Fundamentals of green chemistry: efficiency in reaction

Chemical Society Reviews 41, 1437-1451 DOI: 10.1039/c1cs15219j

Citation Report

#	Article	IF	CITATIONS
1	Atom efficiency and catalysis in organic synthesis. Pure and Applied Chemistry, 2000, 72, 1233-1246.	1.9	706
2	Exploiting H-transfer reactions with RANEY® Ni for upgrade of phenolic and aromatic biorefinery feeds under unusual, low-severity conditions. Energy and Environmental Science, 2012, 5, 8244.	30.8	241
3	Towards Reaction Control: <i>cis</i> â€Diastereoselective Reductive Dehydroxylation of 5â€Alkylâ€4â€Benzyloxyâ€5â€Hydroxyâ€2â€Pyrrolidinones. Asian Journal of Organic Chemistry, 2012, 1, 359-36	5 ^{2.7}	9
4	Crossâ€Linkedâ€Polymerâ€Supported <i>N</i> à€{2′â€[(Arylsulfonyl)amino][1,1′â€binaphthalen]â€2â€yl}ı Organocatalyst for the Direct Aldol Intermolecular Reaction under Solventâ€Free Conditions. Helvetica Chimica Acta, 2012, 95, 1831-1841.	orolinamic 1.6	le as 22
5	Evaluation of several catalytic systems for the epoxidation of methyl oleate using H2O2 as oxidant. Catalysis Today, 2012, 195, 76-82.	4.4	20
6	Synthesis of poly(ethyl acrylate-co-allyl acrylates) from acrylate mixtures prepared by a continuous solvent-free enzymatic process. RSC Advances, 2012, 2, 9230.	3.6	11
7	Stereoselective intermolecular C–H amination reactions. Chemical Communications, 2012, 48, 7799.	4.1	70
8	Desymmetrisation of aromatic diamines and synthesis of non-symmetrical thiourea derivatives by click-mechanochemistry. Chemical Communications, 2012, 48, 9705.	4.1	76
9	A clean enzymatic process for producing flavour esters by direct esterification in switchable ionic liquid/solid phases. Green Chemistry, 2012, 14, 3026.	9.0	75
10	A cyclic process for full enzymatic saccharification of pretreated cellulose with full recovery and reuse of the ionic liquid 1-butyl-3-methylimidazolium chloride. Green Chemistry, 2012, 14, 2631.	9.0	49
11	Immobilization of Acetobacter sp. CCTCC M209061 for efficient asymmetric reduction of ketones and biocatalyst recycling. Microbial Cell Factories, 2012, 11, 119.	4.0	38
12	Palladium(II)-Catalyzed Direct Alkenylation of Nonaromatic Enamides. Organic Letters, 2012, 14, 3304-3307.	4.6	104
13	Mechanochemistry assisted asymmetric organocatalysis: A sustainable approach. Beilstein Journal of Organic Chemistry, 2012, 8, 2132-2141.	2.2	80
14	Well-defined alkylpalladium complexes with pyridine-carboxylate ligands as catalysts for the aerobic oxidation of alcohols. Dalton Transactions, 2012, 41, 14087.	3.3	20
15	Gold-catalyzed direct cycloketalization of acetonide-tethered alkynes in the presence of water. Tetrahedron, 2012, 68, 9391-9396.	1.9	20
16	Evolution of asymmetric organocatalysis: multi- and retrocatalysis. Green Chemistry, 2012, 14, 1821.	9.0	249
18	Catalytic Aerobic Synthesis of Aromatic Ethers from Nonâ€Aromatic Precursors. Angewandte Chemie - International Edition, 2012, 51, 7537-7540.	13.8	110
19	Organocatalytic Asymmetric Oxidations with Hydrogen Peroxide and Molecular Oxygen. ChemCatChem, 2012, 4, 901-916.	3.7	49

#	Article	IF	CITATIONS
21	Water mediated Heck and Ullmann couplings by supported palladium nanoparticles: importance of surface polarity of the carbon spheres. Green Chemistry, 2012, 14, 2513.	9.0	91
22	Copper(II) immobilized on silica extracted from foxtail millet husk: a heterogeneous catalyst for the oxidation of tertiary amines under ambient conditions. Journal of Porous Materials, 2013, 20, 417-430.	2.6	15
23	H3PO4/metal halide induces a one-pot solvent-free esterification–halogenation of glycerol and diols. RSC Advances, 2013, 3, 8805.	3.6	4
24	A palladium complex with functionalized β-cyclodextrin: a promising catalyst featuring recognition abilities for Suzuki–Miyaura coupling reactions in water. Green Chemistry, 2013, 15, 2081.	9.0	64
25	Stereoselective Nickelâ€Catalyzed [2+2+2] Cycloadditions and Alkenylative Cyclizations of Eneâ€Allenes and Alkenes. Angewandte Chemie - International Edition, 2013, 52, 8424-8427.	13.8	31
26	The dual role of ionic liquid BmimBF4, precursor of N-heterocyclic carbene and solvent, in the oxidative esterification of aldehydes. Tetrahedron, 2013, 69, 8088-8095.	1.9	26
28	<i>L</i> â€Lysine/imidazoleâ€catalyzed Multicomponent Cascade Reaction: Facile Synthesis of C5â€substituted 3â€Methylcyclohexâ€2â€enones. Chinese Journal of Chemistry, 2013, 31, 997-1002.	4.9	8
29	Atom Economical, One-Pot, Three-Reaction Cascade to Novel Tricyclic 2,4-Dihydro-1H-benzo[f]isochromenes. Organic Letters, 2013, 15, 4070-4073.	4.6	18
30	Biocatalysis in Organic Chemistry and Biotechnology: Past, Present, and Future. Journal of the American Chemical Society, 2013, 135, 12480-12496.	13.7	646
31	Nitroxide-catalyzed transition-metal-free aerobic oxidation processes. Green Chemistry, 2013, 15, 3116.	9.0	284
32	Synthesis of Conjugated Dienes via a Biomimetic Aerobic Oxidative Coupling of Two C _{vinyl} H Bonds. Chemistry - A European Journal, 2013, 19, 10799-10803.	3.3	74
33	Protecting Group-Free Synthesis of 1,2-Azaborines: A Simple Approach to the Construction of BN-Benzenoids. Journal of the American Chemical Society, 2013, 135, 12908-12913.	13.7	90
34	Thiazolium-functionalized polystyrene monolithic microreactors for continuous-flow umpolung catalysis. Green Chemistry, 2013, 15, 2981.	9.0	33
37	"On Waterâ€, Phosphineâ€Free Palladiumâ€Catalyzed Room Temperature Cĭ£¿H Arylation of Indoles. Chemistry - A European Journal, 2013, 19, 15093-15096.	3.3	82
38	Promising Unconventional Pretreatments for Lignocellulosic Biomass. Critical Reviews in Environmental Science and Technology, 2013, 43, 2140-2211.	12.8	25
39	Photocatalysis by 3,6-Disubstituted- <i>s</i> -Tetrazine: Visible-Light Driven Metal-Free Green Synthesis of 2-Substituted Benzimidazole and Benzothiazole. Journal of Organic Chemistry, 2013, 78, 11184-11193.	3.2	110
40	A comparative study of ultrasound-, microwave-, and microreactor-assisted imidazolium-based ionic liquid synthesis. Green Processing and Synthesis, 2013, 2, 579-590.	3.4	36
41	Multiphase biotransformations in microstructured reactors: opportunities for biocatalytic process intensification and smart flow processing. Green Processing and Synthesis, 2013, 2, 541-559.	3.4	43

#	Article	IF	CITATIONS
42	A convenient synthesis of bisamides with BF3 etherate as catalyst. Tetrahedron, 2013, 69, 11080-11083.	1.9	15
43	Green chemistry in Brazil. Pure and Applied Chemistry, 2013, 85, 1643-1653.	1.9	18
44	Target-oriented analysis of gaseous, liquid and solid chemical systems by mass spectrometry, nuclear magnetic resonance spectroscopy and electron microscopy. Russian Chemical Reviews, 2013, 82, 648-685.	6.5	206
45	Calculation of optimal gas retention time using a logarithmic equation applied to a bio-trickling filter reactor for formaldehyde removal from synthetic contaminated air. RSC Advances, 2013, 3, 5100.	3.6	21
46	One-pot combination of enzyme and Pd nanoparticle catalysis for the synthesis of enantiomerically pure 1,2-amino alcohols. Green Chemistry, 2013, 15, 3318.	9.0	75
47	Catalytic transformation of alcohols to carboxylic acid salts and H2 using water as the oxygen atom source. Nature Chemistry, 2013, 5, 122-125.	13.6	293
48	Straightforward heterogeneous palladium catalyzed synthesis of aryl ethers and aryl amines via a solvent free aerobic and non-aerobic dehydrogenative arylation. Green Chemistry, 2013, 15, 347-352.	9.0	64
49	A simple metal-free catalytic sulfoxidation under visible light and air. Green Chemistry, 2013, 15, 357.	9.0	145
50	Recent approaches for C–C bond formation via direct dehydrative coupling strategies. Chemical Society Reviews, 2013, 42, 1121-1146.	38.1	260
51	Strategy of cross-linked enzyme aggregates onto magnetic particles adapted to the green design of biocatalytic synthesis of glycerol carbonate. RSC Advances, 2013, 3, 4052.	3.6	48
52	Electrogenerated <i>N</i> â€Heterocyclic Carbenes in the Room Temperature Parent Ionic Liquid as an Efficient Medium for Transesterification/Acylation Reactions. European Journal of Organic Chemistry, 2013, 2013, 326-331.	2.4	29
53	Expanding the toolbox for enantioselective sulfide oxidations: Streptomyces strains as biocatalysts. Biocatalysis and Agricultural Biotechnology, 2013, 2, 399-402.	3.1	8
54	Two alternative routes for 1,2-cyclohexanediol synthesis by means of green processes: Cyclohexene dihydroxylation and catechol hydrogenation. Applied Catalysis A: General, 2013, 466, 21-31.	4.3	24
55	Coupling biocatalysis and click chemistry: one-pot two-step convergent synthesis of enantioenriched 1,2,3-triazole-derived diols. Chemical Communications, 2013, 49, 2625-2627.	4.1	51
56	Shine a light on immobilized enzymes: real-time sensing in solid supported biocatalysts. Trends in Biotechnology, 2013, 31, 194-203.	9.3	51
57	Microwave-assisted organocatalytic cross-aldol condensation of aldehydes. RSC Advances, 2013, 3, 4496.	3.6	25
58	Hydrogenation of levulinic acid to γ-valerolactone using ruthenium nanoparticles. Inorganica Chimica Acta, 2013, 397, 124-128.	2.4	80
59	Constructing manmade enzymes for oxygen activation. Dalton Transactions, 2013, 42, 3136-3150.	3.3	22

#	Article	IF	CITATIONS
60	Stereoselective bioreduction of β-carboline imines through cell-free extracts from earthworms (Eisenia foetida). Tetrahedron: Asymmetry, 2013, 24, 440-443.	1.8	16
61	Chemoselective Oxidation of Secondary Alcohols Using a Ruthenium Phenylindenyl Complex. Organometallics, 2013, 32, 660-664.	2.3	38
62	Iridium(I) Hydroxides: Powerful Synthons for Bond Activation. Chemistry - A European Journal, 2013, 19, 7904-7916.	3.3	38
63	Reactions of hydrophobic organic nanoparticle mixtures in water: nanoparticle-on-nanoparticle oxidative dye bleaching. Green Chemistry, 2013, 15, 1590.	9.0	3
64	Taming furfuryl cations for the synthesis of privileged structures and novel scaffolds. Organic and Biomolecular Chemistry, 2013, 11, 4299.	2.8	21
65	Utilization of carbon disulfide as a powerful building block for the synthesis of 2-aminobenzoxazoles. RSC Advances, 2013, 3, 9875.	3.6	17
66	Ionic Liquid Effect over the Biginelli Reaction under Homogeneous and Heterogeneous Catalysis. ACS Catalysis, 2013, 3, 1420-1430.	11.2	81
67	Synthesis of disulfides by laccase-catalyzed oxidative coupling of heterocyclic thiols. Green Chemistry, 2013, 15, 1490.	9.0	56
68	A Continuous Flow Solution to Achieving Efficient Aerobic Antiâ€Markovnikov Wacker Oxidation. Advanced Synthesis and Catalysis, 2013, 355, 1905-1910.	4.3	56
69	Catalytic Saloplastics: Alkaline Phosphatase Immobilized and Stabilized in Compacted Polyelectrolyte Complexes. Advanced Functional Materials, 2013, 23, 4785-4792.	14.9	14
70	Chemoenzymatic Asymmetric Synthesis of Serotonin Receptor Agonist (<i>R</i>)â€Frovatriptan. European Journal of Organic Chemistry, 2013, 2013, 4057-4064.	2.4	9
71	Study on Industrial Metabolism of Carbon in a Chinese Fine Chemical Industrial Park. Environmental Science & Technology, 2013, 47, 1048-1056.	10.0	39
72	Organocatalytic conversion of cellulose into a platform chemical. Chemical Science, 2013, 4, 196-199.	7.4	73
74	Mimicking P450 processes and the use of metalloporphyrins. Pure and Applied Chemistry, 2013, 85, 1671-1681.	1.9	41
75	Probing the origin of in situ generated nanoparticles as sustainable oxidation catalysts. Dalton Transactions, 2013, 42, 12600.	3.3	10
76	An Ecofriendly and Stability-Indicating HPLC Method for Determination of Permethrin Isomers: Application to Pharmaceutical Analysis. Journal of Chemistry, 2013, 2013, 1-9.	1.9	6
77	Iron-Catalyzed Ferrocenylmethanol OH Substitution by S, N, P, and C Nucleophiles. European Journal of Inorganic Chemistry, 2013, 2013, 3710-3718.	2.0	12
78	Validation and Uncertainty Estimation of an Ecofriendly and Stability-Indicating HPLC Method for Determination of Diltiazem in Pharmaceutical Preparations. Journal of Analytical Methods in Chemistry, 2013, 2013, 1-10.	1.6	17

#	Article	IF	CITATIONS
81	From Conventional Reaction Conditions to Microwave-Assisted Catalytic Transformations of Various Substrates. State of the Art in 2012 (Part A: General). Current Organic Chemistry, 2013, 17, 448-456.	1.6	15
82	Click-Chemistry in Biocatalysis. Current Organic Chemistry, 2013, 17, 691-700.	1.6	7
83	A Novel Carbonyl Reductase with Anti-Prelog Stereospecificity from Acetobacter sp. CCTCC M209061: Purification and Characterization. PLoS ONE, 2014, 9, e94543.	2.5	19
85	Environmentally-Friendly Designs and Syntheses of Metal-Organic Frameworks (MOFs). ACS Symposium Series, 2014, , 161-183.	0.5	12
86	Green metrics analysis applied to the simultaneous liquid-phase etherification of isobutene and isoamylenes with ethanol over Amberlystâ,,¢ 35. Green Processing and Synthesis, 2014, 3, .	3.4	1
87	Application of the polyacrylonitrile fiber as a support for the green heterogeneous base catalyst and supported phase-transfer catalyst. RSC Advances, 2014, 4, 64347-64353.	3.6	15
88	Lysinol: a renewably resourced alternative to petrochemical polyamines and aminoalcohols. Green Chemistry, 2014, 16, 4575-4586.	9.0	29
89	Immobilized <i>Drosophila melanogaster</i> Deoxyribonucleoside Kinase (<i>Dm</i> dNK) as a High Performing Biocatalyst for the Synthesis of Purine Arabinonucleotides. Advanced Synthesis and Catalysis, 2014, 356, 563-570.	4.3	26
90	Oriented covalent immobilization of esterase BioH on hydrophilicâ€modified Fe ₃ O ₄ nanoparticles. Biotechnology and Applied Biochemistry, 2014, 61, 603-610.	3.1	7
91	Greener pathways for energy-intensive commodity chemicals: opportunities and challenges. Current Opinion in Chemical Engineering, 2014, 6, 90-98.	7.8	9
92	Microwave-Assisted Three-Component "Catalyst and Solvent-Free―Green Protocol: A Highly Efficient and Clean One-Pot Synthesis of Tetrahydrobenzo[<i>b</i>]pyrans. Organic Chemistry International, 2014, 2014, 1-8.	1.0	15
93	Environmentally-friendly sonochemistry synthesis of hybrids from lignocelluloses and silver. Carbohydrate Polymers, 2014, 102, 445-452.	10.2	14
94	Preparation of ecological catalysts derived from Zn hyperaccumulating plants and their catalytic activity in Diels–Alder reaction. Comptes Rendus Chimie, 2014, 17, 731-737.	0.5	44
95	Regiospecific strategies for the synthesis of novel dihydropyrimidinones and pyrimidopyridazines catalyzed by molybdate sulfuric acid. Tetrahedron Letters, 2014, 55, 3581-3584.	1.4	17
96	Nano-indium oxide: An efficient catalyst for one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-ones with a greener prospect. Catalysis Communications, 2014, 49, 52-57.	3.3	56
97	Nonâ€Covalent Immobilization of Rare Earth Heterobimetallic Frameworks and their Reactivity in an Asymmetric Michael Addition. Advanced Synthesis and Catalysis, 2014, 356, 1243-1254.	4.3	11
98	Nano CoFe ₂ O ₄ supported antimony(<scp>iii</scp>) as an efficient and recyclable catalyst for one-pot three-component synthesis of multisubstituted pyrroles. RSC Advances, 2014, 4, 12929-12943.	3.6	63
99	Chemoselective and repetitive intermolecular cross-acyloin condensation reactions between a variety of aromatic and aliphatic aldehydes using a robust N-heterocyclic carbene catalyst. Organic and Biomolecular Chemistry, 2014, 12, 1547-1550.	2.8	30

#	Article	IF	CITATIONS
100	The α hlorination of Aryl Methyl Ketones under Aerobic Oxidative Conditions. Advanced Synthesis and Catalysis, 2014, 356, 1266-1274.	4.3	29
101	Polyethylene glycol (PEG) as a reusable solvent medium for an asymmetric organocatalytic Michael addition. Application to the synthesis of bioactive compounds. Green Chemistry, 2014, 16, 3169-3174.	9.0	44
102	Structural evaluation of an alternative Protein A biomimetic ligand for antibody purification. Journal of Computer-Aided Molecular Design, 2014, 28, 25-34.	2.9	13
103	"On water―catalyst-free, column chromatography-free and atom economical protocol for highly diastereoselective synthesis of novel class of 3-substituted, 3-hydroxy-2-oxindole scaffolds at room temperature. RSC Advances, 2014, 4, 5343.	3.6	42
104	Cytochrome P450 Catalyzed Oxidative Hydroxylation of Achiral Organic Compounds with Simultaneous Creation of Two Chirality Centers in a Single Cĩ٤¿H Activation Step. Angewandte Chemie - International Edition, 2014, 53, 8659-8663.	13.8	63
105	Ionic liquid-based green processes for energy production. Chemical Society Reviews, 2014, 43, 7838-7869.	38.1	399
106	Accelerating Spirocyclic Polyketide Synthesis using Flow Chemistry. Angewandte Chemie - International Edition, 2014, 53, 4915-4920.	13.8	120
107	Green, selective and swift oxidation of cyclic alcohols to corresponding ketones. Applied Catalysis A: General, 2014, 478, 157-164.	4.3	35
108	Ethanolic carbon-11 chemistry: The introduction of green radiochemistry. Applied Radiation and Isotopes, 2014, 89, 125-129.	1.5	20
109	Cooperative Tandem Catalysis by an Organometallic Complex and a Metalloenzyme. Angewandte Chemie - International Edition, 2014, 53, 465-469.	13.8	132
110	Task-specific ionic liquid incorporating anionic heteropolyacid-catalyzed Hantzsch and Mannich multicomponent reactions. Ionic liquid effect probed by ESI-MS(/MS). Tetrahedron, 2014, 70, 3306-3313.	1.9	69
111	Synthesis of steroidal and nonsteroidal vicinal heterocyclic alcohols, N-(1-cycloalkenyl)heterocycles and their antibacterial studies. Steroids, 2014, 84, 36-45.	1.8	17
112	Characterization of combined cross-linked enzyme aggregates from laccase, versatile peroxidase and glucose oxidase, and their utilization for the elimination of pharmaceuticals. Science of the Total Environment, 2014, 481, 90-99.	8.0	130
113	Oxidation of organosulfur compounds using an iron(III) porphyrin complex: An environmentally safe and efficient approach. Applied Catalysis B: Environmental, 2014, 160-161, 80-88.	20.2	33
114	Hypervalent Iodine Mediated Synthesis of <i>C</i> -2 <i>Deoxy</i> Glycosides and Amino Acid Glycoconjugates. Journal of Organic Chemistry, 2014, 79, 4470-4476.	3.2	17
115	Top Chemical Opportunities from Carbohydrate Biomass: A Chemist's View of the Biorefinery. Topics in Current Chemistry, 2014, 353, 1-40.	4.0	125
116	Indigo dye production by enzymatic mimicking based on an iron(III)porphyrin. Journal of Catalysis, 2014, 315, 33-40.	6.2	42
117	Laccase-catalyzed synthesis of catechol thioethers by reaction of catechols with thiols using air as an oxidant. Green Chemistry, 2014, 16, 90-95.	9.0	62

#	Article	IF	CITATIONS
118	Co ₆ (μ ₃ -OH) ₆ cluster based coordination polymer as an effective heterogeneous catalyst for aerobic epoxidation of alkenes. Dalton Transactions, 2014, 43, 2559-2565.	3.3	53
119	An attempt to provide an environmentally friendly solvent selection guide for olefin metathesis. Green Chemistry, 2014, 16, 1125-1130.	9.0	76
120	Conversion of Biomass into Chemicals over Metal Catalysts. Chemical Reviews, 2014, 114, 1827-1870.	47.7	1,504
121	Single molecule methods for the study of catalysis: from enzymes to heterogeneous catalysts. Chemical Society Reviews, 2014, 43, 990-1006.	38.1	115
122	Experimental and Theoretical Study on Palladium-Catalyzed C–P Bond Formation via Direct Coupling of Triarylbismuths with P(O)–H Compounds. Journal of Organic Chemistry, 2014, 79, 608-617.	3.2	76
123	Homogeneous catalysis for the conversion of biomass and biomass-derived platform chemicals. Catalysis Science and Technology, 2014, 4, 1174-1196.	4.1	267
124	Epoxidation of olefins with molecular oxygen as the oxidant using gold catalysts supported on polyoxometalates. Green Chemistry, 2014, 16, 1586.	9.0	42
125	Structuring adsorbents and catalysts by processing of porous powders. Journal of the European Ceramic Society, 2014, 34, 1643-1666.	5.7	264
126	Review: Oxidation of Lignin Using Ionic Liquids—An Innovative Strategy To Produce Renewable Chemicals. ACS Sustainable Chemistry and Engineering, 2014, 2, 322-339.	6.7	290
127	Mechanism of the Formation of Carboxylate from Alcohols and Water Catalyzed by a Bipyridine-Based Ruthenium Complex: A Computational Study. Journal of the American Chemical Society, 2014, 136, 383-395.	13.7	85
128	Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chemistry, 2014, 16, 950-963.	9.0	1,323
129	Homogeneous, Heterogeneous and Nanocatalysis. RSC Green Chemistry, 2014, , 1-39.	0.1	12
130	THF: An Efficient Electron Donor in Continuous Flow Radical Cyclization Photocatalyzed by Graphitic Carbon Nitride. Chemistry - A European Journal, 2014, 20, 14624-14628.	3.3	59
132	TiO ₂ -photocatalytic acceptorless dehydrogenation coupling of primary alkyl alcohols into acetals. Green Chemistry, 2014, 16, 4076-4080.	9.0	46
133	Alginic acid: a highly efficient renewable and heterogeneous biopolymeric catalyst for one-pot synthesis of the Hantzsch 1,4-dihydropyridines. RSC Advances, 2014, 4, 56658-56664.	3.6	79
134	Novel palladium-catalyzed cascade carboxylative annulation to construct functionalized γ-lactones in ionic liquids. Chemical Communications, 2014, 50, 1381-1383.	4.1	41
135	Asymmetric aldol reaction organocatalyzed by bifunctional N-prolyl sulfinamides under solvent-free conditions. RSC Advances, 2014, 4, 26563-26568.	3.6	15
136	Novel zwitterionic deep eutectic solvents from trimethylglycine and carboxylic acids: characterization of their properties and their toxicity. RSC Advances, 2014, 4, 55990-56002.	3.6	109

#	Article	IF	CITATIONS
137	An environmentally benign, mild, and catalyst-free reaction of quinones with heterocyclic ketene aminals in ethanol: site-selective synthesis of rarely fused [1,2-a]indolone derivatives via an unexpected anti-Nenitzescu strategy. Green Chemistry, 2014, 16, 4359-4370.	9.0	50
138	Rapid and Selective Oxidation of Alcohols in Deep Eutectic Solvent. Industrial & Engineering Chemistry Research, 2014, 53, 15561-15565.	3.7	48
139	Zirconia-Supported Ruthenium Catalyst for Efficient Aerobic Oxidation of Alcohols to Aldehydes. Industrial & Engineering Chemistry Research, 2014, 53, 12548-12552.	3.7	32
140	Protonâ€Exchange Equilibrium between Bases and [BMIm][BF ₄]: An Electrochemical Procedure to Evaluate the Presence of Carbenes for Synthetic Applications. ChemElectroChem, 2014, 1, 1525-1530.	3.4	12
141	A Copper Complex of a Noninnocent Iminophenolâ€Amidopyridine Hybrid Ligand: Synthesis, Characterization, and Aerobic Alcohol Oxidation. European Journal of Inorganic Chemistry, 2014, 2014, 6066-6074.	2.0	38
142	Substrate and product role in the Shvo's catalyzed selective hydrogenation of the platform bio-based chemical 5-hydroxymethylfurfural. Dalton Transactions, 2014, 43, 10224-10234.	3.3	60
143	Breakdown of lignins, lignin model compounds, and hydroxy-aromatics, to C1 and C2 chemicals via metal-free oxidation with peroxide or persulfate under mild conditions. RSC Advances, 2014, 4, 17931-17934.	3.6	16
144	Aqueous organocatalyzed aldol reaction of glyoxylic acid for the enantioselective synthesis of α-hydroxy-γ-keto acids. RSC Advances, 2014, 4, 9963.	3.6	13
145	Efficient three-component coupling reactions catalyzed by Cu ⁰ -nanoparticles stabilized on modified montmorillonite. Catalysis Science and Technology, 2014, 4, 1047-1054.	4.1	69
146	The vicinal functionalization of olefins: a facile route to the direct synthesis of β-chlorohydrins and β-chloroethers. RSC Advances, 2014, 4, 26288-26294.	3.6	16
147	Rhodium-catalyzed tandem aldol condensation–Robinson annulation between aldehydes and acetone: synthesis of 3-methylcyclohexenones. Tetrahedron Letters, 2014, 55, 6399-6402.	1.4	5
148	Enzymatic aerobic ring rearrangement of optically active furylcarbinols. Nature Communications, 2014, 5, 5278.	12.8	63
149	Aerobic oxidative α-iodination of carbonyl compounds using molecular iodine activated by a nitrate-based catalytic system. Tetrahedron Letters, 2014, 55, 5643-5647.	1.4	16
150	Insights into the microstructural and physical properties of colloidal Fe:ZnSe nanocrystals. Applied Surface Science, 2014, 317, 469-475.	6.1	6
151	Comprehensive mass analysis for chemical processes, a case study on <scp>l</scp> -Dopa manufacture. Green Chemistry, 2014, 16, 4241-4256.	9.0	33
152	Silica nanospheres supported diazafluorene iron complex: an efficient and versatile nanocatalyst for the synthesis of propargylamines from terminal alkynes, dihalomethane and amines. RSC Advances, 2014, 4, 49198-49211.	3.6	45
153	1.10 Lewis Acid Promoted Addition Reactions of Organometallic Compounds. , 2014, , 344-364.		5
154	A green and expedient synthesis of enantiopure diketopiperazines via enzymatic resolution of unnatural amino acids. Tetrahedron Letters, 2014, 55, 4991-4993.	1.4	8

#	Article	IF	CITATIONS
155	Catalytic bio–chemo and bio–bio tandem oxidation reactions for amide and carboxylic acid synthesis. Green Chemistry, 2014, 16, 4524-4529.	9.0	65
156	Expedient Preparation of Nazlinine and a Small Library of Indole Alkaloids Using Flow Electrochemistry as an Enabling Technology. Organic Letters, 2014, 16, 4618-4621.	4.6	78
157	Stereodivergent Michael addition of diphenylphosphite to α-nitroalkenes in the presence of squaramide-derived tertiary amines: an enantioselective organocatalytic reaction in supercritical carbon dioxide. Green Chemistry, 2014, 16, 1521.	9.0	30
158	Green synthesis from biomass. Chemical and Biological Technologies in Agriculture, 2014, 1, .	4.6	28
159	Atom- and Step-Economical Preparation of Reduced Knoevenagel Adducts Using CO as a Deoxygenative Agent. Organic Letters, 2014, 16, 5068-5071.	4.6	24
160	A Cascade Crossâ€Coupling and <i>in Situ</i> Hydrogenation Reaction by Visible Light Catalysis. Advanced Synthesis and Catalysis, 2014, 356, 2846-2852.	4.3	50
161	Biosourced Polymetallic Catalysts: An Efficient Means To Synthesize Underexploited Platform Molecules from Carbohydrates. ChemSusChem, 2014, 7, 1915-1923.	6.8	46
162	Synergy, Compatibility, and Innovation: Merging Lewis Acids with Stereoselective Enamine Catalysis. Chemistry - an Asian Journal, 2014, 9, 984-995.	3.3	61
163	Aerobic Oxidation of Alcohols by Using a Completely Metalâ€Free Catalytic System. European Journal of Organic Chemistry, 2014, 2014, 395-402.	2.4	42
164	Bioinspired Approach to Multienzyme Cascade System Construction for Efficient Carbon Dioxide Reduction. ACS Catalysis, 2014, 4, 962-972.	11.2	120
165	Efficient one-pot synthesis of propargylamines catalysed by gold nanocrystals stabilized on montmorillonite. Catalysis Science and Technology, 2014, 4, 4001-4009.	4.1	67
166	Molar Efficiency: A Useful Metric To Gauge Relative Reaction Efficiency in Discovery Medicinal Chemistry. ACS Sustainable Chemistry and Engineering, 2014, 2, 523-532.	6.7	29
167	1,3-Dimethylimidazolium-2-carboxylate: a zwitterionic salt for the efficient synthesis of vicinal diols from cyclic carbonates. Green Chemistry, 2014, 16, 3297.	9.0	57
168	Anion effects to deliver enhanced iridium catalysts for hydrogen isotope exchange processes. Organic and Biomolecular Chemistry, 2014, 12, 7927-7931.	2.8	46
169	Sulfuryl Chloride as an Efficient Initiator for the Metal-Free Aerobic Cross-Dehydrogenative Coupling Reaction of Tertiary Amines. Organic Letters, 2014, 16, 2346-2349.	4.6	91
170	Alumina-grafted SBA-15 as a high performance support for Pd-catalysed cinnamyl alcohol selective	4.4	68
	oxidation. Catalysis Today, 2014, 229, 46-55.		
171	Oxidation. Catalysis Today, 2014, 229, 46-55. Mesoporous Polyoxometalate-Based Ionic Hybrid As a Triphasic Catalyst for Oxidation of Benzyl Alcohol with H ₂ O ₂ on Water. ACS Applied Materials & amp; Interfaces, 2014, 6, 4438-4446.	8.0	100

#	Article	IF	CITATIONS
173	Cross-Coupling Hydrogen Evolution Reaction in Homogeneous Solution without Noble Metals. Organic Letters, 2014, 16, 1988-1991.	4.6	147
174	Fast-Growing Field of Magnetically Recyclable Nanocatalysts. Chemical Reviews, 2014, 114, 6949-6985.	47.7	693
175	New water soluble Pd-imidate complexes as highly efficient catalysts for the synthesis of C5-arylated pyrimidine nucleosides. RSC Advances, 2014, 4, 17567-17572.	3.6	44
176	Ecological catalysis and phytoextraction: Symbiosis for future. Applied Catalysis B: Environmental, 2014, 146, 279-288.	20.2	45
177	A Review of Ionic Liquids, Their Limits and Applications. Green and Sustainable Chemistry, 2014, 04, 44-53.	1.2	493
178	3. Continuous-flow photochemistry in microstructured environment. , 2014, , 63-98.		1
180	The Chelation-controlled Mukaiyama Aldol Reaction of Chiral α- and β-Alkoxy Aldehydes. Chemistry Letters, 2014, 43, 2-10.	1.3	20
183	Ligand-directed electrochemical functionalization of C(sp2)—H bonds in the presence of the palladium and nickel compounds. Russian Chemical Bulletin, 2015, 64, 1713-1725.	1.5	28
185	Recent Progress in the Synthesis of Super-Statins. Topics in Heterocyclic Chemistry, 2015, , 113-185.	0.2	2
186	Oneâ€Pot Cannizzaro Cascade Synthesis of <i>ortho</i> â€Fused Cyclooctaâ€2,5â€dienâ€1â€ones from 2â€Bromo(hetero)aryl Aldehydes. Angewandte Chemie - International Edition, 2015, 54, 10648-10651.	13.8	10
187	Design of Highly Functionalized Polyoxometalate-Based Catalysts. Bulletin of the Chemical Society of Japan, 2015, 88, 1017-1028.	3.2	31
189	Construction of Diverse and Functionalized 2 <i>H</i> â€Chromenes by Organocatalytic Multicomponent Reactions. European Journal of Organic Chemistry, 2015, 2015, 5212-5220.	2.4	23
190	Palladium Nanoparticles Supported on Sulfonic Acid Functionalized Silica as Trifunctional Heterogeneous Catalysts for Heck and Suzuki Reactions. ChemCatChem, 2015, 7, 2085-2094.	3.7	23
191	Gold Supported on Silica Catalyzes the Aerobic Oxidation of <i>N</i> , <i>N</i> â€Disubstituted Hydroxylamines to Nitrones. European Journal of Organic Chemistry, 2015, 2015, 6541-6546.	2.4	11
193	Microwaveâ€Assisted Organocatalyzed Rearrangement of Propargyl Vinyl Ethers to Salicylaldehyde Derivatives: An Experimental and Theoretical Study. Chemistry - A European Journal, 2015, 21, 18280-18289.	3.3	14
194	Utilizing Benign Oxidants for Selective Aerobic Oxidations Using Heterogenized Platinum Nanoparticle Catalysts. ChemPlusChem, 2015, 80, 1226-1230.	2.8	3
195	<i>Z</i> â€Selective Copper(I)â€Catalyzed Alkyne Semihydrogenation with Tethered Cu–Alkoxide Complexes. Chemistry - A European Journal, 2015, 21, 15934-15938.	3.3	60
196	Organocatalytic Radical Involved Oxidative Cross oupling of <i>N</i> â€Hydroxyphthalimide with Benzylic and Allylic Hydrocarbons. Advanced Synthesis and Catalysis, 2015, 357, 3836-3842.	4.3	31

#	Article	IF	CITATIONS
197	Asymmetric BrÃ,nsted Acid Catalyzed Synthesis of Triarylmethanes—Construction of Communesin and Spiroindoline Scaffolds. Angewandte Chemie - International Edition, 2015, 54, 15540-15544.	13.8	125
198	Synergetic catalytic effect of ionic liquids and ZnO nanoparticles on the selective synthesis of 1,2-disubstituted benzimidazoles using a ball-milling technique. Green Chemistry, 2015, 17, 4263-4270.	9.0	79
199	Elucidating Structure–Property Relationships in the Design of Metal Nanoparticle Catalysts for the Activation of Molecular Oxygen. ACS Catalysis, 2015, 5, 3807-3816.	11.2	26
200	Novel surface-active ionic liquids used as solubilizers for water-insoluble pesticides. Journal of Hazardous Materials, 2015, 297, 340-346.	12.4	30
201	Copper catalysed direct amidation of methyl groups with N–H bonds. Organic and Biomolecular Chemistry, 2015, 13, 7289-7293.	2.8	37
202	Gold and silver catalysis: from organic transformation to bioconjugation. Organic and Biomolecular Chemistry, 2015, 13, 6667-6680.	2.8	57
203	Hydrothermal Conversion of Russian Olive Seeds into Crude Bio-oil Using a CaO Catalyst Derived from Waste Mussel Shells. Energy & Fuels, 2015, 29, 4382-4392.	5.1	33
204	Synthesis, self-assembly, and catalytic activity of histidine-based structured lipopeptides for hydrolysis reactions in water. RSC Advances, 2015, 5, 35830-35842.	3.6	22
205	"Control-Alt-Deleteâ€: Rebooting Solutions for the E-Waste Problem. Environmental Science & Technology, 2015, 49, 7095-7108.	10.0	198
206	Bipyridine-functionalized amphiphilic block copolymers as support materials for the aerobic oxidation of primary alcohols in aqueous media. RSC Advances, 2015, 5, 38235-38242.	3.6	16
207	General areas of the use of a microwave radiation for processing of plant raw materials (review). Russian Journal of Bioorganic Chemistry, 2015, 41, 686-699.	1.0	4
208	Liquid carbon dioxide as an effective solvent for immobilized Candida antarctica lipase B catalyzed transesterification. Tetrahedron Letters, 2015, 56, 639-641.	1.4	23
209	Development of a high-performance nanostructured V2O5/SnO2 catalyst for efficient benzene hydroxylation. Applied Catalysis A: General, 2015, 492, 10-22.	4.3	20
210	Increasing Pt selectivity to vinylaniline by alloying with Zn via reactive metal–support interaction. Catalysis Today, 2015, 256, 241-249.	4.4	16
211	Sodium hydroxide-catalyzed transfer hydrogenation of carbonyl compounds and nitroarenes using ethanol or isopropanol as both solvent and hydrogen donor. Journal of Molecular Catalysis A, 2015, 400, 14-21.	4.8	39
212	Imidazole Derivatives as Accelerators for Rutheniumâ€Catalyzed Hydroesterification and Hydrocarbamoylation of Alkenes: Extensive Ligand Screening and Mechanistic Study. ChemCatChem, 2015, 7, 836-845.	3.7	19
213	Iron- and Indium-Catalyzed Reactions toward Nitrogen- and Oxygen-Containing Saturated Heterocycles. Accounts of Chemical Research, 2015, 48, 761-773.	15.6	68
214	Expression and functional characterization of a C-7 cholesterol desaturase from Tetrahymena thermophila in an insect cell line. Steroids, 2015, 96, 132-139.	1.8	2

ARTICLE IF CITATIONS # Green Catalytic Synthesis of Heterocyclic Structures Using Carbon Dioxide and Related Motifs., 2015, 215 2 , 141-162. Chitosan: An Upgraded Polysaccharide Waste for Organocatalysis. European Journal of Organic 2.4 49 Chemistry, 2015, 2015, 2559-2578. Chiral ureas and thioureas supported on polystyrene for enantioselective aza-Henry reactions under 217 9.0 32 solvent-free conditions. Green Chemistry, 2015, 17, 2217-2225. One-pot green synthesis of enamides and 1,3-diynes. Chinese Journal of Catalysis, 2015, 36, 113-118. 218 14.0 Process modelling and simulation for continuous pharmaceutical manufacturing of ibuprofen. 219 5.6 62 Chemical Engineering Research and Design, 2015, 97, 175-191. Green, environment-friendly, analytical tools give insights in pharmaceuticals and cosmetics analysis. TrAC - Trends in Analytical Chemistry, 2015, 66, 176-192. 11.4 Bio-aviation fuel production from hydroprocessing castor oil promoted by the nickel-based 221 9.6 174 bifunctional catalysts. Bioresource Technology, 2015, 183, 93-100. New Vanadium Keggin Heteropolyacids Encapsulated in a Silica Framework: Recyclable Catalysts for the Synthesis of Highly Substituted Hexahydropyrimidines Under Suitable Conditions. Catalysis 2.6 Letters, 2015, 145, 1022-1032. Hydrogen Acceptor―and Baseâ€Free <i>N</i>à€Formylation of Nitriles and Amines using Methanol as 223 4.3 75 C(sub)1(/sub) Source. Advanced Synthesis and Catalysis, 2015, 357, 834-840. From racemic epichlorohydrin to a single enantiomer of the drug timolol maleate. Tetrahedron: 224 1.8 Asymmetry, 2015, 26, 797-801. Plantwide Design and Economic Evaluation of Two Continuous Pharmaceutical Manufacturing (CPM) 225 0.5 16 Cases: Ibuprofen and Artemisinin. Computer Aided Chemical Engineering, 2015, 37, 2213-2218. Psychiatric Pharmaceuticals as Emerging Contaminants in Wastewater. Springer Briefs in Molecular 0.1 Science, 2015, , . The Catalyst Selectivity Index (CSI): A Framework and Metric to Assess the Impact of Catalyst Efficiency 227 2.8 18 Enhancements upon Energy and CO2 Footprints. Topics in Catalysis, 2015, 58, 682-695. The E Factor and Process Mass Intensity. Springer Briefs in Molecular Science, 2015, , 45-67. 0.1 Multicomponent Synthesis of Uracil Analogues Promoted by Pd-Catalyzed Carbonylation of 229 α-Chloroketones in the Presence of Isocyanates and Amines. Journal of Organic Chemistry, 2015, 80, 19 3.28189-8197. Clycerol Ether Synthesis: A Bench Test for Green Chemistry Concepts and Technologies. Chemical 132 Réviews, 2015, 115, 8609-8651. 231 Iron-catalyzed direct α-arylation of ethers with azoles. Chemical Communications, 2015, 51, 13365-13368. 4.1 69 Starbon®400-HSO3: A green mesoporous carbonaceous solid acid catalyst for the Ritter reaction. 3.3 Catalysis Communications, 2015, 69, 170-173.

#	Article	IF	CITATIONS
233	Transition metal nanoparticles stabilized by ammonium salts ofÂhyperbranched polystyrene: effect of metals on catalysis ofAtheÂbiphasic hydrogenation of alkenes and arenes. Tetrahedron, 2015, 71, 6414-6423.	1.9	15
234	Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals. Science and Technology of Advanced Materials, 2015, 16, 034903.	6.1	104
235	Air-Stable NNS (ENENES) Ligands and Their Well-Defined Ruthenium and Iridium Complexes for Molecular Catalysis. Organometallics, 2015, 34, 4464-4479.	2.3	44
236	Facile synthesis of 4-quinolone derivatives via one-pot cascade reaction under transition-metal-free conditions. Tetrahedron Letters, 2015, 56, 3777-3781.	1.4	18
237	Redesigning the synthesis of vidarabine via a multienzymatic reaction catalyzed by immobilized nucleoside phosphorylases. RSC Advances, 2015, 5, 23569-23577.	3.6	26
238	Selected Qualitative Green Metrics. Springer Briefs in Molecular Science, 2015, , 69-79.	0.1	5
239	Facile Synthesis of 2-Aminothiophenes Using NaAlO ₂ as an Eco-Effective and Recyclable Catalyst. ACS Sustainable Chemistry and Engineering, 2015, 3, 1292-1297.	6.7	29
240	A one-pot â€~click' reaction from spiro-epoxides catalyzed by Cu(<scp>i</scp>)-pyrrolidinyl-oxazole-carboxamide. New Journal of Chemistry, 2015, 39, 3973-3981.	2.8	31
241	Sponge-like ionic liquids: a new platform for green biocatalytic chemical processes. Green Chemistry, 2015, 17, 3706-3717.	9.0	67
242	Green bioprocesses in sponge-like ionic liquids. Catalysis Today, 2015, 255, 54-59.	4.4	26
243	Palladium-Catalyzed Tandem Annulation: A Strategy To Construct 2,3-Difunctionalized Benzofuran Derivatives in Ionic Liquids. Journal of Organic Chemistry, 2015, 80, 3870-3879.	3.2	46
244	Well-Defined Surface Species [(≡Si—O—)W(â•O)Me ₃] Prepared by Direct Methylation of [(≡Si—O—)W(â•O)Cl ₃], a Catalyst for Cycloalkane Metathesis and Transformation of Ethylene to Propylene. ACS Catalysis, 2015, 5, 2164-2171.	11.2	35
245	Silica-nanosphere-based organic–inorganic hybrid nanomaterials: synthesis, functionalization and applications in catalysis. Green Chemistry, 2015, 17, 3207-3230.	9.0	191
246	Asymmetric Iridium-Catalyzed C–C Coupling of Chiral Diols via Site-Selective Redox-Triggered Carbonyl Addition. Topics in Current Chemistry, 2015, 372, 85-101.	4.0	28
247	A green and sustainable phosphine-free NHC-ruthenium catalyst for selective oxidation of alcohols to carboxylic acids in water. Dalton Transactions, 2015, 44, 17409-17414.	3.3	66
248	Active biopolymers in green non-conventional media: a sustainable tool for developing clean chemical processes. Chemical Communications, 2015, 51, 17361-17374.	4.1	37
249	Highly selective and sensitive colorimetric detection of Hg(<scp>ii</scp>) ions using green synthesized silver nanoparticles. RSC Advances, 2015, 5, 94513-94518.	3.6	53
250	Phosphorylation of C–H bonds of aromatic compounds using metals and metal complexes. Russian Chemical Reviews, 2015, 84, 917-951.	6.5	56

#	Article	IF	CITATIONS
251	Sonochemical synthesis and characterization of imidazolium based ionic liquids: A green pathway. Journal of Molecular Liquids, 2015, 211, 934-937.	4.9	42
252	Green approaches to late-stage fluorination: radiosyntheses of ¹⁸ F-labelled radiopharmaceuticals in ethanol and water. Chemical Communications, 2015, 51, 14805-14808.	4.1	22
253	Stereoselective formation of chiral trans-4-hydroxy-5-substituted 2-pyrrolidinones: syntheses of streptopyrrolidine and 3-epi-epohelmin A. Organic Chemistry Frontiers, 2015, 2, 1485-1499.	4.5	23
254	Utilization of Ionic Liquids in Lignocellulose Biorefineries as Agents for Separation, Derivatization, Fractionation, or Pretreatment. Journal of Agricultural and Food Chemistry, 2015, 63, 8093-8102.	5.2	59
255	Cul/CuBr2-catalyzed decarboxylative/A3 reaction of propiolic acids for the facile synthesis of 1,4-diheterocycle-2-butynes. Tetrahedron Letters, 2015, 56, 5676-5680.	1.4	14
256	Chemoselective Liquid Phase Hydrogenation of 3-Nitrostyrene over Pt Nanoparticles: Synergy with ZnO Support. Industrial & Engineering Chemistry Research, 2015, 54, 8659-8669.	3.7	31
257	Advancement in methodologies for reduction of nitroarenes. RSC Advances, 2015, 5, 83391-83407.	3.6	270
258	Aerobic flow oxidation of alcohols in water catalyzed by platinum nanoparticles dispersed in an amphiphilic polymer. RSC Advances, 2015, 5, 2647-2654.	3.6	32
259	Efficient one-pot four-component synthesis of 1,4-dihydropyridines promoted by magnetite/chitosan as a magnetically recyclable heterogeneous nanocatalyst. Journal of Nanostructure in Chemistry, 2015, 5, 95-105.	9.1	53
260	Organocatalysis by p-sulfonic acid calix[4]arene: a convenient and efficient route to 2,3-dihydroquinazolin-4(1H)-ones in water. RSC Advances, 2015, 5, 7755-7760.	3.6	35
261	A supramolecular recyclable catalyst for aqueous Suzuki–Miyaura coupling. RSC Advances, 2015, 5, 3590-3596.	3.6	23
262	Stability and organocatalytic efficiency of N-heterocyclic carbenes electrogenerated in organic solvents from imidazolium ionic liquids. Electrochimica Acta, 2015, 153, 122-129.	5.2	28
263	Solvent- and Catalyst-Free Synthesis of Nitrogen-Containing Bicycles through Hemiaminal Formation/Diastereoselective Hetero-Diels–Alder Reaction with Diazenes. Journal of Organic Chemistry, 2015, 80, 595-601.	3.2	16
264	Systematic methodology for the development of biocatalytic hydrogen-borrowing cascades: application to the synthesis of chiral α-substituted carboxylic acids from α-substituted α,β-unsaturated aldehydes. Organic and Biomolecular Chemistry, 2015, 13, 223-233.	2.8	51
265	Continuous flow Fischer esterifications harnessing vibrational-coupled thin film fluidics. RSC Advances, 2015, 5, 1655-1660.	3.6	26
266	Magnetic nanoparticles-supported tungstic acid (MNP-TA): an efficient magnetic recyclable catalyst for the one-pot synthesis of spirooxindoles in water. RSC Advances, 2015, 5, 2223-2230.	3.6	38
267	Selective oxidation of glycerol catalyzed by iron complexes. Journal of Molecular Catalysis A, 2015, 396, 353-359.	4.8	56
268	Heterogeneous catalysis for the direct synthesis of chemicals by borrowing hydrogen methodology. Catalysis Science and Technology, 2015, 5, 1412-1427.	4.1	220

ARTICLE IF CITATIONS Green Chemistry Metrics. Springer Briefs in Molecular Science, 2015, , . 0.1 36 269 Synthesis and Properties ofÂLipid-Inspired Ionic Liquids. , 2016, , 205-223. 270 Supported bifunctional thioureas as recoverable and reusable catalysts for enantioselective 271 2.2 22 nitro-Michael reactions. Beilstein Journal of Organic Chemistry, 2016, 12, 628-635. Synthesis of Biologically Active Selenium-Containing Molecules From Greener Perspectives. Current 1.1 Green Chemistry, 2016, 3, 51-67. Optimizing Extraction of Cellulose and Synthesizing Pharmaceutical Grade Carboxymethyl Sago 273 2.5 35 Cellulose from Malaysian Sago Pulp. Applied Sciences (Switzerland), 2016, 6, 170. Immobilized Lignin Peroxidase-Like Metalloporphyrins as Reusable Catalysts in Oxidative Bleaching of 274 3.8 Industrial Dyes. Molecules, 2016, 21, 964. 275 Recent Highlights in Green Oxidative Chemical Processes Applied to Steroid Chemistry., 2016,,. 1 Synthesis of Heterocycles in Contemporary Medicinal Chemistry. Topics in Heterocyclic Chemistry, 0.2 20 2016,,. Solventâ€Free Potâ€, Atom―and Stepâ€Economic Synthesis of Novel Benzo[<i>d</i>]thiazoleâ€[1,3]â€thiazine 27 277 12 Hybrids in a Oneâ€Pot Reaction. Asian Journal of Organic Chemistry, 2016, 5, 763-769. Highly Efficient Formal [2+2+2] Strategy for the Rapid Construction of Polycyclic Spiroindolines: A 278 Concise Synthesis of 11â€Demethoxyâ€16†epi â€myrtoidine. Angewandte Chemie, 2016, 128, 9370-9374. Highly Efficient Formal [2+2+2] Strategy for the Rapid Construction of Polycyclic Spiroindolines: A Concise Synthesis of 11â€Demethoxyã€16â€<i>epi</i>â€myrtoidine. Angewandte Chemie - International Edition, 13.8 279 50 2016, 55, 9224-9228. Highly Efficient and Practical Thiocyanation of Imidazopyridines Using an <i>N</i>â€Chlorosuccinimide/NaSCN Combination. European Journal of Organic Chemistry, 2016, 2016, 280 2.4 3373-3379. Sustainable synthesis of sulfonamides using supported ionic liquid phase catalyst containing 281 3.5 12 Kegginâ€typé anion. Applied Organometallic Chemistry, 2016, 30, 125-131. HandaPhos: A General Ligand Enabling Sustainable ppm Levels of Palladiumâ€Catalyzed Crossâ€Couplings 13.8 138 in Water at Room Temperature. Angewandte Chemie - International Edition, 2016, 55, 4914-4918. Hydrodynamic Rocking Disc Electrode Study of the TEMPOâ€mediated Catalytic Oxidation of Primary 283 2.9 7 Alcohols. Electroanalysis, 2016, 28, 2093-2103. Rhodium Catalysts for Câ€"S Bond Formation. Topics in Organometallic Chemistry, 2016, , 31-67. 284 Preparation of benzimidazole N-oxides by a two-step continuous flow process. Chemistry of 285 1.2 5 Heterocyclic Compounds, 2016, 52, 952-957. Thermal stability of imidazolium-based ionic liquids investigated by TG and FTIR techniques. Journal of Thermal Analysis and Calorimetry, 2016, 125, 143-154.

#	ARTICLE	IF	Citations
287	Plantwide design and economic evaluation of two Continuous Pharmaceutical Manufacturing (CPM) cases: Ibuprofen and artemisinin. Computers and Chemical Engineering, 2016, 91, 269-288.	3.8	60
288	Iron complexes with nitrogen bidentate ligands as green catalysts for alcohol oxidation. Journal of Molecular Catalysis A, 2016, 421, 189-195.	4.8	24
289	Highly water-dispersible magnetite nanoparticle supported-palladium–β-cyclodextrin as an efficient catalyst for Suzuki–Miyaura and Sonogashira coupling reactions. RSC Advances, 2016, 6, 52656-52664.	3.6	26
290	Utilization of the inherent nucleophile for regioselective O-acylation of polyphenols via an intermolecular cooperative transesterification. Tetrahedron, 2016, 72, 4103-4110.	1.9	7
291	Application of the polyacrylonitrile fiber as a novel support for polymer-supported copper catalysts in terminal alkyne homocoupling reactions. Journal of Catalysis, 2016, 337, 233-239.	6.2	61
292	A rapid, ideal, and eco-friendlier protocol for quantifying proline. Protoplasma, 2016, 253, 1577-1582.	2.1	73
293	Cu(II)–Hydromagnesite Catalyzed Synthesis of Tetrasubstituted Propargylamines and Pyrrolo[1,2- <i>a</i>]quinolines <i>via</i> KA2, A3 Couplings and Their Decarboxylative Versions. ACS Sustainable Chemistry and Engineering, 2016, 4, 3409-3419.	6.7	55
294	Deracemization of 1-phenylethanol via tandem biocatalytic oxidation and reduction. Tetrahedron: Asymmetry, 2016, 27, 404-409.	1.8	12
295	Microwave-assisted green approach toward the unexpected synthesis of pyrazole-4-carboxylates. Journal of the Iranian Chemical Society, 2016, 13, 1405-1410.	2.2	3
296	Just-Dip-It (Potentiometric Ion-Selective Electrode): An Innovative Way of Greening Analytical Chemistry. ACS Sustainable Chemistry and Engineering, 2016, 4, 3122-3132.	6.7	41
297	Sustainable iron-catalyzed direct imine formation by acceptorless dehydrogenative coupling of alcohols with amines. Green Chemistry, 2016, 18, 3232-3238.	9.0	50
298	Circular economy design considerations for research and process development in the chemical sciences. Green Chemistry, 2016, 18, 3914-3934.	9.0	239
299	Communication—Fast Electron Transfer Reaction of Azurin Fixed on the Modified Electrode in Hydrated Ionic Liquids. Journal of the Electrochemical Society, 2016, 163, G79-G81.	2.9	6
300	Enantioselective Alcohol C–H Functionalization for Polyketide Construction: Unlocking Redox-Economy and Site-Selectivity for Ideal Chemical Synthesis. Journal of the American Chemical Society, 2016, 138, 5467-5478.	13.7	143
301	Phosphine-Free, Heterogeneous Palladium-Catalyzed Atom-Efficient Carbonylative Cross-Coupling of Triarylbismuths with Aryl Iodides: Synthesis of Biaryl Ketones. Journal of Organic Chemistry, 2016, 81, 4244-4251.	3.2	46
302	Crotonaldehyde hydrogenation on platinum–titanium oxide and platinum–cerium oxide catalysts: selective Cĩ€O bond hydrogen requires platinum sites beyond the oxide–metal interface. Catalysis Science and Technology, 2016, 6, 6824-6835.	4.1	27
303	Novel access to carbonyl and acetylated compounds: the role of the tetra-n-butylammonium bromide/sodium nitrite catalyst. RSC Advances, 2016, 6, 51347-51355.	3.6	6
304	Downstream Processing of Nucleosideâ€Diphosphoâ€Sugars from Sucrose Synthase Reaction Mixtures at Decreased Solvent Consumption. Advanced Synthesis and Catalysis, 2016, 358, 3113-3122.	4.3	17

#	Article	IF	CITATIONS
305	CuO/Fe2O3 NPs: robust and magnetically recoverable nanocatalyst for decarboxylative A3 and KA2 coupling reactions under neat conditions. Tetrahedron Letters, 2016, 57, 4468-4472.	1.4	42
306	Anionically Stabilized Cellulose Nanofibrils through Succinylation Pretreatment in Urea–Lithium Chloride Deep Eutectic Solvent. ChemSusChem, 2016, 9, 3074-3083.	6.8	70
307	Ruthenium molecular complexes immobilized on graphene as active catalysts for the synthesis of carboxylic acids from alcohol dehydrogenation. Catalysis Science and Technology, 2016, 6, 8024-8035.	4.1	44
308	Applying green processes and techniques to simplify reaction work-ups. Tetrahedron, 2016, 72, 7375-7391.	1.9	29
309	Challenges in the development of organic and hybrid molecular systems. Mendeleev Communications, 2016, 26, 365-374.	1.6	89
310	Advantages of Heterofunctional Octyl Supports: Production of 1,2-Dibutyrin by Specific and Selective Hydrolysis of Tributyrin Catalyzed by Immobilized Lipases. ChemistrySelect, 2016, 1, 3259-3270.	1.5	44
311	Synergetic Effects of Alcohol/Water Mixing on the Catalytic Reductive Fractionation of Poplar Wood. ACS Sustainable Chemistry and Engineering, 2016, 4, 6894-6904.	6.7	120
312	Homogeneous Catalytic Oxidation of Unactivated Primary and Secondary Alcohols Employing a Versatile "Helmet―Phthalocyaninato Iron Complex Catalyst Without Added Organic Solvent. ChemistrySelect, 2016, 1, 5182-5186.	1.5	11
313	Alkyne Semihydrogenation with a Well-Defined Nonclassical Co–H ₂ Catalyst: A H ₂ Spin on Isomerization and <i>E</i> -Selectivity. Journal of the American Chemical Society, 2016, 138, 13700-13705.	13.7	170
314	Solvent- and catalyst-free, quantitative protection of hydroxyl, thiol, carboxylic acid, amide and heterocyclic amino functional groups. Green Chemistry, 2016, 18, 6209-6214.	9.0	6
315	Oneâ€Pot Quinineâ€Catalyzed Synthesis of αâ€Chiral γâ€Keto Esters: Enantioenriched Precursors of <i>cis</i> â€i±,γ‣ubstitutedâ€i³â€Butyrolactones. Advanced Synthesis and Catalysis, 2016, 358, 2845-2848.	4.3	13
316	Palladium-Catalyzed Oxidative Sulfenylation of Indoles and Related Electron-Rich Heteroarenes with Aryl Boronic Acids and Elemental Sulfur. Journal of Organic Chemistry, 2016, 81, 7771-7783.	3.2	92
317	Bottomâ€Up Synthesis of Supported Thioureas and Their Use in Enantioselective Solventâ€Free Azaâ€Henry and Michael Additions. ChemPlusChem, 2016, 81, 86-92.	2.8	28
318	Direct cycle between co-product and reactant: an approach to improve the atom economy and its application in the synthesis and protection of primary amines. Green Chemistry, 2016, 18, 5794-5799.	9.0	11
319	Assessment of Indoor Air Quality in Renovated Buildings of LiepÄ j a Municipality. Energy Procedia, 2016, 91, 907-915.	1.8	9
320	A synergistic effect of a cobalt Schiff base complex and TiO ₂ nanoparticles on aerobic olefin epoxidation. RSC Advances, 2016, 6, 79085-79089.	3.6	16
322	The QuEChERS Approach for the Determination of Pesticide Residues in Soil Samples: An Overview. Journal of AOAC INTERNATIONAL, 2016, 99, 1403-1414.	1.5	25
323	Evolution of Solvents in Organic Chemistry. ACS Sustainable Chemistry and Engineering, 2016, 4, 5838-5849.	6.7	199

#	Article	IF	CITATIONS
324	Formamides as Lewis Base Catalysts in S _N Reactions—Efficient Transformation of Alcohols into Chlorides, Amines, and Ethers. Angewandte Chemie - International Edition, 2016, 55, 10145-10149.	13.8	53
325	Sulfoxideâ€Chelated Ruthenium Benzylidene Catalyst: a Synthetic Study on the Utility of Olefin Metathesis. ChemCatChem, 2016, 8, 2817-2823.	3.7	18
326	Ctr-1 Mets7 motif inspiring new peptide ligands for Cu(<scp>i</scp>)-catalyzed asymmetric Henry reactions under green conditions. RSC Advances, 2016, 6, 71529-71533.	3.6	21
327	Developing eco-friendly methods for purification of compounds derived from hydrogenated cardanol. Separation Science and Technology, 2016, 51, 2473-2483.	2.5	3
328	Ironâ€Catalyzed Reaction of Urea with Alcohols and Amines: A Safe Alternative for the Synthesis of Primary Carbamates. ChemSusChem, 2016, 9, 2233-2238.	6.8	22
329	Formamide als Lewisâ€Basenâ€Katalysatoren in S _N â€Reaktionen: Effiziente Transformationen von Alkoholen zu Chloriden, Aminen und Ethern. Angewandte Chemie, 2016, 128, 10300-10304.	2.0	14
330	Process development for oxidations of hydrophobic compounds applying cytochrome P450 monooxygenases in-vitro. Journal of Biotechnology, 2016, 233, 143-150.	3.8	21
331	Copper-Catalyzed Aerobic Oxidative Amidation of Benzyl Alcohols. Journal of Organic Chemistry, 2016, 81, 10688-10697.	3.2	25
332	Ionic liquids as modulators of physicochemical properties and nanostructures of sodium dodecyl sulfate in aqueous solutions and potential application in pesticide microemulsions. Physical Chemistry Chemical Physics, 2016, 18, 29797-29807.	2.8	21
333	Catalyst free, three-component approach for unsymmetrical triarylmethanes (TRAMs). Tetrahedron Letters, 2016, 57, 5381-5384.	1.4	9
334	Facile Preparation of Uniform Nanocomposite Spheres with Loading Silver Nanoparticles on Polystyrene-methyl Acrylic Acid Spheres for Catalytic Reduction of 4-Nitrophenol. Journal of Physical Chemistry C, 2016, 120, 25935-25944.	3.1	128
335	Platinum nanoparticles supported on polymeric ionic liquid functionalized magnetic silica: effective and reusable heterogeneous catalysts for the selective oxidation of alcohols in water. RSC Advances, 2016, 6, 106769-106777.	3.6	11
336	Continuous flow room temperature reductive aqueous homo-coupling of aryl halides using supported Pd catalysts. Scientific Reports, 2016, 6, 32719.	3.3	11
337	Synergistic and Selective Copper/ppm Pd-Catalyzed Suzuki–Miyaura Couplings: In Water, Mild Conditions, with Recycling. ACS Catalysis, 2016, 6, 8179-8183.	11.2	60
338	Deep Eutectic Solvents: The Organic Reaction Medium of the Century. European Journal of Organic Chemistry, 2016, 2016, 612-632.	2.4	519
339	Green Oneâ€Pot Solventâ€Free Synthesis of Pyrazolo[1,5â€∢i>a]pyrimidines, Azolo[3,4â€∢i>d]pyridiazines, and Thieno[2,3â€∢i>b]pyridines Containing Triazole Moiety. Journal of Heterocyclic Chemistry, 2016, 53, 710-718.	2.6	23
341	Life cycle assessment of N-methyl-2-pyrrolidone reduction strategies in the manufacture of resin precursors. Clean Technologies and Environmental Policy, 2016, 18, 2635-2647.	4.1	12
342	A green organocatalyzed one-pot protocol for efficient synthesis of new substituted pyrimido[4,5-d]pyrimidinones using a Biginelli-like reaction. Research on Chemical Intermediates, 2016, 42, 8185-8200.	2.7	32

#	Article	IF	CITATIONS
343	Green Carboxylic Acid-Based Deep Eutectic Solvents as Solvents for Extractive Desulfurization. Energy & Fuels, 2016, 30, 5411-5418.	5.1	131
344	A decade update on solvent and catalyst-free neat organic reactions: a step forward towards sustainability. Green Chemistry, 2016, 18, 4475-4525.	9.0	185
345	An efficient route from reproducible glucose to 5-hydroxymethylfurfural catalyzed by porous coordination polymer heterogeneous catalysts. Chemical Engineering Journal, 2016, 300, 177-184.	12.7	80
346	First Report About the Use of Micellar Keggin Heteropolyacids as Catalysts in the Green Multicomponent Synthesis of Nifedipine Derivatives. Catalysis Letters, 2016, 146, 1634-1647.	2.6	20
347	Triple Iron/Copper/Iminium Activation for the Efficient Redox Neutral Catalytic Enantioselective Functionalization of Allylic Alcohols. ACS Catalysis, 2016, 6, 5236-5244.	11.2	55
348	Chlorineâ€Free Synthesis of Organic Alkyl Carbonates and Five―and Sixâ€Membered Cyclic Carbonates. Advanced Synthesis and Catalysis, 2016, 358, 834-839.	4.3	28
349	HandaPhos: A General Ligand Enabling Sustainable ppm Levels of Palladium-Catalyzed Cross-Couplings in Water at Room Temperature. Angewandte Chemie, 2016, 128, 4998-5002.	2.0	20
350	Catalytic versus stoichiometric reagents as a key concept for Green Chemistry. Green Chemistry, 2016, 18, 590-593.	9.0	51
351	Synthesis and evaluation of a series of 6-chloro-4-methylumbelliferyl glycosides as fluorogenic reagents for screening metagenomic libraries for glycosidase activity. Carbohydrate Research, 2016, 421, 33-39.	2.3	20
352	Lanthanide-Catalyzed Oxyfunctionalization of 1,3-Diketones, Acetoacetic Esters, And Malonates by Oxidative C–O Coupling with Malonyl Peroxides. Journal of Organic Chemistry, 2016, 81, 810-823.	3.2	30
353	A monolithic 5-(pyrrolidin-2-yl)tetrazole flow microreactor for the asymmetric aldol reaction in water–ethanol solvent. Reaction Chemistry and Engineering, 2016, 1, 183-193.	3.7	18
354	Asymmetric catalytic synthesis of functionalized tetrahydroquinolines in supercritical fluids. Journal of Supercritical Fluids, 2016, 109, 35-42.	3.2	25
355	The synthesis of di-carboxylate esters using continuous flow vortex fluidics. Green Chemistry, 2016, 18, 2193-2200.	9.0	37
356	Polyurethane nanomicelles: a novel eco-friendly and efficient polymeric ionic solvent for the Cannizzaro reaction. New Journal of Chemistry, 2016, 40, 2121-2125.	2.8	2
357	Paradigms in Green Chemistry and Technology. Springer Briefs in Molecular Science, 2016, , .	0.1	12
358	Easily recoverable titanosilicate zeolite beads with hierarchical porosity: Preparation and application as oxidation catalysts. Journal of Catalysis, 2016, 333, 139-148.	6.2	36
359	Synthesis of benzofurans via an acid catalysed transacetalisation/Fries-type O → C rearrangement/Michael addition/ring-opening aromatisation cascade of β-pyrones. Chemical Communications, 2016, 52, 5569-5572.	4.1	27
360	Assembly of 3-Sulfenylbenzofurans and 3-Sulfenylindoles by Palladium-Catalyzed Cascade Annulation/Arylthiolation Reaction. Journal of Organic Chemistry, 2016, 81, 2875-2887.	3.2	73

#	Article	IF	CITATIONS
361	Engineering a more sustainable world through catalysis and green chemistry. Journal of the Royal Society Interface, 2016, 13, 20160087.	3.4	97
362	Recent Advances in the Palladium Catalyzed Suzuki–Miyaura Cross-Coupling Reaction in Water. Catalysis Letters, 2016, 146, 820-840.	2.6	181
363	Exploring Green Chemistry Metrics with Interlocking Building Block Molecular Models. Journal of Chemical Education, 2016, 93, 691-694.	2.3	30
364	lt is better to prevent waste than to treat or clean up waste after it is formed – or: what Benjamin Franklin has to do with "Green Chemistry― Green Chemistry, 2016, 18, 1172-1174.	9.0	19
365	Sodium alginate: An efficient biopolymeric catalyst for green synthesis of 2-amino-4H-pyran derivatives. International Journal of Biological Macromolecules, 2016, 87, 172-179.	7.5	70
366	Site-Selective Catalysis. Topics in Current Chemistry, 2016, , .	4.0	19
367	Process modelling and simulation for continuous pharmaceutical manufacturing of artemisinin. Chemical Engineering Research and Design, 2016, 112, 310-325.	5.6	27
369	Nano-Fe ₃ O ₄ @silica sulfuric acid as a reusable and magnetically separable potent solid acid catalyst in Biginelli-type reaction for the one-pot multicomponent synthesis of fused dihydropyrimidine derivatives: A greener NOSE and SFRC approach. Synthetic Communications, 2016, 46, 275-286.	2.1	28
370	Sodium lignosulfonate as a renewable stabilizing agent for aqueous alumina suspensions. International Journal of Biological Macromolecules, 2016, 82, 927-932.	7.5	23
371	MnO2 nanowires decorated with Au ultrasmall nanoparticles for the green oxidation of silanes and hydrogen production under ultralow loadings. Applied Catalysis B: Environmental, 2016, 184, 35-43.	20.2	55
372	<scp>d</scp> -Xylonic acid: a solvent and an effective biocatalyst for a three-component reaction. Green Chemistry, 2016, 18, 1738-1750.	9.0	46
373	Bio-renewable enantioselective aldol reaction in natural deep eutectic solvents. Green Chemistry, 2016, 18, 1724-1730.	9.0	91
374	Optimization of Pressurized Hot Water Extraction of Flavonoids from Momordica foetida Using UHPLC-qTOF-MS and Multivariate Chemometric Approaches. Food Analytical Methods, 2016, 9, 1480-1489.	2.6	22
375	Solvent-free alcohol oxidation using paper-structured catalysts: Flow dynamics and reaction kinetics. Chemical Engineering Journal, 2016, 285, 467-476.	12.7	12
376	Template-based synthesis of metallic Pd nanotubes by electroless deposition and their use as catalysts in the 4-nitrophenol model reaction. Green Chemistry, 2016, 18, 558-564.	9.0	28
377	Operando XAFS of supported Pd nanoparticles in flowing ethanol/water mixtures: implications for catalysis. Green Chemistry, 2016, 18, 406-411.	9.0	26
378	Oxidant free one-pot transformation of bio-based 2,5-bis-hydroxymethylfuran into α-6-hydroxy-6-methyl-4-enyl-2H-pyran-3-one in water. Applied Catalysis B: Environmental, 2016, 180, 38-43.	20.2	42
379	Ultrasound and green chemistry â^' Further comments. Ultrasonics Sonochemistry, 2016, 28, 257-258.	8.2	60

#	Article	IF	CITATIONS
381	Solvent-free synthesis of 5-(aryl/alkyl)amino-1,2,4-triazines and α-arylamino-2,2′-bipyridines with greener prospects. RSC Advances, 2017, 7, 9610-9619.	3.6	39
382	Cul Supported on Protonated Trititanate Nanotubes: A Reusable Catalyst for the Oneâ€Pot Synthesis of Propargylamines via A ³ oupling. Asian Journal of Organic Chemistry, 2017, 6, 712-719.	2.7	26
383	Technoeconomic optimisation and comparative environmental impact evaluation of continuous crystallisation and antisolvent selection for artemisinin recovery. Computers and Chemical Engineering, 2017, 103, 218-232.	3.8	21
384	Transitionâ€Metalâ€Catalyzed Utilization of Methanol as a C ₁ â€Source in Organic Synthesis. Angewandte Chemie - International Edition, 2017, 56, 6384-6394.	13.8	227
385	Übergangsmetallkatalysierte Nutzung von Methanol als C ₁ â€Quelle in der organischen Synthese. Angewandte Chemie, 2017, 129, 6482-6492.	2.0	45
386	Sequential reactions from catalytic hydroformylation toward the synthesis of amino compounds. Tetrahedron, 2017, 73, 2389-2395.	1.9	11
387	Palladium-Catalyzed Cascade Wacker/Allylation Sequence with Allylic Alcohols Leading to Allylated Dihydropyrones. ACS Omega, 2017, 2, 487-495.	3.5	14
388	Novel alkali-promoted hydrotalcite for selective synthesis of 2-methoxy phenyl benzoate from guaiacol and benzoic anhydride. Clean Technologies and Environmental Policy, 2017, 19, 1169-1180.	4.1	5
389	Effective Blâ€DIME Ligand for Suzuki–Miyaura Crossâ€Coupling Reactions in Water with 500â€ppm Palladiu Loading and Tritonâ€X. Asian Journal of Organic Chemistry, 2017, 6, 1285-1291.	^m 2.7	14
390	A New Type of Magnetically-Recoverable Heteropolyacid Nanocatalyst Supported on Zirconia-Encapsulated Fe3O4 Nanoparticles as a Stable and Strong Solid Acid for Multicomponent Reactions. Catalysis Letters, 2017, 147, 1551-1566.	2.6	16
391	Design and preparation of [4,4′-bipyridine]-1,1′-diium trinitromethanide (BPDTNM) as a novel nanosized ionic liquid catalyst: application to the synthesis of 1-(benzoimidazolylamino)methyl-2-naphthols. New Journal of Chemistry, 2017, 41, 4431-4440.	2.8	15
392	Metal oxide semiconductor nanomaterial for reductive debromination: Visible light degradation of polybrominated diphenyl ethers by Cu2O@Pd nanostructures. Applied Catalysis B: Environmental, 2017, 213, 147-154.	20.2	42
393	Tuning the Catalytic Activity of Tertiaryâ€Amine Functionalized Polyacrylonitrile Fibers by Adjusting the Surface Microenvironment. ChemCatChem, 2017, 9, 3725-3732.	3.7	18
394	Supported Gold Nanoparticles for Alcohols Oxidation in Continuous-Flow Heterogeneous Systems. ACS Sustainable Chemistry and Engineering, 2017, 5, 4746-4756.	6.7	35
395	Stereoselective Crystallization as a Basis for Singleâ€Enantiomer Drug Production. Chemical Engineering and Technology, 2017, 40, 1211-1220.	1.5	24
396	Redox Interfaces for Electrochemically Controlled Protein–Surface Interactions: Bioseparations and Heterogeneous Enzyme Catalysis. Chemistry of Materials, 2017, 29, 5702-5712.	6.7	35
397	Synthesis of highly substituted dihydro-2-oxopyrroles using Fe ₃ O ₄ @nano-cellulose–OPO ₃ H as a novel bio-based magnetic nanocatalyst. RSC Advances, 2017, 7, 30303-30309.	3.6	38
398	Hydroxyapatite: A review of syntheses, structure and applications in heterogeneous catalysis. Coordination Chemistry Reviews, 2017, 347, 48-76.	18.8	347

#	Article	IF	CITATIONS
399	Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications. Chemical Communications, 2017, 53, 7135-7148.	4.1	222
400	RuO2/ZrO2 as an efficient reusable catalyst for the facile, green, one-pot synthesis of novel functionalized halopyridine derivatives. Catalysis Communications, 2017, 100, 24-28.	3.3	19
401	Green synthesis and characterization of gold and silver nanoparticles using Mussaenda glabrata leaf extract and their environmental applications to dye degradation. Environmental Science and Pollution Research, 2017, 24, 17347-17357.	5.3	148
402	Revisiting the Knoevenagel condensations: A universal and flexible bis-ammoniated fiber catalyst for the mild synthesis of α,l²-unsaturated compounds. Journal of Industrial and Engineering Chemistry, 2017, 54, 75-81.	5.8	20
403	BrÃ,nsted acidic ionic liquid-catalyzed tandem reaction: an efficient approach towards regioselective synthesis of pyrano[3,2-c]coumarins under solvent-free conditions bearing lower E-factors. Green Chemistry, 2017, 19, 3282-3295.	9.0	67
404	Gold-mediated selective transformation of lignin models to aromatic esters in the presence of molecular oxygen. Catalysis Today, 2017, 298, 190-196.	4.4	4
405	Cp ₂ TiCl: An Ideal Reagent for Green Chemistry?. Organic Process Research and Development, 2017, 21, 911-923.	2.7	65
406	Amine-mediated synthesis of amides from 1,3-dicarbonyl compounds through a domino diazo transfer/aminolysis process. Tetrahedron, 2017, 73, 4549-4559.	1.9	7
407	Iridium-catalyzed highly efficient chemoselective reduction of aldehydes in water using formic acid as the hydrogen source. Green Chemistry, 2017, 19, 3296-3301.	9.0	71
408	Sonication method synergism with rare earth based nanocatalyst: preparation of NiFe 2– x Eu x O 4 nanostructures and its catalytic applications for the synthesis of benzimidazoles, benzoxazoles, and benzothiazoles under ultrasonic irradiation. Journal of Rare Earths, 2017, 35, 374-381.	4.8	130
409	Ironâ€Catalyzed Antiâ€Markovnikov Hydroamination of Vinylpyridines. Asian Journal of Organic Chemistry, 2017, 6, 694-697.	2.7	7
410	A step forward towards sustainable aerobic alcohol oxidation: new and revised catalysts based on transition metals on solid supports. Green Chemistry, 2017, 19, 2030-2050.	9.0	156
411	Iron Ascorbic Acid Complex Coated TiO ₂ Nanoparticles Enhancing Visible-Light Oxidation Performance. ChemistrySelect, 2017, 2, 2901-2909.	1.5	10
412	Process Modeling, Simulation, and Technoeconomic Evaluation of Separation Solvents for the Continuous Pharmaceutical Manufacturing (CPM) of Diphenhydramine. Organic Process Research and Development, 2017, 21, 924-946.	2.7	27
413	Simultaneous photocatalytic and catalytic activity of p–n junction NiO@anatase/rutile-TiO2 as a noble-metal free reusable nanoparticle for synthesis of organic compounds. Catalysis Communications, 2017, 95, 77-82.	3.3	30
414	Highly Dispersed Palladium Nanoparticle-Loaded Magnetic Catalyst (FeS@EP–AG–Pd) for Suzuki Reaction in Water. Catalysis Letters, 2017, 147, 1162-1171.	2.6	14
415	Laccase-catalyzed green synthesis and cytotoxic activity of novel pyrimidobenzothiazoles and catechol thioethers. RSC Advances, 2017, 7, 17427-17441.	3.6	34
416	An efficient selective reduction of nitroarenes catalyzed by reusable silver-adsorbed waste nanocomposite. Applied Catalysis B: Environmental, 2017, 209, 669-678.	20.2	57

#	Article	IF	CITATIONS
417	Synthesis of propyl-β-d-galactoside with free and immobilized β-galactosidase from Aspergillus oryzae. Process Biochemistry, 2017, 53, 162-171.	3.7	14
418	Comparison of a Batch and Flow Approach for the Lipase-Catalyzed Resolution of a Cyclopropanecarboxylate Ester, A Key Building Block for the Synthesis of Ticagrelor. Organic Process Research and Development, 2017, 21, 195-199.	2.7	28
419	A Versatile Disulfide-Driven Recycling System for NADP ⁺ with High Cofactor Turnover Number. ACS Catalysis, 2017, 7, 1025-1029.	11.2	27
420	An efficient approach to trans-4-hydroxy-5-substituted 2-pyrrolidinones through a stereoselective tandem Barbier process: divergent syntheses of (3R,4S)-statines, (+)-preussin and (â^')-hapalosin. Organic and Biomolecular Chemistry, 2017, 15, 649-661.	2.8	13
421	Palladium atalysed Cross oupling Reactions Controlled by Noncovalent Znâ‹â‹â‹N Interactions. Chemi - A European Journal, 2017, 23, 5033-5043.	istry 3.3	19
422	A site-holding effect of TiO ₂ surface hydroxyl in the photocatalytic direct synthesis of 1,1-diethoxyethane from ethanol. Chemical Communications, 2017, 53, 1518-1521.	4.1	38
423	Cholinesulfuric acid ionic liquid catalyzed an eco-friendly synthesis of 2,3-dihydroquinazolin-4(1H)-one in aqueous media. Research on Chemical Intermediates, 2017, 43, 3873-3882.	2.7	7
424	Biodiesel via in Situ Wet Microalgae Biotransformation: Zwitter-Type Ionic Liquid Supported Extraction and Transesterification. ACS Sustainable Chemistry and Engineering, 2017, 5, 1931-1937.	6.7	32
425	Comparison of Two Stability-Indicating Chromatographic Methods for the Determination of Mirabegron in Presence of Its Degradation Product. Chromatographia, 2017, 80, 99-107.	1.3	8
426	Environment-Friendly Approach to Fabricate Iron Nanochains as a Superb Adsorbent and Recycled as a Fine Photo-Fenton Catalyst. Catalysis Letters, 2017, 147, 592-601.	2.6	4
427	Antioxidant and antibacterial activity evaluation of 3â€hydroxybenzaldehyde: the product of thymol oxidation by a new magnetic nanocatalyst. IET Nanobiotechnology, 2017, 11, 630-636.	3.8	7
429	Titanocene dichloride: A new green reagent in organic chemistry. Chinese Journal of Catalysis, 2017, 38, 1659-1663.	14.0	8
430	Understanding sulfide distribution in subaqueous soil systems in southern New England, USA. Geoderma, 2017, 308, 207-214.	5.1	9
431	Microwave-Assisted Efficient Suzuki-Miyaura Cross-Coupling Reactions in Water Catalyzed by Nano-Pd/gC ₃ N ₄ Composite. ChemistrySelect, 2017, 2, 8745-8750.	1.5	14
432	Greener and Additive-Free Reactions in Deep Eutectic Solvent: One-Pot, Three-Component Synthesis of Highly Substituted Pyridines. ChemistrySelect, 2017, 2, 8870-8873.	1.5	22
433	Design and evolution of the BMS process greenness scorecard. Green Chemistry, 2017, 19, 5163-5171.	9.0	17
434	Highly diastereoselective crystallization-induced asymmetric transformation of 1,3-disubstituted-tetrahydro-β-carbolines in water. RSC Advances, 2017, 7, 47753-47757.	3.6	5
435	Cyclic ureas (DMI, DMPU) as efficient, sustainable ligands in iron-catalyzed C(sp2)–C(sp3) coupling of aryl chlorides and tosylates. Green Chemistry, 2017, 19, 5361-5366.	9.0	46

#	Article	IF	Citations
436	Green chemistry: Analytical and chromatography. Journal of Liquid Chromatography and Related Technologies, 2017, 40, 839-852.	1.0	58
437	Technoeconomic Evaluation of Multiple Mixed Suspension-Mixed Product Removal (MSMPR) Crystallizer Configurations for Continuous Cyclosporine Crystallization. Organic Process Research and Development, 2017, 21, 1571-1587.	2.7	12
438	Metal-free C–H functionalization of 2H-imidazole 1-oxides with pyrrolyl fragments in the design of novel azaheterocyclic ensembles. Organic and Biomolecular Chemistry, 2017, 15, 8280-8284.	2.8	16
439	Micelle-Enabled Palladium Catalysis for Convenient sp ² -sp ³ Coupling of Nitroalkanes with Aryl Bromides in Water Under Mild Conditions. ACS Catalysis, 2017, 7, 7245-7250.	11.2	87
440	Batch and Continuous-Flow Huisgen 1,3-Dipolar Cycloadditions with an Amphiphilic Resin-Supported Triazine-Based Polyethyleneamine Dendrimer Copper Catalyst. ACS Sustainable Chemistry and Engineering, 2017, 5, 10722-10734.	6.7	65
441	Wackerâ€Type Oxidation Using an Iron Catalyst and Ambient Air: Application to Lateâ€Stage Oxidation of Complex Molecules. Angewandte Chemie, 2017, 129, 12886-12891.	2.0	11
442	Palladium-catalyzed oxidative coupling of arylboronic acid with isocyanide to form aromatic carboxylic acids. Organic and Biomolecular Chemistry, 2017, 15, 8078-8083.	2.8	7
443	Recent advances in the field of selective epoxidation of vegetable oils and their derivatives: a review and perspective. Catalysis Science and Technology, 2017, 7, 3659-3675.	4.1	133
444	A carbon quantum dot-encapsulated micellar reactor for the synthesis of chromene derivatives in water. Molecular Catalysis, 2017, 439, 100-107.	2.0	15
445	Immobilization engineering – How to design advanced sol–gel systems for biocatalysis?. Green Chemistry, 2017, 19, 3927-3937.	9.0	44
446	Catalyst-free Synthesis of 6-Hydroxy Indoles via the Condensation of Carboxymethyl Cyclohexadienones and Amines. Journal of Organic Chemistry, 2017, 82, 8426-8437.	3.2	10
447	Transition Metalâ€Free Oxidative Crossâ€Coupling C(<i>sp</i> ²)–C(<i>sp</i> ³) Bond Formation: Regioselective Câ€3 Alkylation of Coumarins with Tertiary Amines. Advanced Synthesis and Catalysis, 2017, 359, 3090-3094.	4.3	12
448	Aqueous microwave-assisted synthesis of non-interpenetrated metal-organic framework for room temperature cycloaddition of CO 2 and epoxides. Applied Catalysis A: General, 2017, 544, 126-136.	4.3	40
449	Efficient chemoenzymatic synthesis of gabapentin by control of immobilized biocatalyst activity in a stirred bioreactor. Biochemical Engineering Journal, 2017, 125, 190-195.	3.6	11
450	Rhodium-catalyzed aqueous biphasic hydrogenation of alkenes with amphiphilic phosphine-containing core-shell polymers. Molecular Catalysis, 2017, 438, 267-271.	2.0	18
451	Palladium stabilized on poly and mono sulfonamide ligands as novel, simple, effective, and recyclable nano catalysts for C–C cross-coupling reactions. Canadian Journal of Chemistry, 2017, 95, 1073-1080.	1.1	8
452	Choline Chloride Catalyzed Eco-Friend and Effective One-Pot Synthesis of 9-Arylacridine-1,8-dione and Hexahydroquinoline via Hantzsch Type Reaction. Heterocycles, 2017, 94, 1895.	0.7	8
453	Wackerâ€Type Oxidation Using an Iron Catalyst and Ambient Air: Application to Lateâ€Stage Oxidation of Complex Molecules. Angewandte Chemie - International Edition, 2017, 56, 12712-12717.	13.8	76

	CITATION RE	PORT	
#	Article	IF	CITATIONS
454	Super impact absorbing bio-alloys from inedible plants. Green Chemistry, 2017, 19, 4503-4508.	9.0	9
455	Catalytic Asymmetric Oxygenations with the Environmentally Benign Oxidants H ₂ O ₂ and O ₂ . Chemical Reviews, 2017, 117, 11406-11459.	47.7	302
456	Fusing Light-Induced Step-Growth Processes with RAFT Chemistry for Segmented Copolymer Synthesis: A Synergetic Experimental and Kinetic Modeling Study. Macromolecules, 2017, 50, 6451-6467.	4.8	41
457	Electronic effects on a one-pot aromatization cascade involving alkynyl-Prins cyclization, Friedel–Crafts alkylation and dehydration to tricyclic benzo[f]isochromenes. Organic and Biomolecular Chemistry, 2017, 15, 7584-7593.	2.8	13
458	Semi-Reduction of Internal Alkynes with Prototypical Subnanometric Metal Surfaces: Bridging Homogeneous and Heterogeneous Catalysis with Trinuclear All-Metal Aromatics. ACS Sustainable Chemistry and Engineering, 2017, 5, 8205-8212.	6.7	37
459	"On Water―Metal-Catalyst-Free Oxidative Coupling–Amidation of Amines To Access Imines and Amides. ACS Sustainable Chemistry and Engineering, 2017, 5, 8439-8446.	6.7	30
460	Metal–organic frameworks meet scalable and sustainable synthesis. Green Chemistry, 2017, 19, 2729-2747.	9.0	327
461	Cross-Linked Artificial Enzyme Crystals as Heterogeneous Catalysts for Oxidation Reactions. Journal of the American Chemical Society, 2017, 139, 17994-18002.	13.7	40
462	On the simulation, economic analysis, and life cycle assessment of batch-mode organic solvent recovery alternatives for the pharmaceutical industry. Clean Technologies and Environmental Policy, 2017, 19, 2467-2477.	4.1	34
463	Application of microwave-assisted heterogeneous catalysis in sustainable synthesis design. Green Chemistry, 2017, 19, 3729-3751.	9.0	108
464	Palladium atalyzed Carbonylative Multicomponent Reactions. Chemistry - A European Journal, 2017, 23, 2973-2987.	3.3	131
465	A facile, efficient, and sustainable chitosan/CaHAp catalyst and one-pot synthesis of novel 2,6-diamino-pyran-3,5-dicarbonitriles. Molecular Diversity, 2017, 21, 247-255.	3.9	45
466	Unsupported micellar palladium nanoparticles for biphasic hydrogenation and isomerization of hydrophobic allylic alcohols in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 513, 367-372.	4.7	13
467	A data-driven strategy for predicting greenness scores, rationally comparing synthetic routes and benchmarking PMI outcomes for the synthesis of molecules in the pharmaceutical industry. Green Chemistry, 2017, 19, 127-139.	9.0	39
468	Efficient multicomponent synthesis of propargylamines catalyzed by copper nanoparticles supported on metal-organic framework derived nanoporous carbon. Catalysis Communications, 2017, 89, 91-95.	3.3	54
469	Aldoâ€X Bifunctional Building Blocks for the Synthesis of Heterocycles. Chemical Record, 2017, 17, 142-183.	5.8	48
470	Enzymatic Biocatalysis in Chemical Transformations. , 2017, , 347-403.		21
471	Enzymatic halocyclization of allenic alcohols and carboxylates: a biocatalytic entry to functionalized O-heterocycles. Green Chemistry, 2017, 19, 447-452.	9.0	32

#	Article	IF	CITATIONS
472	Synthesis of mesoporous Ca-MCM catalysts and their use in suitable multicomponent synthesis of polyfunctionalized pyrans. Research on Chemical Intermediates, 2017, 43, 2103-2118.	2.7	6
473	Nanorods of FeVO ₄ : An efficient heterogeneous catalyst for chemoselective oxidation of benzylic alcohols. Inorganic and Nano-Metal Chemistry, 2017, 47, 248-255.	1.6	9
474	A rapid flow strategy for the oxidative cyanation of secondary and tertiary amines via C-H activation. Scientific Reports, 2017, 7, 16311.	3.3	22
475	Advances in Solid-State Transformations of Coordination Bonds: From the Ball Mill to the Aging Chamber. Molecules, 2017, 22, 144.	3.8	116
476	Green Synthesis and Characterization of Palladium Nanoparticles Using Origanum vulgare L. Extract and Their Catalytic Activity. Molecules, 2017, 22, 165.	3.8	101
477	Biotransformation Using Liquid and Supercritical CO 2. , 2017, , 3-25.		3
478	Green Gas and Liquid Capillary Chromatography. , 2017, , 453-482.		6
479	An efficient Pd–NHC catalyst system in situ generated from Na ₂ PdCl ₄ and PEG-functionalized imidazolium salts for Mizoroki–Heck reactions in water. Beilstein Journal of Organic Chemistry, 2017, 13, 1735-1744.	2.2	11
480	Mechanically induced oxidation of alcohols to aldehydes and ketones in ambient air: Revisiting TEMPO-assisted oxidations. Beilstein Journal of Organic Chemistry, 2017, 13, 2049-2055.	2.2	24
481	Eisenkatalysierte Kreuzkupplungen in der Synthese von Pharmazeutika: Streben nach Nachhaltigkeit. Angewandte Chemie, 2018, 130, 11284-11297.	2.0	54
482	2â€Methyltetrahydrofuran: A Green Solvent for Ironâ€Catalyzed Crossâ€Coupling Reactions. ChemSusChem, 2018, 11, 1290-1294.	6.8	44
483	A General Catalytic Method for Highly Cost―and Atomâ€Efficient Nucleophilic Substitutions. Chemistry - A European Journal, 2018, 24, 7410-7416.	3.3	30
484	Iron catalyzed oxidation of benzylic alcohols to benzoic acids. Dalton Transactions, 2018, 47, 6412-6420.	3.3	22
485	Pd-Catalyzed one-pot dehydroxylative coupling of phenols with K ₄ [Fe(CN) ₆] mediated by SO ₂ F ₂ : a practical method for the direct conversion of phenols to aryl nitriles. Organic Chemistry Frontiers, 2018, 5, 1835-1839.	4.5	44
486	The Green ChemisTREE: 20 years after taking root with the 12 principles. Green Chemistry, 2018, 20, 1929-1961.	9.0	499
487	Impregnated palladium on magnetite as a water compatible catalyst for the cycloisomerization of alkynoic acid derivatives. Green Chemistry, 2018, 20, 2151-2157.	9.0	25
488	Citricâ€Acidâ€Catalyzed Green and Sustainable Synthesis of Novel Functionalized Pyrano[2, 3â€ <i>e</i>]pyrimidin―and Pyrano[2, 3â€ <i>d</i>]pyrazolâ€amines in Water via Oneâ€Pot Multicomponent Approaches. ChemistrySelect, 2018, 3, 3832-3838.	1.5	10
489	Chemistry in Confinement: Copper and Palladium Catalyzed Ecofriendly Organic Transformations within Porous Frameworks. Chemical Record, 2018, 18, 506-526.	5.8	4

	CITATION REF	Citation Report	
#	ARTICLE	IF	CITATIONS
490	One-pot synthesis of 1,5-diketones from 3-acetyl-4-hydroxycoumarin and effective cyclization to unexpected 3,4-dihydropyridines. Organic and Biomolecular Chemistry, 2018, 16, 3428-3437.	2.8	11
491	Ironâ€Catalyzed Crossâ€Couplings in the Synthesis of Pharmaceuticals: In Pursuit of Sustainability. Angewandte Chemie - International Edition, 2018, 57, 11116-11128.	13.8	214
492	Heterogeneous Catalysis. , 2018, , 415-447.		9
493	A facile and highly diastereoselective synthesis of carbocyclic spiro-pyrazolones via DABCO catalyzed Michael-Michael domino reaction. Tetrahedron, 2018, 74, 5270-5279.	1.9	13
494	Efficient Access to Imidazo[1,2- <i>a</i>]pyridines/pyrazines/pyrimidines via Catalyst-Free Annulation Reaction under Microwave Irradiation in Green Solvent. ACS Combinatorial Science, 2018, 20, 164-171.	3.8	51
495	Revised Theoretical Model on Enantiocontrol in Phosphoric Acid Catalyzed <i>H</i> -Transfer Hydrogenation of Quinoline. Journal of Organic Chemistry, 2018, 83, 2779-2787.	3.2	13
496	Successive Waste as Reagent: Two More Steps Forward in a Pinnick Oxidation. Organic Letters, 2018, 20, 913-916.	4.6	18
498	AIBNâ€Initiated Denitrative Crossâ€Coupling Reactions of βâ€Nitrostyrenes with Sulfonyl Hydrazides/Disulfides: A Metalâ€free Approach towards Vinyl Sulfones. Asian Journal of Organic Chemistry, 2018, 7, 359-362.	2.7	20
499	Selective production of linear α-olefins <i>via</i> catalytic deoxygenation of fatty acids and derivatives. Catalysis Science and Technology, 2018, 8, 1487-1499.	4.1	32
500	Aliphatic Nitro Compounds as Key Precursors for the Eco-Friendly Synthesis of Fine Chemicals under Solvent-Free Conditions. Series on Chemistry, Energy and the Environment, 2018, , 135-175.	0.3	0
501	Antibodies, synthetic peptides and related constructs for planetary health based on green chemistry in the Anthropocene. Future Science OA, 2018, 4, FSO275.	1.9	3
502	Lipase catalyzed 1,2-addition of thiols to imines under mild conditions. New Journal of Chemistry, 2018, 42, 1642-1645.	2.8	7
503	Highly efficient mesoporous polymer supported phosphine-gold(<scp>i</scp>) complex catalysts for amination of allylic alcohols and intramolecular cyclization reactions. RSC Advances, 2018, 8, 1737-1743.	3.6	10
504	A Simple and Efficient Regioselective and Chemoselective Synthesis of New Substituted 3â€Methylâ€6â€arylpyridazineâ€4â€carboxamides and 5â€Oxoâ€3â€arylâ€5,6â€dihydropyrido[4,3â€ <i>c</i>]pyridazineâ€8â€carbaldehydes. Journal of Heterocyclic Ch 2018, 55, 603-609.	emistry,	6
505	Useful Tools for the Next Quarter Century of Green Chemistry Practice: A Dictionary of Terms and a Data Set of Parameters for High Value Industrial Commodity Chemicals. ACS Sustainable Chemistry and Engineering, 2018, 6, 3206-3214.	6.7	24
506	Process modelling, simulation and technoeconomic evaluation of crystallisation antisolvents for the continuous pharmaceutical manufacturing of rufinamide. Computers and Chemical Engineering, 2018, 111, 102-114.	3.8	29
507	Green and Sustainable Solvents in Chemical Processes. Chemical Reviews, 2018, 118, 747-800.	47.7	1,253
509	Graduate Student Designed and Delivered: An Upper-Level Online Course for Undergraduates in Green Chemistry and Sustainability. Journal of Chemical Education, 2018, 95, 560-569.	2.3	16

#	Article	IF	CITATIONS
510	Process modelling, design and technoeconomic evaluation for continuous paracetamol crystallisation. Computers and Chemical Engineering, 2018, 118, 224-235.	3.8	16
511	Iridium-catalyzed efficient reduction of ketones in water with formic acid as a hydride donor at low catalyst loading. Green Chemistry, 2018, 20, 2118-2124.	9.0	57
512	Promiscuous activity of C-acyltransferase from <i>Pseudomonas protegens</i> : synthesis of acetanilides in aqueous buffer. Chemical Communications, 2018, 54, 3387-3390.	4.1	16
513	Hydrogenâ€Mediated Câ^'C Bond Formation: Stereo―and Siteâ€5elective Chemical Synthesis Beyond Stoichiometric Organometallic Reagents. Israel Journal of Chemistry, 2018, 58, 45-51.	2.3	13
514	Metal organic frameworks as catalysts in solvent-free or ionic liquid assisted conditions. Green Chemistry, 2018, 20, 86-107.	9.0	107
515	Role of Biocatalysis in Sustainable Chemistry. Chemical Reviews, 2018, 118, 801-838.	47.7	1,175
516	STM-electroluminescence from clustered C3N4 nanodomains synthesized via green chemistry process. Ultrasonics Sonochemistry, 2018, 40, 742-747.	8.2	5
517	Preparation of magnetically recyclable ZnFe ₂ O ₄ nanoparticles by easy singleâ€step coâ€precipitation method and their catalytic performance in the synthesis of 2â€aminothiophenes. Applied Organometallic Chemistry, 2018, 32, e4047.	3.5	15
518	An expeditious protocol for synthesis of Baylis–Hillman derived piperazine derivatives and evaluation of their AChE inhibition. Research on Chemical Intermediates, 2018, 44, 553-565.	2.7	4
519	Tuning nano-nickel selectivity with tin in flow hydrogenation of 6-methyl-5-hepten-2-one by surface organometallic chemistry modification. Catalysis Today, 2018, 308, 38-44.	4.4	10
520	Ultrasound-assisted electrocatalytic hydrogenation in water. Applied Catalysis A: General, 2018, 550, 245-255.	4.3	9
521	Nonlinear Optimization via Explicit NRTL Model Solubility Prediction for Antisolvent Mixture Selection in Artemisinin Crystallization. Organic Process Research and Development, 2018, 22, 40-53.	2.7	8
522	Exponential Activation of Carbonic Anhydrase by Encapsulation in Dynameric Host Matrices with Chiral Discrimination. Chemistry - A European Journal, 2018, 24, 715-720.	3.3	13
523	Metrics of Green Chemistry and Sustainability: Past, Present, and Future. ACS Sustainable Chemistry and Engineering, 2018, 6, 32-48.	6.7	673
524	Three-component synthesis of amidomethylarenes and -heteroarenes over Hβ zeolite under solvent-free conditions. Catalysis Communications, 2018, 105, 20-25.	3.3	5
525	Die facettenreiche Reaktivitäheterogener Einzelatomâ€Katalysatoren. Angewandte Chemie, 2018, 130, 15538-15552.	2.0	36
526	The Catalytic Reduction of Carboxylic Acid Derivatives and CO ₂ by Metal Nanoparticles on Lewisâ€Acidic Supports. Chemical Record, 2018, 18, 1374-1393.	5.8	18
527	Microwave irradiation: a green approach for the synthesis of functionalized <i>N</i> -methyl-1,4-dihydropyridines. RSC Advances, 2018, 8, 41892-41903.	3.6	19

ARTICLE IF CITATIONS # Thermal hazard analysis and thermokinetic calculation of 1,3-dimethylimidazolium nitrate via TG and 528 3.6 7 VSP2. Journal of Thermal Analysis and Calorimetry, 2018, 134, 2367-2374. Catalytic Generation and Chemoselective Transfer of Nucleophilic Hydrides from Dihydrogen. 529 3.3 Chemistry - A European Journal, 2019, 25, 985-988. Synthesis of Chitosan-Functionalized Fibrous Membrane for Immobilization of Horseradish Peroxidase: Interfacial Property and Application for Catalytic Oxidation of P-Nitrophenol. Journal of Engineered Fibers and Fabrics, 2018, 13, 155892501801300. 530 1.0 0 Carbonate-Catalyzed Room-Temperature Selective Reduction of Biomass-Derived 5-Hydroxymethylfurfural into 2,5-Bis(hydroxymethyl)furan. Catalysts, 2018, 8, 633. 1,3-Bis(carboxymethyl)imidazolium Chloride as a Metal-Free and Recyclable Catalyst for the Synthesis of <i>N</i>Allylanilines by Allylic Substitution of Alcohols. ACS Sustainable Chemistry and 532 6.7 22 Engineering, 2018, 6, 14063-14070. Efficient Green Synthesis and Computational Chemical Study of Some Interesting Heterocyclic Derivatives as Insecticidal Agents. Journal of Heterocyclic Chemistry, 2018, 55, 2545-2555. 2.6 Recycling Catalyst as Reactant: A Sustainable Strategy To Improve Atom Efficiency of Organocatalytic 534 4.6 32 Tandem Reactions. Organic Letters, 2018, 20, 6559-6563. A Supramolecular Palladium Catalyst Displaying Substrate Selectivity by Remote Control. Chemistry - A 3.3 16 European Journal, 2019, 25, 627-634. DIC_AT-2: Solid Acid Catalyst with a Protagonist Backbone for Microwave Assisted 536 Synthesis of 5-Hydroxymethylfurfural in Isopropyl Alcohol. Industrial & amp; Engineering Chemistry 3.7 8 Research, 2018, 57, 14428-14439. Microwave-assisted green oxidation of alcohols with hydrogen peroxide catalyzed by iron complexes 1.8 with nitrogen ligands. Journal of Organometallic Chemistry, 2018, 878, 38-47. The Multifaceted Reactivity of Singleâ€Atom Heterogeneous Catalysts. Angewandte Chemie -538 13.8 261 International Edition, 2018, 57, 15316-15329. Inhibition of CO₂ Corrosion via Sustainable Geminal Zwitterionic Compounds: Effect of the Length of the Hydrocarbon Chain from Amines. ACS Sustainable Chemistry and Engineering, 2018, 6, 17230-17238. Recent Developments on Supported Hydrogenâ€bond Organocatalysts. ChemCatChem, 2018, 10, 5554-5572. 540 3.7 24 Recent Advances in Catalyzed Sequential Reactions and the Potential Use of Tetrapyrrolic Macrocycles as Catalysts. Molecules, 2018, 23, 2796. 541 3.8 Stereoselective Synthesis of Tetrahydroquinolines via Asymmetric Domino Reaction Catalyzed by a Recyclable Ionicâ€Liquidâ€Supportéd Bifunctional Tertiary Amine. European Journal of Organic Ćhemistry, 542 2.4 13 2018, 2018, 7000-7008. Poly(tetrafluoroethylene)-Stabilized Metal Nanoparticles: Preparation and Evaluation of Catalytic 543 Activity for Suzuki, Heck, and Arene Hydrogenation in Water. ACS Omega, 2018, 3, 10066-10073. Recent Advances in the Direct Synthesis of Hydrogen Peroxide Using Chemical Catalysisâ€"A Review. 544 3.587 Catalysts, 2018, 8, 379. Ca(II)â€Mediated Regioselective Oneâ€pot Sequential Annulation of Acyclic compounds to Polycyclic 545 4.3 19 Fluorenopyrans. Advanced Synthesis and Catalysis, 2018, 360, 4422-4428.

#	Article	IF	CITATIONS
546	The Low Temperature Solvent-Free Aerobic Oxidation of Cyclohexene to Cyclohexane Diol over Highly Active Au/Graphite and Au/Graphene Catalysts. Catalysts, 2018, 8, 311.	3.5	13
547	An approach to classification and hi-tech applications of room-temperature ionic liquids (RTILs): A review. Journal of Molecular Liquids, 2018, 271, 403-420.	4.9	78
548	Na ₂ S ₂ O ₈ -mediated efficient synthesis of isothiocyanates from primary amines in water. Green Chemistry, 2018, 20, 4484-4491.	9.0	38
549	Thiyl radical promoted chemo- and regioselective oxidation of Cî€C bonds using molecular oxygen via iron catalysis. Green Chemistry, 2018, 20, 4521-4527.	9.0	43
550	Tri- and tetranuclear molybdenum and tungsten chalcogenide clusters: on the way to new materials and catalysts *. Russian Chemical Reviews, 2018, 87, 670-706.	6.5	33
551	Acceptorless dehydrogenative coupling reactions with alcohols over heterogeneous catalysts. Green Chemistry, 2018, 20, 2933-2952.	9.0	114
552	Eco-friendly <i>one-pot</i> synthesis of some new pyrazolo[1,2- <i>b</i>]phthalazinediones with antiproliferative efficacy on human hepatic cancer cell lines. Green Chemistry Letters and Reviews, 2018, 11, 264-274.	4.7	36
553	Response surface design as a powerful tool for the development of environmentally benign HPLC methods for the determination of two antihypertensive combinations: Greenness assessment by two green analytical chemistry evaluation tools. Journal of Separation Science, 2018, 41, 3213-3223.	2.5	21
554	Combining active phase and support optimization in MnO2-Au nanoflowers: Enabling high activities towards green oxidations. Journal of Colloid and Interface Science, 2018, 530, 282-291.	9.4	32
555	Relay Catalysis of Bismuth Trichloride and Byproduct Hydrogen Bromide Enables the Synthesis of Carbazole and Benzo[α]carbazoles from Indoles and αâ€Bromoacetaldehyde Acetals. Advanced Synthesis and Catalysis, 2018, 360, 3318-3330.	4.3	25
556	Biogenic CuFe ₂ O ₄ magnetic nanoparticles as a green, reusable and excellent nanocatalyst for acetylation reactions under solvent-free conditions. New Journal of Chemistry, 2018, 42, 15200-15206.	2.8	17
557	Four Atom Efficient Enzyme Cascades for All 4-Methoxyphenyl-1,2-propanediol Isomers Including Product Crystallization Targeting High Product Concentrations and Excellent E-Factors. ACS Sustainable Chemistry and Engineering, 2018, 6, 11819-11826.	6.7	22
558	Greening Reversed-Phase Liquid Chromatography Methods Using Alternative Solvents for Pharmaceutical Analysis. Molecules, 2018, 23, 1065.	3.8	118
559	Whole Cells as Biocatalysts in Organic Transformations. Molecules, 2018, 23, 1265.	3.8	69
560	Plant-Extract-Assisted Green Synthesis of Silver Nanoparticles Using Origanum vulgare L. Extract and Their Microbicidal Activities. Sustainability, 2018, 10, 913.	3.2	211
561	Advances in microwave-assisted synthesis and the impact of novel drug discovery. Expert Opinion on Drug Discovery, 2018, 13, 861-873.	5.0	15
562	Process modelling, simulation and technoeconomic optimisation for continuous pharmaceutical manufacturing of (S)-warfarin. Computer Aided Chemical Engineering, 2018, , 1643-1648.	0.5	5
563	Solid phase chemical modification of agarose glyoxyl-ficin: Improving activity and stability properties by amination and modification with glutaraldehyde. Process Biochemistry, 2018, 73, 109-116.	3.7	26

ARTICLE IF CITATIONS # Mixture Design and Doehlert Matrix for the Optimization of the Extraction of Phenolic Compounds 3.6 17 564 from Spondias mombin L Apple Bagasse Agroindustrial Residues. Frontiers in Chemistry, 2017, 5, 116. Nucleophilic Substitutions of Alcohols in High Levels of Catalytic Efficiency. Organic Letters, 2018, 4.6 20, 2980-2983. Vapor Liquid Equilibria of Binary Mixtures of 1-Butyl-3-methylimidazolium Triflate (C₄mimTfO) and Molecular Solvents: <i>n</i> 566 2.6 20 Physical Chemistry B, 2018, 122, 6017-6032. Materials Functionalization with Multicomponent Reactions: State of the Art. ACS Combinatorial Science, 2018, 20, 499-528. Enzyme Immobilization in Polymerized Ionic Liquids-based Hydrogels for Active and Reusable 568 1.7 27 Biocatalysts. SynOpen, 2018, 02, 0192-0199. Ligandâ€Free Bioinspired Suzuki–Miyaura Coupling Reactions using Aryltrifluoroborates as Effective Partners in Deep Eutectic Solvents. ChemSusChem, 2018, 11, 3495-3501. 6.8 Multicomponent Synthesis of Structurally Diverse Imidazoles Featuring Azirines, Amines and 570 2.4 16 Aldehydes. European Journal of Organic Chemistry, 2018, 2018, 4171-4177. Cu(II) Schiff base complex supported on Fe₃O₄ nanoparticles as an efficient nanocatalyst for the selective aerobic oxidation of alcohols. Applied Organometallic Chemistry, 2018, 571 3.5 32, e4433. [Zn(l-proline)2] Catalyzed One-Pot Synthesis of Propargylamines Under Solvent-Free Conditions. 572 2.6 28 Čatalysis Letters, 2018, 148, 2675-2682. Plant extracts as green reductants for the synthesis of silver nanoparticles: lessons from chemical 573 3.3 synthesis. Dalton Transactions, 2018, 47, 11988-12010. Design, characterisation and application of alginate-based encapsulated pig liver esterase. Journal of 574 3.8 9 Biotechnology, 2018, 280, 42-48. A green and practical one \hat{e} two \hat{e} two \hat{e} tep strategy for the synthesis of symmetric 3,6 \hat{e} diarylpyridazines. Journal of the Chinese Chemical Society, 2018, 65, 1389-1397. 1.4 Palladium-Catalyzed Methoxycarbonylation of 1-Dodecene in a Two-Phase System: The Path toward a 576 3.7 11 Continuous Process. Industrial & amp; Engineering Chemistry Research, 2018, 57, 8884-8894. Selective synthesis of mono- and di-methylated amines using methanol and sodium azide as C1 and N1 sources. Green Chemistry, 2018, 20, 3339-3345. A practically simple, catalyst free and scalable synthesis of <i>N</i>-substituted ureas in water. RSC 578 20 3.6 Advances, 2018, 8, 21585-21595. Synthesis of bio-based surfactants from cashew nutshell liquid in water. Green Chemistry, 2018, 20, 3210-3213. 579 Recyclable imidazolium ion-tagged nickel catalyst for microwave-assisted C–S cross-coupling in water 580 2.8 23 using sulfonyl hydrazide as the sulfur source. New Journal of Chemistry, 2018, 42, 12796-12801. Synthesis of highly dispersed gold nanoparticles on Al2O3, SiO2, and TiO2 for the solvent-free 581 34 oxidation of benzyl alcohol under low metal loadings. Journal of Materials Science, 2019, 54, 238-251.

#	Article	IF	CITATIONS
582	Towards Mechanistic Understanding of Liquidâ€Phase Cinnamyl Alcohol Oxidation with tert â€Butyl Hydroperoxide over Nobleâ€Metalâ€Free LaCo 1– x Fe x O 3 Perovskites. ChemPlusChem, 2019, 84, 1155-116	3. ^{2.8}	29
583	Ultrasound-Assisted Synthesis, Antifungal Activity against <i>Fusarium oxysporum</i> , and Three-Dimensional Quantitative Structure–Activity Relationship of <i>N</i> , <i>S</i> -Dialkyl Dithiocarbamates Derived from 2-Amino Acids. ACS Omega, 2019, 4, 13710-13720.	3.5	7
584	Ethyl Lactate: A Green Solvent for Olefin Metathesis. ChemSusChem, 2019, 12, 4655-4661.	6.8	28
585	Visible Light Induced Metal-Free Carbene <i>N</i> -Carbazolation. Journal of Organic Chemistry, 2019, 84, 11316-11322.	3.2	54
586	Model-based optimization of the enzymatic aldol addition of propanal to formaldehyde: A first step towards enzymatic synthesis of 3-hydroxybutyric acid. Chemical Engineering Research and Design, 2019, 150, 140-152.	5.6	6
587	Hexamethylenediamine functionalized glucose as a new and environmentally benign corrosion inhibitor for copper. Chemical Engineering Research and Design, 2019, 150, 99-115.	5.6	70
588	Developing Multicompartment Biopolymer Hydrogel Beads for Tandem Chemoenzymatic One-Pot Process. Catalysts, 2019, 9, 547.	3.5	13
589	Dynamic Modelling and Optimisation of the Batch Enzymatic Synthesis of Amoxicillin. Processes, 2019, 7, 318.	2.8	8
590	Catalyst- and reagent-free 1,6-hydrophosphonylation of <i>p</i> -quinone methides: a practical approach for the synthesis of diarylmethyl phosphine oxides. Organic and Biomolecular Chemistry, 2019, 17, 7536-7546.	2.8	14
591	Ruthenium-Catalyzed Synthesis of N-Methylated Amides using Methanol. Organic Letters, 2019, 21, 5843-5847.	4.6	23
592	Effective and Sustainable Access to Quinolines and Acridines: A Heterogeneous Imidazolium Salt Mediates C–C and C–N Bond Formation. European Journal of Organic Chemistry, 2019, 2019, 4928-4940.	2.4	20
593	Controlling Selectivity in Alkene Oxidation: Anion Driven Epoxidation or Dihydroxylation Catalysed by [Iron(III)(Pyridine ontaining Ligand)] Complexes. ChemCatChem, 2019, 11, 4907-4915.	3.7	17
594	Brönsted acidic ionic liquid catalyzed synthesis of benzo[a]carbazole from renewable acetol and 2-phenylindoles in a biphasic system. Chinese Journal of Catalysis, 2019, 40, 1135-1140.	14.0	34
595	Synthesis of environmentally friendly, magnetic acid-type calix[4]arene catalyst for obtaining Biginelli adducts. Journal of Saudi Chemical Society, 2019, 23, 1060-1069.	5.2	10
596	Solvent-Free, Mechanochemically Scalable Synthesis of 2,3-Dihydroquinazolin-4(1H)-one Using BrÃ,nsted Acid Catalyst. ACS Sustainable Chemistry and Engineering, 2019, 7, 13551-13558.	6.7	47
597	In situ UV–VIS–NIR spectrophotometric detection system as a research tool for environment-friendly chemical processes. Environmental Technology and Innovation, 2019, 15, 100410.	6.1	7
598	Synthesis, characterization and catalytic activity of supported vanadium Schiff base complex as a magnetically recoverable nanocatalyst in epoxidation of alkenes and oxidation of sulfides. Journal of Organometallic Chemistry, 2019, 897, 200-206.	1.8	32
599	Noncovalent Immobilization of Cationic Ruthenium Complex in a Metal–Organic Framework by Ion Exchange Leading to a Heterogeneous Olefin Metathesis Catalyst for Use in Green Solvents. Organometallics, 2019, 38, 3397-3405.	2.3	23

#	Article	IF	CITATIONS
600	Engineered nanomaterials in the context of global element cycles. Environmental Science: Nano, 2019, 6, 2697-2711.	4.3	65
601	A cascade process for directly converting nitriles (RCN) to cyanamides (RNHCN) <i>via</i> SO ₂ F ₂ -activated Tiemann rearrangement. Organic and Biomolecular Chemistry, 2019, 17, 7684-7688.	2.8	13
602	Technoeconomic Mixed Integer Nonlinear Programming (MINLP) optimization for design of Liquidâ€Liquid Extraction (LLE) cascades in continuous pharmaceutical manufacturing of atropine. AICHE Journal, 2019, 65, e16738.	3.6	13
603	Polymerâ€Anchored Bifunctional Pincer Catalysts for Chemoselective Transfer Hydrogenation and Related Reactions. ChemSusChem, 2019, 12, 4693-4699.	6.8	26
604	Dissolution of cellulose in ionic liquids and their mixed cosolvents: A review. Sustainable Chemistry and Pharmacy, 2019, 13, 100162.	3.3	76
605	Metal-Organic Frameworks in Green Analytical Chemistry. Separations, 2019, 6, 33.	2.4	80
606	Discovery of Unforeseen Energy-Transfer-Based Transformations Using a Combined Screening Approach. CheM, 2019, 5, 2183-2194.	11.7	83
607	Turning Challenges into Opportunities for Promoting Systems Thinking through Chemistry Education. Journal of Chemical Education, 2019, 96, 2764-2776.	2.3	20
608	2â€Methyltetrahydrofuran (2â€MeTHF): A Green Solvent for Pdâ^'NHCâ€Catalyzed Amide and Ester Suzukiâ€Miyaura Crossâ€Coupling by Nâ^'C/Oâ^'C Cleavage. Advanced Synthesis and Catalysis, 2019, 361, 5654-5660.	4.3	37
609	Multi-Step Enzymatic Synthesis of 1,9-Nonanedioic Acid from a Renewable Fatty Acid and Its Application for the Enzymatic Production of Biopolyesters. Polymers, 2019, 11, 1690.	4.5	5
610	A simple method for the synthesis of pyrazolo[1,5-d][1,2,4]triazines via the reaction of tetracarbonyl compounds with thiocarbonohydrazide. Chemistry of Heterocyclic Compounds, 2019, 55, 897-901.	1.2	4
611	Investigation of solvent effects in the hydrodeoxygenation of levulinic acid to Î ³ -valerolactone over Ru catalysts. Journal of Catalysis, 2019, 379, 164-179.	6.2	42
612	Simple and global correlation for the densities of deep eutectic solvents. Journal of Molecular Liquids, 2019, 296, 111830.	4.9	42
613	Water-Tolerant and Atom Economical Amide Bond Formation by Metal-Substituted Polyoxometalate Catalysts. ACS Catalysis, 2019, 9, 10245-10252.	11.2	49
614	Acid-Catalyzed Reactions of Isopropenyl Esters and Renewable Diols: A 100% Carbon Efficient Transesterification/Acetalization Tandem Sequence, from Batch to Continuous Flow. ACS Sustainable Chemistry and Engineering, 2019, 7, 18810-18818.	6.7	16
615	One-pot photocalalytic reductive formylation of nitroarenes via multielectron transfer by carbon nitride in functional eutectic medium. Journal of Catalysis, 2019, 380, 186-194.	6.2	17
616	Modeling of high temperature thermal energy storage in rock beds – Experimental comparison and parametric study. Applied Thermal Engineering, 2019, 163, 114355.	6.0	16
617	Acid atalyzed Synthesis of Quinoline Derivatives from 2â€Methylquinolines and 2â€Aryloxy/Alkoxybenzaldehyde in Aqueous Medium. European Journal of Organic Chemistry, 2019, 2019, 7452-7462.	2.4	9

ARTICLE IF CITATIONS Beneficial Effect of a Secondary Ligand on the Catalytic Difunctionalization of Vinyl Arenes with 619 3.7 16 Boron and CO₂. ChemCatChem, 2019, 11, 5814-5820. Circular economy in action., 2019, , 111-206. Environmentally Friendly Protocol for the Oxidative Iodofunctionalization of Olefins in a Green 622 6.7 16 Solvent. ACS Sustainable Chemistry and Engineering, 2019, 7, 16777-16785. Biocatalytic dynamic kinetic reductive resolution with ketoreductase from <i>Klebsiella pneumoniae </i>: the asymmetric synthesis of functionalized tetrahydropyrans. Organic and 2.8 Biomolecular Chemistry, 2019, 17, 8571-8588. Biocatalysis and Pharmaceuticals: A Smart Tool for Sustainable Development. Catalysts, 2019, 9, 792. 624 3.5 22 En route to metal-mediated and metal-catalysed reactions in water. Chemical Science, 2019, 10, 34-46. 7.4 Green Solvent for the Synthesis of Linear α-Olefins from Fatty Acids. ACS Sustainable Chemistry and 626 6.7 9 Engineering, 2019, 7, 4903-4911. Microwave-Assisted Dehydrogenative Cross Coupling Reactions in \hat{I}^3 -valerolactone with a Reusable 627 3.8 19 Pd/l²-cyclodextrin Crosslinked Catalyst. Molecules, 2019, 24, 288. Catalysts Encapsulated in Biopolymer Hydrogels for Chemoenzymatic Oneâ€Pot Processes in Aqueous 628 3.7 20 Mediá. ChemCatChem, 2019, 11, 1503-1509. Highly Efficient, Combinatorial and Catalystâ€Free Approach for the Synthesis of 629 2â€Benzylidenehydrazonoâ€3â€phenylâ€4â€thiazolidinoneâ€5â€acetates in Ethanol. ChemistrySelect, 2019, 4, 1323-1329.4 Electrochemical benzylic oxidation of Câ€"H bonds. Chemical Communications, 2019, 55, 937-940. 630 4.1 52 Formamide catalyzed activation of carboxylic acids – versatile and cost-efficient amidation and 7.4 46 esterification. Chemical Science, 2019, 10, 7399-7406. Novel Nonâ€toxic and Nonâ€hazardous Solvent Systems for the Chemistry of Indoles: Use of a Sulfoneâ€containing BrÂnsted Acid Ionic Liquid Catalyst in Butyl Acetate. ChemCatChem, 2019, 11, 632 3.7 25 4403-4410. Independent or simultaneous lowering of core and skin temperature has no impact on self-paced intermittent running performanceÂin hot conditions. European Journal of Applied Physiology, 2019, 119, 2.5 1841-1853. The application of the QuEChERS methodology in the determination of antibiotics in food: A review. 634 106 11.4 TrAC - Trends in Analytical Chemistry, 2019, 118, 517-537. SO₂F₂â€Activated Efficient Beckmann Rearrangement of Ketoximes for 2.4 23 Accessing Amides and Lactams. European Journal of Organic Chemistry, 2019, 2019, 4911-4915. Stereospecific assembly of tetrahydroquinolines <i>via</i> tandem ring-opening/oxidative cyclization 636 of donor–acceptor cyclopropanes with <i>N</i>-alkyl anilines. Chemical Communications, 2019, 55, 4.1 9 8083-8086. Hexyltriphenylphosphonium Bromide as an Absolutely Chemoselective Ionic Liquid Catalyst in the Thréeâ€Component Reaction of Aryl Aldehydes, Acetophenones and Malononitrile. ChemistrySelect, 1.5 2019, 4, 6190-6193.

#	Article	IF	CITATIONS
638	Switching the substrate specificity from NADH to NADPH by a single mutation of NADH oxidase from Lactobacillus rhamnosus. International Journal of Biological Macromolecules, 2019, 135, 328-336.	7.5	19
639	Feedstock Reagents in Metalâ€Catalyzed Carbonyl Reductive Coupling: Minimizing Preactivation for Efficiency in Targetâ€Oriented Synthesis. Angewandte Chemie, 2019, 131, 14193-14202.	2.0	24
640	Feedstock Reagents in Metalâ€Catalyzed Carbonyl Reductive Coupling: Minimizing Preactivation for Efficiency in Targetâ€Oriented Synthesis. Angewandte Chemie - International Edition, 2019, 58, 14055-14064.	13.8	102
641	Organo-nanocatalysis: An emergent green methodology for construction of bioactive oxazines and thiazines under ultrasonic irradiation. Journal of Molecular Structure, 2019, 1196, 54-57.	3.6	9
642	Zn-Catalyzed Multicomponent KA ² Coupling: One-Pot Assembly of Propargylamines Bearing Tetrasubstituted Carbon Centers. ACS Omega, 2019, 4, 10279-10292.	3.5	41
643	Continuous manufacturing $\hat{a} \in $ the Green Chemistry promise?. Green Chemistry, 2019, 21, 3481-3498.	9.0	222
644	A new concept for total components conversion of lignocellulosic biomass: a promising direction for clean and sustainable production in its bioâ€refinery. Journal of Chemical Technology and Biotechnology, 2019, 94, 2416-2424.	3.2	15
645	Design and testing of a horizontal rock bed for high temperature thermal energy storage. Applied Energy, 2019, 251, 113345.	10.1	47
646	A new efficient domino approach for the synthesis of coumarin-pyrazolines as antimicrobial agents targeting bacterial <scp>d</scp> -alanine- <scp>d</scp> -alanine ligase. New Journal of Chemistry, 2019, 43, 9002-9011.	2.8	36
647	A green protocol for the synthesis of new 1,4-dihydropyridine derivatives using Fe2O3/ZrO2 as a reusable catalyst. Research on Chemical Intermediates, 2019, 45, 4555-4572.	2.7	3
648	Phosphotungstic anion-paired quinoline salt for heterogeneous photocatalytic hydroxylation of benzene to phenol with air. Molecular Catalysis, 2019, 473, 110397.	2.0	13
650	Synergistic Effect of Cr ³⁺ on Layered Double Hydroxide Supported Cu ⁰ Nanoparticles for the Oxidation of Alcohols and Hydrocarbons. ChemistrySelect, 2019, 4, 5276-5283.	1.5	6
651	Recent Advances in Solventâ€Free Asymmetric Catalysis. ChemCatChem, 2019, 11, 2943-2977.	3.7	31
652	Plant-extract mediated green approach for the synthesis of ZnONPs: Characterization and evaluation of cytotoxic, antimicrobial and antioxidant potentials. Journal of Molecular Structure, 2019, 1189, 315-327.	3.6	89
653	On the cost of academic methodologies. Organic Chemistry Frontiers, 2019, 6, 2095-2108.	4.5	14
654	Applying Green Metrics to Eco-Friendly Synthesis of Sulfur-Substituted Conjugated Dienes Based on Atom-Economic Hydrothiolation. ACS Sustainable Chemistry and Engineering, 2019, 7, 9680-9689.	6.7	19
655	Solvent-Free A ³ and KA ² Coupling Reactions with mol ppm Level Loadings of a Polymer-Supported Copper(II)–Bipyridine Complex for Green Synthesis of Propargylamines. ACS Sustainable Chemistry and Engineering, 2019, 7, 9097-9102.	6.7	27
656	Ag-Based nanocomposites: synthesis and applications in catalysis. Nanoscale, 2019, 11, 7062-7096.	5.6	215

#	Article	IF	CITATIONS
657	Palladium ontaining and Metalâ€Free Supported Dendrons As Catalysts in Multistep Conversion of Oxygenates to Fuels. ChemCatChem, 2019, 11, 1328-1336.	3.7	2
658	Using thermal analysis technology to assess the thermal stability of 1,3-dimethylimidazolium nitrate. Chemical Engineering Research and Design, 2019, 124, 181-186.	5.6	35
659	Iridium-catalysed highly selective reduction–elimination of steroidal 4-en-3-ones to 3,5-dienes in water. Green Chemistry, 2019, 21, 2088-2094.	9.0	33
660	Ca(II)-catalyzed diastereoselective formal [4+2] annulation of a 3-component solvent-free povarov reaction. Tetrahedron Letters, 2019, 60, 1043-1048.	1.4	15
661	Efficient Conversion of Benzyl Alcohol on a Mesoporous Co3O4. Industrial & Engineering Chemistry Research, 2019, 58, 4774-4779.	3.7	15
662	Postâ€modification of phthalocyanines via isocyanide-based multicomponent reactions: Highly dispersible peptidomimetic metallophthalocyanines as potent photosensitizers. Dyes and Pigments, 2019, 166, 49-59.	3.7	9
663	Cascade Process for Direct Transformation of Aldehydes (RCHO) to Nitriles (RCN) Using Inorganic Reagents NH ₂ OH/Na ₂ CO ₃ /SO ₂ F ₂ in DMSO. Journal of Organic Chemistry, 2019, 84, 5803-5812.	3.2	52
664	Supported Iridium Catalyst for the Green Synthesis of 3,3′-Bis(indolyl)methanes Using Methanol As the Bridging Methylene Source. ACS Sustainable Chemistry and Engineering, 2019, 7, 8429-8439.	6.7	29
665	Asymmetric Catalysis Using Modularly Designed Organocatalysts: Synthesis of Fused Tricyclic Pyranoâ€Pyrano[2,3â€ <i>c</i>]pyrrol Derivatives. Advanced Synthesis and Catalysis, 2019, 361, 3234-3238.	4.3	22
666	Biomass-Derived Solvents for Sustainable Transition Metal-Catalyzed C–H Activation. ACS Sustainable Chemistry and Engineering, 2019, 7, 8023-8040.	6.7	90
667	Calciumâ€Based Sustainable Chemical Technologies for Total Carbon Recycling. ChemSusChem, 2019, 12, 1483-1516.	6.8	83
668	Graphene oxide catalyzed ketone α-alkylation with alkenes: enhancement of graphene oxide activity by hydrogen bonding. Chemical Communications, 2019, 55, 5379-5382.	4.1	17
669	<i>p</i> â€TSAâ€Based DESs as "Active Green Solvents†for Microwave Enhanced Cyclization of 2â€Alkynylâ€(hetero)â€arylcarboxylates: an Alternative Access to 6â€Substituted 3,4â€Fused 2â€Pyranones. European Journal of Organic Chemistry, 2019, 2019, 1904-1914.	2.4	24
670	PhI(OAc) ₂ â€Mediated Oneâ€Pot Synthesis and their Antibacterial Activity of Flavone and Coumarin Based Isoxazoles Under Mild Reaction Conditions. ChemistrySelect, 2019, 4, 1872-1878.	1.5	12
671	In-flow photooxygenation of aminothienopyridinones generates iminopyridinedione PTP4A3 phosphatase inhibitors. Organic and Biomolecular Chemistry, 2019, 17, 2448-2466.	2.8	13
672	The influence of the isocyanoesters structure on the course of enzymatic Ugi reactions. Bioorganic Chemistry, 2019, 93, 102817.	4.1	6
673	Transition metal complexes obtained from an ionic liquid-supported Schiff base: synthesis, physicochemical characterization and exploration of antimicrobial activities. Journal of Chemical Sciences, 2019, 131, 1.	1.5	9
674	Kinetic analysis of delignification of cedar wood during organosolv treatment with a two-phase solvent using the unreacted-core model. Chemical Engineering Journal, 2019, 368, 71-78.	12.7	25

#	Article	IF	CITATIONS
675	Characterization of a novel terpolymer containing maleic anhydride-co-stearyl methacrylate-co-benhely acrylate for wax inhibition application. IOP Conference Series: Materials Science and Engineering, 2019, 702, 012027.	0.6	3
676	Green Protocols for the Synthesis of 3,3'-spirooxindoles – 2016- mid 2019. Current Green Chemistry, 2019, 6, 210-225.	1.1	22
677	Process modelling, design and technoeconomic Liquid–Liquid Extraction (LLE) optimisation for comparative evaluation of batch vs. continuous pharmaceutical manufacturing of atropine. Computers and Chemical Engineering, 2019, 124, 28-42.	3.8	8
678	Synthesis and olfactory evaluation of allylic αâ€quaternary ether ketones. Flavour and Fragrance Journal, 2019, 34, 90-103.	2.6	0
679	Lipase-immobilized chitosan-crosslinked magnetic nanoparticle as a biocatalyst for ring opening esterification of itaconic anhydride. Biochemical Engineering Journal, 2019, 143, 141-150.	3.6	46
680	Enantioselective Ir-Catalyzed Bidirectional Reductive Coupling. Organic Letters, 2019, 21, 453-456.	4.6	11
681	Process Design and Optimization for the Continuous Manufacturing of Nevirapine, an Active Pharmaceutical Ingredient for HIV Treatment. Organic Process Research and Development, 2019, 23, 320-333.	2.7	29
682	Magnetic Metal/Metal Oxide Nanoparticles and Nanocomposite Materials for Water Purification. , 2019, , 473-503.		7
683	Assembly of Fully Substituted 2 <i>H</i> â€Indazoles Catalyzed by Cu ₂ O Rhombic Dodecahedra and Evaluation of Anticancer Activity. ChemMedChem, 2019, 14, 262-272.	3.2	27
684	CO ₂ involved synthesis of quinazoline-2,4(1 <i>H</i> ,3 <i>H</i>)-diones in water using melamine as a thermoregulated catalyst. Canadian Journal of Chemistry, 2019, 97, 212-218.	1.1	5
685	Enhanced Activity of Alcohol Dehydrogenase in Porous Silica Nanosheets with Wide Size Distributed Mesopores. Bulletin of the Chemical Society of Japan, 2019, 92, 275-282.	3.2	14
686	Characterization and application of chemical-resistant polyurethane-based enzyme and whole cell compartments. Journal of Biotechnology, 2019, 289, 31-38.	3.8	4
687	Ensemble Design in Nickel Phosphide Catalysts for Alkyne Semiâ€Hydrogenation. ChemCatChem, 2019, 11, 457-464.	3.7	25
688	Green Procedure for One-Pot Synthesis of Azelaic Acid Derivatives Using Metal Catalysis. Recent Innovations in Chemical Engineering, 2019, 11, 185-191.	0.4	2
689	Ruthenium-Catalysed Olefin Metathesis in Environmentally Friendly Solvents: 2-Methyltetrahydrofuran Revisited. European Journal of Organic Chemistry, 2019, 2019, 640-646.	2.4	18
690	Perovskite Oxide Catalysts for Liquid-Phase Organic Reactions. Bulletin of the Chemical Society of Japan, 2019, 92, 133-151.	3.2	46
691	Direct Functionalization of C(sp ²)–H Bond in Nonaromatic Azaheterocycles: Palladium-Catalyzed Cross-Dehydrogenative Coupling (CDC) of 2 <i>H</i> -Imidazole 1-Oxides with Pyrroles and Thiophenes. ACS Omega, 2019, 4, 825-834.	3.5	19
692	Sustainable bio-hydrothermal sequencing treatment for asbestos-cement wastes. Journal of Hazardous Materials, 2019, 364, 256-263.	12.4	12

#	Article	IF	CITATIONS
693	Engineered mesoporous ionicâ€modified γâ€Fe ₂ O ₃ @hydroxyapatite decorated with palladium nanoparticles and its catalytic properties in water. Applied Organometallic Chemistry, 2019, 33, e4622.	3.5	9
694	Opportunities and challenges for combining electro- and organometallic catalysis in C(sp ²)-H phosphonation. Pure and Applied Chemistry, 2019, 91, 17-31.	1.9	13
695	Application of In Situ Product Crystallization and Related Techniques in Biocatalytic Processes. Chemistry - A European Journal, 2019, 25, 4871-4884.	3.3	45
696	Biocatalytic Continuous Manufacturing of Diabetes Drug: Plantwide Process Modeling, Optimization, and Environmental and Economic Analysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 1038-1051.	6.7	20
697	Three step synthesis of benzylacetone and 4-(4-methoxyphenyl)butan-2-one in flow using micropacked bed reactors. Chemical Engineering Journal, 2019, 377, 119976.	12.7	2
698	Iron atalyzed C(sp 2)â~C(sp 3) Cross oupling of Chlorobenzamides with Alkyl Grignard Reagents: Development of Catalyst System, Synthetic Scope, and Application. Advanced Synthesis and Catalysis, 2019, 361, 85-95.	4.3	17
699	Core-shell nanostructured heteropoly acid-functionalized metal-organic frameworks: Bifunctional heterogeneous catalyst for efficient biodiesel production. Applied Catalysis B: Environmental, 2019, 242, 51-59.	20.2	115
700	Enantioselective synthesis of enantiopure chiral alcohols using carbonyl reductases screened from <i>Yarrowia lipolytica</i> . Journal of Applied Microbiology, 2019, 126, 127-137.	3.1	9
701	Functionalization of π-activated alcohols by trapping carbocations in pure water under smooth conditions. Arabian Journal of Chemistry, 2020, 13, 1866-1873.	4.9	6
702	Influence of cerium oxide nanoparticles on thermal conductivity of antifreeze. Journal of Thermal Analysis and Calorimetry, 2020, 139, 225-236.	3.6	19
703	A Green, Novel and Efficient Protocol for the Preparation of Diverse 4H-Pyrans: The First Report on the Catalytic Activity of Water Extract of Elaeagnus angustifolia Leaves in Organic Reactions. Polycyclic Aromatic Compounds, 2020, 40, 1524-1533.	2.6	4
704	Assessment of headspace solid-phase microextraction (HS-SPME) for control of asymmetric bioreduction of ketones by <i>Alternaria alternata</i> . Biocatalysis and Biotransformation, 2020, 38, 75-80.	2.0	1
705	Polymer Membranes for Sustainable Gas Separation. , 2020, , 265-296.		4
706	Lewis Base Catalysis Promoted Nucleophilic Substitutions – Recent Advances and Future Directions. European Journal of Organic Chemistry, 2020, 2020, 10-27.	2.4	30
707	Ternary Catalysis: A Stepping Stone toward Multicatalysis. ACS Catalysis, 2020, 10, 3462-3489.	11.2	70
710	Base-controlled product switch in the ruthenium-catalyzed protodecarbonylation of phthalimides: a mechanistic study. Catalysis Science and Technology, 2020, 10, 180-186.	4.1	9
711	Fibroinâ€functionalized magnetic carbon nanotube as a green support for anchoring silver nanoparticles as a biocatalyst for A ³ coupling reaction. Applied Organometallic Chemistry, 2020, 34, e5395.	3.5	15
712	Amidoxime modified PAN supported palladium complex: A greener and efficient heterogeneous catalyst for heck reaction. Inorganica Chimica Acta, 2020, 502, 119305.	2.4	14

#	Article	IF	CITATIONS
713	Building the future of green chemistry. Studies in Surface Science and Catalysis, 2020, 179, 41-52.	1.5	1
714	Multicomponent Reactions-Based Modified/Functionalized Materials in the Biomedical Platforms. ACS Applied Bio Materials, 2020, 3, 156-174.	4.6	49
715	TiO2 nanoparticles immobilized organo-reduced graphene oxide hybrid nanoreactor for catalytic applications. Applied Surface Science, 2020, 509, 144902.	6.1	42
716	Waste-derived Materials: Opportunities in Photocatalysis. Topics in Current Chemistry, 2020, 378, 3.	5.8	18
717	Parameters necessary to define an immobilized enzyme preparation. Process Biochemistry, 2020, 90, 66-80.	3.7	306
718	Synthesis of Carbon Nanomaterials from Biomass Utilizing Ionic Liquids for Potential Application in Solar Energy Conversion and Storage. Materials, 2020, 13, 3945.	2.9	16
719	Towards Sustainable Rural Development in South Africa through Passive Solar Housing Design. , 2020, , .		0
720	Synthesis of bio-based polyurethane foam modified with rosin using an environmentally-friendly process. Journal of Cleaner Production, 2020, 276, 124203.	9.3	26
721	Introducing toxâ€Profiles of Chemical Reactions. Angewandte Chemie - International Edition, 2020, 59, 22296-22305.	13.8	14
722	Identification, characterization, and immobilization of a novel YbfF esterase from Halomonas elongata. International Journal of Biological Macromolecules, 2020, 165, 1139-1148.	7.5	8
723	First biocatalytic Groebke-Blackburn-Bienaymé reaction to synthesize imidazo[1,2-a]pyridine derivatives using lipase enzyme. Tetrahedron, 2020, 76, 131643.	1.9	25
724	Introducing toxâ€Profiles of Chemical Reactions. Angewandte Chemie, 2020, 132, 22480-22489.	2.0	0
725	Investigation of Synergistic Effects between Co and Fe in Co3-xFexO4 Spinel Catalysts for the Liquid-Phase Oxidation of Aromatic Alcohols and Styrene. Molecular Catalysis, 2020, 498, 111251.	2.0	13
726	Co-evolution of activity and thermostability of an aldo-keto reductase KmAKR for asymmetric synthesis of statin precursor dichiral diols. Bioorganic Chemistry, 2020, 103, 104228.	4.1	16
727	Multicomponent Synthesis of Imidazo[1,2- <i>a</i>]pyridines: Aerobic Oxidative Formation of C–N and C–S Bonds by Flavin–Iodine-Coupled Organocatalysis. Organic Letters, 2020, 22, 8002-8006.	4.6	34
728	Manganeseâ€Catalyzed Multicomponent Synthesis of Tetrasubstituted Propargylamines: System Development and Theoretical Study. Advanced Synthesis and Catalysis, 2020, 362, 3872-3885.	4.3	18
729	Carbohydrate Based Ionic Liquids (CHILs): Synthesis and Applications. European Journal of Organic Chemistry, 2020, 2020, 6418-6428.	2.4	21
730	Catalytic C(sp ³)–F bond formation: recent achievements and pertaining challenges. Green Chemistry, 2020, 22, 5195-5209.	9.0	39

#	Article	IF	CITATIONS
731	Efficient and straightforward access to diverse and densely functionalized chromenes by 3-amino-1,2,4-triazole supported on hydroxyapatite-encapsulated- γ-Fe2O3 (γ-Fe2O3@HAp@CPTMS@AT) as a new magnetic basic nanocatalyst. Reaction Kinetics, Mechanisms and Catalysis, 2020, 130, 955-977.	1.7	9
732	Ultrasound-assisted multicomponent synthesis of 4H-pyrans in water and DNA binding studies. Scientific Reports, 2020, 10, 11594.	3.3	28
733	A Green HPLC Method for Determination of Nine Sulfonamides in Milk and Beef, and Its Greenness Assessment with Analytical Eco-Scale and Greenness Profile. Journal of AOAC INTERNATIONAL, 2020, 103, 1181-1189.	1.5	53
734	Microwaveâ€Assisted TBHPâ€Mediated Synthesis of 2â€Aminoâ€1,3,4â€oxadiazoles in Water. ChemistrySelect, 2020, 5, 13248-13258.	1.5	7
735	Synergistic Dual Transition Metal Catalysis. Chemical Reviews, 2020, 120, 13382-13433.	47.7	212
736	An Efficient Heterogeneous Acid Catalyst DICAT-1 for One-Pot Conversion of Sucrose into 5-(Hydroxymethyl)furfural. Energy & Fuels, 2020, 34, 9643-9653.	5.1	7
737	Nano nickel [1,2,4]â€ŧriazoleâ€3â€ŧhiones complex: Design, sonochemical synthesis, and antimicrobial evaluation. Journal of Heterocyclic Chemistry, 2020, 57, 3428-3441.	2.6	7
738	Scalable continuous flow hydrogenations using Pd/Al2O3-coated rectangular cross-section 3D-printed static mixers. Catalysis Today, 2022, 383, 55-63.	4.4	24
739	Catalytic Cracking of Heavy Crude Oil over Iron-Based Catalyst Obtained from Galvanic Industry Wastes. Catalysts, 2020, 10, 736.	3.5	5
740	Two-stage one-pot synthesis of <i>N</i> -(dibutylaminomethyl)methacrylamide by Mannich reaction under mild conditions with high yield. Reaction Chemistry and Engineering, 2020, 5, 1791-1797.	3.7	4
741	A Selective Sulfide Oxidation Catalyzed by Heterogeneous Artificial Metalloenzymes Iron@NikA. Chemistry - A European Journal, 2020, 26, 16633-16638.	3.3	4
742	Visible-Light-Mediated Aminoquinolate Diarylboron-Catalyzed Metal-Free Hydroxylation of Organoboronic Acids under Air and Room Temperature. ACS Sustainable Chemistry and Engineering, 2020, 8, 13894-13899.	6.7	21
743	Taming Troublesome Suzuki–Miyaura Reactions in Water Solution of Surfactants by the Use of Lecithin: A Step beyond the Micellar Model. Organic Process Research and Development, 2020, 24, 2604-2610.	2.7	17
744	Chemistry, Sustainability and Naturality of Perfumery Biotech Ingredients. ChemSusChem, 2020, 13, 5600-5610.	6.8	15
745	Visible light promoted cross-dehydrogenative coupling: a decade update. Green Chemistry, 2020, 22, 6632-6681.	9.0	132
746	Late stage C–H functionalization <i>via</i> chalcogen and pnictogen salts. Chemical Science, 2020, 11, 10047-10060.	7.4	45
747	Variants of the Acyltransferase from <i>Mycobacterium smegmatis</i> Enable Enantioselective Acyl Transfer in Water. ACS Catalysis, 2020, 10, 10500-10507.	11.2	23
748	Mesoporous silica-encapsulated gold core–shell nanoparticles for active solvent-free benzyl alcohol oxidation. Reaction Chemistry and Engineering, 2020, 5, 1939-1949.	3.7	5

ARTICLE IF CITATIONS Copper-catalyzed tri- or tetrafunctionalization of alkenylboronic acids to prepare 749 9.0 16 tetrahydrocarbazol-1-ones and indolo[2,3-<i>a</i>)carbazoles. Green Chemistry, 2020, 22, 5815-5821. Biocatalytic microgels (μ-Gel<i>zymes</i>): synthesis, concepts, and emerging applications. Green 23 Chemistry, 2020, 22, 8183-8209. [Bmim]Br Accelerated One-Pot Three-Component Cascade Protocol for the Construction of 751 3.8 5 Spirooxindoleâ€"Pyrrolidine Heterocyclic Hybrids. Molecules, 2020, 25, 4779. Metalâ€Free Multicomponent Construction of Tetrahydroisoquinolineâ€Indole Derivatives via In Situ Generated <i>ortho</i>â€Quinonoid Intermediate. ChemistrySelect, 2020, 5, 12514-12520. Iron-Catalyzed Oxidation of 1-Phenylethanol and Glycerol With Hydrogen Peroxide in Water Medium: 753 3.6 1 Effect of the Nitrogen Ligand on Catalytic Activity and Selectivity. Frontiers in Chemistry, 2020, 8, 810. Transition-metal-free [3+3] annulation reaction of sulfoxonium ylides with cyclopropenones for the synthesis of 2-pyrones. Green Synthesis and Catalysis, 2020, 1, 180-182. 6.8 Development of a genetic toolset for the highly engineerable and metabolically versatile 755 14.5 30 Acinetobacter baylyi ADP1. Nucleic Acids Research, 2020, 48, 5169-5182. Catalytic Oxidation of Alcohols and Amines to Valueâ€Added Chemicals using Water as the Solvent. 3.3 24 Chemistry - an Asian Journal, 2020, 15, 1916-1936. Theoretical and experimental studies on the thermal decomposition of 1-butyl-3-methylimidazolium 757 3.3 8 dibutyl phosphate. Journal of Loss Prevention in the Process Industries, 2020, 65, 104162. SO₂F₂-Mediated one-pot cascade process for transformation of aldehydes 3.6 (RCHO) to cyanamides (RNHCN). RSC Advances, 2020, 10, 17288-17292. Rhodium porphyrin molecule-based catalysts for the hydrogenation of biomass derived levulinic acid 759 19 2.8 to biofuel additive Î³-valerolactone. New Journal of Chémistry, 2020, 44, 11064-11075. Improved and Practical Synthesis of the Integrastatin Core. Bulletin of the Chemical Society of Japan, 3.2 2020, 93, 1036-1042. Transition-Metal-Free Stereospecific Oxidative Annulative Coupling of Indolines with Aziridines. 761 3.2 10 Journal of Organic Chemistry, 2020, 85, 8261-8270. Electrochemical and surface studies on chemically modified glucose derivatives as environmentally benign corrosion inhibitors. Sustainable Chemistry and Pharmacy, 2020, 16, 100260. 3.3 \hat{I} -amination reaction of different ketones mediated by carbohydrate Cu2+ complexes. Molecular 763 2.0 2 Catalysis, 2020, 493, 111058. Microwave-promoted one-pot three-component synthesis of 2,3-dihydroquinazolin-4(1H)-ones catalyzed by heteropolyanion-based ionic liquids under solvent-free conditions. Tetrahedron, 2020, 764 1.9 76, 131312. Novel and efficient polymer supported copper catalyst for heck reaction. Journal of Organometallic 765 1.8 15 Chemistry, 2020, 921, 121354. Adipic acid formation from cyclohexanediol using platinum and vanadium catalysts: elucidating the 4.1 role of homogeneous vanadium species. Catalysis Science and Technology, 2020, 10, 4210-4218.

#	Article	IF	CITATIONS
767	Efficient Thiophene Synthesis Mediated by 1,3â€Bis(carboxymethyl)imidazolium Chloride: Câ€C and Câ€S Bond Formation. European Journal of Organic Chemistry, 2020, 2020, 4319-4325.	2.4	6
768	6Ï€-Electrocyclization in water: microwave-assisted synthesis of polyheterocyclic-fused quinoline-2-thiones. Green Chemistry, 2020, 22, 4445-4449.	9.0	58
769	Biodiesel and flavor compound production using a novel promiscuous cold-adapted SGNH-type lipase (HaSGNH1) from the psychrophilic bacterium Halocynthiibacter arcticus. Biotechnology for Biofuels, 2020, 13, 55.	6.2	21
770	Preparation and Characterization of Silver(I) Ethylcellulose Thin Films as Potential Food Packaging Materials. ChemPlusChem, 2020, 85, 426-440.	2.8	9
771	Photoredox-Catalyzed Four-Component Reaction for the Synthesis of Complex Secondary Amines. Organic Letters, 2020, 22, 3318-3322.	4.6	35
772	Anionâ€Dependent Imidazoliumâ€Based Catalysts for Allylation of Aniline with Tunable Regioselectivity. Advanced Synthesis and Catalysis, 2020, 362, 2494-2502.	4.3	15
773	Magnetic carbon nanotube as a highly stable and retrievable support for the heterogenization of sulfonic acid and its application in the synthesis of 2â€(1 H â€ŧetrazoleâ€5â€yl) acrylonitrile derivatives. Journal of Heterocyclic Chemistry, 2020, 57, 2455-2465.	2.6	10
774	Applications of xylochemistry from laboratory to industrial scale. Green Chemistry, 2020, 22, 4411-4425.	9.0	5
775	A Practical Approach to Ureas and Thiocarbamates: SO 2 F 2 â€Promoted Lossen Rearrangement of Hydroxamic Acid. ChemistrySelect, 2020, 5, 7817-7821.	1.5	7
776	Choline chlorideâ€urea deep eutectic solvent as an efficient media for the synthesis of propargylamines via organocuprate intermediate. Applied Organometallic Chemistry, 2020, 34, e5895.	3.5	16
777	Polymethylaminosiloxane Grafted Transition Metal Catalyst DIC A Tâ€V for Chemoselective Aerobic Oxidation of 5â€HMF into 2,5â€Diformyl Furan. ChemistrySelect, 2020, 5, 7417-7426.	1.5	2
778	Access to 1,3â€Dinitriles by Enantioselective Autoâ€ŧandem Catalysis: Merging Allylic Cyanation with Asymmetric Hydrocyanation. Angewandte Chemie - International Edition, 2020, 59, 6785-6789.	13.8	42
779	Molecular iodine/DMSO mediated oxidation of internal alkynes and primary alcohols using a one-pot, two step approach towards 2,4,5-trisubstituted imidazoles: Substrate scope and mechanistic studies. Tetrahedron, 2020, 76, 131028.	1.9	24
780	Renewable Aliphatic Polyesters from Fatty Dienes by Acyclic Diene Metathesis Polycondensation. JAOCS, Journal of the American Oil Chemists' Society, 2020, 97, 517-530.	1.9	14
781	Tandem transformations and multicomponent reactions utilizing alcohols following dehydrogenation strategy. Organic and Biomolecular Chemistry, 2020, 18, 2193-2214.	2.8	53
782	Water Compatible Hypophosphites- <i>d</i> ₂ Reagents: Deuteration Reaction via Deutero-deiodination in Aqueous Solution. Organic Letters, 2020, 22, 1736-1741.	4.6	14
783	Access to 1,3â€Dinitriles by Enantioselective Autoâ€ŧandem Catalysis: Merging Allylic Cyanation with Asymmetric Hydrocyanation. Angewandte Chemie, 2020, 132, 6851-6855.	2.0	9
784	Drying of the Natural Fibers as A Solvent-Free Way to Improve the Cellulose-Filled Polymer Composite Performance. Polymers, 2020, 12, 484.	4.5	18

#	Article	IF	CITATIONS
785	Carbocatalytic Acetylene Cyclotrimerization: A Key Role of Unpaired Electron Delocalization. Journal of the American Chemical Society, 2020, 142, 3784-3796.	13.7	21
786	Expedient iron-catalyzed stereospecific synthesis of triazines <i>via</i> cycloaddition of aziridines with diaziridines. Chemical Communications, 2020, 56, 3381-3384.	4.1	21
787	Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnology Advances, 2020, 40, 107520.	11.7	97
788	Synthesis of thiazolidine derivatives via multicomponent reaction in the presence of Fe3O4@SiO2-SO3H nanoparticles as a heterogeneous catalyst. Arkivoc, 2020, 2019, 128-140.	0.5	3
789	Calcium Carbide Looping System for Acetaldehyde Manufacturing from Virtually any Carbon Source. ChemSusChem, 2020, 13, 3679-3685.	6.8	24
790	Polar group substituted imidazolium zwitterions as eco-friendly corrosion inhibitors for mild steel in acid solution. Corrosion Science, 2020, 172, 108665.	6.6	126
791	Application of NEMI, Analytical Eco-Scale and GAPI tools for greenness assessment of three developed chromatographic methods for quantification of sulfadiazine and trimethoprim in bovine meat and chicken muscles: Comparison to greenness profile of reported HPLC methods. Microchemical Journal, 2020, 157, 104873	4.5	53
792	Effective <i>N</i> -methylation of nitroarenes with methanol catalyzed by a functionalized NHC-based iridium catalyst: a green approach to <i>N</i> -methyl amines. Catalysis Science and Technology, 2020, 10, 3458-3467.	4.1	26
793	Proteinâ€inorganic calciumâ€phosphate supraparticles as a robust platform for enzyme coâ€immobilization. Biotechnology and Bioengineering, 2020, 117, 1979-1989.	3.3	13
794	Combined LCA and Green Metrics Approach for the Sustainability Assessment of an Organic Dye Synthesis on Lab Scale. Frontiers in Chemistry, 2020, 8, 214.	3.6	17
795	Microwave-Assisted Protocol for Green Functionalization of Thiophenes With a Pd/β-Cyclodextrin Cross-Linked Nanocatalyst. Frontiers in Chemistry, 2020, 8, 253.	3.6	12
796	Waterâ€Promoted Synthesis of Azepino[3,4,5â€ <i>cd</i>]indole Analogues <i>via</i> Pictetâ€Spengler Reaction. ChemistrySelect, 2020, 5, 4619-4622.	1.5	8
797	Synthesis of isothiosemicarbazones of potential antitumoral activity through a multicomponent reaction involving allylic bromides, carbonyl compounds and thiosemicarbazide. Tetrahedron, 2020, 76, 131231.	1.9	3
798	Environmentally benign heterocyclic corrosion inhibitors. , 2020, , 225-271.		2
799	A Mechanistic Rationale Approach Revealed the Unexpected Chemoselectivity of an Artificial Ru-Dependent Oxidase: A Dual Experimental/Theoretical Approach. ACS Catalysis, 2020, 10, 5631-5645.	11.2	7
800	Heteroareneâ€ŧethered Functionalized Alkyne Metamorphosis. Chemistry - A European Journal, 2021, 27, 1165-1218	3.3	18
801	Plant-Based Synthesis of Silver Nanoparticles Using Aqueous Leaf Extract of Salvia officinalis: Characterization and its Antiplasmodial Activity. Journal of Cluster Science, 2021, 32, 101-109.	3.3	63
802	Molecular structural aspects of organic corrosion inhibitors: Experimental and computational insights. Journal of Molecular Structure, 2021, 1227, 129374.	3.6	81

#	Article	IF	CITATIONS
803	Creating Stereocenters within Acyclic Systems by C–C Bond Cleavage of Cyclopropanes. Chemical Reviews, 2021, 121, 140-161.	47.7	131
804	Transition Metal-Substituted Potassium Silicotungstate Salts as Catalysts for Oxidation of Terpene Alcohols with Hydrogen Peroxide. Catalysis Letters, 2021, 151, 2094-2106.	2.6	18
805	Recent trends in synthesizing green nanoparticles and their antimicrobial properties. , 2021, , 325-343.		0
806	Assessment of the background oriented schlieren application in testing the temperature limit of an axisymmetric ventilation jet. Journal of Building Engineering, 2021, 35, 101964.	3.4	1
807	(E)-2-styryl-1H-benzo[d]imidazole as novel green corrosion inhibitor for carbon steel: Experimental and computational approach. Journal of Molecular Liquids, 2021, 324, 115010.	4.9	31
808	Immobilized β-cyclodextrin and palladium-pyridylaldehyde complex on silica nanoparticles as a highly active catalyst for Suzuki, reduction of nitroarenes and oxidative amination of aldehydes reactions in water. Materials Today Communications, 2021, 26, 101909.	1.9	9
809	Homogeneous Metal Catalysts with Inorganic Ligands: Probing Ligand Effects in Lewis Acid Catalyzed Direct Amide Bond Formation. ACS Catalysis, 2021, 11, 271-277.	11.2	19
810	C(sp ³)–H Monoarylation of Methanol Enabled by a Bidentate Auxiliary. Organic Letters, 2021, 23, 118-123.	4.6	4
811	Copper-catalysed synthesis of α-alkylidene cyclic carbonates from propargylic alcohols and CO ₂ . Green Chemistry, 2021, 23, 889-897.	9.0	28
812	3D-printed cartridge system for in-flow photo-oxygenation of 7-aminothienopyridinones. Tetrahedron, 2021, 79, 131875.	1.9	6
813	Green Solvent Selection for Suzuki–Miyaura Coupling of Amides. ACS Sustainable Chemistry and Engineering, 2021, 9, 552-559.	6.7	31
814	An Integrated Cofactor/Coâ€Product Recycling Cascade for the Biosynthesis of Nylon Monomers from Cycloalkylamines. Angewandte Chemie, 2021, 133, 3523-3528.	2.0	6
815	In-situ real-time monitoring of hydroxyethyl modification in obtaining uniform lignin derivatives. European Polymer Journal, 2021, 142, 110082.	5.4	10
816	Core–shell nano/microstructures for heterogeneous tandem catalysis. Materials Chemistry Frontiers, 2021, 5, 1126-1139.	5.9	50
817	An Integrated Cofactor/Coâ€Product Recycling Cascade for the Biosynthesis of Nylon Monomers from Cycloalkylamines. Angewandte Chemie - International Edition, 2021, 60, 3481-3486.	13.8	19
818	C(sp ²)–H functionalization in non-aromatic azomethine-based heterocycles. Organic and Biomolecular Chemistry, 2021, 19, 297-312.	2.8	19
819	Marine Bacterial Esterases: Emerging Biocatalysts for Industrial Applications. Applied Biochemistry and Biotechnology, 2021, 193, 1187-1214.	2.9	32
820	Microwave-assisted oxidation and reduction reactions. , 2021, , 199-244.		0

#	Article	IF	CITATIONS
821	Progress, challenges and future directions of heterocycles as building blocks in iterative methodologies towards sequence-defined oligomers and polymers. Polymer Chemistry, 2021, 12, 4439-4450.	3.9	9
822	Controlling product selectivity with nanoparticle composition in tandem chemo-biocatalytic styrene oxidation. Green Chemistry, 2021, 23, 4170-4180.	9.0	3
823	Multigram Mechanochemical synthesis of a Salophen Complex: A Comparative Analysis. ACS Sustainable Chemistry and Engineering, 2021, 9, 1152-1160.	6.7	42
824	Green Chemistry Approach for Synthesis of Materials. Indian Institute of Metals Series, 2021, , 557-588.	0.3	0
825	Metal-free nanostructured catalysts: sustainable driving forces for organic transformations. Green Chemistry, 2021, 23, 6223-6272.	9.0	32
826	Recent advances in (chemo)enzymatic cascades for upgrading bio-based resources. Chemical Communications, 2021, 57, 10661-10674.	4.1	28
827	Design of bio-based organic phase change materials containing a "safety valve― Green Chemistry, 2021, 23, 8643-8656.	9.0	6
828	Application of metal–organic frameworks as an alternative to metal oxide-based photocatalysts for the production of industrially important organic chemicals. Green Chemistry, 2021, 23, 6172-6204.	9.0	46
829	Catalytic valorization of lignocellulosics: from bulk biofuels to valueâ€added chemicals. Biofuels, Bioproducts and Biorefining, 2021, 15, 592-608.	3.7	7
830	Amphiphilic polymeric nanoreactors containing Rh(<scp>i</scp>)–NHC complexes for the aqueous biphasic hydrogenation of alkenes. Catalysis Science and Technology, 2021, 11, 6811-6824.	4.1	8
831	Fabrication of polypyrrole/Cu(<scp>ii</scp>) nanocomposite through liquid/liquid interfacial polymerization: a novel catalyst for synthesis of NH-1,2,3-triazoles in PEG-400. Materials Advances, 2021, 2, 6996-7006.	5.4	10
832	The design and synthesis of heterogeneous catalysts for environmental applications. Dalton Transactions, 2021, 50, 4765-4771.	3.3	12
833	Influence of substrate on the activity of composite film of TiO2 and chitosan for photodecolorization of a reactive dye solution. Reaction Kinetics, Mechanisms and Catalysis, 2021, 132, 547-562.	1.7	2
834	Iridium-catalyzed highly chemoselective and efficient reduction of nitroalkenes to nitroalkanes in water. Green Chemistry, 2021, 23, 6050-6058.	9.0	13
835	Amphiphilic confined Pt-based nanocatalysts produced by atomic layer deposition with enhanced catalytic performance for biphasic reactions. Green Chemistry, 2021, 23, 8116-8123.	9.0	11
836	Are lignin-derived monomers and polymers truly sustainable? An in-depth green metrics calculations approach. Green Chemistry, 2021, 23, 1495-1535.	9.0	66
837	Intensified recovery of switchable hydrophilicity solvents in flow. Chemical Communications, 2021, 57, 11310-11313.	4.1	4
838	Green and Sustainable Chemistry as Regulatory Levers. , 2021, , 1-15.		0

#	ARTICLE	IF	CITATIONS
839	Microwave-assisted catalyst-free organic synthesis. , 2021, , 539-622.		4
840	Intensified continuous extraction of switchable hydrophilicity solvents triggered by carbon dioxide. Green Chemistry, 2021, 23, 2900-2906.	9.0	13
841	Nanostructured inorganic–organic silica as green material for sustainable development of catalysts. , 2021, , 151-167.		1
842	Facile synthesis of ZnO nanobullets by solution plasma without chemical additives. RSC Advances, 2021, 11, 26785-26790.	3.6	8
843	Strategy for polymorphic control by enzymatic reaction and antisolvent crystallization: effect of aminoacylase on metastable Î ² -glycine formation. Reaction Chemistry and Engineering, 2021, 6, 2292-2305.	3.7	2
844	Green and Sustainable Chemistry as Regulatory Levers. , 2021, , 539-553.		0
845	Naturally derived sugar-based ionic liquids: an emerging tool for sustainable organic synthesis and chiral recognition. New Journal of Chemistry, 2021, 45, 20075-20090.	2.8	10
846	Protic Ionic Liquid as Reagent, Catalyst, and Solvent: 1â€Methylimidazolium Thiocyanate. Angewandte Chemie - International Edition, 2021, 60, 7927-7934.	13.8	43
847	Production of Industrially Useful and Renewable p―Cymene by Catalytic Dehydration and Isomerization of Perillyl Alcohol. JAOCS, Journal of the American Oil Chemists' Society, 2021, 98, 305-316.	1.9	3
848	Protic Ionic Liquid as Reagent, Catalyst, and Solvent: 1â€Methylimidazolium Thiocyanate. Angewandte Chemie, 2021, 133, 8006-8013.	2.0	6
849	In situ supported Pd NPs on biodegradable chitosan/agarose modified magnetic nanoparticles as an effective catalyst for the ultrasound assisted oxidation of alcohols and activities against human breast cancer. International Journal of Biological Macromolecules, 2021, 172, 55-65.	7.5	38
850	Transfer Hydrogenation of Aldehydes and Ketones in Air with Methanol and Ethanol by an Air-Stable Ruthenium–Triazole Complex. ACS Sustainable Chemistry and Engineering, 2021, 9, 4903-4914.	6.7	39
851	Natural Products, the Fourth Industrial Revolution, and the Quintuple Helix. Natural Product Communications, 2021, 16, 1934578X2110030.	0.5	1
852	Zirconium Catalyzed Hydroaminoalkylation for the Synthesis of αâ€Arylated Amines and Nâ€Heterocycles. Chemistry - A European Journal, 2021, 27, 6334-6339.	3.3	14
853	Organocatalytic transformations in deep eutectic solvents: Green methodologies made greener. Tetrahedron, 2021, 84, 131967.	1.9	18
854	Influence of the carboxyl group on the physicochemical and hydration properties of the imidazolium-based ionic liquid. Journal of Molecular Liquids, 2021, 328, 115474.	4.9	0
855	Amino-modified Merrifield resins as recyclable catalysts for the safe and sustainable preparation of functionalized α-diazo carbonyl compounds. Tetrahedron, 2021, 86, 132081.	1.9	5
856	Efficient synthesis of bio-based activated carbon (AC) for catalytic systems: A green and sustainable approach. Journal of Industrial and Engineering Chemistry, 2021, 96, 59-75.	5.8	37

#	Article	IF	CITATIONS
857	Mechanochemical Synthesis and Antimicrobial Studies of 4-Hydroxy-3-thiomethylcoumarins Using Imidazolium Zwitterionic Molten Salt as an Organocatalyst. ACS Sustainable Chemistry and Engineering, 2021, 9, 5557-5569.	6.7	29
858	Sustainable Synthesis of Amides from Ethyl 3â€(4â€Hydroxyphenyl) Propionate. ChemistrySelect, 2021, 6, 3271-3276.	1.5	0
859	Secondary Alcohol Dehydrogenases from <i>Thermoanaerobacter pseudoethanolicus</i> and <i>Thermoanaerobacter brockii</i> as Robust Catalysts. ChemBioChem, 2021, 22, 1884-1893.	2.6	13
860	Copperâ€Catalyzed Threeâ€Component Cascade Reaction of Benzaldehyde with Benzylamine and Hydroxylamine or Aniline: Synthesis of 1,2,4â€Oxadiazoles and Quinazolines. Advanced Synthesis and Catalysis, 2021, 363, 2825-2833.	4.3	9
861	Sodium alginate: Biopolymeric catalyst for the synthesis of 2-amino-4-arylthiazole derivatives in aqueous medium. Journal of Molecular Structure, 2021, 1231, 129900.	3.6	7
862	New Greener and Sustainable Methodology for Direct Sequestering and Analysis of Uranium Using a Maline Supramolecular Scaffold and Mechanistic Understanding through Speciation and Interaction Studies. ACS Sustainable Chemistry and Engineering, 2021, 9, 7846-7862.	6.7	9
863	Oxidative Cleavage of Indoles Mediated by Urea Hydrogen Peroxide or H ₂ O ₂ in Polar Solvents. Advanced Synthesis and Catalysis, 2021, 363, 3245-3249.	4.3	13
864	Preparation and Utilization of Contiguous Bisaziridines as Chiral Building Blocks. Advanced Synthesis and Catalysis, 2021, 363, 3250-3257.	4.3	1
866	Safer Solvent Blends for Food, Dye, and Environmental Analyses Using Reversed-Phase High Performance Liquid Chromatography. Chromatographia, 2021, 84, 769.	1.3	6
867	Chemical and physical Chitosan modification for designing enzymatic industrial biocatalysts: How to choose the best strategy?. International Journal of Biological Macromolecules, 2021, 181, 1124-1170.	7.5	93
868	Porous Membrane Reactors for Liquid-Phase Heterogeneous Catalysis. Industrial & Engineering Chemistry Research, 2021, 60, 8969-8990.	3.7	13
869	Structural studies and applications of water soluble (phenoxy)imine palladium(II) complexes as catalysts in biphasic methoxycarbonylation of 1-hexene. Journal of Organometallic Chemistry, 2021, 942, 121812.	1.8	6
870	Recent Advances on Dielsâ€Alderâ€Ðriven Preparation of Bioâ€Based Aromatics. ChemSusChem, 2021, 14, 3047-3053.	6.8	32
871	On the Use of Laser Fragmentation for the Synthesis of Ligand-Free Ultra-Small Iron Nanoparticles in Various Liquid Environments. Nanomaterials, 2021, 11, 1538.	4.1	4
872	Site-directed spin labeling-electron paramagnetic resonance spectroscopy in biocatalysis: Enzyme orientation and dynamics in nanoscale confinement. Chem Catalysis, 2021, 1, 207-231.	6.1	17
873	A dynamic reaction density functional theory for interfacial reaction-diffusion coupling at nanoscale. Chemical Engineering Science, 2021, 236, 116513.	3.8	17
874	Nickel/β D atalyzed Suzuki–Miyaura cross oupling of aryl boronic acids with aryl halides in water. Applied Organometallic Chemistry, 2021, 35, e6378.	3.5	5
875	Quantitative Sustainability Assessment of Flow Chemistry–From Simple Metrics to Holistic Assessment. ACS Sustainable Chemistry and Engineering, 2021, 9, 9508-9540.	6.7	38

#	Article	IF	CITATIONS
876	Green Aspects in Molecularly Imprinted Polymers by Biomass Waste Utilization. Polymers, 2021, 13, 2430.	4.5	24
877	Visible Light Promoted Chanâ€Lam Reaction and Cycloaddition to Prepare Chromeno[4,3â€c]isoxazolidines in Oneâ€Pot Reaction. Advanced Synthesis and Catalysis, 2021, 363, 4575-4581.	4.3	11
878	Deep eutectic solvent based method for analysis of Niclosamide in pharmaceutical and wastewater samples – A green analytical chemistry approach. Journal of Molecular Liquids, 2021, 335, 116142.	4.9	36
879	Direct Amidation of Esters by Ball Milling**. Angewandte Chemie - International Edition, 2021, 60, 21868-21874.	13.8	46
880	lodine-catalyzed amination of benzothiazoles with KSeCN in water to access primary 2-aminobenzothiazoles. Chinese Chemical Letters, 2022, 33, 1497-1500.	9.0	11
881	Thermo-Responsive Shape-Memory Polyurethane Foams from Renewable Lignin Resources with Tunable Structures–Properties and Enhanced Temperature Resistance. Industrial & Engineering Chemistry Research, 2021, 60, 11882-11892.	3.7	11
882	Direct Amidation of Esters by Ball Milling**. Angewandte Chemie, 2021, 133, 22039-22045.	2.0	8
883	Recent trends in the stereoselective synthesis of (poly)-substituted 2-oxo acids by biocatalyzed aldol reaction. Current Opinion in Green and Sustainable Chemistry, 2021, 30, 100476.	5.9	14
884	The effects of ejector adiabatic absorber on heat and mass transfer of binary nanofluid with heat transfer additives. Emergent Materials, 0, , 1.	5.7	1
885	Low Melting Mixture of L-(+)-Tartaric Acid and <i>N,N′</i> -Dimethyl Urea: A New Arrival in the Green Organic Synthesis. , 0, , .		5
886	Electrochemical utilization of methanol and methanol-d4 as a C1 source to access (deuterated) 2,3-dihydroquinazolin-4(1H)-one. Chinese Chemical Letters, 2022, 33, 1559-1562.	9.0	18
887	Atomically Dispersed Co Clusters Anchored on Nâ€doped Carbon Nanotubes for Efficient Dehydrogenation of Alcohols and Subsequent Conversion to Carboxylic Acids. ChemSusChem, 2021, 14, 4536-4545.	6.8	11
888	Density of Deep Eutectic Solvents: The Path Forward Cheminformatics-Driven Reliable Predictions for Mixtures. Molecules, 2021, 26, 5779.	3.8	23
889	lodineâ€Catalyzed or â€Mediated Reactions in Aqueous Medium. Asian Journal of Organic Chemistry, 2021, 10, 2503-2520.	2.7	14
890	Michael-Addition-Initiated Chemoselective Three-Component Reaction for the Synthesis of 2-(3-Oxo-1,3-diarylpropyl)malononitrile Derivatives Using Cerium(IV) Ammonium Nitrate in Phosphorus Ionic Liquid. Polycyclic Aromatic Compounds, 2022, 42, 6328-6336.	2.6	3
891	Protocol for resolving enzyme orientation and dynamics in advanced porous materials via SDSL-EPR. STAR Protocols, 2021, 2, 100676.	1.2	15
892	Cul atalyzed, oneâ€pot synthesis of 3â€aminobenzofurans in deep eutectic solvents. Applied Organometallic Chemistry, 2021, 35, e6433.	3.5	9
893	Advantage of Using NaH ₂ PO ₂ over Alkali Metal Formates as a Hydrogen Source for Pdâ€gC ₃ N ₄ Catalyzed Hydroâ€Dehalogenation of Aryl Halides. ChemistrySelect, 2021, 6, 9477-9488.	1.5	3

#	Article	IF	CITATIONS
894	Impact of Occupants' Behavior Uncertainty on Building Energy Consumption Through the Karhunen-Loève Expansion Technique: A Case Study in Italy. Smart Innovation, Systems and Technologies, 2022, , 197-207.	0.6	2
895	Catalytic applications of hydrotalcite and related materials in multi -component reactions: Concepts, challenges and future scope. Sustainable Chemistry and Pharmacy, 2021, 22, 100458.	3.3	5
896	New trends in the biocatalytic production of nucleosidic active pharmaceutical ingredients using 2′-deoxyribosyltransferases. Biotechnology Advances, 2021, 51, 107701.	11.7	11
897	New trends in industrial biocatalysis. Biotechnology Advances, 2021, 51, 107782.	11.7	3
898	Heterocyclic biomolecules as green corrosion inhibitors. Journal of Molecular Liquids, 2021, 341, 117265.	4.9	74
899	Passive organic cationic tracers for carbonate formations: Development and performance at oil reservoir emulating conditions. Fuel, 2021, 304, 121377.	6.4	4
900	Chemical structure-based models for prediction of density of ammonium and phosphonium-based deep eutectic solvents. Journal of Molecular Liquids, 2021, 343, 117595.	4.9	1
901	An efficient BrÃ,nsted acid ionic liquid catalyzed synthesis of novel spiro1,2,4-triazolidine-5-thiones and their photoluminescence study. Journal of Molecular Structure, 2022, 1249, 131528.	3.6	7
902	Solid catalysts for environmentally benign synthesis. , 2022, , 23-80.		0
903	Nuclearity and Host Effects of Carbonâ€Supported Platinum Catalysts for Dibromomethane Hydrodebromination. Small, 2021, 17, 2005234.	10.0	8
904	Introduction to Green Chemistry. Materials Horizons, 2021, , 1-14.	0.6	0
905	Eco-friendly estimation of isosorbide dinitrate and hydralazine hydrochloride using Green Analytical Quality by Design-based UPLC Method. RSC Advances, 2021, 11, 27820-27831.	3.6	23
906	Skipped dienes in natural product synthesis. Natural Product Reports, 2021, 38, 2187-2213.	10.3	33
907	Ionic Liquid-Mediated Synthesis of Metal Nanoparticles. , 2021, , 1832-1853.		0
908	Photoredox/cobaloxime co-catalyzed allylation of amines and sulfonyl hydrazines with olefins to access α-allylic amines and allylic sulfones. Organic and Biomolecular Chemistry, 2021, 19, 8227-8231.	2.8	12
909	Hydrogen peroxide production from oxygen and formic acid by homogeneous Ir–Ni catalyst. Dalton Transactions, 2021, 50, 9410-9416.	3.3	4
910	Building bio-Profiles for common catalytic reactions. Green Chemistry, 2021, 23, 6373-6391.	9.0	7
911	Microwave Assisted Envirocat EPZ-10 Catalyzed Multi-component Synthesis of 1-Amidoalkyl-2-naphthols. Asian Journal of Organic & Medicinal Chemistry, 2021, 6, 204-210.	0.0	Ο

#	Article	IF	Citations
912	Calcium Carbide: Versatile Synthetic Applications, Green Methodology and Sustainability. European Journal of Organic Chemistry, 2021, 2021, 43-52.	2.4	48
913	Repeatable molecularly recyclable semiâ€aromatic polyesters derived from lignin. Journal of Polymer Science, 2020, 58, 1655-1663.	3.8	4
914	Microwave-Assisted Reactions in Green Chemistry. , 2018, , 1-40.		4
915	Microwave-Assisted Reactions in Green Chemistry. , 2019, , 573-612.		4
916	Atom Economy and Reaction Mass Efficiency. Springer Briefs in Molecular Science, 2015, , 17-44.	0.1	16
917	Systematic Solvent Evaluation for Artemisinin Recovery in Continuous Pharmaceutical Manufacturing. Computer Aided Chemical Engineering, 2016, 38, 1027-1032.	0.5	4
918	Microwave Assisted Enzyme Catalysis: Practice and Perspective. RSC Green Chemistry, 2015, , 52-103.	0.1	5
919	Catalyst-free Organic Synthesis: An Introduction. RSC Green Chemistry, 2017, , 1-10.	0.1	4
920	Catalytic hydrogenation of α,β-unsaturated carboxylic acid derivatives using copper(<scp>i</scp>)/N-heterocyclic carbene complexes. Chemical Communications, 2019, 55, 2293-2296.	4.1	18
921	Calcium hypophosphite mediated deiodination in water: mechanistic insights and applications in large scale syntheses of d-quinovose and d-rhamnose. Green Chemistry, 2019, 21, 1122-1127.	9.0	3
923	Decitabine bioproduction using a biocatalyst with improved stability by adding nanocomposites. AMB Express, 2020, 10, 173.	3.0	2
924	Delineating Substrate Diversity of Disparate Short-Chain Dehydrogenase Reductase from Debaryomyces hansenii. PLoS ONE, 2017, 12, e0170202.	2.5	7
925	Development and validation of an ecofriendly HPLC-UV method for determination of capecitabine in human plasma: Application to pharmacokinetic studies. South African Journal of Chemistry, 2016, 69, .	0.6	7
926	The Role of Bronsted and Lewis Acidity in the Green Synthesis of Homopropargyl Alcohols over HZSM-5. South African Journal of Chemistry, 2018, 71, 62-67.	0.6	4
927	Recent Developments on Synthesis of Indole Derivatives Through Green Approaches and Their Pharmaceutical Applications. Current Organic Chemistry, 2020, 24, 2665-2693.	1.6	15
928	Temperature Dependent Green Synthesis of 3-Carboxycoumarins and 3,4-unsubstituted Coumarins. Current Organic Synthesis, 2019, 16, 130-135.	1.3	6
929	Pharmaceutical Green Chemistry Applied to the Chemical Synthesis of Steroid Compounds. Current Green Chemistry, 2015, 2, 97-134.	1.1	2
930	Facile one-pot four-component synthesis of 3,4-dihydro-2-pyridone derivatives: Novel urease inhibitor scaffold. Research in Pharmaceutical Sciences, 2017, 12, 353.	1.8	14

#	Article	IF	CITATIONS
931	Conversion of Syringaldehyde to Sinapinic Acid through Knoevenagel-Doebner Condensation. Open Journal of Physical Chemistry, 2016, 06, 101-108.	0.6	14
932	Scientific specialties in Green Chemistry. Iberoamerican Journal of Science Measurement and Communication, 2020, 1, 005.	0.6	4
933	Green Expedient Synthesis of Pyrimidine Derivatives via Chalcones and Evaluation of their Anthelmintic Activity. Indian Journal of Pharmaceutical Education and Research, 2017, 51, s700-s706.	0.6	10
934	2-(5-phenyl-4H-1,2,4-triazol-3-ylthio)acetic acid: Greener and efficient organocatalyst for multicomponent reactions under aqueous media. Current Research in Green and Sustainable Chemistry, 2021, 4, 100181.	5.6	3
935	Isotruxene-based porous polymers as efficient and recyclable photocatalysts for visible-light induced metal-free oxidative organic transformations. Green Chemistry, 2021, 23, 8878-8885.	9.0	18
936	Green-Solvent Selection for Acyl Buchwald–Hartwig Cross-Coupling of Amides (Transamidation). ACS Sustainable Chemistry and Engineering, 2021, 9, 14937-14945.	6.7	21
937	Nanocarbons in quantum regime: An emerging sustainable catalytic platform for organic synthesis. Catalysis Reviews - Science and Engineering, 2023, 65, 874-928.	12.9	12
938	Structure sensitivity of nitrogen–doped carbon–supported metal catalysts in dihalomethane hydrodehalogenation. Journal of Catalysis, 2021, 404, 291-305.	6.2	5
940	CHAPTER 9. Lipases in Enantioselective Syntheses: Evolution of Technology and Recent Applications. RSC Green Chemistry, 2015, , 207-244.	0.1	0
941	Green Pharmaceuticals. Springer Briefs in Molecular Science, 2015, , 87-96.	0.1	0
942	Virus Diversity to Explore Various Kinds of Enzyme Nanocarriers. , 2015, , 21-64.		0
943	Application of Heterogeneous Polymer-Supported Catalysts to Continuous Flow Systems. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2016, 74, 621-630.	0.1	3
944	Los lÃquidos iónicos como prometedores catalizadores en sÃntesis orgánica: una contribución a la quÃmica sostenible. Revista Lasallista De Investigacion, 2017, 14, 171.	0.1	0
945	Metal-Catalyzed Oxidation of C–H Compounds with Peroxides in Unconventional Solvents. Green Chemistry and Sustainable Technology, 2019, , 1-35.	0.7	Ο
946	Synthesis, Structural Characterization and Biological Evaluation of 3-Amino-5-(5-oxo-5H-benzo[a]phenoxazin-6-ylamino)benzoic acid Derivatives. Asian Journal of Chemistry, 2019, 31, 2886-2894.	0.3	0
947			
	Aerobic Oxidations Using Metal-free Heterogeneous Systems. RSC Catalysis Series, 2020, , 78-103.	0.1	0
948	Aerobic Oxidations Using Metal-free Heterogeneous Systems. RSC Catalysis Series, 2020, , 78-103. New protocols for the synthesis of 5-amino-7-(4-phenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxylate esters using an efficient additive. Turkish Journal of Chemistry, 2020, 44, 1100-1109.	0.1	0

#	Article	IF	Citations
950	Rapid detection of sulfonamide antibiotics residues in swine urine by surface-enhanced Raman spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 267, 120570.	3.9	15
951	A reaction density functional theory study of solvent effect in the nucleophilic addition reactions in aqueous solution. Green Energy and Environment, 2020, , .	8.7	4
952	Biocatalysis in green organic synthesis. , 2020, , 105-121.		0
953	Conversion of Formic Acid in Organic Synthesis as a C1 Source. Springer Theses, 2020, , 1-26.	0.1	0
954	Ionic Liquid-Mediated Synthesis of Metal Nanoparticles. Advances in Environmental Engineering and Green Technologies Book Series, 2020, , 364-385.	0.4	0
955	Peptide Self-assembly Applied to Catalytic Asymmetric Aldol Reactions. RSC Soft Matter, 2020, , 126-173.	0.4	1
956	Ionic Liquid for Water Purification. Nanotechnology in the Life Sciences, 2020, , 153-176.	0.6	1
957	Modelling, Optimization and Green Metrics Evaluation of Bio-Catalytic Synthesis of Biodiesel. Tikrit Journal of Engineering Science, 2022, 27, 17-30.	0.3	4
959	Structural modification of ciprofloxacin and norfloxacin for searching new antibiotics to combat drug-resistant bacteria. ScienceRise: Pharmaceutical Science, 2021, , 4-11.	0.3	2
960	4â€Hydroxycoumarin: A Versatile Substrate for Transitionâ€metalâ€free Multicomponent Synthesis of Bioactive Heterocycles. Asian Journal of Organic Chemistry, 2021, 10, 3101-3126.	2.7	26
961	Development of an Eco-Friendly Reversed-Phase HPLC Method for the Simultaneous Determination of Three Emerging Contaminants in Water Samples. Archives of Pharmaceutical Sciences Ain Shams University, 2020, .	0.1	2
962	Benzylic Oxidation Catalyzed by Cobalt(II)-Terpyridine Coordination Polymers. Chinese Journal of Organic Chemistry, 2021, 41, 4409.	1.3	3
963	Catalytic conversion of cellulose to levoglucosenone using propylsulfonic acid functionalized SBA-15 and H2SO4 in tetrahydrofuran. Biomass and Bioenergy, 2022, 156, 106315.	5.7	4
964	Ultrasound-assisted multicomponent synthesis of heterocycles in water – A review. Arabian Journal of Chemistry, 2022, 15, 103544.	4.9	17
965	Orthogonal Catalysis for an Enantioselective Domino Inverseâ€Electron Demand Dielsâ ^{~^} Alder/Substitution Reaction. Chemistry - A European Journal, 2022, 28, .	3.3	8
966	A Step toward Change: A Green Alternative for the Synthesis of Metal–Organic Frameworks. ACS Sustainable Chemistry and Engineering, 2021, 9, 16356-16362.	6.7	7
967	Multicomponent Domino Synthesis of Highly Functionalized Aryl and Heteroaryl Fused Pyrroloquinolinone Ring Systems via Environmentally Benign Solidâ€state Melt Reaction. ChemistrySelect, 2021, 6, 12001-12006.	1.5	0
968	Eneâ€Reductase Catalyzed Regio―and Stereoselective 1,4â€Monoâ€Reduction of Pseudoionone to Geranylacetone. ChemCatChem, 2022, 14, e202101557	3.7	5

#	Article	IF	CITATIONS
969	Biocatalytic one pot three component approach: Facile synthesis, characterization, molecular modelling and hypoglycemic studies of new thiazolidinedione festooned quinoline analogues catalyzed by alkaline protease from Aspergillus niger. Bioorganic Chemistry, 2022, 119, 105533.	4.1	7
970	One-pot biocatalytic synthesis of nylon monomers from cyclohexanol using <i>Escherichia coli</i> -based concurrent cascade consortia. Green Chemistry, 2021, 23, 9447-9453.	9.0	19
971	Green UHPLC Method for Simultaneous Determination of Febuxostat and Diclofenac in Pharmaceutical Dosage Form and Human Plasma. Journal of Analytical Sciences Methods and Instrumentation, 2021, 11, 29-45.	0.1	2
972	Life cycle assessment of multistep benzoxazole synthesis: from batch to waste-minimised continuous flow systems. Green Chemistry, 2022, 24, 325-337.	9.0	6
973	Imidazolium-urea low transition temperature mixtures for the UHP-promoted oxidation of boron compounds. Journal of Molecular Liquids, 2022, 347, 118349.	4.9	6
974	Recent advances in the microwave- and ultrasound-assisted green synthesis of coumarin-heterocycles. Arabian Journal of Chemistry, 2022, 15, 103654.	4.9	21
975	Highly Selective Hydroiodination of Carbon-Carbon Double or Triple Bonds. Current Organic Chemistry, 2020, 24, 2153-2168.	1.6	1
976	Generation of Pure Green Up-Conversion Luminescence in Er ³⁺ Doped and Yb ³⁺ -Er ³⁺ co-Doped YVO ₄ Nanomaterials Under 785 and 975 nm Excitation. SSRN Electronic Journal, 0, , .	0.4	0
977	Thermal hazard of 1-butyl-3-methylimidazolium nitrate assessment via STA, ARC, TG–FTIR analysis and thermodynamic calculation. Journal of Thermal Analysis and Calorimetry, 2022, 147, 9055-9066.	3.6	1
978	Tandem Thioâ€Michael Addition/Remote Lactone Activation of 5â€Hydroxymethylfurfuralâ€Derived δâ€Lactoneâ€Fused Cyclopentenones. ChemSusChem, 2022, , e202102204.	6.8	2
979	Validated Smart Different Chromatographic Methods for Selective Quantification of Acefylline Piperazine, Phenobarbital Sodium and Methylparaben Additive in Bulk and Pharmaceutical Dosage Form. Journal of Chromatographic Science, 2022, , .	1.4	0
980	Recent developments in green approaches for sustainable synthesis of indole-derived scaffolds. Molecular Diversity, 2022, 26, 3411-3445.	3.9	6
981	Palladium-Catalyzed Domino Cycloisomerization/Double Condensation of Acetylenic Acids with Dinucleophiles. Catalysts, 2022, 12, 127.	3.5	2
982	Four-Component Heterocyclization Reaction for the One-Pot Synthesis of 2,4-Dichloro-Substituted Pyrano/Furo[2,3-d]pyrimidines in an Environmentally Benign Procedure Mediated by Ceric Ammonium Nitrate in Phosphorus Ionic Liquid. Polycyclic Aromatic Compounds, 0, , 1-9.	2.6	2
983	Recent Advances in Utilization of Deep Eutectic Solvents: An Environmentally Friendly Pathway for Multi-component Synthesis. Current Organic Chemistry, 2022, 26, 299-323.	1.6	15
984	Green solvent free epoxidation of olefins by a heterogenised hydrazone-dioxidotungsten(<scp>vi</scp>) coordination compound. RSC Advances, 2022, 12, 4813-4827.	3.6	20
985	Green solvents for organic electronics processing. , 2022, , 425-462.		1
986	Green Chemistry in the Synthesis of Pharmaceuticals. Chemical Reviews, 2022, 122, 3637-3710.	47.7	155

#	Article	IF	CITATIONS
987	Cu ₂ 0 nanoparticle-catalyzed tandem reactions for the synthesis of robust polybenzoxazole. Nanoscale, 2022, 14, 6162-6170.	5.6	8
988	A molecular motor from lignocellulose. Green Chemistry, 2022, 24, 3689-3696.	9.0	10
989	The Reformatsky analogous reaction for the synthesis of novel β-thioxoesters <i>via</i> using aroyl isothiocyanates under solvent-free ball milling and conventional conditions. RSC Advances, 2022, 12, 10204-10208.	3.6	6
990	Aerobic oxidation of vanillyl alcohol to vanillin catalyzed by air-stable and recyclable copper complex and TEMPO under base-free conditions. Green Chemistry, 2022, 24, 2542-2556.	9.0	13
991	Visible light-promoted photocatalyst-free activation of persulfates: a promising strategy for C–H functionalization reactions. Organic and Biomolecular Chemistry, 2022, 20, 3249-3262.	2.8	19
992	Reviewing a plethora of oxidative-type reactions catalyzed by whole cells of <i>Streptomyces</i> species. RSC Advances, 2022, 12, 6974-7001.	3.6	4
993	Alcohol Dehydrogenases with <i>anti</i> â€Prelog Stereopreference in Synthesis of Enantiopure Alcohols. ChemistryOpen, 2022, 11, e202100251.	1.9	10
994	Generation of Pure Green Up-Conversion Luminescence in Er3+ Doped and Yb3+-Er3+ Co-Doped YVO4 Nanomaterials under 785 and 975 nm Excitation. Nanomaterials, 2022, 12, 799.	4.1	3
995	Opportunities and potential of green chemistry in nanotechnology. Nanotechnology for Environmental Engineering, 2022, 7, 661-673.	3.3	16
996	Metal-Free Synthesis of 2-Substituted Quinazolines via Green Oxidation of o-Aminobenzylamines: Practical Construction of N-Containing Heterocycles Based on a Salicylic Acid-Catalyzed Oxidation System. Frontiers in Chemistry, 2021, 9, 822841.	3.6	5
997	Dioxo-molybdenum(VI) unsymmetrical Schiff base complex supported on CoFe2O4@SiO2 nanoparticles as a new magnetically recoverable nanocatalyst for selective epoxidation of alkenes. Journal of the Iranian Chemical Society, 2022, 19, 3491-3499.	2.2	4
998	Preparation of Thioaminals in Water. Molecules, 2022, 27, 1673.	3.8	3
999	Development of a Fully Continuousâ€Flow Approach Towards Asymmetric Total Synthesis of Tetrahydroprotoberberine Natural Alkaloids. Chemistry - A European Journal, 2022, 28, .	3.3	7
1000	Mechanistic Insights on the Selectivity of the Tandem Heck–Ring-Opening of Cyclopropyldiol Derivatives. Jacs Au, 2022, 2, 687-696.	7.9	10
1001	Using Oxygen as the Primary Oxidant in a Continuous Process: Application to the Development of an Efficient Route to AZD4635. Organic Process Research and Development, 2022, 26, 1048-1053.	2.7	3
1002	Fungal Extracellular Lipases from Coffee Plantation Environments for the Sustainable Management of Agro-Industrial Coffee Biomass. Biomass, 2022, 2, 62-79.	2.8	1
1003	Potential Investigation of Membrane Energy Recovery Ventilators for the Management of Building Air-Conditioning Loads. Energies, 2022, 15, 2139.	3.1	4
1004	Amplitudes térmicas diárias no estado de Santa Catarina e nÃveis de inércia térmica para habitações. Revista Brasileira De Climatologia, 0, 30, 463-487.	0.3	0

#	Article	IF	CITATIONS
1005	Development of a multivariate model with desirabilityâ€based optimization for determination of atenolol and hydrochlorothiazide by ecoâ€friendly HPLC method with fluorescence detection. Journal of Separation Science, 2022, 45, 824-831.	2.5	7
1006	Green by Design: Convergent Synthesis, Computational Analyses, and Activity Evaluation of New FXa Inhibitors Bearing Peptide Triazole Linking Units. Pharmaceutics, 2022, 14, 33.	4.5	10
1007	Aerobic epoxidation of olefins by carboxylate ligandâ€based cobalt (II) compound: synthesis, Xâ€ray crystallography, and catalytic exploration. Applied Organometallic Chemistry, 2022, 36, .	3.5	1
1008	Review on the Use of Heavy Metal Deposits from Water Treatment Waste towards Catalytic Chemical Syntheses. International Journal of Molecular Sciences, 2021, 22, 13383.	4.1	38
1009	Eco-Friendly Separation of Antihyperlipidemic Combination Using UHPLC Particle-Packed and Monolithic Columns by Applying Green Analytical Chemistry Principles. Separations, 2021, 8, 246.	2.4	1
1010	Racemization of Enantiopure Alcohols Using Two Mutants of <i>Thermoanaerobacter pseudoethanolicus</i> Secondary Alcohol Dehydrogenase. ChemistrySelect, 2021, 6, 13261-13264.	1.5	0
1011	Can perovskites be efficient photocatalysts in organic transformations?. Journal of Materials Chemistry A, 2022, 10, 12317-12333.	10.3	9
1018	Chirality-Driven Self-Assembly: Application Toward Renewable/Exchangeable Resin-Immobilized Catalysts. Organic and Biomolecular Chemistry, 2022, , .	2.8	2
1019	Interfacing single-atom catalysis with continuous-flow organic electrosynthesis. Chemical Society Reviews, 2022, 51, 3898-3925.	38.1	50
1020	Waste-to-wealth transition: application of natural waste materials as sustainable catalysts in multicomponent reactions. Green Chemistry, 2022, 24, 4304-4327.	9.0	17
1021	Green Chemistry and Molecularly Imprinted Membranes. Membranes, 2022, 12, 472.	3.0	14
1022	Copperâ€triazineâ€dendrimerâ€functionalizedâ€graphene oxide: Synthesis, characterization, and application in green synthesis of propargylamines. Applied Organometallic Chemistry, 2022, 36, .	3.5	3
1023	Design of Artificial Enzymes Bearing Several Active Centers: New Trends, Opportunities and Problems. International Journal of Molecular Sciences, 2022, 23, 5304.	4.1	16
1024	Production of natural colorants by metabolically engineered microorganisms. Trends in Chemistry, 2022, 4, 608-626.	8.5	8
1025	Racemization-free and scalable amidation of <scp>l</scp> -proline in organic media using ammonia and a biocatalyst only. Green Chemistry, 2022, 24, 5171-5180.	9.0	2
1026	Studies on the thermal stability and decomposition kinetics of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide via density functional theory and experimental methods. Journal of Molecular Liquids, 2022, 360, 119422.	4.9	9
1027	Analytical quality by design assisted RP-HPLC method for quantifying atorvastatin with green analytical chemistry perspective. Journal of Chromatography Open, 2022, 2, 100052.	2.2	16
1028	On-demand, in situ, generation of ammonium caroate (peroxymonosulfate) for the dihydroxylation of alkenes to vicinal diols. Green Chemistry, 0, , .	9.0	0

#	Article	IF	CITATIONS
1029	Investigating the integration between life cycle thinking, green chemistry principles and sustainability policies. E3S Web of Conferences, 2022, 349, 13005.	0.5	1
1031	4â€(Dimethylamino)Pyridinium Azide in Protic Ionic Liquid Media as a Stable Equivalent of Hydrazoic Acid. Advanced Synthesis and Catalysis, 2022, 364, 2403-2415.	4.3	6
1032	Urushiol derivatives as biomass-based photocatalysts for the transition-metal-free synthesis of 1,2-amino alcohols. Green Chemistry, 2022, 24, 5764-5769.	9.0	11
1033	Discovery of KOH+BrCH2SO2F as a Waterâ€Removable System for the Clean, Mild and Robust Synthesis of Amides and Peptides. European Journal of Organic Chemistry, 0, , .	2.4	Ο
1034	Facile access to β-hydroxyl ketones via a cobalt-catalyzed ring-opening/hydroxylation cascade of cyclopropanols. Chinese Chemical Letters, 2023, 34, 107657.	9.0	0
1035	An Efficient Magnesium Phyllosilicateâ€Nano Palladium Hybrid Catalyst for the Selective Oxidation of Organosilanes. ChemistrySelect, 2022, 7, .	1.5	1
1036	Laccase Cross-Linked Ultraporous Aluminas for Sustainable Biodegradation of Remazol Brilliant Blue R. Catalysts, 2022, 12, 744.	3.5	2
1037	Palladiumâ€Catalyzed Dual Catalytic Synthesis of Heterocycles. European Journal of Organic Chemistry, 2022, 2022, .	2.4	5
1038	Visible-light enabled one-pot three-component Petasis reaction for synthesis of α-substituted secondary sulfonamides/amides/hydrazides. Tetrahedron Letters, 2022, 106, 154055.	1.4	4
1039	Predicting the Surface Tension of Deep Eutectic Solvents: A Step Forward in the Use of Greener Solvents. Molecules, 2022, 27, 4896.	3.8	5
1040	Efficient synthesis 1,4-cyclohexanedicarboxaldehyde by an engineered alcohol oxidase. Bioresources and Bioprocessing, 2022, 9, .	4.2	0
1041	Ironâ€Based Imidazolium Salt as Dual Lewis Acid and Redox Catalyst for the Aerobic Synthesis of Quinazolines. European Journal of Organic Chemistry, 0, , .	2.4	7
1042	Sustainable functionalization and modification of materials via multicomponent reactions in water. Frontiers of Chemical Science and Engineering, 0, , .	4.4	2
1043	Editorial: Metal-free oxidative transformations in organic synthesis. Frontiers in Chemistry, 0, 10, .	3.6	Ο
1044	Prospective sustainable agriculture principles inspired by green chemistry. Foundations of Chemistry, 0, , .	1.1	2
1045	From Flask to Mill: Reductive Functionalization of Fluoroacetamides as a Case Study for Transferring Solvent-Based Reactions to the Solid State. ACS Sustainable Chemistry and Engineering, 2022, 10, 10486-10492.	6.7	Ο
1046	Comprehensive investigation of two environmentally-friendly imidazolium nitrate ionic liquids: from calorimetry to thermal risk evaluation. Journal of Thermal Analysis and Calorimetry, 2023, 148, 4913-4925.	3.6	1
1047	Phytofabrication of silver nanoparticles from Limonia acidissima leaf extract and their antimicrobial, antioxidant and its anticancer prophecy. Journal of the Indian Chemical Society, 2022, 99, 100679.	2.8	6

#	Article	IF	CITATIONS
1048	Synthesis of ruthenium complexes and their catalytic applications: A review. Arabian Journal of Chemistry, 2022, 15, 104165.	4.9	21
1050	One-pot synthesis of new benzo[4,5]imidazo[2,1-b]pyrimido[4,5-d][1,3] thiazine-2,4(3H)-dione and benzo[4,5]imidazo[2,1-b][1,3]thiazin-4-one derivatives as new anti-cancer components. Journal of Molecular Structure, 2023, 1271, 134037.	3.6	3
1051	Microflow chemistry and its electrification for sustainable chemical manufacturing. Chemical Science, 2022, 13, 10644-10685.	7.4	11
1052	Biocatalysis in biphasic systems based on ionic liquids. , 2022, , 183-207.		1
1053	Repurposing Cycloaddition of \hat{l}^2 -carbonyl Phosphonate and Azide to Synthesize Triazolyl phosphonates via Ionic-Liquid-Based Data-Driven Screening. Green Chemistry, 0, , .	9.0	1
1054	An enantio- and diastereoselective approach to indoloquinolizidines in continuous flow. Organic and Biomolecular Chemistry, 2022, 20, 8273-8279.	2.8	1
1055	Catalytic Organic Reactions in Liquid Phase by Perovskite Oxides: A Review. Asian Journal of Chemistry, 2022, 34, 2489-2498.	0.3	1
1056	Solvent-Free Synthesis of 2-[(Di)aminophenyl]-1,3,4-oxadiazoles. Russian Journal of Organic Chemistry, 2022, 58, 1064-1066.	0.8	0
1057	Heterogeneous Transition-Metal Catalyst for Fine Chemical Synthesis Hydrogen Auto-transfer Reaction. Topics in Catalysis, 2022, 65, 1821-1859.	2.8	1
1058	The Progress and Outlook of Metal Single-Atom-Site Catalysis. Journal of the American Chemical Society, 2022, 144, 18155-18174.	13.7	151
1059	Synthesis of 5â€Substitutedâ€1Hâ€Tetrazoles from Nitriles and Azides in a Betaineâ€Diolâ€Based Deep Eutectic Solvent. ChemistrySelect, 2022, 7, .	1.5	2
1060	Efficient Synthesis of Pyrazoles via pH Dependent Isomerization of Enaminodiones. Asian Journal of Organic Chemistry, 0, , .	2.7	0
1061	A divergent photocatalysis strategy for selective aerobic oxidation of C(sp ³)–H bonds promoted by disulfides. Green Chemistry, 2022, 24, 8503-8511.	9.0	7
1062	Crystalline Metal Oxide Catalysts for Organic Synthesis. , 2022, , 219-271.		0
1063	A sustainable and profitable biorefinery strategy for efficiently converting lignocellulose to furfural, glucose and phenolic compounds. Green Chemistry, 2022, 24, 8494-8502.	9.0	9
1064	BrÃ,nsted acidic ionic liquid-catalyzed tandem reaction: an efficient and sustainable approach towards the regioselective synthesis and molecular docking studies of 4-hydroxycoumarin-substituted indoles bearing lower <i>E</i> -factors. Organic and Biomolecular Chemistry, 2022, 20, 9161-9171.	2.8	4
1065	An enzyme-assembled gel monolithic microreactor for continuous flow asymmetric synthesis of aryl alcohols. Green Chemistry, 2022, 24, 9508-9518.	9.0	5
1066	Coconut endocarp shell ash (CESA): a non-conventional catalyst for green synthesis of 2-amino-4H-benzochromenes. Research on Chemical Intermediates, 0, , .	2.7	2

ARTICLE IF CITATIONS Recent Advances in Green Synthesis of Functionalized Quinolines of Medicinal Impact (2018â€Present). 1067 1.5 4 ChemistrySelect, 2022, 7, . Migratory Insertion of CO into a Au–C Bond. Journal of the American Chemical Society, 2022, 144, 1068 13.7 19719-19725. Kinetic and Dynamic Kinetic Resolution by Dual Catalysis. European Journal of Organic Chemistry, 1069 3 2.4 2022, 2022, . A More Sustainable Isocyanide Synthesis from N-Substituted Formamides Using Phosphorus 1070 3.8 Oxychloride in the Presence of Triethylamine as Solvent. Molecules, 2022, 27, 6850. DESâ€Type Interactions To Promote Solventâ€Free and Metalâ€Free Reactions between Nitrogenâ€Containing 1071 2.4 4 Heterocycles and Allylic Alcohols. European Journal of Organic Chemistry, 0, , . Central composite design as an analytical optimization tool for the development of eco-friendly HPLC-PDA methods for two antihypertensive mixtures containing the angiotensin receptor blocker 4.5 Valsartan: Greenness assessment by four evaluation tools. Microchemical Journal, 2022, 183, 108105. Methanol as a greener C1 synthon under non-noble transition metal-catalyzed conditions. 1073 18.8 12 Coordination Chemistry Reviews, 2023, 475, 214851. A multienzyme biocatalytic cascade as a route towards the synthesis of \hat{f}_{\pm} , \hat{f}_{∞} -diamines from corresponding 1074 9.0 cycloalkanols. Green Chemistry, 2023, 25, 543-549. Solvent-less Oxidation of Aromatic Alcohols Using CrO3/Al2O3 under Ultrasonic Irradiation. Jurnal 1075 0 0.4 Kimia Sains Dan Aplikasi, 2022, 25, 280-285. Byproduct Valorization: From Spent Coffee Grounds to Fatty Acid Ethyl Esters. Journal of Chemical 2.3 Education, 0, , . Asymmetric transformations enabled by synergistic dual transition-metal catalysis. Chem Catalysis, 1077 6.1 30 2023, 3, 100455. Efficiency in CO2-utilization strategies: The case of styrene carbonate synthesis in microdroplets 6.8 conditions. Journal of CO2 Utilization, 2023, 67, 102328. Recoverable PEG-supported amino alcohol ligand for copper-catalyzed Enantio- and syn-selective henry reaction with nitroethanol: Sustainable and straightforward access to chiral 1079 6.2 1 syn-2-nitro-1,3-Diols. Journal of Catalysis, 2023, 417, 35-40. Simultaneous determination of antibiotics residues in edible fish muscle using eco-friendly SPE-UPLC-MS/MS: Occurrence, human dietary exposure and health risk assessment for consumer 1080 3.3 safety. Toxicology Reports, 2023, 10, 1-10. Ultrasound-promoted synthesis of a copper–iron-based catalyst for the microwave-assisted 1081 0 2.8 acyloxylation of 1,4-dioxane and cyclohexene. Organic and Biomolecular Chemistry, 2023, 21, 590-599. Comparison of aliphatic polyesters prepared by acyclic diene metathesis and thiolâ \in ene polymerization of α,݉â€polyenes arising from oleic acidâ€based 9â€decenâ€1â€ol. JAOCS, Journal of the American Oil Chemists1.9 Society, 2023, 100, 149-162. Iridium-, Ruthenium-, and Nickel-Catalyzed C–C Couplings of Methanol, Formaldehyde, and Ethanol with i€-Unsaturated Pronucleophiles via Hydrogen Transfer. Journal of Organic Chemistry, 2023, 88, 1083 3.29 4965-4974. In Vitro Dissolution Profile of Antihypertensive Mixture: Comparison Between Multivariate Methods and Statistical and Graphical Representation of Different Univariate Spectrophotometric Data. 1084 1.5 Journal of AOAC INTERNATIONAL, 2023, 106, 624-635.

#	Article	IF	CITATIONS
1085	Hierarchically Structured CA@ZIF-8 Biohybrids for Carbon Dioxide Mineralization. Applied Biochemistry and Biotechnology, 0, , .	2.9	1
1086	Mechanism of Action of Flavin-Dependent Halogenases. ACS Catalysis, 2022, 12, 15352-15360.	11.2	9
1087	Steering Interzeolite Conversion with Alkali Metal Cations: Lithium Maximizes Al Proximity in SSZ-13 Zeolite Genesis. Crystal Growth and Design, 2023, 23, 289-299.	3.0	6
1088	An Efficient Combinatorial Synthesis of Novel Thiazolidinoneâ€bis Schiff Base Hybrids Using Oneâ€Pot Multicomponent Reaction. Asian Journal of Organic Chemistry, 0, , .	2.7	2
1089	Eco-Sustainable Catalytic System for Green Oxidation of Spirostanic Alcohols Using Hypervalent Iodine (III) Tempo-4-n-Acetoxyamine System. , 0, , .		0
1090	Metal―and Baseâ€Free Radical Cascade Cyclization/Hydrolysis of CNâ€Containing 1,6â€Enynes with Ethers to Access Polyheterocycles. Chemistry - an Asian Journal, 2023, 18, .	3.3	4
1091	Azide–Alkyne Cycloaddition Catalyzed by Copper(I) Coordination Polymers in PPM Levels Using Deep Eutectic Solvents as Reusable Reaction Media: A Waste-Minimized Sustainable Approach. ACS Omega, 2023, 8, 868-878.	3.5	8
1092	Expression and Characterization of Monomeric Recombinant Isocitrate Dehydrogenases from Corynebacterium glutamicum and Azotobacter vinelandii for NADPH Regeneration. International Journal of Molecular Sciences, 2022, 23, 15318.	4.1	0
1093	Non-Noble-Metal Mono and Bimetallic Composites for Efficient Electrocatalysis of Phosphine Oxide and Acetylene C-H/P-H Coupling under Mild Conditions. International Journal of Molecular Sciences, 2023, 24, 765.	4.1	4
1094	Hydrogenation of Carboxylic Acids, Esters, and Related Compounds over Heterogeneous Catalysts: A Step toward Sustainable and Carbon-Neutral Processes. Chemical Reviews, 2023, 123, 1103-1165.	47.7	27
1095	Are extracts really green substitutes for traditional toxic corrosion inhibitors? Challenges beyond origin and availability. Sustainable Chemistry and Pharmacy, 2023, 31, 100943.	3.3	6
1096	BrÃ,nsted acid catalyzed mechanochemicalÂdomino multicomponent reactions by employing liquid assisted grindstone chemistry. Scientific Reports, 2023, 13, .	3.3	3
1097	Mechanism-Guided Design of Robust Palladium Catalysts for Selective Aerobic Oxidation of Polyols. Journal of the American Chemical Society, 2023, 145, 2282-2293.	13.7	3
1098	Current trends and applications of ionic liquids in electrochemical devices. , 2023, , 63-88.		0
1099	Sustainable spectrophotometric resolution techniques for a spectrally overlapping mixture of Articaine Hydrochloride and Epinephrine Bitartrate with challenging formulation ratio. Sustainable Chemistry and Pharmacy, 2023, 32, 100994.	3.3	2
1100	Unraveling the potential role of green chemistry in carrying out typical condensation reactions of organic chemistry. , 2023, , 317-349.		0
1101	Investigation of the electrocatalytic reaction for the oxidation of alcohols through the formation of a metal organic framework (Mn-MIL-100)/polymer matrix on the surface of an Au electrode. New Journal of Chemistry, 2023, 47, 6730-6738.	2.8	10
1102	Crystal structure and biochemical analysis of acetylesterase (LgEstI) from Lactococcus garvieae. PLoS ONE, 2023, 18, e0280988.	2.5	1

#	Article	IF	CITATIONS
1103	The greener side of polymers in the light of d-block metal complexes as precatalysts. Coordination Chemistry Reviews, 2023, 484, 215122.	18.8	3
1104	Multi-class determination of pharmaceuticals as emerging contaminants in wastewater from Eastern Province, Saudi Arabia using eco-friendly SPE-UHPLC-MS/MS: Occurrence, removal and environmental risk assessment. Microchemical Journal, 2023, 187, 108453.	4.5	6
1105	Cobalt-catalysed [1,2]-Wittig rearrangement of ethers to secondary alcohols. Chemical Communications, 2023, 59, 1853-1856.	4.1	2
1106	Overview on Photoreforming of Biomass Aqueous Solutions to Generate H2 in the Presence of g-C3N4-Based Materials. ChemEngineering, 2023, 7, 11.	2.4	6
1107	Mechanistic Insights into the Synergistic Effect of Palladium(0) and Copper(I) on the Selective Transformation of Isocyanate to Indole. Chemistry - an Asian Journal, 2023, 18, .	3.3	1
1108	Towards Green Reductions in Bioâ€Derived Solvents. European Journal of Organic Chemistry, 2023, 26, .	2.4	5
1109	Opportunities and Challenges in Mechanochemical Cocrystallization toward Scaled-Up Pharmaceutical Manufacturing. Organic Process Research and Development, 2023, 27, 409-422.	2.7	9
1110	GreenMedChem: the challenge in the next decade toward eco-friendly compounds and processes in drug design. Green Chemistry, 2023, 25, 2109-2169.	9.0	11
1111	Carbamate thermal decarboxylation for the design of non-isocyanate polyurethane foams. Polymer Chemistry, 2023, 14, 1497-1506.	3.9	5
1112	Recent Advances in Greener Asymmetric Organocatalysis Using Bio-Based Solvents. Catalysts, 2023, 13, 553.	3.5	5
1113	Chitosan as a sustainable heterogeneous catalyst for the preparation of functionalized ${\rm \hat{l}}\pm$ -diazo carbonyl compounds. , 2023, 1, 100006.		4
1114	lonic Organic Solid 1,3-Bis(sulfomethyl)imidazoliumate as an Effective Metal-Free Catalyst for Sustainable Organic Syntheses. Molecules, 2023, 28, 2695.	3.8	0
1115	Nickel–copper catalysts supported by boron and nitrogen co-doped activated carbon for gas phase carbonylation of ethanol. Journal of Porous Materials, 0, , .	2.6	0
1116	Green Oxidative Catalytic Processes for the Preparation of APIs and Precursors. Catalysts, 2023, 13, 638.	3.5	1
1117	Biocatalytic asymmetric reduction of prochiral bulky-bulky ketones. Molecular Catalysis, 2023, 541, 113099.	2.0	5
1118	A site-isolated Lewis acidic aluminium and BrÃ,nsted basic amine sites in the dimeric silsesquioxane cage as a reusable homogeneous bifunctional catalyst for one-pot tandem deacetalization/deketalization-Knoevenagel condensation reactions. New Journal of Chemistry, 2023,	2.8	2
1119	Scalable, Green Synthesis of Heteroaromatic Amine-boranes. Organic Process Research and Development, 2023, 27, 775-783.	2.7	2
1120	Copper(<scp>i</scp>)-catalyzed click chemistry in deep eutectic solvent for the syntheses of β- <scp>d</scp> -glucopyranosyltriazoles. RSC Advances, 2023, 13, 10424-10432.	3.6	2

#	Article	IF	CITATIONS
1121	Mechanochemical solid state synthesis of copper(I)/NHC complexes with K ₃ PO ₄ . Beilstein Journal of Organic Chemistry, 0, 19, 440-447.	2.2	3
1122	Covalent Modification by Click Mechanochemistry: Systematic Installation of Pendant OH Groups in a MOF for Rigidity Control and Luminescence-Based Water Detection. ACS Applied Materials & Interfaces, 2023, 15, 25661-25670.	8.0	1
1123	Recent Developments on Synthesis of Organofluorine Compounds Using Green Approaches. Current Organic Chemistry, 2023, 27, 190-205.	1.6	0
1124	Metalâ€Free Oxidative Crossâ€Dehydrogenative Coupling of Alkenes with Thiophenols. ChemistrySelect, 2023, 8, .	1.5	1
1125	Fast and Selective β-C–H Borylation of N-Heterocycles with a Supramolecular Iridium Catalyst: Circumventing Deactivation Pathways and Mechanistic Insights. ACS Catalysis, 2023, 13, 7715-7729.	11.2	6
1126	Mechanochemical Desymmetrization of Unbiased Bis―and Trisâ€alkynes to Access 3,5â€Isoxazolesâ€Alkyne Adducts and Unsymmetrical Bisâ€3,5â€isoxazoles**. European Journal of Organic Chemistry, 2023, 26, .	2.4	0
1127	What does it mean that "something is green� The fundamentals of a Unified Greenness Theory. Green Chemistry, 2023, 25, 4625-4640.	9.0	13
1128	Expedient (3+3)-annulation of <i>in situ</i> generated azaoxyallyl cations with diaziridines. Chemical Communications, 2023, 59, 8270-8273.	4.1	0
1129	Mechanochemical Rhodium atalyzed Câ^'H Bond Amidation of Ferrocenes by Ball Milling. Chemistry - an Asian Journal, 0, , .	3.3	0
1130	Isopropenyl Acetate for the Continuous-Flow Synthesis of Triacetin, Solketal Acetate, and Allyl Acetate from Pure or Crude Glycerol. ACS Sustainable Chemistry and Engineering, 2023, 11, 12602-12613.	6.7	1
1131	Green chemistry approach towards Piperazine: anticancer agents. Journal of Molecular Structure, 2023, 1292, 136089.	3.6	2
1132	Cumulative complexity meta-metrics as an efficiency measure and predictor of process mass intensity (PMI) during synthetic route design. Green Chemistry, 2023, 25, 5543-5556.	9.0	1
1133	Efficient Dual-Function Catalyst: Palladium–Copper Nanoparticles Immobilized on Co-Cr LDH for Seamless Aerobic Oxidation of Benzyl Alcohol and Nitrobenzene Reduction. Nanomaterials, 2023, 13, 1956.	4.1	2
1134	Consecutive Four-Component Coupling-Addition Aza-Anellation Pictet–Spengler Synthesis of Tetrahydro-β-Carbolines: An Optimized Michael Addition and Computational Study on the Aza-Anellation Step. Organics, 2023, 4, 313-332.	1.3	0
1135	Assessing the Environmental Impact of Atomic Layer Deposition (ALD) Processes and Pathways to Lower It. ACS Materials Au, 2023, 3, 274-298.	6.0	5
1136	Recent advances in radical polymerization of bio-based monomers in aqueous dispersed media. , 2023, 1, 788-813.		1
1137	Synthesis of Ag–Cu–Ni Nanoparticles Stabilized on Functionalized g–C ₃ N ₄ and Investigation of Its Catalytic Activity in the A ³ -Coupling Reaction. ACS Omega, 2023, 8, 18685-18694.	3.5	3
1138	Environmentally Benign Water-Soluble Sodium L-2-(1-Imidazolyl) Alkanoic Acids as New Corrosion Inhibitors for Mild Steel in Artificial Seawater. ACS Omega, 2023, 8, 24797-24812.	3.5	5

#	Article	IF	CITATIONS
1139	A green compliant hand-held selective electrode device for monitoring active pharmaceuticals and the kinetics of their degradation. Scientific Reports, 2023, 13, .	3.3	0
1140	One metal two tasks: Reentering the catalytic ending PdII-H for the relay-catalytic cycle for dicarbonylation of amines. Journal of Catalysis, 2023, 426, 368-375.	6.2	1
1141	Deep eutectic solvents for catalytic biodiesel production from liquid biomass and upgrading of solid biomass into 5-hydroxymethylfurfural. Green Chemistry, 2023, 25, 7410-7440.	9.0	23
1142	Metal-organic-framework-based materials as green catalysts for alcohol oxidation. Chinese Journal of Catalysis, 2023, 50, 126-174.	14.0	5
1143	A sustainable protocol for selective alcohols oxidation using a novel iron-based metal organic framework (MOF-BASU1). RSC Advances, 2023, 13, 24639-24648.	3.6	3
1144	Preparation and characterization of MWCNTs/CONHBu and investigation of its catalytic effect in the multi component synthesis of 2-amino-4H-chromenes under green conditions. Catalysis Communications, 2023, 182, 106755.	3.3	3
1145	Stereo and regioselective synthesis, structural elucidation and antibacterial activity of novel spiropyrrolidine embedded with two units of oxindoles. Journal of Molecular Structure, 2023, 1294, 136496.	3.6	0
1146	Making photocatalysts screenable – a milliscale multi-batch screening photoreactor as extension for the modular photoreactor. Reaction Chemistry and Engineering, 2023, 8, 2967-2983.	3.7	0
1147	Highly Robust Metal–Organic Framework for Efficiently Catalyzing Knoevenagel Condensation and the Strecker Reaction under Solvent-Free Conditions. Inorganic Chemistry, 2023, 62, 12989-13000.	4.0	7
1148	Selective aerobic oxidation of biomass model compound veratryl alcohol catalyzed by air-stable copper(<scp>ii</scp>) complexes in water. Catalysis Science and Technology, 2023, 13, 5422-5434.	4.1	2
1149	Specific coenzyme preference switching for an aldo-keto reductase that synthesizes the chiral intermediate of duloxetine. Enzyme and Microbial Technology, 2023, 171, 110326.	3.2	1
1150	Suzuki–Miyaura Cross-Coupling of Amides by N–C Cleavage Mediated by Air-Stable, Well-Defined [Pd(NHC)(sulfide)Cl₂] Catalysts: Reaction Development, Scope, and Mechanism . Journal of Organic Chemistry, 2023, 88, 10858-10868.	3.2	0
1151	Sustainable and selective transfer hydrogenation using waste shrimp shellâ€based tetrazeneâ€Ru (II) <i>para</i> â€cymene catalyst with ethanol as a hydrogen source. Applied Organometallic Chemistry, 2023, 37, .	3.5	1
1152	Green Synthesis of Reticular Materials. Advanced Functional Materials, 0, , .	14.9	3
1153	Heterogeneous photocatalysis for C–H bond activation. Journal of Environmental Chemical Engineering, 2023, 11, 110970.	6.7	2
1154	Hen egg white lysozyme encapsulated in ZIF-8 for performing promiscuous enzymatic Mannich reaction. IScience, 2023, 26, 107807.	4.1	1
1155	Research in the Field of Drug Design and Development. Pharmaceuticals, 2023, 16, 1283.	3.8	4
1156	Highly atom-economic synthesis and scale-up production of zinc-aluminum layered double hydroxides. Chemical Engineering Science, 2024, 283, 119376.	3.8	0

#	Article	IF	CITATIONS
1157	H ₂ -Mediated Copper-Catalyzed C–C Coupling Reactions: Selective Formation of Skipped Dienes. ACS Catalysis, 2023, 13, 12634-12642.	11.2	1
1158	Recent Advances in Lipase Catalyzed Multicomponent Reactions to Synthesize <i>N</i> â€Heterocycles. Asian Journal of Organic Chemistry, 2023, 12, .	2.7	1
1159	A green HPLC method for the determination of apixaban in pharmaceutical products: Development and validation. Reviews in Analytical Chemistry, 2023, 42, .	3.2	1
1160	Thiadiazoles as potent inhibitors against corrosion of metals and alloys: Challenges and future prospects. Journal of Molecular Liquids, 2023, 390, 122904.	4.9	1
1161	Mg _x Cu _{0.3} Zn _{0.7-x} La _y Fe _{2-y} O ₄ Magnetic Mixed Metal Oxide Nanocatalyst: Synthesis, Characterization and Application for One-Pot N-Heterocycle Synthesis. Polycyclic Aromatic Compounds, 0, , 1-16.	2.6	0
1162	Introduction to environmental and green chemistry. , 2024, , 1-22.		0
1163	Green anthrosphere through industrial ecology. , 2024, , 131-147.		0
1164	A recent update on the environment friendly methodologies to synthesize bis(indolyl)methane and 3,3-di(3-indolyl)-2-indolone derivatives. Tetrahedron, 2023, 148, 133679.	1.9	0
1165	Visible light as a sole requirement for alkylation of αâ^'C(sp3)â^'H of N-aryltetrahydroisoquinolines with alkylboronic acids. Organic and Biomolecular Chemistry, 0, , .	2.8	0
1166	Pyromellitic acid grafted to cross-linked LDH by dendritic units: An efficient and recyclable heterogeneous catalyst for green synthesis of 2,3-dihydro quinazoline and dihydropyrimidinones derivatives. Heliyon, 2023, 9, e20978.	3.2	1
1167	State-of-the-art for the development of Cu-based heterogeneous catalysts for efficient utilization of furfural to value chemicals via liquid-phase and gas-phase reactions. Catalysis Reviews - Science and Engineering, 0, , 1-56.	12.9	0
1168	Asymmetric Nickel-Catalyzed Reactions. , 2023, , .		0
1170	Direct Two Carbon Ring Expansion of 1-Indanones with Ynones: An Eco-Friendly, One-Flask Approach to Functionally Enriched 5H-Benzo[7]annulenes. Journal of Organic Chemistry, 2023, 88, 15452-15460.	3.2	0
1171	Multi-Functionality of Methanol in Sustainable Catalysis: Beyond Methanol Economy. ACS Catalysis, 2023, 13, 15013-15053.	11.2	2
1172	Theoretical Foundations of Photocatalysis. Green Chemistry and Sustainable Technology, 2024, , 61-95.	0.7	0
1173	The joint effort of enzyme technology and flow chemistry to bring biocatalytic processes to the next level of sustainability, efficiency and productivity. Journal of Flow Chemistry, 0, , .	1.9	0
1174	Synthesis of novel nitro functionalized 1,4-dihydropyridines under neat condition: Spectral characterization, crystallographic study and ADMET predictions. Journal of Molecular Structure, 2024, 1300, 137193.	3.6	0
1175	A Commentary on Co-Processed API as a Promising Approach to Improve Sustainability for the Pharmaceutical Industry. Journal of Pharmaceutical Sciences, 2024, 113, 306-313.	3.3	1

#	Article	IF	CITATIONS
1176	Cholinesterase inhibitory activity and regioselective synthesis of spiropyrrolidinoindole integrated ferrocene hybrid heterocycles via multicomponent cycloaddition reaction. Journal of King Saud University - Science, 2024, 36, 103027.	3.5	0
1177	One-Flow Operation via 4-Bromopyridine Enables Flash Synthesis of AChE Inhibitor. Synthesis, 2024, 56, 821-827.	2.3	0
1178	Tandem (4 + 3)-Annulation of Aziridines: Stereoselective Access to Fused Azepinoindoles. Organic Letters, 0, , .	4.6	0
1179	One pot three component synthesis of α-methylated ketones from secondary and primary aryl alcohols. New Journal of Chemistry, 0, , .	2.8	0
1180	Designed Local Electric Fields─Promising Tools for Enzyme Engineering. Jacs Au, 2023, 3, 3259-3269.	7.9	2
1181	Synthesis of Indoles via Sigmatropic Rearrangements and Olefin Isomerization. Advanced Synthesis and Catalysis, 2024, 366, 465-472.	4.3	0
1182	Upgrading Epoxy Supports for Enzyme Immobilization by Affinity Function Doping—A Case Study with Phenylalanine Ammonia-Lyase from Petroselinum crispum. Catalysts, 2024, 14, 14.	3.5	0
1183	Microwave assisted synthesis of new quinolone and coumarin molecular hybrids: SAR, molecular modelling studies as dual antagonists and its antimicrobial evaluation targeting bacterial and fungal infections. Journal of Molecular Structure, 2024, 1303, 137482.	3.6	0
1184	Tunable Regioselective Allylic Alkylation/Iodination of Imidazoheterocycles in Water. Journal of Organic Chemistry, 2024, 89, 1492-1504.	3.2	0
1185	Enantioselective cross-dehydrogenative coupling enabled by organocatalysis. Green Chemistry, 2024, 26, 1846-1875.	9.0	1
1186	The recent development of βâ€cyclodextrinâ€based catalysts system in click reactions: A review. Applied Organometallic Chemistry, 2024, 38, .	3.5	1
1187	Sustainable synthetic endeavors of pharmaceutically active Schiff bases and their metal complexes: A review on recent reports. Tetrahedron, 2024, 153, 133836.	1.9	1
1188	The green chemistry paradigm in modern organic synthesis. Russian Chemical Reviews, 2023, 92, RCR5104.	6.5	0
1189	Green-route manufacturing towards future industrialization of metal halide perovskite nanocrystals. Chemical Communications, 2024, 60, 1389-1403.	4.1	0
1190	A comprehensive exploration of diverse green analytical techniques and their influence in different analytical fields. Separation Science Plus, 2024, 7, .	0.6	0
1191	A tutorial review for research laboratories to support the vital path toward inherently sustainable and green synthetic chemistry. , 2024, 2, 578-607.		0
1192	Catalytic conversion of glycerol to formic acid under mild condition over an iron-based catalytic system. E3S Web of Conferences, 2024, 479, 04006.	0.5	0
1193	Trivalent Nickel-Catalyzing Electroconversion of Alcohols to Carboxylic Acids. Journal of the American Chemical Society, 2024, 146, 4814-4821.	13.7	0

#	Article	IF	CITATIONS
1194	Mechanistic study on phytase stabilization using alginate encapsulation. Food Hydrocolloids, 2024, 151, 109837.	10.7	0
1195	Oxidation of Alcohols in Continuous Flow with a Solid Phase Hypervalent Iodine Catalyst. Chemistry - A European Journal, 2024, 30, .	3.3	0
1196	Metal-organic frameworks as potential catalysts for biodiesel production and biomass conversion: Mechanism and characteristics. Industrial Crops and Products, 2024, 211, 118232.	5.2	0
1197	Sustainable and Environmentally Friendly Approach for the Synthesis of Azoxybenzenes from the Reductive Dimerization of Nitrosobenzenes and the Oxidation of Anilines. ACS Omega, 2024, 9, 11494-11499.	3.5	0
1198	Electrochemical synthesis of 2,3-dihydroquinazolin-4(1H)-ones from 2-aminobenzamides with ethylene glycol as the methylene source. Molecular Catalysis, 2024, 557, 113880.	2.0	0
1200	Hydrohalogenation of Electron-Deficient Alkyne in Aqueous Solution. Hans Journal of Chemical Engineering and Technology, 2024, 14, 115-122.	0.0	0
1201	Spatial compartmentalisation effects for multifunctionality catalysis: From dual sites to cascade reactions. , 2024, 2, 1-13.		0
1203	Exploring tricycle acridines as prospective urease inhibitors: synthesis via microwave assistance, in vitro evaluation, kinetic profiling, and molecular docking investigations. Journal of the Iranian Chemical Society, 2024, 21, 1163-1183.	2.2	0
1204	A Novel One-Pot Three-Component Approach to Orthoaminocarbonitrile Tetrahydronaphthalenes Using Triethylamine (Et_3N) as a Highly Efficient and Homogeneous Catalyst Under Mild Conditions and Investigating Its Anti-cancer Properties Through Molecular Docking Studies and Calculations. Qeios, 0, , .	0.0	0