Digital Microfluidics

Annual Review of Analytical Chemistry 5, 413-440

DOI: 10.1146/annurev-anchem-062011-143028

Citation Report

#	Article	IF	CITATIONS
1	Digital Microfluidic Magnetic Separation for Particle-Based Immunoassays. Analytical Chemistry, 2012, 84, 8805-8812.	3.2	167
3	Characterization of Microfluidic Gas Reactors Using Remoteâ€Detection MRI and Parahydrogenâ€Induced Polarization. Angewandte Chemie - International Edition, 2012, 51, 8054-8058.	7.2	51
4	Capillarics: pre-programmed, self-powered microfluidic circuits built from capillary elements. Lab on A Chip, 2013, 13, 4180.	3.1	158
5	Microfluidic origami: a new device format for in-line reaction monitoring by nanoelectrospray ionization mass spectrometry. Lab on A Chip, 2013, 13, 2533.	3.1	54
6	High precision control of gap height for enhancing principal digital microfluidics operations. Sensors and Actuators B: Chemical, 2013, 186, 343-352.	4.0	20
7	Reagents in microfluidics: an â€~in' and â€~out' challenge. Chemical Society Reviews, 2013, 42, 8494.	18.7	71
8	Integrated Digital Microfluidic Platform for Voltammetric Analysis. Analytical Chemistry, 2013, 85, 8809-8816.	3.2	48
9	Automated Digital Microfluidic Platform for Magnetic-Particle-Based Immunoassays with Optimization by Design of Experiments. Analytical Chemistry, 2013, 85, 9638-9646.	3.2	127
10	Microfluidic Multiplexing in Bioanalyses. Journal of the Association for Laboratory Automation, 2013, 18, 350-366.	2.8	27
11	The Potential Impact of Droplet Microfluidics in Biology. Analytical Chemistry, 2013, 85, 3476-3482.	3.2	141
12	Investigation of the anti-biofouling properties of graphene oxide aqueous solutions by electrowetting characterization. Journal of Materials Chemistry A, 2013, 1, 12355.	5.2	8
13	A digital microfluidic control system with precise control of electrostatic force and impedance-based velocity measurement., 2013,,.		O
14	Parallel measurements of reaction kinetics using ultralow-volumes. Lab on A Chip, 2013, 13, 4326.	3.1	14
15	Biochemical sensing assays based on coalescence-induced self-propulsion digital microfluidics. , 2013, , .		1
16	A dielectrophoresis microjet for on-chip technologies. RSC Advances, 2013, 3, 23309.	1.7	10
17	Microscale separation of immiscible liquids using a porous capillary. Analytical Methods, 2013, 5, 4991.	1.3	32
18	Advances in Microfluidic Materials, Functions, Integration, and Applications. Chemical Reviews, 2013, 113, 2550-2583.	23.0	731
19	Characterization of the geometry of negative dielectrophoresis traps for particle immobilization in digital microfluidic platforms. Lab on A Chip, 2013, 13, 1823.	3.1	27

#	ARTICLE	IF	Citations
20	Quantitative microfluidic biomolecular analysis for systems biology and medicine. Analytical and Bioanalytical Chemistry, 2013, 405, 5743-5758.	1.9	19
21	Real-Time Clinical Monitoring of Biomolecules. Annual Review of Analytical Chemistry, 2013, 6, 427-453.	2.8	40
22	Reagent Delivery by Partial Coalescence and Noncoalescence of Aqueous Microdroplets in Oil. Analytical Chemistry, 2013, 85, 6491-6496.	3.2	2
23	Cellular bias on the microscale: probing the effects of digital microfluidic actuation on mammalian cell health, fitness and phenotype. Integrative Biology (United Kingdom), 2013, 5, 1014.	0.6	29
25	Digital Microfluidics: An Emerging Sample Preparation Platform for Mass Spectrometry. Analytical Chemistry, 2013, 85, 6178-6184.	3.2	64
26	Imaging liquids using microfluidic cells. Microfluidics and Nanofluidics, 2013, 15, 725-744.	1.0	34
27	Influences of textured substrates on the heart rate of developing zebrafish embryos. Nanotechnology, 2013, 24, 265101.	1.3	8
28	Integrated electrochemical sensor based on electrowetting-on-dielectric microfluidic chip. , 2013, , .		2
29	Evaluation of Cyanoethyl Pullulan material as the dielectric layer for EWOD devices., 2013,,.		0
30	Cell-free protein expression systems in microdroplets: Stabilization of interdroplet bilayers. Biomicrofluidics, 2013, 7, 14108.	1.2	17
31	Isotachophoresis with emulsions. Biomicrofluidics, 2013, 7, 044103.	1.2	9
32	DropBot: An open-source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement. Applied Physics Letters, 2013, 102, .	1.5	173
33	Drops on soft surfaces learn the hard way. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12505-12506.	3.3	7
34	A Versatile Automated Platform for Micro-scale Cell Stimulation Experiments. Journal of Visualized Experiments, 2013, , .	0.2	1
35	Modifying Electrode Geometry for Unequal Droplet Splitting in Digital Microfluidics. , 2013, , .		0
36	Polydimethylsiloxane (PDMS) Sub-Micron Traps for Single-Cell Analysis of Bacteria. Micromachines, 2013, 4, 357-369.	1.4	45
37	Cloud-Enabled Microscopy and Droplet Microfluidic Platform for Specific Detection of Escherichia coli in Water. PLoS ONE, 2014, 9, e86341.	1.1	47
38	Liposome-Based Liquid Handling Platform Featuring Addition, Mixing, and Aliquoting of Femtoliter Volumes. PLoS ONE, 2014, 9, e101820.	1.1	26

#	Article	IF	Citations
39	The Effect of Changing the Gap Height on Droplet Deformation During Transport in Digital Microfluidics Systems. , 2014, , .		1
40	Strong and small: strong cation-exchange solid-phase extractions using porous polymer monoliths on a digital microfluidic platform. Canadian Journal of Chemistry, 2014, 92, 179-185.	0.6	15
41	Automation and interfaces for chemistry and biochemistry in digital microfluidics. Technology, 2014, 02, 83-100.	1.4	3
42	Radiolabelling diverse positron emission tomography (PET) tracers using a single digital microfluidic reactor chip. Lab on A Chip, 2014, 14, 902-910.	3.1	38
43	Multiplexed extraction and quantitative analysis of pharmaceuticals from DBS samples using digital microfluidics. Bioanalysis, 2014, 6, 307-318.	0.6	28
44	Analytical Models to Determine the Electric Field Characteristics of a Multi-Electrode Impedimetric Immunosensor in a Digital Microfluidic Device. , 2014, , .		0
45	Oscillatory motion of water droplets in kerosene above co-planar electrodes in microfluidic chips. AIP Advances, 2014, 4, 067103.	0.6	23
46	Nanoliterâ€Droplet Acoustic Streaming via Ultra High Frequency Surface Acoustic Waves. Advanced Materials, 2014, 26, 4941-4946.	11.1	149
47	Study of PDMS as Dielectric Layer in Electrowetting Devices. Environmental Science and Engineering, 2014, , 487-490.	0.1	4
48	Electrowetting-Induced Droplet Detachment from Hydrophobic Surfaces. Langmuir, 2014, 30, 1805-1811.	1.6	60
49	Wettability patterning for high-rate, pumpless fluid transport on open, non-planar microfluidic platforms. Lab on A Chip, 2014, 14, 1538-1550.	3.1	300
50	Biomimetic Approach for Liquid Encapsulation with Nanofibrillar Cloaks. Langmuir, 2014, 30, 2896-2902.	1.6	32
51	Multiphase optofluidics on an electro-microfluidic platform powered by electrowetting and dielectrophoresis. Lab on A Chip, 2014, 14, 2728-2738.	3.1	20
52	Paper Microfluidics Goes Digital. Advanced Materials, 2014, 26, 2838-2843.	11.1	109
53	Development and automation of microelectromechanical systems-based biochip platform for protein assay. Sensors and Actuators B: Chemical, 2014, 193, 53-61.	4.0	6
54	World-to-Digital-Microfluidic Interface Enabling Extraction and Purification of RNA from Human Whole Blood. Analytical Chemistry, 2014, 86, 3856-3862.	3.2	43
55	A digital microfluidic electrochemical immunoassay. Lab on A Chip, 2014, 14, 547-554.	3.1	106
56	Microfluidic platforms: a mainstream technology for the preparation of crystals. Chemical Society Reviews, 2014, 43, 2253-2271.	18.7	111

#	Article	IF	CITATIONS
57	Integration of heat-transfer resistance measurements onto a digital microfluidic platform towards the miniaturized and automated label-free detection of biomolecular interactions. , 2014 , , .		0
58	A fluorogenic heterogeneous immunoassay for cardiac muscle troponin cTnI on a digital microfluidic device. Analytical and Bioanalytical Chemistry, 2014, 406, 5967-5976.	1.9	32
59	A droplet-based screen for wavelength-dependent lipid production in algae. Energy and Environmental Science, 2014, 7, 2366.	15.6	48
60	Research highlights: printing the future of microfabrication. Lab on A Chip, 2014, 14, 1491.	3.1	64
61	Enhanced microcooling by electrically induced droplet oscillation. RSC Advances, 2014, 4, 1074-1082.	1.7	19
62	Digital biology and chemistry. Lab on A Chip, 2014, 14, 3225.	3.1	81
63	Exploitation of surface acoustic waves to drive nanoparticle concentration within an electrification-dependent droplet. RSC Advances, 2014, 4, 46502-46507.	1.7	21
64	Electrowetting and semiconductors. RSC Advances, 2014, 4, 29223.	1.7	22
65	The pumping lid: investigating multi-material 3D printing for equipment-free, programmable generation of positive and negative pressures for microfluidic applications. Lab on A Chip, 2014, 14, 4616-4628.	3.1	95
66	Droplet-Based Microfluidics: Enabling Impact on Drug Discovery. Journal of Biomolecular Screening, 2014, 19, 483-496.	2.6	79
67	Construction and Manipulation of Functional Three-Dimensional Droplet Networks. ACS Nano, 2014, 8, 771-779.	7.3	52
68	Discrete Free-Surface Millifluidics for Rapid Capture and Analysis of Airborne Molecules Using Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 2014, 86, 1061-1066.	3.2	14
69	Digital Microfluidic Platform for Human Plasma Protein Depletion. Analytical Chemistry, 2014, 86, 8466-8472.	3.2	46
70	Circle-to-circle amplification on a digital microfluidic chip for amplified single molecule detection. Lab on A Chip, 2014, 14, 2983-2992.	3.1	77
71	Microfluidics-Based Single-Cell Functional Proteomics for Fundamental and Applied Biomedical Applications. Annual Review of Analytical Chemistry, 2014, 7, 275-295.	2.8	65
72	Analysis on the Go: Quantitation of Drugs of Abuse in Dried Urine with Digital Microfluidics and Miniature Mass Spectrometry. Analytical Chemistry, 2014, 86, 6121-6129.	3.2	67
73	Asymmetric heat transfer in liquid–liquid segmented flow in microchannels. International Journal of Heat and Mass Transfer, 2014, 77, 385-394.	2.5	4
74	Effect of Electrode Geometry on Droplet Splitting in Digital Microfluidic Platforms. , 2014, , .		1

#	Article	IF	CITATIONS
75	Path-programmable water droplet manipulations on an adhesion controlled superhydrophobic surface. Scientific Reports, 2015, 5, 12326.	1.6	65
76	Electrically modulated dynamic spreading of drops on soft surfaces. Applied Physics Letters, 2015, 107, 034101.	1.5	21
77	Lattice Boltzmann Simulations of Thermocapillary Motion of Droplets in Microfluidic Channels. Communications in Computational Physics, 2015, 17, 1113-1126.	0.7	10
79	Fast Electrically Driven Capillary Rise Using Overdrive Voltage. Langmuir, 2015, 31, 13718-13724.	1.6	11
80	Digital Microfluidic System with Vertical Functionality. Micromachines, 2015, 6, 1655-1674.	1.4	7
81	Digital Microfluidics for Manipulation and Analysis of a Single Cell. International Journal of Molecular Sciences, 2015, 16, 22319-22332.	1.8	53
82	Droplet Manipulations in Two Phase Flow Microfluidics. Micromachines, 2015, 6, 1768-1793.	1.4	59
83	AMPFLUID: Aggregation Magnified Post-Assay Fluorescence for Ultrasensitive Immunodetection on Digital Microfluidics. Proceedings of the IEEE, 2015, 103, 225-235.	16.4	15
84	Planar microfluidic drop splitting and merging. Lab on A Chip, 2015, 15, 1942-1951.	3.1	54
85	Systematic analysis of geometrical based unequal droplet splitting in digital microfluidics. Journal of Micromechanics and Microengineering, 2015, 25, 055008.	1.5	37
86	Spatially and temporally controlled immune cell interactions using microscale tools. Current Opinion in Immunology, 2015, 35, 23-29.	2.4	12
87	Lab-on-a-Chip Devices and Micro-Total Analysis Systems. , 2015, , .		38
88	Three-dimensional digital microfluidic manipulation of droplets in oil medium. Scientific Reports, 2015, 5, 10685.	1.6	50
89	Microscale extraction and phase separation using a porous capillary. Lab on A Chip, 2015, 15, 2960-2967.	3.1	30
90	Droplet Necking and Morphology Variations Induced by Changing the Gap Height During Transport in Digital Microfluidic Systems. Journal of Microelectromechanical Systems, 2015, 24, 1647-1658.	1.7	4
91	Digital Microfluidic Cell Culture. Annual Review of Biomedical Engineering, 2015, 17, 91-112.	5.7	65
92	Active porous valves for plug actuation and plug flow manipulation in open channel fluidics. RSC Advances, 2015, 5, 104594-104600.	1.7	14
93	The in-silico lab-on-a-chip. , 2015, , .		14

#	Article	IF	CITATIONS
94	Inkjet print microchannels based on a liquid template. Lab on A Chip, 2015, 15, 1759-1764.	3.1	34
95	Detection of a Dynamic Cone-Shaped Meniscus on the Surface of Fluids in Electric Fields. Physical Review Letters, 2015, 114, 054501.	2.9	11
96	A droplet-based fluorescence polarization immunoassay (dFPIA) platform for rapid and quantitative analysis of biomarkers. Biosensors and Bioelectronics, 2015, 67, 497-502.	5.3	22
97	Detaching droplets in immiscible fluids from a solid substrate with the help of electrowetting. Lab on A Chip, 2015, 15, 900-907.	3.1	34
98	Magnetic Liquid Marbles: Toward "Lab in a Droplet― Advanced Functional Materials, 2015, 25, 437-444.	7.8	120
99	Nanomaterials for early detection of cancer biomarker with special emphasis on gold nanoparticles in immunoassays/sensors. Biosensors and Bioelectronics, 2015, 68, 688-698.	5.3	162
100	Dynamic Fluoroalkyl Polyethylene Glycol Coâ€Polymers: A New Strategy for Reducing Protein Adhesion in Labâ€onâ€aâ€Chip Devices. Advanced Functional Materials, 2015, 25, 506-515.	7.8	25
101	Highlights from the latest articles in advanced biomanufacturing at micro- and nano-scale. Nanomedicine, 2015, 10, 347-350.	1.7	22
102	A digital microfluidic device with integrated nanostructured microelectrodes for electrochemical immunoassays. Lab on A Chip, 2015, 15, 3776-3784.	3.1	58
103	A guiding light: spectroscopy on digital microfluidic devices using in-plane optical fibre waveguides. Analytical and Bioanalytical Chemistry, 2015, 407, 7467-7475.	1.9	23
104	Capacitance Variation Induced by Microfluidic Two-Phase Flow across Insulated Interdigital Electrodes in Lab-On-Chip Devices. Sensors, 2015, 15, 2694-2708.	2.1	25
105	Spreading of a Droplet over a Nonisothermal Substrate: Multiple Scaling Regimes. Langmuir, 2015, 31, 4169-4175.	1.6	17
106	Modelling the capacitance of multi-layer conductor-facing interdigitated electrode structures. Sensors and Actuators B: Chemical, 2015, 213, 423-433.	4.0	27
107	Moving droplets between closed and open microfluidic systems. Lab on A Chip, 2015, 15, 2201-2212.	3.1	28
108	LCAT pump optimization for an integrated microfluidic droplet generator. Microfluidics and Nanofluidics, 2015, 18, 1265-1275.	1.0	13
109	Electrochemistry, biosensors and microfluidics: a convergence of fields. Chemical Society Reviews, 2015, 44, 5320-5340.	18.7	279
110	Fluidic Platforms and Components of Lab-on-a-Chip devices. , 2015, , 83-139.		0
111	A Microfluidic Technique for Quantification of Steroids in Core Needle Biopsies. Analytical Chemistry, 2015, 87, 4688-4695.	3.2	21

#	Article	IF	CITATIONS
112	Building bio-assays with magnetic particles on a digital microfluidic platform. New Biotechnology, 2015, 32, 485-503.	2.4	29
113	Dynamics of Electrically Modulated Colloidal Droplet Transport. Langmuir, 2015, 31, 11269-11278.	1.6	19
114	A study on the limits and advantages of using a desktop cutter plotter to fabricate microfluidic networks. Microfluidics and Nanofluidics, 2015, 19, 973-985.	1.0	60
115	Patients are a virtue: advances in microengineered systems for clinical applications. Integrative Biology (United Kingdom), 2015, 7, 962-966.	0.6	2
116	Numerical Simulations of the Digital Microfluidic Manipulation of Single Microparticles. Langmuir, 2015, 31, 9636-9645.	1.6	17
117	3D electrowetting-on-dielectric actuation. Sensors and Actuators A: Physical, 2015, 234, 331-338.	2.0	23
118	Direct Interface between Digital Microfluidics and High Performance Liquid Chromatography–Mass Spectrometry. Analytical Chemistry, 2015, 87, 11967-11972.	3.2	20
119	Digital Microfluidic Platform for the Detection of Rubella Infection and Immunity: A Proof of Concept. Clinical Chemistry, 2015, 61, 420-429.	1.5	55
120	Design and Optimization of a Cyberphysical Digital-Microfluidic Biochip for the Polymerase Chain Reaction. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 34, 29-42.	1.9	35
121	Hardware/Software Co-Design and Optimization for Cyberphysical Integration in Digital Microfluidic Biochips., 2015,,.		12
122	Advances in coupling microfluidic chips to mass spectrometry. Mass Spectrometry Reviews, 2015, 34, 535-557.	2.8	112
123	Recent Developments in Paper-Based Microfluidic Devices. Analytical Chemistry, 2015, 87, 19-41.	3.2	1,002
124	Hierarchical micro and nano structured, hydrophilic, superhydrophobic and superoleophobic surfaces incorporated in microfluidics, microarrays and lab on chip microsystems. Microelectronic Engineering, 2015, 132, 135-155.	1.1	187
125	A droplet-to-digital (D2D) microfluidic device for single cell assays. Lab on A Chip, 2015, 15, 225-236.	3.1	70
126	Optimization of On-Chip Polymerase Chain Reaction., 2015,, 117-146.		0
127	Towards a Multifunctional Electrochemical Sensing and Niosome Generation Lab-on-Chip Platform Based on a Plug-and-Play Concept. Sensors, 2016, 16, 778.	2.1	13
128	Nanostructured Surface with Tunable Contact Angle Hysteresis for Constructing <i>In Vitro </i> Ivaluation 1-5.	1.5	5
129	Review of Microfluidic Photobioreactor Technology for Metabolic Engineering and Synthetic Biology of Cyanobacteria and Microalgae. Micromachines, 2016, 7, 185.	1.4	17

#	Article	IF	Citations
130	Droplet-based Biosensing for Lab-on-a-Chip, Open Microfluidics Platforms. Biosensors, 2016, 6, 14.	2.3	44
131	Opto-Microfluidic Immunosensors: From Colorimetric to Plasmonic. Micromachines, 2016, 7, 29.	1.4	16
132	Lineage Tracking for Probing Heritable Phenotypes at Single-Cell Resolution. PLoS ONE, 2016, 11, e0152395.	1.1	29
133	Oscillatory multiphase flow strategy for chemistry and biology. Lab on A Chip, 2016, 16, 2775-2784.	3.1	61
134	Formation of droplet interface bilayers in a Teflon tube. Scientific Reports, 2016, 6, 34355.	1.6	6
135	A highly efficient bead extraction technique with low bead number for digital microfluidic immunoassay. Biomicrofluidics, 2016, 10, 011901.	1.2	21
136	Built-in self-test for micro-electrode-dot-array digital microfluidic biochips. , 2016, , .		21
137	Error recovery in a micro-electrode-dot-array digital microfluidic biochip?. , 2016, , .		33
138	Digital microfluidics for spheroid-based invasion assays. Lab on A Chip, 2016, 16, 1505-1513.	3.1	40
139	Motorized actuation system to perform droplet operations on printed plastic sheets. Lab on A Chip, 2016, 16, 1861-1872.	3.1	24
140	A digital microfluidic interface between solid-phase microextraction and liquid chromatography–mass spectrometry. Journal of Chromatography A, 2016, 1444, 1-7.	1.8	29
141	Digital microfluidics with a magnetically actuated floating liquid marble. Lab on A Chip, 2016, 16, 2211-2218.	3.1	78
142	Electrolyte concentration effects on DC voltage electrowetting. Sensors and Actuators A: Physical, 2016, 240, 126-130.	2.0	6
143	Droplet-based magnetic bead immunoassay using microchannel-connected multiwell plates (μCHAMPs) for the detection of amyloid beta oligomers. Lab on A Chip, 2016, 16, 2245-2253.	3.1	34
144	Digital Microfluidics for Immunoprecipitation. Analytical Chemistry, 2016, 88, 10223-10230.	3.2	33
145	Performance comparison of electrowetting heat pipe for extended distance heat transport., 2016,,.		1
146	Robust superhydrophilic patterning of superhydrophobic ormosil surfaces for high-throughput on-chip screening applications. RSC Advances, 2016, 6, 80049-80054.	1.7	12
147	Perspectives on digital microfluidics. Sensors and Actuators A: Physical, 2016, 250, 15-28.	2.0	41

#	Article	IF	Citations
148	Beam deflector and position sensor using electrowetting and mechanical wetting of sandwiched droplets. Journal Physics D: Applied Physics, 2016, 49, 385106.	1.3	3
149	Three-Dimensional Clustered Nanostructures for Microfluidic Surface-Enhanced Raman Detection. ACS Applied Materials & Samp; Interfaces, 2016, 8, 24974-24981.	4.0	18
150	Microfluidic hydrodynamic focusing for synthesis of nanomaterials. Nano Today, 2016, 11, 778-792.	6.2	148
151	Interfacing digital microfluidics with high-field nuclear magnetic resonance spectroscopy. Lab on A Chip, 2016, 16, 4424-4435.	3.1	42
152	An inkjet printed, roll-coated digital microfluidic device for inexpensive, miniaturized diagnostic assays. Lab on A Chip, 2016, 16, 4560-4568.	3.1	88
153	Process sequence optimization for digital microfluidic integration using EWOD technique. AIP Conference Proceedings, 2016, , .	0.3	6
154	Digital microfluidics platform for interfacing solid–liquid extraction column with portable capillary electropherograph for analysis of soil amino acids. Electrophoresis, 2016, 37, 472-475.	1.3	12
155	A review of digital microfluidics as portable platforms for lab-on a-chip applications. Lab on A Chip, 2016, 16, 2376-2396.	3.1	354
156	Underwater Spontaneous Pumpless Transportation of Nonpolar Organic Liquids on Extreme Wettability Patterns. ACS Applied Materials & Samp; Interfaces, 2016, 8, 2942-2949.	4.0	72
157	Fabrication and performance study of BST/Teflon nanocomposite thin film for low voltage electrowetting devices. Sensors and Actuators A: Physical, 2016, 238, 122-132.	2.0	27
158	Droplet-based microfluidics in drug discovery, transcriptomics and high-throughput molecular genetics. Lab on A Chip, 2016, 16, 1314-1331.	3.1	295
159	Integration of biosensors into digital microfluidics: Impact of hydrophilic surface of biosensors on droplet manipulation. Biosensors and Bioelectronics, 2016, 81, 480-486.	5. 3	36
160	Reconfigurable liquid-core/liquid-cladding optical waveguides with dielectrophoresis-driven virtual microchannels on an electromicrofluidic platform. Lab on A Chip, 2016, 16, 847-854.	3.1	24
161	A Droplet Microfluidic Platform for Automating Genetic Engineering. ACS Synthetic Biology, 2016, 5, 426-433.	1.9	63
162	A microfluidic method for dopamine uptake measurements in dopaminergic neurons. Lab on A Chip, 2016, 16, 543-552.	3.1	23
163	Screen-printed digital microfluidics combined with surface acoustic wave nebulization for hydrogen-deuterium exchange measurements. Journal of Chromatography A, 2016, 1439, 161-166.	1.8	21
164	Towards autonomous lab-on-a-chip devices for cell phone biosensing. Biosensors and Bioelectronics, 2016, 77, 1153-1167.	5.3	35
165	Electrochemiluminescence on digital microfluidics for microRNA analysis. Biosensors and Bioelectronics, 2016, 77, 845-852.	5.3	69

#	Article	IF	CITATIONS
166	Design, fabrication and characterization of low cost printed circuit board based EWOD device for digital microfluidics applications. Microsystem Technologies, 2017, 23, 389-397.	1.2	33
167	Dimensionless model for impedimetric sensing of particle laden droplets in digital microfluidic devices. Microsystem Technologies, 2017, 23, 3131-3139.	1.2	1
168	Versatile gel assembly on a chip. Nature, 2017, 541, 470-471.	13.7	2
169	Solid supports for extraction and preconcentration of proteins and peptides in microfluidic devices: A review. Analytica Chimica Acta, 2017, 955, 1-26.	2.6	33
170	Stretchable superlyophobic surfaces for nearly- lossless droplet transfer. Sensors and Actuators B: Chemical, 2017, 244, 649-654.	4.0	52
171	Active droplet sorting in microfluidics: a review. Lab on A Chip, 2017, 17, 751-771.	3.1	250
172	Exact routing for micro-electrode-dot-array digital microfluidic biochips., 2017,,.		35
173	From single-molecule detection to next-generation sequencing: microfluidic droplets for high-throughput nucleic acid analysis. Microfluidics and Nanofluidics, 2017, 21, 58.	1.0	42
174	Printed Microfluidics. Advanced Functional Materials, 2017, 27, 1604824.	7.8	41
175	Electrowetting of sessile drops on soft dielectric elastomer films. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	10
176	Magnetic digital microfluidics – a review. Lab on A Chip, 2017, 17, 994-1008.	3.1	256
177	Digital Assays Part I: Partitioning Statistics and Digital PCR. SLAS Technology, 2017, 22, 369-386.	1.0	197
178	Droplet-based label-free detection system based on guided-mode resonance and electrowetting-on-dielectric for concentration measurement. Japanese Journal of Applied Physics, 2017, 56, 050313.	0.8	3
179	Sessile droplets for chemical and biological assays. Lab on A Chip, 2017, 17, 2150-2166.	3.1	108
180	Progress of crystallization in microfluidic devices. Lab on A Chip, 2017, 17, 2167-2185.	3.1	67
181	Pre-concentration by liquid intake by paper (P-CLIP): a new technique for large volumes and digital microfluidics. Lab on A Chip, 2017, 17, 2272-2280.	3.1	27
182	Hybrid paper-based microfluidics: combination of paper-based analytical device (ÂμPAD) and digital microfluidics (DMF) on a single substrate. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	22
183	Integration of digital microfluidics with whispering-gallery mode sensors for label-free detection of biomolecules. Lab on A Chip, 2017, 17, 1740-1748.	3.1	29

#	Article	IF	CITATIONS
184	Microfluidics for genome-wide studies involving next generation sequencing. Biomicrofluidics, 2017, 11, 021501.	1.2	29
185	Magnetically Actuated Droplet Manipulation and Its Potential Biomedical Applications. ACS Applied Materials & Samp; Interfaces, 2017, 9, 1155-1166.	4.0	119
186	Improvement of droplet speed and stability in electrowetting on dielectric devices by surface polishing. Biochip Journal, 2017, 11, 316-321.	2.5	7
187	Electric generation and ratcheted transport of contact-charged drops. Physical Review E, 2017, 96, 043101.	0.8	5
188	Sequential Coalescence Enabled Twoâ€Step Microreactions in Tripleâ€Core Doubleâ€Emulsion Droplets Triggered by an Electric Field. Small, 2017, 13, 1702188.	5.2	44
189	Ultrasound propulsion of micro-/nanomotors. Applied Materials Today, 2017, 9, 493-503.	2.3	182
190	JDLED., 2017,,.		0
191	Controlled, synchronized actuation of microdroplets by gravity in a superhydrophobic, 3D-printed device. Analytica Chimica Acta, 2017, 988, 50-57.	2.6	11
192	Controlled droplet microfluidic systems for multistep chemical and biological assays. Chemical Society Reviews, 2017, 46, 6210-6226.	18.7	214
193	The power of solid supports in multiphase and droplet-based microfluidics: towards clinical applications. Lab on A Chip, 2017, 17, 3979-3999.	3.1	49
194	Image-based feedback and analysis system for digital microfluidics. Lab on A Chip, 2017, 17, 3437-3446.	3.1	42
195	Carbon nanotubes in microfluidic lab-on-a-chip technology: current trends and future perspectives. Microfluidics and Nanofluidics, $2017, 21, 1$.	1.0	36
196	Biosensors-on-chip: a topical review. Journal of Micromechanics and Microengineering, 2017, 27, 083001.	1.5	75
197	Digital microfluidics: A promising technique for biochemical applications. Frontiers of Mechanical Engineering, 2017, 12, 510-525.	2.5	54
198	Sample preparation of chemical warfare agent simulants on a digital microfluidic (DMF) device using magnetic bead-based solid-phase extraction. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	8
199	Microfluidics Cell Loadingâ€Dock System: Ordered Cellular Array for Dynamic Lymphocyteâ€Communication Study. Advanced Biology, 2017, 1, e1700085.	3.0	27
200	Electrowetting-based microfluidic operations on rapid-manufactured devices for heat pipe applications. Journal of Micromechanics and Microengineering, 2017, 27, 075004.	1.5	15
201	A micro-controller based approach for digital microfluidic sensors. Journal of Statistics and Management Systems, 2017, 20, 743-751.	0.3	1

#	Article	IF	Citations
202	Droplet array for screening acute behaviour response to chemicals in <i>Caenorhabditis elegans</i> Lab on A Chip, 2017, 17, 4303-4311.	3.1	19
203	A digital microfluidic system for loop-mediated isothermal amplification and sequence specific pathogen detection. Scientific Reports, 2017, 7, 14586.	1.6	56
204	Protein droplet actuation on superhydrophobic surfaces: a new approach toward anti-biofouling electrowetting systems. RSC Advances, 2017, 7, 49633-49648.	1.7	16
205	Dynamic capacitive sensing of droplet parameters in a low-cost open EWOD system. Sensors and Actuators A: Physical, 2017, 263, 224-233.	2.0	22
206	Asymptotic analysis of the evaporation dynamics of partially wetting droplets. Journal of Fluid Mechanics, 2017, 824, 574-623.	1.4	13
207	Autonomous Control of Fluids in a Wide Surface Tension Range in Microfluidics. Langmuir, 2017, 33, 7248-7255.	1.6	6
208	Accurate, consistent, and fast droplet splitting and dispensing in electrowetting on dielectric digital microfluidics. Micro and Nano Systems Letters, 2017, 5, .	1.7	29
209	An automated optofluidic biosensor platform combining interferometric sensors and injection moulded microfluidics. Lab on A Chip, 2017, 17, 2793-2804.	3.1	26
210	Magnetically manipulated droplet splitting on a 3D-printed device to carry out a complexometric assay. Lab on A Chip, 2017, 17, 2640-2649.	3.1	20
211	Dynamics of magnetic modulation of ferrofluid droplets for digital microfluidic applications. Journal of Magnetism and Magnetic Materials, 2017, 421, 165-176.	1.0	21
212	An EWOD-based micro diluter with high flexibility on dilution ratio. Microsystem Technologies, 2017, 23, 3645-3651.	1.2	11
213	Droplet formation caused by laser-induced surface-tension-driven flows in binary liquid mixtures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 521, 22-29.	2.3	10
214	A low cost open droplet-based microfluidic devices on printed circuit board., 2017,,.		2
215	Microfluidics: A new tool for microbial single cell analyses in human microbiome studies. Biomicrofluidics, 2017, 11, .	1.2	23
216	Detection of arboviruses in blood and mosquito slurry samples using polymer microchip., 2017,,.		0
217	Stimuli-Controlled Fluid Control and Microvehicle Movement in Microfluidic Channels., 2017,,.		1
218	OpenDrop: An Integrated Do-It-Yourself Platform for Personal Use of Biochips. Bioengineering, 2017, 4, 45.	1.6	66
219	A Programmable Digital Microfluidic Assay for the Simultaneous Detection of Multiple Anti-Microbial Resistance Genes. Micromachines, 2017, 8, 111.	1.4	37

#	Article	IF	CITATIONS
220	Recent Advances and Future Perspectives on Microfluidic Liquid Handling. Micromachines, 2017, 8, 186.	1.4	131
221	Coalescence Processes of Droplets and Liquid Marbles. Micromachines, 2017, 8, 336.	1.4	50
222	Digital Microfluidics for Nucleic Acid Amplification. Sensors, 2017, 17, 1495.	2.1	47
223	Advances in Testing Techniques for Digital Microfluidic Biochips. Sensors, 2017, 17, 1719.	2.1	16
224	A Digital Microfluidics Platform for Loop-Mediated Isothermal Amplification Detection. Sensors, 2017, 17, 2616.	2.1	34
225	Application of polydopamine in biomedical microfluidic devices. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	18
226	An Automated Induction Microfluidics System for Synthetic Biology. ACS Synthetic Biology, 2018, 7, 933-944.	1.9	25
227	Electrically controlled rapid release of actives encapsulated in double-emulsion droplets. Lab on A Chip, 2018, 18, 1121-1129.	3.1	47
228	Electrochemical and surface plasmon insulin assays on clinical samples. Analyst, The, 2018, 143, 1544-1555.	1.7	26
229	A digital microfluidic system for serological immunoassays in remote settings. Science Translational Medicine, 2018, 10, .	5.8	117
230	Field-Assisted Contact Line Motion in Thin Films. Langmuir, 2018, 34, 12665-12679.	1.6	0
231	Determination of dynamic contact angles within microfluidic devices. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	9
232	Local Wettability Modification and its Micro-Fluidic System Application. Toxinology, 2018, , 1-33.	0.2	0
233	Spheroids-on-a-chip: Recent advances and design considerations in microfluidic platforms for spheroid formation and culture. Sensors and Actuators B: Chemical, 2018, 263, 151-176.	4.0	175
234	Development of Pipettes as Mobile Nanofluidic Devices for Mass Spectrometric Analysis. , 2018, , 273-293.		0
235	Universal Transient Dynamics of Electrowetting Droplets. Scientific Reports, 2018, 8, 836.	1.6	25
236	Target Confinement in Small Reaction Volumes Using Microfluidic Technologies: A Smart Approach for Single-Entity Detection and Analysis. ACS Sensors, 2018, 3, 264-284.	4.0	31
237	Microfluidic systems for microalgal biotechnology: A review. Algal Research, 2018, 30, 149-161.	2.4	76

#	Article	IF	Citations
238	Microfluidics for Protein Biophysics. Journal of Molecular Biology, 2018, 430, 565-580.	2.0	49
239	Droplets in Microfluidics. Energy, Environment, and Sustainability, 2018, , 347-379.	0.6	1
240	Scaling Laws in Directional Spreading of Droplets on Wettability-Confined Diverging Tracks. Langmuir, 2018, 34, 1899-1907.	1.6	41
241	Secure Randomized Checkpointing for Digital Microfluidic Biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37, 1119-1132.	1.9	42
242	Thermal actuation and confinement of water droplets on paper-based digital microfluidics devices. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	23
243	Highly Sensitive and Automated Surface Enhanced Raman Scattering-based Immunoassay for H5N1 Detection with Digital Microfluidics. Analytical Chemistry, 2018, 90, 5224-5231.	3.2	107
244	Shape evolution and splitting of ferrofluid droplets on a hydrophobic surface in the presence of a magnetic field. Soft Matter, 2018, 14, 2915-2922.	1.2	36
245	Smooth, All-Solid, Low-Hysteresis, Omniphobic Surfaces with Enhanced Mechanical Durability. ACS Applied Materials & Durability. ACS Applied Materials & Durability. ACS	4.0	85
246	Recent advances in the use of microfluidic technologies for single cell analysis. Analyst, The, 2018, 143, 60-80.	1.7	121
247	Microfluidic single-cell technology in immunology and antibody screening. Molecular Aspects of Medicine, 2018, 59, 47-61.	2.7	66
248	Structural and Functional Test Methods for Micro-Electrode-Dot-Array Digital Microfluidic Biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37, 968-981.	1.9	21
249	The physics of water droplets on surfaces: exploring the effects of roughness and surface chemistry. European Journal of Physics, 2018, 39, 025804.	0.3	28
250	Wearable sensors: modalities, challenges, and prospects. Lab on A Chip, 2018, 18, 217-248.	3.1	778
251	Modeling thermocapillary migration of interfacial droplets by a hybrid lattice Boltzmann finite difference scheme. Applied Thermal Engineering, 2018, 131, 910-919.	3.0	6
252	Characterization of self-assembled AuNPs film for optofluidic applications. , 2018, , .		1
254	Built-In Self-Diagnosis and Fault-Tolerant Daisy-Chain Design in MEDA Biochips. , 2018, , .		8
255	Tamper-resistant pin-constrained digital microfluidic biochips. , 2018, , .		6
256	Adjustment and Measurement of Contact Angle with Electrowetting on a Quartz-Crystal Microbalance. Inventions, 2018, 3, 46.	1.3	3

#	ARTICLE	IF	CITATIONS
258	Determination of Aqueous Twoâ€Phase System Binodals and Tieâ€Lines by Electrowettingâ€onâ€Dielectric Droplet Manipulation. ChemBioChem, 2018, 20, 270-275.	1.3	4
259	Size- and deformability-based isolation of circulating tumor cells with microfluidic chips and their applications in clinical studies. AIP Advances, 2018, 8, 120701.	0.6	20
260	Automatic contactless injection, transportation, merging, and ejection of droplets with a multifocal point acoustic levitator. Review of Scientific Instruments, 2018, 89, 125105.	0.6	45
261	Interfacing Digital Microfluidics with Ambient Mass Spectrometry Using SU-8 as Dielectric Layer. Micromachines, 2018, 9, 649.	1.4	9
262	Numerical investigation of electrowetting-based droplet splitting in closed digital microfluidic system: Dynamics, mode, and satellite droplet. Physics of Fluids, 2018, 30, .	1.6	25
263	Transport mechanism by which droplets on electrowetting-on-dielectric devices. Chinese Journal of Physics, 2018, 56, 2887-2896.	2.0	2
264	Controlled Actuation of Liquid Marbles on a Dielectric. ACS Applied Materials & Dielectric. ACS Applied Materials & Dielectric ACS Applied Materials & Diele	4.0	23
265	Digital microfluidics using a differentially polarized interface (DPI) to enhance translational force. Lab on A Chip, 2018, 18, 3293-3302.	3.1	4
266	Tamper-Resistant Pin-Constrained Digital Microfluidic Biochips. , 2018, , .		0
268	Electric Field-Induced Cutting of Hydrogel Microfibers with Precise Length Control for Micromotors and Building Blocks. ACS Applied Materials & Samp; Interfaces, 2018, 10, 40228-40237.	4.0	26
269	Microfluidics and Nanofluidics: Science, Fabrication Technology (From Cleanrooms to 3D Printing) and Their Application to Chemical Analysis by Battery-Operated Microplasmas-On-Chips. , 2018, , .		7
270	Tangible Drops. , 2018, , .		16
271	Characterization of electrowetting, contact angle hysteresis, and adhesion on digital microfluidic devices with inkjet-printed electrodes. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	13
272	Recent advances in microfluidic chip integrated electronic biosensors for multiplexed detection. Biosensors and Bioelectronics, 2018, 121, 272-280.	5.3	90
273	Thermocapillary migration of droplets under molecular and gravitational forces. Journal of Fluid Mechanics, 2018, 847, 1-27.	1.4	20
274	Droplet microfluidics for highâ€sensitivity and highâ€throughput detection and screening of disease biomarkers. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1522.	3.3	60
275	Droplet Oscillation as an Arbitrary Waveform Generator. Langmuir, 2018, 34, 7042-7047.	1.6	12
276	On the complexity of design tasks for Digital Microfluidic Biochips. Microelectronics Journal, 2018, 78, 35-45.	1.1	7

#	Article	IF	CITATIONS
277	Microfluidics and Interfacial Chemistry in the Atmosphere. , 2018, , 245-270.		4
278	Manipulation schemes and applications of liquid marbles for micro total analysis systems. Microelectronic Engineering, 2018, 197, 87-95.	1.1	31
279	Digital acoustofluidics enables contactless and programmable liquid handling. Nature Communications, 2018, 9, 2928.	5.8	134
280	Droplet Velocity Measurement Based on Dielectric Layer Thickness Variation Using Digital Microfluidic Devices. Biosensors, 2018, 8, 45.	2.3	10
281	Chemical and Physical Pathways for Fabricating Flexible Superamphiphobic Surfaces with High Transparency. Coatings, 2018, 8, 47.	1.2	21
282	Microfluidic Devices for Drug Delivery Systems and Drug Screening. Genes, 2018, 9, 103.	1.0	252
284	Impact dynamics of egg-shaped drops on a solid surface for suppression of the bounce magnitude. International Journal of Heat and Mass Transfer, 2018, 127, 172-178.	2.5	8
285	Microfluidics contribution to pharmaceutical sciences: From drug discovery to post marketing product management. Journal of Pharmaceutical and Biomedical Analysis, 2018, 159, 348-362.	1.4	22
286	Digital microfluidics comes of age: high-throughput screening to bedside diagnostic testing for genetic disorders in newborns. Expert Review of Molecular Diagnostics, 2018, 18, 701-712.	1.5	41
287	An on-demand femtoliter droplet dispensing system based on a gigahertz acoustic resonator. Lab on A Chip, 2018, 18, 2540-2546.	3.1	25
288	Gas diffusion and evaporation control using EWOD actuation of ionic liquid microdroplets for gas sensing applications. Sensors and Actuators B: Chemical, 2018, 267, 647-654.	4.0	9
289	Local Wettability Modification and its Micro-Fluidic System Application. Toxinology, 2018, , 1-33.	0.2	0
290	Inventions and Innovations in Preclinical Platforms for Cancer Research. Inventions, 2018, 3, 43.	1.3	10
291	A magnet-actuated biomimetic device for isolating biological entities in microwells. Scientific Reports, 2018, 8, 12717.	1.6	14
292	Contact line friction of electrowetting actuated viscous droplets. Physical Review E, 2018, 97, 063101.	0.8	29
293	lonic liquid microdroplet manipulation by electrowetting-on-dielectric for on/off diffusion control. , 2018, , .		1
294	Controlling the residence time of a bouncing drop with asymmetric shaping. Soft Matter, 2018, 14, 4946-4951.	1.2	6
295	Efficient Generation of Dilution Gradients With Digital Microfluidic Biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, 38, 874-887.	1.9	8

#	ARTICLE	IF	CITATIONS
296	Randomized Checkpoints: A Practical Defense for Cyber-Physical Microfluidic Systems. IEEE Design and Test, 2019, 36, 5-13.	1.1	13
297	Development of an Electrowetting Digital Microfluidics Platform using Low-cost Materials., 2019, , .		3
298	Separation of Floating Oil Drops Based on Drop-Liquid Substrate Interfacial Tension. Langmuir, 2019, 35, 10596-10600.	1.6	9
299	Facile Actuation of Organic and Aqueous Droplets on Slippery Liquid-Infused Porous Surfaces for the Application of On-Chip Polymer Synthesis and Liquid–Liquid Extraction. ACS Applied Materials & Samp; Interfaces, 2019, 11, 28327-28335.	4.0	19
300	Rapid generation of chemical combinations on a magnetic digital microfluidic array. RSC Advances, 2019, 9, 21741-21747.	1.7	13
301	Slip-driven microfluidic devices for nucleic acid analysis. Biomicrofluidics, 2019, 13, 041502.	1.2	15
302	Biosensors on chip: A critical review from an aspect of micro/nanoscales. Journal of Micromanufacturing, 2019, 2, 198-219.	0.6	18
303	"Learning on a chip:―Microfluidics for formal and informal science education. Biomicrofluidics, 2019, 13, 041501.	1.2	20
304	Electrowetting Behavior and Digital Microfluidic Applications of Fluorescent, Polymer-Encapsulated Quantum Dot Nanofluids. ACS Applied Materials & Encapsulated 2019, 11, 28487-28498.	4.0	9
305	On-chip organic synthesis enabled using an engine-and-cargo system in an electrowetting-on-dielectric digital microfluidic device. Lab on A Chip, 2019, 19, 3054-3064.	3.1	26
306	Highly Efficient Real-Time Droplet Analysis Platform for High-Throughput Interrogation of DNA Sequences by Melt. Analytical Chemistry, 2019, 91, 11275-11282.	3.2	14
307	Open Microfluidic Capillary Systems. Analytical Chemistry, 2019, 91, 8739-8750.	3.2	87
308	Rapid Chemical Reaction Monitoring by Digital Microfluidicsâ€NMR: Proof of Principle Towards an Automated Synthetic Discovery Platform. Angewandte Chemie, 2019, 131, 15516-15520.	1.6	3
309	Numerical and experimental investigation of the stability of a drop in a single-axis acoustic levitator. Physics of Fluids, 2019, 31, .	1.6	25
310	The Collective Transport of Microparticles Under an Asymmetric Electric Field. , 2019, , .		0
311	Magnetic-Responsive Bendable Nozzles for Open Surface Droplet Manipulation. Polymers, 2019, 11, 1792.	2.0	2
312	Density gradient calculation in a class of multiphase lattice Boltzmann models. Physical Review E, 2019, 100, 043306.	0.8	8
313	Zero-insertion-loss optical shutter based on electrowetting-on-dielectric actuation of opaque ionic liquid microdroplets. Applied Physics Letters, 2019, 115, .	1.5	6

#	Article	IF	Citations
314	Rapid Chemical Reaction Monitoring by Digital Microfluidicsâ€NMR: Proof of Principle Towards an Automated Synthetic Discovery Platform. Angewandte Chemie - International Edition, 2019, 58, 15372-15376.	7.2	33
315	Electrocoalescence of liquid marbles driven by embedded electrodes for triggering bioreactions. Lab on A Chip, 2019, 19, 3526-3534.	3.1	16
316	Droplet incubation and splitting in open microfluidic channels. Analytical Methods, 2019, 11, 4528-4536.	1.3	27
317	Miniaturized sample preparation on a digital microfluidics device for sensitive bottom-up microproteomics of mammalian cells using magnetic beads and mass spectrometry-compatible surfactants. Lab on A Chip, 2019, 19, 3490-3498.	3.1	54
318	Guided droplet transport on synthetic slippery surfaces inspired by a pitcher plant. Journal of the Royal Society Interface, 2019, 16, 20190323.	1.5	20
319	Modes and break periods of electrowetting liquid bridge. Physical Review E, 2019, 100, 033102.	0.8	0
320	Droplet on Soft Shuttle: Electrowetting-on-Dielectric Actuation of Small Droplets. ACS Applied Materials & Samp; Interfaces, 2019, 11, 39283-39291.	4.0	16
321	Organic-free, versatile sessile droplet microfluidic device for chemical separation using an aqueous two-phase system. Lab on A Chip, 2019, 19, 654-664.	3.1	20
322	An integrated droplet-digital microfluidic system for on-demand droplet creation, mixing, incubation, and sorting. Lab on A Chip, 2019, 19, 524-535.	3.1	62
323	Towards the rapid and efficient mixing on 'open-surface' droplet-based microfluidics via magnetic actuation. Sensors and Actuators B: Chemical, 2019, 286, 181-190.	4.0	37
324	Execution of provably secure assays on MEDA biochips to thwart attacks. , 2019, , .		17
325	Active pumping and control of flows in centrifugal microfluidics. Microfluidics and Nanofluidics, 2019, 23, 1.	1.0	48
326	A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches. Analyst, The, 2019, 144, 87-113.	1.7	199
327	High throughput screening of complex biological samples with mass spectrometry – from bulk measurements to single cell analysis. Analyst, The, 2019, 144, 872-891.	1.7	61
328	Digital microfluidics for cell manipulation. TrAC - Trends in Analytical Chemistry, 2019, 117, 291-299.	5.8	34
329	Deformation, speed, and stability of droplet motion in closed electrowetting-based digital microfluidics. Physics of Fluids, 2019, 31, .	1.6	20
330	Puddle., 2019,,.		24
331	Molecular digital data storage using DNA. Nature Reviews Genetics, 2019, 20, 456-466.	7.7	312

#	Article	IF	Citations
332	Dynamic microscale flow patterning using electrical modulation of zeta potential. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10258-10263.	3.3	24
333	Electrocontrolled Liquid Marbles for Rapid Miniaturized Organic Reactions. Advanced Functional Materials, 2019, 29, 1901101.	7.8	43
334	Water in an electric field does not dance alone: The relation between equilibrium structure, time dependent viscosity and molecular motions. Journal of Molecular Liquids, 2019, 282, 303-315.	2.3	17
335	Extraction of nucleic acids from blood: unveiling the potential of active pneumatic pumping in centrifugal microfluidics for integration and automation of sample preparation processes. Lab on A Chip, 2019, 19, 1941-1952.	3.1	48
336	High density DNA data storage library via dehydration with digital microfluidic retrieval. Nature Communications, 2019, 10, 1706.	5.8	99
337	Velocity Saturation in Digital Microfluidics. Langmuir, 2019, 35, 5342-5352.	1.6	25
338	Droplet Sorting and Manipulation on Patterned Two-Phase Slippery Lubricant-Infused Surface. ACS Applied Materials & Droplet Samp; Interfaces, 2019, 11, 16130-16138.	4.0	45
339	Microfluidic Electrochemical Devices for Biosensing. Journal of Analysis and Testing, 2019, 3, 3-18.	2.5	48
340	Magnetic digital microfluidics on a bioinspired surface for pointâ€ofâ€care diagnostics of infectious disease. Electrophoresis, 2019, 40, 1178-1185.	1.3	19
341	Heterogeneous Immunoassay Using Channels and Droplets in a Digital Microfluidic Platform. Micromachines, 2019, 10, 107.	1.4	16
342	Hydrodynamic-flow-enhanced rapid mixer for isothermal DNA hybridization kinetics analysis on digital microfluidics platform. Sensors and Actuators B: Chemical, 2019, 287, 390-397.	4.0	12
343	Grow with the Flow: When Morphogenesis Meets Microfluidics. Advanced Materials, 2019, 31, e1805764.	11.1	42
344	Fault Recovery in Micro-Electrode-Dot-Array Digital Microfluidic Biochips Using an IJTAG NetworkBehaviors. , 2019, , .		5
345	A New OEW Microfluidic Device based on p-n Junction. , 2019, , .		0
346	Zero-Loss Optical Switch Based on Ionic Liquid Microdroplet Ewod Actuatio., 2019,,.		0
347	Recent advances in microfluidics for drug screening. Biomicrofluidics, 2019, 13, 061503.	1.2	53
348	Programmable hydraulic resistor for microfluidic chips using electrogate arrays. Scientific Reports, 2019, 9, 17242.	1.6	5
349	Nanoparticles Synthesis using Digital microfluidics. , 2019, , .		2

#	Article	IF	CITATIONS
350	Shaping and transporting diamagnetic sessile drops. Biomicrofluidics, 2019, 13, 064110.	1.2	5
351	Disposable Off-Chip Micro-Dispenser for Accurate Droplet Transportation. IEEE Sensors Journal, 2019, 19, 575-586.	2.4	1
352	Highâ€Precision Stereolithography of Biomicrofluidic Devices. Advanced Materials Technologies, 2019, 4, 1800395.	3.0	75
353	The Many Roads to an Ideal Paper-based Device. , 2019, , 171-201.		1
354	Versatile digital polymerase chain reaction chip design, fabrication, and image processing. Sensors and Actuators B: Chemical, 2019, 283, 677-684.	4.0	29
356	Mobile Microfluidics. Bioengineering, 2019, 6, 5.	1.6	5
357	Sensitivity Study of Cancer Antigens (CA-125) Detection Using Interdigitated Electrodes Under Microfluidic Flow Condition. BioNanoScience, 2019, 9, 203-214.	1.5	11
358	Mechanism of droplets on electrowetting-on-dielectric chips transition from stillness to motion. Indian Journal of Physics, 2019, 93, 427-438.	0.9	3
359	Paper-based Diagnostics., 2019,,.		6
360	Micro-Electrode-Dot-Array Digital Microfluidic Biochips: Technology, Design Automation, and Test Techniques. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 292-313.	2.7	38
361	Synthesis of Tamper-Resistant Pin-Constrained Digital Microfluidic Biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 171-184.	1.9	6
362	Cyberphysical Microfluidic Biochips. , 2020, , 1-17.		3
364	Trends in miniaturized biosensors for point-of-care testing. TrAC - Trends in Analytical Chemistry, 2020, 122, 115701.	5.8	119
365	Microfluidics application for detection of biological warfare agents. , 2020, , 103-131.		3
366	A Low-Cost Portable Dynamic Droplet Sensing System for Digital Microfluidics Applications. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 3623-3630.	2.4	15
369	When robotics met fluidics. Lab on A Chip, 2020, 20, 709-716.	3.1	27
370	Magnetowetting dynamics of sessile ferrofluid drops on soft surfaces. Soft Matter, 2020, 16, 970-982.	1.2	11
371	Solid/liquid interfacial friction and slip behaviors on roughness surface under applied voltage. Tribology International, 2020, 144, 106128.	3.0	4

#	Article	IF	CITATIONS
372	Simultaneous detection of two growth factors from human single-embryo culture medium by a bead-based digital microfluidic chip. Biosensors and Bioelectronics, 2020, 150, 111851.	5. 3	28
373	On-Chip Impedance for Quantifying Parasitic Voltages During AC Electrokinetic Trapping. IEEE Transactions on Biomedical Engineering, 2020, 67, 1664-1671.	2.5	8
375	Âμâ€NMR at the point of care testing. Electrophoresis, 2020, 41, 319-327.	1.3	9
376	Recent Advances in Droplet Microfluidics. Analytical Chemistry, 2020, 92, 132-149.	3.2	189
377	A programmable digital microfluidic chip platform and its application in detection of foodborne pathogen. , 2020, , .		0
378	Stimulated Raman scattering by intracavity mixing of nanosecond laser excitation and fluorescence in acoustically levitated droplets. Analytical Methods, 2020, 12, 5046-5054.	1.3	2
379	Capillarity: revisiting the fundamentals of liquid marbles. Microfluidics and Nanofluidics, 2020, 24, 1.	1.0	28
380	Centrifugal microfluidic lab-on-a-chip system with automated sample lysis, DNA amplification and microarray hybridization for identification of enterohemorrhagic <i>Escherichia coli</i> culture isolates. Analyst, The, 2020, 145, 6831-6845.	1.7	23
381	Coplanar Electrowetting-Induced Droplet Detachment from Radially Symmetric Electrodes. Langmuir, 2020, 36, 8129-8136.	1.6	14
382	Multiphase flow in microfluidics: From droplets and bubbles to the encapsulated structures. Advances in Colloid and Interface Science, 2020, 282, 102208.	7.0	73
383	Digital microfluidic isolation of single cells for -Omics. Nature Communications, 2020, 11, 5632.	5.8	85
384	Anisotropy-induced directional self-transportation of low surface tension liquids: a review. RSC Advances, 2020, 10, 40569-40581.	1.7	15
385	How Nanophotonic Label-Free Biosensors Can Contribute to Rapid and Massive Diagnostics of Respiratory Virus Infections: COVID-19 Case. ACS Sensors, 2020, 5, 2663-2678.	4.0	119
386	A microfluidic circuit consisting of individualized components with a 3D slope valve for automation of sequential liquid control. Lab on A Chip, 2020, 20, 4433-4441.	3.1	8
387	Microbioreactors for Process Development and Cell-Based Screening Studies. Advances in Biochemical Engineering/Biotechnology, 2020, , 67-100.	0.6	4
388	Stripped Electrode Based Electrowetting-on-Dielectric Digital Microfluidics for Precise and Controllable Parallel Microdrop Generation. Langmuir, 2020, 36, 9540-9550.	1.6	12
389	Elevating Chemistry Research with a Modern Electronics Toolkit. Chemical Reviews, 2020, 120, 9482-9553.	23.0	49
390	Electrohydrodynamics of droplets and jets in multiphase microsystems. Soft Matter, 2020, 16, 8526-8546.	1.2	10

#	Article	IF	CITATIONS
391	Digital Microfluidics-Enabled Analysis of Individual Variation in Liver Cytochrome P450 Activity. Analytical Chemistry, 2020, 92, 14693-14701.	3.2	9
392	Extending the Lifetime of MEDA Biochips by Selective Sensing on Microelectrodes. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 3531-3543.	1.9	4
393	Cell-free biology using remote-controlled digital microfluidics for individual droplet control. RSC Advances, 2020, 10, 26972-26981.	1.7	11
394	A Numerical Study of Droplet Splitting using Different Spacers in EWOD Device. Biochip Journal, 2020, 14, 242-250.	2.5	3
395	Inkjet Printing of Complex Soft Machines with Densely Integrated Electrostatic Actuators. Advanced Intelligent Systems, 2020, 2, 2000136.	3.3	20
396	PortaDrop: A portable digital microfluidic platform providing versatile opportunities for Lab-On-A-Chip applications. PLoS ONE, 2020, 15, e0238581.	1.1	10
397	PurpleDrop: A Digital Microfluidics-Based Platform for Hybrid Molecular-Electronics Applications. IEEE Micro, 2020, 40, 76-86.	1.8	5
398	A Digitalâ€toâ€Channel Microfluidic Interface via Inkjet Printing of Silver and UV Curing of Thiol–Enes. Advanced Materials Technologies, 2020, 5, 2000451.	3.0	16
399	Designing Splicing Digital Microfluidics Chips Based on Polytetrafluoroethylene Membrane. Micromachines, 2020, 11, 1067.	1.4	14
400	Electrowetting-on-Dielectric Based Economical Digital Microfluidic Chip on Flexible Substrate by Inkjet Printing. Micromachines, 2020, 11, 1113.	1.4	9
401	Digital Microfluidics in Newborn Screening for Mucopolysaccharidoses: A Progress Report. International Journal of Neonatal Screening, 2020, 6, 78.	1.2	7
402	Shapeâ€Designable Polyhedral Liquid Marbles/Plasticines Stabilized with Polymer Plates. Advanced Materials Interfaces, 2020, 7, 2001573.	1.9	21
403	Liquid flow and control without solid walls. Nature, 2020, 581, 58-62.	13.7	80
404	Integrated Digital Microfluidic Platform for Colorimetric Sensing of Nitrite. ACS Omega, 2020, 5, 11196-11201.	1.6	22
405	High-throughput screening by droplet microfluidics: perspective into key challenges and future prospects. Lab on A Chip, 2020, 20, 2247-2262.	3.1	106
406	Defining mass transfer in a capillary wave micro-bioreactor for dose-response and other cell-based assays. Biochemical Engineering Journal, 2020, 161, 107667.	1.8	5
407	Numerical simulation of a microfluidic biosensor for C-reactive protein detection into a microchannel with considering electrothermal effect. AEJ - Alexandria Engineering Journal, 2020, 59, 1649-1659.	3.4	5
408	MicroRNA Biomarkers for Infectious Diseases: From Basic Research to Biosensing. Frontiers in Microbiology, 2020, 11, 1197.	1.5	137

#	Article	IF	CITATIONS
409	Electrochemical Impedance Spectroscopy Using Interdigitated Gold–Polypyrrole Electrode Combination. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900827.	0.8	7
410	Auto-affitech: an automated ligand binding affinity evaluation platform using digital microfluidics with a bidirectional magnetic separation method. Lab on A Chip, 2020, 20, 1577-1585.	3.1	29
411	Composite Films of CsPbBr3 Perovskite Nanocrystals in a Hydrophobic Fluoropolymer for Temperature Imaging in Digital Microfluidics. ACS Applied Materials & Samp; Interfaces, 2020, 12, 19805-19812.	4.0	23
412	Acoustic levitation in mid-air: Recent advances, challenges, and future perspectives. Applied Physics Letters, 2020, 116, .	1.5	46
413	A microfluidically controlled concave–convex membrane lens using an addressing operation system. Microsystems and Nanoengineering, 2020, 6, 34.	3.4	5
414	Microfluidic devices: biosensors. , 2020, , 287-351.		3
415	Role of Digital Microfluidics in Enabling Access to Laboratory Automation and Making Biology Programmable. SLAS Technology, 2020, 25, 411-426.	1.0	16
416	Tritoroidal particle rings formation in open microfluidics induced by standing surface acoustic waves. Electrophoresis, 2020, 41, 983-990.	1.3	2
417	Field generated nematic microflows via backflow mechanism. Scientific Reports, 2020, 10, 1446.	1.6	19
418	A ferrobotic system for automated microfluidic logistics. Science Robotics, 2020, 5, .	9.9	58
419	Numerical investigation of continuous droplet transport in parallel-plate electrowetting-on-dielectric digital microfluidics (EWOD DMF) with stripped electrodes. Physics of Fluids, 2020, 32, .	1.6	12
420	Developing frontâ€end devices for improved sample preparation in MSâ€based proteome analysis. Journal of Mass Spectrometry, 2020, 55, e4494.	0.7	1
421	High-Fidelity Single Molecule Quantification in a Flow Cytometer Using Multiparametric Optical Analysis. ACS Nano, 2020, 14, 2324-2335.	7.3	22
422	Minimal microfabrication required digital microfluidic system toward point-of-care nucleic acid amplification test application for developing countries. Microsystem Technologies, 2020, 26, 1863-1873.	1.2	4
423	Computer-Aided Design of Microfluidic Circuits. Annual Review of Biomedical Engineering, 2020, 22, 285-307.	5.7	18
424	Position and feedback for digital microfluidic system based on light intensity information. Asia-Pacific Journal of Chemical Engineering, 2020, 15, e2449.	0.8	1
425	Automated radiochemical separation, analysis, and sensing. , 2020, , 821-872.		2
426	Significance of digital microfluidic techniques in biomedical devices for healthcare. , 2020, , 281-303.		0

#	Article	IF	CITATIONS
427	IJTAG-Based Fault Recovery and Robust Microelectrode-Cell Design for MEDA Biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 4921-4934.	1.9	5
428	Contact line motion in axial thermocapillary outward flow. Journal of Fluid Mechanics, 2020, 892, .	1.4	7
429	Microelectrode Combinations of Gold and Polypyrrole Enable Highly Stable Twoâ€electrode Electrochemical Impedance Spectroscopy Measurements under Turbulent Flow Conditions. Electroanalysis, 2021, 33, 197-207.	1.5	9
430	Analysis of voltage distribution in electrowetting on Dielectric (EWOD) system. Materials Today: Proceedings, 2021, 38, 179-185.	0.9	3
431	Nanoliter-scale liquid metering and droplet generation based on a capillary array for high throughput screening. Talanta, 2021, 221, 121613.	2.9	3
432	An integrated digital microfluidic bioreactor for fully automatic screening of microalgal growth and stressâ€induced lipid accumulation. Biotechnology and Bioengineering, 2021, 118, 294-304.	1.7	15
433	Faster, better, and cheaper: harnessing microfluidics and mass spectrometry for biotechnology. RSC Chemical Biology, 2021, 2, 1331-1351.	2.0	20
434	Acoustohydrodynamic tweezers via spatial arrangement of streaming vortices. Science Advances, 2021, 7, .	4.7	34
435	A robust and scalable active-matrix driven digital microfluidic platform based on printed-circuit board technology. Lab on A Chip, 2021, 21, 1886-1896.	3.1	24
436	"One-to-three―droplet generation in digital microfluidics for parallel chemiluminescence immunoassays. Lab on A Chip, 2021, 21, 2892-2900.	3.1	35
437	Analysis of augmented droplet transport during electrowetting over triangular coplanar electrode array. Journal of Electrostatics, 2021, 109, 103541.	1.0	8
438	Exploring the Design Efficiency of Random Microfluidic Mixers. IEEE Access, 2021, 9, 9864-9872.	2.6	2
439	Stimuli-Controlled Fluid Control and Microvehicle Movement in Microfluidic Channels., 2022,, 128-157.		0
440	Magnetically Responsive Film Decorated with Microcilia for Robust and Controllable Manipulation of Droplets. ACS Applied Materials & Droplets.	4.0	38
441	Field-effect pump: liquid dielectrophoresis along a virtual microchannel with source-gate-drain electric fields. Lab on A Chip, 2021, 21, 2372-2382.	3.1	1
442	Nanotechnology-based on microfluidic devices lab-on-a-chip for food analysis. , 2021, , 187-211.		0
443	DNA Structural Barcode Copying and Random Access. Small Structures, 2021, 2, 2000144.	6.9	16
444	Lab-on-PCB and Flow Driving: A Critical Review. Micromachines, 2021, 12, 175.	1.4	23

#	Article	IF	Citations
445	Locomotion of a Nonaqueous Liquid Marble Induced by Near-Infrared-Light Irradiation. Langmuir, 2021, 37, 4172-4182.	1.6	11
446	Microfluidics for Peptidomics, Proteomics, and Cell Analysis. Nanomaterials, 2021, 11, 1118.	1.9	30
447	Droplet Interfacial Tensions and Phase Transitions Measured in Microfluidic Channels. Annual Review of Physical Chemistry, 2021, 72, 73-97.	4.8	26
448	Characterization of Inkjet-Printed Digital Microfluidics Devices. Sensors, 2021, 21, 3064.	2.1	3
449	Lagrangian Transport and Chaotic Advection in Three-Dimensional Laminar Flows. Applied Mechanics Reviews, 2021, 73, .	4.5	18
450	Digital Microfluidics: Magnetic Transportation and Coalescence of Sessile Droplets on Hydrophobic Surfaces. Langmuir, 2021, 37, 5823-5837.	1.6	14
451	A droplet acoustofluidic platform for time-controlled microbead-based reactions. Biomicrofluidics, 2021, 15, 034103.	1.2	3
452	Directional Droplet Transport on Functional Surfaces with Superwettabilities. Advanced Materials Interfaces, 2021, 8, 2100043.	1.9	41
453	Activeâ€matrix mesh electronics thinâ€filmâ€transistor arrays for biometricsâ€underâ€display and biomedical applications. Journal of the Society for Information Display, 2021, 29, 390-404.	0.8	3
454	Conquering the Tyranny of Number With Digital Microfluidics. Frontiers in Chemistry, 2021, 9, 676365.	1.8	2
455	A Snapshot of Microfluidics in Pointâ€ofâ€Care Diagnostics: Multifaceted Integrity with Materials and Sensors. Advanced Materials Technologies, 2021, 6, 2100049.	3.0	31
456	Continuous Droplet-Actuating Platforms via an Electric Field Gradient: Electrowetting and Liquid Dielectrophoresis. Langmuir, 2021, 37, 6414-6422.	1.6	22
457	A standalone, programmable digital microfluidics system with multiplexor interface logic., 2021,,.		0
458	Curvature effect of electrowetting-induced droplet detachment. Journal of Applied Physics, 2021, 129, 234701.	1.1	8
459	Active Flow Control and Dynamic Analysis in Droplet Microfluidics. Annual Review of Analytical Chemistry, 2021, 14, 133-153.	2.8	9
460	Instrumentation-Compact Digital Microfluidic Reaction Interface-Extended Loop-Mediated Isothermal Amplification for Sample-to-Answer Testing of <i>Vibrio parahaemolyticus</i> . Analytical Chemistry, 2021, 93, 9728-9736.	3.2	23
461	Electrical actuation of dielectric droplets by negative liquid dielectrophoresis. Electrophoresis, 2021, 42, 2490-2497.	1.3	5
462	Digital Microfluidics Chips for the Execution and Real-Time Monitoring of Multiple Ribozymatic Cleavage Reactions. ACS Omega, 2021, 6, 22514-22524.	1.6	6

#	Article	IF	CITATIONS
463	Droplet Energy Harvesting Is Reverse Phenomenon of Electrowetting on Dielectric. Advanced Functional Materials, 2021, 31, 2105233.	7.8	8
464	Amplification of Femtograms of Bacterial DNA Within 3 h Using a Digital Microfluidics Platform for MinION Sequencing. ACS Omega, 2021, 6, 25642-25651.	1.6	15
465	Controllable Positive/Negative Phototaxis of Millimeter-Sized Objects with Sensing Function. Langmuir, 2021, 37, 11093-11101.	1.6	3
466	Optoelectronic manipulation of bio-droplets containing cells or macromolecules by active ferroelectric platforms. Biomedical Optics Express, 2021, 12, 6601.	1.5	7
467	Droplet microfluidics on analysis of pathogenic microbes for wastewater-based epidemiology. TrAC - Trends in Analytical Chemistry, 2021, 143, 116333.	5.8	14
468	Emergence of microfluidic devices in sample extraction; an overview of diverse methodologies, principals, and recent advancements. TrAC - Trends in Analytical Chemistry, 2021, 143, 116352.	5.8	25
469	Acoustic Bubble-Induced Microstreaming for Biochemical Droplet Mixing Enhancement in Electrowetting (EW) Microfluidic Platforms. Journal of Microelectromechanical Systems, 2021, 30, 783-790.	1.7	5
470	Determination of blood lithium-ion concentration using digital microfluidic whole-blood separation and preloaded paper sensors. Biosensors and Bioelectronics, 2022, 195, 113631.	5.3	17
471	Auto-Panning: a highly integrated and automated biopanning platform for peptide screening. Lab on A Chip, 2021, 21, 2702-2710.	3.1	10
472	Novel electrodes for precise and accurate droplet dispensing and splitting in digital microfluidics. Nanotechnology Reviews, 2021, 10, 857-869.	2.6	8
473	An electrochemical method for a rapid and sensitive immunoassay on digital microfluidics with integrated indium tin oxide electrodes coated on a PET film. Analyst, The, 2021, 146, 4473-4479.	1.7	12
474	Microfluidics and Lab-on-a-Chip Devices: History and Challenges. , 2015, , 1-15.		12
475	Integrated Microwell Array Technologies for Single Cell Analysis. , 2020, , 1-32.		1
476	History of Bio-microelectromechanical Systems (BioMEMS). Lecture Notes in Bioengineering, 2021, , 1-20.	0.3	3
477	Magnetic actuation and deformation of a soft shuttle. Biomicrofluidics, 2020, 14, 034103.	1.2	2
478	Omnidirectional droplet propulsion on surfaces with a Pac-Man coalescence mechanism. Physical Review Fluids, 2020, 5, .	1.0	1
479	Secure Assay Execution on MEDA Biochips to Thwart Attacks Using Real-Time Sensing. ACM Transactions on Design Automation of Electronic Systems, 2020, 25, 1-25.	1.9	7
480	Solution for Mass Production of High-Throughput Digital Microfluidic Chip Based on a-Si TFT with In-Pixel Boost Circuit. Micromachines, 2021, 12, 1199.	1.4	7

#	Article	IF	CITATIONS
481	Microfluidic chips: recent advances, critical strategies in design, applications and future perspectives. Microfluidics and Nanofluidics, 2021, 25, 99.	1.0	73
482	New approach in SARS-CoV-2 surveillance using biosensor technology: a review. Environmental Science and Pollution Research, 2022, 29, 1677-1695.	2.7	22
483	Applications of Ionic Liquid Materials in Microfluidic Devices. RSC Smart Materials, 2017, , 234-271.	0.1	0
485	Digital Microfluidic Biochip Security. , 2017, , 287-306.		O
486	Local Wettability Modification and Its Micro-Fluidic System Application. Micro/Nano Technologies, 2018, , 925-957.	0.1	0
487	Toward microscale flow control using non-uniform electro-osmotic flow. , 2018, , .		0
490	Designs of on-chip Fourier transform spectrometers based on semiconductor waveguides. , 2019, , .		0
491	Integrated Microwell Array Technologies for Single Cell Analysis. , 2022, , 311-341.		0
492	Digital Microfluidics for Single Cell Manipulation and Analysis. , 2022, , 185-205.		1
493	Electrowetting-on-dielectric (EWOD): Current perspectives and applications in ensuring food safety. Journal of Food and Drug Analysis, 2020, 28, 596-622.	0.9	9
495	A review of many-body dissipative particle dynamics (MDPD): Theoretical models and its applications. Physics of Fluids, 2021, 33, .	1.6	30
496	LCAT pump optimization for an integrated microfluidic droplet generator. Microfluidics and Nanofluidics, 2015, 18, 1265-1275.	1.0	0
497	Droplet Transportation through an Orifice on Electrode for Digital Microfluidics Modulations. Micromachines, 2021, 12, 1385.	1.4	4
498	Role of Bioanalytical Chemistry in the Twenty-First Century. , 2022, , 25-51.		0
499	Multiplex detection of foodborne pathogens by real-time loop-mediated isothermal amplification on a digital microfluidic chip. Food Control, 2022, 136, 108824.	2.8	26
500	Optoelectrowetting (OEW) with push-actuation of microdroplets at small frequencies and OEW equations revisited. Sensors and Actuators A: Physical, 2022, 334, 113331.	2.0	2
501	Rapid prototyping of low-cost digital microfluidic devices using laser ablation. , 2020, , .		0
502	Securing Biochemical Samples Using Molecular Barcoding on Digital Microfluidic Biochips. , 2021, , .		3

#	Article	IF	CITATIONS
503	Microfluidics-Enabled Soft Manufacture of Materials with Tailorable Wettability. Chemical Reviews, 2022, 122, 7010-7060.	23.0	44
504	A perspective on magnetic microfluidics: Towards an intelligent future. Biomicrofluidics, 2022, 16, 011301.	1.2	11
505	Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: a review. Chemical Society Reviews, 2022, 51, 329-375.	18.7	104
506	Newborn screening of mucopolysaccharidosis type I. Critical Reviews in Clinical Laboratory Sciences, 2022, 59, 257-277.	2.7	2
507	Microfluidics and surface-enhanced Raman spectroscopy, a win–win combination?. Lab on A Chip, 2022, 22, 665-682.	3.1	42
508	Materials and methods for droplet microfluidic device fabrication. Lab on A Chip, 2022, 22, 859-875.	3.1	32
509	Digital Microfluidic qPCR Cartridge for SARS-CoV-2 Detection. Micromachines, 2022, 13, 196.	1.4	16
510	One-shot high-resolution melting curve analysis for <i>KRAS</i> point-mutation discrimination on a digital microfluidics platform. Lab on A Chip, 2022, 22, 537-549.	3.1	11
511	Depinning of Multiphase Fluid Using Light and Photo-Responsive Surfactants. ACS Central Science, 2022, 8, 235-245.	5.3	9
512	An automated nucleic acid detection platform using digital microfluidics with an optimized Cas12a system. Science China Chemistry, 2022, 65, 630-640.	4.2	22
513	Design, fabrication and assembly of lab-on-a-chip and its uses. Progress in Molecular Biology and Translational Science, 2022, 187, 121-162.	0.9	8
514	An outlook on microfluidics: the promise and the challenge. Lab on A Chip, 2022, 22, 530-536.	3.1	115
515	A lumped parameter model to describe the electromechanics of mesoscale droplets. Physics of Fluids, 2022, 34, 027107.	1.6	1
516	A perspective of active microfluidic platforms as an enabling tool for applications in other fields. Journal of Micromechanics and Microengineering, 2022, 32, 043001.	1.5	7
517	BiowareCFP: An Application-Agnostic Modular Reconfigurable Cyber-Fluidic Platform. Micromachines, 2022, 13, 249.	1.4	1
518	Microdroplet Actuation via Light Line Optoelectrowetting (LL-OEW). International Journal of Analytical Chemistry, 2021, 2021, 1-9.	0.4	4
519	Magnetowetting dynamics of sessile ferrofluid droplets: a review. Soft Matter, 2022, 18, 2287-2324.	1.2	15
520	Portable sample processing for molecular assays: application to Zika virus diagnostics. Lab on A Chip, 2022, 22, 1748-1763.	3.1	15

#	Article	IF	CITATIONS
521	Ferrofluids and bio-ferrofluids: looking back and stepping forward. Nanoscale, 2022, 14, 4786-4886.	2.8	50
522	Small tools for sweet challenges: advances in microfluidic technologies for glycan synthesis. Analytical and Bioanalytical Chemistry, 2022, 414, 5139-5163.	1.9	2
523	Viral Generation, Packaging, and Transduction on a Digital Microfluidic Platform. Analytical Chemistry, 2022, 94, 4039-4047.	3.2	5
524	Automated and Dynamic Control of Chemical Content in Droplets for Scalable Screens of Small Animals. Small, 2022, 18, e2200319.	5.2	6
525	Microfluidics-based strategies for molecular diagnostics of infectious diseases. Military Medical Research, 2022, 9, 11.	1.9	20
526	Digital Microfluidics-Powered Real-Time Monitoring of Isothermal DNA Amplification of Cancer Biomarker. Biosensors, 2022, 12, 201.	2.3	9
527	Reconfigurable microfluidics. Nature Reviews Chemistry, 2022, 6, 70-80.	13.8	38
528	Single-Cell Digital Microfluidic Mass Spectrometry Platform for Efficient and Multiplex Genotyping of Circulating Tumor Cells. Analytical Chemistry, 2022, 94, 1108-1117.	3.2	25
529	Wetting ridge assisted programmed magnetic actuation of droplets on ferrofluid-infused surface. Nature Communications, 2021, 12, 7136.	5.8	51
530	Vertical Addressing of 1â€Plane Electrodes for Digital Microfluidics. Advanced Materials Technologies, 2022, 7, .	3.0	6
531	Cilo-seq: highly sensitive cell-in-library-out single-cell transcriptome sequencing with digital microfluidics. Lab on A Chip, 2022, 22, 1971-1979.	3.1	14
532	Digital Microfluidic Mixing via Reciprocating Motions of Droplets Driven by Contact Charge Electrophoresis. Micromachines, 2022, 13, 593.	1.4	3
533	Development and Implementation of Portable Biosensors in Microfluidic Point-of-Care Devices for Pathogen Detection., 2022,, 99-122.		7
534	Electrically-driven handling of gametes and embryos: taking a step towards the future of ARTs. Lab on A Chip, 2022, 22, 1852-1875.	3.1	4
535	Compact Three-Dimensional Digital Microfluidic Platforms with Programmable Contact Charge Electrophoresis Actuation. Langmuir, 2022, 38, 5759-5764.	1.6	3
536	A Digital Microfluidic Device Integrated with Electrochemical Impedance Spectroscopy for Cell-Based Immunoassay. Biosensors, 2022, 12, 330.	2.3	15
537	Microfluidic chain reaction of structurally programmed capillary flow events. Nature, 2022, 605, 464-469.	13.7	61
538	Advances in integrated digital microfluidic platforms for point-of-care diagnosis: a review. Sensors & Diagnostics, 2022, 1, 648-672.	1.9	11

#	Article	IF	CITATIONS
539	On-the-Fly Mass Spectrometry in Digital Microfluidics Enabled by a Microspray Hole: Toward Multidimensional Reaction Monitoring in Automated Synthesis Platforms. Journal of the American Chemical Society, 2022, 144, 10353-10360.	6.6	16
540	Lithography-Free Technology for the Preparation of Digital Microfluidic (DMF) Lab-Chips with Droplet Actuation by Optoelectrowetting (OEW). International Journal of Analytical Chemistry, 2022, 2022, 1-6.	0.4	4
541	Contactless Micro-Droplet Manipulation of Liquid Released from a Parallel Plate to an Open Region in Electrowetting-on-Dielectric Platform. Micromachines, 2022, 13, 898.	1.4	1
542	Omniâ€Liquid Droplet and Bubble Manipulation Platform Using Functional Organogel Blocks. Advanced Materials Interfaces, 2022, 9, .	1.9	2
543	Recent Advances in Microscale Electroporation. Chemical Reviews, 2022, 122, 11247-11286.	23.0	22
544	Enzyme-based digital bioassay technology – key strategies and future perspectives. Lab on A Chip, 2022, 22, 3092-3109.	3.1	24
545	Applications of Microfluidics. , 2022, , 15-50.		2
546	A Review of Physics of Droplet Impact on Various Solid Surfaces Ranging from Hydrophilic to Superhydrophobic and from Rigid to Flexible and its Current Advancements in Interfacial Science. SSRN Electronic Journal, 0, , .	0.4	0
547	A Droplet-Manipulation Method Based on the Magnetic Particle-Stabilized Emulsion and Its Direct Numerical Simulation. Langmuir, 2022, 38, 8211-8221.	1.6	1
548	Digital Microfluidics Supported Microproteomics for Quantitative Proteome Analysis of Single <i>Caenorhabditis elegans </i>	1.8	13
549	Droplet dynamics driven by electrowetting. Physical Review E, 2022, 105, .	0.8	3
550	Application of Micro/Nanoporous Fluoropolymers with Reduced Bioadhesion in Digital Microfluidics. Nanomaterials, 2022, 12, 2201.	1.9	2
552	Advances in triboelectric nanogenerator powered electrowetting-on-dielectric devices: Mechanism, structures, and applications. Materials Today, 2022, 58, 201-220.	8.3	10
553	Fungi-on-a-Chip: microfluidic platforms for single-cell studies on fungi. FEMS Microbiology Reviews, 2022, 46, .	3.9	7
554	Poiseuille flow of a Bingham fluid in a channel with a superhydrophobic groovy wall. Journal of Fluid Mechanics, 2022, 948, .	1.4	8
555	Droplet transportation by adjusting the temporal phase shift of surface acoustic waves in the exciter $\hat{a} \in \text{``exciter mode. Lab on A Chip, 2022, 22, 3402-3411.}$	3.1	5
556	Pixelated AMC Design Using Digital Microfluidics. , 2022, , .		0
557	Magnetic Torus Microreactor as a Novel Device for Sample Treatment via Solid-Phase Microextraction Coupled to Graphite Furnace Atomic Absorption Spectroscopy: A Route for Arsenic Pre-Concentration. Molecules, 2022, 27, 6198.	1.7	3

#	Article	IF	CITATIONS
558	Manipulation of droplets and bubbles for thermal applications. , 2022, 1, 80-91.		26
559	Multi-droplets non-coalescence on open-chip electrowetting platform. European Physical Journal: Special Topics, 2023, 232, 859-865.	1.2	5
560	A Digital Microfluidic RT-qPCR Platform for Multiple Detections of Respiratory Pathogens. Micromachines, 2022, 13, 1650.	1.4	9
561	A Glass–Ultra-Thin PDMS Film–Glass Microfluidic Device for Digital PCR Application Based on Flexible Mold Peel-Off Process. Micromachines, 2022, 13, 1667.	1.4	3
562	Predicting actuated contact line pinning forces and the elimination of hysteresis under AC electrowetting. Microfluidics and Nanofluidics, 2022, 26, .	1.0	0
563	A microfluidic Braille valve platform for on-demand production, combinatorial screening and sorting of chemically distinct droplets. Nature Protocols, 2022, 17, 2920-2965.	5.5	5
564	<scp>Imageâ€based realâ€time</scp> feedback control of magnetic digital microfluidics by artificial <scp>intelligenceâ€empowered</scp> rapid object detector for automated in vitro diagnostics. Bioengineering and Translational Medicine, 2023, 8, .	3.9	5
565	Fully Automated CRISPR-LAMP Platform for SARS-CoV-2 Delta and Omicron Variants. Analytical Chemistry, 2022, 94, 15472-15480.	3.2	13
566	Digital microfluidics as an emerging tool for bacterial protocols. SLAS Technology, 2023, 28, 2-15.	1.0	3
567	Digital microfluidic biosensors. , 2023, , 171-193.		1
568	Monitoring non-specific adsorption at solid–liquid interfaces by supercritical angle fluorescence microscopy. Review of Scientific Instruments, 2022, 93, 113707.	0.6	1
569	Nucleic acid analysis on electrowetting-based digital microfluidics. TrAC - Trends in Analytical Chemistry, 2023, 158, 116826.	5.8	3
570	Microfluidic trends in drug screening and drug delivery. TrAC - Trends in Analytical Chemistry, 2023, 158, 116821.	5.8	11
571	Robotic digital microfluidics: a droplet-based total analysis system. Lab on A Chip, 2023, 23, 748-760.	3.1	5
572	Physics of droplet impact on flexible materials: A review. Advances in Mechanical Engineering, 2022, 14, 168781322211372.	0.8	5
573	Multifunctional dropletâ€surface interaction effected by bulk properties. , 2023, 2, .		10
574	Effects of Liquid Viscosity on the Formation and Attenuation of Capillary Waves Induced by AC Electrowetting-on-Dielectric. Langmuir, 2023, 39, 265-273.	1.6	3
575	Running streams of a ferroelectric nematic liquid crystal on a lithium niobate surface. Liquid Crystals, 2023, 50, 1478-1485.	0.9	3

#	ARTICLE	IF	CITATIONS
576	A Cooperative Multiagent Reinforcement Learning Framework for Droplet Routing in Digital Microfluidic Biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42, 3007-3020.	1.9	1
577	Applications of magnetic and electromagnetic forces in micro-analytical systems. Lab on A Chip, 2023, 23, 1097-1127.	3.1	2
578	Mammalian Cell Culture in Three Dimensions: Basic Guidelines. , 2023, , 637-685.		0
579	Physics of droplet impact on various substrates and its current advancements in interfacial science: A review. Journal of Applied Physics, 2023, 133, .	1.1	10
580	A review of droplet bouncing behaviors on superhydrophobic surfaces: Theory, methods, and applications. Physics of Fluids, 2023, 35, .	1.6	21
581	Spheroid Engineering in Microfluidic Devices. ACS Omega, 2023, 8, 3630-3649.	1.6	11
582	Digital microfluidics for biological analysis and applications. Lab on A Chip, 2023, 23, 1169-1191.	3.1	11
583	Microfluidic solutions for biofluids handling in on-skin wearable systems. Lab on A Chip, 2023, 23, 913-937.	3.1	10
584	Surface-Enhanced Raman Spectroscopic Probing in Digital Microfluidics through a Microspray Hole. Analytical Chemistry, 0, , .	3.2	0
585	Dissolution-Enhanced Luminescence Enhanced Digital Microfluidics Immunoassay for Sensitive and Automated Detection of H5N1. ACS Applied Materials & Interfaces, 2023, 15, 6526-6535.	4.0	4
586	Interfacial Tension Driven Open Droplet Microfluidics. Advanced Materials Interfaces, 2023, 10, .	1.9	7
587	Antifouling Properties of Pluronic and Tetronic Surfactants in Digital Microfluidics. ACS Applied Materials & Digital Microfluidics & Digital Mic	4.0	9
588	All-in-One digital microfluidics pipeline for proteomic sample preparation and analysis. Chemical Science, 2023, 14, 2887-2900.	3.7	11
589	Enhanced Built-In Self-Diagnosis and Self-Repair Techniques for Daisy-Chain Design in MEDA Digital Microfluidic Biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42, 3236-3249.	1.9	3
590	Experimental and Theoretical Investigation on the Dynamic Response of Ferrofluid Liquid Marbles to Steady and Pulsating Magnetic Fields. Langmuir, 2023, 39, 2246-2259.	1.6	8
591	The renaissance of electrowetting. Current Opinion in Electrochemistry, 2023, 38, 101245.	2.5	9
592	Digital microfluidic platform assembled into a home-made studio for sample preparation and colorimetric sensing of S-nitrosocysteine. Analytica Chimica Acta, 2023, 1254, 341077.	2.6	2
593	Miniaturizing chemistry and biology using droplets in open systems. Nature Reviews Chemistry, 2023, 7, 439-455.	13.8	8

#	ARTICLE	IF	Citations
594	Sensitive and automated detection of bacteria by CRISPR/Cas12a-assisted amplification with digital microfluidics. Sensors and Actuators B: Chemical, 2023, 381, 133409.	4.0	6
595	Leaf″nspired Patterned Organohydrogel Surface for Ultrawide Timeâ€Range Open Biosensing. Advanced Science, 2023, 10, .	5.6	7
596	Advances in Microscale Droplet Generation and Manipulation. Langmuir, 2023, 39, 2461-2482.	1.6	10
597	Programmable UV-Curable Resin by Dielectric Force. Micromachines, 2023, 14, 490.	1.4	0
599	Recent Advances on Cell Culture Platforms for In Vitro Drug Screening and Cell Therapies: From Conventional to Microfluidic Strategies. Advanced Healthcare Materials, 2023, 12, .	3.9	12
600	Development of a Microfluidic Chip Powered by EWOD for In Vitro Manipulation of Bovine Embryos. Biosensors, 2023, 13, 419.	2.3	3
601	Recent development of microfluidics-based platforms for respiratory virus detection. Biomicrofluidics, 2023, 17, .	1.2	3
602	Digital Microfluidics and Magnetic Beadâ€based Intact Proteoform Elution for Quantitative Topâ€down Nanoproteomics of Single C.Âelegans Nematodes. Angewandte Chemie, 0, , .	1.6	0
603	Low-Cost Microfluidic Systems for Detection of Neglected Tropical Diseases. Annual Review of Analytical Chemistry, 2023, 16, 117-138.	2.8	1
604	Digital Microfluidics and Magnetic Beadâ€Based Intact Proteoform Elution for Quantitative Topâ€down Nanoproteomics of Single <i>C.â€elegans</i> Nematodes. Angewandte Chemie - International Edition, 2023, 62, .	7.2	7
605	The next generation of hybrid microfluidic/integrated circuit chips: recent and upcoming advances in high-speed, high-throughput, and multifunctional lab-on-IC systems. Lab on A Chip, 2023, 23, 2553-2576.	3.1	2
631	Design and Fabrication of Digital Microfluidics device for Lab-on-a-Chip Applications. , 0, , .		0
633	Dynamic Contact Angle Variation with Applied Voltage and Droplet Volume in Digital Microfluidics. , 0, , .		0
653	Role of miRNA in bacterial respiratory infection diagnosis and therapeutics. , 2024, , 77-93.		0
656	A New Technique for Key Generating Mechanism. , 2022, , .		0
662	Effect of Direct Current Electrowetting on Dielectric on Droplet Impingement Dynamics. Lecture Notes in Mechanical Engineering, 2024, , 439-449.	0.3	0