Solution-processed small-molecule solar cells with 6.7%

Nature Materials

11, 44-48

DOI: 10.1038/nmat3160

Citation Report

#	Article	IF	CITATIONS
2	High efficiency and high photo-stability zinc-phthalocyanine based planar heterojunction solar cells with a double interfacial layer. Applied Physics Letters, 2012, 101, .	1.5	14
3	Optical modeling of organic solar cells based on rubrene and C ₇₀ . Applied Optics, 2012, 51, 5718.	0.9	14
4	Snow cleaning of substrates increases yield of large-area organic photovoltaics. Applied Physics Letters, 2012, 101, 133901.	1.5	29
5	Phase separation of co-evaporated ZnPc:C60 blend film for highly efficient organic photovoltaics. Applied Physics Letters, 2012, 100, 233302.	1.5	50
6	Efficiency enhancement in mesogenic-phthalocyanine-based solar cells with processing additives. Applied Physics Letters, 2012, 101, .	1.5	34
7	Rhenium oxide as an efficient p-dopant to overcome S-shaped current density-voltage curves in organic photovoltaics with a deep highest occupied molecular orbital level donor layer. Applied Physics Letters, 2012, 101, 153303.	1.5	16
8	Theoretical study on the effects of nitrogen and methyl substitution on tris-(8-hydroxyquinoline) aluminum: An efficient exciton blocking layer for organic photovoltaic cells. Journal of Chemical Physics, 2012, 137, 034704.	1.2	8
9	Fullerene nanowires as a versatile platform for organic electronics. Scientific Reports, 2012, 2, 600.	1.6	42
10	Research Highlights on Organic Photovoltaics and Plasmonics. IEEE Photonics Journal, 2012, 4, 620-624.	1.0	12
11	A Versatile Approach to Organic Photovoltaics Evaluation Using White Light Pulse and Microwave Conductivity. Journal of the American Chemical Society, 2012, 134, 19035-19042.	6.6	106
12	Solution processable low bandgap small molecule donors with naphthalene end-groups for organic solar cells. Synthetic Metals, 2012, 162, 1665-1671.	2.1	20
13	Photoinduced Charge Generation in a Molecular Bulk Heterojunction Material. Journal of the American Chemical Society, 2012, 134, 19828-19838.	6.6	143
14	Perspectives of applied graphene: Polymer solar cells. Progress in Polymer Science, 2012, 37, 1805-1828.	11.8	143
15	Photoinduced Charge Transfer in Short-Distance Ferrocenylsubphthalocyanine Dyads. Inorganic Chemistry, 2012, 51, 6537-6547.	1.9	62
16	Top-down meets bottom-up: organized donor–acceptor heterojunctions for organic solar cells. Journal of Materials Chemistry, 2012, 22, 24297.	6.7	73
17	Organic bulk heterojunction solar cells based on solution processable small molecules (A–π–A) featuring 2-(4-nitrophenyl) acrylonitrile acceptors and phthalimide-based π-linkers. Journal of Materials Chemistry, 2012, 22, 13986.	6.7	21
18	Carbazole-containing fullerene derivatives for P3HT-based bulk-heterojunction solar cells. Solar Energy Materials and Solar Cells, 2012, 105, 6-14.	3.0	33
19	Synthesis and Electronic Properties of D–A–D Triads Based on 3-Alkoxy-4-cyanothiophene and Benzothienothiophene Blocks. Journal of Organic Chemistry, 2012, 77, 2041-2046.	1.7	19

#	ARTICLE	IF	CITATIONS
20	Improved Thermal Oxidation Stability of Solution-Processable Silver Nanowire Transparent Electrode by Reduced Graphene Oxide. ACS Applied Materials & Interfaces, 2012, 4, 6410-6414.	4.0	226
21	Femtosecond Time-Resolved Fluorescence Study of TiO ₂ -Coated ZnO Nanorods/P3HT Photovoltaic Films. Journal of Physical Chemistry C, 2012, 116, 25248-25256.	1.5	27
22	Planar Star-Shaped Organic Semiconductor with Fused Triphenylamine Core for Solution-Processed Small-Molecule Organic Solar Cells and Field-Effect Transistors. Organic Letters, 2012, 14, 6326-6329.	2.4	61
23	Layer-by-layer processed high-performance polymer solar cells. Applied Physics Letters, 2012, 101, .	1.5	37
24	TiO2-Coated Carbon Nanotube-Silicon Solar Cells with Efficiency of 15%. Scientific Reports, 2012, 2, 884.	1.6	141
25	Small Molecules Based on Benzo[1,2-b:4,5-b′]dithiophene Unit for High-Performance Solution-Processed Organic Solar Cells. Journal of the American Chemical Society, 2012, 134, 16345-16351.	6.6	563
26	Polymer Photovoltaic Cells Based on Polymethacrylate Bearing Semiconducting Side Chains. Macromolecular Rapid Communications, 2012, 33, 2097-2102.	2.0	5
27	Highâ€efficiency polymer solar cells based on phenylenevinylene copolymer with BF ₂ â€azopyrrole complex and CNâ€PC ₇₀ BM with solvent additive. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1612-1618.	2.4	7
29	Synthesis and photovoltaic properties of two new unsymmetrical zinc-phthalocyanine dyes. Synthetic Metals, 2012, 162, 2316-2321.	2.1	6
30	Aggregation-dependent photovoltaic properties of squaraine/PC61BM bulk heterojunctions. Physical Chemistry Chemical Physics, 2012, 14, 8328.	1.3	84
31	Impact of dye end groups on acceptor–donor–acceptor type molecules for solution-processed photovoltaic cells. Journal of Materials Chemistry, 2012, 22, 9173.	6.7	69
32	Efficient small molecule organic semiconductor containing bis-dimethylfluorenyl amino benzo[b]thiophene for high open circuit voltage in high efficiency solution processed organic solar cell. RSC Advances, 2012, 2, 2692.	1.7	25
33	Fine-tuning device performances of small molecule solar cells via the more polarized DPP-attached donor units. Physical Chemistry Chemical Physics, 2012, 14, 14238.	1.3	53
34	Synthesis and application of poly(fluorene-alt-naphthalene diimide) as an n-type polymer for all-polymer solar cells. Chemical Communications, 2012, 48, 5283.	2.2	93
35	Efficient Organic Semiconductors Containing Fluorine-Substituted Benzothiadiazole for Solution-Processed Small Molecule Organic Solar Cells. Journal of Physical Chemistry C, 2012, 116, 23205-23213.	1.5	49
36	Theoretical Investigations on Donor–Acceptor Conjugated Copolymers Based on Naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole for Organic Solar Cell Applications. Journal of Physical Chemistry C, 2012, 116, 26154-26161.	1.5	59
37	Solution-Processed Bulk-Heterojunction Solar Cells containing Self-Organized Disk-Shaped Donors. ACS Applied Materials & Disk-Shaped Donors.	4.0	30
38	High efficiency hybrid solar cells using post-deposition ligand exchange by monothiols. Physical Chemistry Chemical Physics, 2012, 14, 12094.	1.3	42

3

#	Article	IF	CITATIONS
39	Synthesis and photovoltaic performances of conjugated copolymers with 4,7-dithien-5-yl-2,1,3-benzothiadiazole and di(p-tolyl)phenylamine side groups. Journal of Materials Chemistry, 2012, 22, 22913.	6.7	26
40	Short-Axis Substitution Approach Selectively Optimizes Electrical Properties of Dibenzothiophene-Based Phosphine Oxide Hosts. Journal of the American Chemical Society, 2012, 134, 19179-19188.	6.6	123
41	Spiro-fluorene based 3D donor towards efficient organic photovoltaics. Chemical Communications, 2012, 48, 11847.	2.2	54
42	Novel naphtho[1,2-b:5,6-b′]dithiophene core linear donor–π–acceptor conjugated small molecules with thiophene-bridged bithiazole acceptor: design, synthesis, and their application in bulk heterojunction organic solar cells. Journal of Materials Chemistry, 2012, 22, 10840.	6.7	37
43	Formation of the Donor–Acceptor Charge-Transfer Exciton and Its Contribution to Charge Photogeneration and Recombination in Small-Molecule Bulk Heterojunctions. Journal of Physical Chemistry C, 2012, 116, 18108-18116.	1.5	47
44	Highly efficient bifacial transparent organic solar cells with power conversion efficiency greater than 3% and transparency of 50%. Organic Electronics, 2012, 13, 1722-1728.	1.4	35
45	Facile syntheses of N-alkylaziridino[60]fullerenes and their application in polymer solar cells. Synthetic Metals, 2012, 162, 1271-1278.	2.1	3
46	A star-shaped oligothiophene end-capped with alkyl cyanoacetate groups for solution-processed organic solar cells. Chemical Communications, 2012, 48, 9655.	2.2	70
47	Supramolecular light-emitting polymers for solution-processed optoelectronic devices. Journal of Materials Chemistry, 2012, 22, 12759.	6.7	42
48	Quantitative Determination of Organic Semiconductor Microstructure from the Molecular to Device Scale. Chemical Reviews, 2012, 112, 5488-5519.	23.0	1,133
49	Spin-enhanced organic bulk heterojunction photovoltaic solar cells. Nature Communications, 2012, 3, 1043.	5.8	105
50	D–π–A–π–D type benzothiadiazole–triphenylamine based small molecules containing cyano on the π-bridge for solution-processed organic solar cells with high open-circuit voltage. Chemical Communications, 2012, 48, 10627.	2.2	83
51	Solar Cell Efficiency, Self-Assembly, and Dipole–Dipole Interactions of Isomorphic Narrow-Band-Gap Molecules. Journal of the American Chemical Society, 2012, 134, 16597-16606.	6.6	297
52	Liquid crystalline hexa-peri-hexabenzocoronene-diketopyrrolopyrrole organic dyes for photovoltaic applications. Journal of Materials Chemistry, 2012, 22, 21131.	6.7	55
53	High-Performance Solution-Processed Solar Cells and Ambipolar Behavior in Organic Field-Effect Transistors with Thienyl-BODIPY Scaffoldings. Journal of the American Chemical Society, 2012, 134, 17404-17407.	6.6	227
54	Solution-processed organic photovoltaic cells based on a squaraine dye. Physical Chemistry Chemical Physics, 2012, 14, 14661.	1.3	69
55	Rational design of novel A-A-D-A-A type electron donors for small molecule organic solar cells. Chemical Physics Letters, 2012, 543, 199-204.	1.2	28
56	Improvement of Interfacial Contacts for New Smallâ€Molecule Bulkâ€Heterojunction Organic Photovoltaics. Advanced Materials, 2012, 24, 5368-5373.	11.1	132

#	Article	IF	CITATIONS
57	In Situ Electrochemical Deposition and Doping of C ₆₀ Films Applied to Highâ€Performance Inverted Organic Photovoltaics. Advanced Materials, 2012, 24, 5727-5731.	11.1	67
58	Electronâ€Rich Anthracene Semiconductors Containing Triarylamine for Solutionâ€Processed Smallâ€Molecule Organic Solar Cells. ChemSusChem, 2012, 5, 2045-2052.	3.6	14
59	Insights into π-Conjugated Small Molecule Neat Films and Blends As Determined Through Photoconductivity. ACS Nano, 2012, 6, 8735-8745.	7.3	31
60	Narrow-Band-Gap Conjugated Chromophores with Extended Molecular Lengths. Journal of the American Chemical Society, 2012, 134, 20609-20612.	6.6	128
61	Optical and electrical properties of a squaraine dye in photovoltaic cells. Applied Physics Letters, 2012, 101, 083904.	1.5	51
62	Charge transport in amorphous and smectic mesophases of dicyanovinyl-substituted oligothiophenes. Journal of Materials Chemistry, 2012, 22, 22258.	6.7	40
63	The Influence of Hydrogenation and Oxygen Vacancies on Molybdenum Oxides Work Function and Gap States for Application in Organic Optoelectronics. Journal of the American Chemical Society, 2012, 134, 16178-16187.	6.6	340
64	Small molecule solar cells based on a series of water-soluble zinc phthalocyanine donors. Chemical Communications, 2012, 48, 6094.	2.2	19
65	Nanocarbon-Based Photovoltaics. ACS Nano, 2012, 6, 8896-8903.	7.3	117
66	The role of gap states in the energy level alignment at the organic–organic heterojunction interfaces. Physical Chemistry Chemical Physics, 2012, 14, 14127.	1.3	47
67	Design strategies for organic semiconductors beyond the molecular formula. Nature Chemistry, 2012, 4, 699-704.	6.6	498
68	Electrical Property Heterogeneity at Transparent Conductive Oxide/Organic Semiconductor Interfaces: Mapping Contact Ohmicity Using Conducting-Tip Atomic Force Microscopy. ACS Nano, 2012, 6, 9623-9636.	7.3	40
69	Elaboration and characterization of donor–acceptor polymer through electropolymerization of fullerene substituted N-alkylcarbazole. Synthetic Metals, 2012, 162, 1923-1929.	2.1	14
70	Diketopyrrolopyrrole-based small molecules with simple structure for high VOC organic photovoltaics. Organic Electronics, 2012, 13, 3060-3066.	1.4	68
71	A crystalline D-π-A organic small molecule with naphtho[1,2-b:5,6-b′]dithiophene-core for solution processed organic solar cells. Organic Electronics, 2012, 13, 3183-3194.	1.4	27
72	Solution processed small molecule bulk heterojunction organic photovoltaics based on a conjugated donor–acceptor porphyrin. Journal of Materials Chemistry, 2012, 22, 21841.	6.7	81
73	Harvesting Singlet Fission for Solar Energy Conversion: One- versus Two-Electron Transfer from the Quantum Mechanical Superposition. Journal of the American Chemical Society, 2012, 134, 18295-18302.	6.6	79
74	An Easily Accessible Donorâ^ï∈-Acceptor-Conjugated Small Molecule from a 4,8-Dialkoxybenzo[1,2- <i>b</i> i>i4,5- <i>b</i> i>ief=2]dithiophene Unit for Efficient Solution-Processed Organic Solar Cells. ACS Applied Materials & Solar Cells.	4.0	34

#	Article	IF	CITATIONS
75	Influence of Processing Additives on Charge-Transfer Time Scales and Sound Velocity in Organic Bulk Heterojunction Films. Journal of Physical Chemistry Letters, 2012, 3, 1253-1257.	2.1	35
76	Organic photovoltaics. Materials Today, 2012, 15, 554-562.	8.3	391
77	Dibenzothiophene-Based Planar Conjugated Polymers for High Efficiency Polymer Solar Cells. Macromolecules, 2012, 45, 7843-7854.	2.2	45
78	Synthesis and Photovoltaic Properties of Regioregular Head-to-Head Substituted Thiophene Hexadecamers. Macromolecules, 2012, 45, 8284-8291.	2.2	22
79	Correlation of π-Conjugated Oligomer Structure with Film Morphology and Organic Solar Cell Performance. Journal of the American Chemical Society, 2012, 134, 11064-11067.	6.6	260
80	Organische Chemie 2011. Nachrichten Aus Der Chemie, 2012, 60, 265-299.	0.0	1
81	Vacuum-Deposited Small-Molecule Organic Solar Cells with High Power Conversion Efficiencies by Judicious Molecular Design and Device Optimization. Journal of the American Chemical Society, 2012, 134, 13616-13623.	6.6	260
82	Development of Solar Cells Based on Synthetic Near-Infrared Absorbing Purpurins 2: Use of Fullerene and Its Derivative As Electron Acceptors for Favorable Charge Separation. Journal of Physical Chemistry C, 2012, 116, 21244-21254.	1.5	18
83	Donor–Acceptor Alternating Copolymer Based on Thermally Converted Isothianaphthene Dimer and Thiazolothiazole Subunits. Journal of Physical Chemistry C, 2012, 116, 17414-17423.	1. 5	8
84	Effects of exposure and air annealing on <inline-formula><math display="inline" overflow="scroll"><mrow><mi>Mo</mi><msub><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mi>x</mi></mrow></msub></mrow></math></inline-formula> thin films. Journal of Photonics for Energy, 2012, 2, 021213.	0.8	33
85	Pyridalthiadiazole-Based Narrow Band Gap Chromophores. Journal of the American Chemical Society, 2012, 134, 3766-3779.	6.6	160
86	Effect of thermal annealing on exciton diffusion in a diketopyrrolopyrrole derivative. Physical Chemistry Chemical Physics, 2012, 14, 14196.	1.3	47
87	Soluble porphyrin donors for small molecule bulk heterojunction solar cells. Journal of Materials Chemistry, 2012, 22, 19258.	6.7	61
88	Polymer-Fullerene Miscibility: A Metric for Screening New Materials for High-Performance Organic Solar Cells. Journal of the American Chemical Society, 2012, 134, 15869-15879.	6.6	196
89	Small molecule semiconductors for high-efficiency organic photovoltaics. Chemical Society Reviews, 2012, 41, 4245.	18.7	1,601
90	Influence of Structural Variation on the Solid-State Properties of Diketopyrrolopyrrole-Based Oligophenylenethiophenes: Single-Crystal Structures, Thermal Properties, Optical Bandgaps, Energy Levels, Film Morphology, and Hole Mobility. Chemistry of Materials, 2012, 24, 1699-1709.	3.2	109
91	Role of trace impurities in the photovoltaic performance of solution processed small-molecule bulk heterojunction solar cells. Chemical Science, 2012, 3, 2103.	3.7	84
92	Graphene-based transparent flexible electrodes for polymer solar cells. Journal of Materials Chemistry, 2012, 22, 24254.	6.7	103

#	ARTICLE	IF	CITATIONS
93	Structural modulation of internal charge transfer in small molecular donors for organic solar cells. Chemical Communications, 2012, 48, 8907.	2.2	87
94	Donor–Acceptor Copolymers of Relevance for Organic Photovoltaics: A Theoretical Investigation of the Impact of Chemical Structure Modifications on the Electronic and Optical Properties. Macromolecules, 2012, 45, 6405-6414.	2.2	203
95	Vinylâ€Type Polynorbornenes with Pendant PCBM: A Novel Acceptor for Organic Solar Cells. Macromolecular Rapid Communications, 2012, 33, 1119-1125.	2.0	22
96	High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene-C70 bisadduct with solvent additive. Energy and Environmental Science, 2012, 5, 7943.	15.6	400
97	BODIPY dyes with \hat{l}^2 -conjugation and their applications for high-efficiency inverted small molecule solar cells. Chemical Communications, 2012, 48, 8913.	2.2	94
98	Improved Performance of Molecular Bulkâ€Heterojunction Photovoltaic Cells through Predictable Selection of Solvent Additives. Advanced Functional Materials, 2012, 22, 4801-4813.	7.8	149
99	Quantification of Geminate and Nonâ€Geminate Recombination Losses within a Solutionâ€Processed Smallâ€Molecule Bulk Heterojunction Solar Cell. Advanced Materials, 2012, 24, 2135-2141.	11.1	211
100	Thiazoleâ€Based Organic Semiconductors for Organic Electronics. Advanced Materials, 2012, 24, 3087-3106.	11.1	288
101	Nonâ∈Basic Highâ∈Performance Molecules for Solutionâ∈Processed Organic Solar Cells. Advanced Materials, 2012, 24, 3646-3649.	11.1	568
102	Printable Giant Magnetoresistive Devices. Advanced Materials, 2012, 24, 4518-4522.	11.1	74
104	Oligothiophene Cruciform with a Germanium Spiro Center: A Promising Material for Organic Photovoltaics. Angewandte Chemie - International Edition, 2012, 51, 4562-4567.	7.2	29
105	Facile Synthesis of Fluorineâ€Substituted Benzothiadiazoleâ€Based Organic Semiconductors and Their Use in Solutionâ€Processed Smallâ€Molecule Organic Solar Cells. Chemistry - A European Journal, 2012, 18, 11433-11439.	1.7	64
106	Functionalized Dithienylthiazolo[5,4â€ <i>d</i>]thiazoles For Solutionâ€Processable Organic Fieldâ€Effect Transistors. ChemPlusChem, 2012, 77, 923-930.	1.3	12
107	Well-Defined Ambipolar Block Copolymers Containing Monophosphorescent Dye. ACS Macro Letters, 2012, 1, 840-844.	2.3	11
108	J-aggregation induced low bandgap anthracene-based conjugated molecule for solution-processed solar cells. Chemical Communications, 2012, 48, 8490.	2.2	24
109	A "zig-zag―naphthodithiophene core for increased efficiency in solution-processed small molecule solar cells. Chemical Communications, 2012, 48, 8511.	2.2	101
110	Morphology control of solution processable small molecule bulk heterojunction solar cells via solvent additives. RSC Advances, 2012, 2, 2232.	1.7	46
111	Effect of substituents on the aggregate structure and photovoltaic property of violanthrone derivatives. Dyes and Pigments, 2012, 95, 377-383.	2.0	7

#	Article	IF	CITATIONS
112	Solution-processable small molecules based on thieno[3,4-c]pyrrole-4,6-dione for high-performance solar cells. Solar Energy Materials and Solar Cells, 2012, 99, 301-307.	3.0	30
113	Push-pull organic semiconductors comprising of bis-dimethylfluorenyl amino benzo[b]thiophene donor and various acceptors for solution processed small molecule organic solar cells. Solar Energy Materials and Solar Cells, 2012, 102, 159-166.	3.0	35
114	Synthesis and characterization of push–pull organic semiconductors with various acceptors for solution-processed small molecule organic solar cells. Tetrahedron, 2012, 68, 4029-4036.	1.0	29
115	High performance organic light emitting diodes using substoichiometric tungsten oxide as efficient hole injection layer. Organic Electronics, 2012, 13, 796-806.	1.4	56
116	Small molecules based on bithiazole for solution-processed organic solar cells. Organic Electronics, 2012, 13, 673-680.	1.4	36
117	Interrelation between Crystal Packing and Smallâ€Molecule Organic Solar Cell Performance. Advanced Materials, 2012, 24, 675-680.	11.1	129
118	Synthesis and photovoltaic properties of conjugated copolymers with benzo[1,2-b:4,5-b′]dithiophene and thiadiazolo[3,4-c]pyridine moieties. European Polymer Journal, 2013, 49, 2738-2747.	2.6	11
119	Facile synthesis of 1-(2,6-diisopropylphenyl)-2,5-di(2-thienyl)pyrrole-based narrow band gap small molecules for solar cell applications. Synthetic Metals, 2013, 176, 96-103.	2.1	11
120	Monodisperse Low-Bandgap Macromolecule-Based 5,5′-Bibenzo[c][1,2,5]thiadiazole Swivel Cruciform for Organic Solar Cells. ACS Macro Letters, 2013, 2, 621-624.	2.3	13
121	A new isoindigo-based molecule with ideal energy levels for solution-processable organic solar cells. Dyes and Pigments, 2013, 98, 11-16.	2.0	59
122	Towards environmentally friendly processing of molecular semiconductors. Journal of Materials Chemistry A, 2013, 1, 11117.	5.2	28
123	Application of solution processable squaraine dyes as electron donors for organic bulk-heterojunction solar cells. Photochemical and Photobiological Sciences, 2013, 12, 1688-1699.	1.6	22
124	Benzodithiophene bridged dimeric perylene diimide amphiphiles as efficient solution-processed non-fullerene small molecules. Polymer Chemistry, 2013, 4, 4631.	1.9	66
125	Polymer–metal-oxide hybrid solar cells. Journal of Materials Chemistry A, 2013, 1, 10574.	5.2	60
126	Light trapping enhancement of inverted polymer solar cells with a nanostructured scattering rear electrode. Organic Electronics, 2013, 14, 2158-2163.	1.4	36
127	Low HOMO isoindigo based small molecule for high open-circuit voltage 1.0V solution processed organic solar cells. Synthetic Metals, 2013, 178, 38-43.	2.1	25
128	The case for organic photovoltaics. RSC Advances, 2013, 3, 17633.	1.7	471
129	Competition between morphological attributes in the thermal annealing and additive processing of polymer solar cells. Journal of Materials Chemistry C, 2013 , 1 , 5023 .	2.7	44

#	Article	IF	CITATIONS
130	Isoindigo-based small molecules for high-performance solution-processed organic photovoltaic devices: the electron donating effect of the donor group on photo-physical properties and device performance. Physical Chemistry Chemical Physics, 2013, 15, 15193.	1.3	41
131	Structure–processing–property correlations in solution-processed, small-molecule, organic solar cells. Journal of Materials Chemistry C, 2013, 1, 5250.	2.7	22
132	DiketopyrrolopyrroleThiopheneâ€Based Acceptor–Donor–Acceptor Conjugated Materials for Highâ€Performance Fieldâ€Effect Transistors. Chemistry - an Asian Journal, 2013, 8, 2813-2821.	1.7	34
133	Solution-processed small molecule:fullerene bulk-heterojunction solar cells: impedance spectroscopy deduced bulk and interfacial limits to fill-factors. Physical Chemistry Chemical Physics, 2013, 15, 16456.	1.3	76
134	Synthesis, Molecular and Photovoltaic Properties of an Indolo[3,2â€∢i>b⟨li>]indoleâ€Based Acceptor–Acceptor Small Molecule. European Journal of Organic Chemistry, 2013, 2013, 5076-5084.	1.2	41
135	A combination of Al-doped ZnO and a conjugated polyelectrolyte interlayer for small molecule solution-processed solar cells with an inverted structure. Journal of Materials Chemistry A, 2013, 1, 11306.	5.2	48
136	Highly stable and flexible silver nanowire–graphene hybrid transparent conducting electrodes for emerging optoelectronic devices. Nanoscale, 2013, 5, 7750.	2.8	196
137	Charge carrier recombination in organic solar cells. Progress in Polymer Science, 2013, 38, 1941-1960.	11.8	534
138	Characterization of the morphology of solution-processed bulk heterojunction organic photovoltaics. Progress in Polymer Science, 2013, 38, 1990-2052.	11.8	252
139	Recent advances in water/alcohol-soluble π-conjugated materials: new materials and growing applications in solar cells. Chemical Society Reviews, 2013, 42, 9071.	18.7	437
140	Stepwise self-assembly to improve solar cell morphology. Journal of Materials Chemistry A, 2013, 1, 11674.	5.2	38
141	High Performance Photovoltaic Applications Using Solution-Processed Small Molecules. Accounts of Chemical Research, 2013, 46, 2645-2655.	7.6	624
142	Solution-Processed DPP-Based Small Molecule that Gives High Photovoltaic Efficiency with Judicious Device Optimization. ACS Applied Materials & Samp; Interfaces, 2013, 5, 2033-2039.	4.0	163
143	Synthesis and photovoltaic properties of a star-shaped molecule based on a triphenylamine core and branched terthiophene end groups. Science China Chemistry, 2013, 56, 997-1003.	4.2	14
144	Recent progress of bulk heterojunction solar cells based on small-molecular donors. Science Bulletin, 2013, 58, 2677-2685.	1.7	33
145	Synthesis and photovoltaic properties of non-fullerene solution processable small molecule acceptors. Chemical Research in Chinese Universities, 2013, 29, 596-599.	1.3	2
146	2,5-Thiophene substituted spirobisiloles – synthesis, characterization, electrochemical properties and performance in bulk heterojunction solar cells. New Journal of Chemistry, 2013, 37, 464-473.	1.4	10
147	High open circuit voltage in efficient thiophene-based small molecule solution processed organic solar cells. Organic Electronics, 2013, 14, 2826-2832.	1.4	33

#	Article	IF	CITATIONS
148	Enhanced photovoltaic efficiency via light-triggered self-assembly. Chemical Communications, 2013, 49, 6552.	2.2	42
149	Effects of Intramolecular Donor–Acceptor Interactions on Bimolecular Recombination in Small-Molecule Organic Photovoltaic Cells. Journal of Physical Chemistry C, 2013, 117, 4986-4991.	1.5	17
150	Impact of Regiochemistry and Isoelectronic Bridgehead Substitution on the Molecular Shape and Bulk Organization of Narrow Bandgap Chromophores. Journal of the American Chemical Society, 2013, 135, 2298-2305.	6.6	108
151	Zinc phthalocyanine π-conjugately linked with electron-withdrawing benzothiadiazole towards broad absorption. Tetrahedron Letters, 2013, 54, 5953-5955.	0.7	7
152	Small molecule solution-processed bulk heterojunction solar cells with inverted structure using porphyrin donor. Applied Physics Letters, 2013, 102, .	1.5	24
153	Embracing the organics world. Nature Materials, 2013, 12, 591-591.	13.3	22
154	Solvent Additive Effects on Small Molecule Crystallization in Bulk Heterojunction Solar Cells Probed During Spin Casting. Advanced Materials, 2013, 25, 6380-6384.	11.1	156
155	Modern plastic solar cells: materials, mechanisms and modeling. Materials Today, 2013, 16, 281-289.	8.3	64
156	Molecular approaches to solar energy conversion: the energetic cost of charge separation from molecular-excited states. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120195.	1.6	12
157	Identifying potential candidates for donor–acceptor copolymers on a series of 4H-1,2,6-thiadiazines: An electrochemical approach. Electrochimica Acta, 2013, 107, 448-453.	2.6	10
158	New soluble porphyrin bearing a pyridinylethynyl group as donor for bulk heterojunction solar cells. Organic Electronics, 2013, 14, 1811-1819.	1.4	31
159	Plasmonic Forward Scattering Effect in Organic Solar Cells: A Powerful Optical Engineering Method. Scientific Reports, 2013, 3, .	1.6	215
160	Breathing Some New Life into an Old Topic: Chalcogen-Nitrogen π-Heterocycles as Electron Acceptors. Molecules, 2013, 18, 9850-9900.	1.7	81
161	Role of the donor material and the donor–acceptor mixing ratio in increasing the efficiency of Schottky junction organic solar cells. Organic Electronics, 2013, 14, 2392-2400.	1.4	31
162	High performance n-channel thin-film field-effect transistors based on angular-shaped naphthalene tetracarboxylic diimides. Organic Electronics, 2013, 14, 2859-2865.	1.4	9
163	2-Alkyl-5-thienyl-Substituted Benzo[1,2- <i>b</i> i>ibi>ioi>a€²]dithiophene-Based Donor Molecules for Solution-Processed Organic Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 9494-9500.	4.0	70
164	Efficient planar organic semiconductors containing fused triphenylamine for solution processed small molecule organic solar cells. Solar Energy Materials and Solar Cells, 2013, 115, 52-57.	3.0	31
165	Influence of bipolaron density on the transport properties of thermalized organic conductors. International Journal of Quantum Chemistry, 2013, 113, 2540-2545.	1.0	2

#	Article	IF	CITATIONS
166	Indolocarbazoles end-capped with diketopyrrolopyrroles: impact of regioisomerism on the solid-state properties and the performance of solution-processed bulk heterojunction solar cells. Journal of Materials Chemistry A, 2013, 1, 14686.	5.2	18
167	Film Morphology of High Efficiency Solutionâ€Processed Smallâ€Molecule Solar Cells. Advanced Functional Materials, 2013, 23, 5019-5026.	7.8	185
168	An A′–A–D–Aâ€4Aâ€2 type small molecule based on 2,7-carbazole for solution-processed organic solar cwith high open-circuit voltage. RSC Advances, 2013, 3, 23098.	cells 1.7	15
169	Solution-processed indacenodithiophene-based small molecule for bulk heterojunction solar cells. Journal of Materials Chemistry A, 2013, 1, 14214.	5 . 2	49
170	Life cycle analyses of organic photovoltaics: a review. Energy and Environmental Science, 2013, 6, 3136.	15.6	180
171	Low-LUMO 56Ï€-electron fullerene acceptors bearing electron-withdrawing cyano groups for small-molecule organic solar cells. Organic Electronics, 2013, 14, 3306-3311.	1.4	13
172	Highly Systematic and Efficient HOMO–LUMO Energy Gap Control of Thiophene-Pyrazine-Acenes. Journal of Physical Chemistry C, 2013, 117, 25236-25247.	1.5	41
173	Effects of processing additives on nanoscale phase separation, crystallization and photovoltaic performance of solar cells based on mesogenic phthalocyanine. Organic Electronics, 2013, 14, 2628-2634.	1.4	47
174	Synthesis and characterization of new electron-withdrawing moiety thieno[2,3-c]pyrrole-4,6-dione-based molecules for small molecule solar cells. Dyes and Pigments, 2013, 97, 141-147.	2.0	14
175	Effect of structure on the solubility and photovoltaic properties of bis-diketopyrrolopyrrole molecules. Journal of Materials Chemistry A, 2013, 1, 15150.	5.2	35
176	Marked improvement in the stability of small molecule organic photovoltaics by interfacial modification using self-assembled monolayers to prevent indium diffusion into the active layer. Journal of Materials Chemistry A, 2013, 1, 3680.	5.2	29
177	Charge Carrier Generation and Transport in a Polyfluorene Copolymer With Electron Donating Side Groups Doped With PCBM. Journal of Physical Chemistry C, 2013, 117, 15871-15878.	1.5	2
178	Power efficiency enhancement of solution-processed small-molecule solar cells based on squaraine via thermal annealing and solvent additive methods. Solar Energy Materials and Solar Cells, 2013, 109, 262-269.	3.0	29
179	Hole Transport in Diketopyrrolopyrrole (DPP) Small Molecules: A Joint Theoretical and Experimental Study. Journal of Physical Chemistry C, 2013, 117, 6730-6740.	1.5	21
180	Optimal Sunlight Harvesting in Photovoltaics and Photosynthesis. Journal of Physical Chemistry C, 2013, 117, 26896-26904.	1.5	6
181	Efficient Inorganic–Organic Hybrid Perovskite Solar Cells Based on Pyrene Arylamine Derivatives as Hole-Transporting Materials. Journal of the American Chemical Society, 2013, 135, 19087-19090.	6.6	512
182	Influence of charge carrier mobility and morphology on solar cell parameters in devices of monoand bis-fullerene adducts. Nanotechnology, 2013, 24, 484001.	1.3	24
183	Hot-wire vapor deposited tungsten and molybdenum oxide films used for carrier injection/transport in organic optoelectronic devices. Materials Science in Semiconductor Processing, 2013, 16, 1196-1216.	1.9	18

#	Article	IF	CITATIONS
184	Enhancing the performance of porphyrin based solar cells by the Bipy coordination. Organic Electronics, 2013, 14, 3430-3436.	1.4	15
185	Vapor-deposited hydrogenated and oxygen-deficient molybdenum oxide thin films for application in organic optoelectronics. Surface and Coatings Technology, 2013, 230, 202-207.	2.2	26
186	Assistance of partially reduced MoO3 interlayer to hole-injection at iron phthalocyanine/ITO interface evidenced by photoemission study. Applied Surface Science, 2013, 271, 352-356.	3.1	12
187	Enhancing the Performance of Solution-Processed Bulk-Heterojunction Solar Cells Using Hydrogen-Bonding-Induced Self-Organization of Small Molecules. ACS Applied Materials & Samp; Interfaces, 2013, 5, 13265-13274.	4.0	25
188	One, two and three-branched triphenylamine–oligothiophene hybrids for solution-processed solar cells. Journal of Materials Chemistry A, 2013, 1, 5128.	5.2	41
190	25th Anniversary Article: A Decade of Organic/Polymeric Photovoltaic Research. Advanced Materials, 2013, 25, 6642-6671.	11.1	1,055
191	Influence of intermolecular interactions of electron donating small molecules on their molecular packing and performance in organic electronic devices. Journal of Materials Chemistry A, 2013, 1, 14538.	5.2	86
192	Reducing Exciton Binding Energy by Increasing Thin Film Permittivity: An Effective Approach To Enhance Exciton Separation Efficiency in Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2013, 5, 10105-10110.	4.0	116
193	A Novel Microscope for Visualizing Electric Fields in Organic Thin Film Devices Using Electric-Field-Induced Second-Harmonic Generation. Japanese Journal of Applied Physics, 2013, 52, 04CK04.	0.8	7
194	Impact of molecular solvophobicity vs. solvophilicity on device performances of dimeric perylene diimide based solution-processed non-fullerene organic solar cells. Physical Chemistry Chemical Physics, 2013, 15, 11375.	1.3	43
195	Efficient Polymer Solar Cells Based on Solutionâ€processed Vanadium Oxide as Holeâ€extracting Layer. Chinese Journal of Chemistry, 2013, 31, 1423-1427.	2.6	2
196	Formation of interfacial traps upon surface protonation in small molecule solution processed bulk heterojunctions probed by photoelectron spectroscopy. Journal of Materials Chemistry C, 2013, 1, 6223.	2.7	31
197	Synthesis and photovoltaic properties of copolymers based on benzo[1,2-b:4,5-b′]dithiophene and thiazole with different conjugated side groups. Polymer Chemistry, 2013, 4, 4737.	1.9	17
198	A high performance green-sensitive organic photodiode comprising a bulk heterojunction of dimethyl-quinacridone and dicyanovinyl terthiophene. Journal of Materials Chemistry C, 2013, 1, 2666.	2.7	40
199	Using volatile additives to alter the morphology and performance of active layers in thin-film molecular photovoltaic devices incorporating bulk heterojunctions. Chemical Society Reviews, 2013, 42, 9105.	18.7	69
200	Effects of temperature and electric field induced phase transitions on the dynamics of polarons and bipolarons. New Journal of Chemistry, 2013, 37, 2829.	1.4	48
201	Small molecular weight materials for (opto)electronic applications: overview., 2013,, 3-82.		6
202	Evolved structure of thiazolothiazole based small molecules towards enhanced efficiency in organic solar cells. Organic Electronics, 2013, 14, 599-606.	1.4	45

#	Article	IF	CITATIONS
203	High Stokes shift perylene dyes for luminescent solar concentrators. Chemical Communications, 2013, 49, 1618.	2.2	97
204	23% enhanced efficiency of polymer solar cells processed with 1-chloronaphthalene as the solvent additive. Synthetic Metals, 2013, 164, 1-5.	2.1	31
205	Influence of Electrode Surface Composition and Energetics on Small-Molecule Organic Solar Cell Performance: Polar versus Nonpolar Donors on Indium Tin Oxide Contacts. Journal of Physical Chemistry C, 2013, 117, 1205-1216.	1.5	14
206	Rational Design of New Thiazoloï£;Thiazole Dyes as Input Energy Units in Molecular Dyads. Chemistry - A European Journal, 2013, 19, 2582-2588.	1.7	16
207	Natural Photosynthetic Carotenoids for Solution-Processed Organic Bulk-Heterojunction Solar Cells. Journal of Physical Chemistry C, 2013, 117, 804-811.	1.5	40
208	A solution-processable star-shaped molecule for high-performance organic solar cells via alkyl chain engineering and solvent additive. Organic Electronics, 2013, 14, 219-229.	1.4	57
209	Enhanced performance of solution-processed solar cells based on porphyrin small molecules with a diketopyrrolopyrrole acceptor unit and a pyridine additive. Journal of Materials Chemistry A, 2013, 1, 2144-2150.	5.2	94
210	3,4-Ethylenedioxythiophene (EDOT) as building block for the design of small molecular donors for organic solar cells. RSC Advances, 2013, 3, 704-707.	1.7	20
211	Open circuit voltage tuning through molecular design in hydrazone end capped donors for bulk heterojunction solar cells. Journal of Materials Chemistry A, 2013, 1, 2631.	5. 2	16
212	Efficient small molecule bulk heterojunction solar cells with high fill factors via introduction of π-stacking moieties as end group. Journal of Materials Chemistry A, 2013, 1, 1801-1809.	5.2	96
213	An A–D–A small molecule based on the 3,6-dithienylcarbazole electron donor (D) unit and nitrophenyl acrylonitrileelectron acceptor (A) units for solution processed organic solar cells. Journal of Materials Chemistry A, 2013, 1, 2297-2306.	5.2	38
214	Pyridine-based electron transporting materials for highly efficient organic solar cells. Journal of Materials Chemistry A, 2013, 1, 1770-1777.	5.2	39
215	The synthesis and photovoltaic properties of A–D–A-type small molecules containing diketopyrrolopyrrole terminal units. New Journal of Chemistry, 2013, 37, 632-639.	1.4	51
216	Physical mixtures of small-molecule and polymeric organic semiconductors: comparing thermodynamic behavior and thin-film structure. Journal of Materials Chemistry C, 2013, 1, 778-785.	2.7	11
217	The correlation between gate dielectric, film growth, and charge transport in organic thin film transistors: the case of vacuum-sublimed tetracene thin films. Journal of Materials Chemistry C, 2013, 1, 967-976.	2.7	20
218	Donor–acceptor–donor (D–A–D) molecules based on isoindigo as active material for organic solar cells. New Journal of Chemistry, 2013, 37, 502-507.	1.4	59
219	Theoretical investigations for organic solar cells. Materials Technology, 2013, 28, 40-64.	1.5	14
220	Controlling morphology and molecular packing of alkane substituted phthalocyanine blend bulk heterojunction solar cells. Journal of Materials Chemistry A, 2013, 1, 1557-1565.	5.2	27

#	Article	IF	CITATIONS
221	Tailored exciton diffusion in organic photovoltaic cells for enhanced power conversion efficiency. Nature Materials, 2013, 12, 152-157.	13.3	183
222	A solution-processable D–A–D small molecule based on isoindigo for organic solar cells. Journal of Materials Science, 2013, 48, 1014-1020.	1.7	35
223	Optimization of energy levels by molecular design: evaluation of bis-diketopyrrolopyrrole molecular donor materials for bulk heterojunction solar cells. Energy and Environmental Science, 2013, 6, 952.	15.6	113
224	Coplanar Bithiazole-Centered Heterocyclic Aromatic Fluorescent Compounds Having Different Donor/Acceptor Terminal Groups. Journal of Organic Chemistry, 2013, 78, 2472-2481.	1.7	32
225	Selectivity of Br/Li Exchange and Deprotonation of 4,4′-Dibromo-3,3′-bithiophene for Synthesis of Symmetrical and Unsymmetrical Dithienoheteroaromatic Rings. Journal of Organic Chemistry, 2013, 78, 2726-2730.	1.7	12
226	Enhanced Photoanodic Output at an Organic p/n Bilayer in the Water Phase by Means of the Formation of Whiskered Phthalocyanine. ACS Applied Materials & Enhanced Phthalocyanine. ACS Applied Materials & Enhanced Phthalocyanine.	4.0	15
227	2,1,3â€Benzothiadiazole and Derivatives: Synthesis, Properties, Reactions, and Applications in Light Technology of Small Molecules. European Journal of Organic Chemistry, 2013, 2013, 228-255.	1.2	255
228	Semitransparent organic photovoltaics using a near-infrared absorbing cyanine dye. Solar Energy Materials and Solar Cells, 2013, 118, 157-164.	3.0	45
229	Solution-processed hexaazatriphenylene hexacarbonitrile as a universal hole-injection layer for organic light-emitting diodes. Organic Electronics, 2013, 14, 1204-1210.	1.4	44
230	Interfacial layer for efficiency improvement of solution-processed small molecular solar cells. Solar Energy Materials and Solar Cells, 2013, 118, 135-140.	3.0	20
231	Impurity effects and temperature influence on the exciton dissociation dynamics in conjugated polymers. Chemical Physics Letters, 2013, 580, 108-114.	1.2	20
232	The effect of built-in field on the interface exciton recombination and dissociation in Nî—,N type organic solarcells. Solar Energy Materials and Solar Cells, 2013, 112, 73-77.	3.0	8
233	Control of Miscibility and Aggregation Via the Material Design and Coating Process for Highâ€Performance Polymer Blend Solar Cells. Advanced Materials, 2013, 25, 6991-6996.	11.1	197
234	Small-Molecule Bulk Heterojunctions: Distinguishing Between Effects of Energy Offsets and Molecular Packing on Optoelectronic Properties. Journal of Physical Chemistry C, 2013, 117, 24752-24760.	1.5	19
235	A triphenylamine-based four-armed molecule for solution-processed organic solar cells with high photo-voltage. Journal of Materials Chemistry A, 2013, 1, 4937.	5.2	12
236	Towards Electrochromic Devices Having Visible Color Switching Using Electronic ⟨i⟩Push–Push⟨i⟩ and ⟨i⟩Push–Pull⟨i⟩ Cinnamaldehyde Derivatives. ACS Applied Materials & mp; Interfaces, 2013, 5, 12646-12653.	4.0	17
237	Star-shaped chromophores based on a benzodithiophene fused truxene core for solution processed organic solar cells. Dyes and Pigments, 2013, 99, 366-373.	2.0	22
238	Stability of bilayer trimethine cyanine dye/fullerene organic solar cells. Solar Energy Materials and Solar Cells, 2013, 117, 585-591.	3.0	20

#	Article	IF	CITATIONS
239	Novel thiazolothiazole based linear chromophore for small molecule organic solar cells. Chemical Physics Letters, 2013, 574, 89-93.	1.2	14
240	Acetylene-bridged D–A–D type small molecule comprising pyrene and diketopyrrolopyrrole for high efficiency organic solar cells. Organic Electronics, 2013, 14, 2341-2347.	1.4	30
241	Synthesis and characterization of oligothiophene-functionalized phenanthroline chromophores with symmetrical or unsymmetrical configuration. Journal of Molecular Structure, 2013, 1037, 122-129.	1.8	0
242	Electrical and photoelectrical properties of polymer single nanowire made of diketopyrrolopyrrole-based conjugated copolymer bearing dithieno[3,2-b:2′,3′-d]thiophene. Synthetic Metals, 2013, 167, 37-42.	2.1	4
243	Spinâ€Cast Bulk Heterojunction Solar Cells: A Dynamical Investigation. Advanced Materials, 2013, 25, 1923-1929.	11,1	163
244	Continuous Synthesis of Deviceâ€Grade Semiconducting Polymers in Dropletâ€Based Microreactors. Advanced Functional Materials, 2013, 23, 2123-2129.	7.8	83
245	Synthesis and photochemical characterization of fumaronitrile-based organic semiconductor and its use in solution-processed small molecule organic solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 251, 25-32.	2.0	16
246	1,5-, 2,6- and 9,10-distyrylanthracenes as luminescent organic semiconductors. Journal of Materials Chemistry C, 2013, 1, 2817.	2.7	48
247	Novel Thiazolo[5,4â€ <i>d</i>]thiazoleâ€Based Organic Dyes for Quasiâ€Solidâ€State Dyeâ€Sensitized Solar Cell Chemistry - an Asian Journal, 2013, 8, 939-946.	^{S.} 1.7	21
248	Miniaturization of molecular conjugated systems for organic solar cells: towards pigmy donors. RSC Advances, 2013, 3, 5811.	1.7	29
249	Organic Solar Cells: A Review of Materials, Limitations, and Possibilities for Improvement. Particulate Science and Technology, 2013, 31, 427-442.	1.1	150
250	Solutionâ€Processed Fullereneâ€Based Organic Schottky Junction Devices for Largeâ€Openâ€Circuitâ€Voltage Organic Solar Cells. Advanced Materials, 2013, 25, 572-577.	11.1	101
251	Conjugated polymers with 2,7-linked 3,6-difluorocarbazole as donor unit for high efficiency polymer solar cells. Polymer Chemistry, 2013, 4, 2773.	1.9	31
252	Ab Initio Study of a Molecular Crystal for Photovoltaics: Light Absorption, Exciton and Charge Carrier Transport. Journal of Physical Chemistry C, 2013, 117, 4920-4930.	1.5	47
253	Effect of synthetic accessibility on the commercial viability of organic photovoltaics. Energy and Environmental Science, 2013, 6, 711.	15.6	288
254	Structural modification of thieno[3,4-c]pyrrole-4,6-dione: structure–property relationships and application in solution-processed small-molecule organic solar cells. Journal of Materials Chemistry A, 2013, 1, 5875.	5.2	20
255	Solution-processed bulk heterojunction solar cells based on BF2–hydroxychalcone complexes. Chemical Communications, 2013, 49, 3555.	2.2	25
256	Photoresponse of Donor/Acceptor Blends in Organic Transistors: A Tool for Understanding Field-Assisted Charge Separation in Small Molecule Bulk Heterojunction Solar Cells. ACS Applied Materials & Samp; Interfaces, 2013, 5, 2347-2353.	4.0	68

#	Article	IF	CITATIONS
257	Alkylated-C60 based soft materials: regulation of self-assembly and optoelectronic properties by chain branching. Journal of Materials Chemistry C, 2013, 1, 1943.	2.7	61
258	Plasmonicâ€Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier. Advanced Materials, 2013, 25, 2385-2396.	11.1	420
259	Novel Cathode Interlayers Based on Neutral Alcoholâ€Soluble Small Molecules with a Triphenylamine Core Featuring Polar Phosphonate Side Chains for Highâ€Performance Polymer Lightâ€Emitting and Photovoltaic Devices. Macromolecular Rapid Communications, 2013, 34, 595-603.	2.0	44
260	Donor-acceptor small molecule with coplanar and rigid π-bridge for efficient organic solar cells. Solar Energy Materials and Solar Cells, 2013, 109, 33-39.	3.0	20
261	Significant improvement of photovoltaic performance by embedding thiophene in solution-processed star-shaped TPA-DPP backbone. Journal of Materials Chemistry A, 2013, 1, 5747.	5.2	69
262	Improved efficiency of solution processed small molecules organic solar cells using thermal annealing. Organic Electronics, 2013, 14, 1562-1569.	1.4	26
263	A strategy to enhance both VOC and JSC of Aâ \in "Dâ \in "A type small molecules based on diketopyrrolopyrrole for high efficient organic solar cells. Organic Electronics, 2013, 14, 1621-1628.	1.4	55
264	Solution-processable tetrazine and oligothiophene based linear A–D–A small molecules: Synthesis, hierarchical structure and photovoltaic properties. Organic Electronics, 2013, 14, 1424-1434.	1.4	17
265	Impact of the arrangement of functional moieties within small molecular systems for solution processable bulk heterojunction solar cells. New Journal of Chemistry, 2013, 37, 2317.	1.4	8
266	Theoretical characterization and design of small molecule donor material containing naphthodithiophene central unit for efficient organic solar cells. Journal of Computational Chemistry, 2013, 34, 1611-1619.	1.5	130
267	Manipulating open-circuit voltage in an organic photovoltaic device via a phenylalkyl side chain. Chemical Communications, 2013, 49, 4543.	2.2	17
268	Perylene diimides based materials for organic solar cells. Dyes and Pigments, 2013, 98, 160-179.	2.0	334
269	Charge Transfer States in Merocyanine Neat Films and Its Blends with [6,6]-Phenyl-C ₆₁ -butyric Acid Methyl Ester. Journal of Physical Chemistry C, 2013, 117, 6039-6048.	1.5	6
270	Dominating recombination mechanisms in organic solar cells based on ZnPc and C60. Applied Physics Letters, 2013, 102, 163901.	1.5	55
271	A star-shaped oligothiophene with triphenylamine as core and octyl cyanoacetate as end groups for solution-processed organic solar cells. Organic Electronics, 2013, 14, 875-881.	1.4	21
272	Highly Efficient and Bendable Organic Solar Cells with Solutionâ€Processed Silver Nanowire Electrodes. Advanced Functional Materials, 2013, 23, 4177-4184.	7.8	308
273	Hybrid Carbon Nanotube Networks as Efficient Hole Extraction Layers for Organic Photovoltaics. ACS Nano, 2013, 7, 556-565.	7.3	102
274	Enhanced Efficiency Parameters of Solutionâ€Processable Smallâ€Molecule Solar Cells Depending on ITO Sheet Resistance. Advanced Energy Materials, 2013, 3, 1161-1165.	10.2	94

#	Article	IF	CITATIONS
275	Multiple approaches for enhancing all-organic electronics photoluminescent sensors: Simultaneous oxygen and pH monitoring. Analytica Chimica Acta, 2013, 778, 70-78.	2.6	33
276	Titanium dioxide electron-selective interlayers created by chemical vapor deposition for inverted configuration organic solar cells. Journal of Materials Chemistry A, 2013, 1, 6794.	5.2	35
277	Controlling the Ï€â€Stacking Behavior of Pyrene Derivatives: Influence of Hâ€Bonding and Steric Effects in Different States of Aggregation. ChemPhysChem, 2013, 14, 1818-1829.	1.0	57
278	Efficiency of bulk-heterojunction organic solar cells. Progress in Polymer Science, 2013, 38, 1929-1940.	11.8	881
279	Solution-processed small molecule/copper indium sulfide hybrid solar cells. Solar Energy Materials and Solar Cells, 2013, 114, 38-42.	3.0	26
280	Recent trends in polymer tandem solar cells research. Progress in Polymer Science, 2013, 38, 1909-1928.	11.8	246
281	Photo-induced negative differential resistance of organic thin film transistors using anthracene derivatives. Organic Electronics, 2013, 14, 2204-2209.	1.4	14
282	Phenylâ€1,3,5â€Trithienylâ€Diketopyrrolopyrrole: A Molecular Backbone Potentially Affording High Efficiency for Solutionâ€Processed Smallâ€Molecule Organic Solar Cells through Judicious Molecular Design. Chemistry - an Asian Journal, 2013, 8, 2407-2416.	1.7	22
283	Barium: An Efficient Cathode Layer for Bulk-heterojunction Solar Cells. Scientific Reports, 2013, 3, 1965.	1.6	353
284	Detection and role of trace impurities in high-performance organic solar cells. Energy and Environmental Science, 2013, 6, 1513.	15.6	157
285	Small Dâ€"Ï€â€"A Systems with <i>>o</i> à€Phenyleneâ€Bridged Accepting Units as Active Materials for Organic Photovoltaics. Chemistry - A European Journal, 2013, 19, 9948-9960.	1.7	80
286	Tuning the frontier molecular orbital energy levels of <i>n</i> i>â€type conjugated copolymers by using angularâ€shaped naphthalene tetracarboxylic diimides, and their use in allâ€polymer solar cells with high openâ€circuit voltages. Journal of Polymer Science Part A, 2013, 51, 1999-2005.	2.5	23
287	The Influence of Polymer Purification on Photovoltaic Device Performance of a Series of Indacenodithiophene Donor Polymers. Advanced Materials, 2013, 25, 2029-2034.	11.1	129
288	A Solutionâ€Processable Small Molecule Based on Benzodithiophene and Diketopyrrolopyrrole for Highâ€Performance Organic Solar Cells. Advanced Energy Materials, 2013, 3, 1166-1170.	10.2	203
289	Tailored Electronic Structure and Optical Properties of Conjugated Systems through Aggregates and Dipole–Dipole Interactions. ACS Applied Materials & Dipole†2013, 5, 4685-4695.	4.0	38
290	Remarkable Order of a High-Performance Polymer. Nano Letters, 2013, 13, 2522-2527.	4.5	120
291	Superstructures of Diketopyrrolopyrrole Donors and Perylenediimide Acceptors Formed by Hydrogen-Bonding and π···π Stacking. Journal of Physical Chemistry C, 2013, 117, 11347-11356.	1.5	32
292	Solution-Processable Organic Molecule Photovoltaic Materials with Bithienyl-benzodithiophene Central Unit and Indenedione End Groups. Chemistry of Materials, 2013, 25, 2274-2281.	3.2	180

#	Article	IF	CITATIONS
293	Triazatruxeneâ€Diketopyrrolopyrrole Dumbbellâ€Shaped Molecules as Photoactive Electron Donor for Highâ€Efficiency Solution Processed Organic Solar Cells. Advanced Energy Materials, 2013, 3, 1118-1124.	10.2	64
294	Solution-Processed and High-Performance Organic Solar Cells Using Small Molecules with a Benzodithiophene Unit. Journal of the American Chemical Society, 2013, 135, 8484-8487.	6.6	675
295	Solution-processed benzotrithiophene-based donor molecules for efficient bulk heterojunction solar cells. Journal of Materials Chemistry A, 2013, 1, 7767.	5.2	44
296	Microstructure formation in molecular and polymer semiconductors assisted by nucleation agents. Nature Materials, 2013, 12, 628-633.	13.3	131
297	Effect of Bridging Atom Identity on the Morphological Behavior of Solution-Processed Small Molecule Bulk Heterojunction Photovoltaics. Chemistry of Materials, 2013, 25, 1688-1698.	3.2	49
298	Connecting Molecular Structure and Exciton Diffusion Length in Rubrene Derivatives. Advanced Materials, 2013, 25, 3689-3693.	11.1	59
299	Small molecules based on 2,7-carbazole for efficient solution-processed organic solar cells. Journal of Materials Chemistry A, 2013, 1, 8805.	5.2	33
300	Novel planar and star-shaped molecules: Synthesis, electrochemical and photophysical properties. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 107, 377-385.	2.0	12
301	Diarylmethanofullerene: Efficient Polymer Solar Cells with Low-Band-Gap Copolymer. Journal of Physical Chemistry C, 2013, 117, 13350-13356.	1.5	20
302	Influence of Crystallinity and Energetics on Charge Separation in Polymer–Inorganic Nanocomposite Films for Solar Cells. Scientific Reports, 2013, 3, 1531.	1.6	84
303	Small Optical Gap Molecules and Polymers: Using Theory to Design More Efficient Materials for Organic Photovoltaics. Topics in Current Chemistry, 2013, 352, 1-38.	4.0	14
304	Tailor-Made Additives for Morphology Control in Molecular Bulk-Heterojunction Photovoltaics. ACS Applied Materials & Description (2013), 5, 63-71.	4.0	40
305	Intermixing at the Pentaceneâ€Fullerene Bilayer Interface: A Molecular Dynamics Study. Advanced Materials, 2013, 25, 878-882.	11.1	92
306	Push–pull triphenylamine based chromophores as photosensitizers and electron donors for molecular solar cells. Tetrahedron, 2013, 69, 6875-6883.	1.0	8
307	Improved Light Harvesting and Improved Efficiency by Insertion of an Optical Spacer (ZnO) in Solution-Processed Small-Molecule Solar Cells. Nano Letters, 2013, 13, 3796-3801.	4.5	554
308	Oligofuran-containing molecules for organic electronics. Journal of Materials Chemistry C, 2013, 1, 4358.	2.7	77
309	Nongeminate Recombination and Charge Transport Limitations in Diketopyrrolopyrroleâ∈Based Solutionâ∈Processed Small Molecule Solar Cells. Advanced Functional Materials, 2013, 23, 3584-3594.	7.8	268
310	Indoline-based donor molecule for efficient co-evaporated organic photovoltaics. Organic Electronics, 2013, 14, 2210-2215.	1.4	2

#	Article	IF	CITATIONS
311	A new two-dimensional oligothiophene end-capped with alkyl cyanoacetate groups for highly efficient solution-processed organic solar cells. Chemical Communications, 2013, 49, 4409.	2.2	66
312	Photoconductive response in organic charge transfer interfaces with high quantum efficiency. Nature Communications, 2013, 4, 1842.	5.8	72
313	Investigation of Phase Separation in Bulk Heterojunction Solar Cells via Supramolecular Chemistry. Journal of Physical Chemistry C, 2013, 117, 9129-9136.	1.5	12
314	Understanding the Role of Thermal Processing in High Performance Solution Processed Small Molecule Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2013, 3, 356-363.	10.2	52
315	Simple Analytic Description of Collection Efficiency in Organic Photovoltaics. Journal of Physical Chemistry Letters, 2013, 4, 704-709.	2.1	17
316	Self-Organizing Mesomorphic Diketopyrrolopyrrole Derivatives for Efficient Solution-Processed Organic Solar Cells. Chemistry of Materials, 2013, 25, 2549-2556.	3.2	126
317	Exploiting Nanocarbons in Dye-Sensitized Solar Cells. Topics in Current Chemistry, 2013, 348, 53-93.	4.0	29
318	Polymeric photovoltaics with various metallic plasmonic nanostructures. Journal of Applied Physics, 2013, 113, 063109.	1.1	52
319	Triindole-cored star-shaped molecules for organic solar cells. Journal of Materials Chemistry A, 2013, 1, 7657.	5.2	53
320	Dithienosilole-bridged small molecules with different alkyl group substituents for organic solar cells exhibiting high open-circuit voltage. Journal of Materials Chemistry A, 2013, 1, 7622.	5.2	38
321	Printable Magnetoelectronics. ChemPhysChem, 2013, 14, 1771-1776.	1.0	33
322	Tuning optical and electronic properties of star-shaped conjugated molecules with enlarged π-delocalization for organic solar cell application. Journal of Materials Chemistry A, 2013, 1, 8270.	5.2	45
323	Dynamical Study of Impurity Effects on Bipolaron–Bipolaron and Bipolaron–Polaron Scattering in Conjugated Polymers. Journal of Physical Chemistry B, 2013, 117, 11801-11811.	1.2	20
324	Two-Dimensional GIWAXS Reveals a Transient Crystal Phase in Solution-Processed Thermally Converted Tetrabenzoporphyrin. Journal of Physical Chemistry B, 2013, 117, 14557-14567.	1.2	21
325	Integrated Energy-Harvesting System by Combining the Advantages of Polymer Solar Cells and Thermoelectric Devices. Journal of Physical Chemistry C, 2013, 117, 24685-24691.	1.5	54
326	Small molecule dye rubrene doped organic bulk heterojunction solar cells. Thin Solid Films, 2013, 539, 278-283.	0.8	10
327	Semiâ€Transparent Polymer Solar Cells with Excellent Subâ€Bandgap Transmission for Third Generation Photovoltaics. Advanced Materials, 2013, 25, 7020-7026.	11.1	88
328	Characterization and properties of a new amorphous small-molecule material containing both donor and acceptor moieties for photovoltaic application. Chemical Research in Chinese Universities, 2013, 29, 1193-1198.	1.3	1

#	Article	IF	CITATIONS
329	Chloroboron (III) subnaphthalocyanine as an electron donor in bulk heterojunction photovoltaic cells. Nanotechnology, 2013, 24, 484007.	1.3	23
330	Perfluoroalkyl-substitution versus electron-deficient building blocks in design of oligothiophene semiconductors. Journal of Materials Chemistry C, 2013, 1, 260-267.	2.7	9
331	An ester-functionalized diketopyrrolopyrrole molecule with appropriate energy levels for application in solution-processed organic solar cells. Journal of Materials Chemistry A, 2013, 1, 105-111.	5.2	63
332	Effects of Heteroatom Substitutions on the Crystal Structure, Film Formation, and Optoelectronic Properties of Diketopyrrolopyrroleâ€Based Materials. Advanced Functional Materials, 2013, 23, 47-56.	7.8	171
333	Mechanism of Degradation and Improvement of Stability on Mesogenic-Phthalocyanine-Based Bulk Heterojunction Solar Cell. Japanese Journal of Applied Physics, 2013, 52, 012301.	0.8	12
334	A hybrid planar-mixed tetraphenyldibenzoperiflanthene/C70 photovoltaic cell. Applied Physics Letters, 2013, 102, .	1.5	98
335	Plastic solar cells: Self-assembly of bulk heterojunction nano-materials by spontaneous phase separation. , 2013, , .		3
336	A DMF-assisted solution process boosts the efficiency in P3HT:PCBM solar cells up to 5.31%. Nanotechnology, 2013, 24, 484008.	1.3	27
337	Charge carrier dynamics in organic semiconductors and their donor-acceptor composites: Numerical modeling of time-resolved photocurrent. Journal of Applied Physics, 2013, 114, .	1.1	14
338	<i>Tri</i> â€Diketopyrrolopyrrole Molecular Donor Materials for Highâ€Performance Solutionâ€Processed Bulk Heterojunction Solar Cells. Advanced Materials, 2013, 25, 5898-5903.	11.1	101
339	Solvent Effects on Solution-Processable Bulk Heterojunction Organic Solar Cells Utilizing 1,4,8,11,15,18,22,25-Octahexylphthalocyanine. Japanese Journal of Applied Physics, 2013, 52, 05DB02.	0.8	11
340	Alkyl Substituent Length Dependence of Octaalkylphthalocyanine Bulk Heterojunction Solar Cells. Applied Physics Express, 2013, 6, 122301.	1.1	18
341	Selfâ€Organizing Surfaceâ€Initiated Polymerization of Multicomponent Photosystems: Stack Exchange with Fullerenes. ChemistryOpen, 2013, 2, 55-57.	0.9	9
342	A renaissance of color: New structures and building blocks for organic electronics. Journal of Polymer Science Part A, 2013, 51, 1263-1271.	2.5	109
343	Synthesis and characterization of naphtho [2,1-b:3,4-bâ \in 2] dithiophene-based polymers with extended $i\in$ -conjugation systems for use in bulk heterojunction polymer solar cells. Journal of Polymer Science Part A, 2013, 51, 4742-4751.	2.5	13
344	Controlling Morphology of Active Layer by Tuning Coplanarity of the Centrality in Acceptorâ€Donorâ€Acceptor Small Molecules for Photovoltaic Application. Chinese Journal of Chemistry, 2013, 31, 1439-1448.	2.6	4
345	Low roll off radiation efficiency of charge transfer state excitons based on organic photovoltaic and electroluminescent integrated device. Applied Physics Letters, 2013, 102, 183302.	1.5	23
346	Fullerene concentration dependent bimolecular recombination in organic photovoltaic films. Applied Physics Letters, 2013, 102, .	1.5	20

#	Article	IF	CITATIONS
347	Layer-by-layer processed polymer solar cells with self-assembled electron buffer layer. Applied Physics Letters, $2013,102,$.	1.5	11
348	Diketopyrrolopyrrole-based conjugated polymers and small molecules for organic ambipolar transistors and solar cells. Journal of Polymer Science Part A, 2013, 51, 4241-4260.	2.5	87
349	Electron affinity of pentacene thin film studied by radiation-damage free inverse photoemission spectroscopy. Applied Physics Letters, 2013, 103, .	1.5	61
350	Efficient solution-processed small molecule: Cadmium selenide quantum dot bulk heterojunction solar cells. Applied Physics Letters, 2013, 103, 253901.	1.5	3
351	Electron and hole mobility in solution-processed small molecule-fullerene blend: Dependence on the fullerene content. Applied Physics Letters, 2013, 102, 163308.	1.5	15
352	Zinc oxide and metal phthalocyanine based hybrid P-N junction diodes. Applied Physics Letters, 2013, 103, 133301.	1.5	12
353	Flexible Organic Solar Cells Based on Spin-Coated Blend Films of a Phenylene-Thiophene Oligomer Derivative and PCBM. Molecular Crystals and Liquid Crystals, 2013, 578, 78-87.	0.4	9
354	The Role of Additive in Diketopyrrolopyrroleâ€Based Small Molecular Bulk Heterojunction Solar Cells. Advanced Materials, 2013, 25, 6519-6525.	11.1	59
355	Morphological and structural investigation of \hat{l}_{\pm} -sexithiophene grown on KCl (100). , 2013, , .		1
356	ORGANIC SOLAR CELL MATERIALS AND DEVICES CHARACTERIZED BY CONDUCTIVE AND PHOTOCONDUCTIVE ATOMIC FORCE MICROSCOPY. World Scientific Series in Nanoscience and Nanotechnology, 2013, , 73-113.	0.1	1
357	Quinoxaline derivatives with broadened absorption patterns. Organic and Biomolecular Chemistry, 2013, 11, 5866.	1.5	28
358	Coordinationâ€Based Molecular Assemblies of Oligofurans and Oligothiophenes. Chemistry - A European Journal, 2013, 19, 8821-8831.	1.7	20
359	Fullerene C60 Architectures in Materials Science. Advanced Materials and Technologies, 2013, , 47-88.	0.4	1
360	Solution-Processed Organic Photovoltaics Based on Indoline Dye Molecules Developed in Dye-Sensitized Solar Cells. Molecules, 2013, 18, 3107-3117.	1.7	14
361	Enhancement of efficiency in organic photovoltaic devices containing self-complementary hydrogen-bonding domains. Beilstein Journal of Organic Chemistry, 2013, 9, 1102-1110.	1.3	20
362	Optimization of solution-processed oligothiophene:fullerene based organic solar cells by using solvent additives. Beilstein Journal of Nanotechnology, 2013, 4, 680-689.	1.5	14
363	Solution processable diketopyrrolopyrrole (DPP) cored small molecules with BODIPY end groups as novel donors for organic solar cells. Beilstein Journal of Organic Chemistry, 2014, 10, 2683-2695.	1.3	23
364	Bulk-Heterojunction Organic Solar Cells Based on Phenylene-Thiophene Oligomer and Phenyl-C61-Butyric-Acid Methyl Ester. IEICE Transactions on Electronics, 2014, E97.C, 405-408.	0.3	2

#	Article	IF	Citations
365	B(C ₆ F ₅) ₃ -Catalyzed Synthesis of Benzofused-Siloles. Organometallics, 2014, 33, 7241-7246.	1.1	72
366	Efficient solution-processed small-molecule solar cells with titanium suboxide as an electric adhesive layer. Applied Physics Letters, 2014, 104, .	1.5	9
367	ORGANIC PHOTOVOLTAICS. Series on Photoconversion of Solar Energy, 2014, , 339-412.	0.2	0
368	Planar heterojunction organic photovoltaic cells based on tetramethyl substituted copper(II) phthalocyanine treated with thermal annealing. Journal Physics D: Applied Physics, 2014, 47, 415104.	1.3	3
369	Crystallites ofα-Sexithiophene in Bilayer Small Molecule Organic Solar Cells Double Efficiency. Journal of Nanomaterials, 2014, 2014, 1-6.	1.5	3
370	Improving the Efficiency of Organic Solar Cells upon Addition of Polyvinylpyridine. Materials, 2014, 7, 8189-8196.	1.3	5
371	Towards High Performance Organic Photovoltaic Cells: A Review of Recent Development in Organic Photovoltaics. Polymers, 2014, 6, 2473-2509.	2.0	162
372	Polythiophenes Comprising Conjugated Pendants for Polymer Solar Cells: A Review. Materials, 2014, 7, 2411-2439.	1.3	56
373	Fused-Thiophene Based Materials for Organic Photovoltaics and Dye-Sensitized Solar Cells. Polymers, 2014, 6, 2645-2669.	2.0	85
374	Effect of Crystallinity on the Performance of P3HT/PC70BM/n-Dodecylthiol Polymer Solar Cells. Journal of Solar Energy Engineering, Transactions of the ASME, 2014, 136, .	1.1	14
375	ULTRAFAST INTRAMOLECULAR DYNAMICS IN NOVEL STAR-SHAPED MOLECULES FOR PHOTOVOLTAIC APPLICATIONS. , $2014, \ldots$		2
376	Two novel ambipolar donor–acceptor type electrochromic polymers with the realization of RGB (red-green-blue) display in one polymer. RSC Advances, 2014, 4, 61537-61547.	1.7	23
377	Annealing temperature dependence of the efficiency and vertical phase segregation of polymer/polymer bulk heterojunction photovoltaic cells. Applied Physics Letters, 2014, 104, .	1.5	22
378	Postâ€Deposition Activation of Latent Hydrogenâ€Bonding: A New Paradigm for Enhancing the Performances of Bulk Heterojunction Solar Cells. Advanced Functional Materials, 2014, 24, 7410-7419.	7.8	27
379	Organic and Hybrid Solar Cells. , 2014, , .		18
380	Tailoring Porphyrin-Based Electron Accepting Materials for Organic Photovoltaics. Journal of the American Chemical Society, 2014, 136, 17561-17569.	6.6	55
381	Interplay of Solvent Additive Concentration and Active Layer Thickness on the Performance of Small Molecule Solar Cells. Advanced Materials, 2014, 26, 7308-7316.	11.1	47
382	Low band gap disk-shaped donors for solution-processed organic solar cells. RSC Advances, 2014, 4, 64589-64595.	1.7	6

#	Article	IF	CITATIONS
383	Organicâ€inorganic nanocomposites composed of conjugated polymers and semiconductor nanocrystals for photovoltaics. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1641-1660.	2.4	28
384	Multichromophoric energy sensitization of C60 for organic photovoltaics. Applied Physics Letters, 2014, 105, 113305.	1.5	4
385	High open circuit voltage organic solar cells based upon fullerene free bulk heterojunction active layers. Canadian Journal of Chemistry, 2014, 92, 932-939.	0.6	5
386	A designed bithiopheneimide-based conjugated polymer for organic photovoltaic with ultrafast charge transfer at donor/PC71BM interface: theoretical study and characterization. Physical Chemistry Chemical Physics, 2014, 16, 25799-25808.	1.3	51
388	Synthesis and Photovoltaic Properties of Moderate Band Gap Diketopyrrolopyrrole Based Small Molecules for Solution Processed Organic Solar Cells. Molecular Crystals and Liquid Crystals, 2014, 598, 163-170.	0.4	1
389	Inverted hybrid photovoltaic devices on nonplanar surface for efficient charge carrier separation. Japanese Journal of Applied Physics, 2014, 53, 05HB01.	0.8	2
390	Donor Materials for Organic Solar Cell (OSC). , 2014, , 53-96.		1
391	Annealing effect in bulk heterojunction organic solar cells utilizing liquid crystalline phthalocyanine. Japanese Journal of Applied Physics, 2014, 53, 05FZ02.	0.8	7
392	Discotic Liquid Crystalline Blends for Nano-Structure Formation Toward Bulk Heterojunction Active Layer in Organic Photovoltaics. Nanoscience and Technology, 2014, , 257-280.	1.5	2
393	Pathway Complexity in π-Conjugated Materials. Chemistry of Materials, 2014, 26, 576-586.	3.2	236
394	New pyrido[3,4-b]pyrazine-based sensitizers for efficient and stable dye-sensitized solar cells. Chemical Science, 2014, 5, 206-214.	3.7	102
395	Grapheneâ€Based Materials for Solar Cell Applications. Advanced Energy Materials, 2014, 4, 1300574.	10.2	398
396	Push–pull organic semiconductors with planar indenothiophene bridges for solution-processed small-molecule organic solar cells. Tetrahedron, 2014, 70, 6235-6240.	1.0	5
397	New π-extended diketopyrrolopyrrole-based conjugated molecules for solution-processed solar cells: Influence of effective conjugation length on power conversion efficiency. Dyes and Pigments, 2014, 108, 7-14.	2.0	16
398	Novel liquid crystalline oligomer with thiazolothiazole-acceptor for efficient BHJ small molecule organic solar cells. Synthetic Metals, 2014, 187, 178-184.	2.1	13
399	Fabrication of N,N′-dioctyl-3,4,9,10-perylenedicarboximide nanostructures through solvent influenced π–π stacking and their morphological impact on photovoltaic performance. Thin Solid Films, 2014, 562, 423-429.	0.8	5
400	Miscibility in binary blends of non-peripheral alkylphthalocyanines and their application for bulk-heterojunction solar cells. Organic Electronics, 2014, 15, 1189-1196.	1.4	17
401	Smallâ€Molecule Solar Cells with Fill Factors up to 0.75 via a Layerâ€byâ€Layer Solution Process. Advanced Energy Materials, 2014, 4, 1300626.	10.2	90

#	Article	IF	CITATIONS
402	25th Anniversary Article: Bulk Heterojunction Solar Cells: Understanding the Mechanism of Operation. Advanced Materials, 2014, 26, 10-28.	11.1	1,514
403	Conductive Conjugated Polyelectrolyte as Holeâ€Transporting Layer for Organic Bulk Heterojunction Solar Cells. Advanced Materials, 2014, 26, 780-785.	11.1	193
404	Unambiguous determination of molecular packing in crystalline donor domains of small molecule solution processed solar cell devices using routine X-ray diffraction techniques. Journal of Materials Chemistry A, 2014, 2, 3536.	5.2	29
405	A diketopyrrolopyrrole molecule end-capped with a furan-2-carboxylate moiety: the planarity of molecular geometry and photovoltaic properties. Journal of Materials Chemistry A, 2014, 2, 6589.	5.2	42
406	A squaraine dye as molecular sensitizer for increasing light harvesting in polymer solar cells. Synthetic Metals, 2014, 192, 10-14.	2.1	22
407	Small Molecular Aryl Acetylenes: Chemically Tailoring Highâ€Efficiency Organic Semiconductors for Solar Cells and Fieldâ€Effect Transistors. ChemPlusChem, 2014, 79, 486-507.	1.3	43
408	Crystal growth and characterization of fluorinated perylene diimides. Chemical Research in Chinese Universities, 2014, 30, 63-67.	1.3	4
409	Molecular Materials for Organic Photovoltaics: Small is Beautiful. Advanced Materials, 2014, 26, 3821-3838.	11.1	534
410	Small Molecular Donors for Organic Solar Cells Obtained by Simple and Clean Synthesis. ChemSusChem, 2014, 7, 1046-1050.	3.6	21
411	High open-circuit voltage of the solution-processed organic solar cells based on benzothiadiazole–triphenylamine small molecules incorporating π-linkage. Organic Electronics, 2014, 15, 1138-1148.	1.4	26
412	Structural Characterization of a Composition Tolerant Bulk Heterojunction Blend. Advanced Energy Materials, 2014, 4, 1301886.	10.2	16
413	Effects of Solvent Additives on Morphology, Charge Generation, Transport, and Recombination in Solutionâ€Processed Smallâ€Molecule Solar Cells. Advanced Energy Materials, 2014, 4, 1301469.	10.2	194
414	Enhanced Power Conversion Efficiency of Low Bandâ€Gap Polymer Solar Cells by Insertion of Optimized Binary Processing Additives. Advanced Energy Materials, 2014, 4, 1300835.	10.2	40
415	Recent Advances in Polymer Solar Cells: Realization of High Device Performance by Incorporating Water/Alcoholâ€Soluble Conjugated Polymers as Electrode Buffer Layer. Advanced Materials, 2014, 26, 1006-1024.	11.1	231
416	Solution-processed bulk heterojunction solar cells based on a porphyrin small molecule with 7% power conversion efficiency. Energy and Environmental Science, 2014, 7, 1397-1401.	15.6	200
417	Multilayer Epitaxial Growth of Lead Phthalocyanine and C ₇₀ Using CuBr as a Templating Layer for Enhancing the Efficiency of Organic Photovoltaic Cells. ACS Applied Materials & District Cells. ACS	4.0	19
418	Chlorine-free processed high performance organic solar cells. RSC Advances, 2014, 4, 16681-16685.	1.7	23
419	Synthesis, Redox Properties, and Electronic Coupling in the Diferrocene Aza-dipyrromethene and azaBODIPY Donor–Acceptor Dyad with Direct Ferroceneâ^α-Pyrrole Bond. Inorganic Chemistry, 2014, 53, 4751-4755.	1.9	59

#	Article	IF	CITATIONS
420	Phase Separation in Bulk Heterojunctions of Semiconducting Polymers and Fullerenes for Photovoltaics. Annual Review of Physical Chemistry, 2014, 65, 59-81.	4.8	99
421	Effects of Processing Conditions on the Recombination Reduction in Small Molecule Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2014, 4, 1400438.	10.2	46
422	Nanoscience with Liquid Crystals. Nanoscience and Technology, 2014, , .	1.5	80
424	New Conjugated Molecules with Two and Three Dithienyldiketopyrrolopyrrole (DPP) Moieties Substituted at <i>meta</i> Positions of Benzene toward p―and nâ€√ype Organic Photovoltaic Materials. Chemistry - an Asian Journal, 2014, 9, 1570-1578.	1.7	18
425	Stoichiometric dependence of TiOx as a cathode modifier on band alignment of polymer solar cells. Solar Energy Materials and Solar Cells, 2014, 125, 233-238.	3.0	11
426	Optical performance and color investigations of hybrid solar cells based on P3HT:ZnO, PCPDTBT:ZnO, PTB7:ZnO and DTS(PTTh2)2:ZnO. Solar Energy Materials and Solar Cells, 2014, 126, 197-204.	3.0	29
427	Thieno[3,4â€ <i>c</i>)]pyrroleâ€4,6â€dioneâ€Based Small Molecules for Highly Efficient Solutionâ€Processed Organic Solar Cells. Chemistry - an Asian Journal, 2014, 9, 1045-1053.	1.7	27
428	Small-molecule azomethines: organic photovoltaics <i>via</i> Schiff base condensation chemistry. Journal of Materials Chemistry A, 2014, 2, 9474-9477.	5.2	83
429	Two-dimensional π-conjugated molecules based-on 2,6,9,10-tetra(prop-1-yn-1-yl)anthracene and their application to solution-processed photovoltaic cells. Organic Electronics, 2014, 15, 1521-1530.	1.4	12
430	Synthesis, characterization, and photovoltaic properties of acceptor–donor–acceptor organic small molecules with different terminal electron-withdrawing groups. Journal of Materials Science, 2014, 49, 5279-5288.	1.7	5
431	Influence of bias voltage and temperature on charge transfer states in organic photovoltaic and electroluminescent integrated device. Applied Physics Letters, 2014, 104, 203301.	1.5	11
432	Triazine-Bridged Porphyrin Triad as Electron Donor for Solution-Processed Bulk Hetero-Junction Organic Solar Cells. Journal of Physical Chemistry C, 2014, 118, 5968-5977.	1.5	50
433	PbTe Nanocrystal Arrays on Graphene and the Structural Influence of Capping Ligands. Chemistry of Materials, 2014, 26, 1567-1575.	3.2	11
434	Acceptor–Donor–Acceptor Small Molecules Based on Indacenodithiophene for Efficient Organic Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 8426-8433.	4.0	135
435	Improved Performance in Bulk Heterojunction Organic Solar Cells with a Solâ€Gel MgZnO Electronâ€Collecting Layer. Advanced Energy Materials, 2014, 4, 1400073.	10.2	22
436	Controlling <i>J</i> à€aggregate formation for increased shortâ€circuit current and power conversion efficiency with a squaraine donor. Progress in Photovoltaics: Research and Applications, 2014, 22, 488-493.	4.4	31
437	Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process. Energy and Environmental Science, 2014, 7, 2359-2365.	15.6	754
438	Tailored Donor–Acceptor Polymers with an A–D1–A–D2 Structure: Controlling Intermolecular Interactions to Enable Enhanced Polymer Photovoltaic Devices. Journal of the American Chemical Society, 2014, 136, 6049-6055.	6.6	186

#	Article	IF	CITATIONS
439	Synthesis and photovoltaic properties of new [1,2,5]thiadiazolo[3,4-c]pyridine-based organic Broadly absorbing sensitizers for dye-sensitized solar cells. Tetrahedron, 2014, 70, 3901-3908.	1.0	25
440	Templating Effects in Molecular Growth of Blended Films for Efficient Small-Molecule Photovoltaics. ACS Applied Materials & Samp; Interfaces, 2014, 6, 6369-6377.	4.0	28
441	Silaindacenodithiophene-Based Molecular Donor: Morphological Features and Use in the Fabrication of Compositionally Tolerant, High-Efficiency Bulk Heterojunction Solar Cells. Journal of the American Chemical Society, 2014, 136, 3597-3606.	6.6	136
442	Topological Considerations for the Design of Molecular Donors with Multiple Absorbing Units. Journal of the American Chemical Society, 2014, 136, 5591-5594.	6.6	46
443	Design and Properties of Intermediate-Sized Narrow Band-Gap Conjugated Molecules Relevant to Solution-Processed Organic Solar Cells. Journal of the American Chemical Society, 2014, 136, 5697-5708.	6.6	149
444	Efficiency Improvement of Solutionâ€Processed Dithienopyrroleâ€Based Aâ€Dâ€A Oligothiophene Bulkâ€Heterojunction Solar Cells by Solvent Vapor Annealing. Advanced Energy Materials, 2014, 4, 1400266.	10.2	144
445	Near Infrared Organic Semiconducting Materials for Bulk Heterojunction and Dyeâ€Sensitized Solar Cells. Chemical Record, 2014, 14, 419-481.	2.9	20
446	D-A-D structured organic molecules with diketopyrrolopyrrole acceptor unit for solution-processed organic solar cells. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130009.	1.6	6
447	Influence of Molybdenum Oxide Interface Solvent Sensitivity on Charge Trapping in Bilayer Cyanine Solar Cells. Journal of Physical Chemistry C, 2014, 118, 17036-17045.	1.5	19
448	Assessing the origin of the S-shaped l–V curve in organic solar cells: An improved equivalent circuit model. Solar Energy Materials and Solar Cells, 2014, 122, 88-93.	3.0	51
449	Benzo[1,2-b:4,5-b′]dithiophene and benzotriazole based small molecule for solution-processed organic solar cells. Organic Electronics, 2014, 15, 405-413.	1.4	42
450	A novel complementary absorbing donor–acceptor pair in block copolymers based on single material organic photovoltaics. Journal of Materials Chemistry A, 2014, 2, 2993-2998.	5.2	17
451	Bay-linked perylene bisimides as promising non-fullerene acceptors for organic solar cells. Chemical Communications, 2014, 50, 1024-1026.	2.2	290
452	Computational modelling of donor–acceptor conjugated polymers through engineered backbone manipulations based on a thiophene–quinoxaline alternating copolymer. Journal of Materials Chemistry A, 2014, 2, 2202-2212.	5.2	24
453	A morphology control layer of a pyrene dimer enhances the efficiency in small molecule organic photovoltaic cells. Journal of Materials Chemistry C, 2014, 2, 501-509.	2.7	10
454	Solutionâ€Processed Hydrogen Molybdenum Bronzes as Highly Conductive Anode Interlayers in Efficient Organic Photovoltaics. Advanced Energy Materials, 2014, 4, 1300896.	10.2	56
455	Morphologyâ€Performance Relationships in Highâ€Efficiency Allâ€Polymer Solar Cells. Advanced Energy Materials, 2014, 4, 1300785.	10.2	227
456	Design and Synthesis of Molecular Donors for Solution-Processed High-Efficiency Organic Solar Cells. Accounts of Chemical Research, 2014, 47, 257-270.	7.6	446

#	Article	IF	CITATIONS
457	Exciton diffusion in organic photovoltaic cells. Energy and Environmental Science, 2014, 7, 499-512.	15.6	332
458	Porphyrin oriented self-assembled nanostructures for efficient exciton dissociation in high-performing organic photovoltaics. Journal of Materials Chemistry A, 2014, 2, 182-192.	5.2	60
459	Synthesis and photovoltaic properties of solution-processable star-shaped small molecules with triphenylamine as the core and alkyl cyanoacetate or 3-ethylrhodanine as the end-group. RSC Advances, 2014, 4, 5591.	1.7	24
460	Solution-Processed Small Molecule Donor/Acceptor Blends for Electrical Memory Devices with Fine-Tunable Storage Performance. Journal of Physical Chemistry C, 2014, 118, 2154-2160.	1.5	31
461	Linkage position influences of anthracene and tricyanovinyl groups on the opto-electrical and photovoltaic properties of anthracene-based organic small molecules. Tetrahedron, 2014, 70, 1176-1186.	1.0	8
462	Ultrafast Long-Range Charge Separation in Organic Semiconductor Photovoltaic Diodes. Science, 2014, 343, 512-516.	6.0	807
463	Influence of the Position of the Side Chain on Crystallization and Solar Cell Performance of DPP-Based Small Molecules. Chemistry of Materials, 2014, 26, 916-926.	3.2	113
464	Using ultra-high molecular weight hydrophilic polymer as cathode interlayer for inverted polymer solar cells: Enhanced efficiency and excellent air-stability. Solar Energy Materials and Solar Cells, 2014, 123, 104-111.	3.0	18
465	Synthesis, optical and electrochemical properties of pyridal [2,1,3] thiadiazole based organic dyes for dye sensitized solar cells. Organic Electronics, 2014, 15, 378-390.	1.4	39
466	Influence of the backbone conformation of conjugated polymers on morphology and photovoltaic properties. Polymer Chemistry, 2014, 5, 1976-1981.	1.9	48
467	Recent advances of non-fullerene, small molecular acceptors for solution processed bulk heterojunction solar cells. Journal of Materials Chemistry A, 2014, 2, 1201-1213.	5.2	361
468	Modeling of internal conversion in photoexcited conjugated molecular donors used in organic photovoltaics. Energy and Environmental Science, 2014, 7, 1175.	15.6	19
469	Panchromatic small molecules for UV-Vis-NIR photodetectors with high detectivity. Journal of Materials Chemistry C, 2014, 2, 2431.	2.7	54
470	A new solution-processed diketopyrrolopyrrole donor for non-fullerene small-molecule solar cells. Journal of Materials Chemistry A, 2014, 2, 1869-1876.	5.2	28
471	Hydrogenated under-stoichiometric tungsten oxide anode interlayers for efficient and stable organic photovoltaics. Journal of Materials Chemistry A, 2014, 2, 1738-1749.	5.2	161
472	Synthesis of an H-aggregated thiophene–phthalimide based small molecule via microwave assisted direct arylation coupling reactions. Dyes and Pigments, 2014, 102, 204-209.	2.0	23
473	A bipolar small molecule based on indacenodithiophene and diketopyrrolopyrrole for solution processed organic solar cells. Journal of Materials Chemistry A, 2014, 2, 778-784.	5.2	87
474	The Role of Solvent Additive Processing in High Performance Small Molecule Solar Cells. Chemistry of Materials, 2014, 26, 6531-6541.	3.2	58

#	ARTICLE	IF	CITATIONS
475	Efficient synthesis of π-extended phenazasilines for optical and electronic applications. Chemical Communications, 2014, 50, 15760-15763.	2.2	41
476	Synthesis, characterization and photovoltaic properties of benzo[1,2-b:4,5-b′]dithiophene-bridged molecules. RSC Advances, 2014, 4, 63260-63267.	1.7	11
477	Efficient Organic Solar Cells with Star-Shaped Small Molecules Comprising of Planar Donating Core and Accepting Edges. Journal of Physical Chemistry C, 2014, 118, 27193-27200.	1.5	18
478	Slip-Stacked Perylenediimides as an Alternative Strategy for High Efficiency Nonfullerene Acceptors in Organic Photovoltaics. Journal of the American Chemical Society, 2014, 136, 16345-16356.	6.6	320
479	New Benzo[1,2â€ <i>b</i> :4,5â€ <i>b′</i>]dithiopheneâ€Based Small Molecules Containing Alkoxyphenyl Side Chains for High Efficiency Solutionâ€Processed Organic Solar Cells. ChemSusChem, 2014, 7, 3319-3327.	3.6	18
480	Organic Photovoltaics: Elucidating the Ultraâ€Fast Exciton Dissociation Mechanism in Disordered Materials. Angewandte Chemie - International Edition, 2014, 53, 7456-7460.	7.2	42
481	Self-assembled Supramolecular Materials in Organic Electronics. RSC Smart Materials, 2014, , 1-52.	0.1	7
482	Triphenylamineâ€Substituted Metalloporphyrins for Solutionâ€Processed Bulk Heterojunction Solar Cells: The Effect of the Central Metal Ion on Device Performance. European Journal of Inorganic Chemistry, 2014, 2014, 4852-4857.	1.0	7
483	Supramolecular Engineering of Oligothiophene Nanorods without Insulators: Hierarchical Association of Rosettes and Photovoltaic Properties. Chemistry - A European Journal, 2014, 20, 16128-16137.	1.7	41
484	An Efficient Tinâ€Free Route to Small Molecules Based on Siloleâ€Modified Pentathiophenes for Solutionâ€Processed Organic Solar Cells. Asian Journal of Organic Chemistry, 2014, 3, 984-993.	1.3	1
485	A deep-purple-grey thiophene–benzothiadiazole–thiophene BODIPY dye for solution-processed solar cells. New Journal of Chemistry, 2014, 38, 3644-3653.	1.4	30
486	Solution-Processed Organic Solar Cells Based on Dialkylthiol-Substituted Benzodithiophene Unit with Efficiency near 10%. Journal of the American Chemical Society, 2014, 136, 15529-15532.	6.6	670
487	Interpenetrating morphology based on highly crystalline small molecule and PCBM blends. Journal of Materials Chemistry C, 2014, 2, 9368-9374.	2.7	6
488	Double superexchange in quantum dot mesomaterials. Energy and Environmental Science, 2014, 7, 1023.	15.6	6
489	Synthesis and photovoltaic performances in solution-processed BHJs of oligothiophene-substituted organocobalt complexes [(η4-C4(nT)4)Co(η5-C5H5)]. Chemical Communications, 2014, 50, 8663-8666.	2.2	11
490	Efficient inverted quasi-bilayer organic solar cells fabricated by using non-halogenated solvent processes. Journal of Materials Chemistry A, 2014, 2, 13398-13406.	5.2	39
491	Structure–property relationship of anilino-squaraines in organic solar cells. Physical Chemistry Chemical Physics, 2014, 16, 1067-1077.	1.3	47
492	Photovoltaic performance of novel push–pull–push thienyl–Bodipy dyes in solution-processed BHJ-solar cells. New Journal of Chemistry, 2014, 38, 1701-1710.	1.4	29

#	Article	IF	CITATIONS
493	New dithienyl-diketopyrrolopyrrole-based conjugated molecules entailing electron withdrawing moieties for organic ambipolar semiconductors and photovoltaic materials. Journal of Materials Chemistry C, 2014, 2, 10101-10109.	2.7	27
494	A non-fullerene acceptor with all "A―units realizing high open-circuit voltage solution-processed organic photovoltaics. Journal of Materials Chemistry A, 2014, 2, 2657.	5.2	21
495	7-Azaisoindigo as a new electron deficient component of small molecule chromophores for organic solar cells. Journal of Materials Chemistry A, 2014, 2, 1085-1092.	5. 2	27
496	High-efficiency solution-processed small-molecule solar cells featuring gold nanoparticles. Journal of Materials Chemistry A, 2014, 2, 19988-19993.	5.2	9
497	Two-dimensional benzodithiophene and benzothiadiazole based solution-processed small molecular organic field-effect transistors & Samp; solar cells. Journal of Materials Chemistry C, 2014, 2, 3921.	2.7	41
498	Effect of structural variation on photovoltaic characteristics of phenyl substituted diketopyrrolopyrroles. RSC Advances, 2014, 4, 14101-14108.	1.7	15
499	A high-performance solution-processed small molecule: alkylselenophene-substituted benzodithiophene organic solar cell. Journal of Materials Chemistry C, 2014, 2, 4937-4946.	2.7	34
500	Tuning morphology and photovoltaic properties of diketopyrrolopyrrole-based small-molecule solar cells by taloring end-capped aromatic groups. Physical Chemistry Chemical Physics, 2014, 16, 4664.	1.3	19
501	Effect of processing additive on morphology and charge extraction in bulk-heterojunction solar cells. Journal of Materials Chemistry A, 2014, 2, 15052-15057.	5.2	39
502	Elucidation of the Structure–Property Relationship of p-Type Organic Semiconductors through Rapid Library Construction via a One-Pot, Suzuki–Miyaura Coupling Reaction. ACS Combinatorial Science, 2014, 16, 494-499.	3.8	23
503	Influence of the Auxiliary Acceptor on the Absorption Response and Photovoltaic Performance of Dyeâ€Sensitized Solar Cells. Chemistry - an Asian Journal, 2014, 9, 3549-3557.	1.7	10
504	Evaluation of Heterocycle-Modified Pentathiophene-Based Molecular Donor Materials for Solar Cells. ACS Applied Materials & Samp; Interfaces, 2014, 6, 5798-5809.	4.0	44
505	Tandem small molecule organic photovoltaic cells with broad spectral response up to 1 $\hat{1}$ 4m and a high open-circuit voltage. Organic Electronics, 2014, 15, 3024-3030.	1.4	12
506	Morphology, molecular stacking, dynamics and device performance correlations of vacuum-deposited small-molecule organic solar cells. Physical Chemistry Chemical Physics, 2014, 16, 8852-8864.	1.3	23
507	Selective Even-Numbered Bromination of Triptycene Tris(thiadiazoles). Organic Letters, 2014, 16, 5596-5599.	2.4	12
508	Small molecule-based tandem solar cells with solution-processed and vacuum-processed photoactive layers. Chemical Communications, 2014, 50, 5349-5351.	2.2	11
509	Solution-processed, indacenodithiophene-based, small-molecule organic field-effect transistors and solar cells. Journal of Materials Chemistry C, 2014, 2, 7523.	2.7	39
510	Solution-processable two-dimensional conjugated organic small molecules containing triphenylamine cores for photovoltaic application. New Journal of Chemistry, 2014, 38, 5009-5017.	1.4	7

#	ARTICLE	IF	CITATIONS
511	Synthesis and 2D self-assembly at the liquid–solid interface of novel H-bonding linear π-conjugated oligomers terminated by uracil and melamine units. New Journal of Chemistry, 2014, 38, 2407-2413.	1.4	8
512	Exciton diffusion enhancement in triphenylamines via incorporation of phenylethenyl sidearms. Journal of Materials Chemistry C, 2014, 2, 4792.	2.7	15
513	DTBDT-TTPD: a new dithienobenzodithiophene-based small molecule for use in efficient photovoltaic devices. Journal of Materials Chemistry A, 2014, 2, 16443-16451.	5.2	25
514	Enhancement of photovoltaic efficiency by insertion of a polyoxometalate layer at the anode of an organic solar cell. Inorganic Chemistry Frontiers, 2014, 1, 682-688.	3.0	39
515	Phenyl-capped cyclopenta[c]chalcogenophenes: synthesis, crystal structures, electrochemistry and theoretical insights. RSC Advances, 2014, 4, 35653.	1.7	8
516	Organic photovoltaics: key photophysical, device and design aspects. Journal of Modern Optics, 2014, 61, 1703-1713.	0.6	3
517	Binary Additives Regulate the PC71BM Aggregate Morphology for Highly Efficient Polymer Solar Cells. ACS Photonics, 2014, 1, 1278-1284.	3.2	8
518	Naphthalene-, Anthracene-, and Pyrene-Substituted Fullerene Derivatives as Electron Acceptors in Polymer-based Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 20776-20785.	4.0	38
519	Influence of moiety sequence on the performance of small molecular photovoltaic materials. Journal of Materials Chemistry A, 2014, 2, 15396-15405.	5 . 2	33
520	Electron deficient diketopyrrolopyrrole dyes for organic electronics: synthesis by direct arylation, optoelectronic characterization, and charge carrier mobility. Journal of Materials Chemistry A, 2014, 2, 4198-4207.	5. 2	83
521	Effect of thermal annealing on active layer morphology and performance for small molecule bulk heterojunction organic solar cells. Journal of Materials Chemistry C, 2014, 2, 7247-7255.	2.7	70
522	Indole and triisopropyl phenyl as capping units for a diketopyrrolopyrrole (DPP) acceptor central unit: an efficient D–A–D type small molecule for organic solar cells. RSC Advances, 2014, 4, 732-742.	1.7	23
523	A Green Approach to Organic Thin-Film Electronic Devices: Recycling Electrodes Composed of Indium Tin Oxide (ITO). ACS Sustainable Chemistry and Engineering, 2014, 2, 2715-2721.	3.2	15
524	Substantial photovoltaic response and morphology tuning in benzo[1,2-b:6,5-b′]dithiophene (bBDT) molecular donors. Chemical Communications, 2014, 50, 4099.	2.2	48
525	Roll-coating fabrication of flexible large area small molecule solar cells with power conversion efficiency exceeding 1%. Journal of Materials Chemistry A, 2014, 2, 19809-19814.	5.2	44
526	Effect of crystallinity in small molecular weight organic heterojunction solar cells. Journal of Materials Chemistry C, 2014, 2, 5357.	2.7	26
527	High efficiency solution-processed two-dimensional small molecule organic solar cells obtained via low-temperature thermal annealing. Journal of Materials Chemistry A, 2014, 2, 15904-15911.	5.2	48
528	Indacenodithiophene core-based small molecules with tunable side chains for solution-processed bulk heterojunction solar cells. Journal of Materials Chemistry A, 2014, 2, 4004.	5.2	32

#	Article	IF	CITATIONS
529	The effect of branched versus linear alkyl side chains on the bulk heterojunction photovoltaic performance of small molecules containing both benzodithiophene and thienopyrroledione. Physical Chemistry Chemical Physics, 2014, 16, 19874-19883.	1.3	34
530	New solution processed bulk-heterojunction organic solar cells based on a triazine-bridged porphyrin dyad as electron donor. RSC Advances, 2014, 4, 50819-50827.	1.7	14
531	Redox and Photoinduced Electron-Transfer Properties in Short Distance Organoboryl Ferrocene-Subphthalocyanine Dyads. Inorganic Chemistry, 2014, 53, 9336-9347.	1.9	31
532	Facile synthesis of porous NiCo2O4 microflowers as high-performance anode materials for advanced lithium-ion batteries. Electrochimica Acta, 2014, 145, 185-192.	2.6	91
533	Interplay between efficiency and device architecture for small molecule organic solar cells. Physical Chemistry Chemical Physics, 2014, 16, 11398.	1.3	10
534	A star-shaped D–π–A small molecule based on a tris(2-methoxyphenyl)amine core for highly efficient solution-processed organic solar cells. Journal of Materials Chemistry C, 2014, 2, 7614-7620.	2.7	16
535	Organic soluble and uniform film forming oligoethylene glycol substituted BODIPY small molecules with improved hole mobility. Physical Chemistry Chemical Physics, 2014, 16, 13376-13382.	1.3	11
536	Atomicâ€Layerâ€Deposited Aluminum and Zirconium Oxides for Surface Passivation of TiO ₂ in Highâ€Efficiency Organic Photovoltaics. Advanced Energy Materials, 2014, 4, 1400214.	10.2	52
537	Synthesis and properties of low bandgap star molecules TPA-[DTS-PyBTTh3]3 and DMM-TPA[DTS-PyBTTh3]3 for solution-processed bulk heterojunction organic solar cells. Journal of Materials Chemistry C, 2014, 2, 8412-8422.	2.7	19
538	Design, synthesis and photophysical studies of dipyrromethene-based materials: insights into their applications in organic photovoltaic devices. Chemical Society Reviews, 2014, 43, 3342-3405.	18.7	472
539	Unusually high SCLC hole mobility in solution-processed thin films of a polycyclic thiophene-based small-molecule semiconductor. Journal of Materials Chemistry C, 2014, 2, 7180-7183.	2.7	36
540	Linkage effects of linear D–π–A–π–D type diketopyrrolopyrrole-triphenylamine based solution-processable organic small molecule photovoltaic materials. Journal of Materials Chemistry C, 2014, 2, 4019.	2.7	34
541	High Polymer/Fullerene Ratio Realized in Efficient Polymer Solar Cells by Tailoring of the Polymer Sideâ€Chains. Advanced Materials, 2014, 26, 3624-3630.	11.1	62
542	Compact Bis-Adduct Fullerenes and Additive-Assisted Morphological Optimization for Efficient Organic Photovoltaics. ACS Applied Materials & Samp; Interfaces, 2014, 6, 20102-20109.	4.0	9
543	Separated crystallization of donor and acceptor in oligo(p-phenylenevinylene)-naphthalenediimide dyad films. Synthetic Metals, 2014, 197, 175-181.	2.1	4
544	Density functional study on the effect of a new ladder-type structure with different substituent groups (R = H, CH ₃ , OCH ₃ and CN) for donor–acceptor copolymers. RSC Advances, 2014, 4, 36656.	1.7	4
545	Ï€ â€Extended Narrowâ€Bandgap Diketopyrrolopyrroleâ€Based Oligomers for Solutionâ€Processed Inverted Organic Solar Cells. Advanced Energy Materials, 2014, 4, 1400879.	10.2	47
546	Au@Polymer Core–Shell Nanoparticles for Simultaneously Enhancing Efficiency and Ambient Stability of Organic Optoelectronic Devices. ACS Applied Materials & Samp; Interfaces, 2014, 6, 16956-16965.	4.0	71

#	Article	IF	CITATIONS
547	New Molecular Donors with Dithienopyrrole as the Electron-Donating Group for Efficient Small-Molecule Organic Solar Cells. Chemistry of Materials, 2014, 26, 4361-4367.	3.2	54
548	Mapping Orientational Order in a Bulk Heterojunction Solar Cell with Polarization-Dependent Photoconductive Atomic Force Microscopy. ACS Nano, 2014, 8, 8141-8151.	7.3	37
549	Influence of Block Copolymer Compatibilizers on the Morphologies of Semiflexible Polymer/Solvent Blends. Journal of Physical Chemistry B, 2014, 118, 4425-4441.	1.2	29
550	Uncovering Buried Structure and Interfaces in Molecular Photovoltaics. Advanced Functional Materials, 2014, 24, 6473-6483.	7.8	22
551	New polythiophene derivatives and enhanced photovoltaic effect by a boron compound blended with them in OPVs cells. Synthetic Metals, 2014, 196, 83-91.	2.1	8
552	Effect of alkyl chain length on the photovoltaic performance of oligothiophene-based small molecules. Solar Energy Materials and Solar Cells, 2014, 130, 336-346.	3.0	17
553	The Influence of Solubilizing Chain Stereochemistry on Small Molecule Photovoltaics. Advanced Functional Materials, 2014, 24, 5993-6004.	7.8	64
554	Effects of Shortened Alkyl Chains on Solutionâ€Processable Small Molecules with Oxoâ€Alkylated Nitrile Endâ€Capped Acceptors for Highâ€Performance Organic Solar Cells. Advanced Energy Materials, 2014, 4, 1400538.	10.2	79
555	Enhanced efficiency of solution-processed small-molecule solar cells upon incorporation of gold nanospheres and nanorods into organic layers. Chemical Communications, 2014, 50, 4451-4454.	2.2	25
556	Solutionâ€Processed, Molecular Photovoltaics that Exploit Hole Transfer from Nonâ€Fullerene, nâ€Type Materials. Advanced Materials, 2014, 26, 4313-4319.	11.1	76
557	Manipulating the charge transfer at CuPc/graphene interface by O ₂ plasma treatments. Nanoscale, 2014, 6, 8149-8154.	2.8	15
558	Solution processable star-shaped molecules with a triazine core and branching thienylenevinylenes for bulk heterojunction solar cells. RSC Advances, 2014, 4, 48150-48162.	1.7	20
559	Yellow Fluorescent Semiconducting Polymer Dots with High Brightness, Small Size, and Narrow Emission for Biological Applications. ACS Macro Letters, 2014, 3, 1051-1054.	2.3	20
560	The effect of surface hydrogenation of metal oxides on the nanomorphology and the charge generation efficiency of polymer blend solar cells. Nanoscale, 2014, 6, 13726-13739.	2.8	26
561	All-Polymer Solar Cell with High Near-Infrared Response Based on a Naphthodithiophene Diimide (NDTI) Copolymer. ACS Macro Letters, 2014, 3, 872-875.	2.3	110
562	Comparison of additive amount used in spin-coated and roll-coated organic solar cells. Journal of Materials Chemistry A, 2014, 2, 19542-19549.	5 . 2	36
563	Characterization of spray-coating methods for conjugated polymer blend thin films. Journal of Materials Science, 2014, 49, 4279-4287.	1.7	14
564	Correlation between location of defects in electrodeposited ZnO and performance for the corresponding hybrid solar cells. Journal of Materials Science: Materials in Electronics, 2014, 25, 2923-2928.	1.1	3

#	Article	IF	CITATIONS
565	Synthesis and photovoltaic properties of star-shaped triphenylamine molecules with donor–acceptor unit as core. Journal of Materials Science: Materials in Electronics, 2014, 25, 3559-3565.	1.1	4
566	Template-mediated nano-crystallite networks in semiconducting polymers. Nature Communications, 2014, 5, 4183.	5.8	31
567	The Active Layer Morphology of Organic Solar Cells Probed with Grazing Incidence Scattering Techniques. Advanced Materials, 2014, 26, 7692-7709.	11.1	555
568	Electronic structure of positive and negative polarons in functionalized dithienylthiazolo[5,4-d]thiazoles: a combined EPR and DFT study. Physical Chemistry Chemical Physics, 2014, 16, 10032.	1.3	15
569	Immiscible solvents enabled nanostructure formation for efficient polymer photovoltaic cells. Nanotechnology, 2014, 25, 295401.	1.3	8
570	Strategy to Modulate the Electron-Rich Units in Donor–Acceptor Copolymers for Improvements of Organic Photovoltaics. Journal of Physical Chemistry C, 2014, 118, 17266-17278.	1.5	69
571	Synthesis, optical and electrochemical properties of small molecules DMM-TPA[DTS(FBTTh3)3] and TPA[DTS(FBTTh3)3], and their application as donors for bulk heterojunction solar cells. Journal of Materials Chemistry A, 2014, 2, 12368-12379.	5.2	16
572	Effect of additives on the photovoltaic properties of organic solar cells based on triphenylamine-containing amorphous molecules. Science China Chemistry, 2014, 57, 966-972.	4.2	15
573	Synthesis and photovoltaic properties of D–A–D type small molecules containing diketopyrrolopyrrole (DPP) acceptor central unit with different donor terminal units. Organic Electronics, 2014, 15, 2116-2125.	1.4	20
574	High-Performance Organic Solar Cells with Efficient Semiconducting Small Molecules Containing an Electron-Rich Benzodithiophene Derivative. Chemistry of Materials, 2014, 26, 2283-2288.	3.2	63
575	Thiadiazolo[3,4-c]pyridine Acceptor Based Blue Sensitizers for High Efficiency Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 17090-17099.	1.5	24
576	Efficient Diketopyrrolopyrroleâ€Based Smallâ€Molecule Bulkâ€Heterojunction Solar Cells with Different Electronâ€Donating Endâ€Groups. Chemistry - an Asian Journal, 2014, 9, 2505-2513.	1.7	14
577	A Combined Experimental and Theoretical Study of Conformational Preferences of Molecular Semiconductors. Journal of Physical Chemistry C, 2014, 118, 15610-15623.	1.5	57
578	Understanding How Processing Additives Tune the Nanoscale Morphology of High Efficiency Organic Photovoltaic Blends: From Casting Solution to Spun ast Thin Film. Advanced Functional Materials, 2014, 24, 6647-6657.	7.8	39
579	Morphological Effects on the Small-Molecule-Based Solution-Processed Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2014, 6, 15767-15773.	4.0	15
580	A cracked polymer templated metal network as a transparent conducting electrode for ITO-free organic solar cells. Physical Chemistry Chemical Physics, 2014, 16, 15107-15110.	1.3	58
581	Theoretical study on molecular packing and electronic structure of bi-1,3,4-oxadiazole derivatives. RSC Advances, 2014, 4, 51942-51949.	1.7	7
582	Design and Computational Characterization of Non-Fullerene Acceptors for Use in Solution-Processable Solar Cells. Journal of Physical Chemistry A, 2014, 118, 7939-7951.	1.1	37

#	Article	IF	CITATIONS
583	Tailoring of the plasmonic and waveguide effect in bulk-heterojunction photovoltaic devices with ordered, nanopatterned structures. Organic Electronics, 2014, 15, 3120-3126.	1.4	3
584	Small molecules incorporating regioregular oligothiophenes and fluorinated benzothiadiazole groups for solution-processed organic solar cells. Journal of Materials Chemistry C, 2014, 2, 5842-5849.	2.7	19
585	Bulk Heterojunction Solar Cells: Morphology and Performance Relationships. Chemical Reviews, 2014, 114, 7006-7043.	23.0	1,115
586	Exciton diffusion in disordered small molecules for organic photovoltaics: insights from first-principles simulations. Journal of Physics Condensed Matter, 2014, 26, 185006.	0.7	8
587	New small molecules with thiazolothiazole and benzothiadiazole acceptors for solution-processed organic solar cells. New Journal of Chemistry, 2014, 38, 1559.	1.4	21
588	Organic materials for organic electronic devices. Journal of Industrial and Engineering Chemistry, 2014, 20, 1198-1208.	2.9	95
589	Near-infrared response thienoisoindigo-based small molecule for solution-processed bulk-heterojunction solar cells. Synthetic Metals, 2014, 187, 24-29.	2.1	20
590	Synthesis and photovoltaic characteristics of push–pull organic semiconductors containing an electron-rich dithienosilole bridge for solution-processed small-molecule organic solar cells. Solar Energy Materials and Solar Cells, 2014, 120, 209-217.	3.0	17
591	Synthesis of a Fully Conjugated Phthalocyanineâ€Diketopyrrolopyrroleâ€Phthalocyanine Triad as Low Band Gap Donor in Small Molecule Bulk Heterojunction Solar Cells. European Journal of Organic Chemistry, 2014, 2014, 4585-4591.	1.2	18
592	Transient Photocurrent Response of Smallâ€Molecule Bulk Heterojunction Solar Cells. Advanced Materials, 2014, 26, 2486-2493.	11.1	62
593	cis -substituted tetraethynylporphyrin derivatives for small molecule organic solar cells. Journal of Physical Organic Chemistry, 2014, 27, 87-93.	0.9	15
594	Nanomorphology Evolution of P3HT/PCBM Blends during Solution-Processing from Coarse-Grained Molecular Simulations. Journal of Physical Chemistry C, 2014, 118, 11224-11233.	1.5	59
595	Universal Formation of Compositionally Graded Bulk Heterojunction for Efficiency Enhancement in Organic Photovoltaics. Advanced Materials, 2014, 26, 3068-3075.	11.1	139
596	Symmetry and Coplanarity of Organic Molecules Affect their Packing and Photovoltaic Properties in Solution-Processed Solar Cells. ACS Applied Materials & Solution-Processed Solar Cells.	4.0	35
597	Au@Ag Core–Shell Nanocubes for Efficient Plasmonic Light Scattering Effect in Low Bandgap Organic Solar Cells. ACS Nano, 2014, 8, 3302-3312.	7.3	228
598	Nanoscopic Management of Molecular Packing and Orientation of Small Molecules by a Combination of Linear and Branched Alkyl Side Chains. ACS Nano, 2014, 8, 5988-6003.	7.3	52
599	Cyanobutaâ€1,3â€dienes as Novel Electron Acceptors for Photoactive Multicomponent Systems. Chemistry - A European Journal, 2014, 20, 202-216.	1.7	40
600	Aggregation of a Dibenzo[<i>b</i> , <i>def</i>]chrysene Based Organic Photovoltaic Material in Solution. Journal of Physical Chemistry B, 2014, 118, 6839-6849.	1.2	8

#	Article	IF	CITATIONS
601	Impact of Acceptor Crystallinity on the Photophysics of Nonfullerene Blends for Organic Solar Cells. Journal of Physical Chemistry C, 2014, 118, 13460-13466.	1.5	11
602	Theoretical investigation on the electronic and charge transport characteristics of push–pull molecules for organic photovoltaic cells. Synthetic Metals, 2014, 194, 118-125.	2.1	12
603	Theo Murphy International Scientific Meeting between the UK and China on the chemistry and physics of functional materials. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130374.	1.6	1
604	The Role of Heteroatoms Leading to Hydrogen Bonds in View of Extended Chemical Stability of Organic Semiconductors. Advanced Functional Materials, 2015, 25, 6679-6688.	7.8	24
605	Understanding the Impact of Hierarchical Nanostructure in Ternary Organic Solar Cells. Advanced Science, 2015, 2, 1500250.	5.6	43
606	Small Molecule Bulk-heterojunction Solar Cells Composed of Two Discrete Organic Semiconductors. Chemistry Letters, 2015, 44, 315-317.	0.7	2
607	Charge transfer from delocalized excited states in a bulk heterojunction material. Physical Review B, 2015, 91, .	1.1	16
608	An efficient descriptor model for designing materials for solar cells. Npj Computational Materials, 2015, 1, .	3.5	39
609	Tellurophenes and Their Emergence as Building Blocks for Polymeric and Light-emitting Materials. Chemistry Letters, 2015, 44, 730-736.	0.7	54
610	Organic Solar Cells: Historical developments and challenges. , 2015, , .		7
611	Peculiarity of Two Thermodynamically-Stable Morphologies and Their Impact on the Efficiency of Small Molecule Bulk Heterojunction Solar Cells. Scientific Reports, 2015, 5, 13407.	1.6	16
612	Enhancing the Thermal Stability of Solutionâ€Processed Smallâ€Molecule Semiconductor Thin Films Using a Flexible Linker Approach. Advanced Materials, 2015, 27, 5541-5546.	11.1	30
613	Significance of Average Domain Purity and Mixed Domains on the Photovoltaic Performance of Highâ∈Efficiency Solutionâ∈Processed Smallâ∈Molecule BHJ Solar Cells. Advanced Energy Materials, 2015, 5, 1500877.	10.2	133
614	Synergistic Impact of Solvent and Polymer Additives on the Film Formation of Small Molecule Blend Films for Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2015, 5, 1501121.	10.2	56
615	Measurement of the Charge Carrier Mobility Distribution in Bulk Heterojunction Solar Cells. Advanced Materials, 2015, 27, 4989-4996.	11.1	27
616	Heterogeneously Integrated Optoelectronic Devices Enabled by Microâ€Transfer Printing. Advanced Optical Materials, 2015, 3, 1313-1335.	3.6	127
617	Rational Design of Small Molecular Donor for Solutionâ€Processed Organic Photovoltaics with 8.1% Efficiency and High Fill Factor via Multiple Fluorine Substituents and Thiophene Bridge. Advanced Functional Materials, 2015, 25, 3514-3523.	7.8	114
618	Toward Additiveâ€Free Smallâ€Molecule Organic Solar Cells: Roles of the Donor Crystallization Pathway and Dynamics. Advanced Materials, 2015, 27, 7285-7292.	11.1	56

#	Article	IF	CITATIONS
619	Synthesis and Characterization of an Isoindigo–Naphthalene Polymer along with a Small Molecule of Naphthalene–Isoindigo–Naphthalene. Bulletin of the Korean Chemical Society, 2015, 36, 2974-2977.	1.0	2
620	Oligomeric Donor Material for Highâ€Efficiency Organic Solar Cells: Breaking Down a Polymer. Advanced Materials, 2015, 27, 4229-4233.	11.1	74
621	Highâ€Performance Organic Solar Cells Based on a Small Molecule with Alkylthioâ€Thienylâ€Conjugated Side Chains without Extra Treatments. Advanced Materials, 2015, 27, 7469-7475.	11.1	186
622	Effects of Alkyl Terminal Chains on Morphology, Charge Generation, Transport, and Recombination Mechanisms in Solutionâ€Processed Small Molecule Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2015, 5, 1500386.	10.2	112
623	Recent Progress in Flexible Electrochemical Capacitors: Electrode Materials, Device Configuration, and Functions. Advanced Energy Materials, 2015, 5, 1500959.	10.2	208
624	Aâ€Dâ€A Type Small Molecules Based on Boron Dipyrromethene for Solutionâ€Processed Organic Solar Cells. Chemistry - an Asian Journal, 2015, 10, 1513-1518.	1.7	45
625	Photophysical Study of Polymer-Based Solar Cells with an Organo-Boron Molecule in the Active Layer. Materials, 2015, 8, 4258-4272.	1.3	4
626	Rational Design of Diketopyrrolopyrrole-Based Small Moleculesas Donating Materials for Organic Solar Cells. International Journal of Molecular Sciences, 2015, 16, 20326-20343.	1.8	24
627	Structural Dependence of Electronic Properties in A-A-D-A-A-Type Organic Solar Cell Material. International Journal of Photoenergy, 2015, 2015, 1-7.	1.4	3
629	Understanding the Role of Additives in Improving the Performance of Bulk Heterojunction Organic Solar Cells. Microscopy and Microanalysis, 2015, 21, 2439-2440.	0.2	1
630	Solution-Processed Diketopyrrolopyrrole-Containing Small-Molecule Organic Solar Cells with 7.0% Efficiency: In-Depth Investigation on the Effects of Structure Modification and Solvent Vapor Annealing. Chemistry of Materials, 2015, 27, 4338-4348.	3.2	104
631	Real-time X-ray scattering studies of film evolution in high performing small-molecule–fullerene organic solar cells. Journal of Materials Chemistry A, 2015, 3, 8764-8771.	5.2	42
632	Efficiency enhancement in solution-processed organic small molecule: Fullerene solar cells via solvent vapor annealing. Applied Physics Letters, 2015, 106, .	1.5	48
633	A mono(carboxy)porphyrin-triazine-(bodipy) ₂ triad as a donor for bulk heterojunction organic solar cells. Journal of Materials Chemistry C, 2015, 3, 6209-6217.	2.7	29
634	Ultrafast charge transfer in solid-state films of pristine cyanine borate and blends with fullerene. Journal of Materials Chemistry A, 2015, 3, 10935-10941.	5.2	10
635	Light-Driven and Phonon-Assisted Dynamics in Organic and Semiconductor Nanostructures. Chemical Reviews, 2015, 115, 5929-5978.	23.0	160
636	Design, synthesis and photophysical properties of A-D-A-D-A small molecules for photovoltaic application. Dyes and Pigments, 2015, 121, 99-108.	2.0	10
637	Organic Semiconductor Photovoltaic Materials. Lecture Notes in Quantum Chemistry II, 2015, , 165-194.	0.3	0

#	Article	IF	CITATIONS
638	From Chiral Islands to Smectic Layers: A Computational Journey Across Sexithiophene Morphologies on C ₆₀ . Advanced Functional Materials, 2015, 25, 1985-1995.	7.8	32
639	Organic Optoelectronic Materials. Lecture Notes in Quantum Chemistry II, 2015, , .	0.3	33
640	Organometallic Versus Organic Molecules for Energy Conversion in Organic Light-Emitting Diodes and Solar Cells. Green Chemistry and Sustainable Technology, 2015, , 1-28.	0.4	0
641	A new unsymmetrical near-IR small molecule with squaraine chromophore for solution processed bulk heterojunction solar cells. Journal of Materials Chemistry C, 2015, 3, 7029-7037.	2.7	16
642	Deep Absorbing Porphyrin Small Molecule for High-Performance Organic Solar Cells with Very Low Energy Losses. Journal of the American Chemical Society, 2015, 137, 7282-7285.	6.6	436
643	Functional tuning of A–D–A oligothiophenes: the effect of solvent vapor annealing on blend morphology and solar cell performance. Journal of Materials Chemistry A, 2015, 3, 13738-13748.	5.2	32
644	Improved Carrier Dynamics and High Solar Cell Performance in Postadditive-Soaked PTB7:PC71BM Bulk Heterojunction Materials. Journal of Physical Chemistry C, 2015, 119, 12896-12903.	1.5	13
645	Efficient Small-Molecule-Based Inverted Organic Solar Cells With Conjugated Polyelectrolyte as a Cathode Interlayer. IEEE Journal of Photovoltaics, 2015, 5, 1118-1124.	1.5	5
646	A conjugated low band gap diketopyrrolopyrrole and dibenzosilole-based polymer for organic solar cell. Synthetic Metals, 2015, 210, 201-207.	2.1	4
647	Impact of the Crystallite Orientation Distribution on Exciton Transport in Donor–Acceptor Conjugated Polymers. ACS Applied Materials & Interfaces, 2015, 7, 28035-28041.	4.0	20
648	Structural and morphological tuning of dithienobenzodithiophene-core small molecules for efficient solution processed organic solar cells. Dyes and Pigments, 2015, 115, 23-34.	2.0	22
649	Phenoxazineâ€Based Small Molecule Material for Efficient Perovskite Solar Cells and Bulk Heterojunction Organic Solar Cells. Advanced Energy Materials, 2015, 5, 1401720.	10.2	109
650	Hybrids of Copolymers of Fluorene and C ₆₀ â€Carryingâ€Carbazole with Semiconducting Singleâ€Walled Carbon Nanotubes. Chemistry - A European Journal, 2015, 21, 3359-3366.	1.7	3
651	Star-shaped organic semiconductors with planar triazine core and diketopyrrolopyrrole branches for solution-processed small-molecule organic solar cells. Dyes and Pigments, 2015, 115, 35-49.	2.0	36
652	N,N-Diarylamino end-capping as a new strategy for simultaneously enhancing open-circuit voltage, short-circuit current density and fill factor in small molecule organic solar cells. RSC Advances, 2015, 5, 20724-20733.	1.7	17
653	Indoline as electron donor unit in "Push–Pull―organic small molecules for solution processed organic solar cells: Effect of the molecular π-bridge on device efficiency. Organic Electronics, 2015, 20, 15-23.	1.4	15
654	A small molecule with selenophene as the central block for high performance solution-processed organic solar cells. Organic Electronics, 2015, 19, 98-104.	1.4	13
655	Improving Solar Cell Efficiency through Hydrogen Bonding: A Method for Tuning Active Layer Morphology. Chemistry of Materials, 2015, 27, 1201-1209.	3.2	71

#	Article	IF	CITATIONS
656	Donor–acceptor–i€â€"acceptor based charge transfer chromophore as electron donors for solution processed small molecule organic bulk heterojunction solar cells. Organic Electronics, 2015, 19, 76-82.	1.4	27
657	Rational design of two-dimensional molecular donor–acceptor nanostructure arrays. Nanoscale, 2015, 7, 4306-4324.	2.8	26
658	Direct growth of graphene nanowalls on the crystalline silicon for solar cells. Applied Physics Letters, 2015, 106, .	1.5	41
660	Linear and propeller-like fluoro-isoindigo based donor–acceptor small molecules for organic solar cells. Organic Electronics, 2015, 20, 76-88.	1.4	16
661	Efficient Perovskite Hybrid Solar Cells Through a Homogeneous Highâ€Quality Organolead Iodide Layer. Small, 2015, 11, 3369-3376.	5.2	47
662	Exciton Structure and Dynamics in Solution Aggregates of a Low-Bandgap Copolymer. Journal of Physical Chemistry B, 2015, 119, 7666-7672.	1.2	17
663	Effect of electron-withdrawing units on triphenylamine-based small molecules for solution-processed organic solar cells. Science China Chemistry, 2015, 58, 331-338.	4.2	6
664	Organic Donor Materials Based on Bis(arylene ethynylene)s for Bulk Heterojunction Organic Solar Cells with High <i>V</i> _{oc} Values. Chemistry - an Asian Journal, 2015, 10, 1017-1024.	1.7	9
665	Bulk heterojunction perovskite hybrid solar cells with large fill factor. Energy and Environmental Science, 2015, 8, 1245-1255.	15.6	252
666	A–D–A small molecules for solution-processed organic photovoltaic cells. Chemical Communications, 2015, 51, 4936-4950.	2.2	188
667	Novel solution-processible small molecules based on benzo[1,2-b:3,4-b′:5,6-b′′]trithiophene for effective organic photovoltaics with high open-circuit voltage. RSC Advances, 2015, 5, 14540-14546.	1.7	11
668	4H-1,2,6-Thiadiazin-4-one-containing small molecule donors and additive effects on their performance in solution-processed organic solar cells. Journal of Materials Chemistry C, 2015, 3, 2358-2365.	2.7	29
669	Simple and Versatile Molecular Donors for Organic Photovoltaics Prepared by Metalâ€Free Synthesis. Chemistry - A European Journal, 2015, 21, 1598-1608.	1.7	25
670	Solution processed organic solar cells based on A–D—Dâ€2–D—A small molecule with benzo[1,2-b:4,5-b′]dithiophene donor (D′) unit, cyclopentadithiophene donor (D) and ethylrhodanine acceptor unit having 6% light to energy conversion efficiency. Journal of Materials Chemistry A, 2015, 3, 4892-4902.	5.2	23
671	Organic Photovoltaic Cells: From Performance Improvement to Manufacturing Processes. Small, 2015, 11, 2228-2246.	5.2	65
672	A design strategy for intramolecular singlet fission mediated by charge-transfer states inÂdonor–acceptor organic materials. Nature Materials, 2015, 14, 426-433.	13.3	298
673	Synthesis and photovoltaic properties of new small molecules with rhodanine derivative as the end-capped blocks. Organic Electronics, 2015, 17, 355-363.	1.4	16
674	Synthesis, characterization, and photovoltaic properties of a solution-processable two-dimensional-conjugated organic small molecule containing a triphenylamine core. Journal of Materials Science, 2015, 50, 57-65.	1.7	4

#	Article	IF	CITATIONS
675	Theoretical Description of Structural and Electronic Properties of Organic Photovoltaic Materials. Annual Review of Physical Chemistry, 2015, 66, 305-330.	4.8	82
676	Reflection and transmission calculations in a multilayer structure with coherent, incoherent, and partially coherent interference, using the transmission line method. Applied Optics, 2015, 54, 1492.	0.9	9
677	Effects of end-capped acceptors subject to subtle structural changes on solution-processable small molecules for organic solar cells. Physical Chemistry Chemical Physics, 2015, 17, 8894-8900.	1.3	21
678	Novel Small Molecular Materials Based on Phenoxazine Core Unit for Efficient Bulk Heterojunction Organic Solar Cells and Perovskite Solar Cells. Chemistry of Materials, 2015, 27, 1808-1814.	3.2	100
679	In-situ modification of PEDOT:PSS work function using alkyl alcohols as secondary processing solvents and their impact on merocyanine based bulk heterojunction solar cells. Organic Electronics, 2015, 21, 171-176.	1.4	28
680	Structure–Property Relationships: Asymmetric Alkylphenylâ€Substituted Anthracene Molecules for Use in Smallâ€Molecule Solar Cells. ChemSusChem, 2015, 8, 1548-1556.	3.6	5
681	Performance evaluation of PTB7 : PC ₇₁ BM based organic solar cells fabricated by spray coating method using chlorine free solvent. RSC Advances, 2015, 5, 56262-56269.	1.7	21
682	Annealing-free highly crystalline solution-processed molecular metal oxides for efficient single-junction and tandem polymer solar cells. Energy and Environmental Science, 2015, 8, 2448-2463.	15.6	68
683	Benzodithiophene-based low band-gap polymers with deep HOMO levels: synthesis, characterization, and photovoltaic performance. Polymer Journal, 2015, 47, 617-623.	1.3	6
684	Bulk intermixing-type perovskite CH ₃ NH ₃ Pbl ₃ /TiO ₂ nanorod hybrid solar cells. Nanoscale, 2015, 7, 14532-14537.	2.8	15
685	Tuning Electronic Structure, Redox, and Photophysical Properties in Asymmetric NIR-Absorbing Organometallic BODIPYs. Inorganic Chemistry, 2015, 54, 7915-7928.	1.9	62
686	Thienyl-BOPHY dyes as promising templates for bulk heterojunction solar cells. Chemical Communications, 2015, 51, 14742-14745.	2.2	42
687	Morphology construction of vertical phase separation for large-area polymer solar cells. Organic Electronics, 2015, 26, 48-54.	1.4	23
688	Solution-processed new porphyrin-based small molecules as electron donors for highly efficient organic photovoltaics. Chemical Communications, 2015, 51, 14439-14442.	2.2	66
689	Roll-to-roll compatible flexible polymer solar cells incorporating a water-based solution-processable silver back electrode with low annealing temperature. Solar Energy Materials and Solar Cells, 2015, 143, 227-235.	3.0	19
690	Electronic properties and molecular distribution of a small molecule donor:acceptor mixture employing a processing additive. Synthetic Metals, 2015, 209, 200-205.	2.1	3
691	Peripheral group effects on the photophysical and photovoltaic properties of bulk-heterojunction type solar cells based on star-shaped conjugate molecules with triphenylamine core. Materials Chemistry and Physics, 2015, 163, 138-151.	2.0	8
692	First Principle Analysis of Charge Dissociation and Charge Recombination Processes in Organic Solar Cells. Journal of Physical Chemistry C, 2015, 119, 18870-18876.	1.5	8

#	Article	IF	CITATIONS
693	A new V-shaped triphenylamine/diketopyrrolopyrrole containing donor material for small molecule organic solar cells. RSC Advances, 2015, 5, 68192-68199.	1.7	16
694	Diketopyrrolopyrrole (DPP) functionalized tetrathienothiophene (TTA) small molecules for organic thin film transistors and photovoltaic cells. Journal of Materials Chemistry C, 2015, 3, 8932-8941.	2.7	48
695	Correlating Structure and Function in Organic Electronics: From Single Molecule Transport to Singlet Fission. Chemistry of Materials, 2015, 27, 5453-5463.	3.2	50
696	High efficiency air stable organic photovoltaics with an aqueous inorganic contact. Nanoscale, 2015, 7, 14241-14247.	2.8	9
697	Balancing the H- and J-aggregation in DTS(PTTh ₂) ₂ /PC ₇₀ BM to yield a high photovoltaic efficiency. Journal of Materials Chemistry C, 2015, 3, 8183-8192.	2.7	45
698	Effect of different solvents on the performance of ternary polymer solar cells based on PTB7 : PC ₇₁ BM : F8BT. Journal Physics D: Applied Physics, 2015, 48, 295105.	1.3	12
699	p/n-Polarity of thiophene oligomers in photovoltaic cells: role of molecular vs. supramolecular properties. Physical Chemistry Chemical Physics, 2015, 17, 10630-10639.	1.3	16
700	Theoretical study on photophysical properties of multifunctional star-shaped molecules with 1,8-naphthalimide core for organic light-emitting diode and organic solar cell application. Theoretical Chemistry Accounts, 2015, 134, 1.	0.5	15
701	Quantitative Characterization and Mechanism of Formation of Multilength-scale Bulk Heterojunction Structures in Highly Efficient Solution-Processed Small-Molecule Organic Solar Cells. Journal of Physical Chemistry C, 2015, 119, 16507-16517.	1.5	8
702	Hexaazatriphenylene (HAT) derivatives: from synthesis to molecular design, self-organization and device applications. Chemical Society Reviews, 2015, 44, 6850-6885.	18.7	130
703	Enhanced performance of layer-evolved bulk-heterojunction solar cells with Ag nanoparticles by sequential deposition. Organic Electronics, 2015, 24, 325-329.	1.4	8
704	A facile method to synthesize [A′(D′AD) ₂]-based push–pull small molecules for organic photovoltaics. RSC Advances, 2015, 5, 66005-66012.	1.7	21
705	Efficient solution processed D1-A-D2-A-D1 small molecules bulk heterojunction solar cells based on alkoxy triphenylamine and benzo[1,2-b:4,5-b′]thiophene units. Organic Electronics, 2015, 26, 36-47.	1.4	17
706	Perovskites for photovoltaics: a combined review of organic–inorganic halide perovskites and ferroelectric oxide perovskites. Journal of Materials Chemistry A, 2015, 3, 18809-18828.	5.2	232
707	A Small Molecule Composed of Dithienopyran and Diketopyrrolopyrrole as Versatile Electron Donor Compatible with Both Fullerene and Nonfullerene Electron Acceptors for High Performance Organic Solar Cells. Chemistry of Materials, 2015, 27, 4865-4870.	3.2	70
708	Diluting concentrated solution: a general, simple and effective approach to enhance efficiency of polymer solar cells. Energy and Environmental Science, 2015, 8, 2357-2364.	15.6	80
709	Effective D-A-D type chromophore of fumaronitrile-core and terminal alkylated bithiophene for solution-processed small molecule organic solar cells. Scientific Reports, 2015, 5, 11143.	1.6	33
710	Device characterization and optimization of small molecule organic solar cells assisted by modelling simulation of the current–voltage characteristics. Physical Chemistry Chemical Physics, 2015, 17, 19261-19267.	1.3	2

#	Article	IF	CITATIONS
711	A–π–D–π–A based porphyrin for solution processed small molecule bulk heterojunction solar cells. Journal of Materials Chemistry A, 2015, 3, 16287-16301.	5.2	47
712	Visualized acid–base discoloration and optoelectronic investigations of azines and azomethines having double 4-[N,N-di(4-methoxyphenyl)amino]phenyl terminals. Journal of Materials Chemistry C, 2015, 3, 7748-7755.	2.7	14
713	Design and characteration of planar star-shaped oligomer electron donors for organic solar cells: a DFT study. Canadian Journal of Chemistry, 2015, 93, 1181-1190.	0.6	4
714	Complementary LED technologies. Nature Materials, 2015, 14, 459-462.	13.3	144
715	Rational design of diketopyrrolopyrrole-based oligomers for high performance small molecular photovoltaic materials via an extended framework and multiple fluorine substitution. Journal of Materials Chemistry A, 2015, 3, 11575-11586.	5.2	37
716	Development of small-molecule materials for high-performance organic solar cells. Science China Chemistry, 2015, 58, 922-936.	4.2	45
717	New D-A-D-A-D push–pull organic semiconductors with different benzo[1,2-b:4, 5-b′] dithiophene cores for solution processed bulk heterojunction solar cells. Dyes and Pigments, 2015, 120, 126-135.	2.0	23
718	Acceptorâ€Substituted <i>S</i> , <i>N</i> â€Heteropentacenes of Different Conjugation Length: Structure–Property Relationships and Solar Cell Performance. Advanced Functional Materials, 2015, 25, 3414-3424.	7.8	35
719	Using pyridal [2,1,3] thiadiazole as an acceptor unit in a low band-gap copolymer for photovoltaic applications. Organic Electronics, 2015, 23, 171-178.	1.4	5
720	Influence of gold-silica nanoparticles on the performance of small-molecule bulk heterojunction solar cells. Organic Electronics, 2015, 22, 20-28.	1.4	20
721	Coherent and Incoherent Contributions to Charge Separation in Multichromophore Systems. Journal of Physical Chemistry C, 2015, 119, 7590-7603.	1.5	18
722	New acceptor–π-porphyrin–π-acceptor systems for solution-processed small molecule organic solar cells. Dyes and Pigments, 2015, 121, 109-117.	2.0	32
723	Toward a comprehensive understanding of molecular doping organic semiconductors (review). Journal of Electron Spectroscopy and Related Phenomena, 2015, 204, 208-222.	0.8	112
724	Performance Enhancement of Polymer Solar Cells by Using Two Polymer Donors with Complementary Absorption Spectra. Macromolecular Rapid Communications, 2015, 36, 1348-1353.	2.0	12
725	Diketopyrrolopyrrole-based narrow band gap donors for efficient solution-processed organic solar cells. Chemical Physics Letters, 2015, 630, 37-43.	1.2	8
726	Modeling approach to derive the anisotropic complex refractive index of polymer:fullerene blends for organic solar cells utilizing spectroscopic ellipsometry. Journal of Photonics for Energy, 2015, 5, 057204.	0.8	9
727	Fullerene and Its Derivatives for Organic Solar Cells. Topics in Applied Physics, 2015, , 221-247.	0.4	2
728	Improvement of Charge Transfer Between Electrode and Semiconductor by Thin Metal Oxide Insertion. Topics in Applied Physics, 2015, , 67-99.	0.4	0

#	Article	IF	CITATIONS
729	Theoretical design and characterization of pyridalthiadiazole-based chromophores with fast charge transfer at donor/acceptor interface toward small molecule organic photovoltaics. RSC Advances, 2015, 5, 29401-29411.	1.7	46
730	High-performance inverted PThTPTI:PC71BM solar cells. Nano Energy, 2015, 15, 125-134.	8.2	63
731	Hot Charge-Transfer States Determine Exciton Dissociation in the DTDCTB/C ₆₀ Complex for Organic Solar Cells: A Theoretical Insight. Journal of Physical Chemistry C, 2015, 119, 11320-11326.	1.5	46
732	The effect of thermal annealing on the charge transfer dynamics of a donor–acceptor copolymer and fullerene: F8T2 and F8T2:PCBM. Physical Chemistry Chemical Physics, 2015, 17, 11244-11251.	1.3	12
733	Unsymmetrical Donor–Acceptor–Acceptorâ~π–Donor Type Benzothiadiazole-Based Small Molecule for a Solution Processed Bulk Heterojunction Organic Solar Cell. ACS Applied Materials & Diterfaces, 2015, 7, 10283-10292.	4.0	79
734	A narrow band gap isoindigo based molecular donor for solution processed organic solar cells. New Journal of Chemistry, 2015, 39, 5075-5079.	1.4	17
735	Synthesis and Charge-Transfer Dynamics in a Ferrocene-Containing Organoboryl aza-BODIPY Donor–Acceptor Triad with Boron as the Hub. Inorganic Chemistry, 2015, 54, 4167-4174.	1.9	63
736	Efficient bulk heterojunction solar cells based on solution processed small molecules based on the same benzo[1,2-b:4, 5-b′]thiophene unit as core donor and different terminal units. Nanoscale, 2015, 7, 7692-7703.	2.8	18
737	Donor–Acceptor Small Molecules for Organic Photovoltaics: Single-Atom Substitution (Se or S). ACS Applied Materials & Donor–Acceptor Small Molecules for Organic Photovoltaics: Single-Atom Substitution (Se or S). ACS Applied Materials & Donor–Acceptor Small Molecules for Organic Photovoltaics: Single-Atom Substitution (Se or S). ACS Applied Materials & Donor–Acceptor Small Molecules for Organic Photovoltaics: Single-Atom Substitution (Se or S). ACS Applied Materials & Donor–Acceptor Small Molecules for Organic Photovoltaics: Single-Atom Substitution (Se or S). ACS Applied Materials & Donor–Acceptor Small Molecules for Organic Photovoltaics: Single-Atom Substitution (Se or S). ACS Applied Materials & Donor–Acceptor Small Molecules for Organic Photovoltaics: Single-Atom Substitution (Se or S). ACS Applied Materials & Donorâ6** (Se or S) & Donorâ6** (Se or	4.0	38
738	Tailoring π-conjugated dithienosilole–benzothiadiazole oligomers for organic solar cells. New Journal of Chemistry, 2015, 39, 3658-3664.	1.4	7
739	Device Performance of Small-Molecule Azomethine-Based Bulk Heterojunction Solar Cells. Chemistry of Materials, 2015, 27, 2990-2997.	3.2	45
741	Role of crystallinity of non-fullerene acceptors in bulk heterojunctions. Journal of Materials Chemistry A, 2015, 3, 9989-9998.	5.2	18
742	Efficient ternary bulk heterojunction solar cells based on small molecules only. Journal of Materials Chemistry A, 2015, 3, 10512-10518.	5.2	45
743	Kinetic Analysis as a Tool to Distinguish Pathway Complexity in Molecular Assembly: An Unexpected Outcome of Structures in Competition. Journal of the American Chemical Society, 2015, 137, 12677-12688.	6.6	92
744	A high performance inverted organic solar cell with a low band gap small molecule (p-DTS(FBTTh ₂) ₂) using a fullerene derivative-doped zinc oxide nano-film modified with a fullerene-based self-assembled monolayer as the cathode. Journal of Materials Chemistry A, 2015, 3, 22599-22604.	5.2	23
745	Donor–acceptor–acceptor–donor small molecules for solution processed bulk heterojunction solar cells. Organic Electronics, 2015, 27, 72-83.	1.4	24
746	Marked Consequences of Systematic Oligothiophene Catenation in Thieno[3,4-c]pyrrole-4,6-dione and Bithiopheneimide Photovoltaic Copolymers. Journal of the American Chemical Society, 2015, 137, 12565-12579.	6.6	89
747	Poly(3-butylthiophene) Inducing Crystallization of Small Molecule Donor for Enhanced Photovoltaic Performance. Journal of Physical Chemistry C, 2015, 119, 23310-23318.	1.5	15

#	Article	IF	CITATIONS
748	Influence of thermal and solvent annealing on the morphology and photovoltaic performance of solution processed, D–A–D type small molecule-based bulk heterojunction solar cells. RSC Advances, 2015, 5, 93579-93590.	1.7	13
749	Spectral characteristics of a carotenoid–porphyrin–fullerene supramolecule, a promising material for organic photovoltaic devices. Applied Solar Energy (English Translation of Geliotekhnika), 2015, 51, 195-201.	0.2	2
750	Solution-Processable Organic Molecule for High-Performance Organic Solar Cells with Low Acceptor Content. ACS Applied Materials & Samp; Interfaces, 2015, 7, 24686-24693.	4.0	26
751	Modulating molecular aggregation by facile heteroatom substitution of diketopyrrolopyrrole based small molecules for efficient organic solar cells. Journal of Materials Chemistry A, 2015, 3, 24349-24357.	5 . 2	31
752	Extensive Penetration of Evaporated Electrode Metals into Fullerene Films: Intercalated Metal Nanostructures and Influence on Device Architecture. ACS Applied Materials & Samp; Interfaces, 2015, 7, 25247-25258.	4.0	40
753	The photoirradiation induced p–n junction in naphthylamine-based organic photovoltaic cells. Nanoscale, 2015, 7, 14612-14617.	2.8	8
754	The prediction of the morphology and PCE of small molecular organic solar cells. RSC Advances, 2015, 5, 70939-70948.	1.7	9
755	Small-molecule organic solar cells with multiple-layer donor. Japanese Journal of Applied Physics, 2015, 54, 094102.	0.8	6
756	Understanding the Halogenation Effects in Diketopyrrolopyrrole-Based Small Molecule Photovoltaics. ACS Applied Materials & Samp; Interfaces, 2015, 7, 19914-19922.	4.0	37
757	Flow-enhanced solution printing of all-polymer solar cells. Nature Communications, 2015, 6, 7955.	5.8	221
758	Tuning range-separated DFT functionals for accurate orbital energy modeling of conjugated molecules. Computational and Theoretical Chemistry, 2015, 1070, 14-20.	1.1	18
759	Extended Charge Carrier Lifetimes in Hierarchical Donor–Acceptor Supramolecular Polymer Films. Journal of Physical Chemistry C, 2015, 119, 19584-19589.	1.5	25
760	Solution-processed non-polymeric organic photodiodes. Proceedings of SPIE, 2015, , .	0.8	0
761	High-Efficiency Small Molecule-Based Bulk-Heterojunction Solar Cells Enhanced by Additive Annealing. ACS Applied Materials & Samp; Interfaces, 2015, 7, 21495-21502.	4.0	35
762	A detailed study on the thermal, photo-physical and electrochemical properties and OFET applications of Dâ€"Í€â€"Aâ€"Í€â€"D structured unsymmetrical diketopyrrolopyrrole materials. RSC Advances, 2015, 5, 94859-94865.	1.7	17
763	Controllable molecular aggregation and fluorescence properties of 1,3,4-oxadiazole derivatives. Journal of Materials Chemistry C, 2015, 3, 11681-11688.	2.7	21
764	The role of photonics in energy. Journal of Photonics for Energy, 2015, 5, 050997.	0.8	18
765	Low-Bandgap Near-IR Conjugated Polymers/Molecules for Organic Electronics. Chemical Reviews, 2015, 115, 12633-12665.	23.0	1,029

#	Article	IF	CITATIONS
766	Solvent Annealing Control of Bulk Heterojunction Organic Solar Cells with 6.6% Efficiency Based on a Benzodithiophene Donor Core and Dicyano Acceptor Units. Journal of Physical Chemistry C, 2015, 119, 20871-20879.	1.5	35
767	Improving the performance of organic solar cells using an electron transport layer of B4PyMPM self-assembled nanostructures. Electronic Materials Letters, 2015, 11, 795-800.	1.0	6
768	Solution-processed small molecules based on benzodithiophene and difluorobenzothiadiazole for inverted organic solar cells. Polymer Chemistry, 2015, 6, 7726-7736.	1.9	15
769	Beyond Fullerenes: Designing Alternative Molecular Electron Acceptors for Solution-Processable Bulk Heterojunction Organic Photovoltaics. Journal of Physical Chemistry Letters, 2015, 6, 3770-3780.	2.1	132
770	Star-shaped isoindigo-based small molecules as potential non-fullerene acceptors in bulk heterojunction solar cells. New Journal of Chemistry, 2015, 39, 8771-8779.	1.4	25
771	The effect of molecular geometry on the polymer/fullerene ratio in polymer solar cells. Polymer Chemistry, 2015, 6, 7550-7557.	1.9	5
772	Small molecular thienoquinoidal dyes as electron donors for solution processable organic photovoltaic cells. RSC Advances, 2015, 5, 76666-76669.	1.7	3
773	Dipyrrin-based complexes for solution-processed organic solar cells. Chemical Research in Chinese Universities, 2015, 31, 801-808.	1.3	7
774	One-Step Synthesis of Precursor Oligomers for Organic Photovoltaics: A Comparative Study between Polymers and Small Molecules. ACS Applied Materials & Samp; Interfaces, 2015, 7, 27106-27114.	4.0	25
775	Correlating geometry of multidimensional carbon allotropes molecules and stability. Organic Electronics, 2015, 26, 395-399.	1.4	11
776	Effect of Fluorine Substitution on Photovoltaic Properties of Alkoxyphenyl Substituted Benzo[1,2-b:4,5-b′]dithiophene-Based Small Molecules. ACS Applied Materials & amp; Interfaces, 2015, 7, 25237-25246.	4.0	36
777	Ultrafast Charge Generation Pathways in Photovoltaic Blends Based on Novel Starâ€Shaped Conjugated Molecules. Advanced Energy Materials, 2015, 5, 1401657.	10.2	35
778	Furan-bridged thiazolo [5,4-d]thiazole based D–π–A–π–D type linear chromophore for solution-processed bulk-heterojunction organic solar cells. RSC Advances, 2015, 5, 6286-6293.	1.7	22
779	An efficient photovoltaic device based on novel D–A–D solution-processable small molecules. Journal of Materials Science, 2015, 50, 937-947.	1.7	11
780	Synergistic Effect of Polymer and Small Molecules for Highâ€Performance Ternary Organic Solar Cells. Advanced Materials, 2015, 27, 1071-1076.	11.1	192
781	Light Manipulation for Organic Optoelectronics Using Bio-inspired Moth's Eye Nanostructures. Scientific Reports, 2014, 4, 4040.	1.6	119
782	A theoretical study on photophysical properties of triphenylamine-cored molecules with naphthalimide arms and different π-conjugated bridges as organic solar cell materials. Physical Chemistry Chemical Physics, 2015, 17, 2094-2103.	1.3	45
783	The Next Breakthrough for Organic Photovoltaics?. Journal of Physical Chemistry Letters, 2015, 6, 77-84.	2.1	126

#	Article	IF	CITATIONS
784	Solutionâ€Processable Donorâ€Acceptorâ€Donor Oligomers with Crossâ€Linkable Functionality. Macromolecular Chemistry and Physics, 2015, 216, 519-529.	1.1	3
785	Simplified Tandem Polymer Solar Cells with an Ideal Selfâ€Organized Recombination Layer. Advanced Materials, 2015, 27, 1408-1413.	11.1	111
786	Solution-Processed pH-Neutral Conjugated Polyelectrolyte Improves Interfacial Contact in Organic Solar Cells. ACS Nano, 2015, 9, 371-377.	7.3	73
787	Synthesis, optical and electrochemical properties new donor–acceptor (D–A) copolymers based on benzo[1,2-b:3,4-b′:6,5-b″] trithiophene donor and different acceptor units: Application as donor for photovoltaic devices. Organic Electronics, 2015, 17, 167-177.	1.4	9
788	Improving photovoltaic properties of linear small molecules with TPA–DPP segment by tuning their frameworks. Synthetic Metals, 2015, 199, 400-407.	2.1	10
789	Importance of Domain Purity and Molecular Packing in Efficient Solutionâ€Processed Smallâ€Molecule Solar Cells. Advanced Materials, 2015, 27, 1105-1111.	11.1	160
790	Photovoltaic effect in single-junction organic solar cell fabricated using vanadyl phthalocyanine soluble derivative. Pigment and Resin Technology, 2015, 44, 26-32.	0.5	13
791	Interface modification of organic photovoltaics by combining molybdenum oxide (MoOx) and molecular template layer. Thin Solid Films, 2015, 574, 146-151.	0.8	13
792	Efficient solution-processed green and white phosphorescence organic light-emitting diodes based on bipolar host materials. Organic Electronics, 2015, 17, 1-8.	1.4	30
793	Doped-carbazolocarbazoles as hole transporting materials in small molecule solar cells with different architectures. Organic Electronics, 2015, 17, 28-32.	1.4	6
794	A push–pull organic semiconductor with efficient intramolecular charge transfer for solution-processed small molecule solar cells. RSC Advances, 2015, 5, 3435-3442.	1.7	14
795	Photoinduced Electron Transfer in 2,5,8,11-Tetrakis-Donor-Substituted Perylene-3,4:9,10-bis(dicarboximides). Journal of Physical Chemistry B, 2015, 119, 7635-7643.	1.2	25
796	A molecular breakwater-like tetrapod for organic solar cells. Journal of Materials Chemistry A, 2015, 3, 2108-2119.	5.2	6
797	Theoretical studies on the effect of a bithiophene bridge with different substituent groups ($R = H_0$) Tj ETQq1 1 0.2 applications. Physical Chemistry Chemical Physics, 2015, 17, 2043-2053.	784314 rg 1.3	gBT /Overlock 29
798	An Electronâ€Deficient Small Molecule Accessible from Sustainable Synthesis and Building Blocks for Use as a Fullerene Alternative in Organic Photovoltaics. ChemPhysChem, 2015, 16, 1190-1202.	1.0	43
799	Small-molecule solar cells with efficiency over 9%. Nature Photonics, 2015, 9, 35-41.	15.6	769
800	Thiophene-based push–pull chromophores for small molecule organic solar cells (SMOSCs). RSC Advances, 2015, 5, 354-397.	1.7	112
801	Synthesis of triphenylamine-based molecules with cyan terminals and their application for organic solar cells. Synthetic Metals, 2015, 199, 14-20.	2.1	5

#	Article	IF	CITATIONS
802	Lateral Organic Solar Cells with Selfâ€Assembled Semiconductor Nanowires. Advanced Energy Materials, 2015, 5, 1401317.	10.2	28
803	Novel dipolar 5,5,10,10-tetraphenyl-5,10-dihydroindeno[2,1-a]-indene derivatives for SM-OPV: A combined theoretical and experimental study. Organic Electronics, 2015, 16, 54-70.	1.4	9
804	High performance ethanol/air biofuel cells with both the visible-light driven anode and cathode. Nano Energy, 2015, 11, 48-55.	8.2	28
805	A bridged low band gap A–D–A quaterthiophene as efficient donor for organic solar cells. Journal of Materials Chemistry C, 2015, 3, 390-398.	2.7	13
806	Long-lived charge carrier generation in ordered films of a covalent perylenediimide–diketopyrrolopyrrole–perylenediimide molecule. Chemical Science, 2015, 6, 402-411.	3.7	64
807	Enhanced Fill Factor of Tandem Organic Solar Cells Incorporating a Diketopyrrolopyrroleâ€Based Lowâ€Bandgap Polymer and Optimized Interlayer. ChemSusChem, 2015, 8, 331-336.	3.6	8
808	Synthesis, optical and electrochemical properties of the A–݀-D–݀-A porphyrin and its application as an electron donor in efficient solution processed bulk heterojunction solar cells. Nanoscale, 2015, 7, 179-189.	2.8	48
809	The future of organic photovoltaics. Chemical Society Reviews, 2015, 44, 78-90.	18.7	655
810	One step synthesis of D-A-D chromophores as active materials for organic solar cells by basic condensation. Dyes and Pigments, 2015, 113, 402-408.	2.0	18
811	All Solutionâ€Processed Chalcogenide Solar Cells – from Single Functional Layers Towards a 13.8% Efficient CIGS Device. Advanced Functional Materials, 2015, 25, 12-27.	7.8	84
812	Design and synthesis of star-burst triphenyamine-based π-conjugated molecules. Dyes and Pigments, 2015, 113, 1-7.	2.0	35
813	Highâ€Performance Solutionâ€Processed Smallâ€Molecule Solar Cells Based on a Dithienogermoleâ€Containing Molecular Donor. Advanced Energy Materials, 2015, 5, 1400987.	10.2	45
814	Comparative study on triphenylamine-based bi-armed and four-armed small molecule donors for solution processed organic solar cells. Dyes and Pigments, 2015, 113, 451-457.	2.0	9
815	Star-shaped and linear π-conjugated oligomers consisting of a tetrathienoanthracene core and multiple diketopyrrolopyrrole arms for organic solar cells. Beilstein Journal of Organic Chemistry, 2016, 12, 1459-1466.	1.3	6
816	Effects of solvent additive on "s-shaped―curves in solution-processed small molecule solar cells. Beilstein Journal of Organic Chemistry, 2016, 12, 2543-2555.	1.3	10
818	Morphology-Controlled High-Efficiency Small Molecule Organic Solar Cells without Additive Solvent Treatment. Nanomaterials, 2016, 6, 64.	1.9	10
819	The Influence of Fluorination on Nano-Scale Phase Separation and Photovoltaic Performance of Small Molecular/PC71BM Blends. Nanomaterials, 2016, 6, 80.	1.9	4
820	Role of acceptor strength on OFET properties of small molecular organic semiconducting materials with D-A-D architecture. Synthetic Metals, 2016, 220, 236-246.	2.1	20

#	Article	IF	CITATIONS
821	Benzodipyrroleâ€based Donor–Acceptorâ€type Boron Complexes as Tunable Nearâ€infraredâ€Absorbing Materials. Chemistry - an Asian Journal, 2016, 11, 2016-2020.	1.7	21
822	The Importance of End Groups for Solutionâ∈Processed Smallâ∈Molecule Bulkâ∈Heterojunction Photovoltaic Cells. ChemSusChem, 2016, 9, 973-980.	3.6	8
823	An arylene-vinylene based donor-acceptor-donor small molecule for the donor compound in high-voltage organic solar cells. Solar Energy Materials and Solar Cells, 2016, 155, 348-355.	3.0	14
824	Broad Bandgap D–A Copolymer Based on Bithiazole Acceptor Unit for Application in Highâ€Performance Polymer Solar Cells with Lower Fullerene Content. Macromolecular Rapid Communications, 2016, 37, 1066-1073.	2.0	10
825	Capacitance Spectroscopy for Quantifying Recombination Losses in Nonfullerene Smallâ€Molecule Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2016, 6, 1502250.	10.2	95
826	Bulkâ€Heterojunction Organic Solar Cells: Five Core Technologies for Their Commercialization. Advanced Materials, 2016, 28, 7821-7861.	11.1	404
827	A "Si‣ocked―Phosphine Oxide Host with Suppressed Structural Relaxation for Highly Efficient Deepâ€Blue TADF Diodes. Advanced Optical Materials, 2016, 4, 522-528.	3.6	38
828	Molecular Lock: A Versatile Key to Enhance Efficiency and Stability of Organic Solar Cells. Advanced Materials, 2016, 28, 5822-5829.	11.1	134
829	Understanding Solvent Manipulation of Morphology in Bulkâ€Heterojunction Organic Solar Cells. Chemistry - an Asian Journal, 2016, 11, 2620-2632.	1.7	24
830	Difluorobenzothiadiazoleâ€Based Smallâ€Molecule Organic Solar Cells with 8.7% Efficiency by Tuning of Ï€â€Conjugated Spacers and Solvent Vapor Annealing. Advanced Functional Materials, 2016, 26, 1803-1812.	7.8	100
831	Multiâ€Lengthâ€Scale Morphologies Driven by Mixed Additives in Porphyrinâ€Based Organic Photovoltaics. Advanced Materials, 2016, 28, 4727-4733.	11.1	251
832	Stepwise Structural Evolution of a DTS-F ₂ BT Oligomer and Influence of Structural Disorder on Organic Field Effect Transistors and Organic Photovoltaic Performance. Chemistry of Materials, 2016, 28, 8980-8987.	3.2	11
833	Molecular architecturing of a small two dimensional A-D-A molecule for photovoltaic application. MRS Advances, 2016, 1, 2917-2922.	0.5	1
834	Electronic excitations in solution-processed oligothiophene small-molecules for organic solar cells. Journal of Chemical Physics, 2016, 144, 084310.	1.2	9
835	Organic photodiode for detection of herbicides in water using microalgal photosynthesis., 2016,,.		0
836	Shapeable magnetoelectronics. Applied Physics Reviews, 2016, 3, 011101.	5.5	141
837	Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells. Nature Communications, 2016, 7, 13740.	5.8	549
838	The synthesis and properties of the europium(III) complexes using trifluorene-phenanthroline derivative as ligand. Thin Solid Films, 2016, 619, 1-9.	0.8	5

#	Article	IF	Citations
839	The effect of intermolecular interaction on excited states in p \hat{a} DTS(FBTTH2)2. Journal of Chemical Physics, 2016, 144, 074904.	1.2	14
840	Recent advancements and overview of organic solar cell. , 2016, , .		6
841	Relationship between photostability and nanostructures in DTS(FBTTh2)2:fullerene bulk-heterojunction films. Solar Energy Materials and Solar Cells, 2016, 151, 96-101.	3.0	7
842	Optical absorption and electrical properties of enhanced efficiency in organic solar cells as interfacial layer with Au NPs. Synthetic Metals, 2016, 217, 117-122.	2.1	17
843	Series of Multifluorine Substituted Oligomers for Organic Solar Cells with Efficiency over 9% and Fill Factor of 0.77 by Combination Thermal and Solvent Vapor Annealing. Journal of the American Chemical Society, 2016, 138, 7687-7697.	6.6	209
844	Understanding the morphology of solution processed fullerene-free small molecule bulk heterojunction blends. Physical Chemistry Chemical Physics, 2016, 18, 12476-12485.	1.3	29
845	A novel highly efficient nanostructured organosilicon luminophore with unusually fast photoluminescence. Journal of Materials Chemistry C, 2016, 4, 4699-4708.	2.7	25
846	Wide bandgap dithienobenzodithiophene-based π-conjugated polymers consisting of fluorinated benzotriazole and benzothiadiazole for polymer solar cells. Journal of Materials Chemistry C, 2016, 4, 4719-4727.	2.7	34
847	Synthesis and properties of a novel narrow band gap oligomeric diketopyrrolopyrrole-based organic semiconductor. Dyes and Pigments, 2016, 131, 160-167.	2.0	8
848	Effects of alkyl side chain and electron-withdrawing group on benzo[1,2,5]thiadiazole–thiophene-based small molecules in organic photovoltaic cells. Journal of Materials Science, 2016, 51, 6770-6780.	1.7	8
849	D–A–D-type narrow-bandgap small-molecule photovoltaic donors: pre-synthesis virtual screening using density functional theory. Physical Chemistry Chemical Physics, 2016, 18, 15054-15059.	1.3	15
850	Revealing the influence of the solvent evaporation rate and thermal annealing on the molecular packing and charge transport of DPP(TBFu) ₂ . Journal of Materials Chemistry C, 2016, 4, 4654-4661.	2.7	31
851	Facile synthesis of a hole transporting material with a silafluorene core for efficient mesoscopic CH ₃ NH ₃ Pbl ₃ perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 8750-8754.	5.2	36
852	Small molecules based on tetrazine unit for efficient performance solution-processed organic solar cells. Solar Energy Materials and Solar Cells, 2016, 155, 30-37.	3.0	18
853	Characterising the morphology and efficiency of polymer solar cell by experiments and simulations. Molecular Simulation, 2016, 42, 836-845.	0.9	9
854	Development of low band gap molecular donors with phthalimide terminal groups for use in solution processed organic solar cells. Dyes and Pigments, 2016, 132, 369-377.	2.0	11
855	Luminescent cathode buffer layer for enhanced power conversion efficiency and stability of bulk-heterojunction solar cells. Organic Electronics, 2016, 38, 193-199.	1.4	7
856	Efficient spirobifluorene-core electron-donor material for application in solution-processed organic solar cells. Chemical Physics Letters, 2016, 663, 137-144.	1.2	8

#	Article	IF	CITATIONS
857	Diketopyrrolopyrrole-based conjugated small molecules bearing two different acceptor moieties for organic solar cells. Synthetic Metals, 2016, 221, 39-47.	2.1	5
858	Synergistic effects of solvent and polymer additives on solar cell performance and stability of small molecule bulk heterojunction solar cells. Journal of Materials Chemistry A, 2016, 4, 18383-18391.	5.2	17
859	Narrow bandgap conjugated polymers based on a high-mobility polymer template for visibly transparent photovoltaic devices. Journal of Materials Chemistry A, 2016, 4, 17333-17343.	5.2	17
860	Propeller-shaped small molecule acceptors containing a 9,9′-spirobifluorene core with imide-linked perylene diimides for non-fullerene organic solar cells. Journal of Materials Chemistry C, 2016, 4, 10610-10615.	2.7	30
861	Broadbandâ€Solubility Diketopyrrolopyrrole Derivative with Both Polar Cyano and Nonpolar Alkyl Groups for Stable Organic Photosensors and Diffusionâ€Processed Organic Solar Cells. ChemistrySelect, 2016, 1, 1716-1722.	0.7	1
862	Symmetrical and unsymmetrical triphenylamine based diketopyrrolopyrroles and their use as donors for solution processed bulk heterojunction organic solar cells. RSC Advances, 2016, 6, 99685-99694.	1.7	17
863	Virtual Screening for High Carrier Mobility in Organic Semiconductors. Journal of Physical Chemistry Letters, 2016, 7, 3973-3977.	2.1	78
864	The effect of meta-substituted or para-substituted phenyl as side chains on the performance of polymer solar cells. Synthetic Metals, 2016, 220, 402-409.	2.1	3
865	Synthesis and Characterization of Squaraineâ€Based Photocrosslinkable Resists for Bulk Heterojunction Solar Cells. European Journal of Organic Chemistry, 2016, 2016, 4032-4040.	1.2	6
866	An Antimony Selenide Molecular Ink for Flexible Broadband Photodetectors. Advanced Electronic Materials, 2016, 2, 1600182.	2.6	31
867	All-thiophene-substituted N-heteroacene electron-donor materials for efficient organic solar cells. Journal of Materials Chemistry A, 2016, 4, 13519-13524.	5.2	7
868	Controlled growth of ZnPc nanostructures via heat assisted solvent vapour treatment method and application in photovoltaic devices. Journal of Materials Science: Materials in Electronics, 2016, 27, 10701-10706.	1.1	1
869	Efficient Solution Processable Polymer Solar Cells Using Newly Designed and Synthesized Fullerene Derivatives. Journal of Physical Chemistry C, 2016, 120, 19493-19503.	1.5	17
870	Trap-limited bimolecular recombination in poly(3-hexylthiophene): Fullerene blend films. Organic Electronics, 2016, 38, 8-14.	1.4	10
871	Effect of alkyl chain topology on the structure, optoelectronic properties and solar cell performance of thienopyrroledione-cored oligothiophene chromophores. RSC Advances, 2016, 6, 77655-77665.	1.7	6
872	A Molecular Tetrapod for Organic Photovoltaics. ACS Applied Materials & Samp; Interfaces, 2016, 8, 22392-22401.	4.0	2
873	Benzo[$\langle i \rangle d \langle i \rangle$][1,2,3]thiadiazole (isoBT): Synthesis, Structural Analysis, and Implementation in Semiconducting Polymers. Chemistry of Materials, 2016, 28, 6390-6400.	3.2	40
874	Synthesis of Thieno[3,4- <i>b</i>]thiophene-Based Donor Molecules with Phenyl Ester Pendants for Organic Solar Cells: Control of Photovoltaic Properties via Single Substituent Replacement. ChemistrySelect, 2016, 1, 703-709.	0.7	9

#	Article	IF	CITATIONS
875	Architecture of Conjugated Donor–Acceptor (D–A)â€Type Polymer Films with Crossâ€Linked Structures. Advanced Functional Materials, 2016, 26, 1646-1655.	7.8	24
876	Donor and Acceptor Unit Sequences Influence Material Performance in Benzo[1,2â€∢i>b⟨/i>:4,5â€∢i>b⟨/i>′]dithiophene–6,7â€Difluoroquinoxaline Small Molecule Donors for BHJ Solar Cells. Advanced Functional Materials, 2016, 26, 7103-7114.	7.8	26
877	Solution-processed small molecules with ethynylene bridges for highly efficient organic solar cells. Journal of Materials Chemistry A, 2016, 4, 14720-14728.	5.2	14
878	Soft-Nanocomposites of Nanoparticles and Nanocarbons with Supramolecular and Polymer Gels and Their Applications. Chemical Reviews, 2016, 116, 11967-12028.	23.0	259
879	Light Manipulation in Organic Photovoltaics. Advanced Science, 2016, 3, 1600123.	5.6	61
880	Correlation of the π-conjugation chain length and the property and photovoltaic performance of benzo[1,2-b:4,5-b′]dithiophene-cored A-π-D-π-A type molecules. Solar Energy Materials and Solar Cells, 2016, 157, 831-843.	3.0	7
881	Switching Hole and Electron Transports of Molecules on Metal Oxides by Energy Level Alignment Tuning. ACS Applied Materials & Samp; Interfaces, 2016, 8, 22410-22417.	4.0	5
882	Measurement of optical properties in organic photovoltaic materials using monochromated electron energy-loss spectroscopy. Journal of Materials Chemistry A, 2016, 4, 13636-13645.	5.2	15
883	A fused thieno [3,2-b] thiophene-dithiophene based donor molecule for organic photovoltaics: a structural comparative study with indacenodithiophene. Journal of Materials Chemistry C, 2016, 4, 9656-9663.	2.7	5
884	Induced Infiltration of Hole-Transporting Polymer into Photocatalyst for Staunch Polymer–Metal Oxide Hybrid Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 25915-25922.	4.0	8
885	Ternary D1–D2–A–D2 Structured Conjugated Polymer: Efficient "Green―Solvent-Processed Polymer/Neat-C ₇₀ Solar Cells. Chemistry of Materials, 2016, 28, 7479-7486.	3.2	43
886	Following the TRMC Trail: Optimization of Photovoltaic Efficiency and Structure–Property Correlation of Thiophene Oligomers. ACS Applied Materials & Samp; Interfaces, 2016, 8, 25396-25404.	4.0	8
888	Dehydration of molybdenum oxide hole extraction layers via microwave annealing for the improvement of efficiency and lifetime in organic solar cells. Journal of Materials Chemistry C, 2016, 4, 7683-7694.	2.7	13
889	Packing Principles for Donor–Acceptor Oligomers from Analysis of Single Crystals. Chemistry of Materials, 2016, 28, 5175-5190.	3.2	37
890	Unraveling the Fundamental Mechanisms of Solvent-Additive-Induced Optimization of Power Conversion Efficiencies in Organic Photovoltaic Devices. ACS Applied Materials & Interfaces, 2016, 8, 20220-20229.	4.0	8
891	Phenylquinoline Derivatives as Efficient Interfacial Layer Materials for Highâ€Performance Organic Electronic Devices. Advanced Electronic Materials, 2016, 2, 1600086.	2.6	13
892	Annulated Thienyl-Vinylene-Thienyl Building Blocks for π-Conjugated Copolymers: Ring Dimensions and Isomeric Structure Effects on π-Conjugation Length and Charge Transport. Chemistry of Materials, 2016, 28, 5772-5783.	3.2	17
893	New Terthiophene-Conjugated Porphyrin Donors for Highly Efficient Organic Solar Cells. ACS Applied Materials & Solar Cells	4.0	61

#	Article	lF	CITATIONS
894	Theoretical Investigation on Porphyrin-Based Small Molecules as Donor Materials for Photovoltaic Applications. Journal of Physical Chemistry C, 2016, 120, 27148-27158.	1.5	15
895	Diketopyrrolopyrrole based highly crystalline conjugated molecules for application in small molecule donor-polymer acceptor nonfullerene organic solar cells. Organic Electronics, 2016, 39, 279-287.	1.4	16
896	Side-chain Engineering of Benzo[1,2-b:4,5-b']dithiophene Core-structured Small Molecules for High-Performance Organic Solar Cells. Scientific Reports, 2016, 6, 25355.	1.6	18
897	Chapter 6 Graphene: A New Star Nanomaterial in Energy and Environment Applications. , 2016, , 273-306.		0
898	Donor polymer design enables efficient non-fullerene organic solar cells. Nature Communications, 2016, 7, 13094.	5.8	328
899	DFT and TD-DFT calculation of new thienopyrazine-based small molecules for organic solar cells. Chemistry Central Journal, 2016, 10, 67.	2.6	97
900	Manipulating the photovoltaic properties of small-molecule donor materials by tailoring end-capped alkylthio substitution. RSC Advances, 2016, 6, 108908-108916.	1.7	7
901	New insight of molecular interaction, crystallization and phase separation in higher performance small molecular solar cells via solvent vapor annealing. Nano Energy, 2016, 30, 639-648.	8.2	77
902	An oligothiophene chromophore with a macrocyclic side chain: synthesis, morphology, charge transport, and photovoltaic performance. RSC Advances, 2016, 6, 102043-102056.	1.7	3
903	Acceptor–Donor–Acceptor type ionic molecule materials for efficient perovskite solar cells and organic solar cells. Nano Energy, 2016, 30, 387-397.	8.2	79
904	Photo-Carrier Multi-Dynamical Imaging at the Nanometer Scale in Organic and Inorganic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2016, 8, 31460-31468.	4.0	24
905	Influence of structural factors on the photovoltaic properties of dye-sensitized solar cells. Russian Chemical Reviews, 2016, 85, 1146-1183.	2.5	52
906	Theoretical and experimental study of donor-bridge-acceptor system: model 2-[5-(9H-fluoren-9-ylidenemethyl)thiophen-2-yl]-1,3,4-oxadiazole derivatives. Monatshefte FÃ 1 4r Chemie, 2016, 147, 2103-2112.	0.9	2
907	Evaluation of anisotropic charge carrier mobility of perylene single crystals by time-of-flight method. Japanese Journal of Applied Physics, 2016, 55, 030304.	0.8	4
908	Analysis of Particle Size Distributions of Quantum Dots: From Theory to Application. KONA Powder and Particle Journal, 2016, 33, 48-62.	0.9	19
909	Impact of the intermixed phase and the channel network on the carrier mobility of nanostructured solar cells. Journal of Chemical Physics, 2016, 144, 084119.	1.2	2
910	Plasmonic Nanorattles as Nextâ€Generation Catalysts for Surface Plasmon Resonanceâ€Mediated Oxidations Promoted by Activated Oxygen. Angewandte Chemie - International Edition, 2016, 55, 7111-7115.	7.2	101
911	A Versatile Selfâ€Organization Printing Method for Simplified Tandem Organic Photovoltaics. Advanced Functional Materials, 2016, 26, 3563-3569.	7.8	24

#	Article	IF	CITATIONS
912	Highâ€Performance Small Molecule via Tailoring Intermolecular Interactions and its Application in Largeâ€Area Organic Photovoltaic Modules. Advanced Energy Materials, 2016, 6, 1600228.	10.2	69
913	Theoretical Investigation of Donor–Acceptor Copolymers Based on C-, Si-, and Ge-Bridged Thieno[3,2-b]dithiophene for Organic Solar Cell Applications. Journal of Electronic Materials, 2016, 45, 5427-5435.	1.0	O
914	Discotic Liquid Crystals for Self-organizing Photovoltaics. Nanoscience and Technology, 2016, , 215-252.	1.5	8
915	Theoretical Design of Benzoselenadiazole Based Organic Donor Molecules for Solar Cell Applications. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2016, 86, 297-312.	0.8	1
916	Dithienogermole-based solution-processed molecular solar cells with efficiency over 9%. Chemical Communications, 2016, 52, 8596-8599.	2.2	49
917	Dialkoxyphenyldithiophene-based small molecules with enhanced absorption for solution processed organic solar cells. RSC Advances, 2016, 6, 60595-60601.	1.7	9
918	The influence of alkyl side chains on molecular packing and solar cell performance of dithienopyrrole-based oligothiophenes. Journal of Materials Chemistry A, 2016, 4, 10514-10523.	5.2	21
919	Solvent Annealing Effects in Dithieno[3,2- <i>b</i>);2′,3′- <i>d</i>)]pyrrole–5,6-Difluorobenzo[<i>c</i>)][1,2,5]thiadiazole Small Molecule Donors for Bulk-Heterojunction Solar Cells. Chemistry of Materials, 2016, 28, 5415-5425.	23.2	28
920	Low Open-Circuit Voltage Loss in Solution-Processed Small-Molecule Organic Solar Cells. ACS Energy Letters, 2016, 1, 302-308.	8.8	59
921	The impact of regiochemistry of conjugated molecules on the performance of organic electronic devices. Chinese Chemical Letters, 2016, 27, 1357-1366.	4.8	13
922	Synthesis and characterizations of carbazole–isoindigo–carbazole oligomers for photovoltaic application. Chemical Physics Letters, 2016, 658, 103-108.	1.2	5
923	Increasing H-aggregation of p-DTS(FBTTh2)2 to improve photovoltaic efficiency by solvent vapor annealing. Organic Electronics, 2016, 37, 6-13.	1.4	21
924	Trap-assisted recombination in disordered organic semiconductors extended by considering density dependent mobility. Solar Energy, 2016, 135, 308-316.	2.9	18
925	Tuning Up an Electronic Structure of the Subphthalocyanine Derivatives toward Electron-Transfer Process in Noncovalent Complexes with C ₆₀ and C ₇₀ Fullerenes: Experimental and Theoretical Studies. Inorganic Chemistry, 2016, 55, 9549-9563.	1.9	36
926	Impact of the alkyl side chain position on the photovoltaic properties of solution-processable organic molecule donor materials. Journal of Materials Chemistry A, 2016, 4, 11747-11753.	5.2	8
927	Effects of different functional groups on the optical and charge transport properties of copolymers for polymer solar cells. RSC Advances, 2016, 6, 61809-61820.	1.7	20
928	Porphyrin dimers as donors for solution-processed bulk heterojunction organic solar cells. RSC Advances, 2016, 6, 60626-60632.	1.7	8
929	Broadband Scattering With Strong Electric Field Coupling Between Metal Nanostructures Using DDA Simulation: Role of Different Organic Environments. IEEE Journal of Photovoltaics, 2016, 6, 940-951.	1.5	5

#	Article	IF	CITATIONS
930	Fluorene-based conjugated polymer as an interfacial layer for organic photovoltaic cells. Polymer Bulletin, 2016, 73, 2393-2399.	1.7	3
931	Electronic and photophysical properties of the bend D–T–A–T–D derivatives for small-molecule organic photovoltaic (SM-OPV) solar cells: a DFT and TD-DFT investigation. Research on Chemical Intermediates, 2016, 42, 6907-6927.	1.3	5
932	Hydrogen-bonded oligothiophene rosettes with a benzodithiophene terminal unit: self-assembly and application to bulk heterojunction solar cells. Chemical Communications, 2016, 52, 7874-7877.	2.2	25
933	Impact of the molecular structure of an indandione fragment containing azobenzene derivatives on the morphology and electrical properties of thin films. Materials Chemistry and Physics, 2016, 173, 117-125.	2.0	3
934	Tuning Conductance in π–σ–π Single-Molecule Wires. Journal of the American Chemical Society, 2016, 138, 7791-7795.	6.6	27
935	Structure–property relationships for bis-diketopyrrolopyrrole molecules in organic photovoltaics. Journal of Materials Chemistry A, 2016, 4, 10532-10541.	5.2	30
936	D–A–D–π–D–A–D type diketopyrrolopyrrole based small molecule electron donors for bulk heterojunction organic solar cells. Physical Chemistry Chemical Physics, 2016, 18, 16950-16957.	1.3	22
937	Easy Access to NO ₂ â€Containing Donor–Acceptor–Acceptor Electron Donors for High Efficiency Smallâ€Molecule Organic Solar Cells. ChemSusChem, 2016, 9, 1433-1441.	3.6	18
938	Thermalâ€annealing dependence of crystallization on solutionâ€processed smallâ€molecule organic photovoltaics. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 412-418.	0.8	6
939	Direct C–H arylation for various Ar-cored diketopyrrolopyrrole containing small molecules in solution-processed field-effect transistors. RSC Advances, 2016, 6, 57163-57173.	1.7	12
940	Plasmonic Nanorattles as Nextâ€Generation Catalysts for Surface Plasmon Resonanceâ€Mediated Oxidations Promoted by Activated Oxygen. Angewandte Chemie, 2016, 128, 7227-7231.	1.6	16
941	<scp>TPD</scp> ―and <scp>DPP</scp> â€based Small Molecule Donors Containing Pyridine End Groups for Organic Photovoltaic Cells. Bulletin of the Korean Chemical Society, 2016, 37, 161-165.	1.0	3
942	Molecular design and theoretical investigation on the thieno[3,2-b]thienobis(silolothiophene)-based low band gap donor polymers for efficient polymer solar cell. Molecular Simulation, 2016, 42, 47-55.	0.9	3
943	Improving Organic Solar Cells Efficiency Through a Two-Step Method Consisting of Solvent Vapor Annealing and Thermal Annealing. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 66-72.	1.9	15
944	Benzobisoxazole cruciforms: a tunable, cross-conjugated platform for the generation of deep blue OLED materials. Journal of Materials Chemistry C, 2016, 4, 3765-3773.	2.7	40
945	Toward high performance indacenodithiophene-based small-molecule organic solar cells: investigation of the effect of fused aromatic bridges on the device performance. Journal of Materials Chemistry A, 2016, 4, 2252-2262.	5.2	22
946	Solution-processed bulk heterojunction solar cells based on porphyrin small molecules with very low energy losses comparable to perovskite solar cells and high quantum efficiencies. Journal of Materials Chemistry C, 2016, 4, 3843-3850.	2.7	37
947	Benzo[1,2- <i>b</i> :4,5- <i>b</i> ê²]dithiophene–Pyrido[3,4- <i>b</i>]pyrazine Small-Molecule Donors for Bulk Heterojunction Solar Cells. Chemistry of Materials, 2016, 28, 2058-2066.	3.2	41

#	Article	IF	CITATIONS
948	Tuning the Morphology of Solution-Sheared P3HT:PCBM Films. ACS Applied Materials & Samp; Interfaces, 2016, 8, 1742-1751.	4.0	59
949	Hetero aromatic donors as effective terminal groups for DPP based organic solar cells. RSC Advances, 2016, 6, 9023-9036.	1.7	6
950	Understanding the effect of solvent vapor annealing on solution-processed A–D–A oligothiophene bulk-heterojunction solar cells: the role of alkyl side chains. Journal of Materials Chemistry A, 2016, 4, 2571-2580.	5,2	45
951	Beyond efficiency: scalability of molecular donor materials for organic photovoltaics. Journal of Materials Chemistry C, 2016, 4, 3677-3685.	2.7	117
952	Photon-absorbing charge-bridging states in organic bulk heterojunctions consisting of diketopyrrolopyrrole derivatives and PCBM. Physical Chemistry Chemical Physics, 2016, 18, 9514-9523.	1.3	8
953	Interfacial engineering for high performance organic photovoltaics. Materials Today, 2016, 19, 169-177.	8.3	31
954	Cytochrome c assembly on fullerene nanohybrid metal oxide ultrathin films. RSC Advances, 2016, 6, 19173-19181.	1.7	5
955	Structural engineering of porphyrin-based small molecules as donors for efficient organic solar cells. Chemical Science, 2016, 7, 4301-4307.	3.7	72
956	Investigations of a New High-Performance Low-Band-Gap Photovoltaic Polymer Semiconductor. IEEE Journal of Photovoltaics, 2016, 6, 696-704.	1.5	7
957	All-small-molecule organic solar cells based on an electron donor incorporating binary electron-deficient units. Journal of Materials Chemistry A, 2016, 4, 6056-6063.	5.2	49
958	Triphenylamine and benzothiadiazole-based D-A-A' and A'-A-D-D-A-A' type small molecules for solution-processed organic solar cells. Macromolecular Research, 2016, 24, 226-234.	1.0	20
959	Stability of organic solar cells: challenges and strategies. Chemical Society Reviews, 2016, 45, 2544-2582.	18.7	820
960	All-in-one solar cell: Stable, light-soaking free, solution processed and efficient diketopyrrolopyrrole based small molecule inverted organic solar cells. Solar Energy Materials and Solar Cells, 2016, 150, 19-31.	3.0	17
961	Thin-film semiconductor perspective of organometal trihalide perovskite materials for high-efficiency solar cells. Materials Science and Engineering Reports, 2016, 101, 1-38.	14.8	117
962	Self-Assembling Tripodal Small-Molecule Donors for Bulk Heterojunction Solar Cells. Journal of Physical Chemistry C, 2016, 120, 3602-3611.	1.5	22
963	Interface-induced crystallization and nanostructure formation of [6,6]-phenyl-C ₆₁ -butyric acid methyl ester (PCBM) in polymer blend films and its application in photovoltaics. Journal of Materials Chemistry A, 2016, 4, 3335-3341.	5.2	14
964	The end-capped group effect on dithienosilole trimer based small molecules for efficient organic photovoltaics. Journal of Materials Chemistry C, 2016, 4, 1972-1978.	2.7	17
965	Density functional study on the effect of aromatic rings flanked by bithiophene of novel electron donors in small-molecule organic solar cells. Materials Chemistry and Physics, 2016, 175, 13-21.	2.0	15

#	Article	IF	CITATIONS
966	Electronic energy and electron transfer processes in photoexcited donor–acceptor dyad and triad molecular systems based on triphenylene and perylene diimide units. Physical Chemistry Chemical Physics, 2016, 18, 7875-7887.	1.3	33
967	Fine structural tuning of diketopyrrolopyrrole-cored donor materials for small molecule-fullerene organic solar cells: A theoretical study. Organic Electronics, 2016, 32, 134-144.	1.4	88
968	Structure–properties relationship in diketopyrrolopyrrole based small molecules using functional terminal side chains via direct arylation: a joint experimental and theoretical study. New Journal of Chemistry, 2016, 40, 3803-3811.	1.4	8
969	Photovoltaic poly(rod-coil) polymers based on benzodithiophene-centred A–D–A type conjugated segments and dicarboxylate-linked alkyl non-conjugated segments. RSC Advances, 2016, 6, 23300-23309.	1.7	9
970	Dual structure modifications to realize efficient polymer solar cells with low fullerene content. Organic Electronics, 2016, 32, 187-194.	1.4	6
971	The effect of acceptor end groups on the physical and photovoltaic properties of A–π–D–π–A type oligomers with same S, N-heteropentacene central electron donor unit for solution processed organic solar cells. Dyes and Pigments, 2016, 129, 209-219.	2.0	23
972	Low band gap diketopyrrolopyrrole-based small molecule bulk heterojunction solar cells: influence of terminal side chain on morphology and photovoltaic performance. RSC Advances, 2016, 6, 28658-28665.	1.7	10
973	Improved performance of polymer solar cells using PBDTT-F-TT:PC 71 BM blend film as active layer. Applied Surface Science, 2016, 376, 138-144.	3.1	12
974	Porphyrin small molecules containing furan- and selenophene-substituted diketopyrrolopyrrole for bulk heterojunction organic solar cells. Organic Electronics, 2016, 29, 127-134.	1.4	36
975	Influence of the terminal donor on the performance of 4,8-dialkoxybenzo[1,2-b:4,5′]dithiophene based small molecules for efficient solution-processed organic solar cells. New Journal of Chemistry, 2016, 40, 2063-2070.	1.4	8
976	Photoinduced charge generation rates in soluble P3HT : PCBM nano-aggregates predict the solvent-dependent film morphology. Nanoscale, 2016, 8, 2768-2777.	2.8	17
977	D-A-D-A-D push pull organic small molecules based on 5,10-dihydroindolo[3,2-b]indole (DINI) central core donor for solution processed bulk heterojunction solar cells. Organic Electronics, 2016, 30, 122-130.	1.4	28
978	Surface treatment by binary solvents induces the crystallization of a small molecular donor for enhanced photovoltaic performance. Physical Chemistry Chemical Physics, 2016, 18, 735-742.	1.3	13
979	A block copolymer enhances the efficiency of small-molecule bulk-heterojunction photovoltaics. Journal of Materials Chemistry A, 2016, 4, 2228-2235.	5.2	18
980	Doped hole transport layers processed from solution: Planarization and bridging the voids in noncontinuous silver nanowire electrodes. Organic Electronics, 2016, 28, 163-171.	1.4	6
981	Low-Bandgap Small-Molecule Donor Material Containing Thieno[3,4- <i>b</i>)thiophene Moiety for High-Performance Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 3661-3668.	4.0	22
982	Semiconductor Materials for Solar Photovoltaic Cells. Springer Series in Materials Science, 2016, , .	0.4	29
983	Nanophase Engineering of Organic Semiconductor-Based Solar Cells. Springer Series in Materials Science, 2016, , 197-228.	0.4	3

#	ARTICLE	IF	CITATIONS
984	Effect ofn-dodecylthiol and thermal annealing on the performance of P3HT/PC70BM polymer photovoltaic cells. International Journal of Sustainable Energy, 2016, 35, 217-229.	1.3	0
985	Applying the heteroatom effect of chalcogen for high-performance small-molecule solar cells. Journal of Materials Chemistry A, 2017, 5, 3425-3433.	5.2	14
986	Mixing Chromophores: Donor–Acceptor Dyes with Low‣ying LUMOs and Narrow Band Gaps by Connecting 4â€Alkoxythiazoles and Azaacenes. European Journal of Organic Chemistry, 2017, 2017, 1369-1379.	1.2	10
987	Photoinduced charge recombination in dipolar D–A–A photonic liquid crystal polymorphs. Physical Chemistry Chemical Physics, 2017, 19, 4588-4596.	1.3	2
988	Characterization of spray-coated ZnO buffer layer for inverted polymer solar cells. Materials Research Bulletin, 2017, 96, 47-52.	2.7	4
989	Small is Powerful: Recent Progress in Solutionâ€Processed Small Molecule Solar Cells. Advanced Energy Materials, 2017, 7, 1602242.	10.2	371
990	Charge transport in thin films of MDMO PPV dispersed with lead sulfide nanoparticles. Synthetic Metals, 2017, 224, 80-85.	2.1	8
991	Theoretical characterization on photoelectric properties of benzothiadiazole- and fluorene-based small molecule acceptor materials for the organic photovoltaics. Journal of Molecular Modeling, 2017, 23, 28.	0.8	16
992	Chlorination of Low-Band-Gap Polymers: Toward High-Performance Polymer Solar Cells. Chemistry of Materials, 2017, 29, 2819-2830.	3.2	112
993	Atomistic modelling – impact and opportunities in thin-film photovoltaic solar cell technologies. Molecular Simulation, 2017, 43, 774-796.	0.9	4
994	Design of donor–acceptor–donor (D–A–D) type small molecule donor materials with efficient photovoltaic parameters. International Journal of Quantum Chemistry, 2017, 117, e25363.	1.0	54
995	Vinazene end-capped acceptor-donor-acceptor type small molecule for solution-processed organic solar cells. Organic Electronics, 2017, 44, 11-19.	1.4	5
996	Photoinduced Electron Transfer in Asymmetrical Perylene Diimide: Understanding the Photophysical Processes of Light-Absorbing Nonfullerene Acceptors. Journal of Physical Chemistry C, 2017, 121, 5498-5502.	1.5	14
997	A novel small molecule based on dithienophosphole oxide for bulk heterojunction solar cells without pre- or post-treatments. Dyes and Pigments, 2017, 142, 516-523.	2.0	11
998	A Novel Batâ€Shaped Dicyanomethyleneâ€4 <i>H</i> à€pyranâ€Functionalized Naphthalimide for Highly Efficient Solutionâ€Processed Multilevel Memory Devices. Chemistry - an Asian Journal, 2017, 12, 1374-1380.	1.7	6
999	The influence of the push-pull effect and a π-conjugated system in conversion efficiency of bis-chalcone compounds in a dye sensitized solar cell. Journal of Molecular Structure, 2017, 1143, 42-48.	1.8	36
1000	Morphology Development in Solution-Processed Functional Organic Blend Films: An In Situ Viewpoint. Chemical Reviews, 2017, 117, 6332-6366.	23.0	145
1001	Film morphology of solution-processed regioregular ternary conjugated polymer solar cells under processing additive stress. Journal of Materials Chemistry A, 2017, 5, 8903-8908.	5.2	9

#	Article	IF	CITATIONS
1002	Systematic evaluation of structure–property relationships in heteroacene – diketopyrrolopyrrole molecular donors for organic solar cells. Journal of Materials Chemistry A, 2017, 5, 9217-9232.	5.2	31
1003	Nanoionicsâ€Enabled Memristive Devices: Strategies and Materials for Neuromorphic Applications. Advanced Electronic Materials, 2017, 3, 1600510.	2.6	167
1004	Additive engineering for highly efficient organic–inorganic halide perovskite solar cells: recent advances and perspectives. Journal of Materials Chemistry A, 2017, 5, 12602-12652.	5.2	303
1005	Aza-BODIPY dyes with heterocyclic substituents and their derivatives bearing a cyanide co-ligand: NIR donor materials for vacuum-processed solar cells. Journal of Materials Chemistry A, 2017, 5, 10696-10703.	5.2	36
1006	T-Shaped Indan-1,3-dione derivatives as promising electron donors for bulk heterojunction small molecule solar cell. Optical Materials, 2017, 69, 312-317.	1.7	10
1008	Optimized Phase Separation and Reduced Geminate Recombination in High Fill Factor Small-Molecule Organic Solar Cells. ACS Energy Letters, 2017, 2, 14-21.	8.8	41
1009	Quantum modeling of two-level photovoltaic systems. EPJ Photovoltaics, 2017, 8, 85503.	0.8	11
1010	Charge Transport in Molecular Materials: An Assessment of Computational Methods. Chemical Reviews, 2017, 117, 10319-10357.	23.0	310
1011	Smallâ€Molecule Solar Cells with Simultaneously Enhanced Shortâ€Circuit Current and Fill Factor to Achieve 11% Efficiency. Advanced Materials, 2017, 29, 1700616.	11.1	87
1012	Novel biphenylene-diketopyrrolopyrrole-based Aâ€"Ï€â€"Dâ€"Ï€â€"A molecule: Synthesis, optical, electrochemical and electronical properties. Tetrahedron Letters, 2017, 58, 2779-2783.	0.7	5
1013	Pyridalthiadiazole acceptor-functionalized triarylboranes with multi-responsive optoelectronic characteristics. Chemical Science, 2017, 8, 5497-5505.	3.7	58
1014	The Emergence of the Mixed Perovskites and Their Applications as Solar Cells. Advanced Energy Materials, 2017, 7, 1700491.	10.2	120
1015	Engineering charge transport by heterostructuring solution-processed semiconductors. Nature Reviews Materials, 2017, 2, .	23.3	105
1016	Hybrid Perovskites: Effective Crystal Growth for Optoelectronic Applications. Advanced Energy Materials, 2017, 7, 1602596.	10.2	62
1017	Effect of Annealing on Exciton Diffusion in a High Performance Small Molecule Organic Photovoltaic Material. ACS Applied Materials & Samp; Interfaces, 2017, 9, 14945-14952.	4.0	36
1018	Alkenyl Carboxylic Acid: Engineering the Nanomorphology in Polymer–Polymer Solar Cells as Solvent Additive. ACS Applied Materials & Solvent Refraces, 2017, 9, 13396-13405.	4.0	14
1019	Indenothiophene-based asymmetric small molecules for organic solar cells. RSC Advances, 2017, 7, 18144-18150.	1.7	7
1020	Optimized synthesis of π-extended squaraine dyes relevant to organic electronics by direct (hetero)arylation and Sonogashira coupling reactions. Organic and Biomolecular Chemistry, 2017, 15, 3310-3319.	1.5	22

#	Article	IF	CITATIONS
1021	The role of solvent and structure in the kinetics of the excitons in porphyrin-based hybrid solar cells. Solar Energy, 2017, 146, 368-378.	2.9	12
1022	9.73% Efficiency Nonfullerene All Organic Small Molecule Solar Cells with Absorption-Complementary Donor and Acceptor. Journal of the American Chemical Society, 2017, 139, 5085-5094.	6.6	303
1023	Reduced bimolecular recombination in blade-coated, high-efficiency, small-molecule solar cells. Journal of Materials Chemistry A, 2017, 5, 6893-6904.	5.2	16
1024	An Allâ€Solution Processed Recombination Layer with Mild Postâ€Treatment Enabling Efficient Homoâ€Tandem Nonâ€fullerene Organic Solar Cells. Advanced Materials, 2017, 29, 1604231.	11.1	68
1025	Light Harvesting for Organic Photovoltaics. Chemical Reviews, 2017, 117, 796-837.	23.0	457
1026	Developing high-performance small molecule organic solar cells via a large planar structure and an electron-withdrawing central unit. Chemical Communications, 2017, 53, 451-454.	2.2	22
1027	Synthesis and Characterization of Diketopyrrolopyrroleâ€based Dâ€ï€â€Aâ€ï€â€D Small Molecules for Organic Solar Cell Applications. Journal of Heterocyclic Chemistry, 2017, 54, 1983-1994.	1.4	5
1028	Dramatically Boosted Efficiency of Small Molecule Solar Cells by Synergistically Optimizing Molecular Aggregation and Crystallinity. ACS Sustainable Chemistry and Engineering, 2017, 5, 1982-1989.	3.2	10
1029	Sequence Effects in Donor–Acceptor Oligomeric Semiconductors Comprising Benzothiadiazole and Phenylenevinylene Monomers. Macromolecules, 2017, 50, 151-161.	2.2	33
1030	Cyclopentadithiophene organic core in small molecule organic solar cells: morphological control of carrier recombination. Physical Chemistry Chemical Physics, 2017, 19, 3640-3648.	1.3	8
1031	Fine Tuning the Optoelectronic Properties of Triphenylamine Based Donor Molecules for Organic Solar Cells. Zeitschrift Fur Physikalische Chemie, 2017, 231, 1127-1139.	1.4	67
1032	Triplet Excitons in Highly Efficient Solar Cells Based on the Soluble Small Molecule pâ€DTS(FBTTh 2) 2. Advanced Energy Materials, 2017, 7, 1602016.	10.2	15
1033	Assessing the stability of high performance solution processed small molecule solar cells. Solar Energy Materials and Solar Cells, 2017, 161, 368-376.	3.0	31
1034	Recently developed high-efficiency organic photoactive materials for printable photovoltaic cells: a mini review. Synthetic Metals, 2017, 223, 107-121.	2.1	37
1035	Thiophene-Based Organic Semiconductors. Topics in Current Chemistry, 2017, 375, 84.	3.0	88
1036	Bromine-Terminated Additives for Phase-Separated Morphology Control of PTB7:PC ₇₁ BM-Based Polymer Solar Cells. ACS Sustainable Chemistry and Engineering, 2017, 5, 11668-11675.	3.2	19
1037	Novel thienoisoindigo-based dyes for near-infrared organic photovoltaics - A combination of theoretical and experimental study. Organic Electronics, 2017, 51, 410-421.	1.4	5
1038	A–π–D–π–A Electronâ€Donating Small Molecules for Solutionâ€Processed Organic Solar Cells: A Review Macromolecular Rapid Communications, 2017, 38, 1700470.	^{V.} 2.0	70

#	Article	IF	CITATIONS
1039	DFT Modeling of Novel Donor-Acceptor (D-A) Molecules Incorporating 3-hexylthiophene (3HT) for Bulk Heterojunction Solar Cells. ChemistrySelect, 2017, 2, 10082-10090.	0.7	15
1040	Junction diodes in organic solar cells. Nano Energy, 2017, 41, 717-730.	8.2	20
1041	Enhanced Photovoltaic Performance of Tetrazine-Based Small Molecules with Conjugated Side Chains. ACS Sustainable Chemistry and Engineering, 2017, 5, 8684-8692.	3.2	10
1042	Charge Separation and Triplet Exciton Formation Pathways in Small-Molecule Solar Cells as Studied by Time-Resolved EPR Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 22707-22719.	1.5	19
1043	Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications. Nature Energy, 2017, 2, 780-785.	19.8	369
1044	Cyclometalated Platinum-Containing Diketopyrrolopyrrole Complexes and Polymers: Photophysics and Photovoltaic Applications. Chemistry of Materials, 2017, 29, 8449-8461.	3.2	27
1045	Simple transfer from spin coating to blade coating through processing aggregated solutions. Journal of Materials Chemistry A, 2017, 5, 20687-20695.	5.2	21
1046	D-A structural protean small molecule donor materials for solution-processed organic solar cells. Chinese Chemical Letters, 2017, 28, 2065-2077.	4.8	19
1047	Intermediate-Sized Conjugated Donor Molecules for Organic Solar Cells: Comparison of Benzodithiophene and Benzobisthiazole-Based Cores. Chemistry of Materials, 2017, 29, 7880-7887.	3.2	17
1048	Morphology of a Ternary Blend Solar Cell Based on Small Molecule:Conjugated Polymer:Fullerene Fabricated by Blade Coating. Advanced Functional Materials, 2017, 27, 1703268.	7.8	31
1049	Application of Supramolecular Assembly of Porphyrin Dimers for Bulk Heterojunction Solar Cells. Journal of Physical Chemistry C, 2017, 121, 20084-20092.	1.5	4
1050	Designing Benzodithiopheneâ€Based Donor Materials with Favorable Photovoltaic Parameters for Bulk Heterojunction Organic Solar Cells. ChemistrySelect, 2017, 2, 5628-5639.	0.7	12
1051	Benzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> ′]Dithiophene–6,7â€Difluoroquinoxaline Small Molecule Donors with >8% BHJ Solar Cell Efficiency. Advanced Energy Materials, 2017, 7, 1602804.	10.2	11
1052	Recent Development of Quinoxaline Based Polymers/Small Molecules for Organic Photovoltaics. Advanced Energy Materials, 2017, 7, 1700575.	10.2	115
1053	Structural variations to a donor polymer with low energy losses. Journal of Materials Chemistry A, 2017, 5, 18618-18626.	5.2	12
1054	Morphological studies of small-molecule solar cells: nanostructural engineering via solvent vapor annealing treatments. Journal of Materials Science, 2017, 52, 13173-13182.	1.7	4
1055	Stericâ€Hindrance Modulation toward Highâ€Performance 1,3â€Bis(thieno[3,4â€ <i>b</i>]thiophenâ€6â€yl)â€4 <i>H</i> à€thieno[3,4â€ <i>c</i>]pyrroleâ€4,6(5 <i>H</i>)â€ Polymer Solar Cells with Enhanced Openâ€Circuit Voltage. Advanced Electronic Materials, 2017, 3, 1700213.	Edioneâ€B 2.6	ased
1056	Molecular design of organic small molecules based on diindole–diimide with fused aromatic heterocycles as donors for organic solar cells. RSC Advances, 2017, 7, 39899-39905.	1.7	27

#	ARTICLE	IF	CITATIONS
1057	A thieno[3,4-b]thiophene-based small-molecule donor with a π-extended dithienobenzodithiophene core for efficient solution-processed organic solar cells. Materials Chemistry Frontiers, 2017, 1, 2349-2355.	3.2	8
1058	Effect of capping group on the properties of non-polymeric diketopyrrolopyrroles for solution-processed bulk heterojunction solar cells. Organic Electronics, 2017, 50, 339-346.	1.4	3
1059	All-Small-Molecule Nonfullerene Organic Solar Cells with High Fill Factor and High Efficiency over 10%. Chemistry of Materials, 2017, 29, 7543-7553.	3.2	184
1060	Light absorption spectra in oligothiophene molecules. AIP Conference Proceedings, 2017, , .	0.3	O
1061	Nanostructures induced light harvesting enhancement in organic photovoltaics. Nanophotonics, 2017, 7, 371-391.	2.9	32
1062	A visible-near-infrared absorbing A–π ₂ –D–π ₁ –D–π ₂ –A type dimeric-porphyrin donor for high-performance organic solar cells. Journal of Materials Chemistry A, 2017, 5, 25460-25468.	5.2	45
1063	Facile synthesis of a dopant-free hole transporting material with a phenothiazine core for planar perovskite solar cells. RSC Advances, 2017, 7, 53604-53610.	1.7	21
1064	Impact of benzothiadiazole position on the photovoltaic properties of solution-processable organic molecule materials. Synthetic Metals, 2017, 234, 47-52.	2.1	1
1065	Anionsâ€Mediated Morphological Control of Nano―/Microscaled Materials: A Case Study of Protonated Melamineâ€Based Selfâ€Assemblies. ChemistrySelect, 2017, 2, 10505-10511.	0.7	2
1066	Synthesis and photovoltaic properties of new ruthenium(II)-bis(aryleneethynylene) complexes. Journal of Organometallic Chemistry, 2017, 846, 277-286.	0.8	7
1067	Solution-processable 2,1,3-benzothiadiazole containing compound based on the novel 1-dodecyl-6-dodecoxynaphthyridine-2-one unit for organic field-effect transistors. Organic Electronics, 2017, 49, 400-405.	1.4	3
1068	Effects of morphology evolution on solution-processed small molecule photovoltaics via a solvent additive. Journal of Materials Chemistry C, 2017, 5, 7837-7844.	2.7	16
1069	Liquid crystals in photovoltaics: a new generation of organic photovoltaics. Polymer Journal, 2017, 49, 85-111.	1.3	124
1070	Converting sunlight into red light in fluorosilicate glass for amorphous silicon solar cells. Journal of Luminescence, 2017, 183, 433-436.	1.5	7
1071	A novel D2-A-D1-A-D2-type donor–acceptor conjugated small molecule based on a benzo[1,2-b:4,5-b′]dithiophene core for solution processed organic photovoltaic cells. Chemical Physics Letters, 2017, 667, 254-259.	1.2	8
1072	A low band gap conjugated small molecule based on isoindigo flanked with diketopyrrolopyrrole for efficient organic solar cells. Dyes and Pigments, 2017, 137, 512-517.	2.0	10
1073	Thermally induced anchoring of fullerene in copolymers with Si-bridging atom: Spectroscopic evidences. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 171, 376-382.	2.0	6
1074	Diethynylbenzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> àꀲ]dithiopheneâ€based small molecule and crossâ€conjugated copolymers for organic solar cells. Journal of Polymer Science Part A, 2017, 55, 660-671.	2.5	3

#	Article	IF	CITATIONS
1075	Effect of Processing Additives on Organic Photovoltaics: Recent Progress and Future Prospects. Advanced Energy Materials, 2017, 7, 1601496.	10.2	71
1076	Tuning domain size and crystallinity in isoindigo/PCBM organic solar cells via solution shearing. Organic Electronics, 2017, 40, 79-87.	1.4	16
1077	Comparative analysis of different structures of photovoltaic cell based on organic materials., 2017,,.		1
1078	Self-Assembled Organic Materials for Photovoltaic Application. Polymers, 2017, 9, 112.	2.0	23
1079	Organic and Polymer Solar Cells. , 0, , 134-157.		0
1080	Plasmonic Study of Nanoparticles in Organic Photovoltic Cells: A Review. Journal of Organic & Inorganic Chemistry, 2017, 3, .	0.0	0
1081	Notice of Removal Tuning of molecular energy levels and photovoltaic properties of benzothiadiazole based D-A-D small molecule. , 2017, , .		0
1082	Influence of the Crystalline Nature of Small Donors Molecules on the Efficiency and Stability of Organic Photovoltaic Devices. Solar Rrl, 2018, 2, 1700235.	3.1	11
1083	Triphenylamine cored electron-donors for solution-processed organic solar cells: From tri-armed molecules to tetra-armed molecules. Dyes and Pigments, 2018, 153, 291-299.	2.0	6
1084	Light and Matter Interaction in Two-Dimensional Atomically Thin Films. Bulletin of the Chemical Society of Japan, 2018, 91, 761-771.	2.0	22
1085	Photobleaching dynamics in small molecule <i>vs.</i> Âpolymer organic photovoltaic blends with 1,7-bis-trifluoromethylfullerene. Journal of Materials Chemistry A, 2018, 6, 4623-4628.	5.2	16
1086	Charge Transfer and Collection in Dilute Organic Donor–Acceptor Heterojunction Blends. Nano Letters, 2018, 18, 3180-3184.	4.5	26
1087	Multifunctional Dithiadiazolyl Radicals: Fluorescence, Electroluminescence, and Photoconducting Behavior in Pyren-1′-yl-dithiadiazolyl. Journal of the American Chemical Society, 2018, 140, 6260-6270.	6.6	75
1088	Robust Processing of Small-Molecule:Fullerene Organic Solar Cells via Use of Nucleating Agents. ACS Applied Energy Materials, 2018, 1, 1973-1980.	2.5	2
1089	Mixed Domains Enhance Charge Generation and Extraction in Bulkâ€Heterojunction Solar Cells with Smallâ€Molecule Donors. Advanced Energy Materials, 2018, 8, 1702941.	10.2	43
1090	Improved Molecular Stacking and Dataâ€Storage Performance of Pyridine―and Pyrimidineâ€Substituted Small Molecules. Advanced Functional Materials, 2018, 28, 1800568.	7.8	26
1091	Optimization of Bulk Heterojunction Organic Photovoltaic Devices., 2018,, 1-36.		1
1092	Naphtho[1,2â€b:5,6â€b′]dithiopheneâ€Based Conjugated Polymers for Fullereneâ€Free Inverted Polymer Sola Cells. Macromolecular Rapid Communications, 2018, 39, e1700872.	r 2.0	11

#	Article	IF	CITATIONS
1093	Effect of electron-withdrawing terminal group on BDT-based donor materials for organic solar cells: a theoretical investigation. Theoretical Chemistry Accounts, 2018, 137, 1.	0.5	17
1094	Inverted P3HT:PC ₆₁ BM organic solar cells incorporating a π-extended squaraine dye with H- and (or) J-aggregation. Canadian Journal of Chemistry, 2018, 96, 703-711.	0.6	2
1096	Columnar-Structured Low-Concentration Donor Molecules in Bulk Heterojunction Organic Solar Cells. ACS Omega, 2018, 3, 929-936.	1.6	12
1097	Influence of Molecular Excluded Volume and Connectivity on the Nanoscale Morphology of Conjugated Polymer/Small Molecule Blends. Journal of Physical Chemistry C, 2018, 122, 3700-3708.	1.5	3
1098	Efficient carbazole-based small-molecule organic solar cells with an improved fill factor. RSC Advances, 2018, 8, 4867-4871.	1.7	11
1099	Origin of Reduced Open-Circuit Voltage in Highly Efficient Small-Molecule-Based Solar Cells upon Solvent Vapor Annealing. ACS Applied Materials & Solvent Vapor Annealing.	4.0	26
1100	Dithienosilole-based non-fullerene acceptors for efficient organic photovoltaics. Journal of Materials Chemistry A, 2018, 6, 4266-4270.	5.2	37
1101	On the theoretical prediction of fluorescence rates from first principles using the path integral approach. Journal of Chemical Physics, 2018, 148, 034104.	1.2	125
1102	Improved Tandem Allâ€Polymer Solar Cells Performance by Using Spectrally Matched Subcells. Advanced Energy Materials, 2018, 8, 1703291.	10.2	54
1103	Solvent Vapor Annealing-Mediated Crystallization Directs Charge Generation, Recombination and Extraction in BHJ Solar Cells. Chemistry of Materials, 2018, 30, 789-798.	3.2	48
1104	Side-chain fluorination on the pyrido [3,4-b] pyrazine unit towards efficient photovoltaic polymers. Science China Chemistry, 2018, 61, 206-214.	4.2	13
1105	All-atom simulation of molecular orientation in vapor-deposited organic light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 1015-1022.	2.7	30
1106	Photoelectrochemical processes in organic semiconductor: Ambipolar perylene diimide thin film. Physica B: Condensed Matter, 2018, 533, 1-4.	1.3	3
1107	Fundamentals of bulk heterojunction organic solar cells: An overview of stability/degradation issues and strategies for improvement. Renewable and Sustainable Energy Reviews, 2018, 84, 43-53.	8.2	189
1108	Additiveâ€Morphology Interplay and Loss Channels in "Allâ€Smallâ€Molecule―Bulkâ€heterojunction (BHJ) Solar Cells with the Nonfullerene Acceptor IDTTBM. Advanced Functional Materials, 2018, 28, 1705464.	7.8	40
1109	Investigating the effect of heteroatom substitution in 2,1,3-benzoxadiazole and 2,1,3-benzothiadiazole compounds for organic photovoltaics. Journal of Materials Chemistry C, 2018, 6, 3709-3714.	2.7	11
1111	Novel unsymmetrical squaraine-based small molecules for organic solar cells. Journal of Materials Chemistry C, 2018, 6, 847-854.	2.7	22
1112	Bis-Silicon-Bridged Stilbene: A Core for Small-Molecule Electron Acceptor for High-Performance Organic Solar Cells. Chemistry of Materials, 2018, 30, 587-591.	3.2	35

#	Article	IF	Citations
1113	A Simple but Efficient Small Molecule with a High Open Circuit Voltage of 1.07â€V in Solutionâ€Processable Organic Solar Cells. Asian Journal of Organic Chemistry, 2018, 7, 558-562.	1.3	3
1114	A program for automatically predicting supramolecular aggregates and its application to urea and porphin. Journal of Computational Chemistry, 2018, 39, 763-772.	1.5	9
1115	Reducing Trapâ€Assisted Recombination in Small Organic Moleculeâ€Based Photovoltaics by the Addition of a Conjugated Block Copolymer. Macromolecular Rapid Communications, 2018, 39, 1700630.	2.0	18
1116	Fabrication and Characterization of Organic Photovoltaic Cell using Keithley 2400 SMU for efficient solar cell. Journal of Physics: Conference Series, 2018, 1000, 012124.	0.3	1
1117	Combining Facile Synthetic Methods with Greener Processing for Efficient Polymerâ€Perylene Diimide Based Organic Solar Cells. Small Methods, 2018, 2, 1800081.	4.6	54
1118	Sideâ€Chain Optimization of Phthalimideâ^Bithiophene Copolymers for Efficient Allâ€Polymer Solar Cells with Large Fill Factors. Asian Journal of Organic Chemistry, 2018, 7, 2239-2247.	1.3	4
1119	Hybrid Photovoltaic–Thermoelectric Generators: Materials Issues. Springer Series in Materials Science, 2018, , 103-116.	0.4	2
1120	DR3TBDTT Based Ternary Blends Containing Conjugated Polymers: Crystallization Determines Morphology and Performance. Chinese Journal of Chemistry, 2018, 36, 437-442.	2.6	7
1121	Regioregular dithienosilole- and dithienogermole-based small molecules with symmetric distal/distal orientation of F atoms. Dyes and Pigments, 2018, 155, 7-13.	2.0	4
1122	Critical Role of Vertical Phase Separation in Small-Molecule Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2018, 10, 12913-12920.	4.0	21
1123	Oligothiophene–Indandione-Linked Narrow-Band Gap Molecules: Impact of π-Conjugated Chain Length on Photovoltaic Performance. ACS Applied Materials & Distribution (1983) (198	4.0	21
1124	Locking the Coplanar Conformation of Ï€â€Conjugated Molecules and Macromolecules Using Dynamic Noncovalent Bonds. Macromolecular Rapid Communications, 2018, 39, 1700241.	2.0	61
1125	Controlling intercalations of PBDTTT-EFT side chain to initiate suitable network for charge extraction in PBDTTT-EFT:PC71BM blended bulk heterojunction solar cell. Solar Energy Materials and Solar Cells, 2018, 175, 35-40.	3.0	5
1126	Photovoltaic molecules based on vinylene-bridged oligothiophene applied for bulk-heterojunction organic solar cells. Journal of Energy Chemistry, 2018, 27, 426-431.	7.1	0
1127	Theoretical and experimental study of electron-deficient core substitution effect of diketopyrrolopyrrole derivatives on optoelectrical and charge transport properties. Chemical Physics, 2018, 500, 67-73.	0.9	12
1128	Tunable Electron Donating and Accepting Properties Achieved by Modulating the Steric Hindrance of Side Chains in A-D-A Small-Molecule Photovoltaic Materials. Chemistry of Materials, 2018, 30, 619-628.	3.2	49
1129	Direct printing of soluble acene crystal stripes by a programmed dip-coating process for organic field-effect transistor applications. Journal of Materials Chemistry C, 2018, 6, 799-807.	2.7	21
1130	Ï€-Bridge modification of thiazole-bridged DPP polymers for high performance near-IR OSCs. Physical Chemistry Chemical Physics, 2018, 20, 1664-1672.	1.3	13

#	ARTICLE	IF	Citations
1131	High-performance organic solar cells based on a small molecule with thieno [3,2-b]thiophene as π-bridge. Organic Electronics, 2018, 53, 273-279.	1.4	30
1132	Carbazole-based small molecule electron donors: Syntheses, characterization, and material properties. Dyes and Pigments, 2018, 150, 79-88.	2.0	9
1133	Quantitative structureâ€property relationship modeling of small organic molecules for solar cells applications. Journal of Chemometrics, 2018, 32, e2957.	0.7	5
1134	Dithienosilole–phenylquinoxalineâ€based copolymers with Aâ€Dâ€Aâ€D and Aâ€D structures for polymer solar cells. Journal of Polymer Science Part A, 2018, 56, 376-386.	2.5	6
1135	Single Crystal Microwires of <i>p</i> â€DTS(FBTTh ₂) ₂ and Their Use in the Fabrication of Fieldâ€Effect Transistors and Photodetectors. Advanced Functional Materials, 2018, 28, 1702073.	7.8	22
1136	Impact of rotamer diversity on the self-assembly of nearly isostructural molecular semiconductors. Journal of Materials Chemistry A, 2018, 6, 383-394.	5.2	18
1137	BODIPYâ€Based Semiconducting Materials for Organic Bulk Heterojunction Photovoltaics and Thinâ€Film Transistors. ChemPlusChem, 2019, 84, 18-37.	1.3	95
1138	Molecular Engineering and Structure-Related Properties of Squaraine Dyes Based on the Core and Wings Concept. ACS Omega, 2018, 3, 15416-15425.	1.6	1
1139	Bipodal dyes with bichromic triphenylamine architectures for use in dye-sensitized solar cell applications. RSC Advances, 2018, 8, 42424-42428.	1.7	12
1140	Benzodithiazoleâ€Based Holeâ€Transporting Material for Efficient Perovskite Solar Cells. Asian Journal of Organic Chemistry, 2018, 7, 2497-2503.	1.3	8
1141	Theoretical Approach Towards Rational Design and Characterization of Benzo[1,2-b:5-B']dithiophene (BDT)-Based (A-D-A) Small Molecules of Relevance for High Performance Solar Cells. Journal of Material Science & Engineering, 2018, 07, .	0.2	О
1142	Does 1,8-diiodooctane affect the aggregation state of PC ₇₁ BM in solution?. Royal Society Open Science, 2018, 5, 180937.	1.1	7
1143	Impact of Terminal End-Group of Acceptor–Donor–Acceptor-type Small Molecules on Molecular Packing and Photovoltaic Properties. ACS Applied Materials & Samp; Interfaces, 2018, 10, 39952-39961.	4.0	17
1144	Unravelling the Self-Assembly of Diketopyrrolopyrrole-Based Photovoltaic Molecules. Langmuir, 2018, 34, 11952-11959.	1.6	5
1145	Designing dibenzosilole and methyl carbazole based donor materials with favourable photovoltaic parameters for bulk heterojunction organic solar cells. Computational and Theoretical Chemistry, 2018, 1142, 45-56.	1.1	6
1146	In-Plane Pathways Facilitate Out-of-Plane Charge Transport in Organic Solar Cell Active Layers. ACS Applied Energy Materials, 2018, , .	2.5	6
1147	Elucidating Aggregation Pathways in the Donor–Acceptor Type Molecules p-DTS(FBTTh ₂) ₂ . Journal of Physical Chemistry B, 2018, 122, 9191-9201.	1.2	8
1148	Balance Between Light Absorption and Recombination Losses in Solutionâ€Processed Small Molecule Solar Cells with Normal or Inverted Structures. Advanced Energy Materials, 2018, 8, 1801807.	10.2	17

#	ARTICLE	IF	CITATIONS
1149	High-efficiency small-molecule ternary solar cells with a hierarchical morphology enabled by synergizing fullerene and non-fullerene acceptors. Nature Energy, 2018, 3, 952-959.	19.8	558
1150	Semi-transparent low-donor content organic solar cells employing cyclopentadithiophene-based conjugated molecules. Journal of Materials Chemistry C, 2018, 6, 10532-10537.	2.7	14
1151	Efficient chemical structure and device engineering for achieving difluorinated 2,2′-bithiophene-based small molecular organic solar cells with 9.0% efficiency. Journal of Materials Chemistry A, 2018, 6, 12493-12505.	5.2	23
1152	Photovoltaics and Nanotechnology as Alternative Energy. Environmental Chemistry for A Sustainable World, 2018, , 211-241.	0.3	1
1153	Highâ€Efficiency Allâ€Smallâ€Molecule Organic Solar Cells Based on an Organic Molecule Donor with Alkylsilylâ€Thienyl Conjugated Side Chains. Advanced Materials, 2018, 30, e1706361.	11.1	154
1154	Engineering the morphology <i>via</i> processing additives in multiple all-polymer solar cells for improved performance. Journal of Materials Chemistry A, 2018, 6, 10421-10432.	5.2	65
1155	Optical Inâ€Coupling in Organic Solar Cells. Small Methods, 2018, 2, 1800123.	4.6	19
1156	D-Ï€-A-Ï€-D type thiazolo[5,4-d]thiazole-core organic chromophore and graphene modified PEDOT:PSS buffer layer for efficient bulk heterojunction organic solar cells. Solar Energy, 2018, 171, 366-373.	2.9	29
1157	Low-Vapor-Pressure Solvent Additives Function as Polymer Swelling Agents in Bulk Heterojunction Organic Photovoltaics. Journal of Physical Chemistry C, 2018, 122, 16574-16588.	1.5	17
1158	From PCBM-Polymer to Low-Cost and Thermally Stable C60/C70-Polymer Solar Cells: The Role of Molecular Structure, Crystallinity, and Morphology Control. ACS Applied Materials & (Interfaces, 2018, 10, 24037-24045.	4.0	10
1159	Reducing charge recombination of polymer solar cells by introducing composite anode buffer layer. Solar Energy, 2018, 171, 8-15.	2.9	12
1160	Synthesis and Fieldâ€Effect Transistor Application of Ï€â€Extended Lactamâ€Fused Conjugated Oligomers obtained by Tandem Direct Arylation. Chemistry - A European Journal, 2018, 24, 14137-14145.	1.7	10
1161	Effect of Donor-Acceptor Vertical Composition Profile on Performance of Organic Bulk Heterojunction Solar Cells. Scientific Reports, 2018, 8, 9574.	1.6	23
1162	Fluorination Triggered New Small Molecule Donor Materials for Efficient Asâ€Cast Organic Solar Cells. Small, 2018, 14, e1801542.	5.2	22
1163	High-efficiency all-dielectric transmission metasurface for linearly polarized light in the visible region. Photonics Research, 2018, 6, 517.	3.4	30
1164	Optical Gaps of Organic Solar Cells as a Reference for Comparing Voltage Losses. Advanced Energy Materials, 2018, 8, 1801352.	10.2	319
1165	Laser-Induced Morphology Change Based on Small Molecular Model Compounds Photo-Detector. Macromolecular Research, 2018, 26, 973-977.	1.0	2
1166	Synergistic Effects of Fluorination and Alkylthiolation on the Photovoltaic Performance of the Poly(benzodithiophene-benzothiadiazole) Copolymers. ACS Applied Energy Materials, 2018, 1, 4686-4694.	2.5	9

#	Article	IF	CITATIONS
1167	Aggregateâ€Induced Selfâ€Assembly and Ultrafast Dynamics of Lightâ€Harvesting Dâ€Aâ€A Polymorphs. Macromolecular Rapid Communications, 2018, 39, e1800391.	2.0	2
1168	Walking the Emission Tightrope: Spectral and Computational Analysis of Some Dual-Emitting Benzothiadiazole Donor–Acceptor Dyes. Journal of Physical Chemistry A, 2018, 122, 7991-8006.	1.1	14
1169	Magnesium Tetra(phenylethynyl)porphyrin: Stepwise Synthetic Route, Crystal Structures, and Longer Singlet Excitedâ€5tate Lifetime than Zinc Congener. Chemistry - an Asian Journal, 2018, 13, 3032-3039.	1.7	9
1170	Direct (Hetero)Arylation for the Synthesis of Molecular Materials: Coupling Thieno[3,4-c]pyrrole-4,6-dione with Perylene Diimide to Yield Novel Non-Fullerene Acceptors for Organic Solar Cells. Molecules, 2018, 23, 931.	1.7	29
1171	Synthesis and photoelectric performance of D-A-A′ type small molecule based on triphenylamine. Materials Research Express, 2018, 5, 075101.	0.8	2
1172	Low Energy Gap Triphenylamine–Heteropentacene–Dicyanovinyl Triad for Solution-Processed Bulk-Heterojunction Solar Cells. Journal of Physical Chemistry C, 2018, 122, 11262-11269.	1.5	8
1173	Reviewâ€"Organic-Inorganic Hybrid Functional Materials: An Integrated Platform for Applied Technologies. Journal of the Electrochemical Society, 2018, 165, B3137-B3156.	1.3	282
1174	Two A2-D-A1-D-A2 small molecules with isoindigo as the central core for efficient organic photovoltaics. Dyes and Pigments, 2018, 156, 403-409.	2.0	6
1175	Structural Transformations in Ferroelectrics Discovered by Raman Spectroscopy., 0,,.		1
1176	Rationalizing Smallâ€Molecule Donor Design toward Highâ€Performance Organic Solar Cells: Perspective from Molecular Architectures. Advanced Theory and Simulations, 2018, 1, 1800091.	1.3	29
1177	Thioethylâ€Porphyrazine/Nanocarbon Hybrids for Photoinduced Electron Transfer. Advanced Functional Materials, 2018, 28, 1705418.	7.8	22
1178	Two Novel Small Molecule Donors and the Applications in Bulk-Heterojunction Solar Cells. Frontiers in Chemistry, 2018, 6, 260.	1.8	16
1179	Aromatic end-capped acceptor effects on molecular stacking and the photovoltaic performance of solution-processable small molecules. Journal of Materials Chemistry A, 2018, 6, 22077-22085.	5.2	19
1180	Solvent Additives: Key Morphologyâ€Directing Agents for Solutionâ€Processed Organic Solar Cells. Advanced Materials, 2018, 30, e1707114.	11.1	346
1181	Highly π-extended small molecules with bis(alkylthio)methylene side chains for organic field-effect transistors. Journal of Materials Chemistry C, 2018, 6, 7604-7611.	2.7	14
1182	Distinguishing limits on the fill factor in organic solar cells processed from different solvents: Charge recombination kinetics vs. charge extraction. Organic Electronics, 2018, 59, 427-431.	1.4	9
1183	A versatile small molecular electron donor with 2-dimensional conjugation structure for efficient organic solar cells compatible with both fullerene and non-fullerene electron acceptors. Dyes and Pigments, 2019, 161, 214-220.	2.0	1
1184	Indoloindole-based small molecule bulk heterojunction small molecule solar cells. Dyes and Pigments, 2019, 161, 419-426.	2.0	6

#	Article	IF	Citations
1185	Synthesis and Characterization of Benzothiadiazole and Dicyanovinylindandione Based Small-Molecular Conjugated Materials and Their Photovoltaic Properties. Macromolecular Research, 2019, 27, 1261-1267.	1.0	7
1186	Morphology of small molecular donor/polymer acceptor blends in organic solar cells: effect of the $\exists \hat{\epsilon} \in \hat{\epsilon} \in \hat{\epsilon} \in \hat{\epsilon}$ (see Eacking capability of the small molecular donors. Journal of Materials Chemistry C, 2019, 7, 10521-10529.	2.7	17
1187	Folding and Assembly of Short \hat{l}_{\pm} , \hat{l}^2 , \hat{l}^3 -Hybrid Peptides: Minor Variations in Sequence and Drastic Differences in Higher-Level Structures. Journal of the American Chemical Society, 2019, 141, 14239-14248.	6.6	18
1188	Improving the efficiencies of small molecule solar cells by solvent vapor annealing to enhance Jaggregation. Journal of Materials Chemistry C, 2019, 7, 9618-9624.	2.7	15
1189	Efficient and thermally stable organic solar cells based on small molecule donor and polymer acceptor. Nature Communications, 2019, 10, 3271.	5.8	94
1190	When "Donor–Acceptor―Dyes Delocalize: A Spectroscopic and Computational Study of D–A Dyes Using "Michler's Base― Journal of Physical Chemistry A, 2019, 123, 5957-5968.	1.1	7
1191	Improved Open-Circuit Voltage and Repeatability of Perovskite Cells Based on Double-Layer Lead Halide Precursors Fabricated by a Vapor-Assisted Method. ACS Applied Materials & Interfaces, 2019, 11, 24132-24139.	4.0	4
1192	A New Smallâ€Molecule Donor Containing Nonâ€Fused Ring Ï€â€Bridge Enables Efficient Organic Solar Cells with High Open Circuit Voltage and Low Acceptor Content. ChemPhysChem, 2019, 20, 2674-2682.	1.0	5
1193	Origin of Subthreshold Turn-On in Quantum-Dot Light-Emitting Diodes. ACS Nano, 2019, 13, 8229-8236.	7.3	46
1194	Surface and Interfacial Morphology of Bulk Heterojunction Layers in Organic Solar Cells with Solvent Additive. Journal of the Korean Physical Society, 2019, 75, 498-502.	0.3	0
1197	Selective Adsorption of C ₆₀ in the Supramolecular Nanopatterns of Donor–Acceptor Porphyrin Derivatives. Langmuir, 2019, 35, 14511-14516.	1.6	8
1198	Conjugated Polymer Blends for Organic Thermoelectrics. Advanced Electronic Materials, 2019, 5, 1800821.	2.6	59
1199	Engineering Charge-Transfer States for Efficient, Low-Energy-Loss Organic Photovoltaics. Trends in Chemistry, 2019, 1, 815-829.	4.4	32
1200	Molecular-scale-ordered structures of isoindigo and bithiophene-based small molecules through hydrogen bonding. Synthetic Metals, 2019, 256, 116149.	2.1	3
1201	Bio-Integrated Wearable Systems: A Comprehensive Review. Chemical Reviews, 2019, 119, 5461-5533.	23.0	822
1202	Understanding charge carrier dynamics in a P3HT:FLR blend. Physical Chemistry Chemical Physics, 2019, 21, 2771-2782.	1.3	7
1203	A molecular dynamics study on the interface morphology of vapor-deposited amorphous organic thin films. Physical Chemistry Chemical Physics, 2019, 21, 1484-1490.	1.3	10
1204	Aceneâ€Modified Smallâ€Molecule Donors for Organic Photovoltaics. Chemistry - A European Journal, 2019, 25, 12316-12324.	1.7	5

#	Article	IF	CITATIONS
1205	Terminal group modification of alkylthio substituted small molecule donor materials for organic solar cells. Dyes and Pigments, 2019, 171, 107653.	2.0	4
1206	Improvement of the optoelectronic and photovoltaic properties of a cyanopyrid-2,6-dione-based donor via molecular engineering. Dyes and Pigments, 2019, 170, 107661.	2.0	3
1207	Solutionâ€Processed Semitransparent Organic Photovoltaics: From Molecular Design to Device Performance. Advanced Materials, 2019, 31, e1900904.	11.1	168
1208	Medium-Bandgap (Acceptor′–Donor)2Acceptor-Type Small-Molecule Donors Based on an Asymmetric Thieno[3,2-c]isochromene Building Block for Organic Solar Cells with High Efficiency and Voltage. ACS Applied Energy Materials, 2019, 2, 4730-4736.	2.5	11
1209	Effect of heterocyclic spacer on property of hole-transporting materials with silafluorene core for perovskite solar cells. Computational and Theoretical Chemistry, 2019, 1161, 10-17.	1.1	18
1210	Nanoarchitectonics for Photoelectronics. , 2019, , 197-208.		0
1211	Atomic-Level Insight into the Postsynthesis Band Gap Engineering of a Lewis Base Polymer Using Lewis Acid Tris(pentafluorophenyl)borane. Chemistry of Materials, 2019, 31, 6715-6725.	3.2	35
1212	BODIPY derivatives with near infra-red absorption as small molecule donors for bulk heterojunction solar cells. RSC Advances, 2019, 9, 15410-15423.	1.7	16
1213	Effect of different topological structures (D-Ï∈-D and D-Ï∈-A-Ï∈-D) on the optoelectronic properties of benzo[2,1-B:3,4-Bi]dithiophene based donor molecules toward organic solar cells. Solar Energy, 2019, 186, 311-322.	2.9	31
1214	Conjugated Electron Donor–Acceptor Hybrid Polymeric Carbon Nitride as a Photocatalyst for CO2 Reduction. Molecules, 2019, 24, 1779.	1.7	73
1215	Förster resonance energy transfer in p-DTS(FBTTh2)2- p-SIDT(FBTTh2)2 small molecule ternary blend bulk-heterojunction solar cells for enhanced power conversion efficiency. Materials Letters, 2019, 251, 122-125.	1.3	8
1216	High-efficiency blue thermally activated delayed fluorescence from donor–acceptor–donor systems <i>via</i> the through-space conjugation effect. Chemical Science, 2019, 10, 5556-5567.	3.7	59
1217	New dithienosilole- and dithienogermole-based BODIPY for solar cell applications. New Journal of Chemistry, 2019, 43, 8735-8740.	1.4	23
1218	The effects of electronic and structural properties of two small molecules on their photovoltaic performances. Chemical Physics Letters, 2019, 728, 37-43.	1.2	5
1219	Improved solubility of asymmetric tetraethynylporphyrin derivatives for solution-processed organic solar cells. Organic Electronics, 2019, 71, 50-57.	1.4	6
1220	Direct C-H arylation for small molecules composed of diketopyrrolopyrrole and benzothiadiazole as organic semiconductor materials. Synthetic Metals, 2019, 250, 94-98.	2.1	7
1221	Pluripotent Features of Doubly Thiopheneâ€Fused Benzodiphospholes as Organic Functional Materials. Chemistry - A European Journal, 2019, 25, 6425-6438.	1.7	11
1222	The Effect of Fluorescence Lifetime and Energy Level in Small Molecules for Efficient Hybrid Solar Cells. International Journal of Electrochemical Science, 2019, , 2949-2964.	0.5	1

#	Article	IF	CITATIONS
1223	Phenothiazine Functionalized Multifunctional Aâ^'Ï€â€"Dâ^'Ï€â€"Dâ^'Ï€â€"A-Type Hole-Transporting Materials via Sequential Câ€"H Arylation Approach for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Camp; Interfaces, 2019, 11, 14011-14022.	4.0	51
1224	Excited states and excitonic interactions in prototypic polycyclic aromatic hydrocarbon dimers as models for graphitic interactions in carbon dots. Physical Chemistry Chemical Physics, 2019, 21, 9077-9088.	1.3	34
1225	Ternary System with Intermolecular Hydrogen Bond: Efficient Strategy to High-Performance Nonfullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 15598-15606.	4.0	21
1226	Synthesis of a Rod-rod Diblock Copolymer, Poly(3-hexylthiophene)-block-poly(furfuryl isocyanate), through the Anionic Polymerization with an Oxyanionic Macroinitiator. Chinese Journal of Polymer Science (English Edition), 2019, 37, 866-874.	2.0	1
1227	Phosphindole fused pyrrolo[3,2- <i>b</i>) pyrroles: a new single-molecule junction for charge transport. Dalton Transactions, 2019, 48, 6347-6352.	1.6	16
1228	Solution processed bulk heterojunction organic solar cells using small organic semiconducting materials based on fluorene core unit. Optical Materials, 2019, 91, 425-432.	1.7	13
1229	Enhanced stability of plasmonic polymer solar cells using ferrocenedicarboxylic acid modification. Materials Research Express, 2019, 6, 075508.	0.8	1
1230	Molecular engineering of benzodithiophene and diketopyrrolopyrrole-contained push-pull small molecules for efficient solution-processed organic solar cells. Dyes and Pigments, 2019, 166, 480-489.	2.0	2
1231	The progression of silicon technology acting as substratum for the betterment of future photovoltaics. International Journal of Energy Research, 2019, 43, 3959-3980.	2.2	11
1232	Photovoltaic Materials. , 2019, , 1033-1054.		O
1233	Solubilizing core modifications on high-performing benzodithiophene-based molecular semiconductors and their influences on film nanostructure and photovoltaic performance. Journal of Materials Chemistry A, 2019, 7, 6312-6326.	5.2	16
1234	Towards integrated multi-sensor platform using dual electrochemical and optical detection for on-site pollutant detection in water. Biosensors and Bioelectronics, 2019, 132, 90-96.	5.3	28
1235	Over 12% Efficiency Nonfullerene Allâ€Smallâ€Molecule Organic Solar Cells with Sequentially Evolved Multilength Scale Morphologies. Advanced Materials, 2019, 31, e1807842.	11.1	272
1236	Terminal Modulation in Search of a Balance between Hole Transport and Electron Transfer at the Interface for BODIPY-Based Organic Solar Cells. Journal of Physical Chemistry C, 2019, 123, 6407-6415.	1.5	10
1237	Development of Organic Dyeâ€Based Molecular Materials for Use in Fullereneâ€Free Organic Solar Cells. Chemical Record, 2019, 19, 989-1007.	2.9	14
1238	Charge Transfer and Interface Effects in Coâ€Assembled Circular Donor/Acceptor Complexes for Organic Photovoltaics. Advanced Theory and Simulations, 2019, 2, 1800194.	1.3	6
1239	A newly designed isoindigo/thiophene medium-sized molecule containing a π (D–A–D) bridge with unexpected organic photovoltaic performance. New Journal of Chemistry, 2019, 43, 18126-18133.	1.4	9
1240	Printed Large-Area Photovoltaic Modules Based on Small Molecules with Different Alkyl Terminal Chains. ACS Applied Energy Materials, 2019, 2, 8885-8893.	2.5	7

#	Article	IF	CITATIONS
1241	All-small-molecule organic solar cells with over 14% efficiency by optimizing hierarchical morphologies. Nature Communications, 2019, 10, 5393.	5.8	273
1242	Influence of the acceptor crystallinity on the open-circuit voltage in PTB7-Th: ITIC organic solar cells. Journal of Materials Chemistry C, 2019, 7, 14861-14866.	2.7	24
1243	Harvesting near- and far-field plasmonic enhancements from large size gold nanoparticles for improved performance in organic bulk heterojunction solar cells. Organic Electronics, 2019, 66, 94-101.	1.4	25
1244	A thiol-amine mixture for metal oxide towards device quality metal chalcogenides. Science China Materials, 2019, 62, 899-906.	3.5	10
1245	Borane Incorporation in a Non-Fullerene Acceptor To Tune Steric and Electronic Properties and Improve Organic Solar Cell Performance. ACS Applied Energy Materials, 2019, 2, 1229-1240.	2.5	43
1246	Higher Mobility and Carrier Lifetimes in Solutionâ€Processable Smallâ€Molecule Ternary Solar Cells with 11% Efficiency. Advanced Energy Materials, 2019, 9, 1802836.	10.2	65
1247	Rational Design of Cyclopenta[2,1â€b;3,4â€b′]dithiopheneâ€bridged Hole Transporting Materials for Highly Efficient and Stable Perovskite Solar Cells. Energy Technology, 2019, 7, 307-316.	1.8	18
1248	A new 2D-naphtho[1,2-b:5,6-b']dithiophene based donor small molecules for bulk-heterojunction organic solar cells. Dyes and Pigments, 2019, 163, 30-39.	2.0	9
1249	In-Operando Study of the Effects of Solvent Additives on the Stability of Organic Solar Cells Based on PTB7-Th:PC ₇₁ BM. ACS Energy Letters, 2019, 4, 464-470.	8.8	60
1250	Efficient charge generation from triplet excitons in metal-organic heterojunctions. Physical Review B, 2019, 99, .	1.1	9
1251	Organic materials for optoelectronic applications: Overview. , 2019, , 3-42.		6
1252	Systematic investigation of methyl substitution effect on physicochemical properties and photovoltaic performance in nonfullerene small-molecule electron acceptors. Dyes and Pigments, 2019, 164, 126-132.	2.0	4
1253	Phase transfer reaction for the preparation of stable polymer-quantum dot conjugates. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 371, 91-97.	2.0	3
1254	Synthesis of organic molecule donor for efficient organic solar cells with low acceptor content. Organic Electronics, 2019, 64, 54-61.	1.4	8
1255	Si-Bridged Ladder-Type Small-Molecule Acceptors for High-Performance Organic Photovoltaics. ACS Applied Materials & Distriction (1988) 11, 1125-1134.	4.0	15
1256	The Dawn of Single Material Organic Solar Cells. Advanced Science, 2019, 6, 1801026.	5.6	119
1257	Applications of polymer/graphene nanocomposite membranes: a review. Materials Research Innovations, 2019, 23, 276-287.	1.0	44
1258	A symmetric benzoselenadiazole based D–A–D small molecule for solution processed bulk-heterojunction organic solar cells. Journal of Industrial and Engineering Chemistry, 2020, 81, 309-316.	2.9	31

#	Article	IF	CITATIONS
1259	Thermal annealing dependent dielectric properties and energetic disorder in PffBT4T-2OD based organic solar cells. Materials Science in Semiconductor Processing, 2020, 105, 104750.	1.9	7
1260	Understanding the Photovoltaic Behavior of A–D–A Molecular Semiconductors through a Permutation of End Groups. Journal of Organic Chemistry, 2020, 85, 52-61.	1.7	15
1261	Face-on orientation and vertical phase separation of p-DTS(FBTTh2)2/PC70BM induced by epitaxial crystallization of polymer interface layer. Organic Electronics, 2020, 77, 105512.	1.4	1
1262	Challenges to the Stability of Active Layer Materials in Organic Solar Cells. Macromolecular Rapid Communications, 2020, 41, e1900437.	2.0	55
1263	Energy Transfer to a Stable Donor Suppresses Degradation in Organic Solar Cells. Advanced Functional Materials, 2020, 30, 1907432.	7.8	32
1264	The role of chemical design in the performance of organic semiconductors. Nature Reviews Chemistry, 2020, 4, 66-77.	13.8	444
1265	A structural study of p-type A–D–A oligothiophenes: effects of regioregular alkyl sidechains on annealing processes and photovoltaic performances. Journal of Materials Chemistry C, 2020, 8, 567-580.	2.7	4
1266	Impact of self-assembly on the photovoltaic properties of a small molecule oligothiophene donor. Solar Energy, 2020, 195, 223-229.	2.9	7
1267	Material perceptions and advances in molecular heteroacenes for organic solar cells. Energy and Environmental Science, 2020, 13, 4738-4793.	15.6	50
1268	Organic-based inverters: basic concepts, materials, novel architectures and applications. Chemical Society Reviews, 2020, 49, 7627-7670.	18.7	48
1269	Synthesis, Optical, Thermal and Structural Characteristics of Novel Thermocleavable Polymers Based on Phthalate Esters. Polymers, 2020, 12, 2791.	2.0	5
1270	Shape control of plasmonic gold nanoparticles and its application to vacuum-free bulk hetero-junction solar cells. Journal of Materials Science: Materials in Electronics, 2020, 31, 22957-22965.	1.1	4
1271	Conducting Polymers for Optoelectronic Devices and Organic Solar Cells: A Review. Polymers, 2020, 12, 2627.	2.0	127
1272	Unveiling Photovoltaic Performance Enhancement Mechanism of Polymer Solar Cells via Synergistic Effect of Binary Solvent Additives. Solar Rrl, 2020, 4, 2000239.	3.1	4
1273	Hole (donor) and electron (acceptor) transporting organic semiconductors for bulk-heterojunction solar cells. EnergyChem, 2020, 2, 100042.	10.1	55
1274	D–A—A′-type asymmetric small molecules based on triphenylamine-diketopyrrolopyrrole/5,6-difluoro-2,1,3-benzothiadiazole backbone for organic photovoltaic materials. New Journal of Chemistry, 2020, 44, 13319-13329.	1.4	4
1275	Vertical Composition Distribution and Crystallinity Regulations Enable High-Performance Polymer Solar Cells with >17% Efficiency. ACS Energy Letters, 2020, 5, 3637-3646.	8.8	87
1276	Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science, 2020, 369, 1615-1620.	6.0	1,122

#	Article	IF	CITATIONS
1277	Approaching 16% Efficiency in All-Small-Molecule Organic Solar Cells Based on Ternary Strategy with a Highly Crystalline Acceptor. Joule, 2020, 4, 2223-2236.	11.7	142
1278	Brush-Painted Solar Cells from Pre-Crystallized Components in a Nonhalogenated Solvent System Prepared by a Simple Stirring Technique. Macromolecules, 2020, 53, 8276-8285.	2.2	1
1279	Efficient Fullerene-Free Organic Solar Cells Using a Coumarin-Based Wide-Band-Gap Donor Material. ACS Applied Materials & Donor Materials & 2020, 12, 41869-41876.	4.0	21
1280	Side-Chain Engineering of Benzodithiophene-Bridged Dimeric Porphyrin Donors for All-Small-Molecule Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2020, 12, 41506-41514.	4.0	30
1281	Substitution Effect on Thiobarbituric Acid End Groups for High Open-Circuit Voltage Non-Fullerene Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2020, 12, 41852-41860.	4.0	14
1282	A Critical Review on Crystal Growth Techniques for Scalable Deposition of Photovoltaic Perovskite Thin Films. Materials, 2020, 13, 4851.	1.3	38
1283	Improving the Photostability of Small-Molecule-Based Organic Photovoltaics by Providing a Charge Percolation Pathway of Crystalline Conjugated Polymer. Polymers, 2020, 12, 2598.	2.0	4
1284	Organic Ionic Plastic Crystals as Hole Transporting Layer for Stable and Efficient Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2001460.	7.8	27
1285	Solution processed perovskite incorporated tandem photovoltaics: developments, manufacturing, and challenges. Journal of Materials Chemistry C, 2020, 8, 10641-10675.	2.7	11
1286	The effect of different aromatic conjugated bridges on optoelectronic properties of diketopyrrolopyrrole-based donor materials for organic photovoltaics. Journal of Molecular Modeling, 2020, 26, 154.	0.8	8
1287	Improved Performance of Ternary Solar Cells by Using BODIPY Triads. Materials, 2020, 13, 2723.	1.3	4
1288	Optimized active layer morphology toward efficient and polymer batch insensitive organic solar cells. Nature Communications, 2020, 11, 2855.	5.8	237
1289	nâ€Type Quinoidal Oligothiopheneâ€Based Semiconductors for Thinâ€Film Transistors and Thermoelectrics. Advanced Functional Materials, 2020, 30, 2000765.	7.8	40
1290	What is the role of planarity and torsional freedom for aggregation in a π-conjugated donor–acceptor model oligomer?. Journal of Materials Chemistry C, 2020, 8, 4944-4955.	2.7	11
1291	Supramolecular Energy Materials. Advanced Materials, 2020, 32, e1907247.	11.1	101
1292	Small molecule donor based on alkoxylated benzothiadiazole unit: Synthesis and photovoltaics properties. Materials Chemistry and Physics, 2020, 247, 122874.	2.0	2
1293	Performance improvement of polymer solar cells with binary additives induced morphology optimization and interface modification simultaneously. Solar Energy, 2020, 201, 330-338.	2.9	14
1294	Diketopyrrolopyrrole Derivatives Functionalized with Nâ€Annulated PDI and Seâ€Annulated PDI by Direct (Hetero)Arylation Methods. Asian Journal of Organic Chemistry, 2020, 9, 1291-1300.	1.3	6

#	ARTICLE	IF	Citations
1295	Smart Textiles for Electricity Generation. Chemical Reviews, 2020, 120, 3668-3720.	23.0	644
1296	Acceptor–donor–acceptor type molecules for high performance organic photovoltaics – chemistry and mechanism. Chemical Society Reviews, 2020, 49, 2828-2842.	18.7	326
1297	Mediated Non-geminate Recombination in Ternary Organic Solar Cells Through a Liquid Crystal Guest Donor. Frontiers in Chemistry, 2020, 8, 21.	1.8	9
1298	Size Effect of Two-Dimensional Conjugated Space in Photovoltaic Polymers' Side Chain: Balancing Phase Separation and Charge Transport. ACS Applied Materials & Samp; Interfaces, 2020, 12, 16670-16678.	4.0	27
1299	Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chemical Society Reviews, 2020, 49, 1653-1687.	18.7	364
1300	In Operando GISAXS and GIWAXS Stability Study of Organic Solar Cells Based on PffBT4Tâ€⊋OD:PC ₇₁ BM with and without Solvent Additive. Advanced Science, 2020, 7, 2001117.	5. 6	32
1301	Novel Nitrogen-Containing Heterocyclic Non-Fullerene Acceptors for Organic PhotovoltaicCells: Different End-Capping Groups Leading to a Big Difference of Power Conversion Efficiencies. ACS Applied Materials & Differences, 2020, 12, 13068-13076.	4.0	21
1302	Strategic Halogen Substitution to Enable Highâ€Performance Smallâ€Moleculeâ€Based Tandem Solar Cell with over 15% Efficiency. Advanced Energy Materials, 2020, 10, 1903846.	10.2	14
1303	Multifunctional nanostructured materials for next generation photovoltaics. Nano Energy, 2020, 70, 104480.	8.2	52
1304	An Alternating D1-A-D2-A Conjugated Ternary Copolymer Containing [1,2,5]selenadiazolo[3,4-c]pyridine Unit With Photocurrent Response Up to 1,100 nm. Frontiers in Chemistry, 2020, 8, 255.	1.8	3
1305	Conformation Control of Conjugated Polymers. Chemistry - A European Journal, 2020, 26, 16194-16205.	1.7	49
1306	Fullerene's ring: A new strategy to improve the performance of fullerene organic solar cells. Organic Electronics, 2020, 83, 105747.	1.4	19
1307	Understanding the langmuir and Langmuir-Schaefer film conformation of low-bandgap polymers and their bulk heterojunctions with PCBM. Nanotechnology, 2020, 31, 315712.	1.3	5
1308	Bent-Shaped <i>p</i> -Type Small-Molecule Organic Semiconductors: A Molecular Design Strategy for Next-Generation Practical Applications. Journal of the American Chemical Society, 2020, 142, 9083-9096.	6.6	108
1309	Theoretical, spectroscopical, and experimental investigations of small azomethine molecules for organic solar cells. Journal of Chemical Research, 2020, 44, 625-631.	0.6	1
1310	Benzodithiophene-based wide-bandgap small-molecule donors for organic photovoltaics with large open-circuit voltages. Organic Electronics, 2021, 88, 105996.	1.4	5
1311	Benzobisoxazole Cruciforms: A Crossâ€conjugated Platform for Designing Tunable Donor/Acceptor Materials. Asian Journal of Organic Chemistry, 2021, 10, 215-223.	1.3	6
1312	Improving solubility and photovoltaic properties of the star-shaped molecules by synergistic effect of central tris(2-methoxyphenyl)amine and branched fluorine substituent. Dyes and Pigments, 2021, 186, 109009.	2.0	1

#	Article	IF	CITATIONS
1313	Review and perspective of materials for flexible solar cells. Materials Reports Energy, 2021, 1, 100001.	1.7	54
1314	Programmed Molecular Assembly of Abrupt Crystalline Organic/Organic Heterointerfaces Yielding Metalâ€Organic Framework Diodes with Large Onâ€Off Ratios. Advanced Science, 2021, 8, 2001884.	5.6	18
1315	Photogeneration and the bulk quantum efficiency of organic photovoltaics. Energy and Environmental Science, 2021, 14, 1584-1593.	15.6	9
1316	Advances in Organic Photovoltaics. Acta Chimica Sinica, 2021, 79, 257.	0.5	28
1317	Water soluble organic electrochromic materials. RSC Advances, 2021, 11, 5245-5264.	1.7	28
1318	A recent overview of porphyrin-based π-extended small molecules as donors and acceptors for high-performance organic solar cells. Materials Chemistry Frontiers, 2021, 5, 7119-7133.	3.2	29
1319	The coupling and competition of crystallization and phase separation, correlating thermodynamics and kinetics in OPV morphology and performances. Nature Communications, 2021, 12, 332.	5.8	140
1320	Coupled ZnO–SnO ₂ Nanocomposite for Efficiency Enhancement of ZnO–SnO ₂ /p-Si Heterojunction Solar Cell. IEEE Transactions on Electron Devices, 2021, 68, 610-617.	1.6	9
1321	2,1,3-Benzothiadiazole Small Donor Molecules: A DFT Study, Synthesis, and Optoelectronic Properties. Molecules, 2021, 26, 1216.	1.7	8
1322	Perspectivas y aplicaciones reales del grafeno después de 16 años de su descubrimiento. Revista Colombiana De Quimica, 2021, 50, 51-85.	0.2	0
1323	Addition of 2D Ti ₃ C ₂ T _{<i>x</i>} to Enhance Photocurrent in Diodes for Highâ€Efficiency Organic Solar Cells. Solar Rrl, 2021, 5, 2100127.	3.1	12
1324	Enhancing the performances of all-small-molecule ternary organic solar cells via achieving optimized morphology and 3D charge pathways. Chinese Chemical Letters, 2021, 32, 2904-2908.	4.8	10
1325	Influence of alkyne spacers on the performance of thiophene-based donors in bulk-heterojunction organic photovoltaic cells. Dyes and Pigments, 2021, 188, 109152.	2.0	9
1326	Morphology Evolution Induced by Sequential Annealing Enabling Enhanced Efficiency in All-Small Molecule Solar Cells. ACS Applied Energy Materials, 2021, 4, 4234-4241.	2.5	10
1327	Synthesis of 5,15- <i>meso</i> -bis(2-chlorothiophen-3-yl)porphyrin as a building block for further functional materials. Journal of Porphyrins and Phthalocyanines, 2021, 25, 944-950.	0.4	0
1328	Mechanochemically Assisted Synthesis of Hexaazatriphenylenehexacarbonitrile. Journal of Organic Chemistry, 2021, 86, 14011-14015.	1.7	13
1329	Photophysical pathways in efficient bilayer organic solar cells: The importance of interlayer energy transfer. Nano Energy, 2021, 84, 105924.	8.2	33
1330	Progress in Organic Solar Cells: Materials, Physics and Device Engineering. Chinese Journal of Chemistry, 2021, 39, 2607-2625.	2.6	62

#	Article	IF	CITATIONS
1331	Review: materials and modelling for organic photovoltaic devices. Polymer International, 0, , .	1.6	6
1332	Carbazole core derived dyes: New non-fullerene acceptor for all small-molecule organic solar cells with very high open-circuit voltage of 1.12ÂV. Dyes and Pigments, 2021, 194, 109606.	2.0	1
1333	Quantum mechanical/molecular mechanical approach for the simulation of UV–Vis absorption spectra of π-conjugated oligomers. Journal of Molecular Liquids, 2021, 341, 117406.	2.3	1
1334	Electronic and assembly properties of a water-soluble blue naphthalene diimide. New Journal of Chemistry, 2021, 45, 14005-14013.	1.4	2
1335	BN-Substituted coronene diimide donor–acceptor–donor triads: photophysical, (spectro)-electrochemical studies and Lewis behavior. Journal of Materials Chemistry C, 2021, 9, 13926-13934.	2.7	10
1336	Investigation analysis of optoelectronic and structural properties of cis―and trans―structures of azo dyes: density functional theory study. Journal of Physical Organic Chemistry, 2021, 34, e4183.	0.9	6
1337	Textile triboelectric nanogenerators for self-powered biomonitoring. Journal of Materials Chemistry A, 2021, 9, 19149-19178.	5.2	55
1338	Selfâ€Assembling Azaindole Organogel for Organic Lightâ€Emitting Devices (OLEDs). Advanced Functional Materials, 2017, 27, 1702176.	7.8	15
1340	Organic Ambipolar Transistors and Circuits. , 2016, , 971-995.		4
1341	Organic Ambipolar Transistors and Circuits. , 2014, , 1-21.		3
1344	Imaging layers in thin-film molecular devices by transmission electron microscopy, using milling by focused ion beams and deposition on NaCl and Si. Canadian Journal of Chemistry, 2020, 98, 582-588.	0.6	2
1345	Solution-Processed Donors. , 2014, , 3-69.		3
1346	Improvement of Photovoltaic Performance of Octahexylphthalocyanine-Based Bulk-Heterojunction Solar Cells Using Various Fullerene Derivatives. Transactions of the Materials Research Society of Japan, 2013, 38, 463-466.	0.2	4
1347	Thiadiazoloquinoxaline-Based Narrow Energy Gap Molecules for Small Molecule Solar Cell Applications. Bulletin of the Korean Chemical Society, 2013, 34, 661-664.	1.0	2
1348	Effects of Fused Thiophene Bridges in Organic Semiconductors for Solution-Processed Small-Molecule Organic Solar Cells. Bulletin of the Korean Chemical Society, 2013, 34, 2148-2154.	1.0	5
1349	Light-emitting Donor-acceptor Dyes in Water: Creation of Light-emitting System Based on Aggregation of Donor-acceptor Dyes. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2016, 74, 781-791.	0.0	1
1350	Unraveling the Unconventional Order of a High-Mobility Indacenodithiophene–Benzothiadiazole Copolymer. ACS Macro Letters, 2021, 10, 1306-1314.	2.3	20
1351	Effect of various cathode modifying layers on the performances of SubPc/C60 based inverted organic solar cells. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 128803.	0.2	6

#	Article	IF	CITATIONS
1352	Organic Thin Film Solar Cell and the Possibility of its Improvement Using Surface Plasmon Resonance. The Review of Laser Engineering, 2013, 41, 177.	0.0	0
1353	The Versatile Roles of Graphene in Organic Photovoltaic Device Technology. Progress in Optical Science and Photonics, 2015, , 223-251.	0.3	1
1354	p-Type Small Electron-Donating Molecules for Organic Heterojunction Solar Cells., 2015,, 35-56.		0
1355	Efficiency Improvement of Organic Solar Cells Using Two-step Annealing Technique. Transactions on Electrical and Electronic Materials, 2016, 17, 134-138.	1.0	0
1356	Electronic and carrier transport properties of small molecule donors. Multiscale and Multiphysics Mechanics, $2016,1,305-326.$	0.3	0
1357	Electronic and carrier transport properties of small molecule donors. Coupled Systems Mechanics, 2017, 6, 75-96.	0.4	0
1358	Photovoltaic Materials., 2018, , 1-22.		0
1359	Enhanced light absorption and device performances of organic photovoltaic devices with Au tetrahedra nanoparticles. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 247201.	0.2	1
1360	Environment friendly solvent processed, fullerene-free organic solar cells with high efficiency in air. , 2018, , .		0
1361	Optimization of Bulk Heterojunction Organic Photovoltaic Devices. , 2019, , 1103-1138.		1
1362	Highly dendritic polythiophene/silver (PT/Ag) nanocomposite for solar energy applications. Egyptian Journal of Chemistry, 2019, .	0.1	0
1363	Poly(vinyl pyrrolidone)-modified metal oxide anode interlayers for stable organic solar cells. Journal of Photonics for Energy, 2020, 10, 1.	0.8	3
1364	Narrowlyâ€Distributed Conjugated Polymers Synthesized through Suzuki Polymerization with Palladium(II) Nâ€Heterocyclic Carbene Complex Confined in Dendritic Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 2022, 28, .	1.7	5
1365	Decoupling Complex Multiâ€Lengthâ€Scale Morphology in Nonâ€Fullerene Photovoltaics with Nitrogen Kâ€Edge Resonant Soft Xâ€ray Scattering. Advanced Materials, 2022, 34, e2107316.	11.1	16
1366	The theoretical investigation of the opto-electronic properties of designed molecules having 2-(2-Methylene-3-oxo-indane-1-ylidene) malononitrile as end-capped acceptors. Zeitschrift Fur Physikalische Chemie, 2021, 235, 785-804.	1.4	0
1367	The theoretical investigation of the opto-electronic properties of designed molecules having 2-(2-Methylene-3-oxo-indane-1-ylidene)malononitrile as end-capped acceptors. Zeitschrift Fur Physikalische Chemie, 2020, .	1.4	0
1368	End-capped modification of dithienosilole based small donor molecules for high performance organic solar cells using DFT approach. Journal of Molecular Liquids, 2022, 345, 118138.	2.3	59
1369	Sidechain engineering of N-annulated perylene diimide molecules. New Journal of Chemistry, 2021, 45, 21001-21005.	1.4	8

#	Article	IF	CITATIONS
1370	Ultrafast Electron Transfer in All-Small-Molecule Photovoltaic Blends Promoted by Intermolecular Interactions in Cyanided Donors. Chinese Journal of Chemical Physics, 0, , .	0.6	6
1371	<scp>Selfâ€assembled</scp> monolayers for interface engineering in polymer solar cells. Journal of Polymer Science, 2022, 60, 2175-2190.	2.0	15
1372	Design, synthesis, and comparative study of optoelectronic properties of arylated triazine-based sulfanilamide derivatives through Suzuki–Miyaura cross-coupling reactions. Journal of Molecular Modeling, 2022, 28, 44.	0.8	1
1373	Origin of the Additiveâ€Induced <i>V</i> _{OC} Change in Nonâ€Fullerene Organic Solar Cells. Small, 2022, 18, e2107106.	5. 2	15
1374	Large-area perovskite solar cells employing spiro-Naph hole transport material. Nature Photonics, 2022, 16, 119-125.	15.6	123
1375	Organic electronics: an overview of key materials, processes, and devices. , 2022, , 3-71.		4
1376	DFT and TD-DFT studies of new triphenylamine-based (D–A–D) donor materials for high-efficiency organic solar cells. Materials Advances, 2022, 3, 3526-3535.	2.6	12
1377	Enhancement in the Inherent Photostability of Small Molecule-Based Bhj Device by Molecular Architecturing. SSRN Electronic Journal, 0, , .	0.4	1
1378	Efficient Surface Hopping Approach for Modeling Charge Transport in Organic Semiconductors. Journal of Chemical Theory and Computation, 2022, 18, 1264-1274.	2.3	4
1379	Exploration of the Intriguing Photovoltaic Behavior for Fused Indacenodithiophene-Based A–D–A Conjugated Systems: A DFT Model Study. ACS Omega, 2022, 7, 11606-11617.	1.6	38
1380	A Facile Synthesis of Derivatives of Tetraphenylcyclopentadienone and a Linear Polymer. Polymer Science - Series A, 2021, 63, 672-678.	0.4	1
1381	Recent progress in organic solar cells (Part I material science). Science China Chemistry, 2022, 65, 224-268.	4.2	349
1382	Harnessing Intramolecular Chalcogen–Chalcogen Bonding in Merocyanines for Utilization in High-Efficiency Photon-to-Current Conversion Optoelectronics. ACS Applied Materials & Samp; Interfaces, 2022, 14, 4360-4370.	4.0	4
1383	CHAPTER 4. p-Type Molecular Materials for Organic Solar Cells. RSC Nanoscience and Nanotechnology, 0, , 109-153.	0.2	0
1384	CHAPTER 6. Structure/Property/Processing Relationships for Organic Solar Cells. RSC Nanoscience and Nanotechnology, 0, , 182-225.	0.2	0
1388	Donor-acceptor-donor π-conjugated material derived from merocyanine-diketopyrrolopyrrole: design, synthesis and photovoltaic applications. Journal of Electroanalytical Chemistry, 2022, 915, 116341.	1.9	3
1389	Synergy of backbone and end-group engineering for efficient non-fused-ring asymmetric electron acceptor-based organic solar cells. Materials Advances, 2022, 3, 5468-5475.	2.6	4
1390	Highly Efficient Dopant-Free Cyano-Substituted Spiro-Type Hole-Transporting Materials for Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 6633-6641.	2.5	8

#	Article	IF	CITATIONS
1391	Enhanced Near-Infrared Photoresponse for Efficient Organic Solar Cells Using Hybrid Plasmonic Nanostructures. SSRN Electronic Journal, 0, , .	0.4	0
1392	Crystallinity and Molecular Packing of Small Molecules in Bulk-Heterojunction Organic Solar Cells. Applied Sciences (Switzerland), 2022, 12, 5683.	1.3	3
1393	Conjugated polymers for solar cell applications. , 2022, , 367-401.		2
1394	Fabrications and applications of polymer–graphene nanocomposites for sustainability. , 2022, , 149-184.		0
1395	Organic materials based solar cells. Materials Today: Proceedings, 2022, , .	0.9	3
1396	Enhancement in the inherent photostability of small molecule-based BHJ device by molecular architecturing. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 283, 115841.	1.7	0
1397	Flexible solar and thermal energy conversion devices: Organic photovoltaics (OPVs), organic thermoelectric generators (OTEGs) and hybrid PV-TEG systems. Applied Materials Today, 2022, 29, 101614.	2.3	16
1398	Socio-economic impacts of solar energy technologies for sustainable green energy: a review. Environment, Development and Sustainability, 0, , .	2.7	4
1399	Probing Through-Bond and Through-Space Interactions in Singlet Fission-Based Pentacene Dimers. Journal of Physical Chemistry Letters, 2022, 13, 8978-8986.	2.1	4
1400	Ultrafast charge transfer in a nonfullerene all-small-molecule organic solar cell: a nonadiabatic dynamics simulation with optimally tuned range-separated functional. Physical Chemistry Chemical Physics, 2022, 24, 27173-27183.	1.3	2
1401	Evaluation of the Passivation Effects of PEDOT:PSS on Inverted Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	26
1402	Rational control of sequential morphology evolution and vertical distribution toward 17.18% efficiency all-small-molecule organic solar cells. Joule, 2022, 6, 2835-2848.	11.7	87
1403	Enhanced near-infrared photoresponse for efficient organic solar cells using hybrid plasmonic nanostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2023, 146, 115534.	1.3	7
1404	Influence of the cooling rate in annealing post-treatment on small molecule with siloxane side chains for solution-processed organic field-effect transistors. Dyes and Pigments, 2023, 210, 111040.	2.0	2
1405	Panchromatic small-molecule organic solar cells based on a pyrrolopyrrole aza-BODIPY with a small energy loss. Dyes and Pigments, 2023, 210, 111020.	2.0	1
1406	Analysis of Irregular Morphologies and Mobilities of Organic Solar Cells by Simulation. , 2022, , .		0
1407	Twisting of Porphyrin by Assembly in a Metalâ€Organic Framework yielding Chiral Photoconducting Films for Circularlyâ€Polarizedâ€Light Detection. Angewandte Chemie - International Edition, 2023, 62, .	7.2	6
1408	Volatile Additive Strategy Triggering 17.48% Efficient Postâ€Treatmentâ€Free Organic Solar Cells. Solar Rrl, 2023, 7, .	3.1	7

#	Article	IF	CITATIONS
1409	Twisting of Porphyrin by Assembly in a Metalâ€Organic Framework yielding Chiral Photoconducting Films for Circularlyâ€Polarizedâ€Light Detection. Angewandte Chemie, 0, , .	1.6	1
1410	Organic Solar Cells: Physical Principle and Recent Advances. Chemistry - an Asian Journal, 2023, 18, .	1.7	16
1411	Multi-scale mechanical properties of bulk-heterojunction films in polymer solar cells. Npj Flexible Electronics, 2023, 7, .	5.1	9
1412	Linear-Shaped Low-Bandgap Asymmetric Conjugated Donor Molecule for Fabrication of Bulk Heterojunction Small-Molecule Organic Solar Cells. Molecules, 2023, 28, 1538.	1.7	1
1413	Carbon Dots for Electroluminescent Lightâ€Emitting Diodes: Recent Progress and Future Prospects. Advanced Materials, 2023, 35, .	11.1	26
1414	Enhanced Openâ€Circuit Voltage by Using 2,7â€Pyrene as a Central Donor Unit in Aâ€Ï€â€Dâ€Ï€â€Aâ€Type Smallâ€Moleculeâ€Based Organic Solar Cells. ChemistrySelect, 2023, 8, .	0.7	0
1416	Perovskite Catalysts for Biomass Valorization. ACS Catalysis, 2023, 13, 7879-7916.	5.5	5