Graphene quantum dots: emergent nanolights for bioin photovoltaic devices

Chemical Communications 48, 3686 DOI: 10.1039/c2cc00110a

Citation Report

#	Article	IF	CITATIONS
3	Determination of Ammonia in Water Based on Chemiluminescence Resonance Energy Transfer between Peroxymonocarbonate and Branched NaYF ₄ :Yb ³⁺ /Er ³⁺ Nanoparticles. Analytical Chemistry, 2012, 84, 8871-8879.	3.2	63
4	Controlled Microwave-Assisted Growth of Silica Nanoparticles under Acid Catalysis. ACS Applied Materials & Interfaces, 2012, 4, 6875-6883.	4.0	25
5	Temperature-Dependent Fluorescence in Carbon Dots. Journal of Physical Chemistry C, 2012, 116, 25552-25557.	1.5	407
6	Three-dimensional graphene architectures. Nanoscale, 2012, 4, 5549.	2.8	754
7	Photoluminescent bimetallic-3-hydroxypicolinate/graphene oxide nanocomposite. RSC Advances, 2012, 2, 9443.	1.7	13
8	Multicolour fluorescent graphene oxide by cutting carbon nanotubes upon oxidation. CrystEngComm, 2012, 14, 4976.	1.3	11
9	Unusual emission transformation of graphene quantum dots induced by self-assembled aggregation. Chemical Communications, 2012, 48, 7637.	2.2	144
10	Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy and Environmental Science, 2012, 5, 8869.	15.6	790
11	Graphene Quantum Dot as a Green and Facile Sensor for Free Chlorine in Drinking Water. Analytical Chemistry, 2012, 84, 8378-8382.	3.2	370
12	Graphene quantum dots as autophagy-inducing photodynamic agents. Biomaterials, 2012, 33, 7084-7092.	5.7	372
13	Carbon nanodots: synthesis, properties and applications. Journal of Materials Chemistry, 2012, 22, 24230.	6.7	2,339
14	Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes. Chemical Communications, 2012, 48, 10177.	2.2	383
15	Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chemical Communications, 2012, 48, 8835.	2.2	1,477
16	Surface Chemistry Routes to Modulate the Photoluminescence of Graphene Quantum Dots: From Fluorescence Mechanism to Upâ€Conversion Bioimaging Applications. Advanced Functional Materials, 2012, 22, 4732-4740.	7.8	1,019
18	Plant leaf-derived fluorescent carbon dots for sensing, patterning and coding. Journal of Materials Chemistry C, 2013, 1, 4925.	2.7	275
19	Preparation and characterisation of multifunctional magneticâ€fluorescent Fe ₃ O ₄ /carbon dots/silica composites. Micro and Nano Letters, 2013, 8, 302-304.	0.6	8
20	Synthesis of blue light-emitting graphene quantum dots and their application in flexible nonvolatile memory. Organic Electronics, 2013, 14, 1447-1451.	1.4	51
21	Hybrid carbon source for producing nitrogen-doped polymer nanodots: one-pot hydrothermal synthesis, fluorescence enhancement and highly selective detection of Fe(iii). Nanoscale, 2013, 5, 8015.	2.8	135

#	Article	IF	CITATIONS
22	Preparation of photoluminescent carbon dots-embedded polyelectrolyte microcapsules. Particuology, 2013, 11, 334-339.	2.0	3
23	Blue and green luminescence of reduced graphene oxide quantum dots. Carbon, 2013, 63, 537-546.	5.4	66
24	Luminescent graphene quantum dots fabricated by pulsed laser synthesis. Carbon, 2013, 64, 341-350.	5.4	134
25	Carbon nanotubes as optical biomedical sensors. Advanced Drug Delivery Reviews, 2013, 65, 1933-1950.	6.6	324
26	Synthesis of fluorescent carbon nanoparticles from polyacrylamide for fast cellular endocytosis. RSC Advances, 2013, 3, 15589.	1.7	42
27	The electrochemical applications of quantum dots. Analyst, The, 2013, 138, 5855.	1.7	53
28	<i>In Vivo</i> Biodistribution and Toxicology of Carboxylated Graphene Quantum Dots. ACS Nano, 2013, 7, 6858-6867.	7.3	466
29	Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging. Nanoscale, 2013, 5, 11339.	2.8	290
30	Self-assembled graphene quantum dots induced by cytochrome c: a novel biosensor for trypsin with remarkable fluorescence enhancement. Nanoscale, 2013, 5, 7776.	2.8	142
31	Balancing Light Absorptivity and Carrier Conductivity of Graphene Quantum Dots for High-Efficiency Bulk Heterojunction Solar Cells. ACS Nano, 2013, 7, 7207-7212.	7.3	171
32	Carbon nanoparticles as an interfacial layer between TiO2-coated ZnO nanorod arrays and conjugated polymers for high-photocurrent hybrid solar cells. RSC Advances, 2013, 3, 16308.	1.7	17
33	Electrochemical immunosensor with graphene quantum dots and apoferritin-encapsulated Cu nanoparticles double-assisted signal amplification for detection of avian leukosis virus subgroup J. Biosensors and Bioelectronics, 2013, 47, 171-177.	5.3	105
34	Internalization and cytotoxicity of graphene oxide and carboxyl graphene nanoplatelets in the human hepatocellular carcinoma cell line Hep G2. Particle and Fibre Toxicology, 2013, 10, 27.	2.8	342
35	Surface functionalization of graphene quantum dots with small organic molecules from photoluminescence modulation to bioimaging applications: an experimental and theoretical investigation. RSC Advances, 2013, 3, 14571.	1.7	189
36	Green synthesis of carbon dots with down- and up-conversion fluorescent properties for sensitive detection of hypochlorite with a dual-readout assay. Analyst, The, 2013, 138, 6551.	1.7	241
37	Facile synthesis of halogenated carbon quantum dots as an important intermediate for surface modification. RSC Advances, 2013, 3, 9625.	1.7	50
38	Novel fluorescent carbonic nanomaterials for sensing and imaging. Methods and Applications in Fluorescence, 2013, 1, 042001.	1.1	138
39	Highly Photoluminescent Aminoâ€Functionalized Graphene Quantum Dots Used for Sensing Copper Ions. Chemistry - A European Journal, 2013, 19, 13362-13368.	1.7	211

			_
#		IF	CITATIONS
40	Fabrication of graphene quantum dots via size-selective precipitation and their application in upconversion-based DSSCs. Chemical Communications, 2013, 49, 9995.	2.2	93
41	Superior Microâ€Supercapacitors Based on Graphene Quantum Dots. Advanced Functional Materials, 2013, 23, 4111-4122.	7.8	595
42	The electron-transfer based interaction between transition metal ions and photoluminescent graphene quantum dots (GQDs): A platform for metal ion sensing. Talanta, 2013, 117, 152-157.	2.9	117
43	Perfluoroalkyl [70]-Fullerenes as Robust Highly-Luminescent Fluorocarbons, or Position of One CF ₃ Group Matters. Journal of Physical Chemistry Letters, 2013, 4, 2500-2507.	2.1	22
44	A carbon quantum dot decorated RuO2 network: outstanding supercapacitances under ultrafast charge and discharge. Energy and Environmental Science, 2013, 6, 3665.	15.6	293
45	Structural Stability, Electronic, Magnetic, and Optical Properties of Rectangular Graphene and Boron Nitride Quantum Dots: Effects of Size, Substitution, and Electric Field. Journal of Physical Chemistry C, 2013, 117, 23295-23304.	1.5	50
46	One-Pot Synthesis of Fluorescent Carbon Dots from Orange Waste Peels. Industrial & Engineering Chemistry Research, 2013, 52, 15673-15678.	1.8	398
47	Graphene quantum dots as the hole transport layer material for high-performance organic solar cells. Physical Chemistry Chemical Physics, 2013, 15, 18973.	1.3	113
48	Carbon dots functionalized gold nanorod mediated delivery of doxorubicin: tri-functional nano-worms for drug delivery, photothermal therapy and bioimaging. Journal of Materials Chemistry B, 2013, 1, 4972.	2.9	132
49	Graphene Quantum Dots from a Facile Sono-Fenton Reaction and Its Hybrid with a Polythiophene Graft Copolymer toward Photovoltaic Application. ACS Applied Materials & Interfaces, 2013, 5, 12672-12680.	4.0	94
50	Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon, 2013, 64, 424-434.	5.4	723
51	Carbon quantum dots-doped CdS microspheres with enhanced photocatalytic performance. Journal of Alloys and Compounds, 2013, 569, 102-110.	2.8	92
52	Nearly monodisperse graphene quantum dots fabricated by amine-assisted cutting and ultrafiltration. Nanoscale, 2013, 5, 12098.	2.8	73
53	Quantum Dots. Springer Briefs in Molecular Science, 2013, , 9-24.	0.1	0
54	Etching single-wall carbon nanotubes into green and yellow single-layer graphene quantum dots. Carbon, 2013, 64, 245-251.	5.4	113
55	Using Graphene Quantum Dots as Photoluminescent Probes for Protein Kinase Sensing. Analytical Chemistry, 2013, 85, 9148-9155.	3.2	166
56	Practical access to bandgap-like N-doped carbon dots with dual emission unzipped from PAN@PMMA core–shell nanoparticles. Journal of Materials Chemistry C, 2013, 1, 7731.	2.7	60
57	Evidence for Edgeâ€State Photoluminescence in Graphene Quantum Dots. Advanced Functional Materials, 2013, 23, 5062-5065.	7.8	113

#	Article	IF	CITATIONS
58	Target Delivery and Cell Imaging Using Hyaluronic Acid-Functionalized Graphene Quantum Dots. Molecular Pharmaceutics, 2013, 10, 3736-3744.	2.3	212
59	Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction. Nanoscale, 2013, 5, 3289.	2.8	283
60	White-light emitting boronate microparticles for potential use as reusable bright chemosensors in water. Chemical Communications, 2013, 49, 9869.	2.2	36
61	In vitro detection of calcium in bone by modified carbon dots. Analyst, The, 2013, 138, 7107.	1.7	27
62	The visible photoluminescence mechanism of oxidized multi-walled carbon nanotubes: an experimental and theoretical investigation. Journal of Materials Chemistry C, 2013, 1, 307-314.	2.7	22
63	Preparation of carbon nanodots from single chain polymeric nanoparticles and theoretical investigation of the photoluminescence mechanism. Journal of Materials Chemistry C, 2013, 1, 580-586.	2.7	158
64	Eco-friendly synthesis of size-controllable amine-functionalized graphene quantum dots with antimycoplasma properties. Nanoscale, 2013, 5, 1137.	2.8	182
65	Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale, 2013, 5, 4015.	2.8	1,295
66	Ag Nanoparticle-decorated graphene quantum dots for label-free, rapid and sensitive detection of Ag+ and biothiols. Chemical Communications, 2013, 49, 1079.	2.2	227
67	Quantum Dot Cytotoxicity and Ways To Reduce It. Accounts of Chemical Research, 2013, 46, 672-680.	7.6	286
68	Graphene quantum dots as a new substrate for immobilization and direct electrochemistry of glucose oxidase: Application to sensitive glucose determination. Biosensors and Bioelectronics, 2013, 41, 498-504.	5.3	290
69	Graphene oxide based fluorescent nanocomposites for cellular imaging. Journal of Materials Chemistry B, 2013, 1, 512-521.	2.9	115
70	Preparation and characterization of photocatalytic carbon dots-sensitized electrospun titania nanostructured fibers. Materials Research Bulletin, 2013, 48, 232-237.	2.7	30
71	Dimension-tailored functional graphene structures for energy conversion and storage. Nanoscale, 2013, 5, 3112.	2.8	101
72	Graphene based soft nanoreactors for facile "one-step―glycan enrichment and derivatization for MALDI-TOF-MS analysis. Talanta, 2013, 117, 1-7.	2.9	22
73	Preparation of Excitationâ€Independent Photoluminescent Graphene Quantum Dots with Visibleâ€Light Excitation/Emission for Cell Imaging. Chemistry - A European Journal, 2013, 19, 15918-15923.	1.7	71
74	Carbon quantum dots as novel sensitizers for photoelectrochemical solar hydrogen generation and their size-dependent effect. Nanotechnology, 2013, 24, 335401.	1.3	58
75	A two-photon ratiometric fluorescence probe for Cupric Ions in Live Cells and Tissues. Scientific Reports, 2013, 3, 2933.	1.6	50

		ITATION REPORT	
#	Article	IF	Citations
76	Graphene based materials for biomedical applications. Materials Today, 2013, 16, 365-373.	8.3	571
77	Ultra-sensitive and selective Hg2+ detection based on fluorescent carbon dots. Materials Research Bulletin, 2013, 48, 2529-2534.	2.7	133
78	Improvement of Photoluminescence of Graphene Quantum Dots with a Biocompatible Photochemic Reduction Pathway and Its Bioimaging Application. ACS Applied Materials & Interfaces, 2013, 5 1174-1179.	;al ;, 4.0	224
79	Identifying the fluorescence of graphene oxide. Journal of Materials Chemistry C, 2013, 1, 338-342.	2.7	112
80	Graphene quantum dots/gold electrode and its application in living cell H2O2 detection. Nanoscale, 2013, 5, 1816.	2.8	245
81	Functionalized nanomaterials: their use as contrast agents in bioimaging: mono- and multimodal approaches. Nanotechnology Reviews, 2013, 2, 125-169.	2.6	59
82	Graphene Quantum Dots Combined with Europium Ions as Photoluminescent Probes for Phosphate Sensing. Chemistry - A European Journal, 2013, 19, 3822-3826.	1.7	159
83	Electrophoretic fabrication of highly robust, efficient, and benign heterojunction photoelectrocatalysts based on graphene-quantum-dot sensitized TiO2 nanotube arrays. Journal of Materials Chemistry A, 2013, 1, 3551.	5.2	120
84	Interfacing water soluble nanomaterials with fluorescence chemosensing: Graphene quantum dot to detect Hg2+ in 100% aqueous solution. Materials Letters, 2013, 97, 78-80.) 1.3	84
85	Quantum dots for fluorescent biosensing and bio-imaging applications. Analyst, The, 2013, 138, 250	06. 1.7	319
86	Graphene: A Platform for Surfaceâ€Enhanced Raman Spectroscopy. Small, 2013, 9, 1206-1224.	5.2	453
87	Two-Dimensional Nanostructure-Reinforced Biodegradable Polymeric Nanocomposites for Bone Tissue Engineering. Biomacromolecules, 2013, 14, 900-909.	2.6	262
88	Strain induced chemical potential difference between monolayer graphene sheets. Nanoscale, 2013 2616.	, 5, 2.8	16
89	Recent advancements of graphene in biomedicine. Journal of Materials Chemistry B, 2013, 1, 2542.	2.9	176
90	Glutathione-functionalized graphene quantum dots as selective fluorescent probes for phosphate-containing metabolites. Nanoscale, 2013, 5, 1810.	2.8	175
91	Graphene Quantum Dots as a Green Sensitizer to Functionalize ZnO Nanowire Arrays on Fâ€Doped SnO ₂ Glass for Enhanced Photoelectrochemical Water Splitting. Advanced Energy Materials, 2013, 3, 997-1003.	10.2	189
92	The chemistry of pristine graphene. Chemical Communications, 2013, 49, 3721.	2.2	225
93	Carbon Nanorings and Their Enhanced Lithium Storage Properties. Advanced Materials, 2013, 25, 1125-1130.	11.1	121

#	Article	IF	CITATIONS
94	One-step preparation of nitrogen-doped graphenequantum dots from oxidized debris of graphene oxide. Journal of Materials Chemistry B, 2013, 1, 39-42.	2.9	380
95	Graphene Quantum Dot Hybrids as Efficient Metal-Free Electrocatalyst for the Oxygen Reduction Reaction. ACS Applied Materials & amp; Interfaces, 2013, 5, 3362-3369.	4.0	122
96	Unraveling Bright Moleculeâ€Like State and Dark Intrinsic State in Greenâ€Fluorescence Graphene Quantum Dots via Ultrafast Spectroscopy. Advanced Optical Materials, 2013, 1, 264-271.	3.6	144
97	Luminescent carbon quantum dots and their application in cell imaging. New Journal of Chemistry, 2013, 37, 2515.	1.4	149
98	Potential environmental implications of nano-enabled medical applications: critical review. Environmental Sciences: Processes and Impacts, 2013, 15, 123-144.	1.7	23
99	Hybrid gold nanocube@silica@graphene-quantum-dot superstructures: synthesis and specific cell surface protein imaging applications. Chemical Communications, 2013, 49, 2503.	2.2	52
100	Preparation of Graphene Quantum Dots from Pyrolyzed Alginate. Langmuir, 2013, 29, 6141-6146.	1.6	72
101	Large scale preparation of graphene quantum dots from graphite with tunable fluorescence properties. Physical Chemistry Chemical Physics, 2013, 15, 9907.	1.3	266
102	Fabrication of highly fluorescent graphene quantum dots using l-glutamic acid for in vitro/in vivo imaging and sensing. Journal of Materials Chemistry C, 2013, 1, 4676.	2.7	385
103	Polyamidoamine dendrimers-capped carbon dots/Au nanocrystal nanocomposites and its application for electrochemical immunosensor. Biosensors and Bioelectronics, 2013, 49, 323-328.	5.3	112
104	Graphene Quantum Dots as Universal Fluorophores and Their Use in Revealing Regulated Trafficking of Insulin Receptors in Adipocytes. ACS Nano, 2013, 7, 6278-6286.	7.3	229
105	Aryl-modified graphene quantum dots with enhanced photoluminescence and improved pH tolerance. Nanoscale, 2013, 5, 7361.	2.8	87
106	Reversible CO ₂ adsorption by an activated nitrogen doped graphene/polyaniline material. Nanotechnology, 2013, 24, 235703.	1.3	75
107	Fluorescent graphene quantum dots with a boronic acid appended bipyridinium salt to sense monosaccharides in aqueous solution. Chemical Communications, 2013, 49, 5180.	2.2	109
108	Gold Nanoflower@Gelatin Core–Shell Nanoparticles Loaded with Conjugated Polymer Applied for Cellular Imaging. ACS Applied Materials & Interfaces, 2013, 5, 213-219.	4.0	52
109	Oxygen Reduction Catalyzed by Platinum Nanoparticles Supported on Graphene Quantum Dots. ACS Catalysis, 2013, 3, 831-838.	5.5	185
110	Direct Synthesis of Graphene Quantum Dots by Chemical Vapor Deposition. Particle and Particle Systems Characterization, 2013, 30, 764-769.	1.2	69
111	Solutionâ€Processable Graphene Quantum Dots. ChemPhysChem, 2013, 14, 2627-2640.	1.0	32

ARTICLE IF CITATIONS # Highly-efficient peroxidase-like catalytic activity of graphene dots for biosensing. Biosensors and 112 5.3 170 Bioelectronics, 2013, 49, 519-524. Nano-opto-electronics for biomedicine. Science Bulletin, 2013, 58, 2521-2529. 1.7 Tunable Molecular Plasmons in Polycyclic Aromatic Hydrocarbons. ACS Nano, 2013, 7, 3635-3643. 7.3 101 114 Highly sensitive and selective fluorescent detection of cerebral lead(ii) based on graphene quantum dot conjugates. Chemical Communications, 2013, 49, 10599. A universal immunosensing strategy based on regulation of the interaction between graphene and 116 2.2 156 graphene quantum dots. Chemical Communications, 2013, 49, 234-236. Recent advances in graphene quantum dots for sensing. Materials Today, 2013, 16, 433-442. 8.3 659 Quantum Dots for DNA Biosensing. Springer Briefs in Molecular Science, 2013, , . 118 0.1 15 Graphene Quantum Dots from Polycyclic Aromatic Hydrocarbon for Bioimaging and Sensing of Fe³⁺ and Hydrogen Peroxide. Particle and Particle Systems Characterization, 2013, 30, 119 1.2 140 1086-1092. Cysteamine hydrochloride protected carbon dots as a vehicle for the efficient release of the 120 43 1.7 anti-schizophrenic drug haloperidol. RSC Advances, 2013, 3, 26290. Carbon nano-onions (multi-layer fullerenes): chemistry and applications. Beilstein Journal of 1.5 Nanotechnology, 2014, 5, 1980-1998. Optical properties of B x N y C z monolayers. Applied Physics A: Materials Science and Processing, 2014, 123 1.1 11 117, 2095-2100. From highly graphitic to amorphous carbon dots: A critical review. MRS Energy & Sustainability, 2014, 124 1.3 Antibiotic Conjugated Fluorescent Carbon Dots as a Theranostic Agent for Controlled Drug Release, 126 2.5 144 Bioimaging, and Enhanced Antimicrobial Activity. Journal of Drug Delivery, 2014, 2014, 1-9. Graphene Quantum Dot-Based Organic Solar Cells. Lecture Notes in Nanoscale Science and 127 0.4 Technology, 2014, , 255-268. Challenges and Perspectives of Optical Nanoprobes. Springer Briefs in Molecular Science, 2014, , 128 0.1 0 97-100. Exigency for fusion of graphene and carbon nanotube with biomaterials. Toxicological and 129 Environmental Chemistry, 2014, 96, 699-721. Carbon dots prepared from ginger exhibiting efficient inhibition of human hepatocellular carcinoma 130 2.9 258 cells. Journal of Materials Chemistry B, 2014, 2, 4564. Graphene–palladium nanowires based electrochemical sensor using ZnFe2O4–graphene quantum dots as an effective peroxidase mimic. Analytica Chimica Acta, 2014, 852, 181-188.

#	Article	IF	CITATIONS
132	AgNP-DNA@GQDs Hybrid: New Approach for Sensitive Detection of H ₂ O ₂ and Glucose via Simultaneous AgNP Etching and DNA Cleavage. Analytical Chemistry, 2014, 86, 12348-12354.	3.2	107
133	Blue Luminescent Graphene Quantum Dots by Photochemical Stitching of Small Aromatic Molecules: Fluorescent Nanoprobes in Cellular Imaging. Particle and Particle Systems Characterization, 2014, 31, 433-438.	1.2	56
134	Ionic Liquid-Functionalized Fluorescent Carbon Nanodots and Their Applications in Electrocatalysis, Biosensing, and Cell Imaging. Langmuir, 2014, 30, 15016-15021.	1.6	51
135	Color-Switchable, Emission-Enhanced Fluorescence Realized by Engineering C-dot@C-dot Nanoparticles. ACS Applied Materials & Interfaces, 2014, 6, 20700-20708.	4.0	58
136	Simultaneous Detection of Multiple DNA Targets by Integrating Dualâ€Color Graphene Quantum Dot Nanoprobes and Carbon Nanotubes. Chemistry - A European Journal, 2014, 20, 16065-16069.	1.7	40
137	Surface-Engineered Graphene-Based Nanomaterials for Drug Delivery. Journal of Biomedical Nanotechnology, 2014, 10, 2086-2106.	0.5	58
138	Modulated photoluminescence of graphene quantum dots in the vicinity of an individual silver nano-octahedron. Physical Chemistry Chemical Physics, 2014, 16, 4504.	1.3	14
139	Graphene quantum dots and the resonance light scattering technique for trace analysis of phenol in different water samples. Talanta, 2014, 125, 341-346.	2.9	40
140	Functional Surface Engineering of C-Dots for Fluorescent Biosensing and in Vivo Bioimaging. Accounts of Chemical Research, 2014, 47, 20-30.	7.6	836
141	Photodynamic antibacterial effect of graphene quantum dots. Biomaterials, 2014, 35, 4428-4435.	5.7	341
142	"Turn-on―fluorescent detection of cyanide based on polyamine-functionalized carbon quantum dots. RSC Advances, 2014, 4, 3685-3689.	1.7	27
143	Design and development of fluorescent nanostructures for bioimaging. Progress in Polymer Science, 2014, 39, 365-395.	11.8	257
144	Multifunctional carbon dots with high quantum yield for imaging and gene delivery. Carbon, 2014, 67, 508-513.	5.4	217
145	Synergistically enhanced activity of graphene quantum dot/multi-walled carbon nanotube composites as metal-free catalysts for oxygen reduction reaction. Nanoscale, 2014, 6, 2603.	2.8	105
146	A general quantitative pH sensor developed with dicyandiamide N-doped high quantum yield graphene quantum dots. Nanoscale, 2014, 6, 3868-3874.	2.8	369
147	Metal–organic framework composites. Chemical Society Reviews, 2014, 43, 5468-5512.	18.7	1,901
148	Energetic stability of graphene nanoflakes and nanocones. Carbon, 2014, 67, 721-735.	5.4	34
149	A graphene quantum dot-based method for the highly sensitive and selective fluorescence turn on detection of biothiols. Talanta, 2014, 119, 538-543.	2.9	112

#	Article	IF	CITATIONS
150	Fluorescent blood glucose monitor by hemin-functionalized graphene quantum dots based sensing system. Analytica Chimica Acta, 2014, 810, 71-78.	2.6	127
151	Synthesis of mesoporous silica oxide/C-dot complex (meso-SiO ₂ /C-dots) using pyrolysed rice husk and its application in bioimaging. RSC Advances, 2014, 4, 1174-1179.	1.7	48
152	Band structure engineering of CdSe nanosheet by strain: A first-principles study. Chemical Physics Letters, 2014, 595-596, 91-96.	1.2	5
153	Highly Luminescent Nâ€Doped Carbon Quantum Dots as an Effective Multifunctional Fluorescence Sensing Platform. Chemistry - A European Journal, 2014, 20, 2254-2263.	1.7	407
154	Photoluminescence effects of graphitic core size and surface functional groups in carbon dots: COOâ^' induced red-shift emission. Carbon, 2014, 70, 279-286.	5.4	240
155	Common Origin of Green Luminescence in Carbon Nanodots and Graphene Quantum Dots. ACS Nano, 2014, 8, 2541-2547.	7.3	701
156	B-doped carbon quantum dots as a sensitive fluorescence probe for hydrogen peroxide and glucose detection. Analyst, The, 2014, 139, 2322-2325.	1.7	252
157	Applications of quantum dots with upconverting luminescence in bioimaging. Journal of Photochemistry and Photobiology B: Biology, 2014, 135, 23-32.	1.7	33
158	High-performance liquid chromatographic and mass spectrometric analysis of fluorescent carbon nanodots. Talanta, 2014, 129, 529-538.	2.9	33
159	Cellular distribution and cytotoxicity of graphene quantum dots with different functional groups. Nanoscale Research Letters, 2014, 9, 108.	3.1	142
160	Magnetic iron oxide–fluorescent carbon dots integrated nanoparticles for dual-modal imaging, near-infrared light-responsive drug carrier and photothermal therapy. Biomaterials Science, 2014, 2, 915-923.	2.6	134
161	Fluorescent graphene quantum dot nanoprobes for the sensitive and selective detection of mercury ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 131, 384-387.	2.0	106
162	Si-Doped Carbon Quantum Dots: A Facile and General Preparation Strategy, Bioimaging Application, and Multifunctional Sensor. ACS Applied Materials & Interfaces, 2014, 6, 6797-6805.	4.0	323
163	Versatile Graphene Quantum Dots with Tunable Nitrogen Doping. Particle and Particle Systems Characterization, 2014, 31, 597-604.	1.2	124
164	Carbocatalysis by Graphene-Based Materials. Chemical Reviews, 2014, 114, 6179-6212.	23.0	595
165	Direct electron transfer and electrocatalytic properties of immobilized hemoglobin onto glassy carbon electrode modified with ionic-liquid/titanium-nitride nanoparticles: Application to nitrite detection. Sensors and Actuators B: Chemical, 2014, 191, 625-633.	4.0	31
166	Recent Advances in Molecular Recognition Based on Nanoengineered Platforms. Accounts of Chemical Research, 2014, 47, 979-988.	7.6	70
167	Surrounding media sensitive photoluminescence of boron-doped graphene quantum dots for highly fluorescent dyed crystals, chemical sensing and bioimaging. Carbon, 2014, 70, 149-156.	5.4	232

#	Article	IF	CITATIONS
168	Nitrogen-doped carbon nanodots as a reducing agent to synthesize Ag nanoparticles for non-enzymatic hydrogen peroxide detection. RSC Advances, 2014, 4, 544-548.	1.7	19
169	Graphene Quantum Dots/ <scp>l</scp> -Cysteine Coreactant Electrochemiluminescence System and Its Application in Sensing Lead(II) Ions. ACS Applied Materials & Interfaces, 2014, 6, 1646-1651.	4.0	137
170	Origin of Strong Excitation Wavelength Dependent Fluorescence of Graphene Oxide. ACS Nano, 2014, 8, 1002-1013.	7.3	328
171	Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. TrAC - Trends in Analytical Chemistry, 2014, 54, 83-102.	5.8	296
172	Swarming carbon dots for folic acid mediated delivery of doxorubicin and biological imaging. Journal of Materials Chemistry B, 2014, 2, 698-705.	2.9	191
173	Composite of graphene quantum dots and Fe ₃ O ₄ nanoparticles: peroxidase activity and application in phenolic compound removal. RSC Advances, 2014, 4, 3299-3305.	1.7	81
174	A dynamic light scattering study of photochemically reduced colloidal graphene oxide. Colloid and Polymer Science, 2014, 292, 539-546.	1.0	34
175	Facile synthesis of P-doped carbon quantum dots with highly efficient photoluminescence. RSC Advances, 2014, 4, 5465.	1.7	190
177	Facile and green synthesis of photoluminescent carbon nanoparticles for cellular imaging. New Journal of Chemistry, 2014, 38, 784.	1.4	106
178	N-doped graphene quantum dots-functionalized titanium dioxide nanofibers and their highly efficient photocurrent response. Journal of Materials Research, 2014, 29, 1408-1416.	1.2	21
179	One-pot synthesis of photoluminescent carbon nanodots by carbonization of cyclodextrin and their application in Ag ⁺ detection. RSC Advances, 2014, 4, 62446-62452.	1.7	38
180	Large Graphene Quantum Dots Alleviate Immune-Mediated Liver Damage. ACS Nano, 2014, 8, 12098-12109.	7.3	82
181	Sheet resistance variation of graphene grown on annealed and mechanically polished Cu films. RSC Advances, 2014, 4, 62453-62456.	1.7	15
182	Fluorescence spectroscopy of graphene quantum dots: temperature effect at different excitation wavelengths. Nanotechnology, 2014, 25, 435703.	1.3	40
183	A novel fluorescent probe involving a graphene quantum dot–enzyme hybrid system for the analysis of hydroquinone in the presence of toxic resorcinol and catechol. Analytical Methods, 2014, 6, 7420.	1.3	28
184	Synthesis and Unique Photoluminescence Properties of Nitrogenâ€Rich Quantum Dots and Their Applications. Angewandte Chemie - International Edition, 2014, 53, 12542-12547.	7.2	159
185	Highly sensitive, stable, and precise detection of dopamine with carbon dots/tyrosinase hybrid as fluorescent probe. RSC Advances, 2014, 4, 46437-46443.	1.7	38
186	Plant leaf-derived graphene quantum dots and applications for white LEDs. New Journal of Chemistry, 2014, 38, 4946-4951.	1.4	134

#	Article	IF	CITATIONS
187	Facile synthesis of water-soluble and biocompatible fluorescent nitrogen-doped carbon dots for cell imaging. Analyst, The, 2014, 139, 1692-1696.	1.7	126
188	Dually functional, N-doped porous graphene foams as counter electrodes for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2014, 16, 21820-21826.	1.3	30
189	From graphite oxide to nitrogen and sulfur co-doped few-layered graphene by a green reduction route via Chinese medicinal herbs. RSC Advances, 2014, 4, 17902.	1.7	28
190	Bioimaging based on fluorescent carbon dots. RSC Advances, 2014, 4, 27184.	1.7	335
191	Enhancing the Fluorescence of Graphene Quantum Dots with a Oxidation Way. Advanced Materials Research, 2014, 887-888, 156-160.	0.3	4
192	Polyol-mediated C-dot formation showing efficient Tb ³⁺ /Eu ³⁺ emission. Chemical Communications, 2014, 50, 7503-7506.	2.2	49
193	Edge-enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance. Nanoscale, 2014, 6, 11988-11994.	2.8	406
194	Characteristic Spectral Patterns in the Carbonâ€∎3 Nuclear Magnetic Resonance Spectra of Hexagonal and Crenellated Graphene Fragments. ChemPhysChem, 2014, 15, 1799-1808.	1.0	11
195	Carbon quantum dots: synthesis, properties and applications. Journal of Materials Chemistry C, 2014, 2, 6921.	2.7	1,814
196	Ultra-bright alkylated graphene quantum dots. Nanoscale, 2014, 6, 12635-12643.	2.8	24
197	Mitigating the Cytotoxicity of Graphene Quantum Dots and Enhancing Their Applications in Bioimaging and Drug Delivery. ACS Macro Letters, 2014, 3, 1064-1068.	2.3	95
198	Turn-On Fluorescence Sensor for Intracellular Imaging of Glutathione Using g-C ₃ N ₄ Nanosheet–MnO ₂ Sandwich Nanocomposite. Analytical Chemistry, 2014, 86, 3426-3434.	3.2	378
199	Solvent-free synthesis of sulfur- and nitrogen-co-doped fluorescent carbon nanoparticles from glutathione for highly selective and sensitive detection of mercury(II) ions. Sensors and Actuators B: Chemical, 2014, 202, 741-747.	4.0	95
200	Synthesis and optical properties of nitrogen and sulfur co-doped graphene quantum dots. New Journal of Chemistry, 2014, 38, 4615-4621.	1.4	127
201	Pollutant soot of diesel engine exhaust transformed to carbon dots for multicoloured imaging of E. coli and sensing cholesterol. RSC Advances, 2014, 4, 30100.	1.7	81
202	Preparation of functionalized water-soluble photoluminescent carbon quantum dots from petroleum coke. Carbon, 2014, 78, 480-489.	5.4	210
203	A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nature Communications, 2014, 5, 4596.	5.8	1,141
204	Large scale synthesis of graphene quantum dots (GQDs) from waste biomass and their use as an efficient and selective photoluminescence on–off–on probe for Ag ⁺ ions. Nanoscale, 2014, 6, 11664-11670.	2.8	192

ARTICLE IF CITATIONS # Pentosan-derived water-soluble carbon nano dots with substantial fluorescence: Properties and 205 3.131 application as a photosensitizer. Applied Surface Science, 2014, 315, 66-72. Biological Application of Carbon Nanotubes and Graphene., 2014, , 279-312. 206 207 Membrane analysis with amphiphilic carbon dots. Chemical Communications, 2014, 50, 10299-10302. 2.2 84 Nitrogen-doped carbon-based dots prepared by dehydrating EDTA with hot sulfuric acid and their 208 electrocatalysis for oxygen reduction reaction. RSC Ádvances, 2014, 4, 32791-32795. Heteroatom-doped graphene materials: syntheses, properties and applications. Chemical Society 210 18.7 1,547 Reviews, 2014, 43, 7067-7098. Facile method to sort graphene quantum dots by size through ammonium sulfate addition. RSC Advances, 2014, 4, 56848-56852. 1.7 Luminescent carbon nanoparticles: effects of chemical functionalization, and evaluation of Ag+ 212 5.2 92 sensing properties. Journal of Materials Chemistry A, 2014, 2, 8342. Faraday Rotation in Graphene Quantum Dots: Interplay of Size, Perimeter Type, and Functionalization. 1.5 Journal of Physical Chemistry C, 2014, 118, 23996-24005. Regulation of photoluminescence properties of graphene quantum dots via hydrothermal treatment. 214 1.3 49 Physical Chemistry Chemical Physics, 2014, 16, 19011. Graphene quantum dots–three-dimensional graphene composites for high-performance supercapacitors. Physical Chemistry Chemical Physics, 2014, 16, 19307-19313. 1.3 164 Magnetically Engineered Semiconductor Quantum Dots as Multimodal Imaging Probes. Advanced 216 11.1 145 Materials, 2014, 26, 6367-6386. Organosilane-functionalized graphene quantum dots and their encapsulation into bi-layer hollow 1.3 siliča spheres for bioimaging applications. Physical Chemistry Chemical Physics, 2014, 16, 23188-23195. Carbon dotsâ€"Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano 218 6.2 788 Today, 2014, 9, 590-603. Photoluminescence, chemiluminescence and anodic electrochemiluminescence of hydrazide-modified 2.8 graphene quantum dots. Nanoscale, 2014, 6, 11240-11245. Dual-colored graphene quantum dots-labeled nanoprobes/graphene oxide: functional carbon materials for respective and simultaneous detection of DNA and thrombin. Nanotechnology, 2014, 25, 220 1.3 29 415501. Recent progress in graphene-material-based optical sensors. Analytical and Bioanalytical Chemistry, 2014, 406, 6903-6916. 221 53 UV-induced transformation and physicochemical property changes of quantum dots in the presence of 222 0.8 1 air. Journal of Nanoparticle Research, 2014, 16, 1. Transition Metal Embedded Two-Dimensional C₃N₄–Graphene Nanocomposite: 1.5 A Multifunctional Material. Journal of Physical Chemistry C, 2014, 118, 15487-15494.

#	Article	IF	CITATIONS
224	In Situ Growth of Silver Nanoparticles on Graphene Quantum Dots for Ultrasensitive Colorimetric Detection of H ₂ O ₂ and Glucose. Analytical Chemistry, 2014, 86, 6689-6694.	3.2	295
225	Electrochemical Synthesis of Carbon Nanodots Directly from Alcohols. Chemistry - A European Journal, 2014, 20, 4993-4999.	1.7	290
226	Ionic liquids as precursors for highly luminescent, surface-different nitrogen-doped carbon dots used for label-free detection of Cu2+/Fe3+ and cell imaging. Analytica Chimica Acta, 2014, 809, 128-133.	2.6	152
227	Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals. Nanoscale, 2014, 6, 7410-7415.	2.8	201
228	Carbon-based quantum dots for fluorescence imaging of cells and tissues. RSC Advances, 2014, 4, 10791.	1.7	298
229	Single-Particle Fluorescence Intensity Fluctuations of Carbon Nanodots. Nano Letters, 2014, 14, 620-625.	4.5	180
230	Graphene quantum dots optimization of dye-sensitized solar cells. Electrochimica Acta, 2014, 137, 634-638.	2.6	96
231	Recent progress on graphene-based hybrid electrocatalysts. Materials Horizons, 2014, 1, 379-399.	6.4	303
232	Responsive polymer–fluorescent carbon nanoparticle hybrid nanogels for optical temperature sensing, near-infrared light-responsive drug release, and tumor cell imaging. Nanoscale, 2014, 6, 7443-7452.	2.8	97
233	Graphene quantum dots enhanced electrochemiluminescence of cadmium sulfide nanocrystals for ultrasensitive determination of pentachlorophenol. Analyst, The, 2014, 139, 2912.	1.7	33
234	High-bright fluorescent carbon dots and their application in selective nucleoli staining. Journal of Materials Chemistry B, 2014, 2, 5077.	2.9	45
235	Fluorescent nanomaterial-derived white light-emitting diodes: what's going on. Journal of Materials Chemistry C, 2014, 2, 4358-4373.	2.7	106
236	Fluorescence quenching between unbonded graphene quantum dots and gold nanoparticles upon simple mixing. RSC Advances, 2014, 4, 35673-35677.	1.7	31
237	Facile synthesis and optical properties of nitrogen-doped carbon dots. New Journal of Chemistry, 2014, 38, 1522.	1.4	80
238	Boron- and Nitrogen-Doped Graphene Quantum Dots/Graphene Hybrid Nanoplatelets as Efficient Electrocatalysts for Oxygen Reduction. ACS Nano, 2014, 8, 10837-10843.	7.3	396
239	Crystalline Si/Graphene Quantum Dots Heterojunction Solar Cells. Journal of Physical Chemistry C, 2014, 118, 5164-5171.	1.5	125
240	Ultra-small fluorescent inorganic nanoparticles for bioimaging. Journal of Materials Chemistry B, 2014, 2, 2793-2818.	2.9	104
241	Graphene Quantum Dots-Band-Aids Used for Wound Disinfection. ACS Nano, 2014, 8, 6202-6210.	7.3	628

#	Article	IF	CITATIONS
242	Chemiluminescence of graphene quantum dots and its application to the determination of uric acid. Journal of Luminescence, 2014, 153, 73-78.	1.5	95
243	The inÂvitro and inÂvivo toxicity of graphene quantum dots. Biomaterials, 2014, 35, 5041-5048.	5.7	437
244	Preparation of graphene oxide doped eggshell membrane bioplatform modified Prussian blue nanoparticles as a sensitive hydrogen peroxide sensor. Colloids and Surfaces B: Biointerfaces, 2014, 118, 188-193.	2.5	21
245	Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Scientific Reports, 2014, 4, 5294.	1.6	759
246	The uptake mechanism and biocompatibility of graphene quantum dots with human neural stem cells. Nanoscale, 2014, 6, 5799-5806.	2.8	171
247	Electroluminescence from Graphene Quantum Dots Prepared by Amidative Cutting of Tattered Graphite. Nano Letters, 2014, 14, 1306-1311.	4.5	260
248	Graphene quantum dots conjugated albumin nanoparticles for targeted drug delivery and imaging of pancreatic cancer. Journal of Materials Chemistry B, 2014, 2, 3190-3195.	2.9	158
249	One-pot synthesis of N-doped graphene quantum dots as a fluorescent sensing platform for Fe3+ ions detection. Sensors and Actuators B: Chemical, 2014, 202, 568-573.	4.0	167
251	Novel electrochemical sensor based on graphene quantum dots/riboflavin nanocomposite for the detection of persulfate. Sensors and Actuators B: Chemical, 2014, 201, 503-510.	4.0	87
252	Paper-based electrochemiluminescence immunodevice for carcinoembryonic antigen using nanoporous gold-chitosan hybrids and graphene quantum dots functionalized Au@Pt. Sensors and Actuators B: Chemical, 2014, 202, 314-322.	4.0	59
253	Shaping graphene oxide by electrochemistry: From foams to self-assembled molecular materials. Carbon, 2014, 77, 405-415.	5.4	29
254	Nanostructure sensitization of transition metal oxides for visible-light photocatalysis. Beilstein Journal of Nanotechnology, 2014, 5, 696-710.	1.5	92
256	Theory of linear optical absorption in diamond-shaped graphene quantum dots. Physical Review B, 2015, 92, .	1.1	36
258	Surface-Engineered Graphene Quantum Dots Incorporated into Polymer Layers for High Performance Organic Photovoltaics. Scientific Reports, 2015, 5, 14276.	1.6	56
259	Graphene Quantum Dotâ€Protected Cadmium Selenide Quantum Dotâ€Sensitized Photoanode for Efficient Photoelectrochemical Cells with Enhanced Stability and Performance. Advanced Optical Materials, 2015, 3, 907-912.	3.6	24
260	Synthesis and Confinement of Carbon Dots in Lysozyme Single Crystals Produces Ordered Hybrid Materials with Tuneable Luminescence. Chemistry - A European Journal, 2015, 21, 9008-9013.	1.7	15
261	Carbon and Graphene Quantum Dots for Optoelectronic and Energy Devices: A Review. Advanced Functional Materials, 2015, 25, 4929-4947.	7.8	1,072
262	Controllable Synthesis of Highly Luminescent Boron Nitride Quantum Dots. Small, 2015, 11, 6491-6499.	5.2	148

#	Article	IF	CITATIONS
263	Graphene Quantum Dots Doping of MoS ₂ Monolayers. Advanced Materials, 2015, 27, 5235-5240.	11.1	168
264	Synthesis of Luminescent Graphene Quantum Dots with High Quantum Yield and Their Toxicity Study. PLoS ONE, 2015, 10, e0144906.	1.1	133
265	Fluorescent graphene quantum dots as traceable, pH-sensitive drug delivery systems. International Journal of Nanomedicine, 2015, 10, 6709.	3.3	79
266	Can inorganic salts tune electronic properties of graphene quantum dots?. Physical Chemistry Chemical Physics, 2015, 17, 17413-17420.	1.3	29
267	Facile access to B-doped solid-state fluorescent carbon dots toward light emitting devices and cell imaging agents. Journal of Materials Chemistry C, 2015, 3, 6668-6675.	2.7	109
268	The Electronic Structure of Amorphous Carbon Nanodots. Journal of Physical Chemistry B, 2015, 119, 7258-7265.	1.2	64
269	Investigation from chemical structure to photoluminescent mechanism: a type of carbon dots from the pyrolysis of citric acid and an amine. Journal of Materials Chemistry C, 2015, 3, 5976-5984.	2.7	599
270	A graphene quantum dots based fluorescent sensor for anthrax biomarker detection and its size dependence. Journal of Materials Chemistry B, 2015, 3, 4865-4870.	2.9	69
271	Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chemical Reviews, 2015, 115, 4744-4822.	23.0	1,519
272	Highly Efficient and Excitation Tunable Two-Photon Luminescence Platform For Targeted Multi-Color MDRB Imaging Using Graphene Oxide. Scientific Reports, 2014, 4, 6090.	1.6	35
273	Capping nanoparticles with graphene quantum dots for enhanced thermoelectric performance. Chemical Science, 2015, 6, 4103-4108.	3.7	42
274	A reversible fluorescence nanoswitch based on carbon quantum dots nanoassembly for detection of pyrophosphate ion. Sensors and Actuators B: Chemical, 2015, 220, 138-145.	4.0	34
275	Metal Nanoclusters: Applications in Environmental Monitoring and Cancer Therapy. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2015, 33, 168-187.	2.9	35
276	Synthesis of N, F and S co-doped graphene quantum dots. Nanoscale, 2015, 7, 11515-11519.	2.8	164
277	Subsecond Response of Humidity Sensor Based on Graphene Oxide Quantum Dots. IEEE Electron Device Letters, 2015, 36, 615-617.	2.2	24
278	Electrochemical probing of carbon quantum dots: not suitable for a single electrode material. RSC Advances, 2015, 5, 107270-107275.	1.7	19
279	Graphene and graphene-like 2D materials for optical biosensing and bioimaging: a review. 2D Materials, 2015, 2, 032004.	2.0	148
280	Nitrogen and sulfur codoped graphene quantum dots as a new fluorescent probe for Au ³⁺ ions in aqueous media. RSC Advances, 2015, 5, 107340-107347.	1.7	35

ARTICLE IF CITATIONS Graphene, graphene quantum dots and their applications in optoelectronics. Current Opinion in 281 3.4 73 Colloid and Interface Science, 2015, 20, 439-453. Facile synthesis of cysteine–functionalized graphene quantum dots for a fluorescence probe for 1.7 49 mercury ions. RSC Advances, 2015, 5, 97598-97603. Electro-optical switching of liquid crystals sandwiched between ion-beam-spurted graphene quantum 283 1.7 21 dots-doped PEDOT:PSS composite layers. Optics Express, 2015, 23, 34071. Graphene Quantum Dot Layers with Energy-Down-Shift Effect on Crystalline-Silicon Solar Cells. ACS 284 49 Applied Materials & amp; Interfaces, 2015, 7, 19043-19049. Synthesis of highly luminescent fluorinated graphene quantum dots with tunable fluorine coverage 285 1.3 18 and size. Materials Letters, 2015, 143, 112-115. Sulfur-doped graphitic carbon nitride decorated with graphene quantum dots for an efficient 5.2 229 metal-free electrocatalyst. Journal of Materials Chemistry A, 2015, 3, 1841-1846. Optical and Electrochemical Applications of Silicon–Carbon Dots/Silicon Dioxide Nanocomposites. 287 7.3 60 ACS Nano, 2015, 9, 312-319. Fluorescence Origin of Nanodiamonds. Journal of Physical Chemistry C, 2015, 119, 2239-2248. 1.5 288 79 Graphene quantum dots: versatile photoluminescence for energy, biomedical, and environmental 289 2.7 172 applications. Journal of Materials Chemistry C, 2015, 3, 1157-1165. A real-time fluorescent assay for the detection of alkaline phosphatase activity based on carbon 5.3 189 quantum dots. Biosensors and Bioelectronics, 2015, 68, 675-680. Carbon Quantum Dots-Based Recyclable Real-Time Fluorescence Assay for Alkaline Phosphatase with 291 201 3.2 Adenosine Triphosphate as Substrate. Analytical Chemistry, 2015, 87, 2966-2973. Electrospinning graphene quantum dots into a nanofibrous membrane for dual-purpose fluorescent 195 and electrochemical biosensors. Journal of Materials Chemistry B, 2015, 3, 2487-2496. Modulation of electrochemical property of carbon nanodot by post-chemical reductions. Colloids 293 2.3 4 and Surfaces A: Physicochemical and Engineering Aspects, 2015, 470, 15-21. Carbon dot based nanopowders and their application for fingerprint recovery. Chemical Communications, 2015, 51, 4902-4905. 294 2.2 295 Versatile photoluminescence from graphene and its derivatives. Carbon, 2015, 88, 86-112. 5.476 Fluorescent graphene quantum dots for biosensing and bioimaging. RSC Advances, 2015, 5, 19773-19789. 203 Nanoreactor-confined synthesis and separation of yellow-luminescent graphene quantum dots with a 297 5.448 recyclable SBA-15 template and their application for Fe(III) sensing. Carbon, 2015, 87, 215-225. Synthesis of carbon nanoparticles using one step green approach and their application as mercuric 298 1.5 ion sensor. Journal of Luminescence, 2015, 161, 117-122.

		CITATION REP	ORT	
#	Article		IF	CITATIONS
299	Synthesis of Fluorinated and Nonfluorinated Graphene Quantum Dots through a New Topâ Strategy for Longâ€Time Cellular Imaging. Chemistry - A European Journal, 2015, 21, 3791-	€Down 3797.	1.7	99
300	One-pot synthesis of carbon nanodots for fluorescence turn-on detection of Ag ^{+on the Ag⁺-induced enhancement of fluorescence. Journal of Materials Chemis 3, 2302-2309.}	p> based stry C, 2015,	2.7	291
301	High-quality water-soluble luminescent carbon dots for multicolor patterning, sensors, and bioimaging. RSC Advances, 2015, 5, 16972-16979.		1.7	68
302	Electrochemical synthesis of small-sized red fluorescent graphene quantum dots as a bioim platform. Chemical Communications, 2015, 51, 2544-2546.	aging	2.2	297
303	Hydrothermal carbonization of carboxymethylcellulose: One-pot preparation of conductive microspheres and water-soluble fluorescent carbon nanodots. Chemical Engineering Journa 266, 112-120.	carbon I, 2015,	6.6	89
304	White-Light Emission from Unmodified Graphene Oxide Quantum Dots. Journal of Physical C, 2015, 119, 2733-2742.	Chemistry	1.5	72
305	Nanosensor Composed of Nitrogen-Doped Carbon Dots and Gold Nanoparticles for Highly 9 Detection of Cysteine with Multiple Signals. Analytical Chemistry, 2015, 87, 2195-2203.	Selective	3.2	217
306	Laser-assisted synthesis of multi-colored protein dots and their biological distribution in experimental mice using a dye tracking method. RSC Advances, 2015, 5, 4051-4057.		1.7	2
307	The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanod	ots, and) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 2,135
308	Carbon quantum dots hydrothermally synthesized from chitin. Polymer Science - Series B, 2 16-22.	015, 57,	0.3	18
309	Graphene quantum dots directly generated from graphite via magnetron sputtering and the application in thin-film transistors. Carbon, 2015, 88, 225-232.	2	5.4	25
310	Uncovering the pKadependent fluorescence quenching of carbon dots induced by chloroph Nanoscale, 2015, 7, 6348-6355.	enols.	2.8	28
311	Synthesis of Strongly Fluorescent Graphene Quantum Dots by Cage-Opening Buckminsterf ACS Nano, 2015, 9, 2548-2555.	ullerene.	7.3	248
312	Generalized One-Pot Strategy Enabling Different Surface Functionalizations of Carbon Nand Produce Dual Emissions in Alcohol–Water Binary Systems. Journal of Physical Chemistry (17979-17987.	odots to 2, 2015, 119,	1.5	45
313	Graphene oxide quantum dots@silver core–shell nanocrystals as turn-on fluorescent nan- ultrasensitive detection of prostate specific antigen. Biosensors and Bioelectronics, 2015, 7	oprobe for '4, 909-914.	5.3	147
314	Negative induction effect of graphite N on graphene quantum dots: tunable band gap photoluminescence. Journal of Materials Chemistry C, 2015, 3, 8810-8816.		2.7	139
315	Graphene quantum dots decorated electrospun TiO2 nanofibers as an effective photoanod sensitized solar cells. Solar Energy Materials and Solar Cells, 2015, 143, 250-259.	e for dye	3.0	90
316	Universal Fluorescence Biosensor Platform Based on Graphene Quantum Dots and Pyrene-Functionalized Molecular Beacons for Detection of MicroRNAs. ACS Applied Materia Interfaces, 2015, 7, 16152-16156.	ls &	4.0	126

#	Article	IF	CITATIONS
317	Nanomaterial-based activatable imaging probes: from design to biological applications. Chemical Society Reviews, 2015, 44, 7855-7880.	18.7	138
318	Graphene quantum dots combined with copper(II) ions as a fluorescent probe for turn-on detection of sulfide ions. Mikrochimica Acta, 2015, 182, 2139-2146.	2.5	55
319	Advanced materials for optical sensing and biosensing of neurotransmitters. TrAC - Trends in Analytical Chemistry, 2015, 72, 27-44.	5.8	31
320	A Nitrogen-Doped Carbon Dot-Sensitized TiO ₂ Inverse Opal Film: Preparation, Enhanced Photoelectrochemical and Photocatalytic Performance. Journal of the Electrochemical Society, 2015, 162, H638-H644.	1.3	20
321	Well-controlled layer-by-layer assembly of carbon dot/CdS heterojunctions for efficient visible-light-driven photocatalysis. Journal of Materials Chemistry A, 2015, 3, 16613-16620.	5.2	66
322	Carbon quantum dots displaying dual-wavelength photoluminescence and electrochemiluminescence prepared by high-energy ball milling. Carbon, 2015, 94, 472-478.	5.4	87
323	Green Synthesis of Fluorescent Carbon Dots for Selective Detection of Tartrazine in Food Samples. Journal of Agricultural and Food Chemistry, 2015, 63, 6707-6714.	2.4	375
324	Polyol synthesis of nanoparticles: status and options regarding metals, oxides, chalcogenides, and non-metal elements. Green Chemistry, 2015, 17, 4107-4132.	4.6	324
325	Fluorescent sensor for Cr(VI) based in functionalized silicon quantum dots with dendrimers. Talanta, 2015, 144, 862-867.	2.9	43
326	Development of a Carbon Dot (C-Dot)-Linked Immunosorbent Assay for the Detection of Human α-Fetoprotein. Analytical Chemistry, 2015, 87, 8510-8516.	3.2	100
327	Multicolor Emitting Block Copolymer-Integrated Graphene Quantum Dots for Colorimetric, Simultaneous Sensing of Temperature, pH, and Metal Ions. Chemistry of Materials, 2015, 27, 5288-5294.	3.2	67
328	Green Synthesis of Bifunctional Fluorescent Carbon Dots from Garlic for Cellular Imaging and Free Radical Scavenging. ACS Applied Materials & Interfaces, 2015, 7, 17054-17060.	4.0	494
329	A rather facile strategy for the fabrication of PEGylated AIE nanoprobes. Polymer Chemistry, 2015, 6, 5288-5294.	1.9	55
330	Nitrogen and sulfur co-doped carbon dots for highly selective and sensitive detection of Hg (â…;) ions. Biosensors and Bioelectronics, 2015, 74, 263-269.	5.3	307
331	Graphene quantum dots: Highly active bifunctional nanoprobes for nonenzymatic photoluminescence detection of hydroquinone. Biosensors and Bioelectronics, 2015, 74, 418-422.	5.3	53
332	New Fluorescent Metal-Ion Detection Using a Paper-Based Sensor Strip Containing Tethered Rhodamine Carbon Nanodots. ACS Applied Materials & Interfaces, 2015, 7, 15649-15657.	4.0	148
334	Reversible Fluorescent Nanoswitch Based on Carbon Quantum Dots Nanoassembly for Real-Time Acid Phosphatase Activity Monitoring. Analytical Chemistry, 2015, 87, 7332-7339.	3.2	103
335	A room temperature volatile organic compound sensor with enhanced performance, fast response and recovery based on N-doped graphene quantum dots and poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) nanocomposite. RSC Advances, 2015, 5, 57559-57567.	1.7	78

#	Article	IF	CITATIONS
336	Scanning Tunneling Microscopy and Density Functional Theory Study on Zinc(II)-Phthalocyanine Tetrasulfonic Acid on Bilayer Epitaxial Graphene on Silicon Carbide(0001). Journal of Physical Chemistry C, 2015, 119, 9845-9850.	1.5	4
337	Masking agent-free and channel-switch-mode simultaneous sensing of Fe ³⁺ and Hg ²⁺ using dual-excitation graphene quantum dots. Analyst, The, 2015, 140, 3925-3928.	1.7	52
338	Electrochemiluminescence device for in-situ and accurate determination of CA153 at the MCF-7 cell surface based on graphene quantum dots loaded surface villous Au nanocage. Biosensors and Bioelectronics, 2015, 71, 286-293.	5.3	38
339	Electro-optic and dielectric properties of a ferroelectric liquid crystal doped with chemically and thermally stable emissive carbon dots. RSC Advances, 2015, 5, 34491-34496.	1.7	34
340	Highly sensitive enzymatic determination of urea based on the pH-dependence of the fluorescence of graphene quantum dots. Mikrochimica Acta, 2015, 182, 1431-1437.	2.5	32
341	Integrative Selfâ€Assembly of Graphene Quantum Dots and Biopolymers into a Versatile Biosensing Toolkit. Advanced Functional Materials, 2015, 25, 3183-3192.	7.8	62
342	Toward point-of-care diagnostics with consumer electronic devices: the expanding role of nanoparticles. RSC Advances, 2015, 5, 22256-22282.	1.7	90
343	Enhanced photoluminescence of pyrrolic-nitrogen enriched graphene quantum dots. RSC Advances, 2015, 5, 43750-43755.	1.7	51
344	Nitrogen and phosphorus co-doped graphene quantum dots: synthesis from adenosine triphosphate, optical properties, and cellular imaging. Nanoscale, 2015, 7, 8159-8165.	2.8	174
345	Down-conversion monochromatic light-emitting diodes with the color determined by the active layer thickness and concentration of carbon dots. Journal of Materials Chemistry C, 2015, 3, 6613-6615.	2.7	91
346	Investigating the surface state of graphene quantum dots. Nanoscale, 2015, 7, 7927-7933.	2.8	196
347	The sonochemical synthesis of Ga@C-dots particles. RSC Advances, 2015, 5, 25533-25540.	1.7	48
348	Highly dispersed buckybowls as model carbocatalysts for C–H bond activation. Journal of Materials Chemistry A, 2015, 3, 8667-8675.	5.2	2
349	Unilamellar Vesicles from Amphiphilic Graphene Quantum Dots. Chemistry - A European Journal, 2015, 21, 7755-7759.	1.7	16
350	Rational design of nitrogen and sulfur co-doped carbon dots for efficient photoelectrical conversion applications. Journal of Materials Chemistry A, 2015, 3, 11287-11293.	5.2	68
351	Recent applications of carbon nanomaterials in fluorescence biosensing and bioimaging. Chemical Communications, 2015, 51, 11346-11358.	2.2	182
352	Photoluminescent carbon nanodots: synthesis, physicochemical properties and analytical applications. Materials Today, 2015, 18, 447-458.	8.3	416
353	Green and fast synthesis of amino-functionalized graphene quantum dots with deep blue photoluminescence. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	27

#	Article	IF	CITATIONS
354	DNA-modified graphene quantum dots as a sensing platform for detection of Hg ²⁺ in living cells. RSC Advances, 2015, 5, 39587-39591.	1.7	43
355	One-pot green synthesis of oxygen-rich nitrogen-doped graphene quantum dots and their potential application in pH-sensitive photoluminescence and detection of mercury(II) ions. Talanta, 2015, 142, 131-139.	2.9	151
356	Is the Chain of Oxidation and Reduction Process Reversible in Luminescent Graphene Quantum Dots?. Small, 2015, 11, 3773-3781.	5.2	49
357	Bandgap Engineering of Coal-Derived Graphene Quantum Dots. ACS Applied Materials & Interfaces, 2015, 7, 7041-7048.	4.0	182
358	Synthesis of graphene oxide dots for excitation-wavelength independent photoluminescence at high quantum yields. Journal of Materials Chemistry C, 2015, 3, 4553-4562.	2.7	39
359	Formation of fluorescent polydopamine dots from hydroxyl radical-induced degradation of polydopamine nanoparticles. Physical Chemistry Chemical Physics, 2015, 17, 15124-15130.	1.3	140
360	Enhanced graphene quantum dot fluorescence nanosensor for highly sensitive acetylcholinesterase assay and inhibitor screening. Sensors and Actuators B: Chemical, 2015, 215, 24-29.	4.0	37
361	Carbon Quantum Dots and Applications in Photocatalytic Energy Conversion. ACS Applied Materials & Interfaces, 2015, 7, 8363-8376.	4.0	613
362	Primary hepatocyte imaging by multiphoton luminescent graphene quantum dots. Chemical Communications, 2015, 51, 8041-8043.	2.2	30
363	One-Step Electrosynthesis and Photoelectric Conversion of Selenium Nanowires Wrapped with Graphene Quantum Dots. Electrochimica Acta, 2015, 168, 116-124.	2.6	9
364	Green synthesis of fluorescent carbon nanoparticles from lychee (Litchi chinensis) plant. Korean Journal of Chemical Engineering, 2015, 32, 1707-1711.	1.2	17
365	A simple one-step hydrothermal route towards water solubilization of carbon quantum dots from soya-nuggets for imaging applications. RSC Advances, 2015, 5, 87528-87534.	1.7	38
366	Plasmon wave function of graphene nanoribbons. New Journal of Physics, 2015, 17, 083013.	1.2	23
367	Graphene quantum dots for ultrasensitive detection of acetylcholinesterase and its inhibitors. 2D Materials, 2015, 2, 034018.	2.0	33
368	Nitrogen-Doped Graphene Quantum Dots as a New Catalyst Accelerating the Coordination Reaction between Cadmium(II) and 5,10,15,20-Tetrakis(1-methyl-4-pyridinio)porphyrin for Cadmium(II) Sensing. Analytical Chemistry, 2015, 87, 10894-10901.	3.2	52
369	Photochemical synthesis of doped graphene quantum dots and their photoluminescence in aqueous and solid states. RSC Advances, 2015, 5, 84276-84279.	1.7	5
370	Solution-Processed, Flexible, and Transparent Non-Volatile Memory With Embedded Graphene Quantum Dots in Polymethylsilsesquioxane Layers. IEEE Electron Device Letters, 2015, 36, 1212-1214.	2.2	14
371	Analysing the effect of the crystal structure on upconversion luminescence in Yb ³⁺ ,Er ³⁺ -co-doped NaYF ₄ nanomaterials. Journal of Materials Chemistry C, 2015, 3, 11228-11238.	2.7	90

#	Article	IF	CITATIONS
372	Graphene quantum dots/Au hybrid nanoparticles as electrocatalyst for hydrogen evolution reaction. Chemical Physics Letters, 2015, 641, 29-32.	1.2	36
373	Nitrogen-doped carbon dots as fluorescent probe for detection of curcumin based on the inner filter effect. RSC Advances, 2015, 5, 95054-95060.	1.7	57
374	Single and repeated dose toxicity of citric acid-based carbon dots and a derivative in mice. RSC Advances, 2015, 5, 91398-91406.	1.7	25
375	Economical low-light photovoltaics by using the Pt-free dye-sensitized solar cell with graphene dot/PEDOT:PSS counter electrodes. Nano Energy, 2015, 18, 109-117.	8.2	97
376	Intramolecular Hydrogen Bonds Quench Photoluminescence and Enhance Photocatalytic Activity of Carbon Nanodots. Chemistry - A European Journal, 2015, 21, 8561-8568.	1.7	75
377	Application of Nanoparticles in Manufacturing. , 2015, , 1-53.		4
378	A facile photoluminescence modulated nanosensor based on nitrogen-doped graphene quantum dots for sulfite detection. New Journal of Chemistry, 2015, 39, 8114-8120.	1.4	42
379	Redox-mediated reversible modulation of the photoluminescence of single quantum dots. Chinese Physics B, 2015, 24, 078202.	0.7	3
380	Electronic and Optical Properties of Edge-Functionalized Graphene Quantum Dots and the Underlying Mechanism. Journal of Physical Chemistry C, 2015, 119, 24950-24957.	1.5	136
381	Atomistic modeling of the stiffness, strength and charge-induced actuation of graphene nanofoams. Extreme Mechanics Letters, 2015, 5, 54-61.	2.0	7
382	Functionalized Carbon Quantum Dots with Dopamine for Tyrosinase Activity Monitoring and Inhibitor Screening: In Vitro and Intracellular Investigation. ACS Applied Materials & Interfaces, 2015, 7, 23564-23574.	4.0	140
383	Self-Targeting Fluorescent Carbon Dots for Diagnosis of Brain Cancer Cells. ACS Nano, 2015, 9, 11455-11461.	7.3	439
384	A novel solid-to-solid electrocatalysis of graphene oxide reduction on copper electrode. RSC Advances, 2015, 5, 87987-87992.	1.7	7
385	Fractional photo-current dependence of graphene quantum dots prepared from carbon nanotubes. Physical Chemistry Chemical Physics, 2015, 17, 24566-24569.	1.3	14
386	Graphene quantum dots as novel and green nano-materials for the visible-light-driven photocatalytic degradation of cationic dye. Journal of Molecular Catalysis A, 2015, 409, 102-109.	4.8	130
387	Graphene-quantum-dots-based ratiometric fluorescent probe for visual detection of copper ion. Analyst, The, 2015, 140, 6742-6747.	1.7	51
388	A graphene quantum dot-based FRET system for nuclear-targeted and real-time monitoring of drug delivery. Nanoscale, 2015, 7, 15477-15486.	2.8	83
389	Graphene Quantum Dots-based Photoluminescent Sensor: A Multifunctional Composite for Pesticide Detection. ACS Applied Materials & Interfaces, 2015, 7, 20272-20279.	4.0	121

		CITATION R	EPORT	
#	Article		IF	CITATIONS
390	Effect of reaction temperature on properties of carbon nanodots and their visible-light photocatalytic degradation of tetracyline. RSC Advances, 2015, 5, 75711-75721.		1.7	33
391	Manipulating the Phonon Bottleneck in Graphene Quantum Dots: Phonon-Induced Carriwithin the Linear Response Theory. Journal of Physical Chemistry C, 2015, 119, 22357-22	er Relaxation 2369.	1.5	16
392	Sensing applications of luminescent carbon based dots. Analyst, The, 2015, 140, 7468-7	486.	1.7	124
393	Immobilizing water-soluble graphene quantum dots with gold nanoparticles for a low po electrochemiluminescence immunosensor. Nanoscale, 2015, 7, 16366-16371.	tential	2.8	68
394	Angiogenic Profiling of Synthesized Carbon Quantum Dots. Biochemistry, 2015, 54, 635	2-6356.	1.2	35
395	Differentiation of multi-metal ions based on fluorescent dual-emission carbon nanodots. Advances, 2015, 5, 82570-82575.	RSC	1.7	23
396	Graphene quantum dots: In the crossroad of graphene, quantum dots and carbogenic na Current Opinion in Colloid and Interface Science, 2015, 20, 354-361.	inoparticles.	3.4	39
397	Exploring the ability of water soluble carbon dots as matrix for detecting neurological dis using MALDI-TOF MS. International Journal of Mass Spectrometry, 2015, 393, 25-33.	sorders	0.7	25
398	Photoinduced Electron Transfer from Various Aniline Derivatives to Graphene Quantum I of Physical Chemistry A, 2015, 119, 11783-11790.	Dots. Journal	1.1	38
399	Manganese oxide nanoflakes/multi-walled carbon nanotubes/chitosan nanocomposite m carbon electrode as a novel electrochemical sensor for chromium (III) detection. Electroc Acta, 2015, 156, 207-215.	odified glassy himica	2.6	76
400	Recent Advances in Graphene Quantum Dots for Fluorescence Bioimaging from Cells thr to Animals. Particle and Particle Systems Characterization, 2015, 32, 515-523.	ough Tissues	1.2	103
401	A facile microwave-hydrothermal approach towards highly photoluminescent carbon dot goose feathers. RSC Advances, 2015, 5, 4428-4433.	s from	1.7	84
402	Glowing Graphene Quantum Dots and Carbon Dots: Properties, Syntheses, and Biologics Small, 2015, 11, 1620-1636.	al Applications.	5.2	1,770
403	Novel visible-light-driven CQDs/Bi 2 WO 6 hybrid materials with enhanced photocatalytic toward organic pollutants degradation and mechanism insight. Applied Catalysis B: Envir 2015, 168-169, 51-61.	activity onmental,	10.8	486
404	Breakdown into nanoscale of graphene oxide: Confined hot spot atomic reduction and f Scientific Reports, 2014, 4, 6735.	ragmentation.	1.6	105
405	Light-induced synthesis of photoluminescent carbon nanoparticles for Fe ³⁺ photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 136-138.	sensing and	5.2	41
406	Evidence of benzenoid domains in nanographenes. Physical Chemistry Chemical Physics, 2088-2093.	2015, 17,	1.3	6
407	A novel strategy to enhance ultraviolet light driven photocatalysis from graphene quantu infilled TiO ₂ nanotube arrays. RSC Advances, 2015, <u>5, 10623-10631.</u>	ım dots	1.7	65

ARTICLE IF CITATIONS Photoluminescent carbonâ€"nitrogen quantum dots as efficient electrocatalysts for oxygen 408 2.8 41 reduction. Nanoscale, 2015, 7, 2003-2008. Highly fluorescent C-dots obtained by pyrolysis of quaternary ammonium ions trapped in all-silica 409 2.8 38 ITQ-29 zeolite. Nanoscale, 2015, 7, 1744-1752. Unexpected Fluorescence of Polyols and PEGylated Nanoparticles Derived from Carbon Dot 410 1.2 21 Formation. Particle and Particle Systems Characterization, 2015, 32, 467-475. Graphene-based photocatalysts for oxygen evolution from water. RSC Advances, 2015, 5, 6543-6552. Graphene quantum dots induce apoptosis, autophagy, and inflammatory response via p38 mitogen-activated protein kinase and nuclear factor-I^oB mediated signaling pathways in activated THP-1 413 2.0 167 macrophages. Toxicology, 2015, 327, 62-76. Synthesis of photoluminescent carbon dots for the detection of cobalt ions. RSC Advances, 2015, 5, 1.7 2285-2291. To lose is to gain: Effective synthesis of water-soluble graphene fluoroxide quantum dots by 415 5.4 48 sacrificing certain fluorine atoms from exfoliated fluorinated graphene. Carbon, 2015, 83, 152-161. A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2.8 336 2,4,6-trinitrophenol in aqueous solution. Nanoscale, 2015, 7, 1872-1878. A facile hydrothermal approach towards photoluminescent carbon dots from amino acids. Journal of 417 5.0 96 Colloid and Interface Science, 2015, 439, 129-133. Fluorescent labels in biosensors for pathogen detection. Critical Reviews in Biotechnology, 2015, 35, 5.1 82-93. Structural evolution of graphene quantum dots during thermal decomposition of citric acid and the 419 183 5.4corresponding photoluminescence. Carbon, 2015, 82, 304-313. A rapid and label-free dual detection of Hg (II) and cysteine with the use of fluorescence switching of 4.0 124 graphene quantum dots. Sensors and Actuators B: Chemical, 2015, 207, 490-497. Selective recognition of Glutamate based on fluorescence enhancement of graphene quantum dot. 421 2.0 26 Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 136, 1962-1966. Transgenerational safety of nitrogen-doped graphene quantum dots and the underlying cellular 422 54 mechanism in Caenorhabditis elegans. Toxicology Research, 2015, 4, 27<u>0-280.</u> Multicolor imaging and the anticancer effect of a bifunctional silica nanosystem based on the 423 2.2 68 complex of graphene quantum dots and hypocrellin A. Chemical Communications, 2015, 51, 421-424. A misunderstanding about upconversion luminescence of carbon quantum dots. Journal of the 424 1.2 Iranian Chemical Society, 2015, 12, 441-446. Chemiluminescence reaction of glucose-derived graphene quantum dots with hypochlorite, and its 425 2.5110 application to the determination of free chlorine. Mikrochimica Acta, 2015, 182, 789-796. Carbon nanomaterials: multi-functional agents for biomedical fluorescence and Raman imaging. 18.7

CITATION REPORT

Chemical Society Reviews, 2015, 44, 4672-4698.

#

#	Article	IF	CITATIONS
427	Carboxyl and nitrite functionalized graphene quantum dots as a highly active reagent and catalyst for rapid diazotization reaction and synthesis of azo-dyes under solvent-free conditions. Dyes and Pigments, 2015, 113, 522-528.	2.0	40
428	Fluorescent carbon nanoparticles for the fluorescent detection of metal ions. Biosensors and Bioelectronics, 2015, 63, 61-71.	5.3	313
429	One- and two-photon luminescence in graphene oxide quantum dots. New Journal of Chemistry, 2015, 39, 98-101.	1.4	24
430	Microwave bottom-up route for size-tunable and switchable photoluminescent graphene quantum dots using acetylacetone: New platform for enzyme-free detection of hydrogen peroxide. Carbon, 2015, 81, 514-524.	5.4	93
431	A sensor based on blue luminescent graphene quantum dots for analysis of a common explosive substance and an industrial intermediate, 2,4,6-trinitrophenol. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 137, 1213-1221.	2.0	60
432	A glassy carbon electrode modified with graphene quantum dots and silver nanoparticles for simultaneous determination of guanine and adenine. Mikrochimica Acta, 2015, 182, 315-322.	2.5	48
433	Dopamine fluorescent sensors based on polypyrrole/graphene quantum dots core/shell hybrids. Biosensors and Bioelectronics, 2015, 64, 404-410.	5.3	184
434	Pervaporation separation of butyric acid from aqueous and anaerobic digestion (AD) solutions using PEBA based composite membranes. Journal of Industrial and Engineering Chemistry, 2015, 23, 163-170.	2.9	57
435	Carbon, Graphene and Graphene Oxide Quantum Dots for Analytical Biochemistry Research. Biochemistry and Analytical Biochemistry: Current Research, 2016, 5, .	0.4	7
436	Tuning the Emission Energy of Chemically Doped Graphene Quantum Dots. Nanomaterials, 2016, 6, 198.	1.9	45
437	Graphene Quantum Dots: Syntheses, Properties, and Biological Applications. , 2016, , 171-192.		17
438	Synthesis and Characterization of Polymeric Graphene Quantum Dots Based Nanocomposites for Humidity Sensing. Journal of Nanomaterials, 2016, 2016, 1-6.	1.5	19
439	Sunlight-Induced Photochemical Degradation of Methylene Blue by Water-Soluble Carbon Nanorods. International Journal of Photoenergy, 2016, 2016, 1-8.	1.4	40
440	Graphene and Carbon Quantum Dot-Based Materials in Photovoltaic Devices: From Synthesis to Applications. Nanomaterials, 2016, 6, 157.	1.9	126
441	Carbon Nanomaterials Interfacing with Neurons: An In vivo Perspective. Frontiers in Neuroscience, 2016, 10, 250.	1.4	89
442	Mechanism of NO Photocatalytic Oxidation on g-C3N4 Was Changed by Pd-QDs Modification. Molecules, 2016, 21, 36.	1.7	22
443	Nitrogen-Doped Carbon Dots as A New Substrate for Sensitive Glucose Determination. Sensors, 2016, 16, 630.	2.1	52
444	The Power of Heterogeneity: Parameter Relationships from Distributions. PLoS ONE, 2016, 11, e0155718.	1.1	5

#	Article	IF	CITATIONS
445	Graphene: The Missing Piece for Cancer Diagnosis?. Sensors, 2016, 16, 137.	2.1	43
446	Facile One-Pot Conversion of Petroleum Asphaltene to High Quality Green Fluorescent Graphene Quantum Dots and Their Application in Cell Imaging. Particle and Particle Systems Characterization, 2016, 33, 635-644.	1.2	32
447	Fluorescenceâ€Converging Carbon Nanodotsâ€Hybridized Silica Nanosphere. Small, 2016, 12, 4702-4706.	5.2	63
448	Microwaveâ€Assisted Preparation of White Fluorescent Graphene Quantum Dots as a Novel Phosphor for Enhanced White‣ightâ€Emitting Diodes. Advanced Functional Materials, 2016, 26, 2739-2744.	7.8	223
449	Effects of Graphene Quantum Dots on the Selfâ€Renewal and Differentiation of Mesenchymal Stem Cells. Advanced Healthcare Materials, 2016, 5, 702-710.	3.9	103
450	Silicon Nanocrystals and Siliconâ€Polymer Hybrids: Synthesis, Surface Engineering, and Applications. Angewandte Chemie - International Edition, 2016, 55, 2322-2339.	7.2	218
451	Ethylene diamine mediated cobalt nanoparticle studded graphene oxide quantum dots with tunable photoluminescence properties. RSC Advances, 2016, 6, 67102-67112.	1.7	8
452	Progress of Carbon Quantum Dots in Photocatalysis Applications. Particle and Particle Systems Characterization, 2016, 33, 457-472.	1.2	172
453	Concentrationâ€mediated multicolor fluorescence polymer carbon dots. Luminescence, 2016, 31, 897-904.	1.5	16
454	Phenylâ€Modified Carbon Nitride Quantum Dots with Distinct Photoluminescence Behavior. Angewandte Chemie - International Edition, 2016, 55, 3672-3676.	7.2	233
455	Fabrication and Characterization of an Ammonia Gas Sensor Based on PEDOT-PSS With N-Doped Graphene Quantum Dots Dopant. IEEE Sensors Journal, 2016, 16, 6149-6154.	2.4	47
456	Nanocarbonâ€based Electrochemical Detection of Heavy Metals. Electroanalysis, 2016, 28, 2472-2488.	1.5	50
457	Synthetic Developments of Nontoxic Quantum Dots. ChemPhysChem, 2016, 17, 598-617.	1.0	80
458	Phenylâ€Modified Carbon Nitride Quantum Dots with Distinct Photoluminescence Behavior. Angewandte Chemie, 2016, 128, 3736-3740.	1.6	31
459	Monitoring Dynamic Cellular Redox Homeostasis Using Fluorescence-Switchable Graphene Quantum Dots. ACS Nano, 2016, 10, 11475-11482.	7.3	71
460	Template synthesis of monodisperse carbon nanodots. Physics of the Solid State, 2016, 58, 2545-2549.	0.2	31
461	Chemically modulated graphene quantum dot for tuning the photoluminescence as novel sensory probe. Scientific Reports, 2016, 6, 39448.	1.6	34
462	Graphene-Based Materials in Biosensing, Bioimaging, and Therapeutics. Carbon Nanostructures, 2016, , 35-61.	0.1	4

#	Article	IF	CITATIONS
463	Two-step synthesis of Ag@GQD hybrid with enhanced photothermal effect and catalytic performance. Nanotechnology, 2016, 27, 48LT02.	1.3	15
464	Ultrafast spontaneous emission modulation of graphene quantum dots interacting with Ag nanoparticles in solution. Applied Physics Letters, 2016, 109, .	1.5	5
465	Effect of Reversible Lithium Ion Intercalation on the Size-Dependent Optical Properties of Graphene Quantum Dots. Journal of the Electrochemical Society, 2016, 163, A1112-A1119.	1.3	7
466	Graphene-based nanomaterials for bioimaging. Advanced Drug Delivery Reviews, 2016, 105, 242-254.	6.6	281
467	Green and facile synthesis of nitrogen-doped carbon nanodots for multicolor cellular imaging and Co2+ sensing in living cells. Sensors and Actuators B: Chemical, 2016, 235, 179-187.	4.0	76
468	Photoluminescent Carbon Nanostructures. Chemistry of Materials, 2016, 28, 4085-4128.	3.2	186
469	Graphene quantum dots–eggshell nanocomposite to extract polycyclic aromatic hydrocarbons in water. Environmental Chemistry Letters, 2016, 14, 521-526.	8.3	22
470	Graphene quantum dots and Nafion composite as an ultrasensitive electrochemical sensor for the detection of dopamine. Analytical Methods, 2016, 8, 4912-4918.	1.3	57
471	Graphene Quantum Dots for Theranostics and Bioimaging. Pharmaceutical Research, 2016, 33, 2337-2357.	1.7	118
472	Thermoresponsive, and reversibly emissive, core–shell nanogel composed of PNIPAM and carbon nanodots. Polymer Bulletin, 2016, 73, 2615-2625.	1.7	8
473	Indium-tin-oxide, free, flexible, nonvolatile memory devices based on graphene quantum dots sandwiched between polymethylsilsesquioxane layers. Organic Electronics, 2016, 32, 115-119.	1.4	17
474	Multifunctional N,S co-doped carbon quantum dots with pH- and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione. Carbon, 2016, 104, 169-178.	5.4	308
475	Target-Activated Modulation of Dual-Color and Two-Photon Fluorescence of Graphene Quantum Dots for in Vivo Imaging of Hydrogen Peroxide. Analytical Chemistry, 2016, 88, 4833-4840.	3.2	77
476	High fluorescence S, N co-doped carbon dots as an ultra-sensitive fluorescent probe for the determination of uric acid. Talanta, 2016, 155, 62-69.	2.9	131
477	Carbon dots-assisted colorimetric and fluorometric dual-mode protocol for acetylcholinesterase activity and inhibitors screening based on the inner filter effect of silver nanoparticles. Analyst, The, 2016, 141, 3280-3288.	1.7	80
478	N-GQDs and Eu ³⁺ co-encapsulated anionic MOFs: two-dimensional luminescent platform for decoding benzene homologues. Dalton Transactions, 2016, 45, 8795-8801.	1.6	23
479	Graphene quantum dots and their possible energy applications: A review. Current Applied Physics, 2016, 16, 1192-1201.	1.1	185
480	Effects of Carbon Allotrope Interface on the Photoactivity of Rutile One-Dimensional (1D) TiO ₂ Coated with Anatase TiO ₂ and Sensitized with CdS Nanocrystals. ACS Applied Materials & amp; Interfaces, 2016, 8, 13400-13409.	4.0	21

#	Article	IF	CITATIONS
481	A fluorometric assay for alkaline phosphatase activity based on β-cyclodextrin-modified carbon quantum dots through host-guest recognition. Biosensors and Bioelectronics, 2016, 83, 274-280.	5.3	117
482	Graphene quantum dots as smart probes for biosensing. Analytical Methods, 2016, 8, 4001-4016.	1.3	116
483	Size-Dependent Properties of Two-Dimensional MoS ₂ and WS ₂ . Journal of Physical Chemistry C, 2016, 120, 10078-10085.	1.5	144
484	Amino-functionalized Fluorescent Carbon Dots for Chemical Sensing. MRS Advances, 2016, 1, 1365-1370.	0.5	3
485	Kinetics of nitrogen-doped carbon dot formation via hydrothermal synthesis. New Journal of Chemistry, 2016, 40, 5555-5561.	1.4	73
486	Graphene aerogel-supported and graphene quantum dots-modified Î ³ -MnOOH nanotubes as a highly efficient electrocatalyst for oxygen reduction reaction. RSC Advances, 2016, 6, 43116-43126.	1.7	23
487	Surface plasmon enhancement of photoluminescence in photo-chemically synthesized graphene quantum dot and Au nanosphere. Nano Research, 2016, 9, 1866-1875.	5.8	28
488	Functionalization of chemically derived graphene for improving its electrocapacitive energy storage properties. Energy and Environmental Science, 2016, 9, 1891-1930.	15.6	205
489	High Yield Synthesis of Aspect Ratio Controlled Graphenic Materials from Anthracite Coal in Supercritical Fluids. ACS Nano, 2016, 10, 5293-5303.	7.3	64
490	Lipid-Bilayer Dynamics Probed by a Carbon Dot-Phospholipid Conjugate. Biophysical Journal, 2016, 110, 2016-2025.	0.2	31
491	Graphene quantum dots from fishbone carbon nanofibers. RSC Advances, 2016, 6, 48504-48514.	1.7	18
492	A Strategy for One-Pot Conversion of Organic Pollutants into Useful Hydrocarbons through Coupling Photodegradation of MB with Photoreduction of CO ₂ . ACS Catalysis, 2016, 6, 6861-6867.	5.5	128
493	The toxicity of graphene quantum dots. RSC Advances, 2016, 6, 89867-89878.	1.7	124
494	Tristable switching of the electrical conductivity through graphene quantum dots sandwiched in multi-stacked poly(methyl methacrylate) layers. Organic Electronics, 2016, 38, 379-383.	1.4	22
495	PVA/Carbon Dot Nanocomposite Hydrogels for Simple Introduction of Ag Nanoparticles with Enhanced Antibacterial Activity. Macromolecular Materials and Engineering, 2016, 301, 1352-1362.	1.7	60
496	Hemorheological characteristics of red blood cells exposed to surface functionalized graphene quantum dots. Food and Chemical Toxicology, 2016, 97, 346-353.	1.8	32
497	Green preparation of carbon dots for intracellular pH sensing and multicolor live cell imaging. Journal of Materials Chemistry B, 2016, 4, 7130-7137.	2.9	109
498	Multifarious roles of carbon quantum dots in heterogeneous photocatalysis. Journal of Energy Chemistry, 2016, 25, 927-935.	7.1	127

#	Article	IF	CITATIONS
499	Fluorescence dynamics of graphene quantum dots for detecting lard substance. , 2016, , .		0
500	Green synthesis of multimodal â€~OFF–ON' activatable MRI/optical probes. Dalton Transactions, 2016, 45, 17672-17680.	1.6	20
501	Modulating the Photocatalytic Activity of Graphene Quantum Dots via Atomic Tailoring for Highly Enhanced Photocatalysis under Visible Light. Advanced Functional Materials, 2016, 26, 8211-8219.	7.8	106
502	Fluorescence detection of pesticides using quantum dot materials – A review. Analytica Chimica Acta, 2016, 945, 9-22.	2.6	211
503	Size and pH dependent photoluminescence of graphene quantum dots with low oxygen content. RSC Advances, 2016, 6, 97990-97994.	1.7	49
504	A novel fluorescent carbon dots derived from tamarind. Chemical Physics Letters, 2016, 661, 179-184.	1.2	66
505	Theoretical Evaluation on Potential Cytotoxicity of Graphene Quantum Dots. ACS Biomaterials Science and Engineering, 2016, 2, 1983-1991.	2.6	65
506	A dual-channel fluorescent chemosensor for discriminative detection of glutathione based on functionalized carbon quantum dots. Biosensors and Bioelectronics, 2016, 86, 748-755.	5.3	59
507	Synthesis and cyto-genotoxicity evaluation of graphene on mice spermatogonial stem cells. Colloids and Surfaces B: Biointerfaces, 2016, 146, 770-776.	2.5	50
508	A general sensing strategy for detection of Fe3+ by using amino acid-modified graphene quantum dots as fluorescent probe. Applied Surface Science, 2016, 389, 995-1002.	3.1	53
509	Photosensitive ZnO-Graphene Quantum Dot Hybrid Nanocomposite for Optoelectronic Applications. ChemistrySelect, 2016, 1, 1503-1509.	0.7	12
510	Fabrication of new gas diffusion electrode based on carbon quantum dot and its application for oxygen reduction reaction. International Journal of Hydrogen Energy, 2016, 41, 14684-14691.	3.8	25
511	Highly Sensitive and Selective Detection of Nanomolar Ferric Ions Using Dopamine Functionalized Graphene Quantum Dots. ACS Applied Materials & Interfaces, 2016, 8, 21002-21010.	4.0	168
512	Fluorescent vesicles formed by simple surfactants induced by oppositely-charged carbon quantum dots. Chemical Communications, 2016, 52, 12024-12027.	2.2	52
513	Effects of graphene quantum dots on linear and nonlinear optical behavior of malignant ovarian cells. Journal of Nanophotonics, 2016, 10, 036014.	0.4	4
514	Size dependent magnetic and optical properties in diamond shaped graphene quantum dots: A DFT study. Journal of Physics and Chemistry of Solids, 2016, 99, 34-42.	1.9	46
515	3D Polyoxometalate-Functionalized Graphene Quantum Dots with Mono-Metallic and Bi-Metallic Nanoparticles for Application in Direct Methanol Fuel Cells. Journal of the Electrochemical Society, 2016, 163, F1237-F1244.	1.3	76
516	Ultrafastâ€response humidity sensor based on GOQDs/polyelectrolyte composite films. Electronics Letters, 2016, 52, 1609-1611.	0.5	3

#	Article	IF	CITATIONS
517	Green synthesis of highly fluorescent carbon quantum dots from sugarcane bagasse pulp. Applied Surface Science, 2016, 390, 435-443.	3.1	217
518	Oxygen-mediated formation of MoS _x -doped hollow carbon dots for visible light-driven photocatalysis. Journal of Materials Chemistry A, 2016, 4, 14796-14803.	5.2	33
519	Black Phosphorus Quantum Dots as an Efficient Saturable Absorber for Bound Soliton Operation in an Erbium Doped Fiber Laser. IEEE Photonics Journal, 2016, 8, 1-10.	1.0	42
520	Highly sensitive and portable gas sensing system based on reduced graphene oxide. Tsinghua Science and Technology, 2016, 21, 435-441.	4.1	5
521	On the article "Findings questioning the involvement of Sigma-1 receptor in the uptake of anisamide-decorated particles―[J. Control. Release 224 (2016) 229–238]. Journal of Controlled Release, 2016, 243, 382-385.	4.8	10
522	Functionalized Graphene Quantum Dots with Bi-Metallic Nanoparticles Composite: Sensor Application for Simultaneous Determination of Ascorbic Acid, Dopamine, Uric Acid and Tryptophan. Journal of the Electrochemical Society, 2016, 163, B718-B725.	1.3	87
523	Modifying the Size of Ultrasound-Induced Liquid-Phase Exfoliated Graphene: From Nanosheets to Nanodots. ACS Nano, 2016, 10, 10768-10777.	7.3	51
524	Hydroxylated-graphene quantum dots induce cells senescence in both p53-dependent and -independent manner. Toxicology Research, 2016, 5, 1639-1648.	0.9	32
525	A capillary electrophoretic method for separation and characterization of carbon dots and carbon dots dot-antibody bioconjugates. Talanta, 2016, 161, 854-859.	2.9	22
526	Recent Developments in Design and Fabrication of Graphene-Based Interdigital Micro-Supercapacitors for Miniaturized Energy Storage Devices. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, 6, 1752-1765.	1.4	21
527	Shining carbon dots: Synthesis and biomedical and optoelectronic applications. Nano Today, 2016, 11, 565-586.	6.2	563
528	Electron Injection of Phosphorus Doped gâ€C ₃ N ₄ Quantum Dots: Controllable Photoluminescence Emission Wavelength in the Whole Visible Light Range with High Quantum Yield. Advanced Optical Materials, 2016, 4, 2095-2101.	3.6	86
529	Defect engineering route to boron nitride quantum dots and edge-hydroxylated functionalization for bio-imaging. RSC Advances, 2016, 6, 73939-73946.	1.7	34
530	Graphene Oxide Quantum Dots Covalently Functionalized PVDF Membrane with Significantly-Enhanced Bactericidal and Antibiofouling Performances. Scientific Reports, 2016, 6, 20142.	1.6	136
531	High Color-Purity Green, Orange, and Red Light-Emitting Diodes Based on Chemically Functionalized Graphene Quantum Dots. Scientific Reports, 2016, 6, 24205.	1.6	72
532	Facile synthesis of multi-responsive functional graphene quantum dots for sensing metal cations. RSC Advances, 2016, 6, 103006-103011.	1.7	10
533	Optical behaviour of functional groups of graphene oxide. Materials Research Express, 2016, 3, 105604.	0.8	9
534	High-Purity Amino-Functionalized Graphene Quantum Dots Derived from Graphene Hydrogel. Nano, 2016, 11, 1650138.	0.5	1

#	Article	IF	CITATIONS
535	Label-free Electrochemiluminescent Immunosensor for Detection of Prostate Specific Antigen based on Aminated Graphene Quantum Dots and Carboxyl Graphene Quantum Dots. Scientific Reports, 2016, 6, 20511.	1.6	89
536	Synthesis of GdAlO ₃ :Mn ⁴⁺ ,Ge ⁴⁺ @Au Core–Shell Nanoprobes with Plasmon-Enhanced Near-Infrared Persistent Luminescence for in Vivo Trimodality Bioimaging. ACS Applied Materials & Interfaces, 2016, 8, 29939-29949.	4.0	65
537	Direct Synthesis of Multicolor Fluorescent Hollow Carbon Spheres Encapsulating Enriched Carbon Dots. Scientific Reports, 2016, 6, 19382.	1.6	20
538	Efficient Room-Temperature Phosphorescence from Nitrogen-Doped Carbon Dots in Composite Matrices. Chemistry of Materials, 2016, 28, 8221-8227.	3.2	270
539	Assembling carbon quantum dots to a layered carbon for high-density supercapacitor electrodes. Scientific Reports, 2016, 6, 19028.	1.6	96
540	Facile Synthesis of Co ₉ Se ₈ Quantum Dots as Charge Traps for Flexible Organic Resistive Switching Memory Device. ACS Applied Materials & Interfaces, 2016, 8, 30336-30343.	4.0	44
541	Phenylsulfonic acid functionalized carbon quantum dots based biosensor for acetylcholinesterase activity monitoring andÂinhibitor screening. RSC Advances, 2016, 6, 105454-105460.	1.7	10
542	Formation mechanism of graphene quantum dots and their edge state conversion probed by photoluminescence and Raman spectroscopy. Journal of Materials Chemistry C, 2016, 4, 10852-10865.	2.7	157
543	Fullerene‣tructural Carbonâ€Based Dots from C ₆₀ Molecules and their Optical Properties. Particle and Particle Systems Characterization, 2016, 33, 916-923.	1.2	9
544	Quasi-Continuously Tuning the Size of Graphene Quantum Dots via an Edge-Etching Mechanism. MRS Advances, 2016, 1, 1459-1467.	0.5	2
545	Chemical Functionalisation and Photoluminescence of Graphene Quantum Dots. Chemistry - A European Journal, 2016, 22, 8198-8206.	1.7	59
546	Biocompatible Carbon Dots with Diverse Surface Modification. MRS Advances, 2016, 1, 1333-1338.	0.5	2
547	Graphene quantum dots from graphite by liquid exfoliation showing excitation-independent emission, fluorescence upconversion and delayed fluorescence. Physical Chemistry Chemical Physics, 2016, 18, 21278-21287.	1.3	112
548	Carbon dots-decorated multiwalled carbon nanotubes nanocomposites as a high-performance electrochemical sensor for detection of H2O2 in living cells. Analytical and Bioanalytical Chemistry, 2016, 408, 4705-4714.	1.9	59
549	Novel thermal quenching characteristics of luminescent carbon nanodots via tailoring the surface chemical groups. Carbon, 2016, 104, 226-232.	5.4	28
550	Carbon Nanoparticles and Nanostructures. Carbon Nanostructures, 2016, , .	0.1	18
551	Photoluminescent Properties of Carbon Nanodots. Carbon Nanostructures, 2016, , 239-256.	0.1	2
552	Noble metal, oxide and chalcogenide-based nanomaterials from scalable phototrophic culture systems. Enzyme and Microbial Technology, 2016, 95, 13-27.	1.6	67

#	Article	IF	CITATIONS
553	Sensing of doxorubicin hydrochloride using graphene quantum dot modified glassy carbon electrode. Journal of Molecular Liquids, 2016, 221, 354-357.	2.3	55
554	Multifunctional reduced graphene oxide coated cloths for oil/water separation and antibacterial application. RSC Advances, 2016, 6, 62760-62767.	1.7	21
555	Carbon Based Dots and Their Luminescent Properties and Analytical Applications. Carbon Nanostructures, 2016, , 161-238.	0.1	9
556	Rapid and facile synthesis of graphene oxide quantum dots with good linear and nonlinear optical properties. Journal of Materials Science: Materials in Electronics, 2016, 27, 10926-10933.	1.1	14
557	Optical response and gas sequestration properties of metal cluster supported graphene nanoflakes. Physical Chemistry Chemical Physics, 2016, 18, 18811-18827.	1.3	26
558	Enhanced photoelectrochemical cytosensing of fibroblast-like synoviocyte cells based on visible light-activated ox-GQDs and carboxylated g-C ₃ N ₄ sensitized TiO ₂ nanorods. Journal of Materials Chemistry B, 2016, 4, 4612-4619.	2.9	13
559	Future prospects of luminescent nanomaterial based security inks: from synthesis to anti-counterfeiting applications. Nanoscale, 2016, 8, 14297-14340.	2.8	378
560	Dopamine assay based on an aggregation-induced reversed inner filter effect of gold nanoparticles on the fluorescence of graphene quantum dots. Talanta, 2016, 158, 292-298.	2.9	33
561	Modulation of Coordinate Bonds in Hydrogen-Bonded Trimesic Acid Molecular Networks on Highly Ordered Pyrolytic Graphite Surface. Journal of Physical Chemistry C, 2016, 120, 12605-12610.	1.5	23
562	A novel electrochemiluminescence sensor for the detection of nitroaniline based on the nitrogen-doped graphene quantum dots. Biosensors and Bioelectronics, 2016, 85, 903-908.	5.3	73
563	Structural diversity of graphene materials and their multifarious roles in heterogeneous photocatalysis. Nano Today, 2016, 11, 351-372.	6.2	283
564	Electrophoretic-deposited novel ternary silk fibroin/graphene oxide/hydroxyapatite nanocomposite coatings on titanium substrate for orthopedic applications. Frontiers of Materials Science, 2016, 10, 270-280.	1.1	23
565	Selective determination of free dissolved chlorine using nitrogen-doped carbon dots as a fluorescent probe. Mikrochimica Acta, 2016, 183, 2221-2227.	2.5	53
566	Sensitive determination of tannic acid using blue luminescent graphene quantum dots as fluorophore. RSC Advances, 2016, 6, 59900-59906.	1.7	18
567	Rational design of manganese ferrite-graphene hybrid photocatalysts: Efficient water splitting and effective elimination of organic pollutants. Applied Catalysis A: General, 2016, 524, 182-191.	2.2	48
568	Graphene-based flame retardants: a review. Journal of Materials Science, 2016, 51, 8271-8295.	1.7	169
569	Siliciumâ€Nanokristalle und Siliciumâ€Polymerâ€Hybridmaterialien: Synthese, OberflÃ e henmodifikation und Anwendungen. Angewandte Chemie, 2016, 128, 2366-2384.	1.6	22
570	Nitrogenâ€Doped Graphene Quantum Dots Anchored on Thermally Reduced Graphene Oxide as an Electrocatalyst for the Oxygen Reduction Reaction. ChemElectroChem, 2016, 3, 864-870.	1.7	34

#	Article	IF	CITATIONS
571	Scalable fabrication of micron-scale graphene nanomeshes for high-performance supercapacitor applications. Energy and Environmental Science, 2016, 9, 1270-1281.	15.6	122
572	Preparation of graphene oxide and polymer-like quantum dots and their one- and two-photon induced fluorescence properties. Physical Chemistry Chemical Physics, 2016, 18, 4800-4806.	1.3	49
573	A graphene quantum dot (GQD) nanosystem with redox-triggered cleavable PEG shell facilitating selective activation of the photosensitiser for photodynamic therapy. RSC Advances, 2016, 6, 6516-6522.	1.7	27
574	Dual-Emission of Lanthanide Metal–Organic Frameworks Encapsulating Carbon-Based Dots for Ratiometric Detection of Water in Organic Solvents. Analytical Chemistry, 2016, 88, 1748-1752.	3.2	243
575	Multifaceted thermoresponsive poly(N-vinylcaprolactam) coupled with carbon dots for biomedical applications. Materials Science and Engineering C, 2016, 61, 492-498.	3.8	42
576	Exploiting the biological windows: current perspectives on fluorescent bioprobes emitting above 1000 nm. Nanoscale Horizons, 2016, 1, 168-184.	4.1	527
577	Enhancing sensitivity and selectivity in a label-free colorimetric sensor for detection of iron(II) ions with luminescent molybdenum disulfide nanosheet-based peroxidase mimetics. Biosensors and Bioelectronics, 2016, 80, 111-117.	5.3	43
578	Exploring Graphene Quantum Dots/TiO2 interface in photoelectrochemical reactions: Solar to fuel conversion. Electrochimica Acta, 2016, 187, 249-255.	2.6	79
579	Eco-friendly and rapid microwave synthesis of green fluorescent graphitic carbon nitride quantum dots for vitro bioimaging. Sensors and Actuators B: Chemical, 2016, 226, 506-511.	4.0	176
580	Microwave assisted one-pot synthesis of graphene quantum dots as highly sensitive fluorescent probes for detection of iron ions and pH value. Talanta, 2016, 150, 54-60.	2.9	167
581	The dual roles of functional groups in the photoluminescence of graphene quantum dots. Nanoscale, 2016, 8, 7449-7458.	2.8	125
582	Quantum Dots in Bionanotechnology and Medical Sciences: Power of the Small. Nanoscience and Technology, 2016, , 555-578.	1.5	1
583	Large-scale synthesis of soluble graphitic hollow carbon nanorods with tunable photoluminescence for the selective fluorescent detection of DNA. New Journal of Chemistry, 2016, 40, 1571-1579.	1.4	49
584	Analytical applications of chemiluminescence systems assisted by carbon nanostructures. TrAC - Trends in Analytical Chemistry, 2016, 80, 387-415.	5.8	49
585	Green chemistry approach for the synthesis of ZnO–carbon dots nanocomposites with good photocatalytic properties under visible light. Journal of Colloid and Interface Science, 2016, 465, 286-294.	5.0	137
586	In situ bifunctionalized carbon dots with boronic acid and amino groups for ultrasensitive dopamine detection. Analytical Methods, 2016, 8, 3236-3241.	1.3	43
587	Ultrasensitive Profiling of Metabolites Using Tyramine-Functionalized Graphene Quantum Dots. ACS Nano, 2016, 10, 3622-3629.	7.3	145
588	Single-step synthesis of graphene quantum dots by femtosecond laser ablation of graphene oxide dispersions. Nanoscale, 2016, 8, 8863-8877.	2.8	54

#	Article	IF	Citations
589	Capacitive Performances of Reduced Graphene Oxide Hydrogel Prepared by Using Sodium Hypophosphite as Reducer. Chinese Journal of Chemistry, 2016, 34, 89-97.	2.6	10
590	Synthesis and Characterisation of Fluorescent Carbon Nanodots Produced in Ionic Liquids by Laser Ablation. Chemistry - A European Journal, 2016, 22, 138-143.	1.7	75
591	Zinc ion-doped carbon dots with strong yellow photoluminescence. RSC Advances, 2016, 6, 37189-37194.	1.7	98
592	Selective detection of Escherichia coli DNA using fluorescent carbon spindles. Physical Chemistry Chemical Physics, 2016, 18, 12270-12277.	1.3	12
593	Evaluation of a reconfigurable portable instrument for copper determination based on luminescent carbon dots. Analytical and Bioanalytical Chemistry, 2016, 408, 3013-3020.	1.9	25
594	Highly selective dopamine sensor based on graphene quantum dots self-assembled monolayers modified electrode. Journal of Electroanalytical Chemistry, 2016, 767, 84-90.	1.9	61
595	A sensitive enzyme-free hydrogen peroxide sensor based on a chitosan–graphene quantum dot/silver nanocube nanocomposite modified electrode. Analytical Methods, 2016, 8, 2448-2455.	1.3	29
596	Electrochemical sensing of etoposide using carbon quantum dot modified glassy carbon electrode. Analyst, The, 2016, 141, 2665-2675.	1.7	57
597	Quantum dots derived from two-dimensional materials and their applications for catalysis and energy. Chemical Society Reviews, 2016, 45, 2239-2262.	18.7	391
598	Determination of dopamine in the presence of ascorbic and uric acids by fluorometric method using graphene quantum dots. Spectroscopy Letters, 2016, 49, 319-325.	0.5	16
599	Insight into the effect of functional groups on visible-fluorescence emissions of graphene quantum dots. Journal of Materials Chemistry C, 2016, 4, 2235-2242.	2.7	51
600	Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges. Nanoscale, 2016, 8, 7794-7807.	2.8	393
601	FRET-based modified graphene quantum dots for direct trypsin quantification in urine. Analytica Chimica Acta, 2016, 917, 64-70.	2.6	64
602	Label-free and ratiometric detection of nuclei acids based on graphene quantum dots utilizing cascade amplification by nicking endonuclease and catalytic G-quadruplex DNAzyme. Biosensors and Bioelectronics, 2016, 81, 214-220.	5.3	35
603	Graphene quantum dot-decorated mesoporous silica nanoparticles for high aspirin loading capacity and its pH-triggered release. Analytical Methods, 2016, 8, 2561-2567.	1.3	18
604	Non-covalent decoration of carbon dots with folic acid via a polymer-assisted strategy for fast and targeted cancer cell fluorescence imaging. Sensors and Actuators B: Chemical, 2016, 230, 714-720.	4.0	54
605	Intrinsic magnetic properties of plant leaf-derived graphene quantum dots. Materials Letters, 2016, 170, 110-113.	1.3	9
606	Monodispersed carbon nanodots spontaneously separated from combustion soot with excitation-independent photoluminescence. RSC Advances, 2016, 6, 8456-8460.	1.7	8

ARTICLE IF CITATIONS Synthesis of blue-photoluminescent graphene quantum dots/polystyrenic anion-exchange resin for 3.1 31 Fe(III) detection. Applied Surface Science, 2016, 372, 145-151. Graphene induces spontaneous cardiac differentiation in embryoid bodies. Nanoscale, 2016, 8, 2.8 39 7075-7084. Engineering the Shape of Block Copolymer Particles by Surface-Modulated Graphene Quantum Dots. 609 3.2 71 Chemistry of Materials, 2016, 28, 830-837. Effect of Lateral Size of Graphene Quantum Dots on Their Properties and Application. ACS Applied Materials & amp; Interfaces, 2016, 8, 2104-2110. Large-Scale and Controllable Synthesis of Graphene Quantum Dots from Rice Husk Biomass: A 4.0 236 Comprehensive Utilization Strategy. ACS Applied Materials & amp; Interfaces, 2016, 8, 1434-1439. Bioresponsive carbon nano-gated multifunctional mesoporous silica for cancer theranostics. Nanoscale, 2016, 8, 4537-4546. 2.8 64 Steering graphene quantum dots in living cells: lighting up the nucleolus. Journal of Materials 2.9 34 Chemistry B, 2016, 4, 779-784. Progress on implantable biofuel cell: Nano-carbon functionalization for enzyme immobilization 5.3 enhancement. Biosensors and Bioelectronics, 2016, 79, 850-860. Recent advances in carbon-based dots for electroanalysis. Analyst, The, 2016, 141, 2619-2628. 29 1.7 Graphene quantum dots prepared from chemical exfoliation of multiwall carbon nanotubes: An 1.6 efficient photocatalyst promoter. Catalysis Communications, 2016, 74, 104-109. Great-enhanced performance of Pt nanoparticles by the unique carbon quantum dot/reduced graphene oxide hybrid supports towards methanol electrochemical oxidation. Journal of Power 4.059 Sources, 2016, 303, 109-117. Dye-sensitized solar cells based on nanocomposite of polyaniline/graphene quantum dots. Journal of 101 Materials Science, 2016, 51, 2964-2971. Novel semiconducting CdSe quantum dot based electrochemical capacitors. Materials Letters, 2016, 1.3 11 162, 230-234. Boron-doped carbon nanoparticles: Size-independent color tunability from red to blue and bioimaging 5.4 59 applications. Carbon, 2016, 96, 166-173. Semiconductor and carbon-based fluorescent nanodots: the need for consistency. Chemical 2.2 389 Communications, 2016, 52, 1311-1326. Luminescence turn-on/off sensing of biological iron by carbon dots in transferrin. Physical Chemistry Chemical Physics, 2016, 18, 5148-5158. Facile one-step sonochemical synthesis of ultrafine and stable fluorescent C-dots. Ultrasonics 3.8 68 Sonochemistry, 2016, 28, 367-375. Thermal reduction effects on one- and two-photon luminescence in graphene quantum dots.

CITATION REPORT

1.3

624 Materials Letters, 2016, 163, 187-191.

#

607

608

611

613

614

615

617

619

621

#	Article	IF	CITATIONS
625	Pee-dots: biocompatible fluorescent carbon dots derived from the upcycling of urine. Green Chemistry, 2016, 18, 243-250.	4.6	169
626	A fluorometric assay for acetylcholinesterase activity and inhibitor screening with carbon quantum dots. Sensors and Actuators B: Chemical, 2016, 222, 879-886.	4.0	73
627	Functionalized Chitosan: A Quantum Dot-Based Approach for Regenerative Medicine. Springer Series on Polymer and Composite Materials, 2016, , 297-349.	0.5	1
628	Graphene quantum dots as effective probes for label-free fluorescence detection of dopamine. Sensors and Actuators B: Chemical, 2016, 223, 246-251.	4.0	183
629	Solidâ€phase synthesis of graphene quantum dots from the food additive citric acid under microwave irradiation and their use in liveâ€cell imaging. Luminescence, 2016, 31, 746-753.	1.5	44
630	A new turn-off fluorescence probe based on graphene quantum dots for detection of Au(III) ion. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 153, 619-624.	2.0	38
631	Molybdenum disulphide and graphene quantum dots as electrode modifiers for laccase biosensor. Biosensors and Bioelectronics, 2016, 75, 232-237.	5.3	104
632	Microwave-assisted one-pot conversion from deoiled asphalt to green fluorescent graphene quantum dots and their interfacial properties. Journal of Dispersion Science and Technology, 2017, 38, 769-774.	1.3	11
633	Spectroscopic Investigations of Phonons in Epitaxial Graphene. Critical Reviews in Solid State and Materials Sciences, 2017, 42, 99-128.	6.8	17
634	Ultrahigh current efficiency of light-emitting devices based on octadecylamine-graphene quantum dots. Nano Energy, 2017, 32, 441-447.	8.2	45
635	Surface-Engineered Multifunctional Eu:Gd ₂ O ₃ Nanoplates for Targeted and pH-Responsive Drug Delivery and Imaging Applications. ACS Applied Materials & Interfaces, 2017, 9, 4126-4141.	4.0	57
636	Graphene Quantum Dot Modified Fe ₃ O ₄ Nanoparticles Stabilize PdCu Nanoparticles for Enhanced Catalytic Activity in the Sonogashira Reaction. ChemCatChem, 2017, 9, 1442-1449.	1.8	59
637	Intense enhancement of yellow luminescent carbon dots coupled with gold nanoparticles toward white LED. Dyes and Pigments, 2017, 140, 122-130.	2.0	32
638	Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review. Biomedicine and Pharmacotherapy, 2017, 87, 209-222.	2.5	419
639	Production of graphene quantum dots by ultrasound-assisted exfoliation in supercritical CO2/H2O medium. Ultrasonics Sonochemistry, 2017, 37, 120-127.	3.8	57
640	Graphene quantum dots for cancer targeted drug delivery. International Journal of Pharmaceutics, 2017, 518, 185-192.	2.6	268
641	Insights into the Oxidation Mechanism of sp ² –sp ³ Hybrid Carbon Materials: Preparation of a Water-Soluble 2D Porous Conductive Network and Detectable Molecule Separation. Langmuir, 2017, 33, 913-919.	1.6	33
642	Excitation wavelength dependent fluorescence of graphene oxide controlled by strain. Nanoscale, 2017, 9, 2240-2245.	2.8	21
#	Article	IF	CITATIONS
-----	---	------	-----------
643	Graphene Oxide: A Novel 2â€Dimensional Material in Membrane Separation for Water Purification. Advanced Materials Interfaces, 2017, 4, 1600918.	1.9	154
644	Macromolecularly "Caged―Carbon Nanoparticles for Intracellular Trafficking via Switchable Photoluminescence. Journal of the American Chemical Society, 2017, 139, 1746-1749.	6.6	63
645	Nitrogen-doped carbon quantum dot/graphene hybrid nanocomposite as an efficient catalyst support for the oxygen reduction reaction. International Journal of Hydrogen Energy, 2017, 42, 2931-2942.	3.8	47
646	A fluorometric and real-time assay for α-glucosidase activity through supramolecular self-assembly and its application for inhibitor screening. Sensors and Actuators B: Chemical, 2017, 245, 282-289.	4.0	42
647	Upconversion carbon quantum dots as visible light responsive component for efficient enhancement of photocatalytic performance. Journal of Colloid and Interface Science, 2017, 496, 425-433.	5.0	176
648	Aggregation-induced emission: mechanistic study of the clusteroluminescence of tetrathienylethene. Chemical Science, 2017, 8, 2629-2639.	3.7	95
649	Heterogeneity in the fluorescence of graphene and graphene oxide quantum dots. Mikrochimica Acta, 2017, 184, 871-878.	2.5	47
650	Review on Carbon Dots and Their Applications. Chinese Journal of Analytical Chemistry, 2017, 45, 139-150.	0.9	317
651	Bottom-up synthesis of carbon nanoparticles with higher doxorubicin efficacy. Journal of Controlled Release, 2017, 248, 144-152.	4.8	51
652	Experimental and theoretical investigation of relative optical band gaps in graphene generations. Materials Research Express, 2017, 4, 015101.	0.8	29
653	Graphene quantum dots modified mesoporous graphite carbon nitride with significant enhancement of photocatalytic activity. Applied Catalysis B: Environmental, 2017, 207, 429-437.	10.8	238
654	Quantum dot probes for cellular analysis. Analytical Methods, 2017, 9, 2621-2632.	1.3	25
655	CVD Assisted Hydrophobic Graphene Quantum Dots: Fluorescence Sensor for Aromatic Amino Acids. ChemistrySelect, 2017, 2, 1999-2005.	0.7	18
656	Molecularly imprinted polymers labeled with amino-functionalized carbon dots for fluorescent determination of 2,4-dinitrotoluene. Mikrochimica Acta, 2017, 184, 1369-1377.	2.5	26
657	Fluorescent spongy carbon nanoglobules derived from pineapple juice: A potential sensing probe for specific and selective detection of chromium (VI) ions. Ceramics International, 2017, 43, 7011-7019.	2.3	42
658	The necessity of structural irregularities for the chemical applications of graphene. Materials Today Chemistry, 2017, 4, 1-16.	1.7	95
659	Fabrication of centimeter-scale light-emitting diode with improved performance based on graphene quantum dots. Applied Physics Express, 2017, 10, 032102.	1.1	12
660	Molecular scale rapid synthesis of graphene quantum dots (CQDs). Journal of Nanostructure in Chemistry, 2017, 7, 85-89.	5.3	96

#	Article	IF	CITATIONS
661	Synthesis of novel monomeric graphene quantum dots and corresponding nanocomposite with molecularly imprinted polymer for electrochemical detection of an anticancerous ifosfamide drug. Biosensors and Bioelectronics, 2017, 94, 1-9.	5.3	89
662	Graphene quantum dot-based theranostic agents for active targeting of breast cancer. RSC Advances, 2017, 7, 11420-11427.	1.7	88
663	Facile synthesis of silver nanoparticles/carbon dots for a charge transfer study and peroxidase-like catalytic monitoring by surface-enhanced Raman scattering. Applied Surface Science, 2017, 410, 42-50.	3.1	34
664	N-doped graphene quantum dots as a novel highly-efficient matrix for the analysis of perfluoroalkyl sulfonates and other small molecules by MALDI-TOF MS. Analytical Methods, 2017, 9, 2014-2020.	1.3	16
666	Mimicking Horseradish Peroxidase Functions Using Cu ²⁺ -Modified Carbon Nitride Nanoparticles or Cu ²⁺ -Modified Carbon Dots as Heterogeneous Catalysts. ACS Nano, 2017, 11, 3247-3253.	7.3	279
667	External field-assisted laser ablation in liquid: An efficient strategy for nanocrystal synthesis and nanostructure assembly. Progress in Materials Science, 2017, 87, 140-220.	16.0	275
668	Tunable (violet to green) emission by high-yield graphene quantum dots and exploiting its unique properties towards sun-light-driven photocatalysis and supercapacitor electrode materials. Materials Today Communications, 2017, 11, 76-86.	0.9	96
669	Micro-RNA detection based on fluorescence resonance energy transfer of DNA-carbon quantum dots probes. Analytical Biochemistry, 2017, 523, 32-38.	1.1	58
670	Graphene quantum dot modified screen printed immunosensor for the determination of parathion. Analytical Biochemistry, 2017, 523, 1-9.	1.1	77
671	A universal fluorometric assay strategy for glycosidases based on functional carbon quantum dots: β-galactosidase activity detection in vitro and in living cells. Journal of Materials Chemistry B, 2017, 5, 1971-1979.	2.9	61
672	Tuning the work functions of graphene quantum dot-modified electrodes for polymer solar cell applications. Nanoscale, 2017, 9, 3524-3529.	2.8	40
673	A novel turn-on fluorescent strategy for sensing ascorbic acid using graphene quantum dots as fluorescent probe. Biosensors and Bioelectronics, 2017, 92, 229-233.	5.3	122
674	Temperature-sensitive carbon dots derived from poly(N-isopropylacrylamide) for fluorescence on–off properties. RSC Advances, 2017, 7, 11149-11157.	1.7	10
675	Effects of long-range disorder and electronic interactions on the optical properties of graphene quantum dots. Physical Review B, 2017, 95, .	1.1	7
676	Recent advances in optical properties and applications of colloidal quantum dots under two-photon excitation. Coordination Chemistry Reviews, 2017, 338, 141-185.	9.5	56
677	Rapid synthesis of graphene quantum dots using a continuous hydrothermal flow synthesis approach. RSC Advances, 2017, 7, 14716-14720.	1.7	49
678	Operating mechanisms of highly-reproducible write-once-read-many-times memory devices based on graphene quantum dot:poly(methyl silsesquioxane) nanocomposites. Applied Physics Letters, 2017, 110, .	1.5	34
679	Fluorescent carbon dots and their sensing applications. TrAC - Trends in Analytical Chemistry, 2017, 89, 163-180.	5.8	590

#	Article	IF	CITATIONS
680	A Direct Observation of the Fine Aromatic Clusters and Molecular Structures of Biochars. Environmental Science & amp; Technology, 2017, 51, 5473-5482.	4.6	173
681	The emerging roles of carbon dots in solar photovoltaics: a critical review. Environmental Science: Nano, 2017, 4, 1216-1263.	2.2	128
682	Graphene quantum dots: multifunctional nanoplatforms for anticancer therapy. Journal of Materials Chemistry B, 2017, 5, 6471-6489.	2.9	101
683	Unusual Assembly and Conversion of Graphene Quantum Dots into Crystalline Graphite Nanocapsules. Chemistry - an Asian Journal, 2017, 12, 1272-1276.	1.7	4
684	Functional hybrid nanostructure materials: Advanced strategies for sensing applications toward volatile organic compounds. Coordination Chemistry Reviews, 2017, 342, 80-105.	9.5	69
685	Experimental Investigations on Fluorescence Excitation and Depletion of Carbon Dots. Journal of Fluorescence, 2017, 27, 1435-1441.	1.3	3
686	Ultra-weak chemiluminescence enhanced by facilely synthesized nitrogen-rich quantum dots through chemiluminescence resonance energy transfer and electron hole injection. Chemical Communications, 2017, 53, 5657-5660.	2.2	77
687	One step hydrothermal synthesis of nitrogen-doped graphitic quantum dots as a fluorescent sensing strategy for highly sensitive detection of metacycline in mice plasma. Sensors and Actuators B: Chemical, 2017, 249, 256-264.	4.0	41
688	A paper-based electrode using a graphene dot/PEDOT:PSS composite for flexible solar cells. Nano Energy, 2017, 36, 260-267.	8.2	135
689	A Highly Efficient Nanomaterial with Molecular Imprinting Polymer: Carbon Nitride Nanotubes Decorated with Graphene Quantum Dots for Sensitive Electrochemical Determination of Chlorpyrifos. Journal of the Electrochemical Society, 2017, 164, B223-B229.	1.3	120
690	One-step synthesis of nitrogen-doped carbon nanodots for ratiometric pH sensing by femtosecond laser ablation method. Applied Surface Science, 2017, 414, 238-243.	3.1	73
691	An abnormal non-incubation effect in femtosecond laser processing of freestanding reduced graphene oxide paper. Journal Physics D: Applied Physics, 2017, 50, 185302.	1.3	3
692	Technical synthesis and biomedical applications of graphene quantum dots. Journal of Materials Chemistry B, 2017, 5, 4811-4826.	2.9	151
693	Effects of poly(propylene carbonate) additive prepared from carbon dioxide on the tensile properties of polypropylene. Journal of Applied Polymer Science, 2017, 134, 45266.	1.3	2
694	Red Emissive Sulfur, Nitrogen Codoped Carbon Dots and Their Application in Ion Detection and Theraonostics. ACS Applied Materials & Interfaces, 2017, 9, 18549-18556.	4.0	369
695	Roles of nitrogen functionalities in enhancing the excitation-independent green-color photoluminescence of graphene oxide dots. Nanoscale, 2017, 9, 8256-8265.	2.8	25
696	Turn-on theranostic fluorescent nanoprobe by electrostatic self-assembly of carbon dots with doxorubicin for targeted cancer cell imaging, in vivo hyaluronidase analysis, and targeted drug delivery. Biosensors and Bioelectronics, 2017, 96, 300-307.	5.3	144
697	One-step synthesis of band-tunable N, S co-doped commercial TiO ₂ /graphene quantum dots composites with enhanced photocatalytic activity. RSC Advances, 2017, 7, 23319-23327.	1.7	76

#	Article	IF	CITATIONS
698	Material chemistry of graphene oxide-based nanocomposites for theranostic nanomedicine. Journal of Materials Chemistry B, 2017, 5, 6451-6470.	2.9	37
699	Photoluminescence responses of graphene quantum dots toward organic bases and an acid. Photochemical and Photobiological Sciences, 2017, 16, 623-626.	1.6	9
700	Applying Carbon Dots-Metal Ions Ensembles as a Multichannel Fluorescent Sensor Array: Detection and Discrimination of Phosphate Anions. Analytical Chemistry, 2017, 89, 5542-5548.	3.2	147
701	Chloro-benquinone Modified on Graphene Oxide as Metal-free Catalyst: Strong Promotion of Hydroxyl Radical and Generation of Ultra-Small Graphene Oxide. Scientific Reports, 2017, 7, 42643.	1.6	16
702	What are the reasons for low use of graphene quantum dots in immunosensing of cancer biomarkers?. Materials Science and Engineering C, 2017, 71, 1313-1326.	3.8	55
703	Resistive switching effect in the planar structure of all-printed, flexible and rewritable memory device based on advanced 2D nanocomposite of graphene quantum dots and white graphene flakes. Journal Physics D: Applied Physics, 2017, 50, 335104.	1.3	33
704	Simple method for O-GlcNAc sensitive detection based on graphene quantum dots. RSC Advances, 2017, 7, 31204-31211.	1.7	5
705	A facile method to sensitively monitor chlorinated phenols based on Ru(bpy)32+ electrochemiluminescent system using graphene quantum dots as coreactants. Carbon, 2017, 121, 72-78.	5.4	45
706	A Photochemical Avenue to Photoluminescent N-Dots and their Upconversion Cell Imaging. Scientific Reports, 2017, 7, 1793.	1.6	9
707	Strongly coupled CdS/graphene quantum dots nanohybrids for highly efficient photocatalytic hydrogen evolution: Unraveling the essential roles of graphene quantum dots. Applied Catalysis B: Environmental, 2017, 216, 59-69.	10.8	199
708	Top-down and bottom-up approaches to transparent, flexible and luminescent nitrogen-doped carbon nanodot-clay hybrid films. Nanoscale, 2017, 9, 10256-10262.	2.8	41
709	Green synthesis of nitrogen-doped fluorescent carbon quantum dots for selective detection of iron. Fullerenes Nanotubes and Carbon Nanostructures, 2017, 25, 417-422.	1.0	18
710	S, N Co-Doped Graphene Quantum Dot/TiO2 Composites for Efficient Photocatalytic Hydrogen Generation. Nanoscale Research Letters, 2017, 12, 400.	3.1	87
711	Facile Synthesis of a Selective Biomolecule Chemosensor and Fabrication of Its Highly Fluorescent Graphene Complex. Journal of Physical Chemistry B, 2017, 121, 5007-5016.	1.2	11
712	Highly fluorescent nitrogen-doped graphene quantum dots as a green, economical and facile sensor for the determination of sunitinib in real samples. New Journal of Chemistry, 2017, 41, 6875-6882.	1.4	35
713	Unraveling the Hydrogen Evolution Reaction Active Sites in Nâ€Functionalized Interconnected Graphene Quantum Dots. ChemistrySelect, 2017, 2, 4511-4515.	0.7	7
714	Synthetic approaches to two-dimensional transition metal dichalcogenide nanosheets. Progress in Materials Science, 2017, 89, 411-478.	16.0	176
715	Enzyme-free fluorescence sensing of catechins in green tea using bifunctional graphene quantum dots. Analytical Methods, 2017, 9, 3525-3530.	1.3	9

#	Article	IF	CITATIONS
716	Graphene Quantum Dots Anchored Gold Nanorods for Electrochemical Detection of Glutathione. ChemistrySelect, 2017, 2, 4744-4752.	0.7	11
717	N, S co-doped carbon dots with high quantum yield: tunable fluorescence in liquid/solid and extensible applications. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	24
718	Nonlinear Optical Properties of Colloids with Carbon Nanoparticles. Physics Procedia, 2017, 86, 19-23.	1.2	1
719	pH-Responsive fluorescent graphene quantum dots for fluorescence-guided cancer surgery and diagnosis. Nanoscale, 2017, 9, 4928-4933.	2.8	122
720	Application of Carbon-Based Nanomaterials as Bioimaging Probe. , 2017, , 129-161.		0
721	Electron transition pathways of graphene oxide quantum dots unraveled by emission wavelength dependent photoluminescence lifetime. RSC Advances, 2017, 7, 19701-19706.	1.7	12
722	A metal-free composite photocatalyst of graphene quantum dots deposited on red phosphorus. Journal of Environmental Sciences, 2017, 60, 91-97.	3.2	24
723	Rapid exfoliation of layered covalent triazine-based frameworks into N-doped quantum dots for the selective detection of Hg ²⁺ ions. Journal of Materials Chemistry A, 2017, 5, 9272-9278.	5.2	76
724	Titanium carbide (Ti3C2Tx) MXene: A novel precursor to amphiphilic carbide-derived graphene quantum dots for fluorescent ink, light-emitting composite and bioimaging. Carbon, 2017, 118, 50-57.	5.4	155
725	Nanotechnology-Based Medical and Biomedical Imaging for Diagnostics. , 2017, , 355-374.		4
726	Controllable electrochemical/electroanalytical approach to generate nitrogen-doped carbon quantum dots from varied amino acids: pinpointing the utmost quantum yield and the versatile photoluminescent and electrochemiluminescent applications. Electrochimica Acta, 2017, 236, 239-251.	2.6	62
727	Plasmon-Modulated Excitation-Dependent Fluorescence from Activated CTAB Molecules Strongly Coupled to Gold Nanoparticles. Scientific Reports, 2017, 7, 43282.	1.6	15
728	Solvothermal conversion of coal into nitrogen-doped carbon dots with singlet oxygen generation and high quantum yield. Chemical Engineering Journal, 2017, 320, 570-575.	6.6	123
729	Hexagonal graphene quantum dots. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1600226.	1.2	5
730	Tuning the Aggregation/Disaggregation Behavior of Graphene Quantum Dots by Structure-Switching Aptamer for High-Sensitivity Fluorescent Ochratoxin A Sensor. Analytical Chemistry, 2017, 89, 1704-1709.	3.2	113
731	Application of graphene quantum dots as green homogenous nanophotocatalyst in the visible-light-driven photolytic process. Journal of Materials Science: Materials in Electronics, 2017, 28, 5135-5143.	1.1	19
732	Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. Journal of Materials Chemistry A, 2017, 5, 3717-3734.	5.2	853
733	Nitrogen-doped graphene quantum dots-labeled epitope imprinted polymer with double templates via the metal chelation for specific recognition of cytochrome c. Biosensors and Bioelectronics, 2017, 91, 253-261.	5.3	62

#	Article	IF	CITATIONS
734	D-penicillamine-functionalized graphene quantum dots for fluorescent detection of Fe3+ in iron supplement oral liquids. Sensors and Actuators B: Chemical, 2017, 243, 211-220.	4.0	58
735	High photoluminescent carbon based dots with tunable emission color from orange to green. Nanoscale, 2017, 9, 1028-1032.	2.8	43
736	Fluorescent carbon quantum dots chemosensor for selective turn-on sensing of Zn ²⁺ and turn-off sensing of Pb ²⁺ in aqueous medium and zebrafish eggs. New Journal of Chemistry, 2017, 41, 15157-15164.	1.4	30
737	Highly Efficient Visible Blue-Emitting Black Phosphorus Quantum Dot: Mussel-Inspired Surface Functionalization for Bioapplications. ACS Omega, 2017, 2, 7096-7105.	1.6	37
738	Determination of pentachlorophenol by anodic electrochemiluminescence of Ru(bpy) ₃ ²⁺ based on nitrogen-doped graphene quantum dots as co-reactant. RSC Advances, 2017, 7, 50634-50642.	1.7	26
739	Electrochemical detection dopamine by Ester-calix[n]arenes/graphene nanosheets modified electrodes. Journal of Electroanalytical Chemistry, 2017, 804, 16-22.	1.9	19
740	Spotlighting graphene quantum dots and beyond: Synthesis, properties and sensing applications. Applied Materials Today, 2017, 9, 350-371.	2.3	89
741	The acetic acid gas sensing properties of graphene quantum dots (GQDs)–ZnO nanocomposites prepared by hydrothermal method. Journal of Materials Science: Materials in Electronics, 2017, 28, 19164-19173.	1.1	16
742	Highly selective and sensitive biosensing of dopamine based on glutathione coated silver nanoclusters enhanced fluorescence. New Journal of Chemistry, 2017, 41, 15244-15250.	1.4	27
743	Tuning Enhancement Efficiency of Multiple Emissive Centers in Graphene Quantum Dots by Core–Shell Plasmonic Nanoparticles. Journal of Physical Chemistry Letters, 2017, 8, 5673-5679.	2.1	10
744	Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering. Light: Science and Applications, 2017, 6, e17061-e17061.	7.7	112
745	Rare-Earth Free Self-Activated Graphene Quantum Dots and Copper-Cysteamine Phosphors for Enhanced White Light-Emitting-Diodes under Single Excitation. Scientific Reports, 2017, 7, 12872.	1.6	44
746	Rapid synthesis of nitrogen doped carbon dots and their application as a label free sensor array for simultaneous discrimination of multiple proteins. Journal of Materials Chemistry B, 2017, 5, 8748-8753.	2.9	43
747	Highly Efficient Fluorescent Carbon Quantum Dots: Synthesis, Properties and Applications. World Scientific Series in Nanoscience and Nanotechnology, 2017, , 81-111.	0.1	0
748	Purification, Selection, and Partition Coefficient of Highly Oxidized Carbon Dots in Aqueous Two-Phase Systems Based on Polymer–Salt Pairs. Langmuir, 2017, 33, 12235-12243.	1.6	10
749	Graphene Quantum Dots for Food Analysis. Frontiers in Nanobiomedical Research, 2017, , 77-95.	0.1	1
750	Graphene Quantum Dots for Bioimaging and Cancer Therapy. Frontiers in Nanobiomedical Research, 2017, , 139-161.	0.1	0
751	Intercalation Effect of Attapulgite in g-C ₃ N ₄ Modified with Fe ₃ O ₄ Quantum Dots To Enhance Photocatalytic Activity for Removing 2-Mercaptobenzothiazole under Visible Light. ACS Sustainable Chemistry and Engineering, 2017, 5,	3.2	109

#	Article	IF	CITATIONS
752	Fabrication of Novel Electrochemical Biosensor Based on Graphene Nanohybrid to Detect H ₂ O ₂ Released from Living Cells with Ultrahigh Performance. ACS Applied Materials & Interfaces, 2017, 9, 37991-37999.	4.0	98
753	Understanding the Selective Detection of Fe ³⁺ Based on Graphene Quantum Dots as Fluorescent Probes: The <i>K</i> _{sp} of a Metal Hydroxide-Assisted Mechanism. Analytical Chemistry, 2017, 89, 12054-12058.	3.2	143
754	Highly Efficient Moisture-Triggered Nanogenerator Based on Graphene Quantum Dots. ACS Applied Materials & Interfaces, 2017, 9, 38170-38175.	4.0	96
755	Luminescent Carbon Dot Mimics Assembled on DNA. Journal of the American Chemical Society, 2017, 139, 13147-13155.	6.6	33
756	Development of N and S heteroatom co-doped stable dual emitting carbon ink in aqueous media for sensing applications. New Journal of Chemistry, 2017, 41, 10851-10859.	1.4	6
757	Bioactive carbon dots lights up microtubules and destabilises cell cytoskeletal framework – A robust imaging agent with therapeutic activity. Colloids and Surfaces B: Biointerfaces, 2017, 159, 662-672.	2.5	12
758	Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems. Chemical Society Reviews, 2017, 46, 6024-6045.	18.7	386
759	How functional groups influence the ROS generation and cytotoxicity of graphene quantum dots. Chemical Communications, 2017, 53, 10588-10591.	2.2	73
760	Design and Fabrication of Nanomaterial-Based Device for Pressure Sensorial Applications. , 2017, , 1-14.		0
761	A facile and high-efficient approach to yellow emissive graphene quantum dots from graphene oxide. Carbon, 2017, 124, 342-347.	5.4	44
762	Carbon dot-silica composite nanoparticle: an excitation-independent fluorescence material with tunable fluorescence. RSC Advances, 2017, 7, 43839-43844.	1.7	20
763	Tumor Cell-Specific Nuclear Targeting of Functionalized Graphene Quantum Dots <i>In Vivo</i> . Bioconjugate Chemistry, 2017, 28, 2608-2619.	1.8	29
764	Stark effect and polarizability of graphene quantum dots. Physical Review B, 2017, 96, .	1.1	11
765	Novel carbon dots derived from Schizonepetae Herba Carbonisata and investigation of their haemostatic efficacy. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1-10.	1.9	25
766	Design of Surface-Coatable NIR-Responsive Fluorescent Nanoparticles with PEI Passivation for Bacterial Detection and Killing. ACS Applied Materials & Interfaces, 2017, 9, 33317-33326.	4.0	48
767	Flexible Graphene-Based Wearable Gas and Chemical Sensors. ACS Applied Materials & Interfaces, 2017, 9, 34544-34586.	4.0	603
768	Hydrothermal green synthesis and photocatalytic activity of magnetic CoFe2O4–carbon quantum dots nanocomposite by turmeric precursor. Journal of Materials Science: Materials in Electronics, 2017, 28, 16205-16214.	1.1	37
769	A redox-modulated fluorescent strategy for the highly sensitive detection of metabolites by using graphene quantum dots. Analytica Chimica Acta, 2017, 990, 150-156.	2.6	8

#	Article	IF	CITATIONS
770	Highly sensitive immunosensing of prostate specific antigen using poly cysteine caped by graphene quantum dots and gold nanoparticle: A novel signal amplification strategy. International Journal of Biological Macromolecules, 2017, 105, 522-532.	3.6	61
771	Mechanical properties of graphene and graphene-based nanocomposites. Progress in Materials Science, 2017, 90, 75-127.	16.0	1,682
772	Nitrogenâ€Plasmaâ€Activated Hierarchical Nickel Nitride Nanocorals for Energy Applications. Small, 2017, 13, 1604265.	5.2	62
773	Fluorescence and Sensing Applications of Graphene Oxide and Graphene Quantum Dots: A Review. Chemistry - an Asian Journal, 2017, 12, 2343-2353.	1.7	265
774	Design of Carbon Dots Photoluminescence through Organo-Functional Silane Grafting for Solid-State Emitting Devices. Scientific Reports, 2017, 7, 5469.	1.6	68
775	A sensitive electrochemiluminescence glucose biosensor based on graphene quantum dot prepared from graphene oxide sheets and hydrogen peroxide. Journal of Electroanalytical Chemistry, 2017, 801, 162-170.	1.9	31
776	Analysis of penicillamine using Cu-modified graphene quantum dots synthesized from uric acid as single precursor. Journal of Pharmaceutical Analysis, 2017, 7, 324-331.	2.4	32
777	Fabrication of poly(ethylene glycol) hydrogels containing vertically and horizontally aligned graphene using dielectrophoresis: An experimental and modeling study. Carbon, 2017, 123, 460-470.	5.4	24
778	The stability and removal of water-dispersed CdSe/CdS core-shell quantum dots from water. Chemosphere, 2017, 185, 926-933.	4.2	11
779	Electrochemical Polymerization of Functionalized Graphene Quantum Dots. Chemistry of Materials, 2017, 29, 6611-6615.	3.2	32
780	Carbon Nanomaterials in Biological Studies and Biomedicine. Advanced Healthcare Materials, 2017, 6, 1700574.	3.9	155
781	Presence of Fluorescent Carbon Nanoparticles in Baked Lamb: Their Properties and Potential Application for Sensors. Journal of Agricultural and Food Chemistry, 2017, 65, 7553-7559.	2.4	50
782	Full-colour carbon dots: integration of multiple emission centres into single particles. Nanoscale, 2017, 9, 13326-13333.	2.8	31
783	Simultaneous Preparation of Mesoporous/Macroporous Graphene Aerogels and Bright Green Photoluminescent Graphene Quantum Dots by a Simple Solvothermal Method. Industrial & Engineering Chemistry Research, 2017, 56, 10028-10035.	1.8	10
784	Role of Pyridinic-N for Nitrogen-doped graphene quantum dots in oxygen reaction reduction. Journal of Colloid and Interface Science, 2017, 508, 154-158.	5.0	61
785	A graphene quantum dot-assisted morin–KMnO ₄ chemiluminescence system for the precise recognition of cypermethrin. New Journal of Chemistry, 2017, 41, 10668-10676.	1.4	6
786	Plasmon Generation through Electron Tunneling in Graphene. ACS Photonics, 2017, 4, 2367-2375.	3.2	41
787	Boronic acid functionalized nitrogen doped carbon dots for fluorescent turn-on detection of dopamine. Mikrochimica Acta, 2017, 184, 4081-4090.	2.5	54

#	Article	IF	Citations
788	Electrochemical Method To Prepare Graphene Quantum Dots and Graphene Oxide Quantum Dots. ACS Omega, 2017, 2, 8343-8353.	1.6	213
789	Bio-conjugation of graphene quantum dots for targeting imaging. RSC Advances, 2017, 7, 53532-53536.	1.7	16
790	Carbon nanospecies affecting amyloid formation. RSC Advances, 2017, 7, 53887-53898.	1.7	11
791	High-Yield Production of MoS ₂ and WS ₂ Quantum Sheets from Their Bulk Materials. Nano Letters, 2017, 17, 7767-7772.	4.5	77
793	Visible light emission in graphene field effect transistors. Nano Futures, 2017, 1, 025004.	1.0	6
794	Insight into the reaction mechanism of graphene oxide with oxidative free radical. Chemical Research in Chinese Universities, 2017, 33, 689-694.	1.3	4
795	Fluorescence turn-off-on probe based on polypyrrole/graphene quantum composites for selective and sensitive detection of paracetamol and ascorbic acid. Biosensors and Bioelectronics, 2017, 98, 222-226.	5.3	59
796	A label-free electrochemical biosensor for methyltransferase activity detection and inhibitor screening based on graphene quantum dot and enzyme-catalyzed reaction. Journal of Electroanalytical Chemistry, 2017, 799, 327-332.	1.9	23
797	Microwave assisted fabrication of La/Cu/Zr/carbon dots trimetallic nanocomposites with their adsorptional vs photocatalytic efficiency for remediation of persistent organic pollutants. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 347, 235-243.	2.0	100
798	Multifunctional nitrogen-doped carbon dots from maleic anhydride and tetraethylenepentamine via pyrolysis for sensing, adsorbance, and imaging applications. Sensors and Actuators B: Chemical, 2017, 253, 1026-1033.	4.0	39
799	A comprehensive review on recent progress in aluminum–air batteries. Green Energy and Environment, 2017, 2, 246-277.	4.7	280
800	Novel carbon quantum dots from egg yolk oil and their haemostatic effects. Scientific Reports, 2017, 7, 4452.	1.6	52
801	New paradigms for the synthesis of graphene quantum dots from sustainable bioresources. New Journal of Chemistry, 2017, 41, 8706-8710.	1.4	15
802	High luminescent carbon dots as an eco-friendly fluorescence sensor for Cr(VI) determination in water and soil samples. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 346, 502-511.	2.0	71
803	Bifunctional Carbonâ€Dotâ€WS ₂ Nanorods for Photothermal Therapy and Cell Imaging. Chemistry - A European Journal, 2017, 23, 963-969.	1.7	22
804	Graphene/silver nanocomposites-potential electron mediators for proliferation in electrochemical sensing and SERS activity. TrAC - Trends in Analytical Chemistry, 2017, 86, 155-171.	5.8	32
805	Cerium(III) Ion Sensing Based on Graphene Quantum Dots Fluorescent Turn-Off. Journal of Fluorescence, 2017, 27, 331-338.	1.3	41
806	Regulating the overlap between the absorption spectrum of metal ion-chromogenic agent and the emission spectrum of carbon-based dots to improve the sensing performance for metal ions. Sensors and Actuators B: Chemical, 2017, 242, 1210-1215.	4.0	25

ARTICLE IF CITATIONS Enhanced fluorescence of tetrasulfonated zinc phthalocyanine by graphene quantum dots and its 807 1.5 8 application in molecular sensing/imaging. Luminescence, 2017, 32, 573-580. One-step self-assembled epoxide-containing nanodots as an enzyme-immobilized platform for 808 biosensing. Sensors and Actuators B: Chemical, 2017, 240, 674-680. One pot synthesis of gold – carbon dots nanocomposite and its application for cytosensing of metals 809 2.9 65 for cancer cells. Talanta, 2017, 166, 357-363. Nitrogenâ€Induced Transformation of Vitaminâ€...C into Multifunctional Upâ€converting Carbon Nanodots in the Visible–NIR Range. Chemistry - A European Journal, 2017, 23, 3067-3073. DNA methyltransferase activity detection based on graphene quantum dots using fluorescence and 811 4.0 50 fluorescence anisotropy. Sensors and Actuators B: Chemical, 2017, 241, 217-223. Nanofabrication of Graphene Quantum Dots with High Toxicity Against Malaria Mosquitoes, Plasmodium falciparum and MCF-7 Cancer Cells: Impact on Prédation of Non-target Tadpoles, Odonate 1.7 Nymphs and Mosquito Fishes. Journal of Cluster Science, 2017, 28, 393-411. Nanomaterialsâ€based biosensors for detection of microorganisms and microbial toxins. 813 1.8 46 Biotechnology Journal, 2017, 12, . One-pot synthesis of NiFe2O4 integrated with EDTA-derived carbon dots for enhanced removal of 814 6.6 tetracycline. Chemical Engineering Journal, 2017, 310, 187-196. Small but strong: The influence of fluorine atoms on formation and performance of graphene 815 5.4 68 quantum dots using a gradient F-sacrifice strategy. Carbon, 2017, 112, 63-71. Biosensing Based on Surface- Enhanced Raman Spectroscopy., 2017, , 111-156. N, S co-doped graphene quantum dots-graphene-TiO2 nanotubes composite with enhanced 817 2.8 187 photocatalytic activity. Journal of Alloys and Compounds, 2017, 691, 369-377. Green synthesis of highly stable carbon nanodots and their photocatalytic performance. IET Nanobiotechnology, 2017, 11, 360-364. High oxygen reduction reaction activity of C-N/Ag hybrid composites for Zn-air battery. Journal of 819 2.8 31 Alloys and Compounds, 2017, 694, 419-428. GQDs-TiO2 heterojunction based thin films for volatile organic compounds sensor with excellent 1.3 performance at room temperature. Materials Letters, 2017, 186, 193-197. Layer-by-Layer Assembly for Graphene-Based Multilayer Nanocomposites: The Field Manual. Chemistry 822 3.2 52 of Materials, 2017, 29, 69-79. Magnetic nanoparticles embedded with graphene quantum dots and multiwalled carbon nanotubes as a sensing platform for electrochemical detection of progesterone. Sensors and Actuators B: Chemical, 2017, 238, 346-356. Novel turn-on fluorescent detection of alkaline phosphatase based on green synthesized carbon dots 824 2.9 153 and MnO 2 nanosheets. Talanta, 2017, 165, 136-142. Designing an ultra-sensitive aptasensor based on an AgNPs/thiol-GQD nanocomposite for TNT detection at femtomolar levels using the electrochemical oxidation of Rutin as a redox probe. 5.3 Biosensors and Bioelectronics, 2017, 87, 724-731.

#	Article	IF	CITATIONS
826	Synergistic Enhancement of Electron-Accepting and -Donating Ability of Nonconjugated Polymer Nanodot in Micellar Environment. Langmuir, 2017, 33, 14718-14727.	1.6	7
827	All-solution process flexible nanocomposite generator made of BaTiO <inf>3</inf> nanoparticles and graphene quantum dots. , 2017, , .		0
828	Graphene Quantum Dots Electrochemistry and Sensitive Electrocatalytic Glucose Sensor Development. Nanomaterials, 2017, 7, 301.	1.9	79
829	Sensitivity to Heavy-Metal Ions of Unfolded Fullerene Quantum Dots. Sensors, 2017, 17, 2614.	2.1	43
830	Simultaneous Gene Delivery and Tracking through Preparation of Photo-Luminescent Nanoparticles Based on Graphene Quantum Dots and Chimeric Peptides. Scientific Reports, 2017, 7, 9552.	1.6	76
831	Properties and Synthesis Strategies of Graphene Quantum Dots. Frontiers in Nanobiomedical Research, 2017, , 1-18.	0.1	0
832	Two-photon graphene quantum dot modified Gd ₂ O ₃ nanocomposites as a dual-mode MRI contrast agent and cell labelling agent. Nanoscale, 2018, 10, 5642-5649.	2.8	56
833	Covalent grafting of chelated othoborate ionic liquid on carbon quantum dot towards high performance additives: Synthesis, characterization and tribological evaluation. Tribology International, 2018, 121, 302-309.	3.0	45
834	A Supramolecular Polymer Network of Graphene Quantum Dots. Angewandte Chemie, 2018, 130, 5054-5058.	1.6	23
835	A Supramolecular Polymer Network of Graphene Quantum Dots. Angewandte Chemie - International Edition, 2018, 57, 4960-4964.	7.2	50
836	Effect of solvents on optical band gap of silicon-doped graphene oxide. Materials Research Express, 2018, 5, 035017.	0.8	9
837	Complementary Resistive Switching Observed in Graphene Oxide-Based Memory Device. IEEE Electron Device Letters, 2018, 39, 488-491.	2.2	25
838	Sensitive immunoassay of von Willebrand factor based on fluorescence resonance energy transfer between graphene quantum dots and Ag@Au nanoparticles. Colloids and Surfaces B: Biointerfaces, 2018, 165, 286-292.	2.5	17
839	Direct determination of graphene quantum dots based on terbium-sensitized luminescence. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 198, 177-181.	2.0	4
840	Exploring the Emissive States of Heteroatom-Doped Graphene Quantum Dots. Journal of Physical Chemistry C, 2018, 122, 6483-6492.	1.5	88
841	Green synthesis of fluorescent carbon quantum dots for the detection of mercury(<scp>ii</scp>) and glutathione. New Journal of Chemistry, 2018, 42, 5814-5821.	1.4	135
842	Determination of vanillin by using gold nanoparticle-modified screen-printed carbon electrode modified with graphene quantum dots and Nafion. Mikrochimica Acta, 2018, 185, 204.	2.5	30
843	Ionic liquid-induced double regulation of carbon quantum dots modified bismuth oxychloride/bismuth oxybromide nanosheets with enhanced visible-light photocatalytic activity. Journal of Colloid and Interface Science, 2018, 519, 263-272.	5.0	66

#	Article	IF	CITATIONS
844	A novel bio-nano emulsion fuel based on biodegradable nanoparticles to improve diesel engines performance and reduce exhaust emissions. Renewable Energy, 2018, 125, 64-72.	4.3	82
845	Hydroxylated-Graphene Quantum Dots Induce DNA Damage and Disrupt Microtubule Structure in Human Esophageal Epithelial Cells. Toxicological Sciences, 2018, 164, 339-352.	1.4	29
846	A sensitive fluorescent sensing strategy for nanomolar levels of metformin using graphitic carbon nitride nanosheets as nanofluoroprobe. Analytica Chimica Acta, 2018, 1026, 117-124.	2.6	30
847	Design of Fe3O4@SiO2@mSiO2-organosilane carbon dots nanoparticles: Synthesis and fluorescence red-shift properties with concentration dependence. Materials and Design, 2018, 151, 89-101.	3.3	17
848	Tuning the optical properties of graphene quantum dots for biosensing and bioimaging. Journal of Materials Chemistry B, 2018, 6, 3219-3234.	2.9	155
849	Advances in the integration of quantum dots with various nanomaterials for biomedical and environmental applications. Analyst, The, 2018, 143, 2469-2478.	1.7	37
850	Facile Ionic Liquidâ€Assisted Strategy for Direct Precipitation of Eu ²⁺ â€Activated Nanophosphors under Ambient Conditions. Small, 2018, 14, e1703707.	5.2	16
851	PVC membrane, coated-wire, and carbon-paste ion-selective electrodes for potentiometric determination of galantamine hydrobromide in physiological fluids. Materials Science and Engineering C, 2018, 89, 140-148.	3.8	39
852	Graphene Quantum Dots Electrochemistry and Development of Ultrasensitive Enzymatic Glucose Sensor. MRS Advances, 2018, 3, 831-847.	0.5	9
853	ZnO-graphene quantum dots heterojunctions for natural sunlight-driven photocatalytic environmental remediation. Applied Surface Science, 2018, 447, 802-815.	3.1	123
854	A Novel Lubricant Based on Covalent Functionalized Graphene Oxide Quantum Dots. Scientific Reports, 2018, 8, 5843.	1.6	34
855	Artifacts and Errors Associated with the Ubiquitous Presence of Fluorescent Impurities in Carbon Nanodots. Chemistry of Materials, 2018, 30, 1878-1887.	3.2	203
856	Doxorubicin loaded carboxymethyl cellulose/graphene quantum dot nanocomposite hydrogel films as a potential anticancer drug delivery system. Materials Science and Engineering C, 2018, 87, 50-59.	3.8	221
857	Photocatalytic degradation of organic pollutants coupled with simultaneous photocatalytic H2 evolution over graphene quantum dots/Mn-N-TiO2/g-C3N4 composite catalysts: Performance and mechanism. Applied Catalysis B: Environmental, 2018, 227, 312-321.	10.8	246
858	In Situ Timeâ€Dependent and Progressive Oxidation of Reduced State Functionalities at the Nanoscale of Carbon Nanoparticles for Polarityâ€Driven Multiscale Nearâ€Infrared Imaging. Advanced Biology, 2018, 2, 1800009.	3.0	20
859	First principles study of edge carboxylated graphene quantum dots. Physica B: Condensed Matter, 2018, 537, 77-86.	1.3	46
860	Recent Advances in Graphene Quantum Dots as Bioimaging Probes. Journal of Analysis and Testing, 2018, 2, 45-60.	2.5	24
861	Black phosphorus nanosheets for rapid microRNA detection. Nanoscale, 2018, 10, 5060-5064.	2.8	91

#	Article	IF	CITATIONS
862	Carbon dots based immunosorbent assay for the determination of GFAP in human serum. Nanotechnology, 2018, 29, 145501.	1.3	24
863	Recent advances in quantum dots for biomedical applications. Journal of Pharmaceutical Investigation, 2018, 48, 209-214.	2.7	58
864	Graphene-based nanocomposites: synthesis and their theranostic applications. Journal of Drug Targeting, 2018, 26, 858-883.	2.1	51
865	Silicene Quantum Dots: Synthesis, Spectroscopy, and Electrochemical Studies. Langmuir, 2018, 34, 2834-2840.	1.6	16
866	Specific Oxygenated Groups Enriched Graphene Quantum Dots as Highly Efficient Enzyme Mimics. Small, 2018, 14, e1703710.	5.2	92
867	Mechanofluorochromic Carbon Nanodots: Controllable Pressureâ€Triggered Blue―and Redâ€Shifted Photoluminescence. Angewandte Chemie - International Edition, 2018, 57, 1893-1897.	7.2	86
868	The effect of N-doped quantum dots on the properties of in situ prepared colorless polyimide nanocomposite films. Materials and Design, 2018, 140, 144-152.	3.3	19
869	Fabrication of MoS2-graphene modified with Fe3O4 particles and its enhanced microwave absorption performance. Advanced Powder Technology, 2018, 29, 744-750.	2.0	48
870	Sensitive determination of rutin by spectrofluorimetry using carbon dots synthesized from a non-essential amino acid. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 193, 486-491.	2.0	33
871	Plasmonic Carbon-Dot-Decorated Nanostructured Semiconductors for Efficient and Tunable Random Laser Action. ACS Applied Nano Materials, 2018, 1, 152-159.	2.4	22
872	Optical graphene quantum dots gas sensors: Theoretical study. Superlattices and Microstructures, 2018, 114, 321-330.	1.4	34
873	Recovery of edge states of graphene nanoislands on an iridium substrate by silicon intercalation. Nano Research, 2018, 11, 3722-3729.	5.8	10
874	A strong green fluorescent nanoprobe for highly sensitive and selective detection of nitrite ions based on phosphorus and nitrogen co-doped carbon quantum dots. Sensors and Actuators B: Chemical, 2018, 262, 555-561.	4.0	60
875	Evaluation of physico-mechanical properties in NHDF and HeLa cell with treatment of graphene quantum dots using atomic force microscopy. Applied Surface Science, 2018, 437, 357-365.	3.1	3
876	Tailoring the Electronic Properties of Graphene Quantum Dots by P Doping and Their Enhanced Performance in Metal-Free Composite Photocatalyst. Journal of Physical Chemistry C, 2018, 122, 349-358.	1.5	108
877	Uricase based fluorometric determination of uric acid based on the use of graphene quantum dot@silver core-shell nanocomposites. Mikrochimica Acta, 2018, 185, 63.	2.5	34
878	Nitrogen and sulphur co-doped multiwalled carbon nanotubes as an efficient electrocatalyst for improved oxygen electroreduction. Applied Surface Science, 2018, 449, 697-704.	3.1	29
879	Precision synthesis versus bulk-scale fabrication of graphenes. Nature Reviews Chemistry, 2018, 2, .	13.8	228

	CITATION RE	PORT	
#	Article	IF	CITATIONS
880	Anomalous fluorescence enhancement and fluorescence quenching of graphene quantum dots by single walled carbon nanotubes. Physical Chemistry Chemical Physics, 2018, 20, 4527-4537.	1.3	41
881	Controlled Pore Sizes in Monolayer C ₂ N Act as Ultrasensitive Probes for Detection of Gaseous Pollutants (HF, HCN, and H ₂ S). Journal of Physical Chemistry C, 2018, 122, 2248-2258.	1.5	53
883	CdS QDs Amplified Electrochemiluminescence of N,S Co-doped Graphene Quantum Dots and Its Application for Pb(II) Determination. Chemistry Letters, 2018, 47, 44-47.	0.7	17
884	Mechanofluorochromic Carbon Nanodots: Controllable Pressureâ€Triggered Blue―and Redâ€6hifted Photoluminescence. Angewandte Chemie, 2018, 130, 1911-1915.	1.6	4
885	Physical, Chemical and Biochemical Biosensors to Detect Pathogens. Environmental Chemistry for A Sustainable World, 2018, , 53-86.	0.3	3
886	Electropolymerization of poly(3,4-ethylenedioxythiophene) onto polyvinyl alcohol-graphene quantum dot-cobalt oxide nanofiber composite for high-performance supercapacitor. Electrochimica Acta, 2018, 261, 548-556.	2.6	44
887	One-Step Synthesis of N-Doped Graphene Quantum Dots from Chitosan as a Sole Precursor Using Chemical Vapor Deposition. Journal of Physical Chemistry C, 2018, 122, 2343-2349.	1.5	100
888	Towards efficient and stable multi-color carbon nanoparticle phosphors: synergy between inner polar groups and outer silica matrix. Science China Materials, 2018, 61, 1191-1200.	3.5	10
889	Electronic structure manipulation of graphene dots for effective hydrogen evolution from photocatalytic water decomposition. Nanoscale, 2018, 10, 10721-10730.	2.8	27
890	Cu-crosslinked carboxymethylcellulose/naproxen/graphene quantum dot nanocomposite hydrogel beads for naproxen oral delivery. Carbohydrate Polymers, 2018, 195, 453-459.	5.1	90
891	Enhanced performance of porphyrin sensitized solar cell based on graphene quantum dots decorated photoanodes. Optical Materials, 2018, 79, 435-445.	1.7	15
892	Metal ions doped carbon quantum dots: Synthesis, physicochemical properties, and their applications. TrAC - Trends in Analytical Chemistry, 2018, 103, 87-101.	5.8	183
893	Heteroatom doped photoluminescent carbon dots for sensitive detection of acetone in human fluids. Sensors and Actuators B: Chemical, 2018, 266, 583-593.	4.0	99
894	Inhomogeneous Photoluminescence Characteristic in Carbon Nanodots and Electrophotoluminescence Measurements. Journal of Physical Chemistry C, 2018, 122, 6463-6474.	1.5	5
895	GSH-doped GQDs using citric acid rich-lime oil extract for highly selective and sensitive determination and discrimination of Fe ³⁺ and Fe ²⁺ in the presence of H ₂ O ₂ by a fluorescence "turn-off―sensor. RSC Advances, 2018, 8, 10148-10157.	1.7	22
896	Emerging chemical strategies for imprinting magnetism in graphene and related 2D materials for spintronic and biomedical applications. Chemical Society Reviews, 2018, 47, 3899-3990.	18.7	161
897	Preparation and biodistribution of 1311-labeled graphene quantum dots. Journal of Radioanalytical and Nuclear Chemistry, 2018, 316, 685-690.	0.7	14
898	A novel electrochemiluminescence resonance energy transfer system of luminol-graphene quantum dot composite and its application in H2O2 detection. Talanta, 2018, 185, 446-452.	2.9	37

		CITATION R	EPORT	
#	Article		IF	Citations
899	Carbon quantum dots from natural resource: A review. Materials Today Chemistry, 201	8, 8, 96-109.	1.7	522
900	Light-Powered Nanoconverters Cytotoxic to Breast Cancer Cells. Journal of Physical Che 2018, 122, 7916-7924.	emistry C,	1.5	7
901	Hollow carbon dots labeled with FITC or TRITC for use in fluorescent cellular imaging. M Acta, 2018, 185, 223.	ikrochimica	2.5	15
902	Highly-efficient organic light-emitting devices based on poly(N,N′-bis-4-butylphenyl-N,N′-bisphenyl)benzidine:octadecylamine-graphene qı Electronics, 2018, 57, 305-310.	uantum dots. Organic	1.4	14
903	Limits and possible solutions in quantum dot organic solar cells. Renewable and Sustair Reviews, 2018, 82, 1551-1564.	iable Energy	8.2	33
904	Optical and physical properties of iridescent photonic crystals obtained by selfâ€assem methacrylate nanospheres within graphene oxide nanoplatelets. Polymers for Advancec 2018, 29, 244-253.	bled polymethyl I Technologies,	1.6	2
905	Graphene quantum dots/bisulfite assisted chemiluminescence of rhodamine B-H2O2 sy sensitive recognition of HCHO. Sensors and Actuators B: Chemical, 2018, 254, 402-410	stem for).	4.0	11
906	Morphology and Admittance Spectroscopy of Cellulose Acetate/Graphene Quantum Dc Nanocomposites. International Journal of Nanoscience, 2018, 17, 1760006.	its	0.4	0
907	Graphene quantum dots modified with adenine for efficient two-photon bioimaging and light-activated antibacteria. Applied Surface Science, 2018, 434, 155-162.	d white	3.1	47
908	Carbon nanodots based biosensors for gene mutation detection. Sensors and Actuator 2018, 256, 226-233.	s B: Chemical,	4.0	76
909	Corrosion protection properties of novel epoxy nanocomposite coatings containing sila functionalized graphene quantum dots. Journal of Alloys and Compounds, 2018, 731, 1	ne 112-1118.	2.8	77
910	Fabrication of transparent bistable switching memory device using plasmapolymerized hexamethyldisiloxane layers with embedded graphene quantum dots. Thin Solid Films, 2	2018, 645, 45-50.	0.8	10
911	Graphene quantum dots based fluorescence turn-on nanoprobe for highly sensitive and imaging of hydrogen sulfide in living cells. Biomaterials Science, 2018, 6, 779-784.	selective	2.6	42
912	Naturalâ€Productâ€Derived Carbon Dots: From Natural Products to Functional Materia 2018, 11, 11-24.	ls. ChemSusChem,	3.6	278
913	The photoluminescence of step-wise reduced graphene oxide quantum dots. Materials Physics, 2018, 203, 125-132.	Chemistry and	2.0	16
914	Graphene-based devices for measuring pH. Sensors and Actuators B: Chemical, 2018, 2	56, 976-991.	4.0	111
915	Graphene quantum dots decorated rutile TiO2 nanoflowers for water splitting application of Energy Chemistry, 2018, 27, 306-310.	on. Journal	7.1	40
916	Fabrication of poly(vinyl alcohol)â€graphene quantum dots coated with poly(3,4â€ethylenedioxythiophene) for supercapacitor. Journal of Polymer Science Part 	A, 2018, 56, 50-58.	2.5	42

#	ARTICLE Carbon quantum dots/layered double hydroxide hybrid for fast and efficient decontamination of	IF	CITATIONS
917 918	Cd(II): The adsorption kinetics and isotherms. Applied Surface Science, 2018, 428, 272-279. A "turn-on―fluorescence sensor for Pb2+ detection based on graphene quantum dots and gold nanoparticles. Sensors and Actuators B: Chemical, 2018, 255, 1577-1581.	4.0	103
919	Boron and nitrogen coâ€doped carbon dots as a sensitive fluorescent probe for the detection of curcumin. Luminescence, 2018, 33, 174-180.	1.5	64
920	Functional Carbon Quantum Dots: A Versatile Platform for Chemosensing and Biosensing. Chemical Record, 2018, 18, 491-505.	2.9	119
921	A novel electrochemical aptasensor for highly sensitive and quantitative detection of the streptomycin antibiotic. Bioelectrochemistry, 2018, 120, 43-48.	2.4	49
922	A versatile platform for the highly efficient preparation of graphene quantum dots: photoluminescence emission and hydrophilicity–hydrophobicity regulation and organelle imaging. Nanoscale, 2018, 10, 1532-1539.	2.8	27
923	An in vitro cytotoxicity assessment of graphene nanosheets on alveolar cells. Applied Surface Science, 2018, 434, 1274-1284.	3.1	21
924	One step hydrothermal synthesis of carbon nanodots to realize the fluorescence detection of picric acid in real samples. Sensors and Actuators B: Chemical, 2018, 258, 580-588.	4.0	70
925	Ultrasensitive electrochemical immunosensing of tumor suppressor protein p53 in unprocessed human plasma and cell lysates using a novel nanocomposite based on poly-cysteine/graphene quantum dots/gold nanoparticle. International Journal of Biological Macromolecules, 2018, 107, 1348-1363.	3.6	63
926	Graphene quantum dots–terbium ions as novel sensitive and selective time-resolved luminescent probes. Analytical and Bioanalytical Chemistry, 2018, 410, 391-398.	1.9	13
927	Paper-based fluorogenic devices for in vitro diagnostics. Biosensors and Bioelectronics, 2018, 102, 256-266.	5.3	50
928	Probing with Light—Optical Methods in Studies of Nanocrystalline Semiconductors. Lecture Notes in Quantum Chemistry II, 2018, , 319-371.	0.3	0
929	Carbon dot capped gold nanoflowers for electrochemiluminescent aptasensor of thrombin. Carbon, 2018, 127, 653-657.	5.4	33
930	A Redâ€Phosphorousâ€Assisted Ballâ€Milling Synthesis of Few‣ayered Ti ₃ C ₂ T _{<i>x</i>} (MXene) Nanodot Composite. ChemNanoMat, 2018, 4, 56-60.	1.5	64
931	Graphene: A versatile platform for nanotheranostics and tissue engineering. Progress in Materials Science, 2018, 91, 24-69.	16.0	127
932	The Current Status and Future Outlook of Quantum Dot-Based Biosensors for Plant Virus Detection. Plant Pathology Journal, 2018, 34, 85-92.	0.7	36
933	Atomic Force Microscopy Study of Monodisperse Carbon Nanoparticles. Semiconductors, 2018, 52, 2065-2067.	0.2	2
934	Aluminum-Based Fuel for Future. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
935	Continuous hydrothermal flow synthesis of graphene quantum dots. Reaction Chemistry and Engineering, 2018, 3, 949-958.	1.9	27
936	Microemulsions as Nanotemplates: A Soft and Versatile Approach. , 0, , .		5
937	Graphene Oxide Quantum Dot Alters Amyloidogenicity of Hen Egg White Lysozyme via Modulation of Protein Surface Character. Langmuir, 2018, 34, 15283-15292.	1.6	20
938	Sulfur doped carbon nitride quantum dots with efficient fluorescent property and their application for bioimaging. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	14
939	Biomedical Applications of Graphene-Based Structures. Nanomaterials, 2018, 8, 944.	1.9	168
940	Assembly of Ni–Al layered double hydroxide and oxide graphene quantum dots for supercapacitors. Journal of Materials Research, 2018, 33, 4215-4223.	1.2	12
941	Size Fractionation of Fluorescent Graphene Quantum Dots Using a Cross-Flow Membrane Filtration System. Nanomaterials, 2018, 8, 959.	1.9	7
942	Tuning Carbon Dots' Optoelectronic Properties with Polymers. Polymers, 2018, 10, 1312.	2.0	19
943	Cisplatinâ€Loaded Polymeric Micelles with Aggregationâ€Induced Emission Feature for Cellular Imaging and Chemotherapy. ChemistrySelect, 2018, 3, 13682-13691.	0.7	4
944	Effect of graphene quantum dots on photoluminescence property of polyvinyl butyral nanocomposite. Polymers for Advanced Technologies, 2019, 30, 790-798.	1.6	9
945	Creation of Hollow Calcite Single Crystals with CQDs: Synthesis, Characterization, and Fast and Efficient Decontamination of Cd(II). Scientific Reports, 2018, 8, 17603.	1.6	13
946	Molecular imaging with nanoparticles: the dwarf actors revisited 10Âyears later. Histochemistry and Cell Biology, 2018, 150, 733-794.	0.8	13
947	Applications of carbon quantum dots (CQDs) in membrane technologies: A review. Water Research, 2018, 147, 43-49.	5.3	220
948	Synthesis of Carbon Dots from PEG6000 and Papain for Fluorescent and Doxycycline Sensing. Nano, 2018, 13, 1850106.	0.5	5
949	Preparation of Highly Catalytic N-Doped Carbon Dots and Their Application in SERS Sulfate Sensing. Materials, 2018, 11, 1655.	1.3	9
950	Toward Efficient Carbon-Dots-Based Electron-Extraction Layer Through Surface Charge Engineering. ACS Applied Materials & Interfaces, 2018, 10, 40255-40264.	4.0	12
951	Simultaneous Determination of Hydroquinone and Catechol using Carbon Glass Electrode Modified with Graphene Quantum Dots. International Journal of Electrochemical Science, 2018, 13, 11250-11262.	0.5	14
952	Using Thermolytic Solution of Anionic - Decorated Gqds as Fluorescence Turn on-off Sensor for Selective Screening Test of Metal Ions. Oriental Journal of Chemistry, 2018, 34, 55-63.	0.1	2

#	Article	IF	CITATIONS
953	Determination of DNA based on fluorescence quenching of terbium doped carbon dots. Mikrochimica Acta, 2018, 185, 514.	2.5	14
954	A Reduced Graphene Oxide Quantum Dot-Based Adsorbent for Efficiently Binding with Organic Pollutants. ACS Applied Nano Materials, 2018, 1, 6502-6513.	2.4	42
955	Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Interfaces, 2018, 10, 40560-40567.	4.0	79
956	One-Pot Magnetic Iron Oxide–Carbon Nanodot Composite-Catalyzed Cyclooxidative Aqueous Tandem Synthesis of Quinazolinones in the Presence of <i>tert</i> Butyl Hydroperoxide. ACS Omega, 2018, 3, 13711-13719.	1.6	39
957	Graphene quantum dots-based nano-biointerface platform for food toxin detection. Analytical and Bioanalytical Chemistry, 2018, 410, 7313-7323.	1.9	27
958	Application of carbon quantum dots to increase the activity of conventional photocatalysts: A systematic review. Journal of Molecular Liquids, 2018, 271, 857-871.	2.3	105
959	Production of pristine graphene quantum dots from graphite by a shear-mixer in supercritical CO2. Chemical Physics Letters, 2018, 710, 64-69.	1.2	12
960	Surface state selective tunable emission of graphene quantum dots exhibiting novel thermal quenching characteristics. Carbon, 2018, 140, 394-403.	5.4	30
961	A graphene quantum dot-based multifunctional two-photon nanoprobe for the detection and imaging of intracellular glutathione and enhanced photodynamic therapy. Analyst, The, 2018, 143, 4967-4973.	1.7	51
962	Direct Synthesis of Graphene Quantum Dots with Different Fluorescence Properties by Oxidation of Graphene Oxide Using Nitric Acid. Applied Sciences (Switzerland), 2018, 8, 1303.	1.3	41
963	A double fluorescent nanoprobe based on phosphorus/nitrogen co-doped carbon dots for detecting dichromate ions and dopamine. RSC Advances, 2018, 8, 31793-31802.	1.7	21
964	Green synthesis of N, S co-doped carbon quantum dots from triflic acid treated palm shell waste and their application in nitrophenol sensing. Materials Research Bulletin, 2018, 108, 250-254.	2.7	53
965	Confirmation of Nanomaterials with Low-Toxicity or Non-toxicity Property. , 2018, , 205-226.		3
966	Surface Functionalized Multifunctional Gd ₂ O ₃ –Fluorescein Composite Nanorods for Redox Responsive Drug Delivery and Imaging Applications. ACS Applied Nano Materials, 2018, 1, 2898-2911.	2.4	6
967	Computational studies on the doped graphene quantum dots as potential carriers in drug delivery systems for isoniazid drug. Structural Chemistry, 2018, 29, 1427-1448.	1.0	63
968	Self-assembly of graphene quantum dots into hydrogels and cryogels: Dynamic light scattering, UV–Vis spectroscopy and structural investigations. Journal of Molecular Liquids, 2018, 265, 172-180.	2.3	29
969	Brightly Fluorescent Zinc-Doped Red-Emitting Carbon Dots for the Sunlight-Induced Photoreduction of Cr(VI) to Cr(III). ACS Omega, 2018, 3, 5187-5194.	1.6	95
970	Recent Advances in Graphene Quantum Dots: Synthesis, Properties, and Applications. Small Methods, 2018, 2, 1800050.	4.6	166

#	Article	IF	Citations
971	Synthesis, Optical, and Magnetic Properties of Graphene Quantum Dots and Iron Oxide Nanocomposites. Advances in Materials Science and Engineering, 2018, 2018, 1-8.	1.0	16
972	Graphene and Graphene Oxide for Fuel Cell Technology. Industrial & Engineering Chemistry Research, 2018, 57, 9333-9350.	1.8	134
973	Hybrid nanomaterials designed for volatile organic compounds sensors: A review. Materials and Design, 2018, 156, 154-166.	3.3	128
974	Biomedical Applications of Graphene Nanomaterials and Beyond. ACS Biomaterials Science and Engineering, 2018, 4, 2653-2703.	2.6	161
975	Immunosensing of breast cancer prognostic marker in adenocarcinoma cell lysates and unprocessed human plasma samples using gold nanostructure coated on organic substrate. International Journal of Biological Macromolecules, 2018, 118, 1082-1089.	3.6	58
976	Graphene-Based Nanosensors and Smart Food Packaging Systems for Food Safety and Quality Monitoring. , 2018, , 267-306.		17
977	Graphene-Based Nanomaterials in Bioimaging. , 2018, , 247-287.		24
978	Random occurrence of macroscale superlubricity of graphite enabled by tribo-transfer of multilayer graphene nanoflakes. Carbon, 2018, 138, 154-160.	5.4	45
979	Co-assembly of thylakoid and graphene oxide as a photoelectrochemical composite film for enhanced mediated electron transfer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 37-42.	2.3	13
980	Ultrahigh-luminosity white-light-emitting devices based on edge functionalized graphene quantum dots. Nano Energy, 2018, 51, 199-205.	8.2	27
981	The pH Effect on Thermal Response of Fluorescence Spectroscopy of Graphene Quantum Dots for Nanoscale Thermal Characterization. Journal of Engineering Thermophysics, 2018, 27, 345-356.	0.6	6
982	Energy and environmental applications of graphene and its derivatives. , 2018, , 105-129.		3
983	Individual and simultaneous electrochemical determination of metanil yellow and curcumin on carbon quantum dots based glassy carbon electrode. Materials Science and Engineering C, 2018, 93, 21-27.	3.8	46
984	Quantum Dots as a New Generation Nanomaterials and Their Electrochemical Applications in Pharmaceutical Industry. , 2018, , 520-529.		15
985	Selective supramolecular interaction of ethylenediamine functionalized graphene quantum dots: Ultra-sensitive photoluminescence detection for nickel ion in vitro. Synthetic Metals, 2018, 244, 106-112.	2.1	30
986	One-pot synthesis of highly fluorescent amino-functionalized graphene quantum dots for effective detection of copper ions. Current Applied Physics, 2018, 18, 1255-1260.	1.1	30
987	Fluorescent quantum dots for microbial imaging. Chinese Chemical Letters, 2018, 29, 1475-1485.	4.8	66
988	Enhanced Photocatalytic Activity toward Organic Pollutants Degradation and Mechanism Insight of Novel CQDs/Bi2O2CO3 Composite. Nanomaterials, 2018, 8, 330.	1.9	19

#	Article	IF	CITATIONS
989	Discriminating between Different Heavy Metal Ions with Fullerene-Derived Nanoparticles. Sensors, 2018, 18, 1496.	2.1	29
990	Defect States Control Effective Band Gap and Photochemistry of Graphene Quantum Dots. ACS Applied Materials & Interfaces, 2018, 10, 27195-27204.	4.0	24
991	Nitrogen-doped graphene and graphene quantum dots: A review onsynthesis and applications in energy, sensors and environment. Advances in Colloid and Interface Science, 2018, 259, 44-64.	7.0	313
992	Electrochemical biosensing platform based on molecularly imprinted polymer reinforced by ZnO–graphene capped quantum dots for 6-mercaptopurine detection. Electrochimica Acta, 2018, 283, 1170-1177.	2.6	45
993	Electrocatalytic activity of a push-pull phthalocyanine in the presence of reduced and amino functionalized graphene quantum dots towards the electrooxidation of hydrazine. Journal of Electroanalytical Chemistry, 2018, 820, 146-160.	1.9	28
994	A novel thiol-ene click reaction for preparation of graphene quantum dots and their potential for fluorescence imaging. Materials Science and Engineering C, 2018, 91, 631-637.	3.8	17
995	Manganese-Doped Carbon Dots for Magnetic Resonance/Optical Dual-Modal Imaging of Tiny Brain Glioma. ACS Biomaterials Science and Engineering, 2018, 4, 2089-2094.	2.6	57
996	Sunlight-Induced Photocatalytic Degradation of Pollutant Dye by Highly Fluorescent Red-Emitting Mg-N-Embedded Carbon Dots. ACS Sustainable Chemistry and Engineering, 2018, 6, 9246-9256.	3.2	121
997	In Vivo Near-Infrared Fluorescence Imaging. , 2018, , 67-125.		1
998	Facile green synthesis of carbon dots from Pyrus pyrifolia fruit for assaying of Al3+ ion via chelation enhanced fluorescence mechanism. Journal of Molecular Liquids, 2018, 264, 9-16.	2.3	76
999	On-chip analysis of carbon dots effect on yeast replicative lifespan. Analytica Chimica Acta, 2018, 1033, 119-127.	2.6	34
1000	Graphene Quantum Dot–Aerogel: From Nanoscopic to Macroscopic Fluorescent Materials. Sensing Polyaromatic Compounds in Water. ACS Applied Materials & Interfaces, 2018, 10, 18192-18201.	4.0	48
1001	Highly-stable write-once-read-many-times switching behaviors of 1D–1R memristive devices based on graphene quantum dot nanocomposites. Scientific Reports, 2018, 8, 12081.	1.6	9
1002	Biocompatibility and toxicity of graphene quantum dots for potential application in photodynamic therapy. Nanomedicine, 2018, 13, 1923-1937.	1.7	150
1003	Theoretical study on electronic properties of curved graphene quantum dots. Computational and Theoretical Chemistry, 2018, 1140, 86-97.	1.1	3
1004	Practical Three-Minute Synthesis of Acid-Coated Fluorescent Carbon Dots with Tuneable Core Structure. Scientific Reports, 2018, 8, 12234.	1.6	46
1005	Electron-rich heterocycle induced tunable emitting fluorescence of graphitic carbon nitride quantum dots. Applied Surface Science, 2018, 462, 303-309.	3.1	24
1006	Pristine Carbon Dots Boost the Growth of <i>Chlorella vulgaris</i> by Enhancing Photosynthesis. ACS Applied Bio Materials, 2018, 1, 894-902.	2.3	45

	CITATION	N REPORT	
# 1007	ARTICLE Dual detection of Malation and Hg (II) by fluorescence switching of graphene quantum dots. Environmental Nanotechnology, Monitoring and Management, 2018, 10, 308-313.	IF 1.7	CITATIONS
1008	Biomass-waste derived graphene quantum dots and their applications. Carbon, 2018, 140, 77-99.	5.4	202
1009	Specific quantification of atropine using molecularly imprinted polymer on graphene quantum dots. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 205, 614-621.	2.0	30
1010	Effects of Oxidation State on Charge Carrier Lifetimes in B,N Codoped Graphene Oxide Quantum Dots. Journal of Physical Chemistry C, 2018, 122, 18818-18828.	1.5	9
1011	Investigation the cytotoxicity and photo-induced toxicity of carbon dot on yeast cell. Ecotoxicology and Environmental Safety, 2018, 161, 245-250.	2.9	41
1012	High fluorescent sulfur regulating graphene quantum dots with tunable photoluminescence properties. Journal of Colloid and Interface Science, 2018, 529, 205-213.	5.0	22
1013	Nanotoxicology in Caenorhabditis elegans. , 2018, , .		82
1014	Graphene quantum dots-assisted exfoliation of graphitic carbon nitride to prepare metal-free zero-dimensional/two-dimensional composite photocatalysts. Journal of Materials Science, 2018, 53, 12103-12114.	1.7	49
1015	Functionalized graphene. , 2018, , 545-584.		4
1016	Hydrothermal green synthesis of magnetic Fe3O4-carbon dots by lemon and grape fruit extracts and as a photoluminescence sensor for detecting of E. coli bacteria. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 203, 481-493.	2.0	217
1017	Tuning the optical properties of graphene quantum dots by selective oxidation: a theoretical perspective. Journal of Materials Chemistry C, 2018, 6, 6875-6883.	2.7	59
1018	Biosensors for pathogen surveillance. Environmental Chemistry Letters, 2018, 16, 1325-1337.	8.3	21
1019	Graphene and graphene oxide as nanomaterials for medicine and biology application. Journal of Nanostructure in Chemistry, 2018, 8, 123-137.	5.3	376
1020	Graphene-based materials for application in pharmaceutical nanotechnology. , 2018, , 297-329.		4
1021	A solvent-free gaseous detonation approach for converting benzoic acid into graphene quantum dots within milliseconds. Diamond and Related Materials, 2018, 87, 233-241.	1.8	9
1022	One-Pot Facile Synthesis of Graphene Quantum Dots from Rice Husks for Fe ³⁺ Sensing. Industrial & Engineering Chemistry Research, 2018, 57, 9144-9150.	1.8	73
1023	Facile one-pot synthesis of highly fluorescent nitrogen-doped carbon dots by mild hydrothermal method and their applications in detection of Cr(VI) ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 206, 65-71.	2.0	77
1024	Intrinsically reinforced silks obtained by incorporation of graphene quantum dots into silkworms. Science China Materials, 2019, 62, 245-255.	3.5	19

#	ARTICLE	IF	CITATIONS
1025		0.4	0
1026	Reflux pretreatment-mediated sonication: A new universal route to obtain 2D quantum dots. Materials Today, 2019, 22, 17-24.	8.3	12
1027	Carbon dot-based fluorometric optical sensors: an overview. Reviews in Inorganic Chemistry, 2019, 39, 179-197.	1.8	11
1028	Role of graphene in photocatalytic water splitting for hydrogen production. , 2019, , 81-108.		5
1029	One-dimensional and two-dimensional nanomaterials for the detection of multiple biomolecules. Chinese Chemical Letters, 2019, 30, 1557-1564.	4.8	16
1030	High Yield Controlled Synthesis of Nano-Graphene Oxide by Water Electrolytic Oxidation of Glassy Carbon for Metal-Free Catalysis. ACS Nano, 2019, 13, 9482-9490.	7.3	25
1031	Intrinsic Emission from Nanographenes. Chemistry - an Asian Journal, 2019, 14, 3213-3220.	1.7	10
1032	Graphene quantum dots (GQDs)-based nanomaterials for improving photodynamic therapy in cancer treatment. European Journal of Medicinal Chemistry, 2019, 182, 111620.	2.6	92
1033	Covalent Functionalization of Bovine Serum Albumin with Graphene Quantum Dots for Stereospecific Molecular Recognition. Analytical Chemistry, 2019, 91, 11864-11871.	3.2	53
1034	sp ² –sp ³ -Hybridized Atomic Domains Determine Optical Features of Carbon Dots. ACS Nano, 2019, 13, 10737-10744.	7.3	136
1035	Boron-doped graphene quantum dots: an efficient photoanode for a dye sensitized solar cell. New Journal of Chemistry, 2019, 43, 14313-14319.	1.4	32
1036	Tailoring fluorescence emissions, quantum yields, and white light emitting from nitrogen-doped graphene and carbon nitride quantum dots. Nanoscale, 2019, 11, 16553-16561.	2.8	57
1037	A critical review on two-dimensional quantum dots (2D QDs): From synthesis toward applications in energy and optoelectronics. Progress in Quantum Electronics, 2019, 68, 100226.	3.5	85
1038	Facile synthesis of yellow fluorescent carbon dots for highly sensitive sensing of cobalt ions and biological imaging. Analytical Methods, 2019, 11, 4077-4083.	1.3	17
1039	Graphene-based advanced nanoplatforms and biocomposites from environmentally friendly and biomimetic approaches. Green Chemistry, 2019, 21, 4887-4918.	4.6	37
1040	The Low Toxicity of Graphene Quantum Dots is Reflected by Marginal Gene Expression Changes of Primary Human Hematopoietic Stem Cells. Scientific Reports, 2019, 9, 12028.	1.6	56
1041	One-pot synthesis of N-doped graphene quantum dots as highly sensitive fluorescent sensor for detection of mercury ions water solutions. Materials Research Express, 2019, 6, 095615.	0.8	15
1042	Multifunctional quaternized carbon dots with enhanced biofilm penetration and eradication efficiencies. Journal of Materials Chemistry B, 2019, 7, 5104-5114.	2.9	95

#	Article	IF	CITATIONS
1043	Converting waste Allium sativum peel to nitrogen and sulphur co-doped photoluminescence carbon dots for solar conversion, cell labeling, and photobleaching diligences: A path from discarded waste to value-added products. Journal of Photochemistry and Photobiology B: Biology, 2019, 197, 111545.	1.7	65
1044	Structural transformation of the binary network in response to selective guest inclusion at liquid/solid interfaces. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 114, 113587.	1.3	1
1045	Microplasma-enhanced synthesis of colloidal graphene quantum dots at ambient conditions. Carbon, 2019, 153, 315-319.	5.4	38
1046	Black phosphorus quantum dot based all-optical signal processing: ultrafast optical switching and wavelength converting. Nanotechnology, 2019, 30, 415202.	1.3	30
1047	Synthesis of graphene quantum dots stabilized bimetallic AgRh nanoparticles and their applications. Inorganica Chimica Acta, 2019, 496, 119031.	1.2	9
1048	Aptamer and nanomaterial based FRET biosensors: a review on recent advances (2014–2019). Mikrochimica Acta, 2019, 186, 563.	2.5	116
1049	The fluorescence mechanismÂof carbon dots, and methods for tuning their emission color: a review. Mikrochimica Acta, 2019, 186, 583.	2.5	278
1050	Nitrogen-doped graphene quantum dots doped silica nanoparticles as enhancers for electrochemiluminescence thrombin aptasensors based on 3D graphene. Journal of Solid State Electrochemistry, 2019, 23, 2579-2588.	1.2	6
1051	White Emissive Carbon Dots Actuated by the H-/J-Aggregates and Förster Resonance Energy Transfer. Journal of Physical Chemistry Letters, 2019, 10, 3849-3857.	2.1	53
1052	Synthesis, Properties, and Applications of Graphene. , 2019, , 25-90.		10
1053	A holey graphene-based hybrid supercapacitor. Chemical Engineering Journal, 2019, 378, 122126.	6.6	79
1054	Preparation and Specific Capacitance Properties of Sulfur, Nitrogen Co-Doped Graphene Quantum Dots. Nanoscale Research Letters, 2019, 14, 219.	3.1	53
1055	Biomassâ€Derived Carbon Dots and Their Applications. Energy and Environmental Materials, 2019, 2, 172-192.	7.3	295
1056	The role of edge magnetism on the Kohn-Sham gap and fundamental energy gap of graphene quantum dots with zigzag edges. Carbon, 2019, 153, 89-94.	5.4	2
1057	Review of Carbon and Graphene Quantum Dots for Sensing. ACS Sensors, 2019, 4, 1732-1748.	4.0	660
1058	Influence of Electron Acceptor and Electron Donor on the Photophysical Properties of Carbon Dots: A Comparative Investigation at the Bulk tate and Singleâ€Particle Level. Advanced Functional Materials, 2019, 29, 1902466.	7.8	57
1059	Synthesis of Photoluminescent Core–Shell-Structured Carbon dots@silica Nanocomposite Fingermark Powders for Latent Fingermarks Visualization. Nano, 2019, 14, 1950068.	0.5	7
1060	Synthesis, solar cell application, and biological study of vinyl substituted isophorone derivatives. Research on Chemical Intermediates, 2019, 45, 5625-5639.	1.3	0

#	Article	IF	CITATIONS
1061	CQDs modified PbBiO2Cl nanosheets with improved molecular oxygen activation ability for photodegradation of organic contaminants. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 382, 111921.	2.0	17
1062	Optimization of quantum yield of highly luminescent graphene oxide quantum dots and their application in resistive memory devices. Semiconductor Science and Technology, 2019, 34, 125016.	1.0	11
1063	Nitrogenated holey graphene (C2N) surface as highly selective electrochemical sensor for ammonia. Journal of Molecular Liquids, 2019, 296, 111929.	2.3	69
1064	Fluorescent carbon dots driven from ayurvedic medicinal plants for cancer cell imaging and phototherapy. Heliyon, 2019, 5, e02483.	1.4	33
1065	A novel aspect of functionalized graphene quantum dots in cytotoxicity studies. Toxicology in Vitro, 2019, 61, 104649.	1.1	28
1066	Synthesis of Monodisperse Carbon Nanodots with Variable Photoluminescence Spectrum Using Polyaromatic Precursors. Technical Physics Letters, 2019, 45, 940-942.	0.2	2
1067	Evolution and Synthesis of Carbon Dots: From Carbon Dots to Carbonized Polymer Dots. Advanced Science, 2019, 6, 1901316.	5.6	760
1068	Insulator to semiconductor transition in graphene quantum dots. AIP Conference Proceedings, 2019, ,	0.3	8
1071	MoO _{<i>x</i>} Nanoparticle Catalysts for <scp>d</scp> -Glucose Epimerization and Their Electrical Immobilization in a Continuous Flow Reactor. ACS Applied Materials & Interfaces, 2019, 11, 44118-44123.	4.0	2
1072	Excitons in Carbonic Nanostructures. Journal of Carbon Research, 2019, 5, 71.	1.4	41
1073	Synthesis of Doped Porous 3D Graphene Structures by Chemical Vapor Deposition and Its Applications. Advanced Functional Materials, 2019, 29, 1904457.	7.8	64
1074	Graphene Quantum Dots Band Structure Tuned by Size for Efficient Organic Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900657.	0.8	7
1075	Recent Development of Metal Nanoparticles for Angiogenesis Study and Their Therapeutic Applications. ACS Applied Bio Materials, 2019, 2, 5492-5511.	2.3	31
1076	Wave-Function Symmetry Mechanism of Quantum-Well States in Graphene Nanoribbon Heterojunctions. Physical Review Applied, 2019, 12, .	1.5	4
1077	A study on the electro-reductive cycle of amino-functionalized graphene quantum dots immobilized on graphene oxide for amperometric determination of oxalic acid. Mikrochimica Acta, 2019, 186, 646.	2.5	20
1078	Carbon Dots as an Effective Fluorescent Sensing Platform for Metal Ion Detection. Nanoscale Research Letters, 2019, 14, 272.	3.1	165
1079	Research performance and trends of fluorescent carbon nanoparticles: a science citation index expanded-based analysis. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	7
1080	Heteroatom-Doped Nanographenes with Structural Precision. Accounts of Chemical Research, 2019, 52, 2491-2505.	7.6	239

#	Article	IF	CITATIONS
1081	Detection and removal of heavy-metal ions in water by unfolded-fullerene nanoparticles. AIP Conference Proceedings, 2019, , .	0.3	3
1082	Design and Synthesis of Core–Shell Carbon Polymer Dots with Highly Stable Fluorescence in Polymeric Materials. ACS Applied Nano Materials, 2019, 2, 6503-6512.	2.4	14
1083	Biotoxicity of degradable carbon dots towards microalgae <i>Chlorella vulgaris</i> . Environmental Science: Nano, 2019, 6, 3316-3323.	2.2	28
1084	Hybridizing engineering strategy of non-lacunary (nBu4N)4W10O32 by carbon quantum dot with remarkably enhanced visible-light-catalytic oxidation performance. Applied Catalysis A: General, 2019, 587, 117261.	2.2	13
1085	Electrocatalytic activity of a push pull Co(II) phthalocyanine in the presence of graphitic carbon nitride quantum dots. Electrochimica Acta, 2019, 326, 134978.	2.6	20
1086	Biomolecule-derived quantum dots for sustainable optoelectronics. Nanoscale Advances, 2019, 1, 913-936.	2.2	42
1087	An insight into the molecular and surface state photoluminescence of carbon dots revealed through solvent-induced modulations in their excitation wavelength dependent emission properties. Photochemical and Photobiological Sciences, 2019, 18, 110-119.	1.6	46
1088	Nanocarbon: Preparation, properties, and applications. , 2019, , 327-354.		5
1089	Technical imprint of polymer nanocomposite comprising graphene quantum dot. Polymer-Plastics Technology and Materials, 2019, 58, 597-617.	0.6	5
1090	L-Tryptophan functionalized graphene quantum dots as a fluorescence indicator for pH detection in real water. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 372, 71-77.	2.0	10
1091	Biomarkers-based Biosensing and Bioimaging with Graphene for Cancer Diagnosis. Nanomaterials, 2019, 9, 130.	1.9	50
1092	Using easily prepared carbon nanodots to improve hole transport capacity of perovskite solar cells. Materials Today Energy, 2019, 12, 161-167.	2.5	25
1093	Strong Enhancement of the Chemiluminescence of Hydrogen Sulfite-Oxidant Systems in the Presence of N,S-Doped Graphene Quantum Dots, and Its Application to the Determination of Folic Acid in Spinach and Kiwifruit Samples. Food Analytical Methods, 2019, 12, 869-876.	1.3	2
1094	Double-emission mechanism of laser-induced HOPG-exfoliated Graphene Quantum Dots (GQDs). Applied Physics Letters, 2019, 114, .	1.5	8
1095	Integration of Nanoemitters onto Photonic Structures by Guided Evanescent-Wave Nano-Photopolymerization. Journal of Physical Chemistry C, 2019, 123, 14669-14676.	1.5	18
1096	Surface Sensitive Photoluminescence of Carbon Nanodots: Coupling between the Carbonyl Group and ï€-Electron System. Journal of Physical Chemistry Letters, 2019, 10, 3621-3629.	2.1	61
1097	Graphene Oxide: From Tunable Structures to Diverse Luminescence Behaviors. Advanced Science, 2019, 6, 1900855.	5.6	70
1098	Facile synthesis of photoluminescent MoS2 and WS2 quantum dots with strong surface-state emission. Journal of Luminescence, 2019, 214, 116554.	1.5	27

ARTICLE IF CITATIONS Grafting Polymers onto Carbon Nitride via Visible-Light-Induced Photofunctionalization. 1099 2.2 27 Macromolecules, 2019, 52, 4989-4996. Carbon-based quantum particles: an electroanalytical and biomedical perspective. Chemical Society 18.7 Reviews, 2019, 48, 4281-4316. Research progress of photocatalytic sterilization over semiconductors. RSC Advances, 2019, 9, 1101 1.7 65 19278-19284 Quantum dots for solar cell applications., 2019,, 377-415. g-C3N4 foam/Cu2O QDs with excellent CO2 adsorption and synergistic catalytic effect for 1103 4.8 86 photocatalytic CO2 reduction. Environment International, 2019, 130, 104898. Single precursor-based luminescent nitrogen-doped carbon dots and their application for iron (III) sensing. Arabian Journal of Chemistry, 2019, 12, 1083-1091. 2.3 Separating graphene quantum dots by lateral size through gel column chromatography. RSC 1105 1.7 8 Advances, 2019, 9, 18898-18901. Polycyclic aromatic hydrocarbons in the graphene era. Science China Chemistry, 2019, 62, 1099-1144. 4.2 1106 142 Selective photoluminescence enhancement of red emitted surface modified poly(p-phenylenediamine) 1107 dots: An ultra-sensitive anion photoluminescence sensor for Fâ[^] in vitro. Synthetic Metals, 2019, 254, 0 2.1 29-33. Controllable Formation of Luminescent Carbon Quantum Dots Mediated by the Fano Resonances 11.1 Formed in Oligomers of Gold Nanoparticles. Advanced Materials, 2019, 31, e1901371. Facile and large-scale synthesis of graphene quantum dots for selective targeting and imaging of cell 1109 3.8 34 nucleus and mitochondria. Materials Science and Engineering C, 2019, 103, 109824. Observation of the interaction between avidin and iminobiotin using a graphene FET on a SiC 0.8 substrate. Japanese Journal of Applied Physics, 2019, 58, SDDD02. Cadmium-free quantum dot-based theranostics. TrAC - Trends in Analytical Chemistry, 2019, 118, 386-400. 1111 5.8 37 Exclusive occurrence of photoinduced energy transfer and switching of its direction by rectangular $\ddot{|}$ e-extension of nanographenes. Chemical Science, 2019, 10, 6642-6650. 3.7 Tuning the luminescence of nitrogen-doped graphene quantum dots synthesized by pulsed laser ablation in liquid and their use as a selective photoluminescence onâ€"offâ€"on probe for ascorbic acid 1113 5.462 detection. Carbon, 2019, 150, 455-464. Recent Advances on Black Phosphorus for Biomedicine and Biosensing. Advanced Functional 1114 171 Materials, 2019, 29, 1900318. Electronic and optical properties of sulfur and nitrogen doped graphene quantum dots: A theoretical 1115 1.328 study. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 113, 130-136. N-doped carbon dots with tunable emission for multifaceted application: solvatochromism, moisture sensing, pH sensing, and solid state multicolor lighting. Sensors and Actuators B: Chemical, 2019, 295, 12-21.

#	Article	IF	CITATIONS
1117	Laser ablation synthesis of gold nanoparticle to enhance the fluorescence properties of graphene quantum dots. Journal of Laser Applications, 2019, 31, .	0.8	7
1118	Environmental and toxicological assessment of nanodiamond-like materials derived from carbonaceous aerosols. Science of the Total Environment, 2019, 679, 209-220.	3.9	14
1119	Synthesis of luminescent carbon quantum dots by microplasma process. Chemical Engineering and Processing: Process Intensification, 2019, 140, 29-35.	1.8	99
1120	High flux nanofiltration membranes prepared with a graphene oxide homo-structure. Journal of Membrane Science, 2019, 585, 29-37.	4.1	51
1121	Novel coreactant modifier-based amplified electrochemiluminescence sensing method for point-of-care diagnostics of galactose. Biosensors and Bioelectronics, 2019, 138, 111318.	5.3	21
1122	Interaction of synthesized nitrogen enriched graphene quantum dots with novel anti-Alzheimer's drugs: spectroscopic insights. Journal of Biomolecular Structure and Dynamics, 2020, 38, 1-16.	2.0	12
1123	Fluorescent C-NanoDots for rapid detection of BRCA1, CFTR and MRP3 gene mutations. Mikrochimica Acta, 2019, 186, 293.	2.5	8
1124	Graphene quantum dot arrays: Pros and cons of photodetection in the Coulomb blockade regime. Carbon, 2019, 149, 499-511.	5.4	12
1125	Broadband and tunable high-performance microwave absorption composites reduced graphene oxide-Ni. Journal of Materials Science: Materials in Electronics, 2019, 30, 9133-9142.	1.1	11
1126	Development of Highly Efficient Dual Sensor Based on Carbon Dots for Direct Estimation of Iron and Fluoride Ions in Drinking Water. ChemistrySelect, 2019, 4, 4462-4471.	0.7	10
1127	Laser wavelength modulated pulsed laser ablation for selective and efficient production of graphene quantum dots. RSC Advances, 2019, 9, 13658-13663.	1.7	30
1128	A high photoluminescence sensor for selective detection of cartap based on functionalized VBimBF ₄ B ionic liquid-strengthened sulfur-doped carbon nanodots. New Journal of Chemistry, 2019, 43, 8873-8881.	1.4	11
1129	Unravelling the Aptamerâ€Analyte Interaction Dynamics through Fluorescence Quenching in Graphene Quantum Dots (GQDs) Based Homogeneous Assays. ChemPlusChem, 2019, 84, 420-426.	1.3	10
1130	Polymeric Surface Modification of Graphene. , 2019, , 305-320.		0
1131	Synthesis of layered lipophilic graphene quantum dot over Fe@MgO catalyst. Materials Chemistry and Physics, 2019, 232, 65-74.	2.0	10
1132	An "on–off–on―fluorescent nanoprobe for recognition of Cu ²⁺ and GSH based on nitrogen co-doped carbon quantum dots, and its logic gate operation. Analytical Methods, 2019, 11, 2650-2657.	1.3	18
1133	Yellow fluorescent graphene quantum dots as a phosphor for white tunable light-emitting diodes. RSC Advances, 2019, 9, 9301-9307.	1.7	27
1134	Electrochemical sensor based on conductive polyaniline coated hollow tin oxide nanoparticles and nitrogen doped graphene quantum dots for sensitively detecting dopamine. Journal of Materials Science: Materials in Electronics, 2019, 30, 8449-8456.	1.1	26

ARTICLE IF CITATIONS Selective, Sensitive and Label-Free Detection of Fe3+ Ion in Tap Water Using Highly Fluorescent 1135 1.3 16 Graphene Quantum Dots. Journal of Fluorescence, 2019, 29, 541-548. Carbon dots stabilized silver–lipid nano hybrids for sensitive label free DNA detection. Biosensors 5.3 and Bioelectronics, 2019, 133, 48-54. Surface plasmon resonance sensor using polypyrrole-chitosan/graphene quantum dots layer for 1137 0.8 19 detection of sugar. Materials Research Express, 2019, 6, 075028. An ultrafast quantum thermometer from graphene quantum dots. Nanoscale Advances, 2019, 1, 2.2 1772-1783. Ratiometric fluorescent sensor for visual determination of copper ions and alkaline phosphatase based on carbon quantum dots and gold nanoclusters. Analytical and Bioanalytical Chemistry, 2019, 1139 1.9 38 411, 2531-2543. Nitrogen-doped graphene quantum dots (N-GQDs) perturb redox-sensitive system via the selective inhibition of antioxidant enzyme activities in zebrafish. Biomaterials, 2019, 206, 61-72. 5.7Recent advances in nanomaterial-based electrochemical and optical sensing platforms for microRNA 1141 1.7 72 assays. Analyst, The, 2019, 144, 2849-2866. Rational nanostructure design of graphitic carbon nitride for photocatalytic applications. Journal of Materials Chemistry A, 2019, 7, 11584-11612. 1142 5.2 174 Progress in microwave-assisted synthesis of quantum dots (graphene/carbon/semiconducting) for 1143 1.7 155 bioapplications: a review. Materials Today Chemistry, 2019, 12, 282-314. Opto-electronic properties of twisted bilayer graphene quantum dots. Physica E: Low-Dimensional 1144 1.3 Systems and Nanostructures, 2019, 112, 36-48. Recent progresses in graphene based bio-functional nanostructures for advanced biological and 1145 6.2 58 cellular interfaces. Nano Today, 2019, 26, 57-97. Conducting Polymers Incorporated with Related Graphene Compound Films for Use for Humidity and NH3 Gas Sensing. , 2019, , . Fluorimetric Detection of <i>Candida albicans</i> Using Cornstalk N-Carbon Quantum Dots Modified 1147 1.8 21 with Amphotericin B. Bioconjugate Chemistry, 2019, 30, 966-973. A Practical Guide to Prepare and Synthetically Modify Graphene Quantum Dots. Advanced Functional Materials, 2019, 29, 1808740. 1148 Graphene Quantum Dots Modified Screenâ€printed Electrodes as Electroanalytical Sensing Platform 1149 1.5 27 for Diethylstilbestrol. Electroanalysis, 2019, 31, 838-843. Graphene quantum dot assisted translocation of drugs into a cell membrane. Nanoscale, 2019, 11, 4503-4514 Boosting the oxygen reduction activity of a nano-graphene catalyst by charge redistribution at the 1151 2.8 22 graphene–metal interface. Nanoscale, 2019, 11, 5038-5047. Recent advances in sensitive and rapid mercury determination with graphene-based sensors. Journal of 5.2 Materials Chemistry A, 2019, 7, 6616-6630.

#	Article	IF	CITATIONS
1153	Carbon Dotsâ€inâ€Matrix Boosting Intriguing Luminescence Properties and Applications. Small, 2019, 15, e1805504.	5.2	124
1154	Preparation of CQDs with hydroxyl function for Fe ³⁺ detection. Micro and Nano Letters, 2019, 14, 440-444.	0.6	10
1155	Graphene: promising nanoplatform for biomedical applications. , 2019, , 307-322.		0
1156	Infusion of graphene quantum dots to modulate thermal conductivity and dynamic mechanical properties of polymers. Polymer, 2019, 185, 121988.	1.8	17
1157	Synthesis of novel cationic carbon dots and application to quantitative detection of K ⁺ in human serum samples. New Journal of Chemistry, 2019, 43, 17937-17940.	1.4	7
1158	One-pot microwave-assisted green synthesis of amine-functionalized graphene quantum dots for high visible light photocatalytic application. Comptes Rendus Chimie, 2019, 22, 822-828.	0.2	13
1159	Selective luminescence determination of cysteine by using terbium-modified silver nanoparticles or terbium-modified graphene quantum dots. Mikrochimica Acta, 2019, 186, 781.	2.5	6
1160	Activatable Core–Shell Metallofullerene: An Efficient Nanoplatform for Bimodal Sensing of Glutathione. ACS Applied Materials & Interfaces, 2019, 11, 46637-46644.	4.0	17
1161	Bioimaging Applications of Carbon dots (C. dots) and its Cystamine Functionalization for the Sensitive Detection of Cr(VI) in Aqueous Samples. Journal of Fluorescence, 2019, 29, 1381-1392.	1.3	29
1162	Synthesis of Polyacetylene-like Modified Graphene Oxide Aerogel and Its Enhanced Electrical Properties. ACS Omega, 2019, 4, 20948-20954.	1.6	9
1163	Fluorescent Single-Walled Carbon Nanotubes for Protein Detection. Sensors, 2019, 19, 5403.	2.1	64
1164	Synthesis and characterization of graphene quantum dots. Physical Sciences Reviews, 2019, 5, .	0.8	9
1165	Antioxidant Activity of Graphene Quantum Dots Prepared in Different Electrolyte Environments. Nanomaterials, 2019, 9, 1708.	1.9	19
1166	Gold Electrode Fused with AuNPs/GQDs Showing Enhanced Electrochemical Performance for Detection of Phenolic Compounds. Journal of the Electrochemical Society, 2019, 166, B1707-B1711.	1.3	8
1167	Simple preparation of graphene quantum dots with controllable surface states from graphite. RSC Advances, 2019, 9, 38447-38453.	1.7	24
1168	Graphene quantum dots-induced morphological changes in CuCo2S4 nanocomposites for supercapacitor electrodes with enhanced performance. Applied Surface Science, 2019, 463, 498-503.	3.1	40
1169	Design and photophysical insights on graphene quantum dots for use as nanosensor in differentiating methamphetamine and morphine in solution. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 206, 448-453.	2.0	29
1170	The Role of Graphene and Other 2D Materials in Solar Photovoltaics. Advanced Materials, 2019, 31, e1802722.	11.1	268

#	Article	IF	CITATIONS
1171	Heteroatom-doped graphene and its application as a counter electrode in dye-sensitized solar cells. International Journal of Energy Research, 2019, 43, 1702-1734.	2.2	22
1172	A Facile and Simple Strategy for the Synthesis of Label Free Carbon Quantum Dots from the <i>latex</i> of <i>Euphorbia milii</i> and Its Peroxidase-Mimic Activity for the Naked Eye Detection of Glutathione in a Human Blood Serum. ACS Sustainable Chemistry and Engineering, 2019, 7, 1923-1932.	3.2	46
1173	Fluorinated Boron Nitride Quantum Dots: A New 0D Material for Energy Conversion and Detection of Cellular Metabolism. Particle and Particle Systems Characterization, 2019, 36, 1800346.	1.2	13
1174	A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence. Talanta, 2019, 196, 456-478.	2.9	336
1175	Engineered Paramagnetic Graphene Quantum Dots with Enhanced Relaxivity for Tumor Imaging. Nano Letters, 2019, 19, 441-448.	4.5	41
1176	Enhanced removal and detection of benzo[a]pyrene in environmental water samples using carbon dots-modified magnetic nanocomposites. Ecotoxicology and Environmental Safety, 2019, 170, 383-390.	2.9	25
1177	Photoluminescence carbon dot as a sensor for detecting of Pseudomonas aeruginosa bacteria: Hydrothermal synthesis of magnetic hollow NiFe2O4-carbon dots nanocomposite material. Composites Part B: Engineering, 2019, 161, 564-577.	5.9	164
1178	Magnesium doped carbon quantum dots synthesized by mechanical ball milling and displayed Fe ³⁺ sensing. Materials Technology, 2019, 34, 336-342.	1.5	27
1179	A Label-Free Photoelectrochemical Aptasensor Based on N-GQDs Sensitized Zn-SnS ₂ for Aflatoxin B1 Detection. IEEE Sensors Journal, 2019, 19, 1633-1639.	2.4	16
1180	Properties and behavior of carbon nanomaterials when interfacing neuronal cells: How far have we come?. Carbon, 2019, 143, 430-446.	5.4	135
1181	An integrated microfluidic device with solid-phase extraction and graphene oxide quantum dot array for highly sensitive and multiplex detection of trace metal ions. Biosensors and Bioelectronics, 2019, 126, 405-411.	5.3	51
1182	Carbon dotsâ€involved chemiluminescence: Recent advances and developments. Luminescence, 2019, 34, 4-22.	1.5	49
1183	Electrochemiluminescence sensor for pentoxifylline detection using Au nanoclusters@graphene quantum dots as an amplified electrochemiluminescence luminophore. Sensors and Actuators B: Chemical, 2019, 282, 927-935.	4.0	33
1184	Rhodamine B assisted graphene quantum dots flourescent sensor system for sensitive recognition of mercury ions. Journal of Luminescence, 2019, 207, 273-281.	1.5	20
1185	Adiabatic and nonadiabatic charge separation dynamics in graphene oxide quantum dots for overall water splitting. Nanotechnology, 2019, 30, 045201.	1.3	3
1186	Environmental effects on the charge transfer properties of Graphene quantum dot based interfaces. International Journal of Quantum Chemistry, 2019, 119, e25882.	1.0	8
1187	S, N Co-Doped Graphene Quantum Dots Decorated C-Doped ZnO Nanotaper Photoanodes for Solar Cells Applications. Nano, 2019, 14, 1950012.	0.5	17
1188	Separation of Spectroscopically Uniform Nanographenes. Chemistry - an Asian Journal, 2019, 14, 1786-1791.	1.7	10

		TATION REPO	ORT	
#	Article		IF	Citations
1189	Green synthesis of multi-color emissive carbon dots from Manilkara zapota fruits for bioimaging of bacterial and fungal cells. Journal of Photochemistry and Photobiology B: Biology, 2019, 191, 150-155	j .	1.7	113
1190	Ground-State Heterogeneity along with Fluorescent Byproducts Causes Excitation-Dependent Fluorescence and Time-Dependent Spectral Migration in Citric Acid-Derived Carbon Dots. Journal of Physical Chemistry Letters, 2019, 10, 335-345.		2.1	29
1191	Less-Common Carbon Nanostructures. , 2019, , 111-302.			0
1192	One-pot synthesis of aqueous carbon quantum dots using bibenzoimidazolyl derivative and their antitumor activity against breast cancer cell lines. Inorganic Chemistry Communication, 2019, 101, 12	l-15.	1.8	14
1193	Fluorescent Graphene Quantum Dots for the Determination of Metal lons. , 2019, , 215-239.			1
1194	Nanomaterials for Intracellular pH Sensing and Imaging. , 2019, , 241-273.			8
1195	A fluorescent pickering-emulsion stabilizer prepared using carbon nitride quantum dots and laponite nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 563, 310-317	7.	2.3	19
1196	A fluorometric study on the effect of DNA methylation on DNA interaction with graphene quantum dots. Methods and Applications in Fluorescence, 2019, 7, 025001.		1.1	29
1197	Optical Tamm state aided room-temperature amplified spontaneous emission from carbon quantum dots embedded one-dimensional photonic crystals. Journal Physics D: Applied Physics, 2019, 52, 0351	02.	1.3	11
1198	Defective mesoporous carbon ceramic electrode modified graphene quantum dots as a novel surface-renewable electrode: The application to determination of zolpidem. Journal of Electroanalytical Chemistry, 2019, 832, 241-246.		1.9	13
1199	Antibacterial Carbonâ \in Based Nanomaterials. Advanced Materials, 2019, 31, e1804838.		11.1	452
1200	Carbon Dots and Their Polymeric Nanocomposites. , 2019, , 217-260.			5
1201	Underpotential Deposition of Cadmium on Colloidal CdSe Quantum Dots: Effect of Particle Size and Surface Ligands. Journal of Physical Chemistry C, 2019, 123, 931-939.		1.5	8
1202	Understanding the size effect of graphene quantum dots on protein adsorption. Colloids and Surfaces B: Biointerfaces, 2019, 174, 575-581.		2.5	24
1203	Selective sensing of curcumin using L-cysteine derived blue luminescent graphene quantum dots. Materials Research Bulletin, 2019, 110, 32-38.		2.7	14
1204	Preparation of liposomal doxorubicin-graphene nanosheet and evaluation of its <i>in vitro</i> anti-cancer effects. Journal of Liposome Research, 2019, 29, 163-170.		1.5	15
1205	Novel donut-like carbon composites for the selective detection of Fe3+. Journal of Alloys and Compounds, 2019, 773, 555-563.		2.8	10
1206	Construction of nanomaterials with targeting phototherapy properties to inhibit resistant bacteria and biofilm infections. Chemical Engineering Journal, 2019, 358, 74-90.		6.6	170

#	Article	IF	CITATIONS
1207	Polyamide/nitrogen-doped graphene oxide quantum dots (N-GOQD) thin film nanocomposite reverse osmosis membranes for high flux desalination. Desalination, 2019, 451, 125-132.	4.0	133
1208	Enhanced Sunlight driven photocatalytic performance and visualization of latent fingerprint by green mediated ZnFe2O4–RGO nanocomposite. Arabian Journal of Chemistry, 2020, 13, 1449-1465.	2.3	20
1209	Graphene for Energy Storage and Conversion: Synthesis and Interdisciplinary Applications. Electrochemical Energy Reviews, 2020, 3, 395-430.	13.1	59
1210	Hydrogen adsorption on pristine and platinum decorated graphene quantum dot: A first principle study. International Journal of Hydrogen Energy, 2020, 45, 23977-23987.	3.8	34
1211	Fluorescence of functionalized graphene quantum dots prepared from infrared-assisted pyrolysis of citric acid and urea. Journal of Luminescence, 2020, 217, 116774.	1.5	72
1212	Sodium hexametaphosphate modulated fluorescence responsive biosensor based on self-assembly / disassembly mode of reduced-graphene quantum dots / chitosan system for alkaline phosphatase. Talanta, 2020, 207, 120341.	2.9	10
1213	Influence of the photoluminescence property of carbon nanodots on the reduction of silver ions. Journal of Luminescence, 2020, 217, 116804.	1.5	5
1214	Gel Systems Doped with Chiral Carbon Dots for Optical Combination. ACS Applied Nano Materials, 2020, 3, 946-952.	2.4	24
1215	Diverse Nanoassemblies of Graphene Quantum Dots and Their Mineralogical Counterparts. Angewandte Chemie - International Edition, 2020, 59, 8542-8551.	7.2	26
1216	One-step synthesis of carbon nanoparticles and yellow to blue fluorescent nanocarbons in flame reactors. Carbon, 2020, 156, 370-377.	5.4	17
1217	Highly selective antenna effect of graphene quantum dots (GQDs): A new fluorescent sensitizer for rare earth element terbium in aqueous media. Talanta, 2020, 209, 120504.	2.9	20
1218	Human serum albumin capsulated hydrophobic carbon nanodots as staining agent on HeLa tumor cell. Materials Chemistry and Physics, 2020, 239, 122266.	2.0	6
1219	Chiralityâ€Embedded Nanographenes. Angewandte Chemie - International Edition, 2020, 59, 669-673.	7.2	34
1220	Facile synthesis of heteroatom doped and undoped graphene quantum dots as active materials for reversible lithium and sodium ions storage. Applied Surface Science, 2020, 504, 144430.	3.1	43
1221	Predicting the performance of the inter-Coulombic electron capture from single-electron quantities. Journal of Physics Condensed Matter, 2020, 32, 065302.	0.7	6
1222	Diverse Nanoassemblies of Graphene Quantum Dots and Their Mineralogical Counterparts. Angewandte Chemie, 2020, 132, 8620-8629.	1.6	4
1223	Intrinsically ESIPT-exhibiting and enhanced emission in polymer nanoparticles as signaling for sensing nitrite. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 226, 117654.	2.0	4
1224	Low-temperature rapid synthesis of high-stable carbon dots and its application in biochemical sensing. Dyes and Pigments, 2020, 175, 108184.	2.0	29

#	Article	IF	CITATIONS
1225	Complexation and fluorescence behavior of proflavin with chemically engineered amine capped carbon nanodots and its subsequent release into DNA environments. New Journal of Chemistry, 2020, 44, 1045-1053.	1.4	2
1226	The synthesis of nitrogen and sulfur co-doped graphene quantum dots for fluorescence detection of cobalt(<scp>ii</scp>) ions in water. Materials Chemistry Frontiers, 2020, 4, 507-516.	3.2	77
1227	Construction of efficient "on-off-on―fluorescence aptasensor for ultrasensitive detection of prostate specific antigen via covalent energy transfer between g-C3N4 quantum dots and palladium triangular plates. Analytica Chimica Acta, 2020, 1104, 53-59.	2.6	27
1228	Influence of Oxidized Graphene Quantum Dots as Photosensitizers. Journal of Nanoscience and Nanotechnology, 2020, 20, 3432-3436.	0.9	5
1229	A new fluorescence probe comprising nitrogen-doped graphene quantum dots for the selective and quantitative determination of cerium(<scp>iv</scp>). New Journal of Chemistry, 2020, 44, 797-806.	1.4	20
1230	Blue luminescent graphene quantum dot conjugated cysteamine functionalized-gold nanoparticles (GQD-AuNPs) for sensing hazardous dye Erythrosine B. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 229, 117960.	2.0	26
1231	Ratiometric fluorescence sensing of metal-organic frameworks: Tactics and perspectives. Coordination Chemistry Reviews, 2020, 404, 213113.	9.5	245
1232	Nanoparticles in reverse osmosis membranes for desalination: A state of the art review. Desalination, 2020, 475, 114171.	4.0	209
1233	S, N co-doped graphene quantum dots decorated CdSe for enhanced photoelectric properties. Nanotechnology, 2020, 31, 095710.	1.3	13
1234	The formation mechanism and fluorophores of carbon dots synthesized <i>via</i> a bottom-up route. Materials Chemistry Frontiers, 2020, 4, 400-420.	3.2	166
1235	Fluorescent materials-based information storage. Materials Chemistry Frontiers, 2020, 4, 1024-1039.	3.2	99
1236	Optical graphene quantum dots gas sensors: experimental study. Materials Research Express, 2020, 7, 015608.	0.8	25
1237	Graphene Quantum Dot-Based Electrochemical Immunosensors for Biomedical Applications. Materials, 2020, 13, 96.	1.3	69
1238	Microplasmas for Advanced Materials and Devices. Advanced Materials, 2020, 32, e1905508.	11.1	130
1239	Selective fluorometric determination of sulfadiazine based on the growth of silver nanoparticles on graphene quantum dots. Mikrochimica Acta, 2020, 187, 54.	2.5	33
1240	A synthesis of graphene quantum dots/hollow TiO2 nanosphere composites for enhancing visible light photocatalytic activity. Journal of Materials Science: Materials in Electronics, 2020, 31, 1430-1441.	1.1	10
1241	Exciton Coherence Length and Dynamics in Graphene Quantum Dot Assemblies. Journal of Physical Chemistry Letters, 2020, 11, 210-216.	2.1	14
1242	Carbon quantum dots sensitized Bi2O3 photoanode with enhanced photoelectrocatalytic properties. Chemical Physics Letters, 2020, 739, 137025.	1.2	9

#	Article	IF	CITATIONS
1243	The role of the chemical composition on the photoluminescence properties of N-doped carbon nanoparticles. Journal of Luminescence, 2020, 219, 116954.	1.5	8
1244	Synthesis of magnetically reusable Fe3O4/TiO2-N, P co-doped graphene quantum dot nancomposites using hexachlorocyclophosphazene; high photoluminance property and photocatalytic promoter. Journal of Materials Research and Technology, 2020, 9, 1380-1388.	2.6	9
1245	Folic acid-conjugated nitrogen-doped graphene quantum dots as a fluorescent diagnostic material for MCF-7 cells. Nanotechnology, 2020, 31, 135701.	1.3	28
1246	Carbon Dots as Potent Antimicrobial Agents. Theranostics, 2020, 10, 671-686.	4.6	241
1247	Synthesis of N, Zn-doped carbon dots for the detection of Fe3+ ions and bactericidal activity against Escherichia coli and Staphylococcus aureus. Journal of Photochemistry and Photobiology B: Biology, 2020, 202, 111734.	1.7	54
1248	Chiralityâ€Embedded Nanographenes. Angewandte Chemie, 2020, 132, 679-683.	1.6	17
1249	Graphene quantum dot cross-linked carboxymethyl cellulose nanocomposite hydrogel for pH-sensitive oral anticancer drug delivery with potential bioimaging properties. International Journal of Biological Macromolecules, 2020, 150, 1121-1129.	3.6	95
1250	Graphene and silicene quantum dots for nanomedical diagnostics. RSC Advances, 2020, 10, 801-811.	1.7	16
1251	Review on exploration of graphene in the design and engineering of smart sensors, actuators and soft robotics. Chemical Engineering Journal Advances, 2020, 4, 100034.	2.4	40
1252	Graphene Quantum Dots as Flourishing Nanomaterials for Bio-Imaging, Therapy Development, and Micro-Supercapacitors. Micromachines, 2020, 11, 866.	1.4	52
1253	Graphene based sensors. Comprehensive Analytical Chemistry, 2020, , 175-199.	0.7	56
1254	Surface and morphology analyses, and voltammetry studies for electrochemical determination of cerium(<scp>iii</scp>) using a graphene nanobud-modified-carbon felt electrode in acidic buffer solution (pH 4.0 ± 0.05). RSC Advances, 2020, 10, 37409-37418.	1.7	15
1255	A review on graphene quantum dots and their nanocomposites: from laboratory synthesis towards agricultural and environmental applications. Environmental Science: Nano, 2020, 7, 3710-3734.	2.2	88
1256	Coal-Based Fluorescent Zero-Dimensional Carbon Nanomaterials: A Short Review. Energy & Fuels, 2020, 34, 13291-13306.	2.5	12
1257	Daunomycin delivery by ultrasmall graphene quantum dots to DNA duplexes: understanding the dynamics by resonance energy transfer. Journal of Materials Chemistry B, 2020, 8, 9756-9763.	2.9	16
1258	Discrimination between nanocurcumin and free curcumin using graphene quantum dots as a selective fluorescence probe. Mikrochimica Acta, 2020, 187, 446.	2.5	15
1259	Carbon Biomaterials. , 2020, , 327-360.		0
1260	State-of-the-Art on the Preparation, Modification, and Application of Biomass-Derived Carbon Quantum Dots. Industrial & Engineering Chemistry Research, 2020, 59, 22017-22039.	1.8	67

		CITATION REP	PORT	
#	Article		IF	CITATIONS
1261	Metal-Free Carbon-Based Supercapacitorsâ€"A Comprehensive Review. Electrochem, 2020, 1,	410-438.	1.7	18
1262	<p>Carbon Dots from Paeoniae Radix Alba Carbonisata: Hepatopro Effect</p> . International Journal of Nanomedicine, 2020, Volume 15, 9049-9059.	otective	3.3	21
1263	Nanolasers Based on 2D Materials. Laser and Photonics Reviews, 2020, 14, 2000271.		4.4	47
1264	High-Performance Nonfullerene Organic Photovoltaics Applicable for Both Outdoor and Indoo Environments through Directional Photon Energy Transfer. ACS Applied Materials & amp; Interf 2020, 12, 38470-38482.	aces,	4.0	14
1265	Acid-Free Hydrothermal-Extraction and Molecular Structure of Carbon Quantum Dots Derived Empty Fruit Bunch Biochar. Materials, 2020, 13, 3356.	rom	1.3	24
1266	Fluorescent carbon dots are the new quantum dots: an overview of their potential in emerging technologies and nanosafety. Journal of Materials Science, 2020, 55, 15074-15105.		1.7	36
1267	Human virus detection with graphene-based materials. Biosensors and Bioelectronics, 2020, 1 112436.	56,	5.3	140
1268	Engineering Photo-Luminescent Centers of Carbon Dots to Achieve Higher Quantum Yields. Ac Applied Electronic Materials, 2020, 2, 2470-2478.	CS .	2.0	12
1269	Graphene Oxide: Graphene Quantum Dot Nanocomposite for Better Memristic Switching Beha Nanomaterials, 2020, 10, 1448.	viors.	1.9	14
1270	$\hat{l}^2 \hat{a} \in A$ lanine $\hat{a} \in f$ unctionalized magnetic graphene oxide quantum dots: an efficient and recyclat heterogeneous basic catalyst for the synthesis of $1 < i > H < /i > \hat{a} \in p$ yrazolo[1,2 $\hat{a} \in < i > b < /i >$] phthala and 2,3 $\hat{a} \in d$ ihydroquinazolin $\hat{a} \in 4(1 < i > H < /i >) \hat{a} \in o$ ne derivatives. Applied Organometallic Chemist e5872.	le zineâ€5,10â€dione ry, 2020, 34,	1.7	11
1271	Fluorescence-based immunoassay for the detection of Xanthomonas oryzae pv. oryzae in rice Analytical Biochemistry, 2020, 610, 113876.	eaf.	1.1	5
1272	Microplasma-enabled nanocarbon assembly for the diameter-selective synthesis of colloidal graquantum dots. Chemical Communications, 2020, 56, 10365-10368.	phene	2.2	10
1273	A sensitive voltammetric sensor based on silver nanoparticles/carbon nitride nanotubes@grap quantum dots/a novel organic liquid: determination of triclosan in wastewater. Bulletin of Mat Science, 2020, 43, 1.	iene erials	0.8	13
1274	Anti-Angiogenic and Anti-Proliferative Graphene Oxide Nanosheets for Tumor Cell Therapy. International Journal of Molecular Sciences, 2020, 21, 5571.		1.8	20
1275	Emerging Lowâ€Ðimensional Nanoagents for Bioâ€Microimaging. Advanced Functional Mater 2003147.	als, 2020, 30,	7.8	13
1276	A highly sensitive fluorescence measurement of amphetamine using 8-hydroxyquinoline-β-cycl grafted on graphene oxide. Diamond and Related Materials, 2020, 109, 108032.	odextrin	1.8	10
1277	Emission States Variation of Single Graphene Quantum Dots. Journal of Physical Chemistry Let 2020, 11, 7356-7362.	ters,	2.1	10
1278	Fabrication of Gold nanoparticles/Carbon Quantum Dots Nanocomposites for the Electrochem Analysis of Ascorbic Acid, Dopamine and Uric Acid. International Journal of Electrochemical Sci 2020, 15, 8808-8822.	ical ence,	0.5	2

ARTICLE IF CITATIONS Detection of food spoilage and adulteration by novel nanomaterial-based sensors. Advances in 1279 7.0 52 Colloid and Interface Science, 2020, 286, 102297. Subpicosecond Charge Separation Time Scale at Graphene Quantum Dot Surface. Journal of Physical 1.5 Chemistry C, 2020, 124, 24115-24125. Selective detection and removal of picric acid by C₂N surface from a mixture of 1281 1.4 11 nitro-explosives. New Journal of Chemistry, 2020, 44, 18646-18655. Integration of 3D nanographene into mesoporous germanium. Nanoscale, 2020, 12, 23984-23994. 2.8 Theoretical Evaluation of DNA Genotoxicity of Graphene Quantum Dots: A Combination of Density Functional Theory and Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2020, 124, 1283 1.2 26 9335-9342. Carbon-based dot nanoclusters with enhanced roles of defect states in the fluorescence and singlet 1284 1.4 oxygen generation. New Journal of Chemistry, 2020, 44, 16461-16467. A Strategy for Microwave-Controlled Release of Anticancer Drugs: (Fe3O4/nGO)@mSiO2/GQDs 1285 0.5 3 Nanocomposite Carrier Jointly Enhanced by nGO and GQDs. Nano, 2020, 15, 2050071. A Facile Hg 2+ â€related Quenching Photoluminescence Sensor Based on Nitrogenâ€doped Graphene 1286 Quantum Dots. Bulletin of the Korean Chemical Society, 2020, 41, 948-953. Effect of Synthesis Temperature of Magneticâ€"Fluorescent Nanoparticles on Properties and Cellular 1287 1.9 3 Imaging. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 4597-4605. Enhancing sensitivity of carbon dots as Fe ion sensor using time-resolved photoluminescence 0.8 technique. Journal of Nanoparticle Research, 2020, 22, 1. Optical and Photoacoustic Properties of Laser-Ablated Silver Nanoparticles in a Carbon Dots 1289 1.7 5 Solution. Molecules, 2020, 25, 5798. Fabrication of Highly Stable Non-Volatile Memory Device Using Plasma-Polymerisation of Hexamethyldisiloxane with Graphene Quantum Dots. Journal of Physics: Conference Series, 2020, 1535, 1290 0.3 012013. Electrochemical efficacies of coal derived nanocarbons. International Journal of Coal Science and 1292 2.7 9 Technology, 2021, 8, 459-472. Microwave-Synthesized Polysaccharide-Derived Carbon Dots as Therapeutic Cargoes and Toughening Agents for Elastomeric Gels. ACS Applied Materials & amp; Interfaces, 2020, 12, 51940-51951. 1293 Optical Sensing and Imaging of pH Values: Spectroscopies, Materials, and Applications. Chemical 1294 23.0 299 Reviews, 2020, 120, 12357-12489. Effects of graphene quantum dot (<scp>GQD</scp>) on photoluminescence, mechanical, thermal and shape memory properties of thermoplastic polyurethane nanocomposites. Polymers for Advanced Technologies, 2020, 31, 2279-2289. 1295 Poly (ether) sulfone electrospun nanofibrous membranes embedded with graphene oxide quantum 1296 2.7 24 dots with antimicrobial activity. Environmental Science and Pollution Research, 2020, 27, 26845-26855. Graphene Quantum Dot Oxidation Governs Noncovalent Biopolymer Adsorption. Scientific Reports, 1.6 2020, 10, 7074.
#	Article	IF	CITATIONS
1298	Phosphorus-doped graphene quantum dots loaded on TiO2 for enhanced photodegradation. Applied Surface Science, 2020, 526, 146724.	3.1	47
1299	Synthesis of enhanced fluorescent graphene quantum dots for catecholamine neurotransmitter sensing. Korean Journal of Chemical Engineering, 2020, 37, 1000-1007.	1.2	10
1300	Nanobiosensing with graphene and carbon quantum dots: Recent advances. Materials Today, 2020, 39, 23-46.	8.3	66
1301	Fluorescent turn-off sensor based on sulphur-doped graphene quantum dots in colloidal and film forms for the ultrasensitive detection of carbamate pesticides. Microchemical Journal, 2020, 157, 104971.	2.3	52
1302	Application of functionalized carbon dots in detection, diagnostic, disease treatment, and desalination: a review. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2020, 11, 025017.	0.7	11
1303	Efficient Directâ€Methanol Fuel Cell Based on Graphene Quantum Dots/Multiâ€walled Carbon Nanotubes Composite. Electroanalysis, 2020, 32, 1977-1982.	1.5	35
1304	Pillar[6]arene@AuNPs Functionalized N-CQDs@Co ₃ O ₄ Hybrid Composite for Ultrasensitive Electrochemical Detection of Human Epididymis Protein 4. ACS Sustainable Chemistry and Engineering, 2020, 8, 10161-10172.	3.2	17
1305	A review on the superb contribution of carbon and graphene quantum dots to electrochemical capacitors' performance: Synthesis and application. FlatChem, 2020, 22, 100171.	2.8	44
1306	Conformational Behavior and Optical Properties of a Fluorophore Dimer as a Model of Luminescent Centers in Carbon Dots. Journal of Physical Chemistry C, 2020, 124, 14327-14337.	1.5	25
1307	Doxorubicin-loaded fluorescent carbon dots with PEI passivation as a drug delivery system for cancer therapy. Nanoscale, 2020, 12, 17222-17237.	2.8	54
1308	Photocycle of Excitons in Nitrogen-Rich Carbon Nanodots: Implications for Photocatalysis and Photovoltaics. ACS Applied Nano Materials, 2020, 3, 6925-6934.	2.4	11
1309	Low-dimensional carbon-based nanomaterials for energy conversion and storage applications. , 2020, , 15-68.		2
1310	Graphene Quantum Dotsâ€Based Advanced Electrode Materials: Design, Synthesis and Their Applications in Electrochemical Energy Storage and Electrocatalysis. Advanced Energy Materials, 2020, 10, 2001275.	10.2	109
1311	Recent Advancement in Bio-precursor derived graphene quantum dots: Synthesis, Characterization and Toxicological Perspective. Nanotechnology, 2020, 31, 292001.	1.3	36
1312	Exploration of the potential efficacy of natural resource-derived blue-emitting graphene quantum dots in cancer therapeutic applications. New Journal of Chemistry, 2020, 44, 5366-5376.	1.4	23
1313	Multidimensional graphene structures and beyond: Unique properties, syntheses and applications. Progress in Materials Science, 2020, 113, 100665.	16.0	61
1314	Facile fabrication of N/S/P tri-doped carbon dots for tetracycline detection by an internal filtering effect of a two-way matching strategy. Analytical Methods, 2020, 12, 2551-2554.	1.3	19
1315	Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A review. Environmental Chemistry Letters, 2020, 18, 703-727.	8.3	311

#	Article	IF	CITATIONS
1316	Graphene-based nanomaterials for healthcare applications. , 2020, , 45-81.		10
1317	Recent Developments in Synthesis and Photocatalytic Applications of Carbon Dots. Catalysts, 2020, 10, 320.	1.6	54
1318	Development of a turn-on graphene quantum dot-based fluorescent probe for sensing of pyrene in water. RSC Advances, 2020, 10, 12119-12128.	1.7	31
1319	Adsorptions of lithium ion/atom and packing of Li ions on graphene quantum dots: Application for Li-ion battery. Computational and Theoretical Chemistry, 2020, 1177, 112779.	1.1	9
1320	Chemically Functionalized Twoâ€Ðimensional Carbon Materials. Chemistry - an Asian Journal, 2020, 15, 2316-2328.	1.7	15
1321	Emerging energy and environmental application of graphene and their composites: a review. Journal of Materials Science, 2020, 55, 7156-7183.	1.7	24
1322	Transmission Electron Microscopyâ€Based Statistical Analysis of Commercially Available Graphene Oxide Quantum Dots. Crystal Research and Technology, 2020, 55, 1900231.	0.6	8
1323	Boosting Visibleâ€Light Photocatalytic Performance for CO ₂ Reduction via Hydroxylated Graphene Quantum Dots Sensitized MILâ€101(Fe). Advanced Materials Interfaces, 2020, 7, 2000468.	1.9	33
1324	Nanoparticles/nanofibers for checking adulteration/spoilage of food products. , 2020, , 459-492.		4
1325	N-Doped Graphene Quantum Dot-Decorated Three-Dimensional Ordered Macroporous In ₂ O ₃ for NO ₂ Sensing at Low Temperatures. ACS Applied Materials & Interfaces, 2020, 12, 34245-34253.	4.0	62
1326	Catalytic performance of Cu(II)-supported graphene quantum dots modified NiFe2O4 as a proficient nano-catalyst in the synthesis of 1,2,3-triazoles. Monatshefte Für Chemie, 2020, 151, 1153-1162.	0.9	15
1327	Recent developments in the synthesis of graphene and graphene-like structures from waste sources by recycling and upcycling technologies: a review. Graphene Technology, 2020, 5, 59-73.	1.9	24
1328	Graphene-based nanocomposites and their fabrication, mechanical properties and applications. Materialia, 2020, 12, 100815.	1.3	54
1329	An efficient pseudocapacitor electrode material with co-doping of iron (II) and sulfur in luminescent graphene quantum dots. Diamond and Related Materials, 2020, 107, 107913.	1.8	50
1330	A Novel Route to High-Quality Graphene Quantum Dots by Hydrogen-Assisted Pyrolysis of Silicon Carbide. Nanomaterials, 2020, 10, 277.	1.9	14
1331	Carbon black reborn: Structure and chemistry for renewable energy harnessing. Carbon, 2020, 162, 604-649.	5.4	156
1332	An eco-friendly fluorometric polymer nanoparticle for selectively monitoring sulfadiazine in tap water. Methods and Applications in Fluorescence, 2020, 8, 025005.	1.1	1
1333	Microwave assisted synthesis of boron and nitrogen rich graphitic quantum dots to enhance fluorescence of photosynthetic pigments. Materials Today Communications, 2020, 24, 100975.	0.9	16

# 1334	ARTICLE Optical properties of graphene quantum dots: the role of chiral symmetry. 2D Materials, 2020, 7, 025041.	IF 2.0	CITATIONS
1335	Applications of Graphene Quantum Dots in Biomedical Sensors. Sensors, 2020, 20, 1072.	2.1	155
1336	Graphene quantum dot-based nanostructures for water treatment. , 2020, , 193-215.		4
1337	Nanocarbon fertilizers: Implications of carbon nanomaterials in sustainable agriculture production. , 2020, , 297-321.		10
1338	Decorating CoNi layered double hydroxides nanosheet arrays with fullerene quantum dot anchored on Ni foam for efficient electrocatalytic water splitting and urea electrolysis. Chemical Engineering Journal, 2020, 390, 124525.	6.6	118
1339	Thin film chemiresistive gas sensor on single-walled carbon nanotubes-functionalized with polyethylenimine (PEI) for \$\${hbox {NO}}_{2}\$\$ gas sensing. Bulletin of Materials Science, 2020, 43, 1.	0.8	29
1340	A dual-template imprinted polymer electrochemical sensor based on AuNPs and nitrogen-doped graphene oxide quantum dots coated on NiS2/biomass carbon for simultaneous determination of dopamine and chlorpromazine. Chemical Engineering Journal, 2020, 389, 124417.	6.6	107
1341	Nanobiomaterial Engineering. , 2020, , .		46
1342	Fabrication of palladium nanoparticles anchored polypyrrole functionalized reduced graphene oxide nanocomposite for antibiofilm associated orthopedic tissue engineering. Applied Surface Science, 2020, 510, 145403.	3.1	55
1343	Application of maleimide modified graphene quantum dots and porphyrin fluorescence resonance energy transfer in the design of ††turn-on'' fluorescence sensors for biothiols. Analytica Chimica Acta, 2020, 1108, 46-53.	2.6	20
1344	Biosynaptic devices based on chicken egg albumen:graphene quantum dot nanocomposites. Scientific Reports, 2020, 10, 1255.	1.6	13
1345	Bio-sorbents, industrially important chemicals and novel materials from citrus processing waste as a sustainable and renewable bioresource: A review. Journal of Advanced Research, 2020, 23, 61-82.	4.4	94
1346	Interfacial Nanostructure of 2D Ti ₃ C ₂ /Graphene Quantum Dots Hybrid Multicoating for Ultralow Wear. Advanced Engineering Materials, 2020, 22, 1901369.	1.6	34
1347	Effect of Co-doped graphene quantum dots to polyaniline ratio on performance of supercapacitor. Journal of Materials Science: Materials in Electronics, 2020, 31, 7247-7259.	1.1	17
1348	Graphene-based quantum dot emitters for light-emitting diodes. , 2020, , 117-150.		4
1349	Inexpensive and green electrochemical sensor for the determination of Cd(II) and Pb(II) by square wave anodic stripping voltammetry in bivalve mollusks. Food Chemistry, 2020, 321, 126682.	4.2	56
1350	Monolayer single crystal two-dimensional quantum dots via ultrathin cutting and exfoliating. Science China Materials, 2020, 63, 1046-1053.	3.5	3
1351	Removal of uranium (VI) from water by the action of microwave-rapid green synthesized carbon quantum dots from starch-water system and supported onto polymeric matrix. Journal of Hazardous Materials, 2020, 397, 122770.	6.5	73

#	Article	IF	CITATIONS
1352	Modulating charge separation and transfer kinetics in carbon nanodots for photoredox catalysis. Journal of Energy Chemistry, 2020, 50, 365-377.	7.1	15
1353	Facile fabrication of super-hydrophilic porous graphene with ultra-fast spreading feature and capillary effect by direct laser writing. Materials Chemistry and Physics, 2020, 251, 123083.	2.0	11
1354	On the Factors behind the Photocatalytic Activity of Graphene Quantum Dots for Organic Dye Degradation. Particle and Particle Systems Characterization, 2020, 37, 2000061.	1.2	17
1355	Eco-friendly and sustainable synthesis of biocompatible nanomaterials for diagnostic imaging: current challenges and future perspectives. Green Chemistry, 2020, 22, 2662-2687.	4.6	47
1356	Carbon and graphene quantum dots: a review on syntheses, characterization, biological and sensing applications for neurotransmitter determination. RSC Advances, 2020, 10, 15406-15429.	1.7	315
1357	Encapsulation of alkenylsuccinic anhydride oil droplets in Laponite nanoparticles modified by carbon nitride quantum dots: Enhancement of emulsion stability and paper sizing performance. Applied Clay Science, 2020, 191, 105608.	2.6	10
1358	Two-dimensional (2D) materials beyond graphene in cancer drug delivery, photothermal and photodynamic therapy, recent advances and challenges ahead: A review. Journal of Drug Delivery Science and Technology, 2021, 61, 101830.	1.4	39
1359	A selective approach towards synthesis of poly (3‑bromo thiophene)/graphene quantum dot composites via in-situ and ex-situ routes: Application in light emission and photocurrent generation. Electrochimica Acta, 2021, 365, 137369.	2.6	12
1360	Investigation into the Catalytic Performance of Cu(II) Supported Graphene Quantum Dots Modified NiFe2O4 as a Proficient Nano-Catalyst in the Synthesis of Propargylasmines. Catalysis Letters, 2021, 151, 1444-1455.	1.4	9
1361	Enhanced fluorescence of photosynthetic pigments through conjugation with carbon quantum dots. Photosynthesis Research, 2021, 147, 1-10.	1.6	15
1362	Contrasting spectroscopic response of human hemoglobin in presence of graphene oxides and its reduced form: Comparative approach with carbon quantum dots. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 247, 119079.	2.0	5
1363	Accelerated Development of Colloidal Nanomaterials Enabled by Modular Microfluidic Reactors: Toward Autonomous Robotic Experimentation. Advanced Materials, 2021, 33, e2004495.	11.1	64
1364	Tailoring Multiple Porosities of Hierarchical ZSMâ€5 Zeolites by Carbon Dots for Highâ€Performance Catalytic Transformation. Advanced Materials Interfaces, 2021, 8, 2001846.	1.9	5
1365	Recent Advances in Renal Clearable Inorganic Nanoparticles for Cancer Diagnosis. Particle and Particle Systems Characterization, 2021, 38, 2000270.	1.2	8
1366	Recent advances in the modification of carbon-based quantum dots for biomedical applications. Materials Science and Engineering C, 2021, 120, 111756.	3.8	104
1367	A Critical Review of Graphene Quantum Dots: Synthesis and Application in Biosensors. Nano, 2021, 16, 2130001.	0.5	11
1368	Tribochemical mechanism of superlubricity in graphene quantum dots modified DLC films under high contact pressure. Carbon, 2021, 173, 329-338.	5.4	38
1369	Preparation of carbon quantum dots- quinic acid for drug delivery of gemcitabine to breast cancer cells. Journal of Drug Delivery Science and Technology, 2021, 61, 102287.	1.4	45

#	Article	IF	CITATIONS
1370	Silver cluster (Ag6) decorated coronene as non-enzymatic sensor for glucose and H2O2. Journal of Molecular Graphics and Modelling, 2021, 103, 107824.	1.3	16
1371	High quantum yield boron-doped carbon dots: a ratiometric fluorescent probe for highly selective and sensitive detection of Mg ²⁺ ions. Journal of Materials Chemistry C, 2021, 9, 1632-1640.	2.7	47
1372	Fluorescent carbon quantum dots from Ananas comosus waste peels: A promising material for NLO behaviour, antibacterial, and antioxidant activities. Inorganic Chemistry Communication, 2021, 124, 108397.	1.8	30
1373	On the intersection of molecular bioelectronics and biosensors: 20ÂYears of C3B. Biosensors and Bioelectronics, 2021, 176, 112889.	5.3	3
1374	Integrated transition metal and compounds with carbon nanomaterials for electrochemical water splitting. Journal of Materials Chemistry A, 2021, 9, 3786-3827.	5.2	140
1375	Carbon dots from Artemisiae Argyi Folium Carbonisata: strengthening the anti-frostbite ability. Artificial Cells, Nanomedicine and Biotechnology, 2021, 49, 11-19.	1.9	16
1377	Boron regulated dual emission in B, N doped graphene quantum dots. Optical Materials, 2021, 111, 110577.	1.7	14
1378	Enhanced photocatalytic performance of electrospun hollow titanium dioxide nanofibers decorated with graphene quantum dots. Journal of Materials Science, 2021, 56, 2138-2149.	1.7	10
1379	Edgeâ€Functionalized Nanographenes. Chemistry - A European Journal, 2021, 27, 187-199.	1.7	19
1380	Photoluminescence of graphene quantum dots enhanced by microwave post-treatment. Chemical Engineering Journal, 2021, 405, 126714.	6.6	18
1381	Carbon and graphene quantum dots in fuel cell application: An overview. International Journal of Energy Research, 2021, 45, 1396-1424.	2.2	59
1382	Cu(II)â€supported graphene quantum dots modified NiFe ₂ O ₄ : A green and efficient catalyst for the synthesis of 4Hâ€pyrimido[2,1â€b]benzothiazoles in water. Journal of the Chinese Chemical Society, 2021, 68, 121-130.	0.8	14
1383	Drug Delivery Towards Cancer. Nanotechnology in the Life Sciences, 2021, , 225-240.	0.4	0
1384	A short review on electrochemical exfoliation of graphene and graphene quantum dots. Carbon Letters, 2021, 31, 371-388.	3.3	45
1385	Enhanced second-order Stark effect in twisted bilayer graphene quantum dots. Nano Research, 2021, 14, 3935.	5.8	4
1386	Red-fluorescent graphene quantum dots from guava leaf as a turn-off probe for sensing aqueous Hg(<scp>ii</scp>). New Journal of Chemistry, 2021, 45, 4617-4625.	1.4	29
1387	Two-Dimensional Material-Based Quantum Dots for Wavelength-Selective, Tunable, and Broadband Photodetector Devices. Lecture Notes in Nanoscale Science and Technology, 2021, , 249-287.	0.4	2
1388	Electrochemical DNA biosensors based on quantum dots. , 2021, , 155-184.		3

#	Article	IF	CITATIONS
1389	Enhancing room-temperature NO ₂ gas sensing performance based on a metal phthalocyanine/graphene quantum dot hybrid material. RSC Advances, 2021, 11, 5618-5628.	1.7	22
1390	Recent advances in room temperature phosphorescent carbon dots: preparation, mechanism, and applications. Journal of Materials Chemistry C, 2021, 9, 4425-4443.	2.7	61
1391	Graphene, an Interesting Nanocarbon Allotrope for Biosensing Applications: Advances, Insights, and Prospects. Biomedical Engineering and Computational Biology, 2021, 12, 117959722098382.	0.8	8
1392	Environment Remediation Tools: Chemosensors and Biosensors. Environmental and Microbial Biotechnology, 2021, , 267-293.	0.4	0
1393	Room Temperature Detection of Formaldehyde with Economical and Ecofriendly Graphene Quantum Dot Ink Treated Paper-Based Sensor. Lecture Notes in Bioengineering, 2021, , 265-276.	0.3	0
1394	Solution-Processable Carbon and Graphene Quantum Dots Photodetectors. Lecture Notes in Nanoscale Science and Technology, 2021, , 157-214.	0.4	1
1395	Turning waste into wealth: facile and green synthesis of carbon nanodots from pollutants and applications to bioimaging. Chemical Science, 2021, 12, 11722-11729.	3.7	48
1396	TiO ₂ -Decorated Titanium Carbide MXene co-Doped with Nitrogen and Sulfur for Oxygen Electroreduction. ACS Applied Nano Materials, 2021, 4, 1094-1103.	2.4	26
1398	Recent advances of biomass carbon dots on syntheses, characterization, luminescence mechanism, and sensing applications. Nano Select, 2021, 2, 1117-1145.	1.9	43
1399	Perspectives on nanocomposite with polypyrrole and nanoparticles. , 2021, , 103-128.		0
1400	Graphene-Based Nanocomposites for Renewable Energy Application. , 2021, , 929-963.		0
1401	The Kuzbass Basin coals as a raw material for the preparation of carbon quantum dots. Journal of Physics: Conference Series, 2021, 1749, 012046.	0.3	0
1402	Graphene-Based Nanomaterials: Introduction, Structure, Synthesis, Characterization, and Properties. , 2021, , 23-48.		0
1403	Stable quantum dots/polymer matrix and their versatile 3D printing frameworks. Journal of Materials Chemistry C, 2021, 9, 7194-7199.	2.7	8
1404	Critical overview on the green synthesis of carbon quantum dots and their application for cancer therapy. Environmental Science: Nano, 2021, 8, 848-862.	2.2	55
1405	Recent advances in graphene quantum dot-based optical and electrochemical (bio)analytical sensors. Materials Advances, 2021, 2, 5513-5541.	2.6	50
1406	One-step synthesis of fluorescent graphene quantum dots as an effective fluorescence probe for vanillin detection. RSC Advances, 2021, 11, 9121-9129.	1.7	20
1407	Antitumor/antiviral carbon quantum dots based on carrageenan and pullulan. International Journal of Biological Macromolecules, 2021, 170, 688-700.	3.6	55

	CITATION RI	PORT	
#	ARTICLE Corrosion protection investigations of carbon dots and polydopamine composite coating on	IF	CITATIONS
1408	magnesium alloy. Journal of Magnesium and Alloys, 2022, 10, 1358-1367. Carbon-based nanomaterials for targeted cancer nanotherapy: recent trends and future prospects. Journal of Drug Targeting, 2021, 29, 716-741.	2.1	52
1410	Coal based carbon dots: Recent advances in synthesis, properties, and applications. Nano Select, 2021, 2, 1589-1604.	1.9	24
1411	Seaweedâ€derived polymerâ€based blueâ€emitting Câ€dots: synthesis, characterization and evaluation for iron sensing. Polymer International, 2021, 70, 1309-1315.	1.6	4
1412	Facile one-step synthesis and fluorescence performance study of nitrogen-doped carbon quantum dots. Functional Materials Letters, 2021, 14, 2150009.	0.7	5
1413	Advanced catalytic performance for the electro-oxidation of methanol enabled by channel-rich Au@GQDs@Pt3.5Pb nano-pompons. Journal of Electroanalytical Chemistry, 2021, 882, 114973.	1.9	4
1414	Graphene and its Derivatives-Based Optical Sensors. Frontiers in Chemistry, 2021, 9, 615164.	1.8	43
1415	A review on the biological effects of nanomaterials on silkworm (<i>Bombyx mori</i>). Beilstein Journal of Nanotechnology, 2021, 12, 190-202.	1.5	9
1416	Perspectivas y aplicaciones reales del grafeno después de 16 años de su descubrimiento. Revista Colombiana De Quimica, 2021, 50, 51-85.	0.2	0
1417	Planar Grapheneâ€Based Microsupercapacitors. Small, 2021, 17, e2006827.	5.2	24
1418	How macrophages respond to two-dimensional materials: a critical overview focusing on toxicity. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2021, 56, 333-356.	0.7	15
1419	A Review of Graphene Nanoribbon Field-Effect Transistor Structures. Journal of Electronic Materials, 2021, 50, 3169-3186.	1.0	18
1420	Dual-Labeled Graphene Quantum Dot-Based Förster Resonance Energy Transfer Nanoprobes for Single-Molecule Localization Microscopy. ACS Omega, 2021, 6, 8808-8815.	1.6	5
1421	Recent Development in Synthesis of Carbon Dots from Natural Resources and Their Applications in Biomedicine and Multiâ€Sensing Platform. ChemistrySelect, 2021, 6, 2774-2789.	0.7	26
1422	Enhanced bacterial uptake of 1311 -labeled antimicrobial imidazolium bromide salts using fluorescent carbon nanodots. Materials Today Communications, 2021, 26, 102167.	0.9	5
1423	Blue Emissive Carbon Quantum Dots (CQDs) from Bio-waste Peels and Its Antioxidant Activity. Journal of Cluster Science, 2022, 33, 1045-1053.	1.7	18
1424	Preparation of QDs@SiO ₂ -PEG-LMPET and its influence on crystallization and luminescence of polyethylene terephthalate. Nanotechnology, 2021, 32, 225706.	1.3	2
1425	Applications of natural product-derived carbon dots in cancer biology. Nanomedicine, 2021, 16, 587-608.	1.7	21

#	Article	IF	CITATIONS
1426	Controllable preparation of boron nitride quantum dots with small size and strong blue photoluminescence. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 614, 126181.	2.3	13
1427	Single Wall Carbon Nanotube Gas Sensors. Armenian Journal of Physics, 0, , 74-84.	0.0	1
1428	Synthesis of nanodiamonds using liquid-phase laser ablation of graphene and its application in resistive random access memory. Carbon Trends, 2021, 3, 100023.	1.4	6
1429	Recent advances and future perspectives for carbon nanostructures reinforced organic coating for anti-corrosion application. Surfaces and Interfaces, 2021, 23, 100994.	1.5	22
1430	Effective adsorption of A-series chemical warfare agents on graphdiyne nanoflake: a DFT study. Journal of Molecular Modeling, 2021, 27, 117.	0.8	26
1431	Highly sensitive and selective fluorescence sensing and imaging of Fe 3+ based on a novel nitrogen doped graphene quantum dots. Luminescence, 2021, 36, 1592-1599.	1.5	3
1432	Effect of Shape on the Entering of Graphene Quantum Dots into a Membrane: A Molecular Dynamics Simulation. ACS Omega, 2021, 6, 10936-10943.	1.6	17
1433	Fluorescence Probe Based on Graphene Quantum Dots for Selective, Sensitive and Visualized Detection of Formaldehyde in Food. Sustainability, 2021, 13, 5273.	1.6	7
1434	Fluorescence properties of yellow light emitting carbon quantum dots and their application for effective recognition of heavy metal ions in aqueous medium. Nano Select, 2021, 2, 2432-2439.	1.9	4
1435	Effect of Solvent on Fluorescence Emission from Polyethylene Glycol-Coated Graphene Quantum Dots under Blue Light Illumination. Nanomaterials, 2021, 11, 1383.	1.9	12
1436	A Review of Fluorescent Carbon Dots, Their Synthesis, Physical and Chemical Characteristics, and Applications. Nanomaterials, 2021, 11, 1448.	1.9	73
1437	Carbon quantum dots/Bi4O5Br2 photocatalyst with enhanced photodynamic therapy: killing of lung cancer (A549) cells in vitro. Rare Metals, 2022, 41, 132-143.	3.6	15
1438	Graphene Quantum Dots (GQDs) for Bioimaging and Drug Delivery Applications: A Review. , 2021, 3, 889-911.		116
1439	Unraveling the Fluorescence Quenching of Colloidal Graphene Quantum Dots for Selective Metal Ion Detection. ACS Applied Nano Materials, 2021, 4, 5636-5642.	2.4	22
1440	Fluorescent nitrogen-doped carbon nanodots synthesized through a hydrothermal method with different isomers. Journal of the Taiwan Institute of Chemical Engineers, 2021, 123, 302-302.	2.7	13
1441	The effect of graphene quantum dots/ <scp>ZnS</scp> coâ€passivation on enhancing the photovoltaic performance of <scp>CdS</scp> quantum dot sensitized solar cells. International Journal of Energy Research, 2021, 45, 15879-15891.	2.2	7
1442	Metalâ€Bridged Graphene–Protein Supraparticles for Analog and Digital Nitric Oxide Sensing. Advanced Materials, 2021, 33, e2007900.	11.1	9
1443	Graphene plasmonic coupling with intersubband radiation of truncated pyramidal-shaped InAs/GaAs quantum dots. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 1824.	0.9	1

#	Article	IF	CITATIONS
1444	Graphene quantum dots as shallow traps in a high-k polymer matrix for bipolar resistive switching. Materials Research Express, 2021, 8, 056304.	0.8	0
1445	Atomistic Simulations of Laser-Controlled Exciton Transfer and Stabilization in Symmetric Double Quantum Dots. Journal of Physical Chemistry A, 2021, 125, 4793-4804.	1.1	13
1446	Comparison Direct Synthesis of Hyaluronic Acid-Based Carbon Nanodots as Dual Active Targeting and Imaging of HeLa Cancer Cells. ACS Omega, 2021, 6, 13300-13309.	1.6	3
1447	Carbon-Based Nanofluids and Their Advances towards Heat Transfer Applications—A Review. Nanomaterials, 2021, 11, 1628.	1.9	59
1448	Reduce and Concentrate Graphene Quantum Dot Size via Scissors: Vacancy, Pentagon-heptagon and Interstitial Defects in Graphite by Gamma Rays. Journal of Physics Condensed Matter, 2021, 34, .	0.7	1
1449	Hexagonal boron nitride quantum dots: Properties, preparation and applications. Materials Today Chemistry, 2021, 20, 100425.	1.7	18
1450	Smart Biosensors for Cancer Diagnosis Based on Graphene Quantum Dots. Cancers, 2021, 13, 3194.	1.7	39
1451	Review of performance improvement strategies for doped graphene quantum dots for fluorescence-based sensing. Synthetic Metals, 2021, 276, 116758.	2.1	24
1452	Solid-State Fluorescent Carbon Dots for Fluorimetric Sensing of Hg ²⁺ . ACS Applied Nano Materials, 2021, 4, 6386-6397.	2.4	39
1453	Radiative Rate Modulation Reveals Nearâ€Unity Quantum Yield of Graphene Quantum Dots. Advanced Optical Materials, 2021, 9, 2100314.	3.6	2
1454	Solid-state fluorescent nitrogen doped graphene quantum dots with yellow emission for white light-emitting diodes. Synthetic Metals, 2021, 277, 116787.	2.1	13
1455	Design and synthesis of amine grafted graphene oxide encapsulated chitosan hybrid beads for defluoridation of water. International Journal of Biological Macromolecules, 2021, 182, 1843-1851.	3.6	14
1456	Ultrafast Dynamics in Carbon Dots as Photosensitizers: A Review. ACS Applied Nano Materials, 2021, 4, 7587-7606.	2.4	17
1457	Preparation, characterization and the supercapacitive behaviors of electrochemically reduced graphene quantum dots/polypyrrole hybrids. Electrochimica Acta, 2021, 385, 138435.	2.6	18
1458	Graphene, Graphene-Derivatives and Composites: Fundamentals, Synthesis Approaches to Applications. Journal of Composites Science, 2021, 5, 181.	1.4	28
1459	Optical and electronic properties of TiO2/GOQDs composites: A combined experimental and first-principles calculations study. Computational Materials Science, 2021, 195, 110503.	1.4	11
1460	Nitrogen-doped graphene quantum dots-modified mesoporous SnO2 hierarchical hollow cubes for low temperature detection of nitrogen dioxide. Sensors and Actuators B: Chemical, 2021, 339, 129882.	4.0	32
1461	Ratiometric dual-emission of Rhodamine-B grafted carbon dots for full-range solvent components detection. Analytica Chimica Acta, 2021, 1174, 338743.	2.6	18

	CITATION R	EPORT	
#	Article	IF	CITATIONS
1462	Photoinitiated Polymerization of Hydrogels by Graphene Quantum Dots. Nanomaterials, 2021, 11, 2169.	1.9	4
1463	Carbon Quantum Dots Conjugated Rhodium Nanoparticles as Hybrid Multimodal Contrast Agents. Nanomaterials, 2021, 11, 2165.	1.9	12
1464	Electrochemical determination of trace amounts of lead ions using D-penicillamine-functionalized graphene quantum dot-modified glassy carbon electrode. Journal of the Iranian Chemical Society, 2022, 19, 1179-1189.	1.2	12
1465	Synthesis and characterization of natural rubber/graphene quantum dot nanocomposites. Journal of Polymer Research, 2021, 28, 1.	1.2	10
1466	Noble Metalâ€Free Surfaceâ€Enhanced Raman Scattering Enhancement from Bandgapâ€Controlled Graphene Quantum Dots. Particle and Particle Systems Characterization, 2021, 38, 2100128.	1.2	4
1467	Cost-effective route to nanodiamonds from low-rank coal and their fluorescent & amp; dielectric characteristics. Ceramics International, 2022, 48, 887-895.	2.3	7
1468	Simultaneous Electrodeposition of Reduced Graphene Quantum Dots/Copper Oxide Nanocomposite on the Surface of Carbon Ceramic Electrode for the Electroanalysis of Adenine and Guanine. Electroanalysis, 0, , .	1.5	1
1469	All-Carbon van der Waals Heterojunction Photodetectors. Springer Series in Materials Science, 2022, , 131-147.	0.4	0
1470	Toward highly efficient luminescence in graphene quantum dots for optoelectronic applications. Chemical Physics Reviews, 2021, 2, .	2.6	27
1471	A highly sensitive SERS platform based on small-sized Ag/GQDs nanozyme for intracellular analysis. Chemical Engineering Journal, 2022, 430, 132687.	6.6	30
1472	Developments in fuel cells and electrochemical batteries using nanoparticles and nanofluids. Energy Storage, 2022, 4, e288.	2.3	4
1473	Progressions in chemical and biological analytes sensing technology based on nanostructured materials: A comprehensive review. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 271, 115307.	1.7	7
1474	Doping and Surface Modification of Carbon Quantum Dots for Enhanced Functionalities and Related Applications. Particle and Particle Systems Characterization, 2021, 38, 2100170.	1.2	48
1475	Synthesis of Nanocrystalline Reduced Graphene Oxide Quantum Dots. International Journal of Nanoscience, 2021, 20, .	0.4	2
1476	Recent advances in the rational synthesis of red-emissive carbon dots for nanomedicine applications: A review. FlatChem, 2021, 29, 100271.	2.8	24
1477	A signal-off fluorescent strategy for deferasirox effective detection using carbon dots as probe and Cu2+ as medium. Analytica Chimica Acta, 2021, 1179, 338853.	2.6	15
1478	Graphene Quantum Dots-Based Nanocomposites Applied in Electrochemical Sensors: A Recent Survey. Electrochem, 2021, 2, 490-519.	1.7	24
1479	Recent advances in developing optical and electrochemical sensors for analysis of methamphetamine: A review. Chemosphere, 2021, 278, 130393.	4.2	31

ARTICLE IF CITATIONS Detection of Heavy Metals in Water Using Graphene Oxide Quantum Dots: An Experimental and 1480 1.7 7 Theoretical Study. Molecules, 2021, 26, 5519. An off-on fluorescent probe based on graphene quantum dots intercalated hydrotalcite for 1481 4.0 28 determination of ascorbic acid and phytase. Sensors and Actuators B: Chemical, 2021, 345, 130353. The applications of graphene oxide quantum dots in the removal of emerging pollutants in water: An 1482 26 2.6 overview. Journal of Water Process Engineering, 2021, 43, 102249. Mechanism study on NO removal over the CQDs@MIL-100 (Fe) composite photocatalyst. Environmental 1483 3.0 Technology and Innovation, 2021, 24, 101809. One-pot electrodeposition of metal organic frameworks composite accelerated by gold nanoparticles and electroreduced carbon dots for electroanalysis of bisphenol A in real plastic samples. Sensors 1484 4.0 28 and Actuators B: Chemical, 2021, 346, 130499. Hydrophilic graphene quantum dots as turn-off fluorescent nanoprobes for toxic heavy metal ions detection in aqueous media. Chemosphere, 2021, 282, 131019. 4.2 Tuning photoluminescence of boron nitride quantum dots via surface functionalization by 1486 1.8 21 femtosecond laser ablation. Journal of Molecular Structure, 2021, 1244, 130922. Synthesis and properties of carbon quantum dots and their research progress in cancer treatment. 1487 2.0 Dyes and Pigment's, 2021, 196, 109766. Theoretical investigations of hydrogen gas sensing and storage capacity of graphene-based materials: 1488 2.0 23 A review. Sensors and Actuators A: Physical, 2021, 332, 113118. Graphene quantum dots-crosslinked gelatin via the efficient Ugi four-component reaction: Safe 1489 photoluminescent implantable carriers for the pH-responsive delivery of doxorubicin. Materialia, 1.3 2021, 20, 101233. Electrochemical exfoliation of graphene quantum dots from waste dry cell battery for biosensor 1490 1.3 15 applications. Materials Letters, 2021, 305, 130829. Spectroscopic investigation on the binding interactions between graphene quantum dots and carbonic anhydrase. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 1491 265, 120369 CHAPTER 1. Carbon Nanostructures: Drug Delivery and Beyond. RSC Nanoscience and Nanotechnology, 1492 0.2 3 2021, , 1-38. Nanocomposites for Cancer Targeted Drug Delivery Therapeutics. Materials Horizons, 2021, , 201-222. 1493 0.3 Highly fluorescent nitrogen-doped graphene quantum dots (N-GQDs) as an efficient nanoprobe for 1494 1.0 14 imaging of microbial cells. Fullerenes Nanotubes and Carbon Nanostructures, 2021, 29, 588-595. Carbon dots for cancer nanomedicine: a bright future. Nanoscale Advances, 2021, 3, 5183-5221. 1495 2.2 Environmentally benign synthesis of fluorescent carbon nanodots using waste PET bottles: highly 1496 selective and sensitive detection of Pb2+ ions in aqueous medium. New Journal of Chemistry, 2021, 45, 1.4 12 8747-8754. Strategically integrating quantum dots into organic and perovskite solar cells. Journal of Materials 1497 5.2 Chemistry Á, 2021, 9, 4505-4527.

# 1498	ARTICLE A Mini Review on pH-Sensitive Photoluminescence in Carbon Nanodots. Frontiers in Chemistry, 2020, 8, 605028.	IF 1.8	CITATIONS
1499	Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Materials Advances, 2021, 2, 1821-1871.	2.6	1,049
1500	Carbon-based nanomaterials for viral infection management. Biomicrofluidics, 2021, 15, 011501.	1.2	12
1501	Room temperature DMMP gas sensing based on cobalt phthalocyanine derivative/graphene quantum dot hybrid materials. RSC Advances, 2021, 11, 14805-14813.	1.7	24
1502	Applications of quantum dots in batteries. , 2021, , 287-318.		1
1503	Biomedical applications of graphene. , 2021, , 551-571.		0
1504	Carbon-Based Quantum Dots for Supercapacitors: Recent Advances and Future Challenges. Nanomaterials, 2021, 11, 91.	1.9	87
1505	Quantum Dots Synthesis and Application. Engineering Materials, 2021, , 229-265.	0.3	2
1506	Application of Nanoparticles in Manufacturing. , 2016, , 1219-1278.		3
1507	Synthesis, Characterization and Applications of Graphene Quantum Dots. Advanced Structured Materials, 2017, , 65-120.	0.3	3
1508	Carbon Quantum Dots: A Potential Candidate for Diagnostic and Therapeutic Application. , 2020, , 49-70.		8
1509	Fluorescence "on-off-on―Assay of Copper Ions and EDTA Using Amino-Functionalized Graphene Quantum Dots. Journal of Fluorescence, 2020, 30, 301-308.	1.3	8
1510	Foldable flexible electronics based on few-layer graphene coated on paper composites. Carbon, 2020, 167, 169-180.	5.4	17
1511	Great enhancement of red emitting carbon dots with B/Al/Ga doping for dual mode anti-counterfeiting. Chemical Engineering Journal, 2020, 397, 125487.	6.6	41
1512	Enhanced photocatalytic activity of sulfur-doped graphene quantum dots decorated with TiO 2 nanocomposites. Materials Research Bulletin, 2018, 97, 428-435.	2.7	49
1513	Carbon nitride 2-D surface as a highly selective electrochemical sensor for V-series nerve agents. Journal of Molecular Liquids, 2020, 311, 113357.	2.3	38
1514	Chemiluminescent carbon dots: Synthesis, properties, and applications. Nano Today, 2020, 35, 100954.	6.2	138
1515	Carbon-based Nanomaterials in Analytical Chemistry. RSC Detection Science, 2018, , 1-36.	0.0	10

CITA	TION	DEDODT	
LIIA	TON.	KEPURI	

#	Article	IF	CITATIONS
1516	A DFT study for silicene quantum dots embedded in silicane: controllable magnetism and tuneable band gap by hydrogen. RSC Advances, 2019, 9, 32782-32790.	1.7	2
1517	Effect of plasma polarity on the synthesis of graphene quantum dots by atmospheric-pressure microplasmas. Nanotechnology, 2020, 31, 485001.	1.3	11
1518	Manganese–nitrogen and gadolinium–nitrogen Co-doped graphene quantum dots as bimodal magnetic resonance and fluorescence imaging nanoprobes. Nanotechnology, 2021, 32, 095103.	1.3	20
1519	Resonant random laser emission from graphene quantum dots doped dye solution. Laser Physics, 2020, 30, 115003.	0.6	7
1520	Underlying Electrochemical Activity Mechanisms on Tunable Electronic Structures of Graphene Quantum Dots Doped with Nitrogen and Sulfur Heteroatoms. Journal of the Electrochemical Society, 2020, 167, 166518.	1.3	4
1521	Two-dimensional nanomaterials for Förster resonance energy transfer–based sensing applications. Nanophotonics, 2020, 9, 1855-1875.	2.9	19
1522	A de novo theranostic nanomedicine composed of PEGylated graphene oxide and gold nanoparticles for cancer therapy. Journal of Materials Research, 2020, 35, 430-441.	1.2	33
1523	Advances in Polymer/Graphene Nanocomposite for Biosensor Application. NanoWorld Journal, 2018, 04, .	0.8	7
1524	Carbon Dots as Nanotherapeutics for Biomedical Application. Current Pharmaceutical Design, 2020, 26, 2207-2221.	0.9	26
1525	Carbon Quantum Dots: Surface Passivation and Functionalization. Current Organic Chemistry, 2016, 20, 682-695.	0.9	135
1526	Composites of Poly (3,4-Ethylenedioxythiophene) with Nanostructures as Electrochemical Sensors for Application in Bioelectroanalysis. Current Analytical Chemistry, 2019, 15, 186-197.	0.6	3
1527	Perspective on recent developments of nanomaterial based fluorescent sensors: applications in safety and quality control of food and beverages. Journal of Food and Drug Analysis, 2020, 28, 487-508.	0.9	14
1528	Direct Comparison of Optical Properties from Graphene Oxide Quantum Dots and Graphene Oxide. Applied Science and Convergence Technology, 2015, 24, 111-116.	0.3	5
1529	Approaches to Reduce the Contact Resistance by the Formation of Covalent Contacts in Graphene Thin Film Transistors. Applied Science and Convergence Technology, 2017, 26, 55-61.	0.3	3
1530	Rapid and sensitive online determination of ozone via gas–liquid chemiluminescence synergistically enhanced by graphene quantum dots and Triton X-100. Analytical Methods, 2021, 13, 5493-5501.	1.3	3
1531	Synthesis, Properties and Applications of Luminescent Carbon Dots. Indian Institute of Metals Series, 2021, , 421-460.	0.2	2
1532	On the nature of solvothermally synthesized carbon nanodots. Journal of Materials Chemistry C, 2021, 9, 16935-16944.	2.7	11
1533	Graphene quantum dots as nanosensor for rapid and label-free dual detection of Cu2+ and tiopronin by means of fluorescence "on–off–on―switching: mechanism and molecular logic gate. New Journal of Chemistry, 2021, 45, 20649-20659.	1.4	3

#	Article	IF	CITATIONS
1534	Graphene Quantum Dots for Molecular Radiotherapy: Radiolabeled Graphene Quantum Dots with Radium (223Ra) Showed Potent Effect Against Bone Cancer. Journal of Biomedical Nanotechnology, 2021, 17, 1858-1865.	0.5	2
1535	First principles study on geometric and electronic properties of two-dimensional Nb ₂ CT _x MXenes. Chinese Physics B, 2022, 31, 037304.	0.7	3
1536	ELECTROLYTIC EFFECT ON GROWTH OF GRAPHENE QUANTUM DOTS VIA ELECTROCHEMICAL PROCESS. Surface Review and Letters, 0, , .	0.5	2
1537	Interlayer polarizability in twisted bilayer graphene quantum dots. Physical Review B, 2021, 104, .	1.1	5
1538	The Room Temperature Highly Sensitive Ammonia Gas Sensor Based on Polyaniline and Nitrogen-Doped Graphene Quantum Dot-Coated Hollow Indium Oxide Nanofiber Composite. Polymers, 2021, 13, 3676.	2.0	18
1539	Fluorescent Polyethylene by In Situ Facile Synthesis of Carbon Quantum Dots Facilitated by Silica Nanoparticle Agglomerates. ACS Applied Polymer Materials, 2021, 3, 5517-5526.	2.0	13
1540	Large-Scale Preparation of Peanut-Bran-Derived Carbon Dots and Their Promoting Effect on Italian Lettuce. ACS Agricultural Science and Technology, 2022, 2, 215-221.	1.0	9
1541	The impact of immerssion time and thickness of TiO2 photoanode on power conversion efficiency of dye-sensitised solar cells using graphene quantum dots as photosensitiser. Optical Materials, 2021, 122, 111720.	1.7	5
1542	Quantum Dot-Electrochemiluminescence-Based Biosensing. Springer Briefs in Molecular Science, 2013, , 53-70.	0.1	0
1544	Regulation of Non-canonical DNA Structures by Small Molecules and Carbon Materials. RSC Green Chemistry, 2015, , 53-97.	0.0	0
1545	Transmission mode of a single layer graphene and its performance in the detection of the vibration spectrum of gas molecular. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 198102.	0.2	1
1547	Graphene and Carbon Dots in Mesoporous Materials. , 2016, , 1-30.		0
1548	Graphene 3D Architectures. , 2016, , 495-588.		0
1549	Nanotubes Reinforcement of Degradable Polymers for Orthopedic Applications. Advances in Tissue Engineering & Regenerative Medicine Open Access, 2017, 2, .	0.1	3
1550	Effective Conductivity of Graphene Quantum Dots Solution. , 2018, , .		0
1551	Graphene and Carbon Dots in Mesoporous Materials. , 2018, , 2339-2368.		0
1552	Studies on carbon dots embedded Tamm plasmon polariton structures. , 2018, , .		0
1554	Graphene-Based Nanocomposites for Renewable Energy Application. , 2019, , 1-36.		0

#	Article	IF	CITATIONS
1555	3D Graphene and Its Nanocomposites: From Synthesis to Multifunctional Applications. Carbon Nanostructures, 2019, , 363-388.	0.1	3
1558	Nitrogen-induced shift of photoluminescence from green to blue emission for xylose-derived carbon dots. Nano Express, 2020, 1, 020018.	1.2	3
1559	Convergent Protein Phosphatase Inhibitor Design for PTP1B and TCPTP: Exchangeable Vanadium Coordination Complexes on Graphene Quantum Dots. Advanced Functional Materials, 2022, 32, 2108645.	7.8	12
1560	Microwave-assisted synthesis of photoluminescent carbon dots from palm fronds biomass wastes. IOP Conference Series: Materials Science and Engineering, 2021, 1195, 012008.	0.3	3
1561	Effect of pH on Optical Properties of Graphene Oxide Quantum Dots. International Journal of Optics and Photonics, 2020, 14, 135-142.	0.2	2
1562	Probing heteroatoms co-doped graphene quantum dots for energy transfer and 2-photon assisted applications. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 423, 113618.	2.0	2
1563	Plasmonic Nanoparticles Decorated Graphene Sheets for Detection of Water Pollutants. Advanced Functional Materials and Sensors, 2020, , 79-106.	1.2	1
1564	Near Infrared-Emitting Carbon Nanomaterials for Biomedical Applications. , 2020, , 133-161.		2
1565	Synthesis and Applications of Graphene Quantum Dots. RSC Smart Materials, 2020, , 131-173.	0.1	0
1567	Biofunctionalized Nanostructured Materials for Sensing of Pesticides. Environmental Chemistry for A Sustainable World, 2020, , 29-86.	0.3	1
1568	Fabrication of carbon quantum dots via ball milling and their application to bioimaging. Mendeleev Communications, 2021, 31, 647-650.	0.6	9
1569	Luminescent Conjugated Polymer Dots for Biomedical Applications. , 2021, , 197-230.		0
1570	Preparation of Carbon Dots for Effective Fluorescence Imaging of Ovarian Cancer Cells and <i>In Vivo</i> Brain Imaging. Nano, 2020, 15, 2050158.	0.5	0
1571	Engineering silicon-carbide quantum dots for third generation photovoltaic cells. Optics Express, 2020, 28, 36656.	1.7	5
1572	Review of research of nanocomposites based on graphene quantum dots. ChemistrySelect, 2022, 7, 605-628.	0.7	0
1574	Electrochemical cardiac troponin I immunosensor based on nitrogen and boron-doped graphene quantum dots electrode platform and Ce-doped SnO2/SnS2 signal amplification. Materials Today Chemistry, 2022, 23, 100666.	1.7	39
1575	Graphene Quantum Dots as Nucleants for Protein Crystallization. Crystal Growth and Design, 2022, 22, 269-276.	1.4	6
1576	Synthetic Approach to Rice Waste-Derived Carbon-Based Nanomaterials and Their Applications. Nanomanufacturing, 2021, 1, 109-159.	1.8	18

#	Article	IF	CITATIONS
1577	Pulsedâ€UV illumination on graphene oxide: A new strategy in photocatalytic synthesis of electrocatalysts to control the structural and electrochemical properties. International Journal of Energy Research, 0, , .	2.2	1
1578	Nanomaterial based advancement in the inorganic pyrophosphate detection methods in the last decade: A review. TrAC - Trends in Analytical Chemistry, 2022, 146, 116483.	5.8	13
1579	Development of an Efficient Immunosensing Platform by Exploring Single-Walled Carbon Nanohorns (SWCNHs) and Nitrogen Doped Graphene Quantum Dot (N-GQD) Nanocomposite for Early Detection of Cancer Biomarker. ACS Biomaterials Science and Engineering, 2021, 7, 5541-5554.	2.6	29
1580	Fluorescence immunoassay rapid detection of 2019-nCoV antibody based on the fluorescence resonance energy transfer between graphene quantum dots and Ag@Au nanoparticle. Microchemical Journal, 2022, 173, 107046.	2.3	10
1581	Time-dependent characterization of graphene quantum dots and graphitic carbon nitride quantum dots synthesized by hydrothermal methods. Diamond and Related Materials, 2022, 121, 108751.	1.8	10
1582	N-doped graphene quantum dots from graphene oxide and dendrimer and application in photothermal therapy: An experimental and theoretical study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636, 128066.	2.3	10
1583	Electron spin dynamics in sucrose-derived luminescent carbon dot-silica nanocomposites. Journal of Physics and Chemistry of Solids, 2022, 162, 110536.	1.9	3
1584	Excitation-independent and fluorescence-reversible N-GQD for picomolar detection of inhibitory neurotransmitter in milk samples ‒ an alleyway for possible neuromorphic computing application. Talanta, 2022, 239, 123132.	2.9	8
1585	Novel 2D Photocatalyst of Single Atom-Dispersed Copper and Carbon Quantum Dots Co-Loaded with Ultrathin Ni-MOL for Degradation of Tetracycline. SSRN Electronic Journal, 0, , .	0.4	0
1586	Preparation and structure tuning of graphene quantum dots for optical applications in chemosensing, biosensing, and bioimaging. , 2022, , 41-77.		0
1587	Red, green, and blue light-emitting carbon dots prepared from gallic acid for white light-emitting diode applications. Nanoscale Advances, 2021, 4, 14-18.	2.2	10
1588	Interlayer electron flow and field shielding in twisted trilayer graphene quantum dots. Nanoscale, 2022, 14, 1310-1317.	2.8	3
1589	Water-Soluble Silicon Quantum Dots toward Fluorescence-Guided Photothermal Nanotherapy. Langmuir, 2022, 38, 5188-5196.	1.6	12
1590	Fluorescent carbon nano-materials from coal-based precursors: unveiling structure–function relationship between coal and nano-materials. Carbon Letters, 2022, 32, 671-702.	3.3	5
1591	Recent advances in photocatalytic carbon-based materials for enhanced water splitting under visible-light irradiation. Energy Conversion and Management, 2022, 252, 115133.	4.4	43
1592	Dispersion-assisted tunable fluorescence from carbon dots. Nanotechnology, 2022, 33, 175705.	1.3	5
1593	Atomically precise fluorescent metal nanoclusters. , 2022, , 207-242.		2
1594	Tuning of photoluminescence behavior of gold coated chitosan-polyvinyl alcohol binding with graphene quantum dots. Materials Today: Proceedings, 2022, , .	0.9	1

	Сітаті	on Report	
#	Article	IF	CITATIONS
1595	β-Cyclodextrin anchored neem carbon dots for enhanced electrochemical sensing performance of an anticancer drug, lapatinib via host-guest inclusion. Journal of Molecular Liquids, 2022, 350, 118582.	2.3	13
1596	Effective removal of Pb(II)/4-nitroaniline/E. faecalis and E. coli pollutants from water by a novel unique graphene quantum dots@gemifloxacin@ double-layered Fe/Al nanocomposite. Journal of Water Process Engineering, 2022, 46, 102562.	2.6	13
1597	A review on graphene quantum dots, an emerging luminescent carbon nanolights: Healthcare and Environmental applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 278, 115633.	1.7	14
1598	Graphene quantum dots: A contemporary perspective on scope, opportunities, and sustainability. Renewable and Sustainable Energy Reviews, 2022, 157, 111993.	8.2	41
1599	Applications of graphene-based electrochemical and optical biosensors in early detection of cancer biomarkers. Colloids and Surfaces B: Biointerfaces, 2022, 212, 112356.	2.5	37
1600	A fluorescence aptasensor based on GSH@GQDs and RGO for the detection of Glypican-3. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 270, 120798.	2.0	12
1601	Fluorescence immunoassay for targeted determination of trace Listeria monocytogenes based on immunomagnetic separation and CdZnTe quantum dots indication. Analytical Methods, 2022, , .	1.3	1
1602	Highly luminescent red-emitting In(Zn)P quantum dots using zinc oxo cluster: synthesis and application to light-emitting diodes. Nanoscale, 2022, 14, 2771-2779.	2.8	7
1603	Bifunctional Metal Oleate as an Alternative Method to Remove Surface Oxide and Passivate Surface Defects of Aminophosphine-Based InP Quantum Dots. Nanomaterials, 2022, 12, 573.	1.9	9
1604	Bioactive Graphene Quantum Dots Based Polymer Composite for Biomedical Applications. Polymers, 2022, 14, 617.	2.0	61
1605	Comparative analysis of characterization techniques of GQDs-based photovoltaic applications: A review. Optik, 2022, 255, 168709.	1.4	4
1606	Hetero Atom Doped Carbon Nanomaterials for Biological Applications. Advances in Material Research and Technology, 2022, , 35-59.	0.3	1
1607	Fluorescent quantum dots from two-dimensional nanomaterials for in vitro and in vivo bioimaging. Materials Today: Proceedings, 2022, 53, 420-424.	0.9	3
1608	Graphene-Based Nanomaterials for Biomedical Imaging. Advances in Experimental Medicine and Biology, 2022, 1351, 125-148.	0.8	7
1609	Small variations in reaction conditions tune carbon dot fluorescence. Nanoscale, 2022, 14, 6930-6940.	2.8	14
1610	Recent progress of carbon dots in targeted bioimaging and cancer therapy. Theranostics, 2022, 12, 2860-2893.	4.6	44
1611	A Biomedical Perspective in Terahertz Nano-Communications—A Review. IEEE Sensors Journal, 2022, 22, 9215-9227.	2.4	15
1612	Green-emitting carbon quantum dots as a dual-mode fluorescent and colorimetric sensor for hypochlorite. Analytical and Bioanalytical Chemistry, 2022, 414, 2651-2660.	1.9	15

#	Article	IF	CITATIONS
1613	Revisit the Hydrated Cationâ^'Ï€ Interaction at the Interface: A New View of Dynamics and Statistics. Langmuir, 2022, 38, 2401-2408.	1.6	5
1614	Photocatalytic activity of graphene oxide quantum dots in an effluent from a South African wastewater treatment plant. Journal of Nanoparticle Research, 2022, 24, 1.	0.8	7
1615	Graphene Quantum Dot-Based Optical Sensing Platform for Aflatoxin B1 Detection <i>via</i> the Resonance Energy Transfer Phenomenon. ACS Applied Bio Materials, 2022, 5, 1179-1186.	2.3	24
1616	Synthesis and characterization of high quantum yield graphene quantum dots via pyrolysis of glutamic acid and aspartic acid. Journal of Nanoparticle Research, 2022, 24, 1.	0.8	3
1617	Luminescence turn-off detection of metal ions and explosives using graphene quantum dots. MRS Communications, 2022, 12, 168-174.	0.8	2
1618	The applications of two-dimensional materials and the derivative quantum dots in photodynamic therapy. APL Materials, 2022, 10, 021104.	2.2	0
1619	Study of DNA/RNA Aggregation Linked to Cadmium Oxide (CdO) Nanoparticles by Aryl Mercaptanes with Various Chain Length. Earthline Journal of Chemical Sciences, 0, , 13-34.	0.0	1
1620	Graphene quantum dot based ultrasensitive probe for biosensing of prostate cancer biomarkers: current updates and future challenges. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2022, 13, 013001.	0.7	9
1621	Graphene based highly sensitive refractive index sensor using double split ring resonator metasurface. Optical and Quantum Electronics, 2022, 54, 1.	1.5	31
1622	Three-Dimensional MoS2/Reduced Graphene Oxide Nanosheets/Graphene Quantum Dots Hybrids for High-Performance Room-Temperature NO2 Gas Sensors. Nanomaterials, 2022, 12, 901.	1.9	9
1623	Gas- and Biosensors Made from Metal Oxides Doped with Carbon Nanotubes. Journal of Contemporary Physics, 2022, 57, 54-75.	0.1	5
1624	The synergistic effect of peracetic acid activated by graphene oxide quantum dots in the inactivation of <i>E. coli</i> and organic dye removal with LED reactor light. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2022, 57, 268-281.	0.9	4
1625	Fluorescence Quenching of Graphene Quantum Dots by Chloride Ions: A Potential Optical Biosensor for Cystic Fibrosis. Frontiers in Materials, 2022, 9, .	1.2	4
1626	One-pot room temperature synthesis of orange-emitting carbon dots for highly-sensitive vitamin B12 sensing. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 276, 121239.	2.0	7
1627	Fabrication of polyarylate thin-film nanocomposite membrane based on graphene quantum dots interlayer for enhanced gas separation performance. Separation and Purification Technology, 2022, 293, 121035.	3.9	12
1628	Formation mechanism of carbon dots: From chemical structures to fluorescent behaviors. Carbon, 2022, 194, 42-51.	5.4	63
1629	Recent progress of fluorescent materials for fingermarks detection in forensic science and anti-counterfeiting. Coordination Chemistry Reviews, 2022, 462, 214523.	9.5	85
1630	Synthesis of TiO2 nanosheets/graphene quantum dots and its application for detection of hydrogen peroxide by photoluminescence spectroscopy. Talanta Open, 2022, 5, 100103.	1.7	14

#	Article	IF	CITATIONS
1631	Graphene quantum dots an efficient nanomaterial for enhancing the photostability of trans-resveratrol in food samples. Food Chemistry, 2022, 386, 132766.	4.2	11
1632	New rout for synthesizing triammonium citrate crystal with unique crystallography and its application in synthesizing nitrogen doped graphene quantum dot. Main Group Chemistry, 2021, , 1-14.	0.4	0
1633	Rational Design of Surface-State Controlled Multicolor Cross-Linked Carbon Dots with Distinct Photoluminescence and Cellular Uptake Properties. ACS Applied Materials & Interfaces, 2021, 13, 59747-59760.	4.0	13
1634	Nanographene – A Scaffold of Twoâ€Dimensional Materials. Chemical Record, 2022, 22, e202100257.	2.9	9
1635	Polyimide composite films reinforced by graphene quantum dots. Fullerenes Nanotubes and Carbon Nanostructures, 0, , 1-9.	1.0	8
1636	Fluorescence Microscopy—An Outline of Hardware, Biological Handling, and Fluorophore Considerations. Cells, 2022, 11, 35.	1.8	30
1637	Green Nanomaterials for Photocatalytic Degradation of Toxic Organic Compounds. Current Pharmaceutical Biotechnology, 2023, 24, 118-144.	0.9	3
1638	Grapheneâ€Based Nanomaterials for Solarâ€Driven Overall Water Splitting. Chemistry - A European Journal, 2022, 28, .	1.7	4
1639	Combining metal nanoclusters and carbon nanomaterials: Opportunities and challenges in advanced nanohybrids. Advances in Colloid and Interface Science, 2022, 304, 102667.	7.0	16
1641	A Novel Carbon Quantum Dots and its Applications in Drug Delivery System – A Review. Pharmacophore. Pharmacophore, 2022, 13, 62-71.	0.2	2
1642	Curcumin/Graphene Quantum Dot-Loaded Bacterial Nanocellulose Platform for Drug Delivery and Wound Dressing. Nano, 2022, 17, .	0.5	4
1643	Recent advances in graphene-based polymer composite scaffolds for bone/cartilage tissue engineering. Journal of Drug Delivery Science and Technology, 2022, 72, 103360.	1.4	5
1644	Achievements and Challenges of Graphene Chemical Vapor Deposition Growth. Advanced Functional Materials, 2022, 32, .	7.8	20
1645	Overview of Application of Nanomaterials in Medical Domain. Contrast Media and Molecular Imaging, 2022, 2022, 1-5.	0.4	13
1646	Fabrication of sensor based on polyvinyl alcohol functionalized tungsten oxide/reduced graphene oxide nanocomposite for electrochemical monitoring of 4-aminophenol. Environmental Research, 2022, 212, 113372.	3.7	19
1647	Edge-rich atomic-layered BiOBr quantum dots for photocatalytic molecular oxygen activation. Chemical Engineering Journal, 2022, 445, 136776.	6.6	22
1648	Nitrogen-doped carbon dots as a highly selective and sensitive fluorescent probe for sensing Mg2+ ions in aqueous solution, and their application in the detection and imaging of intracellular Mg2+ ions. Sensors and Actuators B: Chemical, 2022, 366, 131958.	4.0	13
1649	State-of-the-art developments in carbon quantum dots (CQDs): Photo-catalysis, bio-imaging, and bio-sensing applications. Chemosphere, 2022, 302, 134815.	4.2	81

#	Article	IF	CITATIONS
1650	Recent advances in nanomaterials for prostate cancer detection and diagnosis. Journal of Materials Chemistry B, 0, , .	2.9	5
1651	High performance enhancement-mode thin-film transistor with graphene quantum dot-decorated In ₂ O ₃ channel layers. RSC Advances, 2022, 12, 14986-14997.	1.7	3
1652	Analysis of Mn2+ and Zn2+ Ions in Macroalgae with Heteroelement-Doped Carbon-Based Fluorescent Probe. Biosensors, 2022, 12, 359.	2.3	2
1653	DFT study of 6-amino-3-(1-hydroxyethyl) pyridine-2,4-diol (AHP) adsorption on Coronene. Journal of Molecular Liquids, 2022, 360, 119436.	2.3	20
1654	Environmentally-friendly carbon nanomaterials for photocatalytic hydrogen production. Chinese Journal of Catalysis, 2022, 43, 1719-1748.	6.9	32
1655	Investigation of N–S-based graphene quantum dot on sodium alginate with ammonium thiocyanate (NH4SCN) biopolymer electrolyte for the application of electrochemical devices. Journal of Materials Science: Materials in Electronics, 0, , .	1.1	2
1656	In situ tailoring of carbon dots-metal ferrite nanohybrid as multipurpose marker agent of HeLa cancer cells. Journal of Materials Research, 0, , .	1.2	1
1657	Nitrogen-doped carbon quantum dots as a highly selective fluorescent and electrochemical sensor for tetracycline. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 432, 114060.	2.0	14
1659	Recent developments in carbon dot-based green analytical methods: new opportunities in fluorescence assays of pesticides, drugs and biomolecules. New Journal of Chemistry, 2022, 46, 14287-14308.	1.4	34
1660	Graphene Quantum Dots and Their Hybrid Hydrogels: A Multifaceted Platform for Theranostic Applications. , 2022, , 417-453.		3
1661	lonic polymer metal composites actuators with enhanced driving performance by incorporating graphene quantum dots. Journal of Central South University, 2022, 29, 1412-1422.	1.2	6
1662	Global optimization of atomic structure enhanced by machine learning. Physical Review B, 2022, 105, .	1.1	22
1663	Resistive-Based Gas Sensors Using Quantum Dots: A Review. Sensors, 2022, 22, 4369.	2.1	20
1664	Preparation, synthesis, properties and characterization of graphene-based 2D nano-materials for biosensors and bioelectronics. Journal of Materials Research and Technology, 2022, 19, 2657-2694.	2.6	53
1665	Green and efficient synthesis of carbon quantum dots from cordia myxa L. and their application in photocatalytic degradation of organic dyes. Journal of Molecular Structure, 2022, 1266, 133456.	1.8	17
1666	Recent development in carbon dot-based gas sensors. Sensors & Diagnostics, 2022, 1, 902-931.	1.9	6
1667	Self-assembly of carbon nanodots induced by liquid–liquid phase separation in a surface microdroplet. Soft Matter, 2022, 18, 6517-6528.	1.2	1
1669	Polarization-Dependent Selection Rules and Optical Spectrum Atlas of Twisted Bilayer Graphene Quantum Dots. Physical Review X, 2022, 12, .	2.8	8

#	Article	IF	CITATIONS
1670	Synthesis of magnetic graphene quantum dots–chitosan nanocomposite: an efficient adsorbent for removal of Pb2+ from aqueous solution. International Journal of Environmental Science and Technology, 2022, 19, 11447-11458.	1.8	4
1671	The Pivotal Role of Quantum Dots-Based Biomarkers Integrated with Ultra-Sensitive Probes for Multiplex Detection of Human Viral Infections. Pharmaceuticals, 2022, 15, 880.	1.7	19
1672	Recent Advances on Synthesis and Potential Applications of Carbon Quantum Dots. Frontiers in Materials, 0, 9, .	1.2	37
1673	A Multifunctional Nanoplatform Based on Graphene Quantum Dotsâ€Cobalt Ferrite for Monitoring of Drug Delivery and Fluorescence/Magnetic Resonance Bimodal Cellular Imaging. Advanced NanoBiomed Research, 2022, 2, .	1.7	6
1674	Electron scattering of inhomogeneous gap in graphene quantum dots. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 448, 128325.	0.9	5
1675	Influence of in-situ and post-modification syntheses on the characteristic properties of tyrosine functionalized graphene quantum dots. Diamond and Related Materials, 2022, 128, 109229.	1.8	4
1676	Enhanced interlayer coupling in twisted bilayer graphene quantum dots. Applied Surface Science, 2022, 600, 154148.	3.1	5
1677	Multifunctional nanomaterials and nanocomposites for sensing and monitoring of environmentally hazardous heavy metal contaminants. Environmental Research, 2022, 214, 113795.	3.7	17
1678	Carbon quantum dots: A promising nanocarrier for bioimaging and drug delivery in cancer. Materials Today Communications, 2022, 32, 104068.	0.9	28
1679	Highly efficient heterostructures of C3N4 and o-GQDs with enrichment of specific oxygen-containing groups for photocatalytic applications. Journal of Alloys and Compounds, 2022, 923, 166327.	2.8	12
1680	Fe3O4/Graphene-Based Nanotheranostics for Bimodal Magnetic Resonance/Fluorescence Imaging and Cancer Therapy. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 4443-4460.	1.9	3
1681	Highly sensitive and selective detection of free bilirubin using blue emitting graphene quantum dots (GQDs). Journal of Chemical Sciences, 2022, 134, .	0.7	6
1682	Aflatoxin B1 Acts as an Effective Energy Donor to Enhance Fluorescence of Yellow Emissive Carbon Dots. ACS Omega, 2022, 7, 29297-29305.	1.6	3
1683	Study on the microstructure of the symbiosis of coal-based graphene and coal-based graphene quantum dots: preparation and characterization. Nanotechnology, 2022, 33, 455702.	1.3	1
1684	Design of zero-dimensional graphene quantum dots based nanostructures for the detection of organophosphorus pesticides in food and water: A review. Inorganic Chemistry Communication, 2022, 144, 109883.	1.8	11
1685	Lignin-derived hierarchical porous flower-like carbon nanosheets decorated with biomass carbon quantum dots for efficient oxygen reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 652, 129818.	2.3	10
1686	Stability strategies of perovskite quantum dots and their extended applications in extreme environment: A review. Materials Research Bulletin, 2022, 156, 111987.	2.7	13
1687	Platinum/carbon dots nanocomposites from palm bunch hydrothermal synthesis as highly efficient peroxidase mimics for ultra-low H2O2 sensing platform through dual mode of colorimetric and fluorescent detection. Analytica Chimica Acta, 2022, 1230, 340368.	2.6	10

#	Article	IF	CITATIONS
1688	Carbon dots-based electrochemical sensors. , 2023, , 109-136.		3
1689	Carbon Quantum Dots. Nanotechnology in the Life Sciences, 2022, , 75-102.	0.4	Ο
1690	Graphene Quantum Dots. Nanotechnology in the Life Sciences, 2022, , 47-73.	0.4	1
1691	Advanced Carbon-Based Gas Sensors. , 2022, , 139-159.		1
1692	First-Principles Investigation of Adsorption Behaviors, Electronic, Optical, and Gas-Sensing Properties of the Pure and Pd-Decorated Ges2 Monolayers. SSRN Electronic Journal, 0, , .	0.4	0
1693	The rapid synthesis of intrinsic green-fluorescent poly(pyrogallol)-derived carbon dots for amoxicillin drug sensing in clinical samples. New Journal of Chemistry, 2022, 46, 18805-18814.	1.4	5
1694	Synthesis and properties of multi-functionalized graphene quantum dots with tunable photoluminescence and hydrophobicity from asphaltene and its oxidized and reduced derivatives. Nanoscale Advances, 2022, 4, 4080-4093.	2.2	8
1695	Carbon nanotubes and graphene nanomaterials for biomedical applications. , 2022, , 215-226.		0
1696	Green Synthesis of Carbon Nanomaterials. , 2022, , 1-18.		0
1697	Recent advances in fluorescent 0D carbon nanomaterials as artificial nanoenzymes for optical sensing applications. International Nano Letters, 2023, 13, 1-14.	2.3	5
1698	A Comprehensive Review on Graphene Nanoparticles: Preparation, Properties, and Applications. Sustainability, 2022, 14, 12336.	1.6	10
1699	A rapid and sensitive method to detection of Cr3+by using the Fe3O4@Pectin-polymethacrylimide@graphene quantum dot as a sensitive material. Chemical Papers, 2023, 77, 351-360.	1.0	1
1702	Sensors Based on the Carbon Nanotube Field-Effect Transistors for Chemical and Biological Analyses. Biosensors, 2022, 12, 776.	2.3	11
1703	Photophysical and in vitro photoinactivation of Escherichia coli using cationic 5,10,15,20-tetra(pyridin-3-yl) porphyrin and Zn(II) derivative conjugated to graphene quantum dots. Photodiagnosis and Photodynamic Therapy, 2022, 40, 103127.	1.3	0
1704	Green synthesis of carbon quantum dots toward highly sensitive detection of formaldehyde vapors using QCM sensor. Chemosphere, 2023, 312, 137031.	4.2	6
1705	Flexible Transient Resistive Memory Based on Biodegradable Composites. Nanomaterials, 2022, 12, 3531.	1.9	3
1706	Two-Dimensional Quantum Dots: From Photoluminescence to Biomedical Applications. Solids, 2022, 3, 578-602.	1.1	3
1707	Graphene Quantum Dots: Novel Properties and Their Applications for Energy Storage Devices. Nanomaterials, 2022, 12, 3814.	1.9	17

#	Article	IF	CITATIONS
1708	Optimization of electrical performance and stability of fully solution-driven α-InGaZnO thin-film transistors by graphene quantum dots. Journal of Materials Science and Technology, 2023, 141, 100-109.	5.6	4
1709	Progress and challenges of graphene and its congeners for biomedical applications. Journal of Molecular Liquids, 2022, 368, 120703.	2.3	12
1710	Lignin-derived carbon quantum dots/Ni-MOL heterojunction from red phosphorus-assisted ball milling pretreatment and their application in photocatalysis: An insight from experiment and DFT calculation. Industrial Crops and Products, 2022, 189, 115829.	2.5	4
1711	Hydrothermal synthesis of N,S-doped carbon quantum dots as a dual mode sensor for azo dye tartrazine and fluorescent ink applications. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 436, 114386.	2.0	15
1712	Composites for Aqueous-Mediated Heterogeneously Catalyzed Degradation and Mineralization of Water Pollutants on TiO2—A Review. Journal of Composites Science, 2022, 6, 350.	1.4	2
1713	Electronic and magnetic properties of stacked graphene quantum dots. Diamond and Related Materials, 2023, 131, 109550.	1.8	4
1715	Controlled synthesis and superior UV-visible photocatalytic activity of carbon quantum dots encapsulated with silica. Chemical Data Collections, 2023, 43, 100972.	1.1	2
1716	Solution processed highly transparent nitrogen-doped carbon quantum dots/ZnO hybrid thin films: A study on structural and enhanced UV emission. Applied Surface Science, 2023, 611, 155664.	3.1	7
1717	Emerging carbon-based quantum dots for sustainable photocatalysis. Green Chemistry, 2023, 25, 32-58.	4.6	33
1718	Doable production of highly fluorescent, heteroatom-doped graphene material from fuel coke for cellular bioimaging: An eco-sustainable cradle-to-gate approach. Journal of Cleaner Production, 2023, 383, 135541.	4.6	1
1719	Diagnosis of cancer using carbon nanomaterial-based biosensors. Sensors & Diagnostics, 2023, 2, 268-289.	1.9	5
1720	Functionalized starch for formulation of graphitic carbon nanodots as viricidal/anticancer laborers. Biocatalysis and Agricultural Biotechnology, 2023, 47, 102577.	1.5	8
1721	Advances and prospects of carbon dots for microplastic analysis. Chemosphere, 2023, 313, 137433.	4.2	11
1722	Developing electron dynamics into a tool for 21st century chemistry simulations. Chemical Modelling, 2022, , 91-152.	0.2	1
1723	Molecular Dynamics Simulation of the Interaction between Graphene Oxide Quantum Dots and DNA Fragment. Materials, 2022, 15, 8506.	1.3	1
1724	Graphene Quantum Dots: A Pharmaceutical Review. Asian Journal of Pharmaceutical Research, 2022, , 341-348.	0.2	Ο
1725	Aggregation in carbon dots. Aggregate, 2022, 3, .	5.2	40
1726	B-GQDs@GSH as a Highly Selective and Sensitive Fluorescent Probe for the Detection of Fe3+ in Water Samples and Intracellular. Journal of Analysis and Testing, 2023, 7, 147-156.	2.5	2

#	Article	IF	Citations
1727	First-Principles Investigation of Adsorption Behaviors and Electronic, Optical, and Gas-Sensing Properties of Pure and Pd-Decorated GeS ₂ Monolayers. ACS Omega, 2022, 7, 46440-46451.	1.6	7
1728	Dye Degradation and Sulfur Oxidation of Methyl Orange and Thiophenol <i>via</i> Newly Designed Nanocomposite <scp>GQDs</scp> / <scp>NiSeâ€NiO</scp> Photocatalyst Under Homemade <scp>LED</scp> Light. Photochemistry and Photobiology, 2023, 99, 1097-1105.	1.3	3
1729	The Roadmap of Graphene-Based Sensors: Electrochemical Methods for Bioanalytical Applications. Biosensors, 2022, 12, 1183.	2.3	7
1730	Feâ€Doped Carbon Dots as NIRâ€II Fluorescence Probe for In Vivo Gastric Imaging and pH Detection. Advanced Science, 2023, 10, .	5.6	26
1731	Deciphering the catalytic mechanism of superoxide dismutase activity of carbon dot nanozyme. Nature Communications, 2023, 14, .	5.8	116
1733	Green Synthesis of Carbon Nanoparticles (CNPs) from Biomass for Biomedical Applications. International Journal of Molecular Sciences, 2023, 24, 1023.	1.8	9
1734	Photophysical Modulation of Rhodamineâ€B via Ï€â€Ï€ stacking with GQD and Its Further Tuning by Cucurbit[7]uril**. ChemistrySelect, 2023, 8, .	0.7	1
1735	A Reusable Nickel Oxide Reduced Graphene Oxide Modified Platinum Electrode for the Detection of Linezolid Drug. Industrial & Engineering Chemistry Research, 2023, 62, 4665-4675.	1.8	7
1736	Development of Tailored Graphene Nanoparticles: Preparation, Sorting and Structure Assessment by Complementary Techniques. Molecules, 2023, 28, 565.	1.7	1
1737	One-Step Colloidal Synthesis of Non-Toxic Electroactive Carbon Dots with a Better Threshold Cytotoxicity and Cytocompatibility. ACS Applied Materials & amp; Interfaces, 2023, 15, 281-291.	4.0	4
1738	Sustainable Preparation of Graphene Quantum Dots for Metal Ion Sensing Application. Nanomaterials, 2023, 13, 148.	1.9	1
1739	Electronic applications of carbon nano-dots. , 2023, , 227-247.		0
1740	Bioapplications of quantum dots. , 2023, , 463-476.		0
1741	Current prospects of carbon-based nanodots in photocatalytic CO2 conversion. , 2023, , 295-340.		0
1742	Synthesis of carbon quantum dots. , 2023, , 39-54.		0
1743	Photodetector applications of carbon and graphene quantum dots. , 2023, , 105-133.		0
1744	Solid-Phase Pyrolysis Synthesis of Highly Fluorescent Nitrogen/Sulfur Codoped Graphene Quantum Dots for Selective and Sensitive Diversity Detection of Cr(VI). Langmuir, 2023, 39, 1538-1547.	1.6	6
1745	Graphene quantum dots for clean energy solutions. , 2023, , 183-209.		3

		CITATION REPORT		
#	Article		IF	CITATIONS
1746	Doping of Laserâ€Induced Graphene and Its Applications. Advanced Materials Technologies, 20	123, 8, .	3.0	6
1747	A review of enhanced electrocatalytic composites hydrogen/oxygen evolution based on quantu Journal of Industrial and Engineering Chemistry, 2023, 121, 27-39.	ım dot.	2.9	10
1748	Synthesis of graphene quantum dots with temperature-sensitive properties from sea rice for ra highly selective detection of 4-nitrophenol. Diamond and Related Materials, 2023, 135, 10984	pid and 9.	1.8	6
1749	Experimental and theoretical insights into colossal supercapacitive performance of graphene quantum dots incorporated Ni3S2/CoS2/MoS2 electrode. Journal of Energy Storage, 2023, 65,	107274.	3.9	3
1750	Quantum dots: chemical applications. , 2023, , 421-437.			0
1751	Surface-charge-switch triggered self assembly of vancomycin modified carbon nanodots for enhanced photothermal eradication of vancomycin-resistant Enterococci biofilms. Colloids and Surfaces B: Biointerfaces, 2023, 224, 113207.		2.5	2
1752	Review on Multifunctional Nanotherapeutics for Drug Delivery, Tumor Imaging, and Selective T Targeting By Hyaluronic Acid Coupled Graphene Quantum Dots. Current Nanoscience, 2023, 1	umor 9, .	0.7	0
1754	Graphene quantum dot application in water purification. , 2023, , 113-132.			1
1756	Carbonaceous Nanostructures-Based Photocatalysts for Sustainable H2 Production. Materials Horizons, 2023, , 257-283.		0.3	0
1757	Photoluminescent Carbon Dots: A New Generation Nanocarbon Material. Materials Horizons, 2 231-256.	023, ,	0.3	0
1758	Chemical Sensors Based on Graphene and 2D Graphene Analogs. , 2023, 2, .			7
1759	Biocompatible Nanodiamonds Derived from Coal Washery Rejects: Antioxidant, Antiviral, and Phytotoxic Applications. ACS Omega, 2023, 8, 11151-11160.		1.6	1
1760	New insights on applications of quantum dots in fuel cell and electrochemical systems. Interna Journal of Hydrogen Energy, 2024, 52, 694-732.	tional	3.8	2
1761	Role of functionalization in the fluorescence quantum yield of graphene quantum dots. Applied Physics Letters, 2023, 122, .		1.5	2
1762	Design strategies of carbon nanomaterials in fluorescent sensing of biomolecules and metal ion review. Results in Chemistry, 2023, 5, 100918.	าร -A	0.9	3
1763	On using non-Kekulé triangular graphene quantum dots for scavenging hazardous sulfur hexafluoride components. Heliyon, 2023, 9, e15388.		1.4	3
1764	Green synthesis of graphene quantum dots from rice flour. Science and Technology, 2023, 61,		0.1	0
1765	The effect of carbon nanodots and graphene quantum dots on the green microalga Scenedesn quadricauda. Journal of Applied Phycology, 2023, 35, 1091-1102.	ius	1.5	3

#	Article	IF	Citations
1769	Natural Polymer-Carbon Dot Nanocomposites for Biomedical Use. Advances in Material Research and Technology, 2023, , 297-341.	0.3	0
1772	Domino and Multicomponent Reactions by Graphene-Based Carbocatalysts – A Boon for Organic Transformations. , 2023, , 297-336.		0
1774	Modified Graphene-Based Compound: Hydrogen Production through Water Splitting. , 2023, , 81-135.		0
1775	Assessment of biomass-derived carbon dots as highly sensitive and selective templates for the sensing of hazardous ions. Nanoscale, 2023, 15, 16241-16267.	2.8	17
1782	Graphene quantum dot-based nanocomposite hydrogels as anticancer drug delivery systems. , 2023, , 181-198.		0
1783	Carbon quantum dots biosynthesis: Perspectives and challenges. , 2023, , 9-22.		0
1794	Graphene and graphene derivatives for wastewater treatment. , 2023, , 143-163.		0
1795	Palm Waste Utilisation for Nanoparticles Synthesis and Their Various Application. , 2023, , 121-138.		0
1798	Green Synthesis of Carbon Nanomaterials. , 2023, , 3143-3160.		0
1800	Graphene, its Family and Potential Applications. , 2023, , 87-125.		1
1803	Carbon-Based Nanomaterials and Their Properties. , 2023, , 263-278.		1
1805	Graphene quantum dots: synthesis, characterization, and application in wastewater treatment: a review. Materials Advances, 2023, 4, 4272-4293.	2.6	5
1807	Forms of Functionalized Carbon-Based Nanomaterials, Synthesis, Classifications, and Their Electrochemical Activities for Supercapacitors. Materials Horizons, 2024, , 273-297.	0.3	0
1808	Comprehensive advances in the synthesis, fluorescence mechanism and multifunctional applications of red-emitting carbon nanomaterials. Nanoscale Advances, 2023, 5, 5717-5765.	2.2	1
1813	Role of Nanotechnology in Latent Fingerprint Development. Materials Horizons, 2023, , 1-16.	0.3	1
1823	MXene and Xene: promising frontier beyond graphene in tissue engineering and regenerative medicine. Nanoscale Horizons, 2023, 9, 93-117.	4.1	1
1835	Applications of zero-dimensional carbon–based nanomaterials as optical and electrochemical sensors. , 2024, , 497-514.		0
1836	Electronic properties of zero-dimensional carbon–based nanomaterials. , 2024, , 185-248.		0

#	Article	IF	CITATIONS
1841	Changing landscape of coal: Net-zero carbon emissions. , 2024, , 687-742.		0