronomy Journal, 2021, 113, 633-644.	0.9	3
1114	The synergy effect of arbuscular mycorrhizal fungi symbiosis and exogenous calcium on bacterial community composition and growth performance of peanut (Arachis hypogaea L.) in saline alkali soil. Journal of Microbiology, 2021, 59, 51-63.	1.3	17
1115	Metabolomics in plant-microbe interactions in the roots. Advances in Botanical Research, 2021, 98, 133-161.	0.5	11
1116	Maize microbiome: current insights for the sustainable agriculture. , 2021, , 267-297.		10
1117	Environment dependent microbial coâ€occurrences across a cyanobacterial bloom in a freshwater lake. Environmental Microbiology, 2021, 23, 327-339.	1.8	6
1118	Composition and functional comparison of vetiver root endophytic microbiota originating from different geographic locations that show antagonistic activity towards Fusarium graminearum. Microbiological Research, 2021, 243, 126650.	2.5	11
1119	Hormones as goâ€betweens in plant microbiome assembly. Plant Journal, 2021, 105, 518-541.	2.8	115
1120	Succession of the fungal endophytic microbiome of wheat is dependent on tissue-specific interactions between host genotype and environment. Science of the Total Environment, 2021, 759, 143804.	3.9	64
1121	<i>Vanilla</i> aerial and terrestrial roots host rich communities of orchid mycorrhizal and ectomycorrhizal fungi. Plants People Planet, 2021, 3, 541-552.	1.6	8
1122	Modern biotechnological tools: an opportunity to discover complex phytobiomes of horticulture crops. , 2021, , 85-124.		3

#	Article	IF	CITATIONS
1123	Molecular Barcoding Reveals the Genus <i>Streptomyces</i> as Associated Root Endophytes of Apple (<i>Malus domestica</i>) Plants Grown in Soils Affected by Apple Replant Disease. Phytobiomes Journal, 2021, 5, 177-189.	1.4	15
1124	Effects of foliar selenium application on growth and rhizospheric soil micro-ecological environment of Atractylodes macrocephala Koidz. South African Journal of Botany, 2021, 137, 98-109.	1.2	11
1125	Host selection shapes crop microbiome assembly and network complexity. New Phytologist, 2021, 229, 1091-1104.	3.5	349
1126	Rhizosphere plant-microbe interactions under water stress. Advances in Applied Microbiology, 2021, 115, 65-113.	1.3	27
1128	Host Trait Prediction from High-Resolution Microbial Features. Methods in Molecular Biology, 2021, 2242, 185-202.	0.4	0
1129	Microbial Endophytes: Sustainable Approach for Managing Phosphorus Deficiency in Agricultural Soils. Sustainable Development and Biodiversity, 2021, , 35-75.	1.4	3
1131	Tropical Endophytic Bacillus Species Enhance Plant Growth and Nutrient Uptake in Cereals. Sustainable Development and Biodiversity, 2021, , 157-180.	1.4	2
1132	Development of Biofertilizers and Microbial Consortium an Approach to Sustainable Agriculture Practices. Rhizosphere Biology, 2021, , 315-348.	0.4	1
1133	Methods for studying the forest tree microbiome. , 2021, , 35-58.		1
1134	Interactions between soil compositions and the wheat root microbiome under drought stress: From an in silico to in planta perspective. Computational and Structural Biotechnology Journal, 2021, 19, 4235-4247.	1.9	7
1135	Identification of microbial signatures linked to oilseed rape yield decline at the landscape scale. Microbiome, 2021, 9, 19.	4.9	31
1136	Plant endophytic microorganisms enhancing crop productivity and yield. , 2021, , 45-53.		2
1137	Root rot alters the root-associated microbiome of field pea in commercial crop production systems. Plant and Soil, 2021, 460, 593-607.	1.8	10
1138	Natural Bacterial Assemblages in Arabidopsis thaliana Tissues Become More Distinguishable and Diverse during Host Development. MBio, 2021, 12, .	1.8	18
1139	Microbial management of crop abiotic stresses: Current trends and prospects. , 2021, , 251-260.		1
1140	Translational research on the endophytic microbiome of forest trees. , 2021, , 385-394.		0
1141	Variations in the diversity of the soil microbial community and structure under various categories of degraded wetland in Sanjiang Plain, northeastern China. Land Degradation and Development, 2021, 32, 2143-2156.	1.8	30
1142	Coupling the endophytic microbiome with the host transcriptome in olive roots. Computational and Structural Biotechnology Journal, 2021, 19, 4777-4789.	1.9	8

ARTICLE IF CITATIONS # Genomics and functional traits required for the successful use of biofertilizers., 2021, , 45-56. 1143 0 Composition of Microbiomes. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, 1144 0.2 , 15-55. Relevance of Metatranscriptomics in Symbiotic Associations Between Plants and Rhizosphere 1146 2 Microorganisms., 2021, , 59-90. Framework for Studying Rhizospheric Microflora Under the Effect of Improved Crop Variety. Rhizosphere Biology, 2021, , 251-261. Manoeuvring Soil Microbiome and Their Interactions: A Resilient Technology for Conserving Soil and 1148 1 Plant Health., 2021, , 405-433. Recovery and Community Succession of the <i>Zostera marina </i> Rhizobiome after Transplantation. Applied and Environmental Microbiology, 2021, 87, . 1.4 Structural variability and differentiation of niches in the rhizosphere and endosphere bacterial 1150 1.6 18 microbiome of moso bamboo (Phyllostachys edulis). Scientific Reports, 2021, 11, 1574. Shifts in the seagrass leaf microbiome associated with wasting disease in. Marine and Freshwater Research, 2021, 72, 1303-1320.

CITATION REPORT

#	Δρτιςι ε	IF	CITATIONS
1167	Diazotroph Paenibacillus triticisoli BJ-18 Drives the Variation in Bacterial, Diazotrophic and Fungal Communities in the Rhizosphere and Root/Shoot Endosphere of Maize. International Journal of Molecular Sciences, 2021, 22, 1460.	1.8	19
1168	Assembly Patterns of the Rhizosphere Microbiome Along the Longitudinal Root Axis of Maize (Zea mays) Tj ETQq	1 <u>1.</u> 0.784	31 <u>4</u> rgBT /O\
1169	Comparative Fungal Community Analyses Using Metatranscriptomics and Internal Transcribed Spacer Amplicon Sequencing from Norway Spruce. MSystems, 2021, 6, .	1.7	16
1170	Exploration of Intrinsic Microbial Community Modulators in the Rice Endosphere Indicates a Key Role of Distinct Bacterial Taxa Across Different Cultivars. Frontiers in Microbiology, 2021, 12, 629852.	1.5	11
1172	Complex microbial communities inhabiting natural Cordyceps militaris and the habitat soil and their predicted functions. Antonie Van Leeuwenhoek, 2021, 114, 465-477.	0.7	10
1173	The rhizosphere microbiome plays a role in the resistance to soil-borne pathogens and nutrient uptake of strawberry cultivars under field conditions. Scientific Reports, 2021, 11, 3188.	1.6	106
1174	Phyllosphere microbiota: Community dynamics and its interaction with plant hosts. Journal of Integrative Plant Biology, 2021, 63, 297-304.	4.1	61
1175	Deciphering bacterial mechanisms of root colonization. Environmental Microbiology Reports, 2021, 13, 428-444.	1.0	75
1176	Plant evolution driven by interactions with symbiotic and pathogenic microbes. Science, 2021, 371, .	6.0	162
1178	Antibiotics and Antibiotic Resistance Genes in Animal Manure – Consequences of Its Application in Agriculture. Frontiers in Microbiology, 2021, 12, 610656.	1.5	125
1179	Holo-omics for deciphering plant-microbiome interactions. Microbiome, 2021, 9, 69.	4.9	53
1180	Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi. ISME Journal, 2021, 15, 2276-2288.	4.4	91
1181	Similarities and Differences among Soil Fungal Assemblages in Managed Forests and Formerly Managed Forest Reserves. Forests, 2021, 12, 353.	0.9	16
1182	Plants Specifically Modulate the Microbiome of Root-Lesion Nematodes in the Rhizosphere, Affecting Their Fitness. Microorganisms, 2021, 9, 679.	1.6	7
1183	Proteomic analysis reveals how pairing of a Mycorrhizal fungus with plant <scp>growthâ€promoting</scp> bacteria modulates growth and defense in wheat. Plant, Cell and Environment, 2021, 44, 1946-1960.	2.8	26
1184	Metagenomic analysis for profiling of microbial communities and tolerance in metal-polluted pulp and paper industry wastewater. Bioresource Technology, 2021, 324, 124681.	4.8	66
1185	<i>Trifolium repens</i> and <i>T. subterraneum</i> modify their nodule microbiome in response to soil pH. Journal of Applied Microbiology, 2021, 131, 1858-1869.	1.4	5
1187	Longâ€ŧerm fertilisation regimes influence the diversity and community of wheat leaf bacterial endophytes. Annals of Applied Biology, 2021, 179, 176-184.	1.3	6

<u> </u>		<u> </u>	
(15	ГАТІ	NEDC	DT
	IAL	NLPC	ואר

#	Article	IF	CITATIONS
1188	Light exposure mediates circadian rhythms of rhizosphere microbial communities. ISME Journal, 2021, 15, 2655-2664.	4.4	41
1189	Seedâ€borne, endospheric and rhizospheric core microbiota as predictors of plant functional traits across rice cultivars are dominated by deterministic processes. New Phytologist, 2021, 230, 2047-2060.	3.5	70
1190	Chitin in Strawberry Cultivation: Foliar Growth and Defense Response Promotion, but Reduced Fruit Yield and Disease Resistance by Nutrient Imbalances. Molecular Plant-Microbe Interactions, 2021, 34, 227-239.	1.4	19
1192	Variable influences of soil and seed-associated bacterial communities on the assembly of seedling microbiomes. ISME Journal, 2021, 15, 2748-2762.	4.4	63
1193	Temporal and Spatial Dynamics of Dark Septate Endophytes in the Roots of Lycium ruthenicum in the Desert Region of Northwest China. Agronomy, 2021, 11, 648.	1.3	9
1194	A Degeneration Gradient of Poplar Trees Contributes to the Taxonomic, Functional, and Resistome Diversity of Bacterial Communities in Rhizosphere Soils. International Journal of Molecular Sciences, 2021, 22, 3438.	1.8	10
1195	Rice Plant–Soil Microbiome Interactions Driven by Root and Shoot Biomass. Diversity, 2021, 13, 125.	0.7	4
1196	Potato plant spheres and to a lesser extent the soil type influence the proportion and diversity of bacterial isolates with <i>in vitro</i> antagonistic activity towards <i>Ralstonia solanacearum</i> . FEMS Microbiology Ecology, 2021, 97, .	1.3	7
1197	Metagenomic profiling of rhizosphere microbial community structure and diversity associated with maize plant as affected by cropping systems. International Microbiology, 2021, 24, 325-335.	1.1	22
1198	Persistent microbiome members in the common bean rhizosphere: an integrated analysis of space, time, and plant genotype. ISME Journal, 2021, 15, 2708-2722.	4.4	76
1201	Composition and diversity of bacterial communities in the rhizosphere of the Chinese medicinal herb Dendrobium. BMC Plant Biology, 2021, 21, 127.	1.6	36
1202	Genomic characterization and computational phenotyping of nitrogen-fixing bacteria isolated from Colombian sugarcane fields. Scientific Reports, 2021, 11, 9187.	1.6	10
1204	Bacterial endophytes: Molecular interactions with their hosts. Journal of Basic Microbiology, 2021, 61, 475-505.	1.8	33
1205	Engineering the Plant Microenvironment To Facilitate Plant-Growth-Promoting Microbe Association. Journal of Agricultural and Food Chemistry, 2021, 69, 13270-13285.	2.4	29
1206	Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. Nature Plants, 2021, 7, 481-499.	4.7	247
1207	Rhizosphere community selection reveals bacteria associated with reduced root disease. Microbiome, 2021, 9, 86.	4.9	118
1209	Soil Microsite Outweighs Cultivar Genotype Contribution to Brassica Rhizobacterial Community Structure. Frontiers in Microbiology, 2021, 12, 645784.	1.5	1
1210	Microbeâ€mediated adaptation in plants. Ecology Letters, 2021, 24, 1302-1317.	3.0	33

#	Article	IF	CITATIONS
1211	The hierarchy of root branching order determines bacterial composition, microbial carrying capacity and microbial filtering. Communications Biology, 2021, 4, 483.	2.0	30
1212	Harnessing the plant microbiome to promote the growth of agricultural crops. Microbiological Research, 2021, 245, 126690.	2.5	84
1213	Brassica napus phyllosphere bacterial composition changes with growth stage. Plant and Soil, 2021, 464, 501-516.	1.8	13
1214	Microbiome-Assisted Breeding to Understand Cultivar-Dependent Assembly in Cucurbita pepo. Frontiers in Plant Science, 2021, 12, 642027.	1.7	24
1215	Salt-induced recruitment of specific root-associated bacterial consortium capable of enhancing plant adaptability to salt stress. ISME Journal, 2021, 15, 2865-2882.	4.4	104
1216	Pathogen infection influences a distinct microbial community composition in sorghum RILs. Plant and Soil, 2021, 463, 555-572.	1.8	18
1218	Genes related to redox and cell curvature facilitate interactions between Caulobacter strains and Arabidopsis. PLoS ONE, 2021, 16, e0249227.	1.1	5
1219	Pearl millet genotype impacts microbial diversity and enzymatic activities in relation to root-adhering soil aggregation. Plant and Soil, 2021, 464, 109.	1.8	22
1220	Diversity and spatial distribution of endophytic fungi in Cinnamomum longepaniculatum of Yibin, China. Archives of Microbiology, 2021, 203, 3361-3372.	1.0	10
1221	Pectin Induced Colony Expansion of Soil-Derived Flavobacterium Strains. Frontiers in Microbiology, 2021, 12, 651891.	1.5	14
1222	A βâ€lactamase gene of <i>Fusarium oxysporum</i> alters the rhizosphere microbiota of soybean. Plant Journal, 2021, 106, 1588-1604.	2.8	4
1224	Roots of Crops from the Window of an Forage Expert. Turkish Journal of Range and Forage Science:, 0,	0.0	0
1225	Rhizosphere shotgun metagenomic analyses fail to show differences between ancestral and modern wheat genotypes grown under low fertilizer inputs. FEMS Microbiology Ecology, 2021, 97, .	1.3	3
1226	The Composition of Root-Associated Bacteria and Fungi of Astragalus mongholicus and Their Relationship With the Bioactive Ingredients. Frontiers in Microbiology, 2021, 12, 642730.	1.5	11
1227	Effect of stand age on soil microbial communities of a plantation Ormosia hosiei forest in southern China. Ecological Informatics, 2021, 62, 101282.	2.3	11
1228	Rhizosphere bacteria degrade auxin to promote root growth. Soil Ecology Letters, 2022, 4, 93-96.	2.4	2
1229	Plant Genetics as a Tool for Manipulating Crop Microbiomes: Opportunities and Challenges. Frontiers in Bioengineering and Biotechnology, 2021, 9, 567548.	2.0	16
1230	Tobacco Root Endophytic <i>Arthrobacter</i> Harbors Genomic Features Enabling the Catabolism of Host-Specific Plant Specialized Metabolites. MBio, 2021, 12, e0084621.	1.8	14

#	Article	IF	CITATIONS
1231	Dynamics of Bacterial Community Structure in the Rhizosphere and Root Nodule of Soybean: Impacts of Growth Stages and Varieties. International Journal of Molecular Sciences, 2021, 22, 5577.	1.8	14
1232	Insights into the taxonomic and functional characterization of agricultural crop core rhizobiomes and their potential microbial drivers. Scientific Reports, 2021, 11, 10068.	1.6	15
1233	Niche specificity and functional diversity of the bacterial communities associated with Ginkgo biloba and Panax quinquefolius. Scientific Reports, 2021, 11, 10803.	1.6	6
1234	Compost applications increase bacterial community diversity in the apple rhizosphere. Soil Science Society of America Journal, 2021, 85, 1105-1121.	1.2	9
1236	Soil microorganisms decrease barley biomass uniformly across contrasting nitrogen availability. European Journal of Soil Biology, 2021, 104, 103311.	1.4	4
1238	Coordination of microbe–host homeostasis by crosstalk with plant innate immunity. Nature Plants, 2021, 7, 814-825.	4.7	95
1239	Physiochemical, microbiological and flavor characteristics of traditional Chinese fermented food Kaili Red Sour Soup. LWT - Food Science and Technology, 2021, 142, 110933.	2.5	28
1240	Genome wide association study reveals plant loci controlling heritability of the rhizosphere microbiome. ISME Journal, 2021, 15, 3181-3194.	4.4	97
1241	Wheat Rhizosphere Metagenome Reveals Newfound Potential Soil Zn-Mobilizing Bacteria Contributing to Cultivars' Variation in Grain Zn Concentration. Frontiers in Microbiology, 2021, 12, 689855.	1.5	4
1242	Endophytic bacteria isolated from both healthy and diseased Agave sisalana plants are able to control the bole rot disease. Biological Control, 2021, 157, 104575.	1.4	9
1243	The potential of nanomaterials associated with plant growth-promoting bacteria in agriculture. 3 Biotech, 2021, 11, 318.	1.1	18
1244	Bacterial communities associated with sugarcane under different agricultural management exhibit a diversity of plant growth-promoting traits and evidence of synergistic effect. Microbiological Research, 2021, 247, 126729.	2.5	14
1245	Plant microbiome structure and benefits for sustainable agriculture. Current Plant Biology, 2021, 26, 100198.	2.3	83
1246	Successive plant growth amplifies genotype-specific assembly of the tomato rhizosphere microbiome. Science of the Total Environment, 2021, 772, 144825.	3.9	38
1247	Screening of Tomato Seed Bacterial Endophytes for Antifungal Activity Reveals Lipopeptide Producing Bacillus siamensis Strain NKIT9 as a Potential Bio-Control Agent. Frontiers in Microbiology, 2021, 12, 609482.	1.5	19
1248	Investigating the Role of Root Exudates in Recruiting Streptomyces Bacteria to the Arabidopsis thaliana Microbiome. Frontiers in Molecular Biosciences, 2021, 8, 686110.	1.6	18
1249	Metagenomics of mine tailing rhizospheric communities and its selection for plant establishment towards bioremediation. Microbiological Research, 2021, 247, 126732.	2.5	15
1250	Transmission of Seed and Soil Microbiota to Seedling. MSystems, 2021, 6, e0044621.	1.7	38

# 1251	ARTICLE Antibiotic Resistance Gene-Carrying Plasmid Spreads into the Plant Endophytic Bacteria using Soil Bacteria as Carriers. Environmental Science & Technology, 2021, 55, 10462-10470.	lF 4.6	Citations 63
1252	Life on the Rocks: First Insights Into the Microbiota of the Threatened Aquatic Rheophyte Hanseniella heterophylla. Frontiers in Plant Science, 2021, 12, 634960.	1.7	3
1253	Root-associated (rhizosphere and endosphere) microbiomes of the Miscanthus sinensis and their response to the heavy metal contamination. Journal of Environmental Sciences, 2021, 104, 387-398.	3.2	53
1254	Soil, senescence and exudate utilisation: characterisation of theÂParagon var. spring bread wheat root microbiome. Environmental Microbiomes, 2021, 16, 12.	2.2	19
1255	The Macleaya cordata Symbiont: Revealing the Effects of Plant Niches and Alkaloids on the Bacterial Community. Frontiers in Microbiology, 2021, 12, 681210.	1.5	12
1257	From Microbial Dynamics to Functionality in the Rhizosphere: A Systematic Review of the Opportunities With Synthetic Microbial Communities. Frontiers in Plant Science, 2021, 12, 650609.	1.7	30
1258	Plant–Microbiome Crosstalk: Dawning from Composition and Assembly of Microbial Community to Improvement of Disease Resilience in Plants. International Journal of Molecular Sciences, 2021, 22, 6852.	1.8	44
1259	Transmission Routes of the Microbiome and Resistome from Manure to Soil and Lettuce. Environmental Science & Technology, 2021, 55, 11102-11112.	4.6	44
1260	Rhizosphere P-Enzyme Activity, Mineral Nutrient Concentrations, and Microbial Community Structure Are Altered by Intra-Hole Cropping of Cowpea With Cereals. Frontiers in Agronomy, 2021, 3, .	1.5	1
1261	Host preference and invasiveness of commensal bacteria in the Lotus and Arabidopsis root microbiota. Nature Microbiology, 2021, 6, 1150-1162.	5.9	89
1262	Time outweighs the effect of host developmental stage on microbial community composition. FEMS Microbiology Ecology, 2021, 97, .	1.3	13
1263	Culture-Based and Culture-Independent Assessments of Endophytic Fungal Diversity in Aquatic Plants in Southwest China. Frontiers in Fungal Biology, 2021, 2, .	0.9	11
1264	Possible role of arbuscular mycorrhizal fungi and associated bacteria in the recruitment of endophytic bacterial communities by plant roots. Mycorrhiza, 2021, 31, 527-544.	1.3	18
1265	Effects of long-term exposure to oxytetracycline on phytoremediation of swine wastewater via duckweed systems. Journal of Hazardous Materials, 2021, 414, 125508.	6.5	32
1266	Designing specific bacterial 16S primers to sequence and quantitate plant endo-bacteriome. Science China Life Sciences, 2022, 65, 1000-1013.	2.3	11
1267	Fungal Endophytic Community and Diversity Associated with Desert Shrubs Driven by Plant Identity and Organ Differentiation in Extremely Arid Desert Ecosystem. Journal of Fungi (Basel, Switzerland), 2021, 7, 578.	1.5	26
1268	Assessing Genotypic and Environmental Effects on Endophyte Communities of Fraxinus (Ash) Using Culture Dependent and Independent DNA Sequencing. Journal of Fungi (Basel, Switzerland), 2021, 7, 565.	1.5	7
1269	A call to arms for cell–cell interactions between bacteria in the plant microbiome. Trends in Plant Science, 2021, 26, 1126-1132.	4.3	13

#	Article	IF	CITATIONS
1270	Microbiome Fingerprint as Biomarker for Geographical Origin and Heredity in Crocus sativus: A Feasibility Study. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	17
1271	Features of Bacterial Microbiota in the Wild Habitat of Pulsatilla tongkangensis, the Endangered "Long-Sepal Donggang Pasque-Flower Plant,―Endemic to Karst Topography of Korea. Frontiers in Microbiology, 2021, 12, 656105.	1.5	7
1272	Legume–rhizobium dance: an agricultural tool that could be improved?. Microbial Biotechnology, 2021, 14, 1897-1917.	2.0	23
1273	The rice histone methylation regulates hub species of the root microbiota. Journal of Genetics and Genomics, 2021, 48, 836-843.	1.7	9
1274	Exploring Microbial Resource of Different Rhizocompartments of Dominant Plants Along the Salinity Gradient Around the Hypersaline Lake Ejinur. Frontiers in Microbiology, 2021, 12, 698479.	1.5	14
1275	OMICs, Epigenetics, and Genome Editing Techniques for Food and Nutritional Security. Plants, 2021, 10, 1423.	1.6	15
1276	Variations of root-associated bacterial cooccurrence relationships in paddy soils under chlorantraniliprole (CAP) stress. Science of the Total Environment, 2021, 779, 146247.	3.9	6
1277	Microbe-dependent heterosis in maize. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	42
1278	Overview of Approaches to Improve Rhizoremediation of Petroleum Hydrocarbon-Contaminated Soils. Applied Microbiology, 2021, 1, 329-351.	0.7	25
1279	Spatial analysis of the root system coupled to microbial community inoculation shed light on rhizosphere bacterial community assembly. Biology and Fertility of Soils, 2021, 57, 973-989.	2.3	12
1280	Biochar-Enhanced Resistance to Botrytis cinerea in Strawberry Fruits (But Not Leaves) Is Associated With Changes in the Rhizosphere Microbiome. Frontiers in Plant Science, 2021, 12, 700479.	1.7	11
1281	Characterizing rhizosphere microbiota of peanut (Arachis hypogaea L.) from pre-sowing to post-harvest of crop under field conditions. Scientific Reports, 2021, 11, 17457.	1.6	10
1282	Changes in the root-associated bacteria of sorghum are driven by the combined effects of salt and sorghum development. Environmental Microbiomes, 2021, 16, 14.	2.2	20
1283	Phage-Resistant Bacteria Reveal a Role for Potassium in Root Colonization. MBio, 2021, 12, e0140321.	1.8	5
1285	Diversity and abundance of antibiotic resistance genes in rhizosphere soil and endophytes of leafy vegetables: Focusing on the effect of the vegetable species. Journal of Hazardous Materials, 2021, 415, 125595.	6.5	44
1286	A Characterization of a Cool-Climate Organic Vineyard's Microbiome. Phytobiomes Journal, 2022, 6, 69-82.	1.4	7
1288	Contrasting effects of soil microbial interactions on growth–defence relationships between early― and midâ€successional plant communities. New Phytologist, 2022, 233, 1345-1357.	3.5	22
1289	Deciphering the Endophytic and Rhizospheric Microbial Communities of a Metallophyte Commelina communis in Different Cu-Polluted Soils. Microorganisms, 2021, 9, 1689.	1.6	4

#	Article	IF	CITATIONS
1290	Plant developmental stage drives the differentiation in ecological role of the maize microbiome. Microbiome, 2021, 9, 171.	4.9	164
1291	Plant growth promoting rhizobacteria and their biological properties for soil enrichment and growth promotion. Journal of Plant Nutrition, 2022, 45, 273-299.	0.9	24
1292	Glyphosate-remediation potential of selected plant species in artificial wetlands. Science of the Total Environment, 2021, 781, 146812.	3.9	13
1293	Rhizosphere microbiome assembly involves seed-borne bacteria in compensatory phosphate solubilization. Soil Biology and Biochemistry, 2021, 159, 108273.	4.2	37
1294	A Call for Research: A Resource of Core Microbial Symbionts of the <i>Arabidopsis thaliana</i> Microbiome Ready and Awaiting Experimental Exploration. Phytobiomes Journal, 2021, 5, 362-366.	1.4	7
1295	Local Network Properties of Soil and Rhizosphere Microbial Communities in Potato Plantations Treated with a Biological Product Are Important Predictors of Crop Yield. MSphere, 2021, 6, e0013021.	1.3	4
1297	Fungi-Bacteria Associations in Wilt Diseased Rhizosphere and Endosphere by Interdomain Ecological Network Analysis. Frontiers in Microbiology, 2021, 12, 722626.	1.5	21
1298	Integrating perspectives in actinomycete research: an ActinoBase review of 2020–21. Microbiology (United Kingdom), 2021, 167, .	0.7	4
1299	Role of microbial diversity to influence the growth and environmental remediation capacity of bamboo: A review. Industrial Crops and Products, 2021, 167, 113567.	2.5	64
1300	Rhizosphere-Associated Microbiomes of Rice (Oryza sativa L.) Under the Effect of Increased Nitrogen Fertilization. Frontiers in Microbiology, 2021, 12, 730506.	1.5	16
1301	A fungal powdery mildew pathogen induces extensive local and marginal systemic changes in the <scp><i>Arabidopsis thaliana</i></scp> microbiota. Environmental Microbiology, 2021, 23, 6292-6308.	1.8	12
1302	Diversity of the Bacterial Microbiome Associated With the Endosphere and Rhizosphere of Different Cassava (Manihot esculenta Crantz) Genotypes. Frontiers in Microbiology, 2021, 12, 729022.	1.5	7
1303	Persistence of plant-mediated microbial soil legacy effects in soil and inside roots. Nature Communications, 2021, 12, 5686.	5.8	96
1304	Agricultural Management Affects the Active Rhizosphere Bacterial Community Composition and Nitrification. MSystems, 2021, 6, e0065121.	1.7	15
1305	The assembly of wheat-associated fungal community differs across growth stages. Applied Microbiology and Biotechnology, 2021, 105, 7427-7438.	1.7	8
1306	Bioprospecting Desert Plants for Endophytic and Biostimulant Microbes: A Strategy for Enhancing Agricultural Production in a Hotter, Drier Future. Biology, 2021, 10, 961.	1.3	15
1307	Decomposing cover crops modify root-associated microbiome composition and disease tolerance of cash crop seedlings. Soil Biology and Biochemistry, 2021, 160, 108343.	4.2	29
1308	Effects of Sugarcane and Soybean Intercropping on the Nitrogen-Fixing Bacterial Community in the Rhizosphere. Frontiers in Microbiology, 2021, 12, 713349.	1.5	8

#	Article	IF	CITATIONS
1309	Synergistic and Offset Effects of Fungal Species Combinations on Plant Performance. Frontiers in Microbiology, 2021, 12, 713180.	1.5	8
1310	Root bacteriome of a pioneer grass Miscanthus condensatus along restored vegetation on recent Miyake-jima volcanic deposits. Rhizosphere, 2021, 19, 100422.	1.4	2
1311	Microbial Diversity in the Phyllosphere and Rhizosphere of an Apple Orchard Managed under Prolonged "Natural Farming―Practices. Microorganisms, 2021, 9, 2056.	1.6	1
1312	Characterization of nirS- and nirK-containing communities and potential denitrification activity in paddy soil from eastern China. Agriculture, Ecosystems and Environment, 2021, 319, 107561.	2.5	33
1313	Soil microbial community and association network shift induced by several tall fescue cultivars during the phytoremediation of a petroleum hydrocarbon-contaminated soil. Science of the Total Environment, 2021, 792, 148411.	3.9	24
1314	Homogeneous selection shapes rare biosphere in rhizosphere of medicinal plant. Ecological Indicators, 2021, 129, 107981.	2.6	14
1315	Restriction of soil bacteria promoting high yield of super hybrid rice in the Huaihe Valley in central China by conventional ploughing intensity. Soil and Tillage Research, 2021, 214, 105169.	2.6	3
1316	Impact of microplastics on the foraging, photosynthesis and digestive systems of submerged carnivorous macrophytes under low and high nutrient concentrations. Environmental Pollution, 2022, 292, 118220.	3.7	31
1317	Preferences for core microbiome composition and function by different definition methods: Evidence for the core microbiome of Eucommia ulmoides bark. Science of the Total Environment, 2021, 790, 148091.	3.9	19
1318	Integrated analysis reveals an association between the rhizosphere microbiome and root rot of arecanut palm. Pedosphere, 2021, 31, 725-735.	2.1	7
1319	Colonization by dark septate endophytes improves the growth and rhizosphere soil microbiome of licorice plants under different water treatments. Applied Soil Ecology, 2021, 166, 103993.	2.1	16
1320	Manganese oxides in Phragmites rhizosphere accelerates ammonia oxidation in constructed wetlands. Water Research, 2021, 205, 117688.	5.3	32
1321	Impact of rice straw management strategies on rice rhizosphere microbiomes. Applied Soil Ecology, 2021, 167, 104036.	2.1	13
1322	Stable and efficient sulfamethoxazole and phosphorus removal by an electrolysis-integrated bio-rack constructed wetland system. Chemical Engineering Journal, 2021, 425, 130582.	6.6	13
1323	Threshold effects of soil pH on microbial co-occurrence structure in acidic and alkaline arable lands. Science of the Total Environment, 2021, 800, 149592.	3.9	23
1324	Bacterial community demonstrates stronger network connectivity than fungal community in desert-grassland salt marsh. Science of the Total Environment, 2021, 798, 149118.	3.9	24
1325	A field study reveals links between hyperaccumulating Sedum plants-associated bacterial communities and Cd/Zn uptake and translocation. Science of the Total Environment, 2022, 805, 150400.	3.9	22
1326	Squash root microbiome transplants and metagenomic inspection for in situ arid adaptations. Science of the Total Environment, 2022, 805, 150136.	3.9	12
#	Article	IF	CITATIONS
------	---	-----	-----------
1327	The plant microbiota: composition, functions, and engineering. Current Opinion in Biotechnology, 2022, 73, 135-142.	3.3	52
1328	Molecular investigation of plant-environment interaction at functional level. , 2022, , 63-78.		0
1329	Loss in soil microbial diversity constrains microbiome selection and alters the abundance of N-cycling guilds in barley rhizosphere. Applied Soil Ecology, 2022, 169, 104224.	2.1	16
1330	Induced secretion system mutation alters rhizosphere bacterial composition in Sorghum bicolor (L.) Moench. Planta, 2021, 253, 33.	1.6	5
1331	Inoculation of <i>Mimosa Pudica</i> with <i>Paraburkholderia phymatum</i> Results in Changes to the Rhizoplane Microbial Community Structure. Microbes and Environments, 2021, 36, n/a.	0.7	5
1332	Nitrogen Deficiency-induced Bacterial Community Shifts in Soybean Roots. Microbes and Environments, 2021, 36, n/a.	0.7	3
1333	Full-Length 16S rRNA and <i>ITS</i> Gene Sequencing Revealed Rich Microbial Flora in Roots of <i>Cycas</i> spp. in China. Evolutionary Bioinformatics, 2021, 17, 117693432198971.	0.6	9
1334	Soil Microbiome for Plant Growth and Bioremediation. Advances in Environmental Engineering and Green Technologies Book Series, 2021, , 158-180.	0.3	1
1335	Plant–Microbe Interactions: From Genes to Ecosystems Using <i>Populus</i> as a Model System. Phytobiomes Journal, 2021, 5, 29-38.	1.4	31
1336	Application of N2-fixing Paenibacillus triticisoli BJ-18 changes the compositions and functions of the bacterial, diazotrophic, and fungal microbiomes in the rhizosphere and root/shoot endosphere of wheat under field conditions. Biology and Fertility of Soils, 2021, 57, 347-362.	2.3	28
1337	High-throughput cultivation and identification of bacteria from the plant root microbiota. Nature Protocols, 2021, 16, 988-1012.	5.5	91
1338	Molecular Tools to Explore Rhizosphere Microbiome. , 2021, , 37-57.		5
1340	Biofertilizers as Microbial Consortium for Sustainability in Agriculture. Rhizosphere Biology, 2021, , 349-368.	0.4	1
1341	The root endophytic bacterial community of Ricinus communis L. resembles the seeds community more than the rhizosphere bacteria independent of soil water content. Scientific Reports, 2021, 11, 2173.	1.6	12
1342	Are endophytes essential partners for plants and what are the prospects for metal phytoremediation?. Plant and Soil, 2021, 460, 1-30.	1.8	18
1343	Grapevine Microbiota Reflect Diversity among Compartments and Complex Interactions within and among Root and Shoot Systems. Microorganisms, 2021, 9, 92.	1.6	29
1344	Novel and Emerging Capabilities that Can Provide a Holistic Understanding of the Plant Root Microbiome. Phytobiomes Journal, 2021, 5, 122-132.	1.4	16
1345	Dynamics of the Apple Fruit Microbiome after Harvest and Implications for Fruit Quality. Microorganisms, 2021, 9, 272.	1.6	22

#	Article	IF	CITATIONS
1346	Bacterial seed endophyte shapes disease resistance in rice. Nature Plants, 2021, 7, 60-72.	4.7	220
1347	Rhizosphere: A Home for Human Pathogens. , 2019, , 113-127.		1
1348	Precipitation Partitioning—Hydrologic Highways Between Microbial Communities of the Plant Microbiome?. , 2020, , 229-252.		9
1349	Plant Microbiome: Trends and Prospects for Sustainable Agriculture. , 2020, , 129-151.		10
1350	Microbial Consortium as Biofertilizers for Crops Growing Under the Extreme Habitats. Sustainable Development and Biodiversity, 2020, , 381-424.	1.4	12
1351	Bacterial Inoculants: How Can These Microbes Sustain Soil Health and Crop Productivity?. Soil Biology, 2020, , 337-372.	0.6	5
1352	Role of Rhizomicrobiome in Maintaining Soil Fertility and Crop Production. Soil Biology, 2020, , 373-401.	0.6	2
1353	How Microbiome Approaches Can Assist Industrial Development of Biological Control Products. Progress in Biological Control, 2020, , 201-215.	0.5	5
1354	Global Microbiome for Agroecology, Industry, and Human Well-Being: Opportunities and Challenges in Climate Change. SpringerBriefs in Ecology, 2015, , 125-152.	0.2	2
1355	Setaria Root–Microbe Interactions. Plant Genetics and Genomics: Crops and Models, 2017, , 239-250.	0.3	4
1356	Perspectives of Plant Growth Promoting Rhizobacteria in Growth Enhancement and Sustainable Production of Tomato. , 2017, , 125-149.		17
1357	Biogeography of Root-Associated Fungal Endophytes. Ecological Studies, 2017, , 195-222.	0.4	30
1358	Diversity of Plant Root Associated Microbes: Its Regulation by Introduced Biofilms. , 2013, , 351-372.		3
1359	The Flavobacterium Genus in the Plant Holobiont: Ecological, Physiological, and Applicative Insights. , 2016, , 189-207.		37
1360	Rhizosphere as Hotspot for Plant-Soil-Microbe Interaction. , 2020, , 17-43.		26
1361	Engineering Rhizobacterial Functions for the Improvement of Plant Growth and Disease Resistance. , 2019, , 451-469.		1
1362	Interactions in Soil-Microbe-Plant System: Adaptation to Stressed Agriculture. , 2019, , 131-171.		10
1363	Microbe-Mediated Tolerance in Plants Against Biotic and Abiotic Stresses. , 2019, , 173-217.		1

#	Article	IF	CITATIONS
1364	Rhizospheric Microbiome Engineering as a Sustainable Tool in Agriculture: Approaches and Challenges. , 2019, , 257-272.		6
1365	Advancement of Omics: Prospects for Bioremediation of Contaminated Soils. , 2020, , 113-142.		17
1366	Bacterial Endophytes: Diversity, Functional Importance, and Potential for Manipulation. Rhizosphere Biology, 2021, , 1-49.	0.4	9
1367	The Rhizosphere Microbiome and Its Role in Plant Growth in Stressed Conditions. Microorganisms for Sustainability, 2020, , 503-529.	0.4	3
1368	Differential response of rhizoplane, rhizosphere and water wetland bacterial communities to short-term phosphorus loading in lab scale mesocosms. Applied Soil Ecology, 2020, 154, 103598.	2.1	11
1369	Abiotic processes dominate soil organic matter mineralization: Investigating the regulatory gate hypothesis by inoculating a previously fumigated soil with increasing fresh soil inocula. Geoderma, 2020, 373, 114400.	2.3	6
1370	The Soil-Borne Identity and Microbiome-Assisted Agriculture: Looking Back to the Future. Molecular Plant, 2020, 13, 1394-1401.	3.9	80
1371	Going back to the roots: the microbial ecology of the rhizosphere. , 0, .		1
1372	Interactions between plants and soil shaping the root microbiome under abiotic stress. Biochemical Journal, 2019, 476, 2705-2724.	1.7	198
1373	Temporal and spatial interactions modulate the soybean microbiome. FEMS Microbiology Ecology, 2021, 97, .	1.3	17
1407	Long-Term Nutrient Enrichment of an Oligotroph-Dominated Wetland Increases Bacterial Diversity in Bulk Soils and Plant Rhizospheres. MSphere, 2020, 5, .	1.3	31
1408	The microbiome as a biosensor: functional profiles elucidate hidden stress in hosts. Microbiome, 2020, 8, 71.	4.9	24
1409	Nitrate Supply-Dependent Shifts in Communities of Root-Associated Bacteria in <i>Arabidopsis</i> . Microbes and Environments, 2017, 32, 314-323.	0.7	9
1410	The influence of host genetics on the microbiome. F1000Research, 2020, 9, 84.	0.8	32
1411	Recent advances in the role of plant metabolites in shaping the root microbiome. F1000Research, 2020, 9, 151.	0.8	59
1412	A developmental biologist's journey to rediscover the Zen of plant physiology. F1000Research, 0, 4, 264.	0.8	2
1413	Microbial Hub Taxa Link Host and Abiotic Factors to Plant Microbiome Variation. PLoS Biology, 2016, 14, e1002352.	2.6	1,065
1414	Genome-wide identification of bacterial plant colonization genes. PLoS Biology, 2017, 15, e2002860.	2.6	173

#	Article	IF	Citations
1415	Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biology, 2018, 16, e2003862.	2.6	340
1416	Design of synthetic bacterial communities for predictable plant phenotypes. PLoS Biology, 2018, 16, e2003962.	2.6	182
1417	Managing uncertainty in metabolic network structure and improving predictions using EnsembleFBA. PLoS Computational Biology, 2017, 13, e1005413.	1.5	55
1418	A Drought Resistance-Promoting Microbiome Is Selected by Root System under Desert Farming. PLoS ONE, 2012, 7, e48479.	1.1	400
1419	Activation of the Jasmonic Acid Plant Defence Pathway Alters the Composition of Rhizosphere Bacterial Communities. PLoS ONE, 2013, 8, e56457.	1.1	163
1420	The Diversity and Distribution of Fungi on Residential Surfaces. PLoS ONE, 2013, 8, e78866.	1.1	148
1421	Growth Conditions Determine the DNF2 Requirement for Symbiosis. PLoS ONE, 2014, 9, e91866.	1.1	34
1422	Influence of Soil Type, Cultivar and Verticillium dahliae on the Structure of the Root and Rhizosphere Soil Fungal Microbiome of Strawberry. PLoS ONE, 2014, 9, e111455.	1.1	41
1423	The Metagenome of Utricularia gibba's Traps: Into the Microbial Input to a Carnivorous Plant. PLoS ONE, 2016, 11, e0148979.	1.1	35
1424	Does the Slow-Growth, High-Mortality Hypothesis Apply Below Ground?. PLoS ONE, 2016, 11, e0161904.	1.1	1
1425	Alterations in airway microbiota in patients with PaO2/FiO2 ratio ≤300 after burn and inhalation injury. PLoS ONE, 2017, 12, e0173848.	1.1	11
1426	Rhizospheric microbial communities associated with wild and cultivated frankincense producing Boswellia sacra tree. PLoS ONE, 2017, 12, e0186939.	1.1	13
1427	Effects of an EPSPS-transgenic soybean line ZUTS31 on root-associated bacterial communities during field growth. PLoS ONE, 2018, 13, e0192008.	1.1	47
1428	Specialized core bacteria associate with plants adapted to adverse environment with high calcium contents. PLoS ONE, 2018, 13, e0194080.	1.1	7
1429	Diversity and structural differences of bacterial microbial communities in rhizocompartments of desert leguminous plants. PLoS ONE, 2020, 15, e0241057.	1.1	10
1430	METAGENOMIC CHARACTERISTIC OF RHIZOSPHERE EFFECT ON CEREALS IN BLACK AND SOD-PODZOLIC SOILS. Sel'skokhozyaistvennaya Biologiya, 2016, 51, 654-663.	0.1	2
1431	To Find out the Essentiality of Rv0526 Gene in Virulence of Mycobacterium tuberculosis by using In silico Approaches. Open Journal of Bacteriology, 2017, 1, 013-015.	0.3	6
1432	Endophytic microorganisms in fundamental research and agriculture. Ecological Genetics, 2019, 17, 19-32.	0.1	25

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1433	Isolation of Rhizosphere Bacterial Communities from Soil. Bio-protocol, 2015, 5, .		0.2	16
1434	Extraction and 16S rRNA Sequence Analysis of Microbiomes Associated with Rice Root 2018, 8, e2884.	s. Bio-protocol,	0.2	25
1435	Diversity and Structure of the Endophytic Bacterial Communities Associated With Thre Orchid Species as Revealed by 16S rRNA Gene Metabarcoding. Frontiers in Microbiolog 604964.	e Terrestrial y, 2020, 11,	1.5	24
1436	Buffet hypothesis for microbial nutrition at the rhizosphere. Frontiers in Plant Science,	2013, 4, 188.	1.7	28
1437	Secondary metabolites of <i>Bacillus subtilis</i> impact the assembly of soil-derived se bacterial communities. Beilstein Journal of Organic Chemistry, 2020, 16, 2983-2998.	misynthetic	1.3	18
1438	Taxonomy and systematics of plant probiotic bacteria in the genomic era. AIMS Microb 383-412.	iology, 2017, 3,	1.0	29
1439	Potential applications of plant probiotic microorganisms in agriculture and forestry. All Microbiology, 2017, 3, 629-648.	ΛS	1.0	53
1440	Metagenomic Approach to Identifying Foodborne Pathogens on Chinese Cabbage. Jour Microbiology and Biotechnology, 2018, 28, 227-235.	nal of	0.9	32
1441	Total Petroleum Hydrocarbon Degradation by Endophytic Fungi from the Ecuadorian A Advances in Microbiology, 2018, 08, 1029-1053.	mazon.	0.3	20
1442	Salicylic Acid as a Safe Plant Protector and Growth Regulator. Plant Pathology Journal,	2020, 36, 1-10.	0.7	224
1443	Comparison of Microbial Communities Associated with Halophyte (<i>Salsola stocksii< Non-Halophyte (<i>Triticum aestivum</i>) Using Culture-Independent Approaches. Pol Microbiology, 2017, 66, 353-364.</i>	/i>) and ish Journal of	0.6	41
1444	Mycosphere Essay 18: Biotechnological advances of beneficial fungi for plants. Mycosp 445-455.	here, 2017, 8,	1.9	4
1445	Bacterial community dynamics with rhizosphere of Calotropis procera and Senna alexa plants in Saudi Arabia. Bioinformation, 2020, 16, 567-578.	ndrina desert	0.2	6
1447	Metagenomic chromosome conformation capture (meta3C) unveils the diversity of chrony organization in microorganisms. ELife, 2014, 3, e03318.	romosome	2.8	154
1448	Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challen management. ELife, 2017, 6, .	ge disease	2.8	81
1449	Ecophylogeny of the endospheric root fungal microbiome of co-occurring <i>Agrostis stolonifera</i> . PeerJ, 2017, 5, e3454.		0.9	59
1450	Novel, non-symbiotic isolates of <i>Neorhizobium</i> from a dryland agricultural soil. Pe e4776.	erJ, 2018, 6,	0.9	6
1451	Variation in the leaf and root microbiome of sugar maple (<i>Acer saccharum</i>) at a range limit. PeerJ, 2018, 6, e5293.	n elevational	0.9	55

#	ARTICLE	IF	CITATIONS
1452	Deterministic processes dominate soil microbial community assembly in subalpine coniferous forests on the Loess Plateau. Peerl, 2019, 7, e6746.	0.9	23
1454	Plant host and drought shape the root associated fungal microbiota in rice. PeerJ, 2019, 7, e7463.	0.9	31
1455	Wild plant species growing closely connected in a subalpine meadow host distinct root-associated bacterial communities. PeerJ, 2015, 3, e804.	0.9	65
1456	Rhizosphere bacterial and fungal communities during the growth of <i>Angelica sinensis</i> seedlings cultivated in an Alpine uncultivated meadow soil. PeerJ, 2020, 8, e8541.	0.9	13
1457	Rhizosphere microbiome: Functional compensatory assembly for plant fitness. Computational and Structural Biotechnology Journal, 2021, 19, 5487-5493.	1.9	29
1458	From seeds to postharvest: the impact of the plant microbiome on health: a review. Acta Horticulturae, 2021, , 189-194.	0.1	0
1459	Untangling the Pea Root Rot Complex Reveals Microbial Markers for Plant Health. Frontiers in Plant Science, 2021, 12, 737820.	1.7	9
1460	Composition of the Microbiomes from Spinach Seeds Infested or Noninfested with <i>Peronospora effusa</i> or <i>Verticillium dahliae</i> . Phytobiomes Journal, 2022, 6, 169-180.	1.4	0
1461	Vertical stratification of microbial communities in woody plants. Phytobiomes Journal, O, , .	1.4	6
1462	Temporal metabolite responsiveness of microbiota in the tea plant phyllosphere promotes continuous suppression of fungal pathogens. Journal of Advanced Research, 2022, 39, 49-60.	4.4	24
1463	Seed-Transmitted Bacteria and Fungi Dominate Juvenile Plant Microbiomes. Frontiers in Microbiology, 2021, 12, 737616.	1.5	59
1464	Application of Deep Learning in Plant–Microbiota Association Analysis. Frontiers in Genetics, 2021, 12, 697090.	1.1	17
1465	The fungal root endophyte <i>Serendipita vermifera</i> displays inter-kingdom synergistic beneficial effects with the microbiota in <i>Arabidopsis thaliana</i> and barley. ISME Journal, 2022, 16, 876-889.	4.4	22
1466	Does biological rhythm transmit from plants to rhizosphere microbes?. Environmental Microbiology, 2021, 23, 6895-6906.	1.8	8
1467	Dynamic variability of soil diazotrophs in bulkâ€rhizosphere and phenological stages under longâ€term mulching in an eroded area in the Loess Plateau. Land Degradation and Development, 2021, 32, 5468-5481.	1.8	7
1469	Plant immune system activation is necessary for efficient root colonization by auxin-secreting beneficial bacteria. Cell Host and Microbe, 2021, 29, 1507-1520.e4.	5.1	70
1470	Compartment Niche Shapes the Assembly and Network of Cannabis sativa-Associated Microbiome. Frontiers in Microbiology, 2021, 12, 714993.	1.5	26

#	Article	IF	CITATIONS
1471	Characteristics of Culturable Microbial Community in Rhizosphere/Non-rhizosphere Soil of Potentilla Fruticosa Population in Alpine Meadow Elevation Gradient. Frontiers in Soil Science, 2021, 1, .	0.8	1
1472	Evaluating the Prevalence of Foodborne Pathogens in Livestock Using Metagenomics Approach. Journal of Microbiology and Biotechnology, 2021, 31, 1701-1708.	0.9	11
1475	Differential Assembly and Shifts of the Rhizosphere Bacterial Community by a Dual Transgenic Glyphosate-Tolerant Soybean Line with and without Glyphosate Application. Horticulturae, 2021, 7, 374.	1.2	4
1476	Crop host signatures reflected by co-association patterns of keystone Bacteria in the rhizosphere microbiota. Environmental Microbiomes, 2021, 16, 18.	2.2	21
1477	Shaping of soil microbial communities by plants does not translate into specific legacy effects on organic carbon mineralization. Soil Biology and Biochemistry, 2021, 163, 108449.	4.2	12
1480	The Promise of the Plant's Second Genome. Journal of Investigative Genomics, 2015, 2, .	0.2	1
1481	Rice bacterial endophytes: isolation of a collection, identification of beneficial strains and microbiome analysis. Environmental Microbiology, 2016, , n/a-n/a.	1.8	0
1483	Chapter 4 Environmental Impact of Pesticide Use on Microbial Communities and Soil Bioprocesses: A Physiological, Biochemical, and Molecular Perspective. , 2016, , 67-96.		0
1484	Plant Growth Promoting Bacteria – Early Investigations, Present state and Future prospects. Vegetos, 2017, 30, 211.	0.8	1
1486	Rhizoremediation in Cold Climates. , 2017, , 661-685.		0
1488	New Methods to Remove Rhizoplane Bacterial DNA of Banana. Open Journal of Bacteriology, 2017, 1, 016-020.	0.3	0
1499	Plant growth promotion by beneficial fungi in phosphate-starved conditions. Nihon Shokubutsu Byori Gakkaiho = Annals of the Phytopathological Society of Japan, 2018, 84, 78-84.	0.1	1
1502	Response to comments on "Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management― ELife, 2018, 7, .	2.8	2
1510	Microbial Interventions in Soil and Plant Health for Improving Crop Efficiency. , 2019, , 17-47.		4
1511	Dynamics of Plant Microbiome and Its Effect on the Plant Traits. , 2019, , 273-304.		2
1512	Microbiome: Effect on Plant System, Current Application and Future Aspect. , 2019, , 119-134.		0
1513	Application of Microbial Biotechnology in Improving Salt Stress and Crop Productivity. , 2019, , 133-159.		3
1528	Connection the Rhizomicrobiome and Plant MAPK Gene Expression Response to Pathogenic Fusarium oxysporum in Wild and Cultivated Soybean. Plant Pathology Journal, 2019, 35, 623-634.	0.7	1

#	Article	IF	CITATIONS
1529	Microbiomes and Endophytes. , 2020, , 39-62.		3
1530	Actinobacteria: Diversity, Plant Interactions and Biotechnology Applications. Sustainable Development and Biodiversity, 2020, , 199-244.	1.4	4
1534	Alterations in the sap-associated microbiota of Carica papaya in response to drought stress. Symbiosis, 2020, 81, 93-100.	1.2	0
1540	Root Microbiome Structure and Microbial Succession in the Rhizosphere. Rhizosphere Biology, 2021, , 109-128.	0.4	8
1541	The endophytome (plant-associated microbiome): methodological approaches, biological aspects, and biotech applications. World Journal of Microbiology and Biotechnology, 2021, 37, 206.	1.7	7
1542	Molecular insights into plant–microbe interactions for sustainable remediation of contaminated environment. Bioresource Technology, 2022, 344, 126246.	4.8	47
1543	Rhizosphere Microbiome: The Emerging Barrier in Plant-Pathogen Interactions. Frontiers in Microbiology, 2021, 12, 772420.	1.5	36
1544	A standardized and miniaturized method to investigate rhizosphere microorganisms, with a focus on methanogenic archaea and methanotrophic bacteria. Pedobiologia, 2022, 90, 150775.	0.5	2
1545	Isolation of actinobacterial endophytes from wheat sprouts as biocontrol agents to control seed pathogenic fungi. Archives of Microbiology, 2021, 203, 6163-6171.	1.0	2
1547	Omics and phytoremediation. , 2022, , 179-194.		1
1548	Fungal communities are more sensitive to nitrogen fertilization than bacteria in different spatial structures of silage maize under short-term nitrogen fertilization. Applied Soil Ecology, 2022, 170, 104275.	2.1	15
1549	Recent Advances in Plant-Microbe Interaction. , 2020, , 23-49.		2
1550	Harnessing Soil Microbiomes for Creating Healthy and Functional Urban Landscapes. , 2020, , 325-338.		1
1551	Endophytic Phytobiomes as Defense Elicitors: Current Insights and Future Prospects. , 2020, , 299-334.		0
1553	Dissecting Structure and Function of Plant Rhizomicrobiome: A Genomic Approach. Microorganisms for Sustainability, 2020, , 73-103.	0.4	0
1555	Structure and Function of Rhizobiome. , 2020, , 241-261.		4
1557	Stress Signalling in the Phytomicrobiome: Breadth and Potential. Environmental and Microbial Biotechnology, 2020, , 245-268.	0.4	8
1561	Surveillance of Root-associated Microbiome of Oxalogenic Colocasia esculenta (Linn) Plant Reveals Distinct Bacterial Species Diversity. Journal of Pure and Applied Microbiology, 2020, 14, 547-557.	0.3	0

ARTICLE IF CITATIONS Effect of Chicken Manure-Based Fertiliser on Bacterial Communities and Diversity of Tomato 0.2 3 1564 Endosphere Microbiota. Agriculture, 2021, 67, 144-154. The Interplay between the Host Microbiome and Pathogenic Viral Infections. MBio, 2021, 12, e0249621. 1.8 Intercropping Systems Modify Desert Plant-Associated Microbial Communities and Weaken Host 1567 1.5 4 Effects in a Hyper-Arid Desert. Frontiers in Microbiology, 2021, 12, 754453. Sampling of Plant Material to Study Endophytes in Small, Large, and Woody Plants. Methods in 0.4 Molecular Biology, 2021, 2232, 37-42. Rhizospheric bacterial community structure of <i>Triticum</i> and <i>Aegilops</i> revealed by 1574 pyrosequencing analysis of the 16S rRNA gene: dominance of the A genome over the B and D genomes. 0.2 4 Genes and Genetic Systems, 2020, 95, 249-268. La milpa como modelo para el estudio de la microbiodiversidad e interacciones planta-bacteria. TIP 0.3 Revista Especializada En Ciencias QuÃmico-BiolÃ3gicas, 0, 23, . Identifying the Specific Root Microbiome of the Hyperaccumulator Growing in Non-metalliferous 1583 1.50 Soils. Frontiers in Microbiology, 2021, 12, 639997. A comparison of bacterial variability across biogeographic regions based on PGPR. International Journal of Environment Agriculture and Biotechnology, 2021, 6, 064-072. Correlation analysis between differential metabolites and bacterial endophytes of Ephedra sinica in 1586 2.5 10 different years. Industrial Crops and Products, 2022, 175, 114250. Dynamics of microbial communities, physicochemical factors and flavor in rose jam during 2.5 fermentation. LWT - Food Science and Technology, 2022, 155, 112920. Actinobacterial biofertilizer improves the yields of different plants and alters the assembly processes 1588 17 2.1 of rhizosphere microbial communities. Applied Soil Ecology, 2022, 171, 104345. Decreased spatial variation and deterministic processes of bacterial community assembly in the rhizosphere of <i>Phragmites australis</i> across the Middle–Lower Yangtze plain. Molecular Ecology, 2022, 31, 1180-1195. 2.0 Modulation of the Tomato Rhizosphere Microbiome via Changes in Root Exudation Mediated by the 1590 1.6 12 Ethylene Receptor NR. Microorganisms, 2021, 9, 2456. Rhizobacteria Impact Colonization of Listeria monocytogenes on Arabidopsis thaliana Roots. Applied 1591 1.4 and Environmental Microbiology, 2021, 87, e0141121. Soil bacterial community as impacted by addition of rice straw and biochar. Scientific Reports, 2021, 11, 1592 1.6 28 22185. Emergent bacterial community properties induce enhanced drought tolerance in Arabidopsis. Npj 1593 Biofilms and Microbiomes, 2021, 7, 82. Soil bacterial community response to rhizoma peanut incorporation into Florida pastures. Journal of 1594 1.0 8 Environmental Quality, 2022, 51, 55-65. Enrichment of <i>Burkholderia</i> in the Rhizosphere by Autotoxic Ginsenosides to Alleviate Negative 1595 1.2 24 Plant-Soil Feedback. Microbiology Spectrum, 2021, 9, e0140021.

#	Article	IF	CITATIONS
1596	Diversity Indices of Plant Communities and Their Rhizosphere Microbiomes: An Attempt to Find the Connection. Microorganisms, 2021, 9, 2339.	1.6	12
1597	Vertical Transmission of Diverse Cultivation-Recalcitrant Endophytic Bacteria Elucidated Using Watermelon Seed Embryos. Frontiers in Microbiology, 2021, 12, 635810.	1.5	6
1598	Phylosymbiosis in the Rhizosphere Microbiome Extends to Nitrogen Cycle Functional Potential. Microorganisms, 2021, 9, 2476.	1.6	2
1599	Unexpected diversity among small-scale sample replicates of defined plant root compartments. ISME Journal, 2022, 16, 997-1003.	4.4	28
1600	FUNGAL AND BACTERIAL RHIZOSPHERE MICROBIOME ASSOCIATED WITH SELECTED MELON AND SNAKE MELON GENOTYPES. Journal of Microbiology, Biotechnology and Food Sciences, 2021, 11, e4004.	0.4	1
1601	Defining and quantifying the core microbiome: Challenges and prospects. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	191
1602	Coupling Root Diameter With Rooting Depth to Reveal the Heterogeneous Assembly of Root-Associated Bacterial Communities in Soybean. Frontiers in Microbiology, 2021, 12, 783563.	1.5	4
1603	Alone Yet Not Alone: Frankia Lives Under the Same Roof With Other Bacteria in Actinorhizal Nodules. Frontiers in Microbiology, 2021, 12, 749760.	1.5	10
1604	Mixed Planting Reduces the Effect of Cover Crop Variety on Soil Microbial Community Structure. SSRN Electronic Journal, 0, , .	0.4	0
1605	Polyploidy and Microbiome Associations Mediate Distinct Plant Responses to Pathogens. SSRN Electronic Journal, 0, , .	0.4	0
1606	Structure and Function of Rhizosphere Soil and Root Endophytic Microbial Communities Associated With Root Rot of Panax notoginseng. Frontiers in Plant Science, 2021, 12, 752683.	1.7	13
1607	Rhizosphere microbiomes can regulate plant drought tolerance. Pedosphere, 2022, 32, 61-74.	2.1	30
1608	Bacteria-derived N,N-dimethylhexadecylamine modulates the endophytic microbiome of Medicago truncatula in vitro. Rhizosphere, 2022, 21, 100470.	1.4	5
1609	Taxonomic Structure of Rhizosphere Bacterial Communities and Its Association With the Accumulation of Alkaloidal Metabolites in Sophora flavescens. Frontiers in Microbiology, 2021, 12, 781316.	1.5	5
1610	Comparative study of microbial structure and functional profile of sunflower rhizosphere grown in two fields. BMC Microbiology, 2021, 21, 337.	1.3	3
1611	Endophytic Microbiota of Rice and Their Collective Impact on Host Fitness. Current Microbiology, 2022, 79, 37.	1.0	14
1612	Rhizosphere impacts bacterial community structure in the tea (Camellia sinensis (L.) O . Kuntze .) estates of Darjeeling, India. Environmental Microbiology, 2021, , .	1.8	3
1613	The root microbiome: Community assembly and its contributions to plant fitness. Journal of Integrative Plant Biology, 2022, 64, 230-243.	4.1	99

#	Article	IF	CITATIONS
1614	Domestication Impacts the Wheat-Associated Microbiota and the Rhizosphere Colonization by Seed- and Soil-Originated Microbiomes, Across Different Fields. Frontiers in Plant Science, 2021, 12, 806915.	1.7	16
1615	Shared features and reciprocal complementation of the Chlamydomonas and Arabidopsis microbiota. Nature Communications, 2022, 13, 406.	5.8	28
1616	Functional Investigation of Plant Growth Promoting Rhizobacterial Communities in Sugarcane. Frontiers in Microbiology, 2021, 12, 783925.	1.5	1
1617	Taxonomic and Functional Diversity of Rhizosphere Microbiome Recruited From Compost Synergistically Determined by Plant Species and Compost. Frontiers in Microbiology, 2021, 12, 798476.	1.5	6
1618	Whole-Genome Duplication and Host Genotype Affect Rhizosphere Microbial Communities. MSystems, 2022, 7, e0097321.	1.7	6
1619	The genus Caulobacter and its role in plant microbiomes. World Journal of Microbiology and Biotechnology, 2022, 38, 43.	1.7	13
1620	Composition identification and functional verification of bacterial community in diseaseâ€suppressive soils by machine learning. Environmental Microbiology, 2022, 24, 3405-3419.	1.8	35
1621	Fungal Endophytes and Their Role in Agricultural Plant Protection against Pests and Pathogens. Plants, 2022, 11, 384.	1.6	57
1622	Community structure and diversity characteristics of rhizosphere and root endophytic bacterial community in different Acacia species. PLoS ONE, 2022, 17, e0262909.	1.1	8
1623	Identification of root bacteria associated with different stripe rust resistance in wheat cultivars. Agronomy Journal, 0, , .	0.9	1
1624	Underlying forces of plant microbiome and their effect on plant development. , 2022, , 159-180.		0
1625	Gnotobiotic Plant Systems for Reconstitution and Functional Studies of the Root Microbiota. Current Protocols, 2022, 2, e362.	1.3	6
1626	Critical assessment of DNA adenine methylation in eukaryotes using quantitative deconvolution. Science, 2022, 375, 515-522.	6.0	64
1627	Effect of strigolactones on recruitment of the rice root-associated microbiome. FEMS Microbiology Ecology, 2022, 98, .	1.3	29
1628	Effects of rare earth elements on bacteria in rhizosphere, root, phyllosphere and leaf of soil–rice ecosystem. Scientific Reports, 2022, 12, 2089.	1.6	9
1629	Rhizosphere bacteriome structure and functions. Nature Communications, 2022, 13, 836.	5.8	280
1630	Plant-growth-promoting Caulobacter strains isolated from distinct plant hosts share conserved genetic factors involved in beneficial plant–bacteria interactions. Archives of Microbiology, 2022, 204, 43.	1.0	6
1631	How Mercury Drive Rhizosphere Microbiome Assembly of Indian Mustard (Brassica. Juncea L.). SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
1634	Defining the <i>Sphagnum</i> Core Microbiome across the North American Continent Reveals a Central Role for Diazotrophic Methanotrophs in the Nitrogen and Carbon Cycles of Boreal Peatland Ecosystems. MBio, 2022, 13, .	1.8	18
1635	Low Dose of Sucralose Alter Gut Microbiome in Mice. Frontiers in Nutrition, 2022, 9, 848392.	1.6	12
1636	Plant-Microbe Interaction in Sustainable Agriculture: The Factors That May Influence the Efficacy of PGPM Application. Sustainability, 2022, 14, 2253.	1.6	23
1637	Long-term sod-based rotation promotes beneficial root microbiomes and increases crop productivity. Biology and Fertility of Soils, 2022, 58, 403-419.	2.3	9
1638	<i>Serratia marcescens</i> PLR enhances lateral root formation through supplying PLR-derived auxin and enhancing auxin biosynthesis in Arabidopsis. Journal of Experimental Botany, 2022, 73, 3711-3725.	2.4	13
1639	Comparative Analysis of the Effects of Plastic Mulch Films on Soil Nutrient, Yields and Soil Microbiome in Three Vegetable Fields. Agronomy, 2022, 12, 506.	1.3	10
1640	Differential responses of the rhizosphere microbiome structure and soil metabolites in tea (Camellia) Tj ETQq0 0	D rgBT /Ov 1:3	erlgck 10 Tf
1641	Rhizosphere Tripartite Interactions and PGPR-Mediated Metabolic Reprogramming towards ISR and Plant Priming: A Metabolomics Review. Biology, 2022, 11, 346.	1.3	33
1642	Characterization of the Endophytic Mycobiome in Cowpea (Vigna unguiculata) from a Single Location Using Illumina Sequencing. Agriculture (Switzerland), 2022, 12, 333.	1.4	1
1643	Isolation of rhizosheath and analysis of microbial community structure around roots of Stipa grandis. Scientific Reports, 2022, 12, 2707.	1.6	1
1644	Epichloë Endophyte Infection Changes the Root Endosphere Microbial Community Composition of Leymus Chinensis Under Both Potted and Field Growth Conditions. Microbial Ecology, 2023, 85, 604-616.	1.4	4
1645	Microbiome structure and response to watering in rhizosphere of Nitrosalsola vermiculata and surrounding bulk soil. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2022, 50, 12567.	0.5	1
1646	Changes in root microbiome during wheat evolution. BMC Microbiology, 2022, 22, 64.	1.3	12
1648	Niche differentiation shapes the bacterial diversity and composition of apple. Horticultural Plant Journal, 2023, 9, 35-44.	2.3	7
1649	Core arbuscular mycorrhizal fungi are predicted by their high abundance–occupancy relationship while hostâ€specific taxa are rare and geographically structured. New Phytologist, 2022, , .	3.5	4
1650	Interspecific Neighbor Stimulates Peanut Growth Through Modulating Root Endophytic Microbial Community Construction. Frontiers in Plant Science, 2022, 13, 830666.	1.7	13
1651	High Salt Levels Reduced Dissimilarities in Root-Associated Microbiomes of Two Barley Genotypes. Molecular Plant-Microbe Interactions, 2022, 35, 592-603.	1.4	3
1652	COMMIT: Consideration of metabolite leakage and community composition improves microbial community reconstructions. PLoS Computational Biology, 2022, 18, e1009906.	1.5	2

#	Δρτιςι ε	IF	CITATIONS
1659	Dynamics of Bacterial Root Endophytes of Malus domestica Plants Grown in Field Soils Affected by	1.5	E
1033	Apple Replant Disease. Frontiers in Microbiology, 2022, 13, 841558.	1.0	5
1654	Comparative Analysis on Rhizosphere Soil and Endophytic Microbial Communities of Two Cultivars of Cyperus esculentus L. Var. Sativus. Journal of Soil Science and Plant Nutrition, 2022, 22, 2156-2168.	1.7	4
1655	Application of Pig Manure Compost with Different Biochar Modifies the Antibiotic Resistome and Bacterial Community in Agriculture Soil. Water, Air, and Soil Pollution, 2022, 233, 1.	1.1	7
1656	Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review. International Journal of Environmental Research and Public Health, 2022, 19, 3141.	1.2	43
1657	Auxin-Producing Bacteria from Duckweeds Have Different Colonization Patterns and Effects on Plant Morphology. Plants, 2022, 11, 721.	1.6	14
1658	Microbial Community and Function-Based Synthetic Bioinoculants: A Perspective for Sustainable Agriculture. Frontiers in Microbiology, 2021, 12, 805498.	1.5	12
1659	Maize Field Study Reveals Covaried Microbiota and Metabolic Changes in Roots over Plant Growth. MBio, 2022, 13, e0258421.	1.8	15
1660	Phosphate fertilization affects rhizosphere microbiome of maize and sorghum genotypes. Brazilian Journal of Microbiology, 2022, 53, 1371-1383.	0.8	2
1661	MicrobioSee: A Web-Based Visualization Toolkit for Multi-Omics of Microbiology. Frontiers in Genetics, 2022, 13, 853612.	1.1	2
1662	Differential microbial assembly processes and coâ€occurrence networks in the soilâ€root continuum along an environmental gradient. , 2022, 1, .		34
1663	Fate and impact of wastewater-borne micropollutants in lettuce and the root-associated bacteria. Science of the Total Environment, 2022, 831, 154674.	3.9	15
1665	The brown root rot fungus <i>Phellinus noxius</i> affects microbial communities in different rootâ€associated niches of <i>Ficus</i> trees. Environmental Microbiology, 2022, 24, 276-297.	1.8	7
1666	Intestinal microbiota disturbance affects the occurrence of African swine fever. Animal Biotechnology, 2021, , 1-10.	0.7	2
1667	Antagonistic activity of endophytic actinobacteria from native potatoes (Solanum tuberosum subsp.) Tj ETQq1 1 atrosepticum. BMC Microbiology, 2021, 21, 335.	0.784314 1.3	rgBT /Overla 11
1668	The Lack of Knowledge on the Microbiome of Golf Turfgrasses Impedes the Development of Successful Microbial Products. Agronomy, 2022, 12, 71.	1.3	2
1669	Rhizobium Symbiotic Capacity Shapes Root-Associated Microbiomes in Soybean. Frontiers in Microbiology, 2021, 12, 709012.	1.5	14
1670	Emmia lacerata SR5 Promotes Michelia macclurei Growth by Enhancing Nutrient Uptake and Regulating Morphology. Journal of Soil Science and Plant Nutrition, 2022, 22, 985-999.	1.7	1
1671	Enriched root bacterial microbiome in invaded vs native ranges of the model grass allotetraploid Brachypodium hybridum. Biological Invasions, 2022, 24, 1097-1116.	1.2	5

ARTICLE IF CITATIONS Comprehensive effects of salt stress and peanut cultivars on the rhizosphere bacterial community 1672 1.0 3 diversity of peanut. Archives of Microbiology, 2022, 204, 15. Different soil salinity imparts clear alteration in rhizospheric bacterial community dynamics in rice 1.0 and peanut. Archives of Microbiology, 2022, 204, 36. High-Throughput Sequencing Analysis of the Composition and Diversity of the Bacterial Community in 1674 1.6 6 Cinnamomum camphora Soil. Microorganisms, 2022, 10, 72. Nitrogen fertilization modulates beneficial rhizosphere interactions through signaling effect of nitric oxide. Plant Physiology, 2022, 188, 1129-1140. From model organism to application: Bacteria-induced growth and development of the green seaweed Ulva and the potential of microbe leveraging in algal aquaculture. Seminars in Cell and 1676 2.3 29 Developmental Biology, 2023, 134, 69-78. Community Assembly and Stability in the Root Microbiota During Early Plant Development. Frontiers in Microbiology, 2022, 13, 826521. 1.5 Synthetic bacterial community derived from a desert rhizosphere confers salt stress resilience to 1679 4.4 54 tomato in the presence of a soil microbiome. ISME Journal, 2022, 16, 1907-1920. Microbial Cross-Talk: Dissecting the Core Microbiota Associated With Flue-Cured Tobacco (Nicotiana) Tj ETQq1 1 0,784314 rgBT /Ove 1680 Comparative Analysis of the Rhizospheric Bacterial Communities of Flue-Cured Tobacco Affected by 1681 0.8 0 Granville Wilt. PhytoFrontiers, 0, , . Taxonomical and functional bacterial community profiling in disease-resistant and disease-susceptible 0.8 soybean cultivars. Brazilian Journal of Microbiology, 2022, 53, 1355-1370. Differences of rhizospheric and endophytic bacteria are recruited by different watermelon 1683 1.6 8 phenotypes relating to rind colors formation. Scientific Reports, 2022, 12, 6360. Multidrug resistance from a one health perspective in Ethiopia: A systematic review and meta-analysis 1.5 of literature (2015–2020). One Health, 2022, 14, 100390. Functional microbiome strategies for the bioremediation of petroleum-hydrocarbon and heavy metal 1686 3.9 24 contaminated soils: A review. Science of the Total Environment, 2022, 833, 155222. Fungal Endophytes: As a Store House of Bioactive Compound. Mini-Reviews in Medicinal Chemistry, 1984 1.1 2022, 22, . Identifying the Specific Root Microbiome of the Hyperaccumulator Noccaea brachypetala Growing in 1985 7 1.5 Non-metalliferous Soils. Frontiers in Microbiology, 2021, 12, 639997. Biochar Addition Altered Bacterial Community and Improved Photosynthetic Rate of Seagrass: A 1986 Mesocosm Study of Seagrass Thalassia hemprichii. Frontiers in Microbiology, 2021, 12, 783334. Tobacco Root Microbial Community Composition Significantly Associated With Root-Knot Nematode 1987 Infections: Dynamic Changes in Microbiota and Growth Stage. Frontiers in Microbiology, 2022, 13, 1.58 807057. Soil Bacterial Communities of Rice is Dependent on Root Compartment Niches But Independent of 1988 0.4 Growth Stages in Mollisols of Northeast China. SSRN Electronic Journal, 0, , .

#	Article	IF	CITATIONS
1989	Soil Bacterial Communities of Rice is Dependent on Root Compartment Niches But Independent of Growth Stages in Mollisols of Northeast China. SSRN Electronic Journal, 0, , .	0.4	0
1990	Dynamic Shifts in the Root Microbiota of Cultivated Paphiopedilum armeniacum during Different Stages of Growth. Diversity, 2022, 14, 321.	0.7	2
1991	Metagenomic Analyses of the Soybean Root Mycobiome and Microbiome Reveal Signatures of the Healthy and Diseased Plants Affected by Taproot Decline. Microorganisms, 2022, 10, 856.	1.6	4
1992	Pinirhizobacter soli gen. nov., sp. nov., a novel low temperature resistant gammaproteobacterium in the family Rhodanobacteraceae isolated from rhizospheric soil of Larix gmelinii. Archives of Microbiology, 2022, 204, 283.	1.0	0
1993	Emerging Function of Ecotype-Specific Splicing in the Recruitment of Commensal Microbiome. International Journal of Molecular Sciences, 2022, 23, 4860.	1.8	4
1994	Overhauling the Effect of Surface Sterilization on Analysis of Endophytes in Tea Plants. Frontiers in Plant Science, 2022, 13, 849658.	1.7	1
1995	Responses of endophytic bacterial communities in rice roots to phosphorus deficiency at the seedling stages. European Journal of Soil Biology, 2022, 110, 103405.	1.4	2
1996	Glycyrrhiza uralensis Fisch. Root-associated microbiota: the multifaceted hubs associated with environmental factors, growth status and accumulation of secondary metabolites. Environmental Microbiomes, 2022, 17, 23.	2.2	7
1997	What is the impact of aminoglycoside exposure on soil and plant root-associated microbiota? A systematic review protocol. Environmental Evidence, 2022, 11, .	1.1	2
1998	Dynamics in diversity, co-occurrence pattern, and community assembly of a perennial desert plant root-associated bacteria. Rhizosphere, 2022, 22, 100526.	1.4	6
1999	Mixtures of suppressive bacteria enhance biological control of tomato bacterial wilt. Biological Control, 2022, 170, 104937.	1.4	0
2000	Consortia-based microbial inoculants for sustaining agricultural activities. Applied Soil Ecology, 2022, 176, 104503.	2.1	23
2001	Silicon enhances abundances of reducing microbes in rhizoplane and decreases arsenite uptake by rice (Oryza sativa L.). Environmental Pollution, 2022, 306, 119405.	3.7	7
2002	The Plaque Microbiota Community of Giant Panda (Ailuropoda melanoleuca) Cubs With Dental Caries. Frontiers in Cellular and Infection Microbiology, 2022, 12, 866410.	1.8	2
2003	Bioâ€organic soil amendment promotes the suppression of <i>Ralstonia solanacearum</i> by inducing changes in the functionality and composition of rhizosphere bacterial communities. New Phytologist, 2022, 235, 1558-1574.	3.5	57
2004	The Pattern Recognition Receptor FLS2 Can Shape the Arabidopsis Rhizosphere Microbiome β-Diversity but Not EFR1 and CERK1. Plants, 2022, 11, 1323.	1.6	5
2005	Examining the genomic features of human and plant-associated Burkholderia strains. Archives of Microbiology, 2022, 204, 335.	1.0	0
2006	Diel Fluctuation of Extracellular Reactive Oxygen Species Production in the Rhizosphere of Rice. Environmental Science & Technology, 2022, 56, 9075-9082.	4.6	25

#	Article	IF	Citations
2007	Differences between the effects of plant species and compartments on microbiome composition in two halophyte <i>Suaeda</i> species. Bioengineered, 2022, 13, 12475-12488.	1.4	6
2008	Microbes: A sustainable tool for healthy and climate smart agriculture. , 2022, , 197-213.		1
2009	Methanotrophy Alleviates Nitrogen Constraint of Carbon Turnover by Rice Root-Associated Microbiomes. Frontiers in Microbiology, 2022, 13, .	1.5	2
2010	Spatial variations of root-associated bacterial communities of alpine plants in the Qinghai-Tibet Plateau. Science of the Total Environment, 2022, 839, 156086.	3.9	8
2011	Molecular characterization of endophytic and ectophytic plant growth promoting bacteria isolated from tomato plants (Solanum lycopersicum L.) grown in different soil types. Journal of Genetic Engineering and Biotechnology, 2022, 20, 79.	1.5	3
2012	Fusarium fruiting body microbiome member Pantoea agglomerans inhibits fungal pathogenesis by targeting lipid rafts. Nature Microbiology, 2022, 7, 831-843.	5.9	44
2013	Polyploidy and microbiome associations mediate similar responses to pathogens in Arabidopsis. Current Biology, 2022, 32, 2719-2729.e5.	1.8	12
2014	Modification of Rhizosphere Microbial Communities: A Possible Mechanism of Plant Growth Promoting Rhizobacteria Enhancing Plant Growth and Fitness. Frontiers in Plant Science, 2022, 13, .	1.7	39
2015	Microbiota manipulation through the secretion of effector proteins is fundamental to the wealth of lifestyles in the fungal kingdom. FEMS Microbiology Reviews, 2022, 46, .	3.9	14
2017	Diversity Shifts in the Root Microbiome of Cucumber Under Different Plant Cultivation Substrates. Frontiers in Microbiology, 2022, 13, .	1.5	3
2018	Strategies to Enhance the Use of Endophytes as Bioinoculants in Agriculture. Horticulturae, 2022, 8, 498.	1.2	20
2019	Resilience of the wheat root-associated microbiome to the disturbance of phenanthrene. Science of the Total Environment, 2022, 838, 156487.	3.9	7
2020	Functional characterization of novel phosphate solubilizing bacteria, Chryseomicrobium imtechense, for enhanced strawberry growth and yield parameters. Arabian Journal of Geosciences, 2022, 15, .	0.6	0
2023	Soybean extracts can improve plant development. Scientia Agricola, 0, 80, .	0.6	0
2026	Microbial trait-based approaches for agroecosystems. Advances in Agronomy, 2022, , 259-299.	2.4	1
2027	The Role of Phytohormones in Cross-communication Between Plants and Rhizo-Microbes. Rhizosphere Biology, 2022, , 59-97.	0.4	1
2030	Development of a Real-Time Quantitative PCR Assay for the Specific Detection of Bacillus velezensis and Its Application in the Study of Colonization Ability. Microorganisms, 2022, 10, 1216.	1.6	2
2031	From Soil Amendments to Controlling Autophagy: Supporting Plant Metabolism under Conditions of Water Shortage and Salinity. Plants, 2022, 11, 1654.	1.6	1

#	Article	IF	CITATIONS
2032	Spatio-temporal variation in the root-associated microbiota of orchard-grown apple trees. Environmental Microbiomes, 2022, 17, .	2.2	7
2033	Transfer of Nitrogen and Phosphorus From Cattle Manure to Soil and Oats Under Simulative Cattle Manure Deposition. Frontiers in Microbiology, 0, 13, .	1.5	2
2034	Disentangling the genetic basis of rhizosphere microbiome assembly in tomato. Nature Communications, 2022, 13, .	5.8	53
2035	Microbiome-metabolome analysis directed isolation of rhizobacteria capable of enhancing salt tolerance of Sea Rice 86. Science of the Total Environment, 2022, 843, 156817.	3.9	6
2036	Negative effects of poly(butylene adipate-co-terephthalate) microplastics on Arabidopsis and its root-associated microbiome. Journal of Hazardous Materials, 2022, 437, 129294.	6.5	34
2037	Network analysis reveals the root endophytic fungi associated with Fusarium root rot invasion. Applied Soil Ecology, 2022, 178, 104567.	2.1	10
2039	A highly conserved core bacterial microbiota with nitrogen-fixation capacity inhabits the xylem sap in maize plants. Nature Communications, 2022, 13, .	5.8	44
2040	The Role of Synthetic Microbial Communities (SynCom) in Sustainable Agriculture. Frontiers in Agronomy, 0, 4, .	1.5	38
2041	Genotype-Specific Recruitment of Rhizosphere Bacteria From Sandy Loam Soil for Growth Promotion of Cucumis sativus var. hardwickii. Frontiers in Microbiology, 0, 13, .	1.5	5
2042	MdNRT2.4 interacts with rhizosphere bacteria to enhance nitrate uptake in apple rootstocks. Journal of Experimental Botany, 0, , .	2.4	6
2043	Wheat Rhizosphere Microbiota Respond to Changes in Plant Genotype, Chemical Inputs, and Plant Phenotypic Plasticity. Frontiers in Ecology and Evolution, 0, 10, .	1.1	7
2044	The rhizosphere microbiome: Plant–microbial interactions for resource acquisition. Journal of Applied Microbiology, 2022, 133, 2864-2876.	1.4	39
2045	Climate drives rhizosphere microbiome variation and divergent selection between geographically distant <i>Arabidopsis</i> populations. New Phytologist, 2022, 236, 608-621.	3.5	9
2047	ActinoBase: tools and protocols for researchers working on Streptomyces and other filamentous actinobacteria. Microbial Genomics, 2022, 8, .	1.0	2
2048	Diversity, function and assembly of the Trifolium repens L. root-associated microbiome under lead stress. Journal of Hazardous Materials, 2022, 438, 129510.	6.5	12
2049	Host genetic determinants drive compartmentâ€specific assembly of tea plant microbiomes. Plant Biotechnology Journal, 2022, 20, 2174-2186.	4.1	10
2050	Microbial community composition and soil metabolism in the coexisting <i>Cordyceps militaris</i> and <i>Ophiocordyceps highlandensis</i> . Journal of Basic Microbiology, 2022, 62, 1254-1273.	1.8	1
2051	Plant genetic effects on microbial hubs impact host fitness in repeated field trials. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	43

#	Article	IF	CITATIONS
2052	Rhizosphere soil microbial community and its response to different utilization patterns in the semi-arid alpine grassland of northern Tibet. Frontiers in Microbiology, 0, 13, .	1.5	10
2053	Evaluation of Protein Extraction Methods for Metaproteomic Analyses of Root-Associated Microbes. Molecular Plant-Microbe Interactions, 2022, 35, 977-988.	1.4	7
2054	Wholeâ€plant microbiome profiling reveals a novel geminivirus associated with soybean stayâ€green disease. Plant Biotechnology Journal, 2022, 20, 2159-2173.	4.1	12
2062	<i>Arabidopsis</i> plants engineered for high root sugar secretion enhance the diversity of soil microorganisms. Biotechnology Journal, 2022, 17, .	1.8	2
2063	Methanol utilizers of the rhizosphere and phyllosphere of a common grass and forb host species. Environmental Microbiomes, 2022, 17, .	2.2	1
2064	Identification and implications of a core bacterial microbiome in 19 clonal cultures laboratory-reared for months to years of the cosmopolitan dinoflagellate Karlodinium veneficum. Frontiers in Microbiology, 0, 13, .	1.5	4
2065	Overexpression of the rice gene Lsi1 (low silicon gene 1) enhances plant-microbe interactions that result in improved chilling tolerance. Plant Growth Regulation, 2022, 98, 525-538.	1.8	2
2066	High bacterial diversity and siderophore-producing bacteria collectively suppress Fusarium oxysporum in maize/faba bean intercropping. Frontiers in Microbiology, 0, 13, .	1.5	6
2067	Silicon and soil microorganisms improve rhizospheric soil health with bacterial community, plant growth, performance and yield. Plant Signaling and Behavior, 2022, 17, .	1.2	5
2068	Archaeal community structures associated with fine root systems of <i>Cryptomeria japonica</i> (Cupressaceae) in central Japan. Journal of Forest Research, 0, , 1-9.	0.7	0
2069	Microbiome and pathobiome analyses reveal changes in community structure by foliar pathogen infection in rice. Frontiers in Microbiology, 0, 13, .	1.5	12
2070	Suppression of <i>Phytophthora </i> on <i>Chamaecyparis </i> in sustainable horticultural substrates depends on fertilization and is linked to the rhizobiome. Phytobiomes Journal, 0, , .	1.4	1
2072	Colony but not social phenotype or status structures the gut bacteria of a eusocial mammal. Behavioral Ecology and Sociobiology, 2022, 76, .	0.6	4
2073	Evaluating the Rhizosphere and Endophytic Microbiomes of a Bamboo Plant in Response to the Long-Term Application of Heavy Organic Amendment. Plants, 2022, 11, 2129.	1.6	3
2074	Cannabis Seedlings Inherit Seed-Borne Bioactive and Anti-Fungal Endophytic Bacilli. Plants, 2022, 11, 2127.	1.6	2
2076	Effects of three regeneration methods on the growth and bacterial community diversity of Populus × euramericana. PLoS ONE, 2022, 17, e0273306.	1.1	0
2077	Assembly of root-associated N2O-reducing communities of annual crops is governed by selection for <i>nosZ</i> clade I over clade II. FEMS Microbiology Ecology, 2022, 98, .	1.3	3
2078	Differed Growth Stage Dynamics of Root-Associated Bacterial and Fungal Community Structure Associated with Halophytic Plant Lycium ruthenicum. Microorganisms, 2022, 10, 1644.	1.6	9

#	Article	IF	CITATIONS
2079	Rare biosphere in cultivated Panax rhizosphere shows deterministic assembly and cross-plant similarity. Ecological Indicators, 2022, 142, 109215.	2.6	3
2080	Plant probiotics – Endophytes pivotal to plant health. Microbiological Research, 2022, 263, 127148.	2.5	25
2081	Structural variability and niche differentiation of Paeonia lactiflora's root-associated microbiomes. Applied Soil Ecology, 2022, 180, 104632.	2.1	2
2082	Ecological niche differences regulate the assembly of bacterial community in endophytic and rhizosphere of Eucalyptus. Forest Ecology and Management, 2022, 524, 120521.	1.4	9
2083	Current understanding of plant-microbe interaction through the lenses of multi-omics approaches and their benefits in sustainable agriculture. Microbiological Research, 2022, 265, 127180.	2.5	11
2084	Diversity and Plant Growth-Promoting Properties of Microbiomes Associated with Plants in Desert Soils. Ecological Studies, 2022, , 205-233.	0.4	0
2085	Evaluating the Hologenome Concept by the Analysis of the Root-Endosphere Microbiota of Chimeric Plants. SSRN Electronic Journal, 0, , .	0.4	0
2087	Interactions among Rhizosphere Microorganisms, Mechanisms and Potential Application in Phytoremediation. SHS Web of Conferences, 2022, 144, 01003.	0.1	1
2088	The Role of Salicylic Acid Signal in Plant Growth, Development and Abiotic Stress. Phyton, 2022, 91, 2591-2605.	0.4	3
2090	Evolutionary genomic insights into cyanobacterial symbioses in plants. Quantitative Plant Biology, 2022, 3, .	0.8	9
2091	PGPR in Biofilm Formation and Antibiotic Production. Fungal Biology, 2022, , 65-82.	0.3	2
2095	Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications. Acta Agronomica Sinica(China), 2022, 48, 1222-1234.	0.1	1
2096	Rhizospheric Microbial Communication. , 2022, , 41-66.		0
2097	Soil conditions on bacterial wilt disease affect bacterial and fungal assemblage in the rhizosphere. AMB Express, 2022, 12, .	1.4	4
2098	Host Plant Selection Imprints Structure and Assembly of Fungal Community along the Soil-Root Continuum. MSystems, 2022, 7, .	1.7	9
2099	Distribution pattern of endophytic bacteria and fungi in tea plants. Frontiers in Microbiology, 0, 13, .	1.5	8
2100	Can multi-cropping affect soil microbial stoichiometry and functional diversity, decreasing potential soil-borne pathogens? A study on European organic vegetable cropping systems. Frontiers in Plant Science, 0, 13, .	1.7	6
2102	Investigating plantâ \in 'microbe interactions within the root. Archives of Microbiology, 2022, 204, .	1.0	5

ARTICLE IF CITATIONS Influence of plant genotype and soil on the cotton rhizosphere microbiome. Frontiers in 2103 1.5 6 Microbiology, 0, 13, . Individual competence predominates over host nutritional status in Arabidopsis root exudate-mediated bacterial enrichment in a combination of four Burkholderiaceae species. BMC 2104 1.3 Microbiology, 2022, 22, . Investigating Population Genetic Diversity and Rhizosphere Microbiota of Central Apennines' 2105 0 1.6 Artemisia eriantha. Sustainability, 2022, 14, 11405. New opportunities in plant microbiome engineering for increasing agricultural sustainability under 2106 stressful conditions. Frontiers in Plant Science, 0, 13, . Core Microbiota in the Rhizosphere of Heavy Metal Accumulators and Its Contribution to Plant 2107 4.6 23 Performance. Environmental Science & amp; Technology, 2022, 56, 12975-12987. Biocontrol: Endophytic bacteria could be crucial to fight soft rot disease in the rare medicinal herb, 2108 <i>Anoectochilus roxburghii</i>. Microbial Biotechnology, 2022, 15, 2929-2941. What Drives the Assembly of Plant-associated Protist Microbiomes? Investigating the Effects of Crop 2110 0.6 5 Species, Soil Type and Bacterial Microbiomes. Protist, 2022, 173, 125913. Silicon fertilizer mediated structural variation and niche differentiation in the rhizosphere and 1.5 endosphere bacterial microbiome and metabolites of sugarcane. Frontiers in Microbiology, 0, 13, . Uncovering natural variation in root system architecture and growth dynamics using a 2112 9 2.8 robotics-assisted phenomics platform. ELife, 0, 11, . The rhizosphere bacterial community contributes to the nutritional competitive advantage of weedy 1.3 rice over cultivated rice in paddy soil. BMC Microbiology, 2022, 22, . The core bacterial microbiome of banana (Musa spp.). Environmental Microbiomes, 2022, 17, . 2114 2.2 5 Shared Core Microbiome and Functionality of Key Taxa Suppressive to Banana Fusarium Wilt. Research, 2.8 2022, 2022, . Influence of planting yellowhorn (<i>Xanthoceras sorbifolium</i>Bunge) on the bacterial and 2116 0.9 0 fungal diversity of fly ash. Peerl, 0, 10, e14015. Investigating genetic diversity within the most abundant and prevalent non-pathogenic leaf-associated 1.5 bacteria interacting with Arabidopsis thaliana in natural habitats. Frontiers in Microbiology, 0, 13, . Stochastic Inoculum, Biotic Filtering and Species-Specific Seed Transmission Shape the Rare 2118 1.1 6 Microbiome of Plants. Life, 2022, 12, 1372. Microbiomes in agroecosystem: Diversity, function and assembly mechanisms. Environmental 2120 1.0 Microbiology Reports, 2022, 14, 833-849. Genetic Circuit Design in Rhizobacteria. Biodesign Research, 2022, 2022, . 2121 0.8 3 Soil microbial community assembly and stability are associated with potato (Solanum tuberosum L.) fitness under continuous cropping regime. Frontiers in Plant Science, 0, 13, .

#	Article	IF	CITATIONS
2123	Warhorses in soil bioremediation: Seed biopriming with PGPF secretome to phytostimulate crop health under heavy metal stress. Environmental Research, 2023, 216, 114498.	3.7	5
2124	Cast into the Stones of International Law. , 2022, , 28-63.		1
2125	Omics Approaches to Unravel the Features of Rhizospheric Microbiome. Rhizosphere Biology, 2022, , 391-402.	0.4	0
2126	Role of Rhizosphere Microorganisms in Endorsing Overall Plant Growth and Development. Rhizosphere Biology, 2022, , 323-353.	0.4	3
2127	"The Key Influencers―of Rhizosphere Microbial Population Dynamics. Microorganisms for Sustainability, 2022, , 123-132.	0.4	0
2128	Exploration of Plant Growth-Promoting Rhizobacteria (PGPR) for Improving Productivity and Soil Fertility Under Sustainable Agricultural Practices. Rhizosphere Biology, 2022, , 245-269.	0.4	2
2129	Conservation Strategies for Rhizobiome in Sustainable Agriculture. Rhizosphere Biology, 2022, , 37-61.	0.4	0
2130	The Arabidopsis thaliana–Streptomyces Interaction Is Controlled by the Metabolic Status of the Holobiont. International Journal of Molecular Sciences, 2022, 23, 12952.	1.8	4
2131	The Promises, Challenges, and Opportunities of Omics for Studying the Plant Holobiont. Microorganisms, 2022, 10, 2013.	1.6	2
2132	Agricultural Crops Grown in Laboratory Conditions on Chernevaya Taiga Soil Demonstrate Unique Composition of the Rhizosphere Microbiota. Microorganisms, 2022, 10, 2171.	1.6	5
2134	Functionally-explicit sampling can answer key questions about the specificity of plant–microbe interactions. Environmental Microbiomes, 2022, 17, .	2.2	3
2135	Plant and Soil Core Mycobiomes in a Two-Year Sorghum–Legume Intercropping System of Underutilized Crops in South Africa. Microorganisms, 2022, 10, 2079.	1.6	2
2136	Screening of Endophytic Bacteria of Leucojum aestivum â€~Gravety Giant' as a Potential Source of Alkaloids and as Antagonist to Some Plant Fungal Pathogens. Microorganisms, 2022, 10, 2089.	1.6	4
2137	Microbial assemblages of Schisandraceae plants and the correlations between endophytic species and the accumulation of secondary metabolites. Plant and Soil, 2023, 483, 85-107.	1.8	4
2138	Biological Control of Melon Continuous Cropping Obstacles: Weakening the Negative Effects of the Vicious Cycle in Continuous Cropping Soil. Microbiology Spectrum, 2022, 10, .	1.2	9
2139	Methods used for the study of endophytic fungi: a review on methodologies and challenges, and associated tips. Archives of Microbiology, 2022, 204, .	1.0	20
2140	Fungal isolates influence the quality of Peucedanum praeruptorum Dunn. Frontiers in Plant Science, 0, 13, .	1.7	0
2141	Principal Drivers of Fungal Communities Associated with Needles, Shoots, Roots and Adjacent Soil of Pinus sylvestris. Journal of Fungi (Basel, Switzerland), 2022, 8, 1112.	1.5	3

#	Article	IF	CITATIONS
2142	Abundant and diverse endophytic bacteria associated with medicinal plant Arctium lappa L. and their potential for host plant growth promoting. Antonie Van Leeuwenhoek, 2022, 115, 1405-1420.	0.7	6
2143	Plants select antibiotic resistome in rhizosphere in early stage. Science of the Total Environment, 2023, 858, 159847.	3.9	9
2144	Characterization of actinobacteria from wheat seeds for plant growth promoting traits and protection against fungal pathogens. Journal of Basic Microbiology, 2023, 63, 439-453.	1.8	10
2145	Effects of Microbial Transfer during Food-Gut-Feces Circulation on the Health of Bombyx mori. Microbiology Spectrum, 2022, 10, .	1.2	7
2147	Adaptive bacterial and fungal matching between a parasitic plant and its host: A case of Cistanche deserticola and Haloxylon ammodendron. Industrial Crops and Products, 2023, 191, 115932.	2.5	2
2148	Rhizospheric microbial community in plant species from the Phaseolus genus. Applied Soil Ecology, 2023, 182, 104731.	2.1	3
2149	Rhizospheric compensation of nutrient cycling functions dominates crop productivity and nutrient use efficiency. Applied Soil Ecology, 2023, 182, 104722.	2.1	1
2150	Australian native Glycine clandestina seed microbiota hosts a more diverse bacterial community than the domesticated soybean Glycine max. Environmental Microbiomes, 2022, 17, .	2.2	3
2151	CRISPR-based engineering of phages for in situ bacterial base editing. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	12
2152	Research progress of rhizosphere microorganisms in Fritillaria L. medicinal plants. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	2
2154	Community distribution of rhizosphere and endophytic bacteria of ephemeral plants in desertâ€oasis ecotone and analysis of environmental driving factors. Land Degradation and Development, 0, , .	1.8	0
2155	Influence of host genotype in establishing root associated microbiome of indica rice cultivars for plant growth promotion. Frontiers in Microbiology, 0, 13, .	1.5	9
2156	High throughput method of 16S rRNA gene sequencing library preparation for plant root microbial community profiling. Scientific Reports, 2022, 12, .	1.6	2
2158	Different factors drive the assembly of pine and Panax notoginseng-associated microbiomes in Panax notoginseng-pine agroforestry systems. Frontiers in Microbiology, 0, 13, .	1.5	2
2159	Higher-Quality Pumpkin Cultivars Need to Recruit More Abundant Soil Microbes in Rhizospheres. Microorganisms, 2022, 10, 2219.	1.6	1
2160	Composition and diversity of root-inhabiting bacterial microbiota in the perennial sweet sorghum cultivar at the maturing stage. Plant Growth Regulation, 0, , .	1.8	0
2161	Root and Rhizosphere Microbiome of Tomato Plants Grown in the Open Field in the South of West Siberia under Mineral Fertilization. Horticulturae, 2022, 8, 1051.	1.2	3
2162	Water Stress, Cadmium, and Plant Genotype Modulate the Rhizosphere Microbiome of Pisum sativum L Plants, 2022, 11, 3013.	1.6	3

#	Article	IF	CITATIONS
2163	The core microbiome of Carya illinoinensis (pecan) seedlings of different maternal pecan cultivars from the same orchard. , 0, 1, .		3
2164	Long-term effects of biochar application on rhizobacteria community and winter wheat growth on the Loess Plateau in China. Geoderma, 2023, 429, 116250.	2.3	7
2165	Plant-soil feedbacks in Hydrocotyle vulgaris: Genotypic differences and relations to functional traits. Ecological Indicators, 2023, 146, 109766.	2.6	3
2166	Microbial community dynamics responding to nutrient allocation associated with soybean cultivar â€Jake' ozone adaptation. Science of the Total Environment, 2023, 864, 161008.	3.9	3
2167	Nitrogen, manganese, iron, and carbon resource acquisition are potential functions of the wild rice Oryza rufipogon core rhizomicrobiome. Microbiome, 2022, 10, .	4.9	14
2168	The structure and assembly of rhizobacterial communities are influenced by poplar genotype. Frontiers in Microbiology, 0, 13, .	1.5	0
2170	Dominant Fungal Communities Aggregate in the Shallow Rhizosphere Soil of Anabasis aphylla. Sustainability, 2022, 14, 15423.	1.6	1
2171	Microbial communities in tree root-compartment niches under Cd and Zn pollution: Structure, assembly process and co-occurrence relationship. Science of the Total Environment, 2023, 860, 160273.	3.9	5
2172	Microscopy-Based Studies. Springer Protocols, 2023, , 153-167.	0.1	0
2173	Differential modulation of the bacterial endophytic microbiota of Festuca arundinaceae (tall fescue) cultivars by the plant-growth promoting strain Streptomyces albidoflavus UYFA156. Plant and Soil, 2023, 485, 317-332.	1.8	3
2174	Exploration of the rhizosphere microbiome of native plant Ceanothus velutinus – an excellent resource of plant growth-promoting bacteria. Frontiers in Plant Science, 0, 13, .	1.7	5
2175	Investigating Endobacteria that Thrive Within Mucoromycota. Methods in Molecular Biology, 2023, , 293-323.	0.4	2
2176	Drought stress modifies the community structure of root-associated microbes that improve Atractylodes lancea growth and medicinal compound accumulation. Frontiers in Plant Science, 0, 13, .	1.7	9
2177	Root-Zone Restriction Regulates Soil Factors and Bacterial Community Assembly of Grapevine. International Journal of Molecular Sciences, 2022, 23, 15628.	1.8	2
2179	Sustained Inhibition of Maize Seedâ€Borne <i>Fusarium</i> Using a <i>Bacillus</i> â€Đominated Rhizospheric Stable Core Microbiota with Unique Cooperative Patterns. Advanced Science, 2023, 10, .	5.6	10
2180	Habitats within the plant root differ in bacterial network topology and taxonomic assortativity. Molecular Plant-Microbe Interactions, 0, , .	1.4	0
2181	Digging into the Lettuce Cold-Specific Root Microbiome in Search of Chilling Stress Tolerance-Conferring Plant-Growth-Promoting Bacteria. Phytobiomes Journal, 2024, 8, 46-58.	1.4	2
2182	Conditionality of soil microbial mediation of Solidago plant phenotype: indicator taxa within complex microbiomes influence some, but not all Solidago traits. Plant and Soil, 0, , .	1.8	2

#	Article	IF	CITATIONS
2183	Changes of bacterial communities in restored <i>Phragmites australis</i> wetlands indicate the improvement of soil in the Yellow River Delta. Land Degradation and Development, 2023, 34, 1897-1909.	1.8	1
2184	Sources of Fungal Symbionts in the Microbiome of a Mobile Insect Host, Spodoptera frugiperda. Microbial Ecology, 2023, 86, 900-913.	1.4	3
2186	Negative effects of abamectin on soil microbial communities in the short term. Frontiers in Microbiology, 0, 13, .	1.5	4
2187	Plant Exudates and Microbial Interaction—A Change in Dynamics. Climate Change Management, 2023, , 83-95.	0.6	1
2188	Effects of different straw returning amounts and fertilizer conditions on bacteria of rice's different part in rare earth mining area. Scientific Reports, 2023, 13, .	1.6	6
2190	Plant Microbiome Diversity and Potential for Crops and Sustainable Agriculture. Microorganisms for Sustainability, 2023, , 331-364.	0.4	0
2191	Rhizobial migration toward roots mediated by FadL-ExoFQP modulation of extracellular long-chain AHLs. ISME Journal, 2023, 17, 417-431.	4.4	6
2192	Occurrence and Fate of Antibiotics in Manure. , 2023, , 321-339.		0
2193	The Role of the Root Microbiome in the Utilization of Functional Traits for Increasing Plant Productivity. Microorganisms for Sustainability, 2023, , 55-80.	0.4	0
2194	Unearthing the Modern Trends and Concepts of Rhizosphere Microbiome in Relation to Plant Productivity. Microorganisms for Sustainability, 2023, , 19-54.	0.4	0
2196	The Co-Association of Enterobacteriaceae and Pseudomonas with Specific Resistant Cucumber against Fusarium Wilt Disease. Biology, 2023, 12, 143.	1.3	6
2197	Functional Potential of Plant Microbiome for Sustainable Agriculture in Conditions of Abiotic Stresses. Microorganisms for Sustainability, 2023, , 121-136.	0.4	1
2198	Diversity and assembly of active bacteria and their potential function along soil aggregates in a paddy field. Science of the Total Environment, 2023, 866, 161360.	3.9	2
2199	Influence of phytochemical and soil characteristics on composition of culturable endophyte from Zingiber zerumbet (L) Smith rhizome. Ecological Genetics and Genomics, 2023, 26, 100158.	0.3	1
2200	Soil Properties and Bacterial Communities Associated with the Rhizosphere of the Common Bean after Using Brachiaria brizantha as a Service Crop: A 10-Year Field Experiment. Sustainability, 2023, 15, 488.	1.6	3
2201	Analysis of Arabidopsis non-reference accessions reveals high diversity of metabolic gene clusters and discovers new candidate cluster members. Frontiers in Plant Science, 0, 14, .	1.7	1
2202	Endophytic Bacteria in Ricinus communis L.: Diversity of Bacterial Community, Plantâ 'Growth Promoting Traits of the Isolates and Its Effect on Cu and Cd Speciation in Soil. Agronomy, 2023, 13, 333.	1.3	2
2203	Differential effects of rhizobacteria from uninfected and infected tomato on <i>Meloidogyne incognita</i> under protected cultivation. Journal of Basic Microbiology, 2023, 63, 604-621.	1.8	0

#	Article	IF	Citations
2204	Microbial cross talk: Below and above ground. , 2023, , 213-226.		0
2205	Ecological Processes of Bacterial and Fungal Communities Associated with <i>Typha orientalis</i> Roots in Wetlands Were Distinct during Plant Development. Microbiology Spectrum, 2023, 11, .	1.2	6
2206	Genome Sequence of the <i>Streptomyces</i> Strain AgN23 Revealed Expansion and Acquisition of Gene Repertoires Potentially Involved in Biocontrol Activity and Rhizosphere Colonization. PhytoFrontiers, 0, , .	0.8	1
2207	Elevated <scp>O₃</scp> concentrations alter the compartmentâ€specific microbial communities inhabiting rustâ€infected poplars. Environmental Microbiology, 2023, 25, 990-1006.	1.8	2
2209	Culture-independent and culture-dependent approaches in symbiont analysis. , 2023, , 743-763.		0
2210	Quantitative genetic-by-soil microbiome interactions in a perennial grass affect functional traits. Proceedings of the Royal Society B: Biological Sciences, 2023, 290, .	1.2	3
2211	Symbiotic Relationships with Fungi: From Mutualism to Parasitism. , 2023, , 375-413.		1
2213	Characterization of Boxwood Shoot Bacterial Communities and Potential Impact from Fungicide Treatments. Microbiology Spectrum, 2023, 11, .	1.2	2
2214	Cofunctioning of bacterial exometabolites drives root microbiota establishment. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	21
2215	Responses of root architecture and the rhizosphere microbiome assembly of maize (Zea mays L.) to a soil texture gradient. Soil Biology and Biochemistry, 2023, 181, 109026.	4.2	3
2216	Soil amendment with insect exuviae causes species-specific changes in the rhizosphere bacterial community of cabbage plants. Applied Soil Ecology, 2023, 188, 104854.	2.1	7
2217	Revealing the relative importance among plant species, slope positions, and soil types on rhizosphere microbial communities in northern tropical karst and non-karst seasonal rainforests of China. Frontiers in Microbiology, 0, 14, .	1.5	1
2221	Arabidopsis <scp>NPF2</scp> .13 functions as a critical transporter of bacterial natural compound tunicamycin in plant–microbe interaction. New Phytologist, 2023, 238, 765-780.	3.5	1
2222	Transfer and distribution of antibiotic resistance genes in the soil-peanut system receiving manure for years. Science of the Total Environment, 2023, 869, 161742.	3.9	3
2223	Evaluating the hologenome concept by analyzing the root-endosphere microbiota of chimeric plants. IScience, 2023, 26, 106031.	1.9	2
2224	No evidence that modification of soil microbiota by woody invader facilitates subsequent invasion by herbaceous species. Ecological Applications, 2024, 34, .	1.8	4
2225	Host genetics regulate the plant microbiome. Current Opinion in Microbiology, 2023, 72, 102268.	2.3	14
2226	Composting reduces the risks of antibiotic resistance genes in maize seeds posed by gentamicin fermentation waste. Science of the Total Environment, 2023, 870, 161785	3.9	5

#	Article	IF	CITATIONS
2228	Replacement of water yam (Dioscorea alata L) indigenous root endophytes and rhizosphere bacterial communities via inoculation with a synthetic bacterial community of dominant nitrogen-fixing bacteria. Frontiers in Microbiology, 0, 14, .	1.5	1
2229	Comparative Analysis of Core Microbiome Assignments: Implications for Ecological Synthesis. MSystems, 2023, 8, .	1.7	14
2232	Root-Associated Antagonistic Pseudomonas spp. Contribute to Soil Suppressiveness against Banana Fusarium Wilt Disease of Banana. Microbiology Spectrum, 2023, 11, .	1.2	7
2233	Environmental Selection and Biogeography Shape the Microbiome of Subsurface Petroleum Reservoirs. MSystems, 2023, 8, .	1.7	1
2234	Salicylic acid had the potential to enhance tolerance in horticultural crops against abiotic stress. Frontiers in Plant Science, 0, 14, .	1.7	8
2235	Changes in the Rhizosphere Prokaryotic Community Structure of Halodule wrightii Monospecific Stands Associated to Submarine Groundwater Discharges in a Karstic Costal Area. Microorganisms, 2023, 11, 494.	1.6	0
2236	A Bacillaceae consortium positively impacts arbuscular mycorrhizal fungus colonisation, plant phosphate nutrition, and tuber yield in Solanum tuberosum cv. Jazzy. Symbiosis, 2023, 89, 235-250.	1.2	0
2237	The Arabidopsis holobiont: a (re)source of insights to understand the amazing world of plant–microbe interactions. Environmental Microbiomes, 2023, 18, .	2.2	8
2238	Selection of rhizosphere communities of diverse rotation crops reveals unique core microbiome associated with reduced banana <i>Fusarium</i> wilt disease. New Phytologist, 2023, 238, 2194-2209.	3.5	18
2239	Insights into the Methodological, Biotic and Abiotic Factors Influencing the Characterization of Xylem-Inhabiting Microbial Communities of Olive Trees. Plants, 2023, 12, 912.	1.6	5
2240	Core root-associated prokaryotic community and its relationship to host traits across wheat varieties. Journal of Experimental Botany, 2023, 74, 2740-2753.	2.4	4
2241	Orchestration of the Plant Microbiome for Enhanced Agriculture. Sustainable Agriculture Reviews, 2023, , 23-46.	0.6	0
2242	Microbiome diversity, composition and assembly in a California citrus orchard. Frontiers in Microbiology, 0, 14, .	1.5	4
2243	Seasonal activities of the phyllosphere microbiome of perennial crops. Nature Communications, 2023, 14, .	5.8	13
2244	Is foliar spectrum predictive of belowground bacterial diversity? A case study in a peach orchard. Frontiers in Microbiology, 0, 14, .	1.5	0
2245	Getting to the root of tree soil microbiome sampling. Phytobiomes Journal, 0, , .	1.4	0
2246	Neighboring plant community attributes drive rhizobiome assemblages of a focal plant in a Kobresia meadow. Geoderma, 2023, 432, 116409.	2.3	0
2247	Different sensitivities and assembly mechanisms of the root-associated microbial communities of Robinia pseudoacacia to spatial variation at the regional scale. Plant and Soil, 2023, 486, 621-637.	1.8	3

#	Article	IF	CITATIONS
2249	Rhizosphere Microbiomes of Amaranthus spp. Grown in Soils with Anthropogenic Polyelemental Anomalies. Agronomy, 2023, 13, 759.	1.3	4
2250	Editorial: Plant microbiome: Ecology, functions, and application trends. Frontiers in Plant Science, 0, 14, .	1.7	0
2252	Changing Rhizosphere Microbial Community and Metabolites with Developmental Stages of Coleus barbatus. Microorganisms, 2023, 11, 705.	1.6	0
2253	Finding optimal microorganisms to increase crop productivity and sustainability under drought – a structured reflection. Journal of Plant Interactions, 2023, 18, .	1.0	5
2254	Rhizosphere microbial community assembly and association networks strongly differ based on vegetation type at a local environment scale. Frontiers in Microbiology, 0, 14, .	1.5	5
2262	Effects of Microbial Communities on Elevational Gradient Adaptation Strategies of Pinus yunnanensis Franch. and Pinus densata Mast. in a Mixed Zone. Forests, 2023, 14, 685.	0.9	2
2263	Testing the stress gradient hypothesis in soil bacterial communities associated with vegetation belts in the Andean Atacama Desert. Environmental Microbiomes, 2023, 18, .	2.2	3
2264	Legacy Effects of Phytoremediation on Plant-Associated Prokaryotic Communities in Remediated Subarctic Soil Historically Contaminated with Petroleum Hydrocarbons. Microbiology Spectrum, 2023, 11, .	1.2	0
2265	Health Management of Rhizospheric Microbiome. , 2023, , 179-224.		0
2266	Effects of Inbreeding on Microbial Community Diversity of Zea mays. Microorganisms, 2023, 11, 879.	1.6	1
2267	Plant-microbe community dynamics in rhizosphere: Reviewing the grassroots ecology towards sustainable agriculture. , 2023, 93, .		0
2268	Diversity and assembly of root-associated microbiomes of rubber trees. Frontiers in Plant Science, 0, 14, .	1.7	1
2269	Lectin Receptor-like Kinase Signaling during Engineered Ectomycorrhiza Colonization. Cells, 2023, 12, 1082.	1.8	2
2270	Congeneric temperate orchids recruit similar—yet differentially abundant—endophytic bacterial communities that are uncoupled from soil, but linked to host phenology and population size. American Journal of Botany, 2023, 110, .	0.8	0
2271	Biocontrol of plant pathogens in omics era—with special focus on endophytic bacilli. Critical Reviews in Biotechnology, 0, , 1-19.	5.1	5
2272	The microbiome of the endosymbiotic Symbiodiniaceae in corals exposed to thermal stress. Hydrobiologia, 2023, 850, 3685-3704.	1.0	4
2273	Genetic determinants of switchgrass-root-associated microbiota in field sites spanning its natural range. Current Biology, 2023, 33, 1926-1938.e6.	1.8	11
2274	The effect of wheat genotype on the microbiome is more evident in roots and varies through time. ISME Communications, 2023, 3, .	1.7	8

#	Article	IF	CITATIONS
2275	Metapangenomics of wild and cultivated banana microbiome reveals a plethora of host-associated protective functions. Environmental Microbiomes, 2023, 18, .	2.2	3
2276	Plant growth-promoting microbiomes: History and their role in agricultural crop improvement. , 2023, , 1-44.		0
2291	Endophytic bacterial diversity by 16S rRNA gene sequencing of Pak choi roots under fluazinam, Trichoderma harzianum, and Sophora flavescens inoculation. Functional and Integrative Genomics, 2023, 23, .	1.4	2
2301	Association of Silicon and Soil Microorganisms Induces Stress Mitigation, Increasing Plant Productivity. , 2023, , 299-328.		0
2304	Volatile compounds–mediated hormonal signaling and crosstalk with plant growth–promoting microbes. , 2023, , 295-304.		0
2305	Seed Endophytes and Their Roles in Host Plant Stress Resistance. Journal of Soil Science and Plant Nutrition, 2023, 23, 2927-2937.	1.7	3
2312	The role of earthworms in agronomy: Consensus, novel insights and remaining challenges. Advances in Agronomy, 2023, , 1-78.	2.4	5
2328	Multiomics analysis of rhizosphere and plant health. , 2023, , 433-444.		0
2354	Bioinformatics study to unravel the role of rhizobiome to biologically control the pathogens in vegetables. , 2023, , 267-284.		0
2357	Novel T4ASS effector with quorum quenching activity. ISME Journal, 2023, 17, 1523-1525.	4.4	0
2398	Significance and Exploitation of Rhizosphere Chemical Signaling Metabolites for Enhancing Soil Nutrient Transformation. Journal of Soil Science and Plant Nutrition, 0, , .	1.7	0
2430	Symbiotic associations between microbes and host plants. , 2024, , 145-179.		0
2434	Insights into economically important endophytic and rhizospheric bacteria of true mangroves of Indian Sundarbans using high throughput mapping. , 2024, , 299-325.		0
2462	Plant–microbe interactions for enhanced plant tolerance to stress. , 2024, , 1-24.		0
2472	Understanding the changes and roles of rhizosphere microbial communities under plant stress. , 2024, , 389-405.		0
2473	Bacterial endophytes as bioinoculants: Establishment of intimate and multifunctional plant–endophyte interactions under nonstress and salt stress conditions. , 2024, , 47-70.		0