Contrasting patterns of early twenty-first-century glacity

Nature 488, 495-498 DOI: 10.1038/nature11324

Citation Report

#	Article	IF	CITATIONS
1	Nimbus-7 SMMR Derived Global Snow Cover Parameters. Annals of Glaciology, 1987, 9, 39-44.	2.8	361
2	Internal Reflecting Horizons in Spitsbergen Glaciers. Annals of Glaciology, 1987, 9, 5-10.	2.8	28
3	Remote Sensing of the Ross Ice Streams and Adjacent Ross Ice Shelf, Antarctica. Annals of Glaciology, 1987, 9, 20-29.	2.8	12
4	Stagnant Ice at the Bed of White Glacier, Axel Heiberg Island. N.W.T., Canada. Annals of Glaciology, 1987, 9, 35-38.	2.8	1
5	Himalayan glaciers in the balance. Nature, 2012, 488, 468-469.	13.7	30
6	Accelerated contributions of Canada's Baffin and Bylot Island glaciers to sea level rise over the past half century. Cryosphere, 2012, 6, 1103-1125.	1.5	61
7	Climate Change Impacts on Glacier Hydrology and River Discharge in the Hindu Kush–Himalayas. Mountain Research and Development, 2012, 32, 461-467.	0.4	116
8	Himalayan glacier data settle on the middle ground. Nature, 2012, , .	13.7	1
9	Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nature Geoscience, 2013, 6, 742-745.	5.4	391
10	Mass balance of a maritime glacier on the southeast Tibetan Plateau and its climatic sensitivity. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9579-9594.	1.2	132
11	Recent (1980–2009) evidence of climate change in the upper Karakoram, Pakistan. Theoretical and Applied Climatology, 2013, 113, 611-641.	1.3	93
12	An introduction to the IBMR, a hydro-economic model for climate change impact assessment in Pakistan's Indus River basin. Water International, 2013, 38, 632-650.	0.4	34
13	Heterogeneous mass loss of glaciers in the Aksu-Tarim Catchment (Central Tien Shan) revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery. Remote Sensing of Environment, 2013, 130, 233-244.	4.6	183
14	A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009. Science, 2013, 340, 852-857.	6.0	1,044
15	Glacier Inventory in Indus, Ganga and Brahmaputra Basins of the Himalaya. The National Academy of Sciences, India, 2013, 36, 497-505.	0.8	26
16	Water level changes of high altitude lakes in Himalaya–Karakoram from ICESat altimetry. Journal of Earth System Science, 2013, 122, 1533-1543.	0.6	23
17	Glaciers and ice caps: Vulnerable water resources in a warming climate. Current Opinion in Environmental Sustainability, 2013, 5, 590-598.	3.1	20
18	Missing (in-situ) snow cover data hampers climate change and runoff studies in the Greater Himalayas. Science of the Total Environment, 2013, 468-469, S60-S70.	3.9	47

TION RE

#	ARTICLE	IF	CITATIONS
19	Climatic variation and runoff from partially-glacierised Himalayan tributary basins of the Ganges. Science of the Total Environment, 2013, 468-469, S48-S59.	3.9	29
20	Evaluation of an ice ablation model to estimate the contribution of melting glacier ice to annual discharge in the Nepal Himalaya. Water Resources Research, 2013, 49, 5117-5133.	1.7	100
21	A physically based model of the year-round surface energy and mass balance of debris-covered glaciers. Journal of Glaciology, 2013, 59, 327-344.	1.1	71
22	Influence of debris cover on terminus retreat and mass changes of Chorabari Glacier, Garhwal region, central Himalaya, India. Journal of Glaciology, 2013, 59, 961-971.	1.1	145
23	Density assumptions for converting geodetic glacier volume change to mass change. Cryosphere, 2013, 7, 877-887.	1.5	476
24	Quantifying present and future glacier melt-water contribution to runoff in a central Himalayan river basin. Cryosphere, 2013, 7, 889-904.	1.5	68
25	Seasonal and annual mass balances of Mera and Pokalde glaciers (Nepal Himalaya) since 2007. Cryosphere, 2013, 7, 1769-1786.	1.5	149
26	Southwest-facing slopes control the formation of debris-covered glaciers in the Bhutan Himalaya. Cryosphere, 2013, 7, 1303-1314.	1.5	76
27	Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere, 2013, 7, 1263-1286.	1.5	631
28	Reanalysing glacier mass balance measurement series. Cryosphere, 2013, 7, 1227-1245.	1.5	217
29	Heterogeneity in glacier response in the upper Shyok valley, northeast Karakoram. Cryosphere, 2013, 7, 1385-1398.	1.5	153
30	Balanced conditions or slight mass gain of glaciers in the Lahaul and Spiti region (northern India,) Tj ETQq1 1 0.7	84314 rgB 1.5	BT /Qyerlock
31	Changes of glacial lakes and implications in Tian Shan, central Asia, based on remote sensing data from 1990 to 2010. Environmental Research Letters, 2013, 8, 044052.	2.2	104
32	Mass loss of Greenland's glaciers and ice caps 2003–2008 revealed from ICESat laser altimetry data. Geophysical Research Letters, 2013, 40, 875-881.	1.5	117
33	The influence of debris cover and glacial lakes on the recession of glaciers in Sikkim Himalaya, India. Journal of Glaciology, 2013, 59, 1035-1046.	1.1	157
34	Methodological approaches to infer end-of-winter snow distribution on alpine glaciers. Journal of Glaciology, 2013, 59, 1047-1059.	1.1	62
35	Sources of uncertainty in modeling the glaciohydrological response of a Karakoram watershed to climate change. Water Resources Research, 2013, 49, 6048-6066.	1.7	95
36	Increased mass over the Tibetan Plateau: From lakes or glaciers?. Geophysical Research Letters, 2013, 40, 2125-2130.	1.5	242

#	Article	IF	CITATIONS
37	Satellite-derived volume loss rates and glacier speeds for the Cordillera Darwin Icefield, Chile. Cryosphere, 2013, 7, 823-839.	1.5	40
38	Geometric dependency of Tibetan lakes on glacial runoff. Hydrology and Earth System Sciences, 2013, 17, 4061-4077.	1.9	38
39	High-resolution interactive modelling of the mountain glacier–atmosphere interface: an application over the Karakoram. Cryosphere, 2013, 7, 779-795.	1.5	71
40	Tree-ring-inferred glacier mass balance variation in southeastern Tibetan Plateau and its linkage with climate variability. Climate of the Past, 2013, 9, 2451-2458.	1.3	7
41	Assessment of Lahaul-Spiti (western Himalaya, India) Glaciers- An Overview of Mass Balance and Climate. Journal of Earth Science & Climatic Change, 2014, s11, .	0.2	1
42	Climate change implications for the glaciers of the Hindu Kush, Karakoram and Himalayan region. Cryosphere, 2014, 8, 941-958.	1.5	77
43	Processes governing the mass balance of Chhota Shigri Glacier (western Himalaya, India) assessed by point-scale surface energy balance measurements. Cryosphere, 2014, 8, 2195-2217.	1.5	133
44	Impact of varying debris cover thickness on ablation: a case study for Koxkar Glacier in the Tien Shan. Cryosphere, 2014, 8, 377-386.	1.5	91
45	Estimation of Mass Balance of the Grosser Aletschgletscher, Swiss Alps, from ICESat Laser Altimetry Data and Digital Elevation Models. Remote Sensing, 2014, 6, 5614-5632.	1.8	25
46	Clacier changes in the Karakoram region mapped by multimission satellite imagery. Cryosphere, 2014, 8, 977-989.	1.5	139
47	Glacier topography and elevation changes derived from Pléiades sub-meter stereo images. Cryosphere, 2014, 8, 2275-2291.	1.5	176
48	Modelling runoff from a Himalayan debris-covered glacier. Hydrology and Earth System Sciences, 2014, 18, 2679-2694.	1.9	85
50	Glaciers between two drivers. Nature Climate Change, 2014, 4, 12-13.	8.1	2
51	Precipitation Seasonality and Variability over the Tibetan Plateau as Resolved by the High Asia Reanalysis*. Journal of Climate, 2014, 27, 1910-1927.	1.2	556
52	Estimating the volume of glaciers in the Himalayan–Karakoram region using different methods. Cryosphere, 2014, 8, 2313-2333.	1.5	203
53	Brief Communication: On the magnitude and frequency of Khurdopin glacier surge events. Cryosphere, 2014, 8, 571-574.	1.5	37
54	Representing moisture fluxes and phase changes in glacier debris cover using a reservoir approach. Cryosphere, 2014, 8, 1429-1444.	1.5	53
55	Surface-area changes of glaciers in the Tibetan Plateau interior area since the 1970s using recent Landsat images and historical maps. Annals of Glaciology, 2014, 55, 213-222.	2.8	71

#	Article	IF	CITATIONS
57	Variations in water level and glacier mass balance in Nam Co lake, Nyainqentanglha range, Tibetan Plateau, based on ICESat data for 2003-09. Annals of Glaciology, 2014, 55, 239-247.	2.8	19
58	Reconstruction of the annual mass balance of Chhota Shigri glacier, Western Himalaya, India, since 1969. Annals of Glaciology, 2014, 55, 69-80.	2.8	126
59	Awareness of Both Type 1 and 2 Errors in Climate Science and Assessment. Bulletin of the American Meteorological Society, 2014, 95, 1445-1451.	1.7	15
60	Reconstructing historic Glacial Lake Outburst Floods through numerical modelling and geomorphological assessment: Extreme events in the Himalaya. Earth Surface Processes and Landforms, 2014, 39, 1675-1692.	1.2	45
61	Theoretical Foundations of Remote Sensing for Glacier Assessment and Mapping. , 2014, , 23-52.		4
62	Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements. Environmental Research Letters, 2014, 9, 014009.	2.2	243
63	Regional glacier mass loss estimated by ICESat-GLAS data and SRTM digital elevation model in the West Kunlun Mountains, Tibetan Plateau, 2003–2009. Journal of Applied Remote Sensing, 2014, 8, 083515.	0.6	8
64	Rapid glacier retreat in the Naimona'Nyi region, western Himalayas, between 2003 and 2013. Journal of Applied Remote Sensing, 2014, 8, 083508.	0.6	13
65	Glacier fluctuations of Muztagh Ata and temperature changes during the late Holocene in westernmost Tibetan Plateau, based on glaciolacustrine sediment records. Geophysical Research Letters, 2014, 41, 6265-6273.	1.5	78
66	Tracing glacier changes since the 1960s on the south slope of Mt. Everest (central Southern Himalaya) using optical satellite imagery. Cryosphere, 2014, 8, 1297-1315.	1.5	95
67	Accumulation Studies at a High Elevation Glacier Site in Central Karakoram. Advances in Meteorology, 2014, 2014, 1-12.	0.6	25
68	How large is the Upper Indus Basin? The pitfalls of auto-delineation using DEMs. Journal of Hydrology, 2014, 509, 442-453.	2.3	78
69	Chemistry and isotopic composition of precipitation and surface waters in Khumbu valley (Nepal) Tj ETQq0 0 0 r	gBT /Overl	ock 10 Tf 50
70	Glacial mass balance changes in the Karakoram and Himalaya based on CMIP5 multi-model climate projections. Climatic Change, 2014, 123, 315-328.	1.7	58
71	Glaciers and ice sheets: current status and trends. Rendiconti Lincei, 2014, 25, 59-70.	1.0	7
72	Glaciers of the Karakoram Himalaya. Advances in Asian Human-Environmental Research, 2014, , .	0.7	65
73	Sensitivities of the equilibrium line altitude to temperature and precipitation changes along the Andes. Quaternary Research, 2014, 81, 355-366.	1.0	63
74	Rising river flows and glacial mass balance in central Karakoram. Journal of Hydrology, 2014, 513, 192-203.	2.3	59

#	Article	IF	CITATIONS
75	Changes of glaciers in the Andes of Chile and priorities for future work. Science of the Total Environment, 2014, 493, 1197-1210.	3.9	94
76	Predicted areas of potential distributions of alpine wetlands under different scenarios in the Qinghai-Tibetan Plateau, China. Global and Planetary Change, 2014, 123, 77-85.	1.6	31
77	Estimating the Loss of Himalayan Glaciers under Global Warming Using the δ ¹⁸ O–Salinity Relation in the Bay of Bengal. Environmental Science and Technology Letters, 2014, 1, 249-253.	3.9	7
78	Snowpack Changes in the Hindu Kush–Karakoram–Himalaya from CMIP5 Global Climate Models. Journal of Hydrometeorology, 2014, 15, 2293-2313.	0.7	38
79	Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia. Nature Climate Change, 2014, 4, 68-73.	8.1	273
80	Data and knowledge gaps in glacier, snow and related runoff research – A climate change adaptation perspective. Journal of Hydrology, 2014, 518, 225-234.	2.3	41
81	Monitoring cryosphere and associated flood hazards in high mountain ranges of Pakistan using remote sensing technique. Natural Hazards, 2014, 73, 933-949.	1.6	21
82	Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation. Nature Climate Change, 2014, 4, 587-592.	8.1	818
83	Estimation and analysis of the surface velocity field of mountain glaciers in Muztag Ata using satellite SAR data. Environmental Earth Sciences, 2014, 71, 3581-3592.	1.3	17
84	Glacier change in the Poiqu River basin inferred from Landsat data from 1975 to 2010. Quaternary International, 2014, 349, 392-401.	0.7	23
85	High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles. Remote Sensing of Environment, 2014, 150, 93-103.	4.6	382
86	Accelerated lake expansion on the Tibetan Plateau in the 2000s: Induced by glacial melting or other processes?. Water Resources Research, 2014, 50, 3170-3186.	1.7	206
87	Observations: Cryosphere. , 2014, , 317-382.		114
88	Freshwater Resources. , 0, , 229-270.		16
89	Snow cover sensitivity to black carbon deposition in the Himalayas: from atmospheric and ice core measurements to regional climate simulations. Atmospheric Chemistry and Physics, 2014, 14, 4237-4249.	1.9	80
90	Numerical simulations of Gurenhekou glacier on the Tibetan Plateau. Journal of Glaciology, 2014, 60, 71-82.	1.1	27
91	Satellite-derived volume loss rates and glacier speeds for the Juneau Icefield, Alaska. Journal of Glaciology, 2014, 60, 743-760.	1.1	24
92	Glacier changes in the Koshi River basin, central Himalaya, from 1976 to 2009, derived from remote-sensing imagery. Annals of Glaciology, 2014, 55, 61-68.	2.8	25

#	Article	IF	CITATIONS
93	Climate change and glacier area shrinkage in the Qilian mountains, China, from 1956 to 2010. Annals of Glaciology, 2014, 55, 187-197.	2.8	53
94	Modelling ice-cliff backwasting on a debris-covered glacier in the Nepalese Himalaya. Journal of Glaciology, 2015, 61, 889-907.	1.1	70
95	Inroads of remote sensing into hydrologic science during the WRR era. Water Resources Research, 2015, 51, 7309-7342.	1.7	243
96	Heterogeneity in Karakoram glacier surges. Journal of Geophysical Research F: Earth Surface, 2015, 120, 1288-1300.	1.0	119
97	Negative consequences of glacial turbidity for the survival of freshwater planktonic heterotrophic flagellates. Scientific Reports, 2014, 4, 4113.	1.6	50
98	A reflection on the long-term water balance of the Upper Indus Basin. Hydrology Research, 2015, 46, 446-462.	1.1	40
99	Glacier mass changes in Rongbuk catchment on Mt. Qomolangma from 1974 to 2006 based on topographic maps and ALOS PRISM data. Journal of Hydrology, 2015, 530, 273-280.	2.3	42
100	Mass balance reconstruction since 1963 and mass balance model for east rathong glacier, eastern himalaya, using remote sensing methods. Geografiska Annaler, Series A: Physical Geography, 2015, 97, 695-707.	0.6	7
101	Complexities and Controversies in Himalayan Research: A Call for Collaboration and Rigor for Better Data. Mountain Research and Development, 2015, 35, 401-409.	0.4	48
102	Assessment of the evolution in velocity of two debrisâ€covered valley glaciers in nepal and new zealand. Geografiska Annaler, Series A: Physical Geography, 2015, 97, 737-751.	0.6	18
103	Modis derived equilibrium line altitude estimates for purogangri ice cap, tibetan plateau, and their relation to climatic predictors (2001–2012). Geografiska Annaler, Series A: Physical Geography, 2015, 97, 599-614.	0.6	13
104	A simple model to evaluate ice melt over the ablation area of glaciers in the Central Karakoram National Park, Pakistan. Annals of Glaciology, 2015, 56, 202-216.	2.8	35
105	Derivation and analysis of a complete modern-date glacier inventory for Alaska and northwest Canada. Journal of Glaciology, 2015, 61, 403-420.	1.1	60
106	Integrated simulation of snow and glacier melt in water and energy balanceâ€based, distributed hydrological modeling framework at Hunza River Basin of Pakistan Karakoram region. Journal of Geophysical Research D: Atmospheres, 2015, 120, 4889-4919.	1.2	94
108	Glacier floods. , 2015, , 204-226.		1
109	Modelling glacier change in the Everest region, Nepal Himalaya. Cryosphere, 2015, 9, 1105-1128.	1.5	137
110	The CAMDAM glacier inventory: a quality-controlled inventory of Asian glaciers. Cryosphere, 2015, 9, 849-864.	1.5	148
111	Black carbon in snow in the upper Himalayan Khumbu Valley, Nepal: observations and modeling of the impact on snow albedo, melting, and radiative forcing. Cryosphere, 2015, 9, 1685-1699.	1.5	57

#	Article	IF	Citations
112	Four decades of glacier variations at Muztagh Ata (eastern Pamir): a multi-sensor study including Hexagon KH-9 and Pléiades data. Cryosphere, 2015, 9, 2071-2088.	1.5	98
113	South Asia river-flow projections and their implications for water resources. Hydrology and Earth System Sciences, 2015, 19, 4783-4810.	1.9	14
114	Impact of debris cover on glacier ablation and atmosphere–glacier feedbacks in the Karakoram. Cryosphere, 2015, 9, 1617-1632.	1.5	64
115	Climate regime of Asian glaciers revealed by GAMDAM glacier inventory. Cryosphere, 2015, 9, 865-880.	1.5	82
116	Combined ICESat and CryoSat-2 Altimetry for Accessing Water Level Dynamics of Tibetan Lakes over 2003–2014. Water (Switzerland), 2015, 7, 4685-4700.	1.2	50
117	Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff. Hydrology and Earth System Sciences, 2015, 19, 4673-4687.	1.9	240
118	Modeling Glacier Elevation Change from DEM Time Series. Remote Sensing, 2015, 7, 10117-10142.	1.8	56
119	Remote Sensing for Characterisation and Kinematic Analysis of Large Slope Failures: Debre Sina Landslide, Main Ethiopian Rift Escarpment. Remote Sensing, 2015, 7, 16183-16203.	1.8	20
120	Sensitivity of glacier runoff projections to baseline climate data in the Indus River basin. Frontiers in Earth Science, 2015, 3, .	0.8	20
121	Widespread Albedo Decreasing and Induced Melting of Himalayan Snow and Ice in the Early 21st Century. PLoS ONE, 2015, 10, e0126235.	1.1	53
122	Glacial Area Changes in the Ili River Catchment (Northeastern Tian Shan) in Xinjiang, China, from the 1960s to 2009. Advances in Meteorology, 2015, 2015, 1-12.	0.6	17
123	Dramatic loss of glacier accumulation area on the Tibetan Plateau revealed by ice core tritium and mercury records. Cryosphere, 2015, 9, 1213-1222.	1.5	78
124	Snowfall in the Himalayas: an uncertain future from a little-known past. Cryosphere, 2015, 9, 1147-1167.	1.5	44
125	Repeated glacial lake outburst flood threatening the oldest Buddhist monastery in north-western Nepal. Natural Hazards and Earth System Sciences, 2015, 15, 2425-2437.	1.5	27
126	A reevaluation of the snowmelt and glacial melt in river flows within Upper Indus Basin and its significance in a changing climate. Journal of Hydrology, 2015, 527, 119-132.	2.3	94
127	Changes in Glacier Volume in the North Bank of the Bangong Co Basin from 1968 to 2007 Based on Historical Topographic Maps, SRTM, and ASTER Stereo Images. Arctic, Antarctic, and Alpine Research, 2015, 47, 301-311.	0.4	25
129	Seasonal changes in surface albedo of Himalayan glaciers from MODIS data and links with the annual mass balance. Cryosphere, 2015, 9, 341-355.	1.5	60
130	Spatial patterns in glacier characteristics and area changes from 1962 to 2006 in the Kanchenjunga–Sikkim area, eastern Himalaya. Cryosphere, 2015, 9, 505-523.	1.5	109

#	ARTICLE	IF	CITATIONS
131	Mass changes of Southern and Northern Inylchek Glacier, Central Tian Shan, Kyrgyzstan, during â^1⁄41975 and 2007 derived from remote sensing data. Cryosphere, 2015, 9, 703-717.	1.5	57
132	Remotely sensed debris thickness mapping of Bara Shigri Glacier, Indian Himalaya. Journal of Glaciology, 2015, 61, 675-688.	1.1	58
133	Satellite observations show no net change in the percentage of supraglacial debris-covered area in northern Pakistan from 1977 to 2014. Journal of Glaciology, 2015, 61, 524-536.	1.1	41
134	Mass-balance changes of the debris-covered glaciers in the Langtang Himal, Nepal, from 1974 to 1999. Journal of Glaciology, 2015, 61, 373-386.	1.1	129
135	Surface energy and mass balance at Purogangri ice cap, central Tibetan Plateau, 2001–2011. Journal of Glaciology, 2015, 61, 1048-1060.	1.1	32
136	Heterogeneous change patterns of water level for inland lakes in High Mountain Asia derived from multiâ€mission satellite altimetry. Hydrological Processes, 2015, 29, 2769-2781.	1.1	41
137	Rapid expansion of glacial lakes caused by climate and glacier retreat in the Central Himalayas. Hydrological Processes, 2015, 29, 859-874.	1.1	139
138	Glacier Changes and Permafrost Distribution. , 2015, , 25-30.		1
139	Region-wide glacier mass budgets and area changes for the Central Tien Shan between ~1975 and 1999 using Hexagon KH-9 imagery. Global and Planetary Change, 2015, 128, 1-13.	1.6	172
140	Bumblebees, climate and glaciers across the Tibetan plateau (Apidae: <i>Bombus</i> Latreille). Systematics and Biodiversity, 2015, 13, 164-181.	0.5	26
141	Multi-annual variations in winter westerly disturbance activity affecting the Himalaya. Climate Dynamics, 2015, 44, 441-455.	1.7	156
142	Unraveling the hydrology of a Himalayan catchment through integration of high resolution in situ data and remote sensing with an advanced simulation model. Advances in Water Resources, 2015, 78, 94-111.	1.7	142
143	Changes in the glacier extent and surface elevation in Xiongcaigangri region, Southern Karakoram Mountains, China. Quaternary International, 2015, 371, 67-75.	0.7	16
144	Future Hydrological Regimes in the Upper Indus Basin: A Case Study from a High-Altitude Glacierized Catchment. Journal of Hydrometeorology, 2015, 16, 306-326.	0.7	86
145	A comparative high-altitude meteorological analysis from three catchments in the Nepalese Himalaya. International Journal of Water Resources Development, 2015, 31, 174-200.	1.2	89
146	Estimation of mass balance of Dongkemadi glaciers with multiple methods based on multi-mission satellite data. Quaternary International, 2015, 371, 58-66.	0.7	14
147	Heterogeneous changes of glaciers over the western Kunlun Mountains based on ICESat and Landsat-8 derived glacier inventory. Remote Sensing of Environment, 2015, 168, 13-23.	4.6	60
148	Boltzmann–Shannon entropy and river flow stability within Upper Indus Basin in a changing climate. International Journal of River Basin Management, 2015, 13, 87-95.	1.5	11

#	Article	IF	CITATIONS
149	Delineation of glacial zones of Gangotri and other glaciers of Central Himalaya using RISAT-1 C-band dual-pol SAR. International Journal of Remote Sensing, 2015, 36, 1529-1550.	1.3	20
150	Hydrological regimes under the conjunction of westerly and monsoon climates: a case investigation in the Astore Basin, Northwestern Himalaya. Climate Dynamics, 2015, 44, 3015-3032.	1.7	53
151	Mass loss from glaciers in the Chinese Altai Mountains between 1959 and 2008 revealed based on historical maps, SRTM, and ASTER images. Journal of Mountain Science, 2015, 12, 330-343.	0.8	22
152	Glacier changes during the past 40 years in the West Kunlun Shan. Journal of Mountain Science, 2015, 12, 344-357.	0.8	32
153	Brief Communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya. Cryosphere, 2015, 9, 557-564.	1.5	350
154	Impact of climate change on the hydrological regime of the Indus, Ganges and Brahmaputra river basins: a review of the literature. International Journal of Water Resources Development, 2015, 31, 201-218.	1.2	133
155	Peculiar Characteristics of Fragmentation of Glaciers: A Case Study of Western Himalaya, India. International Journal of Geosciences, 2015, 06, 455-463.	0.2	7
156	Energy- and mass-balance comparison between Zhadang and Parlung No. 4 glaciers on the Tibetan Plateau. Journal of Glaciology, 2015, 61, 595-607.	1.1	39
157	Rising and falling river flows: contrasting signals of climate change and glacier mass balance from the eastern and western Karakoram. Hydrological Sciences Journal, 2015, 60, 2062-2085.	1.2	28
158	Glacier changes in the Ravi basin, North-Western Himalaya (India) during the last four decades (1971–2010/13). Global and Planetary Change, 2015, 135, 133-147.	1.6	88
159	Evaluation of a Coupled Snow and Energy Balance Model for Zhadang Glacier, Tibetan Plateau, Using Glaciological Measurements and Time-Lapse Photography. Arctic, Antarctic, and Alpine Research, 2015, 47, 573-590.	0.4	60
160	Substantial glacier mass loss in the Tien Shan over the past 50 years. Nature Geoscience, 2015, 8, 716-722.	5.4	332
161	Frontal changes in the Manimahesh and Tal Glaciers in the Ravi basin, Himachal Pradesh, northwestern Himalaya (India), between 1971 and 2013. International Journal of Remote Sensing, 2015, 36, 4095-4113.	1.3	26
162	Geomorphological and palaeoclimate dynamics recorded by the formation of aeolian archives on the Tibetan Plateau. Earth-Science Reviews, 2015, 150, 393-408.	4.0	82
163	Modelling the feedbacks between mass balance, ice flow and debris transport to predict the response to climate change of debris-covered glaciers in the Himalaya. Earth and Planetary Science Letters, 2015, 430, 427-438.	1.8	158
164	Water budget on the Dudh Koshi River (Nepal): Uncertainties on precipitation. Journal of Hydrology, 2015, 531, 850-862.	2.3	31
165	Separating snow, clean and debris covered ice in the Upper Indus Basin, Hindukush-Karakoram-Himalayas, using Landsat images between 1998 and 2002. Journal of Hydrology, 2015, 521, 46-64.	2.3	61
166	The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products. Remote Sensing of Environment, 2015, 162, 408-426.	4.6	253

#	Article	IF	CITATIONS
167	Can mountain glacier melting explains the GRACE-observed mass loss in the southeast Tibetan Plateau: From a climate perspective?. Global and Planetary Change, 2015, 124, 1-9.	1.6	56
168	Snow cover trend and hydrological characteristics of the Astore River basin (Western Himalayas) and its comparison to the Hunza basin (Karakoram region). Science of the Total Environment, 2015, 505, 748-761.	3.9	118
169	The changing cryosphere – implications for solute and sedimentary fluxes in cold climate environments. , 2016, , 13-29.		3
170	A new remote hazard and risk assessment framework for glacial lakes in the Nepal Himalaya. Hydrology and Earth System Sciences, 2016, 20, 3455-3475.	1.9	75
171	Application and validation of long-range terrestrial laser scanning to monitor the mass balance of very small glaciers in the Swiss Alps. Cryosphere, 2016, 10, 1279-1295.	1.5	63
172	Quantifying ice loss in the eastern Himalayas since 1974 using declassified spy satellite imagery. Cryosphere, 2016, 10, 2203-2215.	1.5	58
173	Reduced melt on debris-covered glaciers: investigations from Changri Nup Glacier, Nepal. Cryosphere, 2016, 10, 1845-1858.	1.5	118
174	Glacier melting and precipitation trends detected by surface area changes in Himalayan ponds. Cryosphere, 2016, 10, 1433-1448.	1.5	30
175	Heterogeneous glacier thinning patterns over the last 40 years in Langtang Himal, Nepal. Cryosphere, 2016, 10, 2075-2097.	1.5	108
176	Remote Sensing of the Glacial Environment Influenced by Climate Change. , 0, , .		1
177	Comparison of multiple glacier inventories with a new inventory derived from high-resolution ALOS imagery in the Bhutan Himalaya. Cryosphere, 2016, 10, 65-85.	1.5	31
178	ICESat laser altimetry over small mountain glaciers. Cryosphere, 2016, 10, 2129-2146.	1.5	16
179	Remote Sensing of Mountain Glaciers and Related Hazards. , 2016, , .		3
180	Land Ice. , 2016, , 63-77.		0
181	Predictive Uncertainty Estimation on a Precipitation and Temperature Reanalysis Ensemble for Shigar Basin, Central Karakoram. Water (Switzerland), 2016, 8, 263.	1.2	21
182	Decadal Region-Wide and Glacier-Wide Mass Balances Derived from Multi-Temporal ASTER Satellite Digital Elevation Models. Validation over the Mont-Blanc Area. Frontiers in Earth Science, 0, 4, .	0.8	98
183	Future Water Availability from Hindukush-Karakoram-Himalaya upper Indus Basin under Conflicting Climate Change Scenarios. Climate, 2016, 4, 40.	1.2	48
184	Changes in Mountain Glaciers, Lake Levels, and Snow Coverage in the Tianshan Monitored by GRACE, ICESat, Altimetry, and MODIS. Remote Sensing, 2016, 8, 798.	1.8	22

#	Article	IF	CITATIONS
185	Elevation Change Rates of Glaciers in the Lahaul-Spiti (Western Himalaya, India) during 2000–2012 and 2012–2013. Remote Sensing, 2016, 8, 1038.	1.8	95
187	Modeling debris-covered glaciers: response to steady debris deposition. Cryosphere, 2016, 10, 1105-1124.	1.5	100
188	Glacial lake evolution in the southeastern Tibetan Plateau and the cause of rapid expansion of proglacial lakes linked to glacial-hydrogeomorphic processes. Journal of Hydrology, 2016, 540, 504-514.	2.3	80
189	Climate Change and Dynamics of Glaciers and Vegetation in the Himalaya: An Overview. , 2016, , 1-26.		20
190	Changing climate and glacioâ€hydrology in Indian Himalayan Region: a review. Wiley Interdisciplinary Reviews: Climate Change, 2016, 7, 393-410.	3.6	57
191	Knowledge Sharing for Disaster Risk Reduction: Insights from a Glacier Lake Workshop in the Ladakh Region, Indian Himalayas. Mountain Research and Development, 2016, 36, 31-40.	0.4	15
192	Early-diverging bumblebees from across the roof of the world: the high-mountain subgenus Mendacibombus revised from species' gene coalescents and morphology (Hymenoptera, Apidae). Zootaxa, 2016, 4204, zootaxa.4204.1.1.	0.2	27
193	Discharge sensitivity to snowmelt parameterization: a case study for Upper Beas basin in Himachal Pradesh, India. Hydrology Research, 2016, 47, 683-700.	1.1	22
194	Changes in Central Asia's Water Tower: Past, Present and Future. Scientific Reports, 2016, 6, 35458.	1.6	195
195	Uncertainty in the Himalayan energy–water nexus: estimating regional exposure to glacial lake outburst floods. Environmental Research Letters, 2016, 11, 074005.	2.2	98
196	Stagnation and mass loss on a Himalayan debris-covered glacier: processes, patterns and rates. Journal of Glaciology, 2016, 62, 467-485.	1.1	109
197	Mass balance processes on glaciers in the Khumbu-Himal (Nepal) based on Pléiades tri-stereo data. , 2016, , .		0
198	Glacier area stability in the Central Karakoram National Park (Pakistan) in 2001–2010. Progress in Physical Geography, 2016, 40, 629-660.	1.4	57
199	Glacier elevation and mass changes over the central Karakoram region estimated from TanDEM-X and SRTM/X-SAR digital elevation models. Annals of Glaciology, 2016, 57, 273-281.	2.8	75
200	First in situ record of decadal glacier mass balance (2003–2014) from the Bhutan Himalaya. Annals of Glaciology, 2016, 57, 289-294.	2.8	29
201	Temperature reconstruction from glacier length fluctuations in the Himalaya. Annals of Glaciology, 2016, 57, 189-198.	2.8	16
202	A grid-based model of backwasting of supraglacial ice cliffs on debris-covered glaciers. Annals of Glaciology, 2016, 57, 199-211.	2.8	74
203	Using geochemical and isotopic chemistry to evaluate glacier melt contributions to the Chamkar Chhu (river), Bhutan. Annals of Glaciology, 2016, 57, 339-348.	2.8	27

#	Article	IF	CITATIONS
204	Seasonal surface velocities of a Himalayan glacier derived by automated correlation of unmanned aerial vehicle imagery. Annals of Glaciology, 2016, 57, 103-113.	2.8	108
205	An assessment of basin-scale glaciological and hydrological sensitivities in the Hindu Kush–Himalaya. Annals of Glaciology, 2016, 57, 308-318.	2.8	26
206	Meteorological conditions, seasonal and annual mass balances of Chhota Shigri Glacier, western Himalaya, India. Annals of Glaciology, 2016, 57, 328-338.	2.8	97
207	Debris control on glacier thinning—a case study of the Batal glacier, Chandra basin, Western Himalaya. Arabian Journal of Geosciences, 2016, 9, 1.	0.6	16
208	Heterogeneity in supraglacial debris thickness and its role in glacier mass changes of the Mount Gongga. Science China Earth Sciences, 2016, 59, 170-184.	2.3	31
209	Water Storage Changes over the Tibetan Plateau Revealed by GRACE Mission. Acta Geophysica, 2016, 64, 463-476.	1.0	27
210	Differential response of glaciers with varying debris cover extent: evidence from changing glacier parameters. International Journal of Remote Sensing, 2016, 37, 2453-2479.	1.3	83
211	Psychrophilic and psychrotrophic fungi: a comprehensive review. Reviews in Environmental Science and Biotechnology, 2016, 15, 147-172.	3.9	99
212	Comparison of modelled- and remote sensing- derived daily snow line altitudes at Ulugh Muztagh, northern Tibetan Plateau. Journal of Mountain Science, 2016, 13, 593-613.	0.8	5
213	Unsteady state of glaciers (Chhota Shigri and Hamtah) and climate in Lahaul and Spiti region, western Himalayas: a review of recent mass loss. Environmental Earth Sciences, 2016, 75, 1.	1.3	9
214	Investigation of temporal change in glacial extent of Chitral watershed using Landsat data: a critique. Environmental Monitoring and Assessment, 2016, 188, 546.	1.3	15
215	Precipitation variability in High Mountain Asia from multiple datasets and implication for water balance analysis in large lake basins. Global and Planetary Change, 2016, 145, 20-29.	1.6	23
216	Object-based analysis of unmanned aerial vehicle imagery to map and characterise surface features on a debris-covered glacier. Remote Sensing of Environment, 2016, 186, 581-595.	4.6	117
217	Spatial Patterns of Clacier Mass Change in the Southern Andes. Photogrammetric Engineering and Remote Sensing, 2016, 82, 811-818.	0.3	1
218	Remote sensing of glacier distribution and change over the Qinghai-Tibet Plateau. , 2016, , .		2
219	Contrasting climate change impact on river flows from high-altitude catchments in the Himalayan and Andes Mountains. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9222-9227.	3.3	145
220	Recent spatial and temporal variations in debris cover on Patagonian glaciers. Geomorphology, 2016, 273, 202-216.	1.1	43
221	Modelling the hydrological response of debrisâ€free and debrisâ€covered glaciers to present climatic conditions in the semiarid Andes of central Chile. Hydrological Processes, 2016, 30, 4036-4058.	1.1	40

#	Article	IF	CITATIONS
222	A physically based 3â€Ð model of ice cliff evolution over debris overed glaciers. Journal of Geophysical Research F: Earth Surface, 2016, 121, 2471-2493.	1.0	47
223	Beyond 3-D: The new spectrum of lidar applications for earth and ecological sciences. Remote Sensing of Environment, 2016, 186, 372-392.	4.6	229
224	Climate perceptions of local communities validated through scientific signals in Sikkim Himalaya, India. Environmental Monitoring and Assessment, 2016, 188, 578.	1.3	29
225	Changes in the ablation zones of glaciers in the western Himalaya and the Karakoram between 1972 and 2015. Remote Sensing of Environment, 2016, 187, 505-512.	4.6	43
226	Glacier elevation changes (2012–2016) of the Puruogangri Ice Field on the Tibetan Plateau derived from bi-temporal TanDEM-X InSAR data. International Journal of Remote Sensing, 2016, 37, 5687-5707.	1.3	28
227	An improved method of using icesat altimetry data to extract Tibetan Plateau glacier thickness change rate. , 2016, , .		0
228	Quantifying volume loss from ice cliffs on debris-covered glaciers using high-resolution terrestrial and aerial photogrammetry. Journal of Glaciology, 2016, 62, 684-695.	1.1	71
229	Slight mass loss revealed by reanalyzing glacier mass-balance observations on Glaciar Antisana 15 <i>α</i> (inner tropics) during the 1995–2012 period. Journal of Glaciology, 2016, 62, 124-136.	1.1	30
230	Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya. , 2016, , .		7
231	Development of a Glacio-hydrological Model for Discharge and Mass Balance Reconstruction. Water Resources Management, 2016, 30, 3475-3492.	1.9	42
232	Groundwater storage changes in the Tibetan Plateau and adjacent areas revealed from GRACE satellite gravity data. Earth and Planetary Science Letters, 2016, 449, 228-239.	1.8	126
233	Future hydrological regimes and glacier cover in the Everest region: The case study of the upper Dudh Koshi basin. Science of the Total Environment, 2016, 565, 1084-1101.	3.9	55
234	Spatiotemporal variations in surface velocity of the Gangotri glacier, Garhwal Himalaya, India: Study using synthetic aperture radar data. Remote Sensing of Environment, 2016, 181, 151-161.	4.6	52
235	The dynamics of supraglacial ponds in the Everest region, central Himalaya. Global and Planetary Change, 2016, 142, 14-27.	1.6	92
236	An appraisal of precipitation distribution in the high-altitude catchments of the Indus basin. Science of the Total Environment, 2016, 548-549, 289-306.	3.9	121
237	An enhanced temperature index model for debris-covered glaciers accounting for thickness effect. Advances in Water Resources, 2016, 94, 457-469.	1.7	35
238	Four decades of glacier mass balance observations in the Indian Himalaya. Regional Environmental Change, 2016, 16, 643-658.	1.4	76
239	Winter westerly disturbance dynamics and precipitation in the western Himalaya and Karakoram: a wave-tracking approach. Theoretical and Applied Climatology, 2016, 125, 27-44.	1.3	73

#	Article	IF	CITATIONS
240	Lake outburst and debris flow disaster at Kedarnath, June 2013: hydrometeorological triggering and topographic predisposition. Landslides, 2016, 13, 1479-1491.	2.7	165
241	Changes in glacier extent and surface elevations in the Depuchangdake region of northwestern Tibet, China. Quaternary Research, 2016, 85, 25-33.	1.0	8
242	Water Security, Climate Change and Sustainable Development. Water Resources Development and Management, 2016, , .	0.3	7
243	Contrasting evolution patterns between glacier-fed and non-glacier-fed lakes in the Tanggula Mountains and climate cause analysis. Climatic Change, 2016, 135, 493-507.	1.7	60
244	Water Resources Under Climate Change in Himalayan Basins. Water Resources Management, 2016, 30, 843-859.	1.9	54
245	Clacial evolution in the Ayilariju region, Western Himalaya, China: 1980–2011. Environmental Earth Sciences, 2016, 75, 1.	1.3	1
246	LiDAR remote sensing of the cryosphere: Present applications and future prospects. Remote Sensing of Environment, 2016, 177, 125-143.	4.6	73
247	Monitoring Frontal Changes of Shah Glacier in the Ravi Basin, Himachal Himalaya (India) from 1965 to 2013. The National Academy of Sciences, India, 2016, 39, 109-114.	0.8	7
248	Comparative assessment of spatiotemporal snow cover changes and hydrological behavior of the Gilgit, Astore and Hunza River basins (Hindukush–Karakoram–Himalaya region, Pakistan). Meteorology and Atmospheric Physics, 2016, 128, 793-811.	0.9	66
249	An oblate ellipsoidal approach to update a high-resolution geopotential model over the oceans: Study case of EGM2008 and DTU10. Advances in Space Research, 2016, 57, 2-18.	1.2	3
250	Differentiating between rain, snow, and glacier contributions to river discharge in the western Himalaya using remote-sensing data and distributed hydrological modeling. Advances in Water Resources, 2016, 88, 152-169.	1.7	70
251	Downstream Implications of Climate Change in the Himalayas. Water Resources Development and Management, 2016, , 65-82.	0.3	11
252	Recent accelerating mass loss of southeast Tibetan glaciers and the relationship with changes in macroscale atmospheric circulations. Climate Dynamics, 2016, 47, 805-815.	1.7	87
253	Increasing risks related to landslides from degrading permafrost into new lakes in de-glaciating mountain ranges. Geomorphology, 2017, 293, 405-417.	1.1	210
254	Recent decadal glacier mass balances over the Western Nyainqentanglha Mountains and the increase in their melting contribution to Nam Co Lake measured by differential bistatic SAR interferometry. Global and Planetary Change, 2017, 149, 177-190.	1.6	50
255	The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sensing of Environment, 2017, 190, 260-273.	4.6	600
256	Area and mass changes of Siachen Glacier (East Karakoram). Journal of Glaciology, 2017, 63, 148-163.	1.1	45
257	The recent deglaciation of Kolahoi valley in Kashmir Himalaya, India in response to the changing climate. Journal of Asian Earth Sciences, 2017, 138, 38-50.	1.0	61

#	Article	IF	CITATIONS
258	Glacier status during the period 1973–2014 in the Hunza Basin, Western Karakoram. Quaternary International, 2017, 444, 125-136.	0.7	41
259	Regional cooling caused recent New Zealand glacier advances in a period of global warming. Nature Communications, 2017, 8, 14202.	5.8	84
260	Slight glacier mass loss in the Karakoram region during the 1970s to 2000 revealed by KH-9 images and SRTM DEM. Journal of Glaciology, 2017, 63, 331-342.	1.1	96
261	Recent slowdown and thinning of debris-covered glaciers in south-eastern Tibet. Earth and Planetary Science Letters, 2017, 464, 95-102.	1.8	61
262	Snow depth from ICESat laser altimetry — A test study in southernÂNorway. Remote Sensing of Environment, 2017, 191, 389-401.	4.6	24
263	Early 21st century glacier thickness changes in the Central Tien Shan. Remote Sensing of Environment, 2017, 192, 12-29.	4.6	42
265	Monitoring elevation change of glaciers on Geladandong Mountain using TanDEM-X SAR interferometry. Journal of Mountain Science, 2017, 14, 859-869.	0.8	17
266	The Influence of Hydrology and Glaciology on Wetlands in the Himalayas. , 2017, , 175-188.		4
267	Observation-Based Estimates of Global Glacier Mass Change and Its Contribution to Sea-Level Change. Space Sciences Series of ISSI, 2017, , 107-132.	0.0	1
268	Modelling 60 years of glacier mass balance and runoff for Chhota Shigri Glacier, Western Himalaya, Northern India. Journal of Glaciology, 2017, 63, 618-628.	1.1	27
269	Debris-covered glacier anomaly? Morphological factors controlling changes in the mass balance, surface area, terminus position, and snow line altitude of Himalayan glaciers. Earth and Planetary Science Letters, 2017, 471, 19-31.	1.8	87
270	The significance of mountain glaciers as sentinels of climate and environmental change. Geography Compass, 2017, 11, e12318.	1.5	13
271	A methodology for monitoring and modeling of high altitude Alpine catchments. Progress in Physical Geography, 2017, 41, 393-420.	1.4	30
272	Changes of snowfall under warming in the Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2017, 122, 7323-7341.	1.2	105
273	High-resolution digital elevation models from single-pass TanDEM-X interferometry over mountainous regions: A case study of Inylchek Glacier, Central Asia. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130, 108-121.	4.9	32
274	An overview of studies of observed climate change in the Hindu Kush Himalayan (HKH) region. Advances in Climate Change Research, 2017, 8, 141-147.	2.1	106
275	Snowmelt Pattern Over High-Mountain Asia Detected From Active and Passive Microwave Remote Sensing. IEEE Geoscience and Remote Sensing Letters, 2017, 14, 1096-1100.	1.4	14
276	Rapid, Quantitative Assessment of Submerged Cultural Resource Degradation Using Repeat Video Surveys and Structure from Motion. Journal of Maritime Archaeology, 2017, 12, 91-107.	0.2	4

#	Article	IF	CITATIONS
277	Altitudinal variations of temperature, equilibrium line altitude, and accumulation-area ratio in Upper Indus Basin. Hydrology Research, 2017, 48, 214-230.	1.1	11
278	Precipitationâ€driven glacier changes in the Pamir and Hindu Kush mountains. Geophysical Research Letters, 2017, 44, 2817-2824.	1.5	22
279	Extensive and drastically different alpine lake changes on Asia's high plateaus during the past four decades. Geophysical Research Letters, 2017, 44, 252-260.	1.5	223
280	Heterogeneous glacial lake changes and links of lake expansions to the rapid thinning of adjacent glacier termini in the Himalayas. Geomorphology, 2017, 280, 30-38.	1.1	80
281	Assessment of Recent Glacier Changes and Its Controlling Factors from 1976 to 2011 in Baspa Basin, Western Himalaya. Arctic, Antarctic, and Alpine Research, 2017, 49, 621-647.	0.4	45
282	Quantifying ice cliff evolution with multi-temporal point clouds on the debris-covered Khumbu Glacier, Nepal. Journal of Glaciology, 2017, 63, 823-837.	1.1	48
284	Impact of a global temperature rise of 1.5 degrees Celsius on Asia's glaciers. Nature, 2017, 549, 257-260.	13.7	525
285	Using Landsat images to monitor changes in the snow-covered area of selected glaciers in northern Pakistan. Journal of Mountain Science, 2017, 14, 2013-2027.	0.8	15
286	Asia's glacier changes. Nature Geoscience, 2017, 10, 621-622.	5.4	5
287	Anatomy of terminal moraine segments and implied lake stability on Ngozumpa Glacier, Nepal, from electrical resistivity tomography (ERT). Scientific Reports, 2017, 7, 46766.	1.6	15
288	Glacier mass-balance and length variation observed in China during the periods 1959–2015 and 1930–2014. Quaternary International, 2017, 454, 68-84.	0.7	18
289	Recent Wetting and Glacier Expansion in the Northwest Himalaya and Karakoram. Scientific Reports, 2017, 7, 6139.	1.6	38
290	A decreasing glacier mass balance gradient from the edge of the Upper Tarim Basin to the Karakoram during 2000–2014. Scientific Reports, 2017, 7, 6712.	1.6	78
291	A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nature Geoscience, 2017, 10, 668-673.	5.4	755
292	Karakoram temperature and glacial melt driven by regional atmospheric circulation variability. Nature Climate Change, 2017, 7, 664-670.	8.1	158
293	Cryospheric science: Asia's glacier changes. Nature Geoscience, 2017, , .	5.4	1
294	Topographic controls on the debris-cover extent of glaciers in the Eastern Himalayas: Regional analysis using a novel high-resolution glacier inventory. Quaternary International, 2017, 455, 82-92.	0.7	18
295	Estimation of lakes water storage and their changes on the northwestern Tibetan Plateau based on bathymetric and Landsat data and driving force analyses. Quaternary International, 2017, 454, 56-67.	0.7	36

#	Article	IF	CITATIONS
296	Contrasting glacier responses to recent climate change in high-mountain Asia. Scientific Reports, 2017, 7, 13717.	1.6	142
297	Supraglacial Ponds Regulate Runoff From Himalayan Debrisâ€Covered Glaciers. Geophysical Research Letters, 2017, 44, 11,894.	1.5	30
298	Evaluating the contribution of avalanching to the mass balance of Himalayan glaciers. Annals of Glaciology, 2017, 58, 110-118.	2.8	37
299	Glacier Changes on the Qiangtang Plateau between 1976 and 2015: A Case Study in the Xainza Xiegang Mountains. Journal of Resources and Ecology, 2017, 8, 97-104.	0.2	2
300	Glacier Environment and Climate Change in Bhutan—An Overview. Journal of Climate Change, 2017, 3, 1-10.	0.2	8
301	Error sources and guidelines for quality assessment of glacier area, elevation change, and velocity products derived from satellite data in the Glaciers_cci project. Remote Sensing of Environment, 2017, 203, 256-275.	4.6	109
302	Surge-type and surge-modified glaciers in the Karakoram. Scientific Reports, 2017, 7, 15391.	1.6	125
303	Region-Wide Glacier Mass Budgets for the Tanggula Mountains between â ⁻¹ ⁄41969 and â ⁻¹ ⁄42015 Derived from Remote Sensing Data. Arctic, Antarctic, and Alpine Research, 2017, 49, 551-568.	0.4	12
304	Downwasting of the debris-covered area of Lirung Glacier in Langtang Valley, Nepal Himalaya, from 1974 to 2010. Quaternary International, 2017, 455, 93-101.	0.7	19
305	Aerosol black carbon at an urban site-Srinagar, Northwestern Himalaya, India: Seasonality, sources, meteorology and radiative forcing. Atmospheric Environment, 2017, 165, 336-348.	1.9	64
306	Observation-Based Estimates of Global Glacier Mass Change and Its Contribution to Sea-Level Change. Surveys in Geophysics, 2017, 38, 105-130.	2.1	61
307	A conceptual model of supraâ€glacial lake formation on debrisâ€covered glaciers based on GPR facies analysis. Earth Surface Processes and Landforms, 2017, 42, 903-914.	1.2	36
308	Managing the Indus in a Warming World: The Potential for Transboundary Cooperation in Coping with Climate Change. Water Security in A New World, 2017, , 91-120.	0.1	1
309	Imagining Industan. Water Security in A New World, 2017, , .	0.1	11
310	The â€~Little Ice Age' in the Himalaya: A review of glacier advance driven by Northern Hemisphere temperature change. Holocene, 2017, 27, 292-308.	0.9	69
311	A joint analysis of river runoff and meteorological forcing in the Karakoram, upper Indus Basin. Hydrological Processes, 2017, 31, 409-430.	1.1	11
312	Ice cliff dynamics in the Everest region of the Central Himalaya. Geomorphology, 2017, 278, 238-251.	1.1	48
313	A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015. Remote Sensing of Environment, 2017, 189, 1-13.	4.6	240

#	Article	IF	CITATIONS
314	Meltwater runoff in a changing climate (1951–2099) at Chhota Shigri Glacier, Western Himalaya, Northern India. Annals of Glaciology, 2017, 58, 47-58.	2.8	23
315	Quantifying Changes in the Gangotri Glacier of Central Himalaya: Evidence for Increasing Mass Loss and Decreasing Velocity. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10, 5295-5306.	2.3	31
316	Cryospheric Studies in Indian Himalayan and Polar Region: Current Status, Advances and Future Prospects of Remote Sensing. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2017, 87, 593-616.	0.8	9
317	Spatial variability in mass loss of glaciers in the Everest region, central Himalayas, between 2000 and 2015. Cryosphere, 2017, 11, 407-426.	1.5	100
318	Structure and evolution of the drainage system of aÂHimalayanÂdebris-covered glacier, and its relationshipÂwithÂpatternsÂofÂmassÀloss. Cryosphere, 2017, 11, 2247-2264.	1.5	58
319	Decline of Geladandong Glacier Elevation in Yangtze River's Source Region: Detection by ICESat and Assessment by Hydroclimatic Data. Remote Sensing, 2017, 9, 75.	1.8	16
320	Remote Sensing of Glacier Change in the Central Qinghai-Tibet Plateau and the Relationship with Changing Climate. Remote Sensing, 2017, 9, 114.	1.8	31
321	Elevation Change and Improved Velocity Retrieval Using Orthorectified Optical Satellite Data from Different Orbits. Remote Sensing, 2017, 9, 300.	1.8	27
322	A Glacier Surge of Bivachny Glacier, Pamir Mountains, Observed by a Time Series of High-Resolution Digital Elevation Models and Glacier Velocities. Remote Sensing, 2017, 9, 388.	1.8	32
323	The Potential of Earth Observation for the Analysis of Cold Region Land Surface Dynamics in Europe—A Review. Remote Sensing, 2017, 9, 1067.	1.8	8
324	A New Method to Estimate Changes in Glacier Surface Elevation Based on Polynomial Fitting of Sparse ICESat—GLAS Footprints. Sensors, 2017, 17, 1803.	2.1	3
325	Bridging Glaciological and Hydrological Trends in the Pamir Mountains, Central Asia. Water (Switzerland), 2017, 9, 422.	1.2	11
326	Changes of High Altitude Glaciers in the Trans-Himalaya of Ladakh over the Past Five Decades (1969–2016). Geosciences (Switzerland), 2017, 7, 27.	1.0	71
327	Re-establishing glacier monitoring in Kyrgyzstan and Uzbekistan, Central Asia. Geoscientific Instrumentation, Methods and Data Systems, 2017, 6, 397-418.	0.6	29
328	Future changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basins. PLoS ONE, 2017, 12, e0190224.	1.1	107
329	An estimate of glacier mass balance for the Chandra basin, western Himalaya, for the period 1984–2012. Annals of Glaciology, 2017, 58, 99-109.	2.8	65
330	Himalayan glaciers experienced significant mass loss during later phases of little ice age. Scientific Reports, 2017, 7, 10305.	1.6	57
331	Climate–Glacier Dynamics and Topographic Forcing in the Karakoram Himalaya: Concepts, Issues and Research Directions. Water (Switzerland), 2017, 9, 405.	1.2	31

ARTICLE IF CITATIONS # Spatiotemporal patterns of High Mountain Asia's snowmelt season identified with an automated 332 1.5 36 snowmelt detection algorithm, 1987–2016. Cryosphere, 2017, 11, 2329-2343. Assessing Orographic Variability in Glacial Thickness Changes at the Tibetan Plateau Using ICESat Laser 1.8 Altimetry. Remote Sensing, 2017, 9, 160. Brief communication: Thinning of debris-covered and debris-free glaciers in a warming climate. 334 1.5 44 Cryosphere, 2017, 11, 133-138. Brief communication: Glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s. Cryosphere, 2017, 11, 531-539. Review article: Inferring permafrost and permafrost thaw in the mountains of the Hindu Kush 336 1.5 98 Himalaya region. Cryosphere, 2017, 11, 81-99. Recent geodetic mass balance of Monte Tronador glaciers, northern Patagonian Andes. Cryosphere, 337 1.5 2017, 11, 619-634. Long-term Monitoring of Surging Glaciers in Upper Shyok Valley, Karakoram Range, India: A Case Study 338 0.2 8 of Rimo and Kumdan Groups of Glaciers. Journal of Climate Change, 2018, 4, 1-12. Assessment of snow-glacier melt and rainfall contribution to stream runoff in Baspa Basin, Indian 1.3 16 Himalaya. Environmental Monitoring and Assessment, 2018, 190, 154. Spatially distributed ice-thickness modelling for Chhota Shigri Glacier in western Himalayas, India. 340 1.3 49 International Journal of Remote Sensing, 2018, 39, 3320-3343. Geospatial observations of topographical control over the glacier retreat, Miyar basin, Western 341 1.3 Himalaya, India. Environmental Earth Sciences, 2018, 77, 1 Consistent interannual changes in glacier mass balance and their relationship with climate variation 342 12 1.0 on the periphery of the Tibetan Plateau. Geophysical Journal International, 2018, 214, 573-582. Early 21st century spatially detailed elevation changes of Jammu and Kashmir glaciers 1.6 38 (Karakoram–Himalaya). Global and Planetary Change, 2018, 165, 137-146. Aspect controls the survival of ice cliffs on debris-covered glaciers. Proceedings of the National 344 3.3 33 Academy of Sciences of the United States of America, 2018, 115, 4369-4374. Clacier mass budget and climate reanalysis data indicate a climatic shift around 2000 in Lahaul-Spiti, 345 1.7 54 western Himalaya. Climatic Change, 2018, 148, 219-233. Detecting Himalayan glacial lake outburst floods from Landsat time series. Remote Sensing of 346 72 4.6 Environment, 2018, 207, 84-97. Advances in global mountain geomorphology. Geomorphology, 2018, 308, 230-264. 347 24 Megatrends in Hindu Kush Himalaya: Climate Change, Urbanisation and Migration and Their 348 Implications for Water, Energy and Food. Water Resources Development and Management, 2018, , 0.3 11 125-146. Changes in seasonal snow water equivalent distribution in High Mountain Asia (1987 to 2009). Science 349 141 Advances, 2018, 4, e1701550.

#	Article	IF	CITATIONS
350	Multidimensional stress test for hydropower investments facing climate, geophysical and financial uncertainty. Global Environmental Change, 2018, 48, 168-181.	3.6	55
351	China-Pakistan Economic Corridor (CPEC): melting glaciers—a potential threat to ecosystem and biodiversity. Environmental Science and Pollution Research, 2018, 25, 3209-3210.	2.7	38
352	Analysis of thickness changes and the associated driving factors on a debris-covered glacier in the Tienshan Mountain. Remote Sensing of Environment, 2018, 206, 63-71.	4.6	21
353	Climatic and associated cryospheric, biospheric, and hydrological changes on the Tibetan Plateau: a review. International Journal of Climatology, 2018, 38, e1.	1.5	138
354	Review of the status and mass changes of Himalayan-Karakoram glaciers. Journal of Glaciology, 2018, 64, 61-74.	1.1	233
355	Heterogeneous decadal glacier downwasting at the Mt. Everest (Qomolangma) from 2000 to ~ 2012 based on multi-baseline bistatic SAR interferometry. Remote Sensing of Environment, 2018, 206, 336-349.	4.6	26
356	The Value of Hydrograph Partitioning Curves for Calibrating Hydrological Models in Glacierized Basins. Water Resources Research, 2018, 54, 2336-2361.	1.7	19
357	Observed diurnal temperature range variations and its association with observed cloud cover in northern Pakistan. International Journal of Climatology, 2018, 38, 3323-3336.	1.5	16
358	Adjustment of measurement errors to reconcile precipitation distribution in the highâ€altitude Indus basin. International Journal of Climatology, 2018, 38, 3842-3860.	1.5	46
359	The Karakoram/Western Tibetan vortex: seasonal and year-to-year variability. Climate Dynamics, 2018, 51, 3883-3906.	1.7	32
360	Influential aspects of glacial resource for establishing Kuhl system (gravity flow irrigation) in the Hindu Kush, Karakoram and Himalaya ranges. Science of the Total Environment, 2018, 636, 487-499.	3.9	6
361	The Himalayan cryosphere: past and present variability of the â€~third pole'. Geological Society Special Publication, 2018, 462, 1-6.	0.8	7
362	Spatioâ€ŧemporal analysis of glacial ice area distribution of Hunza River Basin, Karakoram region of Pakistan. Hydrological Processes, 2018, 32, 1491-1501.	1.1	24
363	Quantifying Debris Thickness of Debrisâ€Covered Glaciers in the Everest Region of Nepal Through Inversion of a Subdebris Melt Model. Journal of Geophysical Research F: Earth Surface, 2018, 123, 1094-1115.	1.0	59
364	Topographic controls on the surging behaviour of Sabche Glacier, Nepal (1967 to 2017). Remote Sensing of Environment, 2018, 210, 434-443.	4.6	28
365	Glacier mass balance in the Qinghai–Tibet Plateau and its surroundings from the mid-1970s to 2000 based on Hexagon KH-9 and SRTM DEMs. Remote Sensing of Environment, 2018, 210, 96-112.	4.6	147
366	Monitoring of Historical Glacier Recession in Yulong Mountain by the Integration of Multisource Remote Sensing Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 388-400.	2.3	9
367	Revealing recent calving activity of a tidewater glacier with terrestrial LiDAR reflection intensity. Cold Regions Science and Technology, 2018, 151, 288-301.	1.6	9

#	Article	IF	Citations
" 368	Spatiotemporal variation of snow cover over the Tibetan Plateau based on MODIS snow product, 2001–2014. International Journal of Climatology, 2018, 38, 708-728.	1.5	73
369	Wintertime surface energy balance of a high-altitude seasonal snow surface in Chhota Shigri glacier basin, Western Himalaya. Geological Society Special Publication, 2018, 462, 155-168.	0.8	4
370	A precipitation perspective of the Hydrosphere-cryosphere interaction in the Himalaya. Geological Society Special Publication, 2018, 462, 73-87.	0.8	7
371	Earth surface processes and landscape evolution in the Himalaya: a framework for sustainable development and geohazard mitigation. Geological Society Special Publication, 2018, 462, 169-188.	0.8	6
372	CryoSat-2 swath interferometric altimetry for mapping ice elevation and elevation change. Advances in Space Research, 2018, 62, 1226-1242.	1.2	55
373	The sustainability of water resources in High Mountain Asia in the context of recent and future glacier change. Geological Society Special Publication, 2018, 462, 189-204.	0.8	16
374	The distribution and hydrological significance of rock glaciers in the Nepalese Himalaya. Global and Planetary Change, 2018, 160, 123-142.	1.6	73
375	Current Status of Himalayan Cryosphere and Adjacent Mountains. , 2018, , 161-182.		1
376	Regional Climate Changes Over Hindukush-Karakoram-Himalaya Region. , 2018, , 143-159.		5
377	Changing climate and glacio-hydrology: a case study of Shaune Garang basin, Himachal Pradesh. International Journal of Hydrology Science and Technology, 2018, 8, 258.	0.2	6
378	Ice cliff contribution to the tongue-wide ablation of ChangriÂNup Glacier, Nepal, central Himalaya. Cryosphere, 2018, 12, 3439-3457.	1.5	96
379	Supraglacial debris thickness variability: impact on ablation and relation to terrain properties. Cryosphere, 2018, 12, 3719-3734.	1.5	55
380	The changing mass of glaciers on the Tibetan Plateau, 2002–2016, using time-variable gravity from the GRACE satellite mission. Journal of Geodetic Science, 2018, 8, 83-97.	0.5	5
381	Climate change vs. socio-economic development: understanding the future South Asian water gap. Hydrology and Earth System Sciences, 2018, 22, 6297-6321.	1.9	54
382	Future Climate Change and Its Impact on Runoff Generation from the Debris-Covered Inylchek Glaciers, Central Tian Shan, Kyrgyzstan. Water (Switzerland), 2018, 10, 1513.	1.2	13
383	Pléiades Tri-Stereo Data for Glacier Investigations—Examples from the European Alps and the Khumbu Himal. Remote Sensing, 2018, 10, 1563.	1.8	15
384	Correction and Informed Regionalization of Precipitation Data in a High Mountainous Region (Upper) Tj ETQqO	0 0 rgBT /0	Overlock 10 Ti

385	The Importance of Turbulent Fluxes in the Surface Energy Balance of a Debris-Covered Glacier in the Himalayas. Frontiers in Earth Science, 2018, 6, .	0.8	30	
-----	---	-----	----	--

#	Article	IF	CITATIONS
386	Glacier Change, Supraglacial Debris Expansion and Glacial Lake Evolution in the Gyirong River Basin, Central Himalayas, between 1988 and 2015. Remote Sensing, 2018, 10, 986.	1.8	31
387	Automatic delineation of debris-covered glaciers using InSAR coherence derived from X-, C- and L-band radar data: a case study of Yazgyl Glacier. Journal of Glaciology, 2018, 64, 811-821.	1.1	29
388	Reconstruction of the mass balance of Muztag Ata No. 15 glacier, eastern Pamir, and its climatic drivers. Journal of Glaciology, 2018, 64, 259-274.	1.1	25
389	Glacier anomaly over the western Kunlun Mountains, Northwestern Tibetan Plateau, since the 1970s. Journal of Glaciology, 2018, 64, 624-636.	1.1	40
390	Surface Pond Energy Absorption Across Four Himalayan Glaciers Accounts for 1/8 of Total Catchment Ice Loss. Geophysical Research Letters, 2018, 45, 10464-10473.	1.5	61
391	Automated detection of ice cliffs within supraglacial debris cover. Cryosphere, 2018, 12, 1811-1829.	1.5	26
392	Quantification of annual glacier surface mass balance for the Chhota Shigri Glacier, Western Himalayas, India using an Equilibrium-Line Altitude (ELA) based approach. International Journal of Remote Sensing, 2018, 39, 9092-9112.	1.3	17
393	Contrasting geometric and dynamic evolution of lake and land-terminating glaciers in the central Himalaya. Global and Planetary Change, 2018, 167, 46-60.	1.6	82
394	Mapping the suitability for ice-core drilling of glaciers in the European Alps and the Asian High Mountains. Journal of Glaciology, 2018, 64, 12-26.	1.1	4
395	An improved coupled framework for Glacier classification: an integration of optical and thermal infrared remote-sensing bands. International Journal of Remote Sensing, 2018, 39, 6864-6892.	1.3	16
396	Glacier variations in response to climate change in the eastern Nyainqêntanglha Range, Tibetan Plateau from 1999 to 2015. Arctic, Antarctic, and Alpine Research, 2018, 50, .	0.4	9
397	Glacier recession and glacial lake outburst flood studies in Zanskar basin, western Himalaya. Journal of Hydrology, 2018, 564, 376-396.	2.3	51
398	Light-absorption of dust and elemental carbon in snow in the Indian Himalayas and the Finnish Arctic. Atmospheric Measurement Techniques, 2018, 11, 1403-1416.	1.2	27
399	Recent glacier mass balance and area changes in the Kangri Karpo Mountains from DEMs and glacier inventories. Cryosphere, 2018, 12, 103-121.	1.5	61
400	Multi-decadal mass budget and area change of some eastern Himalayan glaciers (Nepal-Sikkim) using remote sensing techniques. , 2018, , .		2
401	Anomalous Glacier Changes in the Southeast of Tuomuerâ€Khan Tengri Mountain Ranges, Central Tianshan. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6840-6863.	1.2	11
402	The Third Pole. , 0, , 339-377.		1
403	Evolution of Glacial and High-Altitude Lakes in the Sikkim, Eastern Himalaya Over the Past Four Decades (1975–2017). Frontiers in Environmental Science, 2018, 6, .	1.5	75

#	Article	IF	CITATIONS
404	Spatial Variability in Patterns of Glacier Change across the Manaslu Range, Central Himalaya. Frontiers in Earth Science, 2018, 6, .	0.8	32
405	Mapping Surface Temperatures on a Debris-Covered Glacier With an Unmanned Aerial Vehicle. Frontiers in Earth Science, 2018, 6, .	0.8	59
406	Slope Environmental Lapse Rate (SELR) of Temperature in the Monsoon Regime of the Western Himalaya. Frontiers in Environmental Science, 2018, 6, .	1.5	26
407	Impact of Climate Change on Flood Frequency and Intensity in the Kabul River Basin. Geosciences (Switzerland), 2018, 8, 114.	1.0	63
408	Elevation and Mass Changes of the Southern Patagonia Icefield Derived from TanDEM-X and SRTM Data. Remote Sensing, 2018, 10, 188.	1.8	75
409	A Review on Applications of Remote Sensing and Geographic Information Systems (GIS) in Water Resources and Flood Risk Management. Water (Switzerland), 2018, 10, 608.	1.2	100
410	Recent Glacier Mass Balance and Area Changes from DEMs and Landsat Images in Upper Reach of Shule River Basin, Northeastern Edge of Tibetan Plateau during 2000 to 2015. Water (Switzerland), 2018, 10, 796.	1.2	7
412	The land ice contribution to sea level during the satellite era. Environmental Research Letters, 2018, 13, 063008.	2.2	177
413	Mass Balance Status of Indian Himalayan Glaciers: A Brief Review. Frontiers in Environmental Science, 2018, 6, .	1.5	13
414	Detailed comparison of glaciological and geodetic mass balances for Urumqi Glacier No.1, eastern Tien Shan, China, from 1981 to 2015. Cold Regions Science and Technology, 2018, 155, 137-148.	1.6	15
415	Streamflow response to shrinking glaciers under changing climate in the Lidder Valley, Kashmir Himalayas. Journal of Mountain Science, 2018, 15, 1241-1253.	0.8	35
416	Assessing controls on mass budget and surface velocity variations of glaciers in Western Himalaya. Scientific Reports, 2018, 8, 8885.	1.6	53
417	Linkages of the dynamics of glaciers and lakes with the climate elements over the Tibetan Plateau. Earth-Science Reviews, 2018, 185, 308-324.	4.0	86
418	Recent recession and potential future lake formation on Drang Drung glacier, Zanskar Himalaya, as assessed with earth observation data and glacier modelling. Environmental Earth Sciences, 2018, 77, 1.	1.3	29
419	Decadal Estimates of Surface Mass Balance for Glaciers in Chandra Basin, Western Himalayas, India—A Geodetic Approach. , 2019, , 109-125.		6
420	Deciphering the contrasting climatic trends between the central Himalaya and Karakoram with 36 years of WRF simulations. Climate Dynamics, 2019, 52, 159-180.	1.7	33
421	Daytime and nighttime heat wave characteristics based on multiple indices over the China–Pakistan economic corridor. Climate Dynamics, 2019, 53, 6329-6349.	1.7	43
422	Quantifying the range of future glacier mass change projections caused by differences among observed past-climate datasets. Climate Dynamics, 2019, 53, 2425-2435.	1.7	4

#	Article	IF	CITATIONS
423	Reconciling High Glacier Surface Melting in Summer with Air Temperature in the Semi-Arid Zone of Western Himalaya. Water (Switzerland), 2019, 11, 1561.	1.2	35
424	Multisurface Retracker for Swath Processing of Interferometric Radar Altimetry. IEEE Geoscience and Remote Sensing Letters, 2019, 16, 1839-1843.	1.4	3
425	Spatially Variable Glacier Changes in the Annapurna Conservation Area, Nepal, 2000 to 2016. Remote Sensing, 2019, 11, 1452.	1.8	9
426	Brief communication: Updated GAMDAM glacier inventory over high-mountain Asia. Cryosphere, 2019, 13, 2043-2049.	1.5	44
427	On the strongly imbalanced state of glaciers in the Sikkim, eastern Himalaya, India. Science of the Total Environment, 2019, 691, 16-35.	3.9	42
428	Karakoram geodetic glacier mass balances between 2008 and 2016: persistence of the anomaly and influence of a large rock avalanche on Siachen Glacier. Journal of Glaciology, 2019, 65, 494-507.	1.1	69
429	Applications of SPOT-7 tri-stereo imagery in deriving the surface topography and mass changes of glaciers in Indian Himalaya. Geocarto International, 2021, 36, 1512-1532.	1.7	3
430	Unravelling the evolution of Zmuttgletscher and its debris cover since the end of the Little Ice Age. Cryosphere, 2019, 13, 1889-1909.	1.5	38
431	On the Automated Mapping of Snow Cover on Glaciers and Calculation of Snow Line Altitudes from Multi-Temporal Landsat Data. Remote Sensing, 2019, 11, 1410.	1.8	30
432	Changes of the tropical glaciers throughout Peru between 2000 and 2016 – mass balance and area fluctuations. Cryosphere, 2019, 13, 2537-2556.	1.5	43
433	Remote Sensing of Environmental Changes in Cold Regions: Methods, Achievements and Challenges. Remote Sensing, 2019, 11, 1952.	1.8	34
434	Water Pathways for the Hindu-Kush-Himalaya and an Analysis of Three Flood Events. Atmosphere, 2019, 10, 489.	1.0	9
435	Changes in glacier volume on Mt. Gongga, southeastern Tibetan Plateau, based on the analysis of multi-temporal DEMs from 1966 to 2015. Journal of Glaciology, 2019, 65, 366-375.	1.1	13
436	Thermodynamic controls of the Western Tibetan Vortex on Tibetan air temperature. Climate Dynamics, 2019, 53, 4267-4290.	1.7	10
437	Tibetan Plateau's Lake Level and Volume Changes From NASA's ICESat/ICESatâ€⊋ and Landsat Missions. Geophysical Research Letters, 2019, 46, 13107-13118.	1.5	114
438	Simulation of snowmelt runoff and sensitivity analysis in the Nyang River Basin, southeastern Qinghai-Tibetan Plateau, China. Natural Hazards, 2019, 99, 931-950.	1.6	25
439	Decomposition of Future Moisture Flux Changes over the Tibetan Plateau Projected by Global and Regional Climate Models. Journal of Climate, 2019, 32, 7037-7053.	1.2	15
440	An Automated Approach for Estimating Snowline Altitudes in the Karakoram and Eastern Himalaya From Remote Sensing. Frontiers in Earth Science, 2019, 7, .	0.8	35

		15	0
#	ARTICLE Revealing Vertical Distribution of Precipitation in the Glacierized Upper Indus Basin Based on Multiple	IF	CITATIONS
441	Datasets. Journal of Hydrometeorology, 2019, 20, 2291-2314.	0.7	19
442	Characterizing the behaviour of surge- and non-surge-type glaciers in the Kingata Mountains, eastern Pamir, from 1999 to 2016. Cryosphere, 2019, 13, 219-236.	1.5	43
443	Water Resources Modeling and Prospective Evaluation in the Indus River Under Present and Prospective Climate Change. , 2019, , 17-56.		5
444	Past and Future Clacier Changes in the Indus River Basin. , 2019, , 85-97.		8
445	Glaciers in the Indus Basin. , 2019, , 123-144.		8
446	No significant mass loss in the glaciers of Astore Basin (North-Western Himalaya), between 1999 and 2016. Journal of Glaciology, 2019, 65, 270-278.	1.1	40
447	Accelerated glacier mass loss (2011–2016) over the Puruogangri ice field in the inner Tibetan Plateau revealed by bistatic InSAR measurements. Remote Sensing of Environment, 2019, 231, 111241.	4.6	41
448	Spatiotemporal variability in daily observed precipitation and its relationship with snow cover of Hindukush, Karakoram and Himalaya region in northern Pakistan. Atmospheric Research, 2019, 228, 196-205.	1.8	12
449	Water Balance Assessment under Different Glacier Coverage Scenarios in the Hunza Basin. Water (Switzerland), 2019, 11, 1124.	1.2	16
450	Glacier mass balance over the central Nyainqentanglha Range during recent decades derived from remote-sensing data. Journal of Glaciology, 2019, 65, 422-439.	1.1	36
451	Evaluation of glacial resource potential for sustaining kuhl irrigation system under changing climate in the Himalayan region. Journal of Mountain Science, 2019, 16, 1150-1159.	0.8	6
452	Improving water resources management using participatory monitoring in a remote mountainous region of Nepal. Journal of Hydrology: Regional Studies, 2019, 23, 100604.	1.0	12
453	Sediment supply from lateral moraines to a debris-covered glacier in the Himalaya. Earth Surface Dynamics, 2019, 7, 411-427.	1.0	42
454	Evolution of a debris-covered glacier in the western Himalaya during the last four decades (1971–2016): A multiparametric assessment using remote sensing and field observations. Geomorphology, 2019, 341, 1-14.	1.1	36
455	Development of Supraglacial Ponds in the Everest Region, Nepal, between 1989 and 2018. Remote Sensing, 2019, 11, 1058.	1.8	22
456	Water Storage Variations in Tibet from GRACE, ICESat, and Hydrological Data. Remote Sensing, 2019, 11, 1103.	1.8	20
458	Simulating Current and Future River-Flows in the Karakoram and Himalayan Regions of Pakistan Using Snowmelt-Runoff Model and RCP Scenarios. Water (Switzerland), 2019, 11, 761.	1.2	48
459	Evaluation of GRACE mascon solutions for small spatial scales and localized mass sources. Geophysical Journal International, 2019, 218, 1307-1321.	1.0	22

	CITATION	CITATION REPORT	
#	Article	IF	Citations
460	Land Use and Land Cover Change in the Kailash Sacred Landscape of China. Sustainability, 2019, 11, 1788.	1.6	16
461	Enhanced Himalayan Glacial Melting During YD and H1 Recorded in the Northern Bay of Bengal. Geochemistry, Geophysics, Geosystems, 2019, 20, 2449-2461.	1.0	11
463	Snow and ice melt contributions in a highly glacierized catchment of Chhota Shigri Glacier (India) over the last five decades. Journal of Hydrology, 2019, 574, 760-773.	2.3	43
464	Early twenty-first century glacier mass losses in the Indus Basin constrained by density assumptions. Journal of Hydrology, 2019, 574, 467-475.	2.3	56
465	Recession and Morphological Changes of the Debris-Covered Milam Glacier in Gori Ganga Valley, Central Himalaya, India, Derived From Satellite Data. Frontiers in Environmental Science, 2019, 7, .	1.5	19
466	Geodetic glacier mass balance (1975–1999) in the central Pamir using the SRTM DEM and KH-9 imagery. Journal of Glaciology, 2019, 65, 309-320.	1.1	20
467	Interannual Variability and Seasonality of Precipitation in the Indus River Basin. Journal of Hydrometeorology, 2019, 20, 379-395.	0.7	5
468	Flow Analysis at the Snow Covered High Altitude Catchment via Distributed Energy Balance Modeling. Scientific Reports, 2019, 9, 4783.	1.6	6
469	Assessing the Glacier Boundaries in the Qinghai-Tibetan Plateau of China by Multi-Temporal Coherence Estimation with Sentinel-1A InSAR. Remote Sensing, 2019, 11, 392.	1.8	5
470	Sensitivity of glacier volume change estimation to DEM void interpolation. Cryosphere, 2019, 13, 895-910.	1.5	97
471	Heterogeneous Influence of Glacier Morphology on the Mass Balance Variability in High Mountain Asia. Journal of Geophysical Research F: Earth Surface, 2019, 124, 1331-1345.	1.0	112
472	Monitoring 40-Year Lake Area Changes of the Qaidam Basin, Tibetan Plateau, Using Landsat Time Series. Remote Sensing, 2019, 11, 343.	1.8	27
473	Development of glacier mapping in Indian Himalaya: a review of approaches. International Journal of Remote Sensing, 2019, 40, 6607-6634.	1.3	24
474	Shrinking Glaciers of the Himachal Himalaya: A Critical Review. , 2019, , 89-115.		4
476	Latest Geodetic Changes of Austre Lovénbreen and Pedersenbreen, Svalbard. Remote Sensing, 2019, 11, 2890.	1.8	5
477	Regional differences in global glacier retreat from 1980 to 2015. Advances in Climate Change Research, 2019, 10, 203-213.	2.1	33
478	Recent glacier and lake changes in High Mountain Asia and their relation to precipitation changes. Cryosphere, 2019, 13, 2977-3005.	1.5	64
479	Spatial distribution of decadal ice-thickness change and glacier stored water loss in theÂUpper Ganga basin, India during 2000–2014. Scientific Reports, 2019, 9, 16730.	1.6	17

		CITATION REPORT		
#	ARTICLE		IF	CITATIONS
480	Clacial lakes exacerbate Himalayan glacier mass loss. Scientific Reports, 2019, 9, 18145.		1.6	130
481	Contrasting thinning patterns between lake- and land-terminating glaciers in the Bhutan Cryosphere, 2019, 13, 2733-2750.	ese Himalaya.	1.5	38
482	Vulnerability of existing and planned coal-fired power plants in Developing Asia to chang and water resources. Energy and Environmental Science, 2019, 12, 3164-3181.	es in climate	15.6	38
483	Trees record changes of the temperate glaciers on the Tibetan Plateau: Potential and une Global and Planetary Change, 2019, 173, 15-23.	certainty.	1.6	14
484	Quantifying mass balance of East-Karakoram glaciers using geodetic technique. Polar Sci 24-39.	ience, 2019, 19,	0.5	16
485	Status and Change of the Cryosphere in the Extended Hindu Kush Himalaya Region. , 20	19, , 209-255.		139
486	Mapping of moraine dammed glacial lakes and assessment of their areal changes in the o eastern Himalayas using satellite data. Journal of Mountain Science, 2019, 16, 77-94.	central and	0.8	17
487	Quantifying glacier mass change and its contribution to lake growths in central Kunlun c 2000–2015 from multi-source remote sensing data. Journal of Hydrology, 2019, 570,		2.3	47
488	Observed changes in temperature extremes over China–Pakistan Economic Corridor d International Journal of Climatology, 2019, 39, 1457-1475.	uring 1980–2016.	1.5	40
489	Recent decadal variability of daily observed temperatures in Hindukush, Karakoram and H region in northern Pakistan. Climate Dynamics, 2019, 52, 6931-6951.	Himalaya	1.7	11
490	Glacier changes between 1971 and 2016 in the Jankar Chhu Watershed, Lahaul Himalaya Glaciology, 2019, 65, 13-28.	a, India. Journal of	1.1	37
491	Debris-Covered Glaciers. Geography of the Physical Environment, 2019, , 59-71.		0.2	5
492	Observed changes in maximum and minimum temperatures over China- Pakistan econor during 1980–2016. Atmospheric Research, 2019, 216, 37-51.	nic corridor	1.8	59
493	Clacier and glacial lake classification for change detection studies using satellite data: a c from Baspa basin, western Himalaya. Geocarto International, 2019, 34, 391-414.	case study	1.7	22
494	Assessing water resources under climate change in high-altitude catchments: a methodc application in the Italian Alps. Theoretical and Applied Climatology, 2019, 135, 135-156.		1.3	26
495	Classification of glacial lakes using integrated approach of DFPS technique and gradient using Sentinel 2A data. Geocarto International, 2019, 34, 1075-1088.	analysis	1.7	9
496	Impact of climate change on the hydrological dynamics of River Ganga, India. Journal of N Climate Change, 2020, 11, 274-290.	Nater and	1.2	42
497	Estimation of recent changes in thickness and mass balance of the Patsio glacier in the C Himalayan region using geodetic technique and ancillary data. Geocarto International, 20		1.7	9

#	Article	IF	CITATIONS
498	Assessment of the Baspa basin glaciers mass budget using different remote sensing methods and modeling techniques. Geocarto International, 2020, 35, 296-316.	1.7	5
499	Contrasting changes in snow cover and its sensitivity to aerosol optical properties in Hindukush-Karakoram-Himalaya region. Science of the Total Environment, 2020, 699, 134356.	3.9	10
502	Glacial and fluvial erosion in the Dolpo Basin, Western Nepal. Geomorphology, 2020, 354, 107033.	1.1	3
503	Vegetation expansion in the subnival Hindu Kush Himalaya. Global Change Biology, 2020, 26, 1608-1625.	4.2	90
504	Mass balance and area changes of glaciers in the Cordillera Real and Tres Cruces, Bolivia, between 2000 and 2016. Journal of Glaciology, 2020, 66, 124-136.	1.1	13
505	Manifestations and mechanisms of the Karakoram glacier Anomaly. Nature Geoscience, 2020, 13, 8-16.	5.4	186
506	Study of isotopic seasonality to assess the water source of proglacial stream in Chhota Shigri Glaciated Basin, Western Himalaya. Hydrological Processes, 2020, 34, 1285-1300.	1.1	6
507	Morphometric evolution of Everest region debris-covered glaciers. Geomorphology, 2020, 371, 107422.	1.1	17
508	Summer Mass Balance and Surface Velocity Derived by Unmanned Aerial Vehicle on Debris-Covered Region of Baishui River Glacier No. 1, Yulong Snow Mountain. Remote Sensing, 2020, 12, 3280.	1.8	21
509	Distinguishing Glaciers between Surging and Advancing by Remote Sensing: A Case Study in the Eastern Karakoram. Remote Sensing, 2020, 12, 2297.	1.8	15
510	Constructing dataset of classified drainage areas based on surface water-supply patterns in High Mountain Asia. Big Earth Data, 2020, 4, 225-241.	2.0	6
511	Characterizing precipitation in high altitudes of the western Tibetan plateau with a focus on major glacier areas. International Journal of Climatology, 2020, 40, 5114-5127.	1.5	63
512	Modeling regional precipitation over the Indus River basin of Pakistan using statistical downscaling. Theoretical and Applied Climatology, 2020, 142, 29-57.	1.3	10
513	Glacier Mapping Based on Random Forest Algorithm: A Case Study over the Eastern Pamir. Water (Switzerland), 2020, 12, 3231.	1.2	16
514	Examining geodetic glacier mass balance in the eastern Pamir transition zone. Journal of Glaciology, 2020, 66, 927-937.	1.1	9
515	Melt Runoff Characteristics and Hydro-Meteorological Assessment of East Rathong Glacier in Sikkim Himalaya, India. Earth Systems and Environment, 2020, 4, 567-582.	3.0	6
516	Upward Expansion of Supra-Glacial Debris Cover in the Hunza Valley, Karakoram, During 1990 â^¼ 2019. Frontiers in Earth Science, 2020, 8, .	0.8	27
517	Seasonal Dynamics of a Temperate Tibetan Glacier Revealed by High-Resolution UAV Photogrammetry and In Situ Measurements. Remote Sensing, 2020, 12, 2389.	1.8	25

ARTICLE IF CITATIONS # Bellwether sites for evaluating changes in landslide frequency and magnitude in cryospheric mountainous terrain: a call for systematic, long-term observations to decipher the impact of climate 518 2.7 24 change. Landslides, 2020, 17, 2483-2501. Retreat and geodetic mass changes of Zemu Glacier, Sikkim Himalaya, India, between 1931 and 2018. 1.4 19 Regional Environmental Change, 2020, 20, 1. Three-Dimensional Time Series Movement of the Cuolangma Glaciers, Southern Tibet with Sentinel-1 520 1.8 11 Imagery. Remote Sensing, 2020, 12, 3466. Sub-alpine trees testify late 20th century rapid retreat of Gangotri glacier, Central Himalaya. Quaternary International, 2020, 565, 31-40. Satellite-observed glacier recession in the Kashmir Himalaya, India, from 1980 to 2018. Environmental 522 1.3 46 Monitoring and Assessment, 2020, 192, 597. Recent Changes in Water Discharge in Snow and Glacier Melt-Dominated Rivers in the Tienshan Mountains, Central Asia. Remote Sensing, 2020, 12, 2704. 1.8 24 The satellite observed glacier mass changes over the Upper Indus Basin during 2000–2012. Scientific 524 1.6 40 Reports, 2020, 10, 14285. Surging Dynamics of Glaciers in the Hunza Valley under an Equilibrium Mass State since 1990. Remote 1.8 19 Sensing, 2020, 12, 2922. Assessing Multi-Temporal Snow-Volume Trends in High Mountain Asia From 1987 to 2016 Using 526 0.8 10 High-Resolution Passive Microwave Data. Frontiers in Earth Science, 2020, 8, . Retreating Glacier and Advancing Forest Over the Past 200ÂYears in the Central Himalayas. Journal of 1.3 Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005751. Modeling of Mass Balance Variability and Its Impact on Water Discharge from the Urumqi Glacier No. 1 528 1.2 5 Catchment, Tian Shan, China. Water (Switzerland), 2020, 12, 3297. Glacier mass loss in the Alaknanda basin, Garhwal Himalaya on a decadal scale. Geocarto 529 International, 2022, 37, 3014-3032. Mass balance and a glacier surge of Guliya ice cap in the western Kunlun Shan between 2005 and 2015. 530 4.6 31 Remote Sensing of Environment, 2020, 244, 111832. Long-term mass balance modelling (1986–2018) and climate sensitivity of Siachen Glacier, East 1.3 Karakoram. Environmental Monitoring and Assessment, 2020, 192, 368. Modeling past and future variation of glaciers in the Dongkemadi Ice Field on central Tibetan Plateau 532 0.4 6 from 1989 to 2050. Arctic, Antarctic, and Alpine Research, 2020, 52, 191-209. Reversed Surface-Mass-Balance Gradients on Himalayan Debris-Covered Glaciers Inferred from Remote 1.8 28 Sensing. Remote Sensing, 2020, 12, 1563. Mass-balance observation, reconstruction and sensitivity of Stok glacier, Ladakh region, India, 534 1.1 36 between 1978 and 2019. Journal of Glaciology, 2020, 66, 627-642. The Surge of the Hispar Glacier, Central Karakoram: SAR 3â€D Flow Velocity Time Series and Thickness 1.4 19 Changes. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018945.

		CITATION REPORT		
#	Article		IF	CITATIONS
536	Hydrology of debris-covered glaciers in High Mountain Asia. Earth-Science Reviews, 202	20, 207, 103212.	4.0	37
537	Mass Balance of 14 Icelandic Glaciers, 1945–2017: Spatial Variations and Links With in Earth Science, 2020, 8, .	Climate. Frontiers	0.8	8
538	Comparative Assessment of Spatial Variability and Trends of Flows and Sediments unde Climate Change in the Upper Indus Basin. Water (Switzerland), 2020, 12, 730.	er the Impact of	1.2	13
539	Investigating the Recent Surge in the Monomah Glacier, Central Kunlun Mountain Rang Sources of Remote Sensing Data. Remote Sensing, 2020, 12, 966.	e with Multiple	1.8	12
540	Glacier Mass Balance in the Nyainqentanglha Mountains between 2000 and 2017 Retri ZiYuan-3 Stereo Images and the SRTM DEM. Remote Sensing, 2020, 12, 864.	eved from	1.8	29
541	Glacial Lake Outburst Flood Hazard, Downstream Impact, and Risk Over the Indian Him Resources Research, 2020, 56, e2019WR026533.	alayas. Water	1.7	71
542	Altitudinal runoff assessment under variable lapse rates of temperature in the Hindu Ku and Himalaya ranges of Pakistan. International Journal of Advanced Geosciences, 2020,		0.1	4
543	Modeling the future impacts of climate change on water availability in the Karnali River Himalaya. Environmental Research, 2020, 185, 109430.	Basin of Nepal	3.7	55
544	Spatio-temporal changes in the six major glaciers of the Chitral River basin (Hindukush	Region of) Tj ETQq0 0 0 rg	;BT /Qverlo	ock_10 Tf 50
545	A Systematic, Regional Assessment of High Mountain Asia Glacier Mass Balance. Fronti Science, 2020, 7, .	ers in Earth	0.8	296
546	Recent Accelerating Glacier Mass Loss of the Geladandong Mountain, Inner Tibetan Pla from ZiYuan-3 and TanDEM-X Measurements. Remote Sensing, 2020, 12, 472.	teau, Estimated	1.8	16
547	Late-Holocene climatic record from a glacial lake in Ladakh range, Trans-Himalaya, India 2020, 30, 1029-1042.	. Holocene,	0.9	27
548	Estimation of glacier mass loss and its contribution to river runoff in the source region Yangtze River during 2000–2018. Journal of Hydrology, 2020, 589, 125207.	of the	2.3	17
549	Interannual flow dynamics driven by frontal retreat of a lake-terminating glacier in the C Central Himalaya. Earth and Planetary Science Letters, 2020, 546, 116450.	Chinese	1.8	39
550	Contrasting Centennialâ€5cale Climate Variability in High Mountain Asia Revealed by a Isotope Record From Lahaulâ€5piti. Geophysical Research Letters, 2020, 47, e2019GL0		1.5	25
551	Glacier Variations at Xinqingfeng and Malan Ice Caps in the Inner Tibetan Plateau Since Sensing, 2020, 12, 421.	1970. Remote	1.8	6
552	Post-20th century near-steady state of Batura Glacier: observational evidence of Karako Scientific Reports, 2020, 10, 987.	oram Anomaly.	1.6	11
553	Warming and drying over the central Himalaya caused by an amplification of local mou circulation. Npj Climate and Atmospheric Science, 2020, 3, .	ntain	2.6	63

#	Article	IF	CITATIONS
554	Amplification of hydrological model uncertainties in projected climate simulations of the Upper Indus Basin: Does it matter where the water is coming from?. Hydrological Processes, 2020, 34, 2200-2218.	1.1	6
555	Impact of Eastern Tibetan Plateau Glacier Melt on Land Water Storage Change across the Yangtze River Basin. Journal of Hydrologic Engineering - ASCE, 2020, 25, .	0.8	11
556	Comparative Study of Hydrology and Icemelt in Three Nepal River Basins Using the Glacio-Hydrological Degree-Day Model (GDM) and Observations From the Advanced Scatterometer (ASCAT). Frontiers in Earth Science, 2020, 7, .	0.8	13
557	Linking the Recent Glacier Retreat and Depleting Streamflow Patterns with Land System Changes in Kashmir Himalaya, India. Water (Switzerland), 2020, 12, 1168.	1.2	33
558	Fungal recovery and characterization from Hindu Kush mountain range, Tirich Mir glacier, and their potential for biotechnological applications. Journal of Basic Microbiology, 2020, 60, 444-457.	1.8	9
559	Spatio-temporal trends in the surface ice velocities of the central Himalayan glaciers, India. Global and Planetary Change, 2020, 190, 103187.	1.6	44
560	Change detection of glaciers and snow cover and temperature using remote sensing and GIS: A case study of the Upper Indus Basin, Pakistan. Remote Sensing Applications: Society and Environment, 2020, 18, 100308.	0.8	5
561	Which heterogeneous glacier melting patterns can be robustly observed from space? A multi-scale assessment in southeastern Tibetan Plateau. Remote Sensing of Environment, 2020, 242, 111777.	4.6	36
562	Snow and glacier melt runoff simulation under variable altitudes and climate scenarios in Gilgit River Basin, Karakoram region. Modeling Earth Systems and Environment, 2020, 6, 1607-1618.	1.9	8
563	A debris-covered glacier at Kerguelen (49°S, 69°E) over the past 15 000 years. Antarctic Science, 2021, 33, 103-115.	0.5	7
564	Glacier changes and associated climate drivers for the last three decades, Nanda Devi region, Central Himalaya, India. Quaternary International, 2021, 575-576, 213-226.	0.7	43
565	Status of glaciers and climate change of East Karakoram in early twenty-first century. Science of the Total Environment, 2021, 753, 141914.	3.9	17
566	Estimation of component contributions to total terrestrial water storage change in the Yangtze river basin. Journal of Hydrology, 2021, 595, 125661.	2.3	19
567	Regional morphodynamics of supraglacial lakes in the Everest Himalaya. Science of the Total Environment, 2021, 751, 141586.	3.9	11
568	Glacial geomorphology and recent glacial recession of the Harmukh Range, NW Himalaya. Quaternary International, 2021, 575-576, 236-248.	0.7	17
569	Mapping ice cliffs on debris-covered glaciers using multispectral satellite images. Remote Sensing of Environment, 2021, 253, 112201.	4.6	30
570	Recession of Gya Glacier and the 2014 glacial lake outburst flood in the Trans-Himalayan region of Ladakh, India. Science of the Total Environment, 2021, 756, 144008.	3.9	51
571	Continuous Estimates of Glacier Mass Balance in High Mountain Asia Based on ICESatâ€1,2 and GRACE/GRACE Followâ€On Data. Geophysical Research Letters, 2021, 48, e2020GL090954.	1.5	39

#	Article	IF	CITATIONS
572	Stable isotope dynamics of groundwater interactions with Ganges river. Hydrological Processes, 2021, 35, .	1.1	12
573	Mass balance and surface evolution of the debris-covered Miage Glacier, 1990–2018. Geomorphology, 2021, 373, 107474.	1.1	12
574	The Response of Glaciers to Climate Change: Observations and Impacts. , 2021, , .		3
575	Estimation of Geodetic Mass Balance for Bada Shigri Glacier and Samudra Tapu Glacier in Chandra Basin, India. Geography of the Physical Environment, 2021, , 101-113.	0.2	0
576	Land ice. , 2021, , 141-156.		0
577	Regional and Altitude-Dependent Estimate of the SRTM C/X-Band Radar Penetration Difference on High Mountain Asia Glaciers. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 4244-4253.	2.3	14
578	Geospatial Analysis and Simulation of Glacial Avalanche Hazard in Hunza River Basin. International Journal of Environmental Science and Development, 2021, 12, 51-57.	0.2	1
579	Spatio-Temporal Patterns of Mass Changes in Himalayan Glaciated Region from EOF Analyses of GRACE Data. Remote Sensing, 2021, 13, 265.	1.8	4
580	Depositional Processes. , 2021, , .		0
581	Headline Indicators for Global Climate Monitoring. Bulletin of the American Meteorological Society, 2021, 102, E20-E37.	1.7	27
582	Central Himalayan tree-ring isotopes reveal increasing regional heterogeneity and enhancement in ice mass loss since the 1960s. Cryosphere, 2021, 15, 95-112.	1.5	7
583	Modeling of the Mass Balance of Glaciers with Debris Cover. Advances in Geographical and Environmental Sciences, 2021, , 191-212.	0.4	1
584	Modeling Surface Processes on Debris-Covered Glaciers: A Review with Reference to the High Mountain Asia. Water (Switzerland), 2021, 13, 101.	1.2	7
585	Surface Velocity Analysis of Surge Region of Karayaylak Glacier from 2014 to 2020 in the Pamir Plateau. Remote Sensing, 2021, 13, 774.	1.8	9
586	Climatic trends variability and concerning flow regime of Upper Indus Basin, Jehlum, and Kabul river basins Pakistan. Theoretical and Applied Climatology, 2021, 144, 447-468.	1.3	31
587	Glacial change and hydrological implications in the Himalaya and Karakoram. Nature Reviews Earth & Environment, 2021, 2, 91-106.	12.2	182
588	Inventory and GLOF hazard assessment of glacial lakes in the Sikkim Himalayas, India. Geocarto International, 2022, 37, 3840-3876.	1.7	9
589	Reconstruction of Palaeoglacier in the Qugaqie valley in Nyainqêntanglha Range. IOP Conference Series: Earth and Environmental Science, 2021, 671, 012015.	0.2	2

#	Article	IF	CITATIONS
591	Contextualizing lobate debris aprons and glacier-like forms on Mars with debris-covered glaciers on Earth. Progress in Physical Geography, 2021, 45, 130-186.	1.4	4
592	Suspended sediment dynamics and associated hydro-meteorological interrelations in east rathong glacier, eastern himalaya, india. Materials Today: Proceedings, 2022, 49, 3315-3324.	0.9	2
593	Region-wide glacier area and mass budgets for the Shaksgam River Basin, Karakoram Mountains, during 2000–2016. Journal of Arid Land, 2021, 13, 175-188.	0.9	3
594	Surface Elevation Variations on Lachman II Debris-covered Glacier (Ice-cored Rock Glacier), James Ross Island, Antarctic Peninsula, and Its Responses to Recent Climate Change. Journal of Geography (Chigaku Zasshi), 2021, 130, 27-41.	0.1	0
595	Components of Himalayan River Flows in a Changing Climate. Water Resources Research, 2021, 57, e2020WR027589.	1.7	30
596	Climate Change Policy Coherence across Policies, Plans, and Strategies in Pakistan—Implications for the China–Pakistan Economic Corridor Plan. Environmental Management, 2021, 67, 793-810.	1.2	23
597	Long-term (~40 years) mass balance appraisal and response of the Patsio glacier, in the Great Himalayan region towards climate change. Journal of Earth System Science, 2021, 130, 1.	0.6	3
598	Future glacial lakes in High Mountain Asia: an inventory and assessment of hazard potential from surrounding slopes. Journal of Glaciology, 2021, 67, 653-670.	1.1	34
599	Glacier mass balance in High Mountain Asia inferred from a GRACE release-6 gravity solution for the period 2002–2016. Journal of Arid Land, 2021, 13, 224-238.	0.9	4
600	Use of GIS and Remote Sensing Data to Understand the Impacts of Land Use/Land Cover Changes (LULCC) on Snow Leopard (Panthera uncia) Habitat in Pakistan. Sustainability, 2021, 13, 3590.	1.6	15
601	<scp>Spatioâ€ŧemporal</scp> evaluation of gridded precipitation products for the <scp>highâ€ŧltitude Indus basin</scp> . International Journal of Climatology, 2021, 41, 4283-4306.	1.5	23
602	Determining the Events in a Glacial Disaster Chain at Badswat Glacier in the Karakoram Range Using Remote Sensing. Remote Sensing, 2021, 13, 1165.	1.8	4
603	Accelerated glacier mass loss in the largest river and lake source regions of the Tibetan Plateau and its links with local water balance over 1976–2017. Journal of Glaciology, 2021, 67, 577-591.	1.1	8
604	Effect of changes in climate variables on hydrological regime of Chenab basin, western Himalaya. Journal of Water and Climate Change, 2022, 13, 357-371.	1.2	5
605	Accelerated global glacier mass loss in the early twenty-first century. Nature, 2021, 592, 726-731.	13.7	585
606	Distributed Global Debris Thickness Estimates Reveal Debris Significantly Impacts Glacier Mass Balance. Geophysical Research Letters, 2021, 48, e2020GL091311.	1.5	64
607	Black carbon over a central Himalayan Glacier (Satopanth): Pathways and direct radiative impacts. Science of the Total Environment, 2021, 766, 144242.	3.9	12
608	Spatially and temporally resolved ice loss in High Mountain Asia and the Gulf of Alaska observed by CryoSat-2 swath altimetry between 2010 and 2019. Cryosphere, 2021, 15, 1845-1862.	1.5	33

#	Article	IF	CITATIONS
609	Little Ice Age glacier extent and temporal changes in annual mass balance (2016–2019) of Pensilungpa Glacier, Zanskar Himalaya. Regional Environmental Change, 2021, 21, 1.	1.4	17
610	Impact of Climate Change on the Glaciers of Spiti River Basin, Himachal Pradesh, India. Journal of the Indian Society of Remote Sensing, 2021, 49, 1951-1963.	1.2	7
611	Geospatially mapping carbon stock for mountainous forest classes using InVEST model and Sentinel-2 data: a case of Bagrote valley in the Karakoram range. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	13
612	Understanding Complex Debris-Covered Glaciers: Concepts, Issues, and Research Directions. Frontiers in Earth Science, 2021, 9, .	0.8	7
613	Contrasting behaviour of temporal glacier changes and long term estimation of glacier mass balance across Himalayan–Karakoram range. Geocarto International, 2022, 37, 5807-5831.	1.7	1
614	Hot Spots of Glacier Mass Balance Variability in Central Asia. Geophysical Research Letters, 2021, 48, e2020GL092084.	1.5	26
615	Surface mass balance analysis at Naradu Glacier, Western Himalaya, India. Scientific Reports, 2021, 11, 12710.	1.6	8
616	Glaciohydrology of the Himalaya-Karakoram. Science, 2021, 373, .	6.0	90
617	Holocene Lake Evolution and Glacial Fluctuations Indicated by Carbonate Minerals and Their Isotopic Compositions in the Sediments of a Glacial Melt Recharge Lake on the Northwestern Tibetan Plateau. Frontiers in Earth Science, 2021, 9, .	0.8	2
618	Retrieving and Verifying Three-Dimensional Surface Motion Displacement of Mountain Glacier from Sentinel-1 Imagery Using Optimized Method. Water (Switzerland), 2021, 13, 1793.	1.2	3
619	Regional mass variations and its sensitivity to climate drivers over glaciers of Karakoram and Himalayas. GIScience and Remote Sensing, 2021, 58, 670-692.	2.4	4
620	lce Cliff Dynamics of Debris-Covered Trakarding Glacier in the Rolwaling Region, Nepal Himalaya. Frontiers in Earth Science, 2021, 9, .	0.8	7
621	Monitoring the Spatiotemporal Difference in Glacier Elevation on Bogda Mountain from 2000 to 2017. International Journal of Environmental Research and Public Health, 2021, 18, 6374.	1.2	5
622	Comprehensive estimation of lake volume changes on the Tibetan Plateau during 1976–2019 and basin-wide glacier contribution. Science of the Total Environment, 2021, 772, 145463.	3.9	70
623	Evolution of Surface Characteristics of Three Debris-Covered Glaciers in the Patagonian Andes From 1958 to 2020. Frontiers in Earth Science, 2021, 9, .	0.8	6
624	SAR-derived flow velocity and its link to glacier surface elevation change and mass balance. Remote Sensing of Environment, 2021, 258, 112343.	4.6	16
625	A Review of Glacial Lake Expansion and Associated Glacial Lake Outburst Floods in the Himalayan Region. Earth Systems and Environment, 2021, 5, 695-708.	3.0	41
626	Distributed Melt on a Debris-Covered Glacier: Field Observations and Melt Modeling on the Lirung Glacier in the Himalaya. Frontiers in Earth Science, 2021, 9, .	0.8	14

#	Article	IF	CITATIONS
627	A satellite-based comprehensive observation of glaciological characteristics of Shunkalpa (Ralam) Glacier, Central Himalaya, India. Journal of Earth System Science, 2021, 130, 1.	0.6	4
628	High-Resolution Monitoring of Glacier Mass Balance and Dynamics with Unmanned Aerial Vehicles on the Ningchan No. 1 Glacier in the Qilian Mountains, China. Remote Sensing, 2021, 13, 2735.	1.8	14
629	Numerical Simulation of Supraglacial Debris Mobility: Implications for Ablation and Landform Genesis. Frontiers in Earth Science, 2021, 9, .	0.8	6
630	High Mountain Asian glacier response to climate revealed by multi-temporal satellite observations since the 1960s. Nature Communications, 2021, 12, 4133.	5.8	120
631	Stagnation of the Pensilungpa glacier, western Himalaya, India: causes and implications. Journal of Glaciology, 2022, 68, 221-235.	1.1	17
632	Modelling steady states and the transient response of debris-covered glaciers. Cryosphere, 2021, 15, 3377-3399.	1.5	16
633	Environmental change perception and engagement of mountainous people in Western Himalayas, at Rajouri District, Jammu and Kashmir, India. Weather, Climate, and Society, 2021, , .	0.5	0
634	The Causes of Debris-Covered Glacier Thinning: Evidence for the Importance of Ice Dynamics From Kennicott Glacier, Alaska. Frontiers in Earth Science, 2021, 9, .	0.8	14
635	Multi-model assessment of glacio-hydrological changes in central Karakoram, Pakistan. Journal of Mountain Science, 2021, 18, 1995-2011.	0.8	5
636	Rock glacier inventory, permafrost probability distribution modeling and associated hazards in the Hunza River Basin, Western Karakoram, Pakistan. Science of the Total Environment, 2021, 782, 146833.	3.9	22
637	Using UAV and satellite image data for analyzing the elevation change of debris-covered glaciers and its associated driving factors. Environmental Earth Sciences, 2021, 80, 1.	1.3	4
638	Mass balances of Yala and Rikha Samba glaciers, Nepal, from 2000 to 2017. Earth System Science Data, 2021, 13, 3791-3818.	3.7	13
639	Quantifying heterogeneous monsoonal melt on a debris-covered glacier in Nepal Himalaya using repeat uncrewed aerial system (UAS) photogrammetry. Journal of Glaciology, 2022, 68, 288-304.	1.1	5
640	Partitioning Solid and Liquid Precipitation over the Tibetan Plateau Based on Satellite Radar Observations. Journal of Hydrometeorology, 2021, , .	0.7	2
641	Prospects of cryosphere-fed Kuhl irrigation system nurturing high mountain agriculture under changing climate in the Upper Indus Basin. Science of the Total Environment, 2021, 788, 147752.	3.9	6
642	Characterizing the behaviour of surge-type glaciers in the Geladandong Mountain Region, Inner Tibetan Plateau, from 1986 to 2020. Geomorphology, 2021, 389, 107806.	1.1	7
643	A restitution method to reconstruct the 2001–13 surface evolution of Hurd Glacier, Livingston Island, Antarctica, using surface mass balance data. Journal of Glaciology, 2022, 68, 443-456.	1.1	1
644	Retreat of Machoi Glacier, Kashmir Himalaya between 1972 and 2019 using remote sensing methods and field observations. Science of the Total Environment, 2021, 785, 147376.	3.9	18

#	Article	IF	CITATIONS
645	High-resolution monitoring of debris-covered glacier mass budget and flow velocity using repeated UAV photogrammetry in Iran. Geomorphology, 2021, 389, 107855.	1.1	13
646	High-altitude meteorology of Indian Himalayan Region: complexities, effects, and resolutions. Environmental Monitoring and Assessment, 2021, 193, 654.	1.3	8
647	Glacier Velocity Changes in the Himalayas in Relation to Ice Mass Balance. Remote Sensing, 2021, 13, 3825.	1.8	14
648	Glacier changes on the Nanga Parbat 1856–2020: A multi-source retrospective analysis. Science of the Total Environment, 2021, 785, 147321.	3.9	25
649	Surface composition of debris-covered glaciers across the Himalaya using linear spectral unmixing of Landsat 8 OLI imagery. Cryosphere, 2021, 15, 4557-4588.	1.5	9
650	Recent Changes of Glacial Lakes in the High Mountain Asia and Its Potential Controlling Factors Analysis. Remote Sensing, 2021, 13, 3757.	1.8	14
651	Albedo reduction as an important driver for glacier melting in Tibetan Plateau and its surrounding areas. Earth-Science Reviews, 2021, 220, 103735.	4.0	50
652	Estimating the sources of stream water in snow dominated catchments of western Himalayas. Advances in Water Resources, 2021, 155, 103995.	1.7	8
653	Rapid glacier Shrinkage and Glacial Lake Expansion of a China-Nepal Transboundary Catchment in the Central Himalayas, between 1964 and 2020. Remote Sensing, 2021, 13, 3614.	1.8	5
654	Modeling the feedbacks between surface ablation and morphological variations on debris-covered Baltoro Glacier in the central Karakoram. Geomorphology, 2021, 389, 107840.	1.1	1
655	Interannual Dynamics of Ice Cliff Populations on Debrisâ€Covered Glaciers From Remote Sensing Observations and Stochastic Modeling. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2021JF006179.	1.0	13
656	Probability of glacial lake outburst flooding in the Himalaya. Resources, Environment and Sustainability, 2021, 5, 100031.	2.9	10
657	Decoding the Karakoram Anomaly. Science of the Total Environment, 2021, 788, 147864.	3.9	15
658	Spatio-temporal changes in the Machoi glacier Zanskar Himalaya India using geospatial technology. Quaternary Science Advances, 2021, 4, 100031.	1.1	15
659	Modelled response of debris-covered and lake-calving glaciers to climate change, KĕTiritiri o te Moana/Southern Alps, New Zealand. Global and Planetary Change, 2021, 205, 103593.	1.6	10
660	Glacier surface velocities in the Jankar Chhu Watershed, western Himalaya, India: Study using Landsat time series data (1992–2020). Remote Sensing Applications: Society and Environment, 2021, 24, 100615.	0.8	8
661	Need of integrated monitoring on reference glacier catchments for future water security in Himalaya. Water Security, 2021, 14, 100098.	1.2	7
662	Revisiting the 24 year (1994-2018) record of glacier mass budget in the Suru sub-basin, western Himalaya: Overall response and controlling factors. Science of the Total Environment, 2021, 800, 149533.	3.9	13

#	Article	IF	CITATIONS
663	Mass balance and morphological evolution of the Dokriani Glacier, central Himalaya, India during 1999–2014. Geoscience Frontiers, 2022, 13, 101290.	4.3	10
664	Simulating the hydrological regime of the snow fed and glaciarised Gilgit Basin in the Upper Indus using global precipitation products and a data parsimonious precipitation-runoff model. Science of the Total Environment, 2022, 802, 149872.	3.9	27
665	An integrative method for identifying potentially dangerous glacial lakes in the Himalayas. Science of the Total Environment, 2022, 806, 150442.	3.9	21
666	Longbasaba Glacier recession and contribution to its proglacial lake volume between 1988 and 2018. Journal of Glaciology, 2021, 67, 473-484.	1.1	9
667	Climate change and melting glaciers. , 2021, , 53-84.		4
668	Atmospheric dynamic constraints on Tibetan Plateau freshwater under Paris climate targets. Nature Climate Change, 2021, 11, 219-225.	8.1	87
669	Debris cover and the thinning of Kennicott Glacier, Alaska: in situ measurements, automated ice cliff delineation and distributed melt estimates. Cryosphere, 2021, 15, 265-282.	1.5	31
670	Continuous borehole optical televiewing reveals variable englacial debris concentrations at Khumbu Glacier, Nepal. Communications Earth & Environment, 2021, 2, .	2.6	14
671	Climate Change and Cryospheric Response Over North-West and Central Himalaya, India. , 2020, , 309-330.		4
672	Glacio-Hydrological Degree-Day Model (GDM) Useful for the Himalayan River Basins. , 2020, , 379-398.		6
673	Hydrology of the Himalayas. , 2020, , 419-450.		21
674	An Integrative and Joint Approach to Climate Impacts, Hydrological Risks and Adaptation in the Indian Himalayan Region. , 2020, , 553-573.		3
675	Claciers and Monsoon Systems. Springer Climate, 2016, , 225-249.	0.3	2
676	Heterogeneity in Fluctuations of Glacier with Clean Ice-Covered, Debris-Covered and Proglacial Lake in the Upper Ravi Basin, Himachal Himalaya (India), During the Past Four Decades (1971–2013). , 2016, , 155-179.		3
677	A world of changing glaciers: Summary and climatic context. , 2014, , 781-840.		6
678	Glacier Mapping and Monitoring Using Multispectral Data. , 2014, , 75-112.		18
679	Karakoram Glaciers and Climate Change. Advances in Asian Human-Environmental Research, 2014, , 291-326.	0.7	2
680	Numerical Modeling Issues for Understanding Complex Debris-Covered Glaciers. , 2020, , .		2

#	ARTICLE	IF	CITATIONS
681	Issues in Climate Analysis and Modeling for Understanding Mountain Erosion Dynamics. , 2022, , 121-140.		6
682	Application of geomorphons for analysing changes in the morphology of a proglacial valley (case) Tj ETQq1 1 0.7	′84314 rg[1.1	3T /Qverlock
683	Seasonally stable temperature gradients through supraglacial debris in the Everest region of Nepal, Central Himalaya. Journal of Glaciology, 2021, 67, 170-181.	1.1	14
684	Spatiotemporal variability of surface velocities of monsoon temperate glaciers in the Kangri Karpo Mountains, southeastern Tibetan Plateau. Journal of Glaciology, 2021, 67, 186-191.	1.1	7
685	Climate change: Melting glaciers bring energy uncertainty. Nature, 2013, 502, 617-618.	13.7	51
686	Variations in the extent and elevation of the Larsen A and B ice shelves, Antarctica, derived from multiple datasets. Journal of Applied Remote Sensing, 2018, 12, 1.	0.6	2
687	Savor the Cryosphere. GSA Today, 2017, , 4-11.	1.1	10
688	Mass Change of Glaciers in Muztag Ata–Kongur Tagh, Eastern Pamir, China from 1971/76 to 2013/14 as Derived from Remote Sensing Data. PLoS ONE, 2016, 11, e0147327.	1.1	47
689	Climate Change Impacts on the Upper Indus Hydrology: Sources, Shifts and Extremes. PLoS ONE, 2016, 11, e0165630.	1.1	234
691	Spectral Features for the Detection of Land Cover Changes. Journal of Geoscience and Environment Protection, 2019, 07, 81-93.	0.2	2
692	Remote Sensing Data Application to Monitor Snow Cover Variation and Hydrological Regime in a Poorly Gauged River Catchment—Northern Pakistan. International Journal of Geosciences, 2014, 05, 27-37.	0.2	6
693	A consistent glacier inventory for Karakoram and Pamir derived from Landsat data: distribution of debris cover and mapping challenges. Earth System Science Data, 2018, 10, 1807-1827.	3.7	86
694	A high-resolution image time series of the Gorner Glacier – Swiss Alps – derived from repeated unmanned aerial vehicle surveys. Earth System Science Data, 2019, 11, 579-588.	3.7	32
695	Temporal inventory of glaciers in the Suru sub-basin, western Himalaya: impacts of regional climate variability. Earth System Science Data, 2020, 12, 1245-1265.	3.7	51
696	Glacial lake inventory of high-mountain Asia in 1990 and 2018 derived from Landsat images. Earth System Science Data, 2020, 12, 2169-2182.	3.7	112
697	An improved Terra–Aqua MODIS snow cover and Randolph Glacier Inventory 6.0 combined product (MOYDGL06*) for high-mountain Asia between 2002 and 2018. Earth System Science Data, 2020, 12, 345-356.	3.7	46
701	MAPPING GLACIER CHANGES USING CLUSTERING TECHNIQUES ON CLOUD COMPUTING INFRASTRUCTURE. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-2/W16, 29-34.	0.2	3
702	COMPARATIVE ASSESSMENT OF RUNOFF AND ITS COMPONENTS IN TWO CATCHMENTS OF UPPER INDUS BASIN BY USING A SEMI DISTRIBUTED GLACIO-HYDROLOGICAL MODEL. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-2/W7, 1487-1494	0.2	7

#	Article	IF	Citations
703	GLACIER ICE MASS CHANGES IN CENTRAL HIMALAYAS DURING 2000-2014 USING TanDEM- X DATA. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-5, 193-196.	0.2	1
704	Understanding Dynamics of Himalayan Glaciers: Scope and Challenges of Remote Sensing. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XL-8, 1283-1289.	0.2	6
706	Seasonal variation of ice melting on varying layers of debris of Lirung Glacier, Langtang Valley, Nepal. Proceedings of the International Association of Hydrological Sciences, 0, 368, 21-26.	1.0	9
707	Surface lowering of the debris-covered area of Kanchenjunga Glacier in the eastern Nepal Himalaya since 1975, as revealed byÂHexagon KH-9 and ALOS satellite observations. Cryosphere, 2017, 11, 2815-2827.	1.5	17
708	Satellite-observed monthly glacier and snow mass changes in southeast Tibet: implication for substantial meltwater contribution to the Brahmaputra. Cryosphere, 2020, 14, 2267-2281.	1.5	24
741	Estimating the Changes in Glaciers and Glacial Lakes in the Xixabangma Massif, Central Himalayas, between 1974 and 2018 from Multisource Remote Sensing Data. Remote Sensing, 2021, 13, 3903.	1.8	7
742	Grand Challenges of Hydrologic Modeling for Food-Energy-Water Nexus Security in High Mountain Asia. Frontiers in Water, 2021, 3, .	1.0	5
743	Glacier area changes and its relation to climatological trends over Western Himalaya between 1971 and 2018. Journal of Earth System Science, 2021, 130, 1.	0.6	4
744	Vanishing Glaciers at Southeast Tibetan Plateau Have Not Offset the Declining Runoff at Yarlung Zangbo. Geophysical Research Letters, 2021, 48, e2021GL094651.	1.5	25
745	Quantification of glacier mass budgets in the Karakoram region of Upper Indus Basin during the early twenty-first century. Journal of Hydrology, 2021, 603, 127095.	2.3	8
746	The joint driving effects of climate and weather changes caused the Chamoli glacier-rock avalanche in the high altitudes of the India Himalaya. Science China Earth Sciences, 2021, 64, 1909-1921.	2.3	20
747	Winter and spring atmospheric rivers in High Mountain Asia: climatology, dynamics, and variability. Climate Dynamics, 2022, 58, 2309-2331.	1.7	9
748	Quantifying glacial elevation changes in the central Qilian Mountains during the early 21st century. Journal of Mountain Science, 2021, 18, 2946-2959.	0.8	1
751	Digital Camera Nikon D300 in Support of High Mountain Studies in the Langtang Valley, Central Himalaya, Nepal. Universal Journal of Geoscience, 2013, 1, 1-9.	0.7	2
755	Retreat and Implications for Sectoral Climate Adaptation. , 2014, , 1-11.		0
759	Himalayan GlaciersHimalayan glaciers Retreat and Implications for Sectoral Climate Adaptation. , 2015, , 359-371.		0
761	Studies on Quaternary Glaciations in India During 2010-2016. Proceedings of the Indian National Science Academy, 2016, 82, .	0.5	1
762	Using passive microwave data to understand spatio-temporal trends and dynamics in snow-water storage in High Mountain Asia. , 2018, , .		0

#	Article	IF	CITATIONS
764	Mapping Ausangate glacier changes using clustering techniques on cloud computing infrastructure. , 2019, , .		2
765	Water Quality Under the Changing Climatic Condition: A Review of the Indian Scenario. Springer Transactions in Civil and Environmental Engineering, 2020, , 31-61.	0.3	1
766	Sensitivity of Glaciers in Part of the Suru Basin, Western Himalaya to Ongoing Climatic Perturbations. , 2020, , 351-377.		6
767	Climate Variability and Extreme Weather in High Mountain Asia: Observation and Modelling. , 2020, , 109-117.		1
768	Impacts of Climate Change on Himalayan Glaciers: Processes, Predictions and Uncertainties. , 2020, , 331-349.		1
769	Remotely Sensed Rain and Snowfall in the Himalaya. , 2020, , 119-139.		0
770	Research on glacier elevation changes in Southeast Tibet based ICESat and CryoSat-2 Data. IOP Conference Series: Earth and Environmental Science, 2021, 865, 012036.	0.2	0
771	Elevation change of the Urumqi Glacier No.1 derived from Sentinel-1A data. Journal of Mountain Science, 2021, 18, 2656-2671.	0.8	0
772	Streamflow modeling and contribution of snow and glacier melt runoff in glacierized Upper Indus Basin. Environmental Monitoring and Assessment, 2021, 193, 761.	1.3	1
773	Modelling Permafrost Distribution in Western Himalaya Using Remote Sensing and Field Observations. Remote Sensing, 2021, 13, 4403.	1.8	11
774	Implications of Changing Climatic Pattern on the Geopolitical Situation of North Western Himalaya, India. , 2020, , 157-168.		1
775	Debris-covered glacier systems and associated glacial lake outburst flood hazards: challenges and prospects. Journal of the Geological Society, 2022, 179, .	0.9	18
776	The Worldâ \in ™s Mountains in the Anthropocene. Sustainable Development Goals Series, 2022, , 1-144.	0.2	3
777	Spatio-Temporal Heterogeneity in Glaciers Response Across Western Himalaya. Sustainable Development Goals Series, 2022, , 185-206.	0.2	1
778	A deep learning reconstruction of mass balance series for all glaciers in the French Alps: 1967–2015. Earth System Science Data, 2020, 12, 1973-1983.	3.7	8
779	Climate engineering: a strategic approach to combat environmental potential risks associated with Pak-China Economic corridor (CPEC) Development. Reviews on Environmental Health, 2021, 36, 143-144.	1.1	5
780	Spatiotemporal variation in temperature extremes and their association with large scale circulation patterns in the Central Karakorum during 1982–2019. Atmospheric Research, 2022, 267, 105925.	1.8	5
781	Spatiotemporal distribution of seasonal snow water equivalent in High Mountain Asia from an 18-year Landsat–MODIS era snow reanalysis dataset. Cryosphere, 2021, 15, 5261-5280.	1.5	20

#	Article	IF	CITATIONS
782	Monitoring the dynamics of Bara Shigri glacier using Synthetic Aperture Radar data of Sentinel-1 satellite and effect of climate on mass balances. Advances in Space Research, 2022, 70, 3948-3958.	1.2	7
783	Structure of the Western Tibetan Vortex inconsistent with a thermally-direct circulation. Climate Dynamics, 2022, 58, 2213-2225.	1.7	4
784	Temperature and precipitation changes over the glaciated parts of Indian Himalayan Region during 1901–2016. Environmental Monitoring and Assessment, 2022, 194, 84.	1.3	4
785	Rapid glacier mass loss in the Southeastern Tibetan Plateau since the year 2000 from satellite observations. Remote Sensing of Environment, 2022, 270, 112853.	4.6	47
786	Contemporary Trends in High and Low River Flows in Upper Indus Basin, Pakistan. Water (Switzerland), 2022, 14, 337.	1.2	5
787	Air Contaminants and Atmospheric Black Carbon Association with White Sky Albedo at Hindukush Karakorum and Himalaya Glaciers. Applied Sciences (Switzerland), 2022, 12, 962.	1.3	2
789	Distinct impacts of vapor transport from the tropical oceans on the regional glacier retreat over the Qinghai-Tibet Plateau. Science of the Total Environment, 2022, 823, 153545.	3.9	12
790	Relative Contribution of Climate Variables on Long-Term Runoff Using Budyko Framework. Advances in Geographical and Environmental Sciences, 2022, , 147-159.	0.4	3
791	Assessment of runoff in Chandra river basin of Western Himalaya using Remote Sensing and GIS Techniques. Environmental Monitoring and Assessment, 2022, 194, 145.	1.3	3
792	Climate change impact on cryosphere and streamflow in the Upper Jhelum River Basin (UJRB) of north-western Himalayas. Environmental Monitoring and Assessment, 2022, 194, 140.	1.3	12
793	Explaining the differential response of glaciers across different mountain ranges in the north-western Himalaya, India. Cold Regions Science and Technology, 2022, 196, 103515.	1.6	12
794	Recent climate and hydrological changes in a mountain–basin system in Xinjiang, China. Earth-Science Reviews, 2022, 226, 103957.	4.0	107
795	Glacier change in China over past decades: Spatiotemporal patterns and influencing factors. Earth-Science Reviews, 2022, 226, 103926.	4.0	40
796	Characterization of interannual and seasonal variability of hydro-climatic trends in the Upper Indus Basin. Theoretical and Applied Climatology, 2022, 147, 1163-1184.	1.3	17
798	Climate-Induced Glacier Retreats and Associated Hazards: Need for Robust Glaciers and Glacial Lake Management Policy in Sikkim Himalaya, India. Springer Climate, 2022, , 161-182.	0.3	2
799	Glacier and rock glacier changes since the 1950s in the La Laguna catchment, Chile. Cryosphere, 2022, 16, 647-665.	1.5	15
800	Albedo Parametrizations for the Laohugou Glacier No.12 in the Qilian Mountains—Previous Models and an Alternative Approach. Frontiers in Earth Science, 2022, 9, .	0.8	0
801	Dulung Proglacial Lake, Suru Sub-Basin, Western Himalaya: Evolution, Controls and Impacts on Glacier Stability. Frontiers in Environmental Science, 2022, 10, .	1.5	5

#	ARTICLE	IF	CITATIONS
802	Glacier inventory of the Subansiri River Basin in the Brahmaputra catchment using Landsat satellite data: A case study of the Daisaphu Glacier changes. Geological Journal, 2022, 57, 4939-4954.	0.6	3
803	Manifestation of topography and climate variations on long-term glacier changes in the Alaknanda Basin of Central Himalaya, India. Geocarto International, 2022, 37, 11010-11029.	1.7	4
804	Glacier Mass Balance in the Manas River Using Ascending and Descending Pass of Sentinel 1A/1B Data and SRTM DEM. Remote Sensing, 2022, 14, 1506.	1.8	8
805	Inter- and Intra-Annual Glacier Elevation Change in High Mountain Asia Region Based on ICESat-1&2 Data Using Elevation-Aspect Bin Analysis Method. Remote Sensing, 2022, 14, 1630.	1.8	16
806	Application of "OTSUâ€â€"an image segmentation method for differentiation of snow and ice regions of glaciers and assessment of mass budget in Chandra basin, Western Himalaya using Remote Sensing and GIS techniques. Environmental Monitoring and Assessment, 2022, 194, 337.	1.3	8
807	Investigating different timescales of terrestrial water storage changes in the northeastern Tibetan Plateau. Journal of Hydrology, 2022, 608, 127608.	2.3	9
808	Evolution of geodetic mass balance over the largest lake-terminating glacier in the Tibetan Plateau with a revised radar penetration depth based on multi-source high-resolution satellite data. Remote Sensing of Environment, 2022, 275, 113029.	4.6	3
809	Functioning of glacierized catchments in Monsoon and Alpine regimes of Himalaya. Journal of Hydrology, 2022, 609, 127671.	2.3	4
810	Glacier Area and Snow Cover Changes in the Range System Surrounding Tarim from 2000 to 2020 Using Google Earth Engine. Remote Sensing, 2021, 13, 5117.	1.8	8
811	Spatiotemporal Dynamics and Geodetic Mass Changes of Glaciers With Varying Debris Cover in the Pangong Region of Trans-Himalayan Ladakh, India Between 1990 and 2019. Frontiers in Earth Science, 2021, 9, .	0.8	10
812	The Challenge of Non-Stationary Feedbacks in Modeling the Response of Debris-Covered Glaciers to Climate Forcing. Frontiers in Earth Science, 2021, 9, .	0.8	6
813	Accelerated mass loss of Himalayan glaciers since the Little Ice Age. Scientific Reports, 2021, 11, 24284.	1.6	45
814	Recent Evolution of Glaciers in the Manaslu Region of Nepal From Satellite Imagery and UAV Data (1970–2019). Frontiers in Earth Science, 2022, 9, .	0.8	8
815	The Potential of Sentinel-1A Data for Identification of Debris-Covered Alpine Glacier Based on Machine Learning Approach. Remote Sensing, 2022, 14, 1980.	1.8	1
827	Brief communication: A framework to classify glaciers for water resource evaluation and management in the Southern Andes. Cryosphere, 2022, 16, 1779-1791.	1.5	4
828	Monitoring the Surface Elevation Changes of a Monsoon Temperate Glacier with Repeated UAV Surveys, Mainri Mountains, China. Remote Sensing, 2022, 14, 2229.	1.8	3
829	Changes in ice-surface debris, surface elevation and mass through the active phase of selected Karakoram glacier surges. Geomorphology, 2022, 410, 108291.	1.1	2
830	The Spatiotemporal Change of Glacier Runoff Is Comparably Attributed to Climatic Factors and Physical Properties in Northwestern China. Remote Sensing, 2022, 14, 2393.	1.8	2

#	Article	IF	CITATIONS
831	Glacier area changes in the Nujiang-Salween River Basin over the past 45 years. Journal of Chinese Geography, 2022, 32, 1177-1204.	1.5	2
832	South Asian agriculture increasingly dependent on meltwater and groundwater. Nature Climate Change, 2022, 12, 566-573.	8.1	38
833	Glacier Mass Balance Pattern and Its Variation Mechanism in the West Kunlun Mountains in Tibetan Plateau. Remote Sensing, 2022, 14, 2634.	1.8	0
834	Spatiotemporal heterogeneity and driving mechanisms of Himalayan glacier mass change in the early 21st century. Journal of Applied Remote Sensing, 2022, 16, .	0.6	0
835	The Seasonal Evolution of the Tibetan Plateau Snow Cover Related Moisture During Springâ€ŧo‧ummer. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	4
837	Existence of Glacier Anomaly in the Interior and Northern Tibetan Plateau between 2000 and 2012. Remote Sensing, 2022, 14, 2962.	1.8	3
838	Recent Changes in Glaciers in the Northern Tien Shan, Central Asia. Remote Sensing, 2022, 14, 2878.	1.8	8
839	Glacier mass balance estimation in Garhwal Himalaya using improved accumulation area ratio method. Environmental Monitoring and Assessment, 2022, 194, .	1.3	4
840	Land- to lake-terminating transition triggers dynamic thinning of a Bhutanese glacier. Cryosphere, 2022, 16, 2643-2654.	1.5	8
841	Analysis of differential glacier behaviour in Sikkim Himalayas in view of changing climate. Geocarto International, 2024, 37, 16020-16042.	1.7	5
842	Challenges in Understanding the Variability of the Cryosphere in the Himalaya and Its Impact on Regional Water Resources. Frontiers in Water, 0, 4, .	1.0	11
843	Energy fluxes, mass balance, and climate sensitivity of the Sutri Dhaka Glacier in the western Himalaya. Frontiers in Earth Science, 0, 10, .	0.8	6
844	Evaluation of Albedo Schemes in WRF Coupled with Noah-MP on the Parlung No. 4 Glacier. Remote Sensing, 2022, 14, 3934.	1.8	0
845	Ice thickness and morphological analysis reveal the future glacial lake distribution and formation probability in the Tibetan Plateau and its surroundings. Global and Planetary Change, 2022, 216, 103923.	1.6	10
846	Glacier mass-balance estimates over High Mountain Asia from 2000 to 2021 based on ICESat-2 and NASADEM. Journal of Glaciology, 2023, 69, 500-512.	1.1	10
847	Geomorphometry and terrain analysis: data, methods, platforms and applications. Earth-Science Reviews, 2022, 233, 104191.	4.0	45
848	Monitoring glacier thinning rate in Rongbuk Catchment on the northern slope of Mt. Qomolangma from 1974 to 2021. Ecological Indicators, 2022, 144, 109418.	2.6	2
849	Assessment of climate change effects on vegetation and river hydrology in a semi-arid river basin. PLoS ONE, 2022, 17, e0271991.	1.1	6

#	Article	IF	CITATIONS
850	Spatiotemporal variations in runoff and runoff components in response to climate change in a glacierized subbasin of the Upper Indus Basin, Pakistan. Frontiers in Earth Science, 0, 10, .	0.8	8
851	Involving Turc-Budyko formula in evaluating gridded precipitation datasets in glaciated catchments. Journal of Hydrology, 2022, 614, 128482.	2.3	2
852	Characterization of Long-Time Series Variation of Glacial Lakes in Southwestern Tibet: A Case Study in the Nyalam County. Remote Sensing, 2022, 14, 4688.	1.8	3
853	Estimating glacier mass balance in High Mountain Asia based on Moderate Resolution Imaging Spectroradiometer retrieved surface albedo from 2000 to 2020. International Journal of Climatology, 2022, 42, 9931-9949.	1.5	4
854	Comparative assessment of two neighbouring glaciers (Raj Bank and Kosa), Dhauliganga Basin, central Himalaya, India, since 1962 to 2019. Journal of Earth System Science, 2022, 131, .	0.6	1
855	Monitoring of Hydrological Resources in Surface Water Change by Satellite Altimetry. Remote Sensing, 2022, 14, 4904.	1.8	3
856	Spatially heterogeneous glacier elevation change in the Jankar Chhu Watershed, Lahaul Himalaya, India derived using ASTER DEMs. Geocarto International, 2024, 37, 17799-17825.	1.7	4
857	The Karakoram Anomaly: Validation through Remote Sensing Data, Prospects and Implications. Water (Switzerland), 2022, 14, 3157.	1.2	1
858	Assessment of climate change impacts on glacio-hydrological processes and their variations within critical zone. Natural Hazards, 2023, 115, 2721-2748.	1.6	4
859	Pre-collapse motion of the FebruaryÂ2021 Chamoli rock–ice avalanche, Indian Himalaya. Natural Hazards and Earth System Sciences, 2022, 22, 3309-3327.	1.5	5
860	Evaluation of surface mass-balance records using geodetic data and physically-based modelling, Place and Peyto glaciers, western Canada. Journal of Glaciology, 2023, 69, 665-682.	1.1	5
861	Recent Seasonal Spatiotemporal Variations in Alpine Glacier Surface Elevation in the Pamir. Remote Sensing, 2022, 14, 4923.	1.8	2
862	Spatial pattern of the debris-cover effect and its role in the Hindu Kush-Pamir-Karakoram-Himalaya glaciers. Journal of Hydrology, 2022, 615, 128613.	2.3	4
863	Reassessing the Karakoram Through Historical Archives. , 2022, , 139-169.		1
864	Positive mass budgets of high-altitude and debris-covered fragmented tributary glaciers in Gangotri Glacier System, Himalaya. Frontiers in Earth Science, 0, 10, .	0.8	2
865	The rapid vegetation line shift in response to glacial dynamics and climate variability in Himalaya between 2000 and 2014. Environmental Monitoring and Assessment, 2023, 195, .	1.3	1
866	A long-term mass-balance reconstruction (1974–2021) and a decadal in situ mass-balance record (2011–2021) of Rikha Samba Glacier, central Himalaya. Journal of Glaciology, 0, , 1-14.	1.1	1
867	Hydrological and dynamical response of glaciers to climate change based on their dimensions in the Hunza Basin, Karakoram. Journal of Hydrology, 2023, 617, 128948.	2.3	2

#	Article	IF	CITATIONS
868	Measuring Glacier Elevation Change by Tracking Shadows on Satellite Monoscopic Optical Images. IEEE Geoscience and Remote Sensing Letters, 2023, 20, 1-5.	1.4	1
869	Glacial Lake Outburst Flood Hazard and Risk Assessment of Gangabal Lake in the Upper Jhelum Basin of Kashmir Himalaya Using Geospatial Technology and Hydrodynamic Modeling. Remote Sensing, 2022, 14, 5957.	1.8	7
870	Explaining the natural and anthropogenic factors driving glacier recession in Kashmir Himalaya, India. Environmental Science and Pollution Research, 2023, 30, 29942-29960.	2.7	3
871	Landsat- and Sentinel-derived glacial lake dataset in the China–Pakistan Economic Corridor from 1990 to 2020. Earth System Science Data, 2022, 14, 5489-5512.	3.7	8
872	Recent 50-Year Glacier Mass Balance Changes over the Yellow River Source Region, Determined by Remote Sensing. Remote Sensing, 2022, 14, 6286.	1.8	1
873	Long-term firn and mass balance modelling for Abramov Glacier in the data-scarce Pamir Alay. Cryosphere, 2022, 16, 5001-5022.	1.5	6
874	Research on Glacier Elevation Variability in the Qilian Mountains of the Qinghai-Tibet Plateau Based on Topographic Correction by Pyramid Registration. Remote Sensing, 2023, 15, 62.	1.8	1
876	Warming Has Accelerated the Melting of Glaciers on the Tibetan Plateau, but the Debris-Covered Glaciers Are Rapidly Expanding. Remote Sensing, 2023, 15, 132.	1.8	0
877	Using Deep Learning to Model Elevation Differences between Radar and Laser Altimetry. Remote Sensing, 2022, 14, 6210.	1.8	0
878	Seasonal Cycles of High Mountain Asia Glacier Surface Elevation Detected by ICESatâ€2. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	8
879	Continuous Karakoram Glacier Anomaly and Its Response to Climate Change during 2000–2021. Remote Sensing, 2022, 14, 6281.	1.8	6
880	Assessment of Runoff Components of River Flow in the Karakoram Mountains, Pakistan, during 1995–2010. Remote Sensing, 2023, 15, 399.	1.8	3
881	Measuring glacier mass changes from space—a review. Reports on Progress in Physics, 2023, 86, 036801.	8.1	12
882	The Spatio-Temporal Patterns of Clacier Activities in the Eastern Pamir Plateau Investigated by Time Series Sub-Pixel Offsets From Sentinel-2 Optical Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 1256-1268.	2.3	1
883	Spatio-temporal assessment of regional scale evolution and distribution of glacial lakes in Himalaya. Frontiers in Earth Science, 0, 10, .	0.8	4
884	Direct, geodetic and simulated mass balance studies of the Kolahoi Glacier in the Kashmir Himalaya, India. Journal of Hydrology, 2023, 617, 129019.	2.3	3
886	The evolution of precipitation and its physical mechanisms in arid and humid regions of the Tibetan Plateau. Atmospheric Research, 2023, 285, 106638.	1.8	2
887	Heterogeneity in glacier thinning and slowdown of ice movement in the Garhwal Himalaya, India. Science of the Total Environment, 2023, 875, 162625.	3.9	10

#	Article	IF	CITATIONS
888	Spatial variability in melting on Himalayan debris-covered glaciers from 2000 to 2013. Remote Sensing of Environment, 2023, 291, 113560.	4.6	12
889	Lake volume and potential hazards of moraine-dammed glacial lakes – a case study of Bienong Co, southeastern Tibetan Plateau. Cryosphere, 2023, 17, 591-616.	1.5	5
890	Long-Term Seasonal Drought Trends in the China-Pakistan Economic Corridor. Climate, 2023, 11, 45.	1.2	6
891	Heterogeneous mass balance of selected Glaciers in the Hindu Kush, Karakoram, and Himalaya between 2000 and 2018. European Journal of Remote Sensing, 2023, 56, .	1.7	2
892	Interdecadal glacier inventories in the Karakoram since the 1990s. Earth System Science Data, 2023, 15, 847-867.	3.7	5
893	Glacier mass balance in Asian high mountains: Reconsideration of satellite gravimetry estimates. Journal of the Japanese Society of Snow and Ice, 2014, 76, 45-57.	0.0	0
894	Recent studies on ablation process of debris-covered glaciers. Journal of the Japanese Society of Snow and Ice, 2014, 76, 79-89.	0.0	1
895	Himalayan Glaciergate and its aftermath. Journal of the Japanese Society of Snow and Ice, 2014, 76, 69-78.	0.0	0
896	Response of the Thick and Thin Debris-Covered Glaciers between 1971 and 2019 in Ladakh Himalaya, India—A Case Study from Pensilungpa and Durung-Drung Glaciers. Sustainability, 2023, 15, 4267.	1.6	5
897	Recent studies of Himalayan glaciers using remote sensing. Journal of the Japanese Society of Snow and Ice, 2014, 76, 105-114.	0.0	0
898	Historical Climate Trends over High Mountain Asia Derived from ERA5 Reanalysis Data. Journal of Applied Meteorology and Climatology, 2023, 62, 263-288.	0.6	5
899	Characterizing 4 decades of accelerated glacial mass loss in the west Nyainqentanglha Range of the Tibetan Plateau. Hydrology and Earth System Sciences, 2023, 27, 933-952.	1.9	3
900	A Bibliometric and Visualized Analysis of Remote Sensing Methods for Glacier Mass Balance Research. Remote Sensing, 2023, 15, 1425.	1.8	3
901	Assessment of Existing Himalayan Glacier Inventories for Glacier Studies: A Case Study from theÂRavi Basin of North-Western Himalaya (India). , 2023, , 109-134.		0
902	Permafrost in the Upper Indus Basin: An active layer dynamics. Journal of Earth System Science, 2023, 132, .	0.6	3
903	Underestimated mass loss from lake-terminating glaciers in the greater Himalaya. Nature Geoscience, 2023, 16, 333-338.	5.4	20
904	Understanding the spatial distribution and plausible genesis of supraglacial debris over the Himalaya-Karakoram region. Physical Geography, 2023, 44, 620-642.	0.6	0
909	A geospatial analysis of long-term trends in snow depth in the Hindu Kush Himalayan region: 1999–2019. Acta Geophysica, 0, , .	1.0	0

#	Article	IF	CITATIONS
923	The Impact of Climate Change on the Indus Basin: Challenges and Constraints. Global Issues in Water Policy, 2023, , 225-248.	0.1	1
930	Climate change and its impacts on glaciers and glacial lakes in Nepal Himalayas. Regional Environmental Change, 2023, 23, .	1.4	2
940	Monitoring Earth's climate variables with satellite laser altimetry. Nature Reviews Earth & Environment, 2024, 5, 120-136.	12.2	0