Comparison of maternal abdominal subcutaneous fat the markers for pregnancy outcomes: A stratified cohort str

Australian and New Zealand Journal of Obstetrics and Gynaeco 52, 420-426

DOI: 10.1111/j.1479-828x.2012.01471.x

Citation Report

#	Article	IF	CITATIONS
1	The increasing impact of maternal obesity on obstetric practice. Australian and New Zealand Journal of Obstetrics and Gynaecology, 2012, 52, 409-411.	1.0	4
2	The independent effects of second hand smoke exposure and maternal body mass index on the anthropometric measurements of the newborn. BMC Public Health, 2013, 13, 1058.	2.9	24
3	Fundal Height Growth Curve for Underweight and Overweight and Obese Pregnant Women in Thai Population. ISRN Obstetrics & Gynecology, 2013, 2013, 1-8.	1.2	7
4	Weight gain, total fat gain and regional fat gain during pregnancy and the association with gestational diabetes: a population-based cohort study. International Journal of Obesity, 2014, 38, 76-81.	3.4	53
5	Longitudinal variance of visceral fat thickness in pregnant adolescents. Australian and New Zealand Journal of Obstetrics and Gynaecology, 2014, 54, 91-93.	1.0	2
7	The independent effects of maternal obesity and gestational diabetes on the pregnancy outcomes. BMC Endocrine Disorders, 2014, 14, 47.	2.2	68
8	Abdominal visceral adiposity influences CD4+ T cell cytokine production in pregnancy. Cytokine, 2015, 71, 405-408.	3.2	7
9	Maternal prepregnancy waist circumference and BMI in relation to gestational weight gain and breastfeeding behavior: the CARDIA study. American Journal of Clinical Nutrition, 2015, 102, 393-401.	4.7	12
10	CRP, HbA1c, lipid, and biochemical parameters and their relation with maternal visceral adipose tissue and subcutaneous fat tissue thickness. Turkish Journal of Medical Sciences, 2016, 46, 6-12.	0.9	3
11	Anaesthetic Management of Obese Parturients: What is the Evidence Supporting Practice Guidelines?. Anaesthesia and Intensive Care, 2016, 44, 552-559.	0.7	5
12	Ultrasound in the management of obesity in pregnancy. Australasian Journal of Ultrasound in Medicine, 2016, 19, 45-46.	0.6	0
13	Maternal abdominal subcutaneous fat thickness as a predictor for adverse pregnancy outcome: a longitudinal cohort study. BJOC: an International Journal of Obstetrics and Gynaecology, 2016, 123, 225-232.	2.3	39
14	Gestational carrier BMI and reproductive, fetal and neonatal outcomes: are the risks the same with increasing obesity?. International Journal of Obesity, 2016, 40, 171-175.	3.4	14
15	Changes in maternal abdominal subcutaneous fat layers using ultrasound: A longitudinal study. Obesity Research and Clinical Practice, 2017, 11, 655-664.	1.8	12
16	The mutual effect of pre-pregnancy body mass index, waist circumference and gestational weight gain on obesity-related adverse pregnancy outcomes: A birth cohort study. PLoS ONE, 2017, 12, e0177418.	2.5	39
17	Simple Screening Using Ultrasonography for Prediction of Gestational Diabetes Mellitus. Diabetes and Metabolism Journal, 2017, 41, 438.	4.7	1
18	A novel evaluation of density differences in subcutaneous abdominal adipose tissue layers in pregnancy using elastography. Australasian Journal of Ultrasound in Medicine, 2018, 21, 227-233.	0.6	1
19	Maternal central obesity and birth size: a Mendelian randomization analysis. Lipids in Health and Disease, 2018, 17, 181.	3.0	13

#	Article	IF	CITATIONS
20	Relationship maternal subcutaneous adipose tissue thickness and development of gestational diabetes mellitus. Interventional Medicine & Applied Science, 2018, 10, 13-18.	0.2	10
21	Anthropometric and ultrasound measures of maternal adiposity in the first trimester of pregnancy. Australasian Journal of Ultrasound in Medicine, 2018, 21, 147-155.	0.6	Ο
22	Influence of metabolic syndrome on female fertility and inÂvitro fertilization outcomes in PCOS women. American Journal of Obstetrics and Gynecology, 2019, 221, 138.e1-138.e12.	1.3	61
23	Effects of central obesity on maternal complications in Korean women of reproductive age. Obesity Research and Clinical Practice, 2019, 13, 156-163.	1.8	12
24	Increased maternal abdominal subcutaneous fat thickness and body mass index are associated with increased cesarean delivery: A prospective cohort study. Acta Obstetricia Et Gynecologica Scandinavica, 2019, 98, 196-204.	2.8	5
25	Increasing body mass index and abdominal subcutaneous fat thickness are associated with increased skin-to-epidural space distance in pregnant women. International Journal of Obstetric Anesthesia, 2019, 38, 59-65.	0.4	7
26	How to improve health literacy to reduce short- and long-term consequences of maternal obesity?. Journal of Maternal-Fetal and Neonatal Medicine, 2019, 32, 2935-2942.	1.5	8
27	Risk factors for failed induction of labor among pregnant women with Class III obesity. Acta Obstetricia Et Gynecologica Scandinavica, 2020, 99, 637-643.	2.8	7
28	Impact of maternal central adiposity on infant anthropometry and perinatal morbidity: A systematic review. European Journal of Obstetrics and Gynecology and Reproductive Biology: X, 2020, 8, 100117.	1.1	7
29	Association of maternal central adiposity measured by ultrasound in early mid pregnancy with infant birth size. Scientific Reports, 2020, 10, 19702.	3.3	6
30	Ultrasound evaluation of subcutaneous and visceral abdominal fat as a predictor of gestational diabetes mellitus: a systematic review. Journal of Maternal-Fetal and Neonatal Medicine, 2022, 35, 2216-2226.	1.5	7
31	Accuracy of automated threeâ€dimensional ultrasound imaging technique for fetal head biometry. Ultrasound in Obstetrics and Gynecology, 2021, 57, 798-803.	1.7	19
32	Associations of ultrasound estimated early mid pregnancy visceral and subcutaneous fat depths and early pregnancy BMI with adverse neonatal outcomes. Scientific Reports, 2021, 11, 4612.	3.3	1
33	Adipose tissue function in healthy pregnancy, gestational diabetes mellitus and pre-eclampsia. European Journal of Clinical Nutrition, 2021, 75, 1745-1756.	2.9	26
34	The association of general obesity, central obesity and visceral body fat with the risk of gestational diabetes mellitus: Evidence from a systematic review and meta-analysis. Obesity Research and Clinical Practice, 2021, 15, 425-430.	1.8	38
35	Pilot Study Examining Pregnancy-specific Equations to Estimate Percent Body Fat in an Overweight/obese Pregnant Hispanic Population. Californian Journal of Health Promotion, 2016, 14, 22-30.	0.3	1
36	Ultrasound estimated subcutaneous and visceral adipose tissue thicknesses and risk of pre-eclampsia. Scientific Reports, 2021, 11, 22740.	3.3	3
37	Evaluation of ultrasound measurements of abdominal fat for the prediction of gestational diabetes in the first and second trimesters of pregnancy. Journal of Maternal-Fetal and Neonatal Medicine, 2022, 35, 9821-9829	1.5	1

CITATION REPORT

_

CITATION REPORT

#	Article	IF	CITATIONS
38	Association between maternal adiposity measures and adverse maternal outcomes of pregnancy: Systematic review and metaâ€analysis. Obesity Reviews, 2022, 23, e13449.	6.5	18
39	A prospective study using an individualized nomogram to predict the success rate of external cephalic version. Scientific Reports, 2022, 12, .	3.3	5
40	Association between maternal adiposity measures and infant health outcomes: A systematic review and metaâ€analysis. Obesity Reviews, 2022, 23, .	6.5	4
41	Association of body composition in early pregnancy with gestational diabetes mellitus: A meta-analysis. PLoS ONE, 2022, 17, e0271068.	2.5	4
42	Evaluating the Adipose Tissue Depth as a Predictor Factor for Gestational Diabetes in Later Pregnancy—A Systematic Review. Biomedicines, 2023, 11, 1492.	3.2	1