A Subtype-Specific Function for the Extracellular Doma LTP

Neuron 76, 309-316 DOI: 10.1016/j.neuron.2012.07.024

Citation Report

#	ARTICLE	IF	CITATIONS
1	An unexpected role of neuroligin-2 in regulating KCC2 and GABA functional switch. Molecular Brain, 2013, 6, 23.	1.3	35
2	A Matter of Balance: Role of Neurexin and Neuroligin at the Synapse. Neurochemical Research, 2013, 38, 1174-1189.	1.6	85
3	Leucine-Rich Repeat Transmembrane Proteins Are Essential for Maintenance of Long-Term Potentiation. Neuron, 2013, 79, 439-446.	3.8	66
4	AMPARs and Synaptic Plasticity: The Last 25 Years. Neuron, 2013, 80, 704-717.	3.8	797
5	The interplay between Hebbian and homeostatic synaptic plasticity. Journal of Cell Biology, 2013, 203, 175-186.	2.3	136
6	Neuroligins and Neurexins. , 2013, , 671-686.		0
7	Neuroligin-1 controls synaptic abundance of NMDA-type glutamate receptors through extracellular coupling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 725-730.	3.3	164
8	Rearrangement of the dendritic morphology in limbic regions and altered exploratory behavior in a rat model of autism spectrum disorder. Neuroscience, 2013, 241, 170-187.	1.1	84
9	The role of cell adhesion molecules (CAMs) in defining synapse-specific function and plasticity. Animal Cells and Systems, 2013, 17, 1-6.	0.8	5
10	Neuroligin1 Drives Synaptic and Behavioral Maturation through Intracellular Interactions. Journal of Neuroscience, 2013, 33, 9364-9384.	1.7	23
11	Neuroligin-1 knockdown reduces survival of adult-generated newborn hippocampal neurons. Frontiers in Neuroscience, 2014, 8, 71.	1.4	22
12	Trafficking of Glutamate Receptors and Associated Proteins in Synaptic Plasticity. , 2014, , 221-279.		1
13	Protracted maturation of forebrain afferent connections of the ventral tegmental area in the rat. Journal of Comparative Neurology, 2014, 522, 1031-1047.	0.9	25
14	The Neuroligins and Their Ligands: from Structure to Function at the Synapse. Journal of Molecular Neuroscience, 2014, 53, 387-396.	1.1	10
15	CaMKII phosphorylation of neuroligin-1 regulates excitatory synapses. Nature Neuroscience, 2014, 17, 56-64.	7.1	83
16	Plasticity of Dendritic Spines: Subcompartmentalization of Signaling. Annual Review of Physiology, 2014, 76, 365-385.	5.6	103
17	A role for the neurexin–neuroligin complex in Alzheimer's disease. Neurobiology of Aging, 2014, 35, 746-756.	1.5	42
18	Splicing-Dependent Trans-synaptic SALM3–LAR-RPTP Interactions Regulate Excitatory Synapse Development and Locomotion. Cell Reports, 2015, 12, 1618-1630.	2.9	65

#	Article	IF	CITATIONS
19	Neuropathic Allodynia Involves Spinal Neurexin-1β-dependent Neuroligin-1/Postsynaptic Density-95/NR2B Cascade in Rats. Anesthesiology, 2015, 123, 909-926.	1.3	23
20	Neuroligin 1 modulates striatal glutamatergic neurotransmission in a pathway and NMDAR subunit-specific manner. Frontiers in Synaptic Neuroscience, 2015, 7, 11.	1.3	31
21	The Interplay between Synaptic Activity and Neuroligin Function in the CNS. BioMed Research International, 2015, 2015, 1-13.	0.9	19
22	In vivo clonal overexpression of neuroligin 3 and neuroligin 2 in neurons of the rat cerebral cortex: Differential effects on GABAergic synapses and neuronal migration. Journal of Comparative Neurology, 2015, 523, 1359-1378.	0.9	21
23	The cellular and molecular landscape of neuroligins. Trends in Neurosciences, 2015, 38, 496-505.	4.2	141
24	New insights into Alzheimer's disease pathogenesis: the involvement of neuroligins in synaptic malfunction. Neurodegenerative Disease Management, 2015, 5, 137-145.	1.2	17
25	A truncating mutation in Alzheimer's disease inactivates neuroligin-1 synaptic function. Neurobiology of Aging, 2015, 36, 3171-3175.	1.5	24
26	Neuroligins Sculpt Cerebellar Purkinje-Cell Circuits by Differential Control of Distinct Classes of Synapses. Neuron, 2015, 87, 781-796.	3.8	128
27	Neuroligin-1 regulates excitatory synaptic transmission, LTP and EPSP-spike coupling in the dentate gyrus in vivo. Brain Structure and Function, 2015, 220, 47-58.	1.2	64
28	Mutations in Synaptic Adhesion Molecules. , 2016, , 161-175.		0
29	Altered Cortical Dynamics and Cognitive Function upon Haploinsufficiency of the Autism-Linked Excitatory Synaptic Suppressor MDGA2. Neuron, 2016, 91, 1052-1068.	3.8	70
30	Neuroligins Are Selectively Essential for NMDAR Signaling in Cerebellar Stellate Interneurons. Journal of Neuroscience, 2016, 36, 9070-9083.	1.7	34
31	Adhesion Molecules in Synapse Assembly and Function. , 2016, , 425-465.		1
32	Neuroligin 1 regulates spines and synaptic plasticity via LIMK1/cofilin-mediated actin reorganization. Journal of Cell Biology, 2016, 212, 449-463.	2.3	79
33	TRPM4-dependent post-synaptic depolarization is essential for the induction of NMDA receptor-dependent LTP in CA1 hippocampal neurons. Pflugers Archiv European Journal of Physiology, 2016, 468, 593-607.	1.3	38
34	Synaptic adhesion molecule IgSF11 regulates synaptic transmission and plasticity. Nature Neuroscience, 2016, 19, 84-93.	7.1	48
35	Conditional ablation of neuroligin-1 in CA1 pyramidal neurons blocks LTP by a cell-autonomous NMDA receptor-independent mechanism. Molecular Psychiatry, 2017, 22, 375-383.	4.1	71
36	Autism spectrum disorder-associated genes and the development of dentate granule cells. Medical Molecular Morphology, 2017, 50, 123-129.	0.4	21

#	Article	IF	CITATIONS
37	Posttranslational modifications of neuroligins regulate neuronal and glial signaling. Current Opinion in Neurobiology, 2017, 45, 130-138.	2.0	30
38	Synaptic adhesion molecules and excitatory synaptic transmission. Current Opinion in Neurobiology, 2017, 45, 45-50.	2.0	76
39	Membraneâ€associated guanylate kinase dynamics reveal regional and developmental specificity of synapse stability. Journal of Physiology, 2017, 595, 1699-1709.	1.3	10
40	Subunit-specific role for the amino-terminal domain of AMPA receptors in synaptic targeting. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7136-7141.	3.3	66
41	Synaptic transmission and plasticity require AMPA receptor anchoring via its N-terminal domain. ELife, 2017, 6, .	2.8	81
42	Dynamics, nanoscale organization, and function of synaptic adhesion molecules. Molecular and Cellular Neurosciences, 2018, 91, 95-107.	1.0	18
43	Somatostatin and parvalbumin inhibitory synapses onto hippocampal pyramidal neurons are regulated by distinct mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 589-594.	3.3	59
44	Increased Neuroligin 2 Levels in the Postsynaptic Membrane in Spinal Dorsal Horn may Contribute to Postoperative Pain. Neuroscience, 2018, 382, 14-22.	1.1	10
45	Regulation of hippocampal long term depression by Neuroligin 1. Neuropharmacology, 2018, 143, 205-216.	2.0	20
46	AMPA Receptor Trafficking for Postsynaptic Potentiation. Frontiers in Cellular Neuroscience, 2018, 12, 361.	1.8	48
47	Synaptic Plasticity and Excitation-Inhibition Balance in the Dentate Gyrus: Insights fromIn VivoRecordings in Neuroligin-1, Neuroligin-2, and Collybistin Knockouts. Neural Plasticity, 2018, 2018, 1-11.	1.0	16
49	PSD-95 binding dynamically regulates NLGN1 trafficking and function. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12035-12044.	3.3	42
50	Neuroligin-1 Signaling Controls LTP and NMDA Receptors by Distinct Molecular Pathways. Neuron, 2019, 102, 621-635.e3.	3.8	67
51	New Alzheimer's disease model mouse specialized for analyzing the function and toxicity of intraneuronal Amyloid β oligomers. Scientific Reports, 2019, 9, 17368.	1.6	13
52	Synaptic Kalirin-7 and Trio Interactomes Reveal a GEF Protein-Dependent Neuroligin-1 Mechanism of Action. Cell Reports, 2019, 29, 2944-2952.e5.	2.9	21
53	The neuroligins and the synaptic pathway in Autism Spectrum Disorder. Neuroscience and Biobehavioral Reviews, 2020, 119, 37-51.	2.9	40
54	Neuroligins and neurexins. , 2020, , 193-212.		0
55	Synaptic Organizers in Alzheimer's Disease: A Classification Based on Amyloid-β Sensitivity. Frontiers in Cellular Neuroscience, 2020, 14, 281.	1.8	10

#	Article	IF	CITATIONS
56	A molecular insight into the dissociable regulation of associative learning and motivation by the synaptic protein neuroligin-1. BMC Biology, 2020, 18, 118.	1.7	10
57	Neuroligin3 splice isoforms shape inhibitory synaptic function in the mouse hippocampus. Journal of Biological Chemistry, 2020, 295, 8589-8595.	1.6	22
58	Trafficking and Activity of Glutamate and GABA Receptors: Regulation by Cell Adhesion Molecules. Neuroscientist, 2020, 26, 415-437.	2.6	10
59	Kirrel3-Mediated Synapse Formation Is Attenuated by Disease-Associated Missense Variants. Journal of Neuroscience, 2020, 40, 5376-5388.	1.7	12
60	Comparative mapping of selected structural determinants on the extracellular domains of cholinesterase-like cell-adhesion molecules. Neuropharmacology, 2021, 184, 108381.	2.0	4
61	Plasticity in the Hippocampus, Neurogenesis and Drugs of Abuse. Brain Sciences, 2021, 11, 404.	1.1	21
62	An optogenetic method for investigating presynaptic molecular regulation. Scientific Reports, 2021, 11, 11329.	1.6	2
63	MAGUKs are essential, but redundant, in long-term potentiation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	8
64	Autism Spectrum Disorder/Intellectual Disability-Associated Mutations in Trio Disrupt Neuroligin 1-Mediated Synaptogenesis. Journal of Neuroscience, 2021, 41, 7768-7778.	1.7	17
65	Neuroligin-1 mediates presynaptic maturation through brain-derived neurotrophic factor signaling. BMC Biology, 2021, 19, 215.	1.7	4
66	Neurexins: molecular codes for shaping neuronal synapses. Nature Reviews Neuroscience, 2021, 22, 137-151.	4.9	90
68	The Role of Ionotropic Glutamate Receptors in Childhood Neurodevelopmental Disorders: Autism Spectrum Disorders and Fragile X Syndrome. Current Neuropharmacology, 2014, 12, 71-98.	1.4	65
69	Distinct roles for extracellular and intracellular domains in neuroligin function at inhibitory synapses. ELife, 2016, 5, .	2.8	41
70	Optogenetic control of excitatory post-synaptic differentiation through neuroligin-1 tyrosine phosphorylation. ELife, 2020, 9, .	2.8	15
71	Neuroligin-3: A Circuit-Specific Synapse Organizer That Shapes Normal Function and Autism Spectrum Disorder-Associated Dysfunction. Frontiers in Molecular Neuroscience, 2021, 14, 749164.	1.4	28
77	Alternative splicing at neuroligin site A regulates glycan interaction and synaptogenic activity. ELife, 2020, 9, .	2.8	10
78	Neuroligin-3 Regulates Excitatory Synaptic Transmission and EPSP-Spike Coupling in the Dentate Gyrus In Vivo. Molecular Neurobiology, 2022, 59, 1098-1111.	1.9	4
79	Autism Spectrum Disorder: Focus on Glutamatergic Neurotransmission. International Journal of Molecular Sciences, 2022, 23, 3861.	1.8	28

#	Article	IF	CITATIONS
82	Neuroligin Plays a Role in Ethanol-Induced Disruption of Memory and Corresponding Modulation of Glutamate Receptor Expression. Frontiers in Behavioral Neuroscience, 2022, 16, .	1.0	0
83	Impairment in social interaction and hippocampal long-term potentiation at perforant pathway-dentate gyrus synapses in a prenatal valproic acid-induced rat model of autism. Brain Communications, 2022, 4, .	1.5	6
84	Roles of neuroligins in central nervous system development: focus on glial neuroligins and neuron neuroligins. Journal of Translational Medicine, 2022, 20, .	1.8	9
85	The Hippocampus and Addiction: Focus on Plasticity and Circuitry in the Hippocampus. , 2022, , 437-458.		0
86	Hippocampal circuits. , 2023, , 247-288.		1
87	Neuroligins facilitate the development of bone cancer pain via regulating synaptic transmission: an experimental study. Brazilian Journal of Anesthesiology (Elsevier), 2023, , 744422.	0.2	0
89	Regulation of Presynaptic Release Machinery by Cell Adhesion Molecules. Advances in Neurobiology, 2023, , 333-356.	1.3	1