Adipocytes Produce Aldosterone Through Calcineurin-

Hypertension 59, 1069-1078 DOI: 10.1161/hypertensionaha.111.190223

Citation Report

#	Article	IF	CITATIONS
1	P-Selectin Glycoprotein Ligand-1: A Cellular Link Between Perivascular Adipose Inflammation and Endothelial Dysfunction. Diabetes, 2012, 61, 3070-3071.	0.3	2
2	The Ubiquitous Mineralocorticoid Receptor: Clinical Implications. Current Hypertension Reports, 2012, 14, 573-580.	1.5	102
3	The Renin Angiotensin Aldosterone System and Insulin Resistance in Humans. Current Hypertension Reports, 2013, 15, 59-70.	1.5	158
4	Resistant Hypertension. , 2013, , .		3
5	Aldosterone deficiency prevents high-fat-feeding-induced hyperglycaemia and adipocyte dysfunction in mice. Diabetologia, 2013, 56, 901-910.	2.9	31
6	Animal Models in Obesity and Hypertension. Current Hypertension Reports, 2013, 15, 190-195.	1.5	17
7	Effects of canrenone in patients with metabolic syndrome. Expert Opinion on Pharmacotherapy, 2013, 14, 2161-2169.	0.9	15
8	Hyperaldosteronism as a Common Cause of Resistant Hypertension. Annual Review of Medicine, 2013, 64, 233-247.	5.0	86
9	Aldosterone and Myocardial Extracellular Matrix Expansion in Type 2 Diabetes Mellitus. American Journal of Cardiology, 2013, 112, 73-78.	0.7	38
10	The influence of sodium- and calcium-regulatory hormone interventions on adipocytokines in obesity and diabetes. Metabolism: Clinical and Experimental, 2013, 62, 539-547.	1.5	11
11	The Role of the Renin-Angiotensin-Aldosterone System in Obesity-Related Renal Diseases. Seminars in Nephrology, 2013, 33, 44-53.	0.6	119
12	Vascular Actions of Aldosterone. Journal of Vascular Research, 2013, 50, 89-99.	0.6	140
13	Exercise Training and Cardiometabolic Diseases: Focus on the Vascular System. Current Hypertension Reports, 2013, 15, 204-214.	1.5	57
14	Vascular Function. , 2013, , 45-65.		0
15	Role of mineralocorticoid receptor and renin–angiotensin–aldosterone system in adipocyte dysfunction and obesity. Journal of Steroid Biochemistry and Molecular Biology, 2013, 137, 99-106.	1.2	39
16	Indications for renal denervation: a balanced approach?. Nature Reviews Cardiology, 2013, 10, 434-436.	6.1	4
17	Human coronary artery perivascular adipocytes overexpress genes responsible for regulating vascular morphology, inflammation, and hemostasis. Physiological Genomics, 2013, 45, 697-709.	1.0	92
18	Hypertension in Metabolic Syndrome: Vascular Pathophysiology. International Journal of Hypertension, 2013, 2013, 1-15.	0.5	68

#	Article	IF	CITATIONS
19	Abnormal Aldosterone Physiology and Cardiometabolic Risk Factors. Hypertension, 2013, 61, 886-893.	1.3	47
20	Mineralocorticoid receptors modulate vascular endothelial function in human obesity. Clinical Science, 2013, 125, 513-520.	1.8	39
21	QRFP induces aldosterone production via PKC and T-type calcium channel-mediated pathways in human adrenocortical cells: evidence for a novel role of GPR103. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E1049-E1058.	1.8	24
22	Obesity and cardiovascular disease: role of adipose tissue, inflammation, and the renin-angiotensin-aldosterone system. Hormone Molecular Biology and Clinical Investigation, 2013, 15, 49-57.	0.3	38
23	Steroid hormones and the stroma-vascular cells of the adipose tissue. Hormone Molecular Biology and Clinical Investigation, 2013, 15, 5-10.	0.3	2
24	The mineralocorticoid receptor: a new player controlling energy homeostasis. Hormone Molecular Biology and Clinical Investigation, 2013, 15, 59-69.	0.3	5
25	Increased urinary aldosterone excretion is associated with subcutaneous not visceral, adipose tissue area in obese individuals: a possible manifestation of dysfunctional subcutaneous adipose tissue. Clinical Endocrinology, 2013, 79, 510-516.	1.2	12
26	Changes in serum aldosterone are associated with changes in obesity-related factors in normotensive overweight and obese young adults. Hypertension Research, 2013, 36, 895-901.	1.5	19
27	Mineralocorticoid receptor throughout the vessel: a key to vascular dysfunction in obesity. European Heart Journal, 2013, 34, 3475-3477.	1.0	12
28	Differential effects of renin–angiotensin–aldosterone system inhibition, sympathoinhibition and diuretic therapy on endothelial function and blood pressure in obesity-related hypertension. Journal of Hypertension, 2013, 31, 393-403.	0.3	44
29	Inhibitory effect of microRNA-24 on fatty acid-binding protein expression on 3T3-L1 adipocyte differentiation. Genetics and Molecular Research, 2013, 12, 5267-5277.	0.3	23
30	The influence of perivascular adipose tissue on vascular homeostasis. Vascular Health and Risk Management, 2013, 9, 105.	1.0	139
31	Hsp90 Blockers Inhibit Adipocyte Differentiation and Fat Mass Accumulation. PLoS ONE, 2014, 9, e94127.	1.1	30
32	Obesity in kidney disease: A heavyweight opponent. World Journal of Nephrology, 2014, 3, 50.	0.8	33
33	The involvement of aldosterone on vascular insulin resistance: implications in obesity and type 2 diabetes. Diabetology and Metabolic Syndrome, 2014, 6, 90.	1.2	35
34	Tacrolimus-induced hypertension and nephrotoxicity in Fawn-Hooded rats are attenuated by dual inhibition of renin–angiotensin system. Hypertension Research, 2014, 37, 724-732.	1.5	19
35	Adipose Tissue and Adrenal Glands: Novel Pathophysiological Mechanisms and Clinical Applications. International Journal of Endocrinology, 2014, 2014, 1-8.	0.6	37
36	A role for tissue plasminogen activator in thrombotic thrombocytopenic purpura. Medical Hypotheses, 2014, 83, 747-750.	0.8	4

	CHATION	REPORT	
#	Article	IF	Citations
37	A Comprehensive Review on Metabolic Syndrome. Cardiology Research and Practice, 2014, 2014, 1-21.	0.5	1,376
38	A critical review of the evidence supporting aldosterone in the etiology and its blockade in the treatment of obesity-associated hypertension. Journal of Human Hypertension, 2014, 28, 3-9.	1.0	22
39	Crosstalk between adipose tissue and blood vessels in cardiometabolic syndrome: implication of steroid hormone receptors (MR/GR). Hormone Molecular Biology and Clinical Investigation, 2014, 19, 89-101.	0.3	22
40	Adipose tissue inflammation and cancer cachexia: the role of steroid hormones. Hormone Molecular Biology and Clinical Investigation, 2014, 17, 5-12.	0.3	10
41	Mineralocorticoid receptor in adipocytes and macrophages: A promising target to fight metabolic syndrome. Steroids, 2014, 91, 46-53.	0.8	58
42	Aldosterone and the kidney: a rapidly moving frontier (an update). Nephrology Dialysis Transplantation, 2014, 29, 2012-2019.	0.4	12
43	Resistant Hypertension in Diabetes Mellitus. Current Diabetes Reports, 2014, 14, 516.	1.7	8
44	Obesity-Associated Hypertension. Hypertension, 2014, 64, 215-221.	1.3	101
45	Markers of low activity of tissue plasminogen activator/plasmin are prevalent in schizophrenia patients. Schizophrenia Research, 2014, 159, 118-123.	1.1	18
46	New strategies for heart failure with preserved ejection fraction: the importance of targeted therapies for heart failure phenotypes. European Heart Journal, 2014, 35, 2797-2815.	1.0	304
47	Gax inhibits perivascular preadipocyte biofunction mediated by IGF-1 induced FAK/Pyk2 and ERK2 cooperative pathways. Cellular Signalling, 2014, 26, 3036-3045.	1.7	5
48	Hypertensive Vasculopathy. , 2014, , 1-28.		0
49	The Multifaceted Mineralocorticoid Receptor. , 2014, 4, 965-994.		231
50	De Novo Synthesis of Steroids and Oxysterols in Adipocytes. Journal of Biological Chemistry, 2014, 289, 747-764.	1.6	80
51	Reactive Oxygen Species, Vascular Noxs, and Hypertension: Focus on Translational and Clinical Research. Antioxidants and Redox Signaling, 2014, 20, 164-182.	2.5	222
52	New concepts in white adipose tissue physiology. Brazilian Journal of Medical and Biological Research, 2014, 47, 192-205.	0.7	92
53	Atlas of tissue renin-angiotensin-aldosterone system in human: A transcriptomic meta-analysis. Scientific Reports, 2015, 5, 10035.	1.6	53
54	Cortisol dysregulation in obesity-related metabolic disorders. Current Opinion in Endocrinology, Diabetes and Obesity, 2015, 22, 143-149.	1.2	40

#	Article	IF	CITATIONS
55	Epigallocatechin Gallate: A Review of Its Beneficial Properties to Prevent Metabolic Syndrome. Nutrients, 2015, 7, 5443-5468.	1.7	252
56	Spironolactone treatment attenuates vascular dysfunction in type 2 diabetic mice by decreasing oxidative stress and restoring NO/GC signaling. Frontiers in Physiology, 2015, 6, 269.	1.3	31
57	Modulation of Immunity and Inflammation by the Mineralocorticoid Receptor and Aldosterone. BioMed Research International, 2015, 2015, 1-14.	0.9	51
58	The Use of <i>Cissus quadrangularis</i> (CQR-300) in the Management of Components of Metabolic Syndrome in Overweight and Obese Participants. Natural Product Communications, 2015, 10, 1934578X1501000.	0.2	5
59	Cholesteryl Ester-Transfer Protein Inhibitors Stimulate Aldosterone Biosynthesis in Adipocytes through Nox-Dependent Processes. Journal of Pharmacology and Experimental Therapeutics, 2015, 353, 27-34.	1.3	19
60	Aldosterone and the Mineralocorticoid Receptor: Risk Factors for Cardiometabolic Disorders. Current Hypertension Reports, 2015, 17, 52.	1.5	24
61	High-fat diet decreases energy expenditure and expression of genes controlling lipid metabolism, mitochondrial function and skeletal system development in the adipose tissue, along with increased expression of extracellular matrix remodelling- and inflammation-related genes. British Journal of Nutrition, 2015, 113, 867-877.	1.2	100
62	Reviving the use of aldosterone inhibitors in treating hypertension in obesity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R1065-R1067.	0.9	7
63	Aldosterone Predicts Cardiovascular, Renal, and Metabolic Disease in the General Community: A 4â€Year Followâ€Up. Journal of the American Heart Association, 2015, 4, .	1.6	22
64	Effects of high doses of enalapril and benazepril on the pharmacologically activated renin-angiotensin-aldosterone system in clinically normal dogs. American Journal of Veterinary Research, 2015, 76, 1041-1050.	0.3	23
65	Hypertensive Vasculopathy. , 2015, , 1595-1618.		0
66	Mineralocorticoid Receptors: An Appealing Target to Treat Coronary Microvascular Dysfunction in Diabetes: Figure 1. Diabetes, 2015, 64, 3-5.	0.3	9
67	Diabetes impairs the vascular effects of aldosterone mediated by G protein-coupled estrogen receptor activation. Frontiers in Pharmacology, 2015, 6, 34.	1.6	23
68	Chemerin Regulates Crosstalk Between Adipocytes and Vascular Cells Through Nox. Hypertension, 2015, 66, 657-666.	1.3	90
69	Circulating Aldosterone and Natriuretic Peptides in the General Community. Hypertension, 2015, 65, 45-53.	1.3	74
70	Adipocyte Mineralocorticoid Receptor Activation Leads to Metabolic Syndrome and Induction of Prostaglandin D2 Synthase. Hypertension, 2015, 66, 149-157.	1.3	91
71	Why do humans have two glucocorticoids: A question of intestinal fortitude. Steroids, 2015, 102, 32-38.	0.8	15
72	Vascular injury in diabetic db/db mice is ameliorated by atorvastatin: role of Rac1/2-sensitive Nox-dependent pathways. Clinical Science, 2015, 128, 411-423.	1.8	41

#	Article	IF	CITATIONS
73	Obesity and Insulin Resistance in Resistant Hypertension: Implications for the Kidney. Advances in Chronic Kidney Disease, 2015, 22, 211-217.	0.6	51
74	Interleukin-33/ST2 system attenuates aldosterone-induced adipogenesis and inflammation. Molecular and Cellular Endocrinology, 2015, 411, 20-27.	1.6	26
75	Anti-hypertensive Drug Treatment of Patients with and the Metabolic Syndrome and Obesity: a Review of Evidence, Meta-Analysis, Post hoc and Guidelines Publications. Current Hypertension Reports, 2015, 17, 558.	1.5	37
76	Steroid biosynthesis in adipose tissue. Steroids, 2015, 103, 89-104.	0.8	82
77	Discovery of 4-Aryl-5,6,7,8-tetrahydroisoquinolines as Potent, Selective, and Orally Active Aldosterone Synthase (CYP11B2) Inhibitors: In Vivo Evaluation in Rodents and Cynomolgus Monkeys. Journal of Medicinal Chemistry, 2015, 58, 8054-8065.	2.9	34
78	What Is the Role of the Adipocyte Mineralocorticoid Receptor in the Metabolic Syndrome?. Hypertension, 2015, 66, 17-19.	1.3	11
79	RAAS Activation Is Associated With Visceral Adiposity and Insulin Resistance Among HIV-infected Patients. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 2873-2882.	1.8	75
80	Obesity and renovascular disease. American Journal of Physiology - Renal Physiology, 2015, 309, F273-F279.	1.3	20
81	Adipocyte-Derived Hormone Leptin Is a Direct Regulator of Aldosterone Secretion, Which Promotes Endothelial Dysfunction and Cardiac Fibrosis. Circulation, 2015, 132, 2134-2145.	1.6	257
82	Mineralocorticoid Receptor Antagonists for the Treatment of Hypertension and the Metabolic Syndrome. Hypertension, 2015, 65, 41-42.	1.3	6
83	Updated survey of the steroid-converting enzymes in human adipose tissues. Journal of Steroid Biochemistry and Molecular Biology, 2015, 147, 56-69.	1.2	57
84	Involvement of IGF-1 and MEOX2 in PI3K/Akt1/2 and ERK1/2 pathways mediated proliferation and differentiation of perivascular adipocytes. Experimental Cell Research, 2015, 331, 82-96.	1.2	28
85	Insulin resistance in chronic kidney disease is ameliorated by spironolactone in rats and humans. Kidney International, 2015, 87, 749-760.	2.6	33
86	Approach to the Patient with Hypertensive Nephrosclerosis. , 2015, , 455-469.		О
87	Endothelial Microparticle-Derived Reactive Oxygen Species: Role in Endothelial Signaling and Vascular Function. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-10.	1.9	53
88	Does Aldosterone Play a Significant Role for Regulation of Vascular Tone?. Journal of Cardiovascular Pharmacology, 2016, 68, 1-10.	0.8	15
89	Transient Receptor Potential Melastatin 7 Cation Channel Kinase. Hypertension, 2016, 67, 763-773.	1.3	39
90	B-Type Natriuretic Peptide, Aldosterone, and Fluid Management in ARDS. Chest, 2016, 150, 102-111.	0.4	17

#	Article	IF	CITATIONS
91	Adipocyte-Specific Mineralocorticoid Receptor Overexpression in Mice Is Associated With Metabolic Syndrome and Vascular Dysfunction: Role of Redox-Sensitive PKG-1 and Rho Kinase. Diabetes, 2016, 65, 2392-2403.	0.3	46
92	Spironolactone Prevents Endothelial Nitric Oxide Synthase Uncoupling and Vascular Dysfunction Induced by β-Adrenergic Overstimulation. Hypertension, 2016, 68, 726-735.	1.3	29
93	Body Mass Index Predicts 24-Hour Urinary Aldosterone Levels in Patients With Resistant Hypertension. Hypertension, 2016, 68, 995-1003.	1.3	42
94	Angiotensin II receptor blocker combined with eplerenone or hydrochlorothiazide for hypertensive patients with diabetes mellitus. Clinical and Experimental Hypertension, 2016, 38, 565-570.	0.5	12
95	Adipocytes, aldosterone and obesity-related hypertension. Journal of Molecular Endocrinology, 2016, 57, F7-F21.	1.1	51
96	The endothelial mineralocorticoid receptor. Current Opinion in Nephrology and Hypertension, 2016, 26, 1.	1.0	33
97	Utilization of antihypertensive drugs in obesity-related hypertension: a retrospective observational study in a cohort of patients from Southern Italy. BMC Pharmacology & amp; Toxicology, 2016, 17, 9.	1.0	7
98	Common links between metabolic syndrome and inflammatory bowel disease: Current overview and future perspectives. Pharmacological Reports, 2016, 68, 837-846.	1.5	43
99	Vascular Mineralocorticoid Receptors. Hypertension, 2016, 68, 6-10.	1.3	28
101	Protecting the Heart in Obesity: Role of ACE2 and Its Partners. Diabetes, 2016, 65, 19-21.	0.3	8
102	Emerging Roles of the Mineralocorticoid Receptor in Pathology: Toward New Paradigms in Clinical Pharmacology. Pharmacological Reviews, 2016, 68, 49-75.	7.1	247
103	Comparison of eplerenone and spironolactone for the treatment of primary aldosteronism. Hypertension Research, 2016, 39, 133-137.	1.5	62
104	The K ⁺ channel TASK1 modulates βâ€edrenergic response in brown adipose tissue through the mineralocorticoid receptor pathway. FASEB Journal, 2016, 30, 909-922.	0.2	33
105	Aldosterone Production and Signaling Dysregulation in Obesity. Current Hypertension Reports, 2016, 18, 20.	1.5	66
106	Aldosterone and type 2 diabetes mellitus. Hormone Molecular Biology and Clinical Investigation, 2016, 26, 53-59.	0.3	13
107	Aldosterone, Renin, and Diabetes Mellitus in African Americans: The Jackson Heart Study. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 1770-1778.	1.8	43
108	Leptin Induces Hypertension and Endothelial Dysfunction via Aldosterone-Dependent Mechanisms in Obese Female Mice. Hypertension, 2016, 67, 1020-1028.	1.3	129
109	Vascular Fibrosis in Aging and Hypertension: Molecular Mechanisms and Clinical Implications. Canadian Journal of Cardiology, 2016, 32, 659-668.	0.8	298

#	Article	IF	CITATIONS
110	Impact of Adiposity on Incident Hypertension Is Modified by Insulin Resistance in Adults. Hypertension, 2016, 67, 56-62.	1.3	36
111	Brown Adipose Tissue Regulates Small Artery Function Through NADPH Oxidase 4–Derived Hydrogen Peroxide and Redox-Sensitive Protein Kinase G-1α. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 455-465.	1.1	43
112	Pathophysiology and Potential Non-Pharmacologic Treatments of Obesity or Kidney Disease Associated Refractory Hypertension. Current Hypertension Reports, 2017, 19, 18.	1.5	8
113	The Link Between Adipose Tissue Renin-Angiotensin-Aldosterone System Signaling and Obesity-Associated Hypertension. Physiology, 2017, 32, 197-209.	1.6	103
114	A Brief Introduction into the Renin-Angiotensin-Aldosterone System: New and Old Techniques. Methods in Molecular Biology, 2017, 1614, 1-19.	0.4	4
115	The Aldosterone Synthase Inhibitor FAD286 is Suitable for Lowering Aldosterone Levels in ZDF Rats but not in db/db Mice. Hormone and Metabolic Research, 2017, 49, 466-471.	0.7	4
116	Obesity-Associated Hypertension: the Upcoming Phenotype in African-American Women. Current Hypertension Reports, 2017, 19, 41.	1.5	6
117	Perivascular adipose tissue as a regulator of vascular disease pathogenesis: identifying novel therapeutic targets. British Journal of Pharmacology, 2017, 174, 3411-3424.	2.7	54
118	Glucocorticoids and gut bacteria: "The GALF Hypothesis―in the metagenomic era. Steroids, 2017, 125, 1-13.	0.8	47
119	High glucose increases the formation and pro-oxidative activity of endothelial microparticles. Diabetologia, 2017, 60, 1791-1800.	2.9	79
120	Obesity and kidney disease: from population toÂbasic science and the search for new therapeuticÂtargets. Kidney International, 2017, 92, 313-323.	2.6	93
121	The impacts of the interaction of genetic variation, CYP11l̂22 and NEDD4L, with sodium intake on pediatric obesity with gender difference: a 3-year panel study. International Journal of Obesity, 2017, 41, 542-550.	1.6	10
122	The metabolic syndrome and chronic kidney disease. Translational Research, 2017, 183, 14-25.	2.2	95
123	Genomic and rapid effects of aldosterone: what we know and do not know thus far. Heart Failure Reviews, 2017, 22, 65-89.	1.7	47
124	Obesity-stimulated aldosterone release is not related to an S1P-dependent mechanism. Journal of Endocrinology, 2017, 235, 251-265.	1.2	1
125	Tauroursodeoxycholic Acid Reduces Arterial Stiffness and Improves Endothelial Dysfunction in Type 2 Diabetic Mice. Journal of Vascular Research, 2017, 54, 280-287.	0.6	21
126	Renal Nerves and Longâ€Term Control of Arterial Pressure. , 2017, 7, 263-320.		76
127	Regulation and Functions of the Reninâ€Angiotensin System in White and Brown Adipose Tissue. , 2017, 7, 1137-1150.		83

#	Article	IF	Citations
128	Impact of Adrenal Steroids on Regulation of Adipose Tissue. , 2017, 7, 1425-1447.		37
129	Elevated Steroid Hormone Production in the db/db Mouse Model of Obesity and Type 2 Diabetes. Hormone and Metabolic Research, 2017, 49, 43-49.	0.7	28
130	Use of Aldosterone Antagonists for Treatment of Uncontrolled Resistant Hypertension. American Journal of Hypertension, 2017, 30, 103-109.	1.0	44
131	The Renin Angiotensin Aldosterone System in Obesity and Hypertension. Medical Clinics of North America, 2017, 101, 129-137.	1.1	118
132	Derangements in adrenergic–adipokine signalling establish a neurohormonal basis for obesityâ€related heart failure with a preserved ejection fraction. European Journal of Heart Failure, 2018, 20, 873-878.	2.9	34
133	Vascular dysfunction in obese diabetic db/db mice involves the interplay between aldosterone/mineralocorticoid receptor and Rho kinase signaling. Scientific Reports, 2018, 8, 2952.	1.6	32
134	Obese phenotype and natriuretic peptides in patients with heart failure with preserved ejection fraction. Clinical Chemistry and Laboratory Medicine, 2018, 56, 1015-1025.	1.4	18
135	Aldosterone Is Not Associated With Metabolic and Microvascular Insulin Sensitivity in Abdominally Obese Men. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 759-767.	1.8	1
136	Do sodiumâ€glucose coâ€transporterâ€2 inhibitors prevent heart failure with a preserved ejection fraction by counterbalancing the effects of leptin? A novel hypothesis. Diabetes, Obesity and Metabolism, 2018, 20, 1361-1366.	2.2	75
137	Do Most Obese People with Exercise Intolerance and a Normal Ejection Fraction Have Treatable Heart Failure?. American Journal of Medicine, 2018, 131, 863-864.	0.6	7
138	Obesity-Related Heart Failure With a Preserved Ejection Fraction. JACC: Heart Failure, 2018, 6, 633-639.	1.9	108
139	Bariatric Surgery and Hypertension. American Journal of Hypertension, 2018, 31, 11-17.	1.0	52
140	The regulation of aldosterone secretion by leptin. Current Opinion in Nephrology and Hypertension, 2018, 27, 63-69.	1.0	53
141	Aldosterone is involved in the pathogenesis of obesity-related glomerulopathy through activation of Wnt/β-catenin signaling in podocytes. Molecular Medicine Reports, 2018, 17, 4589-4598.	1.1	13
142	Periarterial fat from two human vascular beds is not a source of aldosterone to promote vasoconstriction. American Journal of Physiology - Renal Physiology, 2018, 315, F1670-F1682.	1.3	11
143	Perivascular adipose tissue (PVAT) in atherosclerosis: a double-edged sword. Cardiovascular Diabetology, 2018, 17, 134.	2.7	119
144	Epicardial Adipose Tissue May Mediate Deleterious Effects of Obesity and Inflammation on the Myocardium. Journal of the American College of Cardiology, 2018, 71, 2360-2372.	1.2	356
145	The Renin-Angiotensin-Aldosterone System as a Therapeutic Target in Late Injury Caused by Ischemia-Reperfusion. International Journal of Endocrinology, 2018, 2018, 1-18.	0.6	6

ARTICLE IF CITATIONS Aldosterone's Mechanism of Action. , 2018, , 173-188. 1 146 Aldosterone/Mineralocorticoid Receptors and Their Renal Effects., 2018, , 493-515. Obesity-Associated Heart Failure as a Theoretical Target for Treatment With Mineralocorticoid 148 3.0 8 Receptor Antagonists. JAMA Cardiology, 2018, 3, 883. Mineralocorticoids and Cardiovascular Disease in Females with Insulin Resistance and Obesity. 149 Current Hypertension Reports, 2018, 20, 88. Mitochondrial oxidative stress in obesity: role of the mineralocorticoid receptor. Journal of 150 1.2 46 Endocrinology, 2018, 238, R143-R159. Mechanistic Links Between Obesity, Diabetes, and Blood Pressure: Role of Perivascular Adipose Tissue. Physiological Reviews, 2019, 99, 1701-1763. 13.1 Beneficial Role of HO-1-SIRT1 Axis in Attenuating Angiotensin II-Induced Adipocyte Dysfunction. 152 1.8 13 International Journal of Molecular Sciences, 2019, 20, 3205. The endothelial mineralocorticoid receptor: Contributions to sex differences in cardiovascular 26 disease., 2019, 203, 107387. 154 Mineralocorticoid Receptor and Leptin: A Dangerous Liaison in the Obese Heart., 0, , . 0 Leptin and Aldosterone. Vitamins and Hormones, 2019, 109, 265-284. Adipocyte Mineralocorticoid Receptor. Vitamins and Hormones, 2019, 109, 189-209. 156 0.7 11 Atorvastatin inhibits pro-inflammatory actions of aldosterone in vascular smooth muscle cells by reducing oxidative stress. Life Sciences, 2019, 221, 29-34. Effects of Exercise to Improve Cardiovascular Health. Frontiers in Cardiovascular Medicine, 2019, 6, 158 1.1 171 69 The Association of Life's Simple 7 with Aldosterone among African Americans in the Jackson Heart 159 1.7 Study. Nutrients, 2019, 11, 955 Eplerenone Versus Spironolactone in Resistant Hypertension: an Efficacy and/or Cost or Just a Men's 160 1.5 25 Issue?. Current Hypertension Reports, 2019, 21, 22. Renal mineralocorticoid receptor expression is reduced in lipoatrophy. FEBS Open Bio, 2019, 9, 328-334. Obesity and Atrial Fibrillation: Epidemiology, Pathophysiology and Novel Therapeutic Opportunities. 162 1.394 Arrhythmia and Electrophysiology Review, 2019, 8, 28-36. Antimetabolic Syndrome Effect of Phytosome Containing the Combined Extracts of Mulberry and Ginger in an Animal Model of Metabolic Syndrome. Oxidative Medicine and Cellular Longevity, 2019, 19 2019, 1-19.

#	Article	IF	CITATIONS
164	NLRP3 Inflammasome and Mineralocorticoid Receptors Are Associated with Vascular Dysfunction in Type 2 Diabetes Mellitus. Cells, 2019, 8, 1595.	1.8	51
165	The conundrum of patients with obesity, exercise intolerance, elevated ventricular filling pressures and a measured ejection fraction in the normal range. European Journal of Heart Failure, 2019, 21, 156-162.	2.9	20
166	MR (Mineralocorticoid Receptor) Induces Adipose Tissue Senescence and Mitochondrial Dysfunction Leading to Vascular Dysfunction in Obesity. Hypertension, 2019, 73, 458-468.	1.3	46
167	Short-term outcome and early effect on blood pressure of laparoscopic sleeve gastrectomy in morbidly obese patients. Clinical and Experimental Hypertension, 2019, 41, 622-626.	0.5	11
168	Obesity-Hypertension Physiopathology and Treatment: A Forty-Year Retrospect. Updates in Hypertension and Cardiovascular Protection, 2019, , 197-229.	0.1	0
169	Changes in serum and intracardiac fibroblast growth factor 23 during the progression of left ventricular hypertrophy in hypertensive model rats. Clinical and Experimental Nephrology, 2019, 23, 589-596.	0.7	6
170	Effect of Sodium Glucose Co-Transporter-2 Inhibition on the Aldosterone/Renin Ratio in Type 2 Diabetes Mellitus. Hormone and Metabolic Research, 2019, 51, 91-99.	0.7	4
171	Klotho protein supplementation reduces blood pressure and renal hypertrophy in db/db mice, a model of type 2 diabetes. Acta Physiologica, 2019, 225, e13190.	1.8	53
172	Links between aldosterone excess and metabolic complications: A comprehensive review. Diabetes and Metabolism, 2020, 46, 1-7.	1.4	29
173	Body mass index predicts aldosterone production in hypertensive postmenopausal women. Clinical and Experimental Hypertension, 2020, 42, 281-286.	0.5	2
174	Challenges in obesity and primary aldosteronism: Diagnosis and treatment. Surgery, 2020, 167, 204-210.	1.0	4
175	Steroid Metabolomic Signature of Insulin Resistance in Childhood Obesity. Diabetes Care, 2020, 43, 405-410.	4.3	18
176	Effects of Blood Pressure Lowering Agents on Cardiovascular Outcomes in Weight Excess Patients: A Systematic Review and Meta-analysis. American Journal of Cardiovascular Drugs, 2020, 20, 447-470.	1.0	7
178	Metabolic and cardiovascular outcomes of bariatric surgery. Current Opinion in Lipidology, 2020, 31, 246-256.	1.2	14
179	Endothelium-dependent hyperpolarization (EDH) in diet-induced obesity. Endocrine and Metabolic Science, 2020, 1, 100062.	0.7	4
180	Paradoxical Increase of 24-Hour Urinary Aldosterone Levels in Obese Patients With Resistant Hypertension on a High Salt Diet. American Journal of Hypertension, 2021, 34, 600-608.	1.0	6
181	Eplerenone Implantation Improved Adipose Dysfunction Averting RAAS Activation and Cell Division. Frontiers in Endocrinology, 2020, 11, 223.	1.5	16
182	The Association Between Vascular Inflammation and Depressive Disorder. Causality, Biomarkers and Targeted Treatment. Pharmaceuticals, 2020, 13, 92.	1.7	14

<u></u>	n Report
CHAILO	N KLFOKT

#	Article	IF	CITATIONS
183	Vasculometabolic and Inflammatory Effects of Aldosterone in Obesity. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 2719-2731.	1.8	8
184	Endothelial Dysfunction and Passive Changes in the Aorta and Coronary Arteries of Diabetic db/db Mice. Frontiers in Physiology, 2020, 11, 667.	1.3	9
185	Obesity, Hypertension, and Bariatric Surgery. Current Hypertension Reports, 2020, 22, 46.	1.5	16
186	Regional adiposity and heart failure with preserved ejection fraction. European Journal of Heart Failure, 2020, 22, 1540-1550.	2.9	69
187	Obesity and cardiovascular disease in women. International Journal of Obesity, 2020, 44, 1210-1226.	1.6	62
188	Nonâ€steroidal mineralocorticoid antagonists: Prospects for renoprotection in diabetic kidney disease. Diabetes, Obesity and Metabolism, 2020, 22, 69-76.	2.2	16
189	Roles of Perivascular Adipose Tissue in Hypertension and Atherosclerosis. Antioxidants and Redox Signaling, 2021, 34, 736-749.	2.5	38
190	Perivascular Adipose Tissue Oxidative Stress on the Pathophysiology of Cardiometabolic Diseases. Current Hypertension Reviews, 2021, 16, 192-200.	0.5	13
191	Effect of laparoscopic sleeve gastrectomy on vasoactive mediators in obese hypertensive patients: A prospective study. Clinical Endocrinology, 2021, 94, 193-203.	1.2	4
192	Aldosterone, Inflammation, Immune System, and Hypertension. American Journal of Hypertension, 2021, 34, 15-27.	1.0	105
193	Gut microbiota and hypertension. Arterial Hypertension (Russian Federation), 2021, 26, 620-628.	0.1	3
194	Salt Intake, Aldosterone Secretion, and Obesity: Role in the Pathogenesis of Resistant Hypertension. American Journal of Hypertension, 2021, 34, 588-590.	1.0	3
195	The Role of Oxidative Stress in Cardiovascular Aging and Cardiovascular Diseases. Life, 2021, 11, 60.	1.1	60
196	Pathophysiology and Optimal Management of Hypertension in Patients with Cardiometabolic Syndrome. Cardiometabolic Syndrome Journal, 2021, 1, 46.	1.0	1
197	Effects of metabolic syndrome on renal function after radical nephrectomy in patients with renal cell carcinoma. International Urology and Nephrology, 2021, 53, 2127-2135.	0.6	3
198	Kidney and epigenetic mechanisms of salt-sensitive hypertension. Nature Reviews Nephrology, 2021, 17, 350-363.	4.1	38
199	Relationship of plasma aldosterone levels and carbohydrate metabolism in heart failure with preserved ejection fraction. Russian Journal of Cardiology, 2021, 26, 3991.	0.4	4
200	Oxidative Stress and Vascular Damage in the Context of Obesity: The Hidden Guest. Antioxidants, 2021, 10, 406.	2.2	13

#	Article	IF	CITATIONS
201	UNDERSTANDING THE METABOLIC RISK FACTOR CLUSTERING: ITS ASSOCIATION WITH OXIDATIVE STRESS AND DIABETES MELLITUS. , 2021, , 200-202.		0
202	Adipocyte-Mineralocorticoid Receptor Alters Mitochondrial Quality Control Leading to Mitochondrial Dysfunction and Senescence of Visceral Adipose Tissue. International Journal of Molecular Sciences, 2021, 22, 2881.	1.8	8
203	A Nephrologist Perspective on Obesity: From Kidney Injury to Clinical Management. Frontiers in Medicine, 2021, 8, 655871.	1.2	32
204	From Obesity to Chronic Kidney Disease: How Can Adipose Tissue Affect Renal Function?. Nephron, 2021, 145, 609-613.	0.9	23
205	Aldosterone contributes to hypertension in male mice inducibly overexpressing human endothelin-1 in endothelium. Journal of Hypertension, 2021, 39, 1908-1917.	0.3	6
206	Chronic stress induced perivascular adipose tissue impairment of aortic function and the therapeutic effect of exercise. Experimental Physiology, 2021, 106, 1343-1358.	0.9	9
207	Mineralocorticoid and Estrogen Receptors in Endothelial Cells Coordinately Regulate Microvascular Function in Obese Female Mice. Hypertension, 2021, 77, 2117-2126.	1.3	13
208	Identification of Key Pathways and Genes in Obesity Using Bioinformatics Analysis and Molecular Docking Studies. Frontiers in Endocrinology, 2021, 12, 628907.	1.5	11
209	Change in Postprandial Level of Remnant Cholesterol After a Daily Breakfast in Chinese Patients With Hypertension. Frontiers in Cardiovascular Medicine, 2021, 8, 685385.	1.1	8
210	Obesity and Heart Failure with Preserved Ejection Fraction. Heart Failure Clinics, 2021, 17, 345-356.	1.0	9
211	Obesity induced hypertension: The main pathophysiological mechanisms. Arterial Hypertension (Russian Federation), 2021, 27, 260-268.	0.1	8
212	Effects of High-Fat and High-Fat/High-Sucrose Diet-Induced Obesity on PVAT Modulation of Vascular Function in Male and Female Mice. Frontiers in Pharmacology, 2021, 12, 720224.	1.6	15
213	Salt Sensitivity of Blood Pressure in Blacks and Women: A Role of Inflammation, Oxidative Stress, and Epithelial Na ⁺ Channel. Antioxidants and Redox Signaling, 2021, 35, 1477-1493.	2.5	20
214	Nonsteroidal mineralcorticoid receptor antagonists: Novel therapeutic implication in the management of patients with type 2 diabetes. Current Opinion in Pharmacology, 2021, 60, 216-225.	1.7	6
215	Adipose tissue macrophages as a therapeutic target in obesityâ€associated diseases. Obesity Reviews, 2021, 22, e13200.	3.1	24
216	Characterization of the <scp>inflammatoryâ€metabolic</scp> phenotype of heart failure with a preserved ejection fraction: a hypothesis to explain influence of sex on the evolution and potential treatment of the disease. European Journal of Heart Failure, 2020, 22, 1551-1567.	2.9	93
217	Obesity-Related Comorbidities. , 2015, , 25-34.		2
218	HO-1-derived CO Is a Regulator of Vascular Function and Metabolic Syndrome. 2-Oxoglutarate-Dependent Oxygenases, 2018, , 59-100.	0.8	1

#	Article	IF	CITATIONS
219	Interfering with mineralocorticoid receptor activation: the past, present, and future. F1000prime Reports, 2014, 6, 61.	5.9	8
220	Perivascular adipose tissue: role in the pathogenesis of obesity, type 2 diabetes mellitus and cardiovascular pathology Obesity and Metabolism, 2015, 12, 5-13.	0.4	8
221	Relationship between blood aldosterone and somatometric parameters in patients with chronic heart failure and preserved ejection fraction of left ventricle. Klinicheskaia Meditsina, 2016, 94, 265-269.	0.2	5
222	ALDOSTERONE AND OBESITY: WHERE TO LOOK FOR THE KEY TO THERAPY?. Russian Archives of Internal Medicine, 2016, 6, 21-29.	0.0	1
223	Modulation of Vascular Function by Perivascular Adipose Tissue: Sex Differences. Current Pharmaceutical Design, 2020, 26, 3768-3777.	0.9	8
224	Endothelial Dysfunction, Obesity and Insulin Resistance. Current Vascular Pharmacology, 2014, 12, 412-426.	0.8	138
225	The Effects of Obesity on the Cerebral Vasculature. Current Vascular Pharmacology, 2014, 12, 462-472.	0.8	67
226	Effects of Aldosterone Blockade on Metabolic and Renal Factors in Patients with Primary Aldosteronism. Journal of Hypertension: Open Access, 2013, 02, .	0.2	0
227	Metabolic Alterations. , 2013, , 23-37.		0
228	Aldosterone and Cardiovascular Diseases. , 2014, , 155-196.		0
228 229	Aldosterone and Cardiovascular Diseases. , 2014, , 155-196. Corticosteroid Receptors, Their Chaperones and Cochaperones: How Do They Modulate Adipogenesis?. Nuclear Receptor Research, 2014, 1, .	2.5	0
	Corticosteroid Receptors, Their Chaperones and Cochaperones: How Do They Modulate Adipogenesis?.	2.5	
229	Corticosteroid Receptors, Their Chaperones and Cochaperones: How Do They Modulate Adipogenesis?. Nuclear Receptor Research, 2014, 1, . Identification of latent disorders of carbohydrate metabolism in conjunction with neurohormonal status in hospitalized patients with chronic heart failure of ischemic etiology. Cardiovascular		1
229 230	Corticosteroid Receptors, Their Chaperones and Cochaperones: How Do They Modulate Adipogenesis?. Nuclear Receptor Research, 2014, 1, . Identification of latent disorders of carbohydrate metabolism in conjunction with neurohormonal status in hospitalized patients with chronic heart failure of ischemic etiology. Cardiovascular Therapy and Prevention (Russian Federation), 2019, 18, 26-31.	0.4	1
229 230 231	Corticosteroid Receptors, Their Chaperones and Cochaperones: How Do They Modulate Adipogenesis?. Nuclear Receptor Research, 2014, 1, . Identification of latent disorders of carbohydrate metabolism in conjunction with neurohormonal status in hospitalized patients with chronic heart failure of ischemic etiology. Cardiovascular Therapy and Prevention (Russian Federation), 2019, 18, 26-31. Fat tissue and adrenal function: mechanisms of mutual influence. Meditsinskiy Sovet, 2019, , 70-77.	0.4	1 0 4
229 230 231 232	Corticosteroid Receptors, Their Chaperones and Cochaperones: How Do They Modulate Adipogenesis?. Nuclear Receptor Research, 2014, 1, . Identification of latent disorders of carbohydrate metabolism in conjunction with neurohormonal status in hospitalized patients with chronic heart failure of ischemic etiology. Cardiovascular Therapy and Prevention (Russian Federation), 2019, 18, 26-31. Fat tissue and adrenal function: mechanisms of mutual influence. Meditsinskiy Sovet, 2019, , 70-77. Mechanism and Pathophysiology. Nephrology Self-assessment Program: NephSAP, 2020, 19, 43-57. The Role of Obesity-Induced Perivascular Adipose Tissue (PVAT) Dysfunction in Vascular Homeostasis.	0.4 0.1 3.0	1 0 4 0
229 230 231 232 233	Corticosteroid Receptors, Their Chaperones and Cochaperones: How Do They Modulate Adipogenesis?. Nuclear Receptor Research, 2014, 1, . Identification of latent disorders of carbohydrate metabolism in conjunction with neurohormonal status in hospitalized patients with chronic heart failure of ischemic etiology. Cardiovascular Therapy and Prevention (Russian Federation), 2019, 18, 26-31. Fat tissue and adrenal function: mechanisms of mutual influence. Meditsinskiy Sovet, 2019, , 70-77. Mechanism and Pathophysiology. Nephrology Self-assessment Program: NephSAP, 2020, 19, 43-57. The Role of Obesity-Induced Perivascular Adipose Tissue (PVAT) Dysfunction in Vascular Homeostasis. Nutrients, 2021, 13, 3843.	0.4 0.1 3.0	1 0 4 0 40

		CITATION REPORT		
#	Article		IF	Citations
238	Obesity and Cardiometabolic Risk Factors: From Childhood to Adulthood. Nutrients, 2021	, 13, 4176.	1.7	135
239	Obesity, Sodium Homeostasis, and Arterial Hypertension in Children and Adolescents. Nut 13, 4032.	rients, 2021,	1.7	19
240	The Role of Aldosterone in OSA and OSA-Related Hypertension. Frontiers in Endocrinology 801689.	, 2021, 12,	1.5	18
241	Exploring the Relationship of Perivascular Adipose Tissue Inflammation and the Developme Vascular Pathologies. Mediators of Inflammation, 2022, 2022, 1-16.	ent of	1.4	14
242	Chronic Kidney Disease, Metabolic Syndrome, and Cardiovascular Risk: Insights and Associ Mechanistic Pathways. Current Nutrition and Food Science, 2022, 18, 539-548.	iated	0.3	1
243	Blood and adipose tissue steroid metabolomics and mRNA expression of steroidogenic en periparturient dairy cows differing in body condition. Scientific Reports, 2022, 12, 2297.	zymes in	1.6	6
244	Extra-adrenal glucocorticoid and mineralocorticoid biosynthesis. Endocrinology, 2022, , .		1.4	0
245	The Effect of Mineralocorticoid Receptor 3 Antagonists on Anti-Inflammatory and Anti-Fatt Transport Profile in Patients with Heart Failure. Cells, 2022, 11, 1264.	ty Acid	1.8	3
250	Understanding the Pathobiology of Pulmonary Hypertension Due to Left Heart Disease. Ci Research, 2022, 130, 1382-1403.	rculation	2.0	13
252	Apparent Treatment-Resistant Hypertension Across the Spectrum of HeartÂFailure Phenot SwedishÂHF Registry. JACC: Heart Failure, 2022, 10, 380-392.	ypes in the	1.9	5
253	Urine Di-(2-ethylhexyl) Phthalate Metabolites Are Independently Related to Body Fluid Stat Results from a U.S. Nationally Representative Survey. International Journal of Environment Research and Public Health, 2022, 19, 6964.	tus in Adults: al	1.2	2
254	Role of platelet factor 4 in arteriovenous fistula maturation failure: What do we know so fa Journal of Vascular Access, 0, , 112972982210854.	ar?.	0.5	2
255	Hypertension and human immunodeficiency virus: A paradigm for epithelial sodium chann Frontiers in Cardiovascular Medicine, 0, 9, .	els?.	1.1	4
256	Hypertension, remnant cholesterol and cardiovascular disease: evidence from the China he retirement longitudinal study. Journal of Hypertension, 2022, 40, 2292-2298.	ealth and	0.3	12
257	Esaxerenone, a selective mineralocorticoid receptor blocker, improves insulin sensitivity in consuming high-fat diet. European Journal of Pharmacology, 2022, 931, 175190.	mice	1.7	2
258	Hypertension Related to Obesity: Pathogenesis, Characteristics and Factors for Control. International Journal of Molecular Sciences, 2022, 23, 12305.		1.8	19
259	Adipokines: Deciphering the cardiovascular signature of adipose tissue. Biochemical Pharn 2022, 206, 115324.	nacology,	2.0	7
260	Adipose Tissue Dysfunction in Obesity: Role of Mineralocorticoid Receptor. Nutrients, 202	2, 14, 4735.	1.7	4

#	Article	IF	CITATIONS
261	Obesity Hypertension: Clinical Aspects. , 2023, , 405-419.		1
262	Effects of Hypocaloric Low-Fat, Ketogenic and Ketogenic & Ketone Supplement diets on Aldosterone and Renin. Journal of Clinical Endocrinology and Metabolism, 0, , .	1.8	6
263	Can EAT be an INOCA goalkeeper. Frontiers in Endocrinology, 0, 13, .	1.5	1
264	Perivascular adipose tissue: Fine-tuner of vascular redox status and inflammation. Redox Biology, 2023, 62, 102683.	3.9	9
265	The role of aldosterone and ideal cardiovascular health in incident cardiovascular disease: The Jackson heart study. American Journal of Preventive Cardiology, 2023, 14, 100494.	1.3	1
266	Obesity-related heart failure with preserved ejection fraction: diagnostic and therapeutic challenges. Korean Journal of Internal Medicine, 2023, 38, 157-166.	0.7	2
268	Metabolic Syndrome: The Constellation of Co-morbidities, A Global Threat. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2023, 23, 1491-1504.	0.6	1
269	Molecular and Epigenetic Control of Aldosterone Synthase, CYP11B2 and 11-Hydroxylase, CYP11B1. International Journal of Molecular Sciences, 2023, 24, 5782.	1.8	4
270	Effects of very low-calorie ketogenic diet on hypothalamic–pituitary–adrenal axis and renin–angiotensin–aldosterone system. Journal of Endocrinological Investigation, 2023, 46, 1509-1520.	1.8	8
271	Adiposity, aldosterone and plasma renin activity among African Americans: The Jackson Heart Study. Endocrine and Metabolic Science, 2023, 11, 100126.	0.7	0
272	Recent advances in the treatment of patients with obesity and chronic kidney disease. Annals of Medicine, 2023, 55, .	1.5	4
282	Extra-adrenal aldosterone: a mini review focusing on the physiology and pathophysiology of intrarenal aldosterone. Endocrine, 2024, 83, 285-301.	1.1	0