Cycling and bone health: a systematic review

BMC Medicine 10, 168 DOI: 10.1186/1741-7015-10-168

Citation Report

#	Article	IF	CITATIONS
1	Ciclisme i salut òssia de l'adolescent. Apunts Medicine De L'Esport, 2012, 47, 169.	0.5	1
2	Bike racing, recreational riding, impact sport and bone health. BMC Medicine, 2012, 10, 169.	2.3	4
3	Is Bone Tissue Really Affected by Swimming? A Systematic Review. PLoS ONE, 2013, 8, e70119.	1.1	99
4	The Relationship between Cortisol and Bone Mineral Density in Competitive Male Cyclists. Hindawi Publishing Corporation, 2013, 2013, 1-7.	2.3	10
5	Ergonomic Interventions, Health and Injury Prevention during Off-Road Mountain Biking. Journal of Ergonomics, 2015, 05, .	0.2	2
6	Alterations in bone mineral density and lower extremity lean mass after hip arthroscopy in a professional female Ironman triathlete: a case study. SpringerPlus, 2015, 4, 70.	1.2	2
7	Radial bone size and strength indices in male road cyclists, mountain bikers and controls. European Journal of Sport Science, 2015, 15, 332-340.	1.4	8
8	Effect of a program of short bouts of exercise on bone health in adolescents involved in different sports: the PRO-BONE study protocol. BMC Public Health, 2015, 15, 361.	1.2	26
9	The effects of swimming training on bone tissue in adolescence. Scandinavian Journal of Medicine and Science in Sports, 2015, 25, e589-602.	1.3	32
10	Osteocartilaginous metabolic markers change over a 3-week stage race in pro-cyclists. Scandinavian Journal of Clinical and Laboratory Investigation, 2015, 75, 523-530.	0.6	10
11	Effects of the Residential Environment on Health in Japan Linked with Travel Behavior. International Journal of Environmental Research and Public Health, 2016, 13, 190.	1.2	5
12	Comparisons of Bone Mineral Density Between Recreational and Trained Male Road Cyclists. Clinical Journal of Sport Medicine, 2016, 26, 152-156.	0.9	8
13	Natação e ciclismo não causam efeitos positivos na densidade mineral óssea: uma revisão sistemática. Revista Brasileira De Reumatologia, 2016, 56, 345-351.	0.8	25
14	Benefits of physical exercise in postmenopausal women. Maturitas, 2016, 93, 83-88.	1.0	61
15	Swimming and cycling do not cause positive effects on bone mineral density: a systematic review. Revista Brasileira De Reumatologia, 2016, 56, 345-351.	0.7	22
16	Swimming and bone: Is low bone mass due to hypogravity alone or does other physical activity influence it?. Osteoporosis International, 2016, 27, 1785-1793.	1.3	18
17	The Effect of Swimming During Childhood and Adolescence on Bone Mineral Density: A Systematic Review and Meta-Analysis. Sports Medicine, 2016, 46, 365-379.	3.1	62
18	Muscle-bone interactions: From experimental models to the clinic? A critical update. Molecular and Cellular Endocrinology, 2016, 432, 14-36.	1.6	115

ITATION REDO

CITATION REPORT

#	Article	IF	CITATIONS
19	Bone Structure and Geometric Properties at the Radius and Tibia in Adolescent Endurance-Trained Cyclists. Clinical Journal of Sport Medicine, 2017, 27, 69-77.	0.9	8
20	Plyometric exercise and bone health in children and adolescents: a systematic review. World Journal of Pediatrics, 2017, 13, 112-121.	0.8	72
21	Reply to: Comment on "Effects of Elastic Resistance Band Exercise on Postural Balance, Estrogen, Bone Metabolism Index, and Muscle Strength of Perimenopausal Period Womenâ€: Journal of the American Geriatrics Society, 2017, 65, 881-882.	1.3	0
22	Swimming and peak bone mineral density: A systematic review and meta-analysis. Journal of Sports Sciences, 2018, 36, 1-13.	1.0	24
23	The Impact of Sport Participation on Bone Mass and Geometry in Male Adolescents. Medicine and Science in Sports and Exercise, 2017, 49, 317-326.	0.2	39
24	Longitudinal Adaptations of Bone Mass, Geometry, and Metabolism in Adolescent Male Athletes: The PRO-BONE Study. Journal of Bone and Mineral Research, 2017, 32, 2269-2277.	3.1	35
25	Radial and tibial bone indices in athletes participating in different endurance sports: a pQCT study ^{â€} . European Journal of Sport Science, 2017, 17, 231-240.	1.4	8
26	Bone metabolism markers and vitamin D in adolescent cyclists. Archives of Osteoporosis, 2018, 13, 11.	1.0	3
27	Male Flat Jockeys Do Not Display Deteriorations in Bone Density or Resting Metabolic Rate in Accordance With Race Riding Experience: Implications for RED-S. International Journal of Sport Nutrition and Exercise Metabolism, 2018, 28, 434-439.	1.0	13
28	Specific Modulation of Vertebral Marrow Adipose Tissue by Physical Activity. Journal of Bone and Mineral Research, 2018, 33, 651-657.	3.1	33
29	Reduced energy availability: implications for bone health in physically active populations. European Journal of Nutrition, 2018, 57, 847-859.	1.8	79
30	Resistance Training Is Associated With Higher Lumbar Spine and Hip Bone Mineral Density in Competitive Male Cyclists. Journal of Strength and Conditioning Research, 2018, 32, 274-279.	1.0	12
31	The effect of 12-month participation in osteogenic and non-osteogenic sports on bone development in adolescent male athletes. The PRO-BONE study. Journal of Science and Medicine in Sport, 2018, 21, 404-409.	0.6	34
32	A 9-Month Jumping Intervention to Improve Bone Geometry in Adolescent Male Athletes. Medicine and Science in Sports and Exercise, 2018, 50, 2544-2554.	0.2	20
33	The effect of a high-impact jumping intervention on bone mass, bone stiffness and fitness parameters in adolescent athletes. Archives of Osteoporosis, 2018, 13, 128.	1.0	34
34	Nutrition for the Young Athlete. Journal of Child Science, 2018, 08, e90-e98.	0.1	1
35	Relative Energy Deficiency in Sport in Male Athletes: A Commentary on Its Presentation Among Selected Groups of Male Athletes. International Journal of Sport Nutrition and Exercise Metabolism, 2018, 28, 364-374.	1.0	81
36	Geriatric Cyclists: Assessing Risks, Safety, and Benefits. Geriatric Orthopaedic Surgery and Rehabilitation, 2018, 9, 215145851774874.	0.6	15

#	Article	IF	CITATIONS
37	Postâ€exercise carbohydrate and energy availability induce independent effects on skeletal muscle cell signalling and bone turnover: implications for training adaptation. Journal of Physiology, 2019, 597, 4779-4796.	1.3	43
38	A cross-sectional and 6-year follow-up study of associations between leisure time physical activity and vertebral fracture in adults. BMC Musculoskeletal Disorders, 2019, 20, 435.	0.8	5
39	May Young Elite Cyclists Have Less Efficient Bone Metabolism?. Nutrients, 2019, 11, 1178.	1.7	3
40	Ketone ester supplementation blunts overreaching symptoms during endurance training overload. Journal of Physiology, 2019, 597, 3009-3027.	1.3	74
41	The muscle-bone unit in adolescent swimmers. Osteoporosis International, 2019, 30, 1079-1088.	1.3	9
42	The Bone Metabolic Response to Exercise and Nutrition. Exercise and Sport Sciences Reviews, 2020, 48, 49-58.	1.6	54
43	Impact of a 4-Week Intensified Endurance Training Intervention on Markers of Relative Energy Deficiency in Sport (RED-S) and Performance Among Well-Trained Male Cyclists. Frontiers in Endocrinology, 2020, 11, 512365.	1.5	18
44	Physical Activity-Dependent Regulation of Parathyroid Hormone and Calcium-Phosphorous Metabolism. International Journal of Molecular Sciences, 2020, 21, 5388.	1.8	62
45	Where are all the men? Low energy availability in male cyclists: A review. European Journal of Sport Science, 2021, 21, 1567-1578.	1.4	6
46	Interleukin-6 May Not Affect Bone Resorption Marker CTX or Bone Formation Marker P1NP in Humans. Journal of the Endocrine Society, 2020, 4, bvaa093.	0.1	7
47	The influence of acute exercise on bone biomarkers: protocol for a systematic review with meta-analysis. Systematic Reviews, 2020, 9, 291.	2.5	10
48	Effects of dynamic resistance exercise on bone mineral density in postmenopausal women: a systematic review and meta-analysis with special emphasis on exercise parameters. Osteoporosis International, 2020, 31, 1427-1444.	1.3	56
49	On- Versus Off-Bike Power Training in Professional Cyclists: A Randomized Controlled Trial. International Journal of Sports Physiology and Performance, 2021, 16, 674-681.	1.1	4
50	The Effect of Endurance and Endurance-Strength Training on Bone Mineral Density and Content in Abdominally Obese Postmenopausal Women: A Randomized Trial. Healthcare (Switzerland), 2021, 9, 1074.	1.0	2
51	Reduced Endurance Capacity and Suboptimal Energy Availability in Top-Level Female Cyclists. International Journal of Sports Physiology and Performance, 2021, 16, 1194-1203.	1.1	4
52	Professional cyclists have lower levels of bone markers than amateurs. Is there a risk of osteoporosis in cyclist?. Bone, 2021, 153, 116102.	1.4	4
53	Designing Exercise to Improve Bone Health Among Individuals With Cerebral Palsy. Pediatric Physical Therapy, 2021, 33, 50-56.	0.3	11
54	The importance of physical activity. , 0, , 224-239.		1

ARTICLE IF CITATIONS # Comparison of Bone Mineral Density between Professional Cyclists of Union Europe International and 55 0 Non-athletes., 0, , . EXERCISE AND PEAK BONE MASS: RECOMMENDATION FOR BUILDING HEALTHY BONES IN CHILDREN. Berkala Ilmiah Kedokteran Duta Wacana, 2016, 1, 137. 57 Lifestyle: Physical Activity., 2017, , 273-282. 0 Therapieverfahren., 2018,, 119-165. Plantar pressures in male adolescent soccer players and its associations with bone geometry and 59 0.4 0 strength. Journal of Sports Medicine and Physical Fitness, 2019, 59, 1716-1723. Mountain Bike Racing Stimulates Osteogenic Bone Signaling and Ingesting Carbohydrate-Protein Compared With Carbohydrate-Only Prevents Acute Recovery Bone Resorption Dominance. Journal of Strength and Conditioning Research, 2021, 35, 292-299. 1.0 SWIMMING AND BONE MINERAL DENSITY: A SPORT WITHOUT OSTEOGENIC STIMULATION?. Revista 61 0.1 1 Brasileira De Medicina Do Esporte, 2020, 26, 113-116. Effects of Gymnastics Activities on Bone Accrual during Growth: A Systematic Review. Journal of Sports Science and Medicine, 2018, 17, 245-258. 63 Exercise Effects on Bone Mineral Density in Men. Nutrients, 2021, 13, 4244. 1.7 12 Site-Specific Bone Differences and Energy Status in Male Competitive Runners and Road Cyclists. Journal of Clinical Densitometry, 2022, 25, 150-159. 64 Do we need to change the guideline values for determining low bone mineral density in athletes?. 65 1.2 11 Journal of Applied Physiology, 2022, 132, 1320-1322. Inter-methods agreement for the assessment of percentage of body fat between two laboratory methods in male adolescent cyclists. Nutricion Hospitalaria, 2013, 28, 1049-52. The Effect of Endurance and Endurance-Strength Training on Bone Health and Body Composition in 67 1.0 1 Centrally Obese Womenâ€"A Randomised Pilot Trial. Healthcare (Switzerland), 2022, 10, 821. The Bone Biomarker Response to an Acute Bout of Exercise: A Systematic Review with Meta-Analysis. Sports Medicine, 2022, 52, 2889-2908. 3.1 Effects of Weight-Bearing and Weight-Supporting Sports on Bone Mass in Males. Polish Journal of 69 0.2 1 Sport and Tourism, 2022, 29, 9-14. Bone Tissue Responsiveness To Mechanical Loadingâ€"Possible Long-Term Implications of Swimming on Bone Health and Bone Development. Current Osteoporosis Reports, 0, , . Low Bone Mineral Density and Associated Risk Factors in Elite Cyclists at Different Stages of a 71 0.2 4 Professional Cycling Career. Medicine and Science in Sports and Exercise, 2023, 55, 957-965. Bone turnover following high-impact exercise is not modulated by collagen supplementation in young 1.4 men: A randomized cross-over trial. Bone, 2023, 170, 116705.

CITATION REPORT

#	Article	IF	CITATIONS
73	Prevention and Management of Osteoporosis Through Exercise. , 2023, , 273-288.		0
74	The effect of aquatic exercise on bone mineral density in older adults. A systematic review and meta-analysis. Frontiers in Physiology, 0, 14, .	1.3	2

CITATION REPORT