Characterization of copper-resistant bacteria and bacteria copper-polluted agricultural soils of central Chile

BMC Microbiology 12, 193 DOI: 10.1186/1471-2180-12-193

Citation Report

#	Article	IF	CITATIONS
1	Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications. Applied Microbiology and Biotechnology, 2014, 98, 4781-4794.	1.7	264
2	Transcriptional response machineries of Bacillus subtilis conducive to plant growth promotion. Bioscience, Biotechnology and Biochemistry, 2014, 78, 1471-1484.	0.6	12
3	Bacterial diversity assessment in soil of an active Brazilian copper mine using high-throughput sequencing of 16S rDNA amplicons. Antonie Van Leeuwenhoek, 2014, 106, 879-890.	0.7	41
4	Community level physiological profiles of bacterial communities inhabiting uranium mining impacted sites. Ecotoxicology and Environmental Safety, 2014, 100, 226-232.	2.9	84
5	Microbial community analysis of anaerobic bio-corrosion in different ORP profiles. International Biodeterioration and Biodegradation, 2014, 95, 93-101.	1.9	38
7	Diversity and distribution of 16S rRNA and phenol monooxygenase genes in the rhizosphere and endophytic bacteria isolated from PAH-contaminated sites. Scientific Reports, 2015, 5, 12173.	1.6	18
8	Assessing the genetic diversity of Cu resistance in mine tailings through high-throughput recovery of full-length copA genes. Scientific Reports, 2015, 5, 13258.	1.6	27
9	Characterization of the core microbiota of the drainage and surrounding soil of a Brazilian copper mine. Genetics and Molecular Biology, 2015, 38, 484-489.	0.6	29
10	A study of microbial population dynamics associated with corrosion rates influenced by corrosion control materials. International Biodeterioration and Biodegradation, 2015, 102, 330-338.	1.9	6
11	Characterization and Structure Prediction of Partial Length Protein Sequences of pcoA, pcoR and chrB Genes from Heavy Metal Resistant Bacteria from the Klip River, South Africa. International Journal of Molecular Sciences, 2015, 16, 7352-7374.	1.8	45
12	Assessing environmental drivers of microbial communities in estuarine soils of the Aconcagua River in Central Chile. FEMS Microbiology Ecology, 2015, 91, fiv110.	1.3	14
13	Biocontrol and plant growthâ€promoting activity of rhizobacteria from <scp>C</scp> hinese fields with contaminated soils. Microbial Biotechnology, 2015, 8, 404-418.	2.0	83
14	Fate of metal resistance genes in arable soil after manure application in a microcosm study. Ecotoxicology and Environmental Safety, 2015, 113, 59-63.	2.9	18
15	Combined effect of temperature and copper pollution on soil bacterial community: Climate change and regional variation aspects. Ecotoxicology and Environmental Safety, 2015, 111, 153-159.	2.9	8
16	The Lysobacter capsici AZ78 Genome Has a Gene Pool Enabling it to Interact Successfully with Phytopathogenic Microorganisms and Environmental Factors. Frontiers in Microbiology, 2016, 7, 96.	1.5	36
17	Evaluation of Sulfadiazine Degradation in Three Newly Isolated Pure Bacterial Cultures. PLoS ONE, 2016, 11, e0165013.	1.1	52
18	Isolation of bacterial endophytes from Actinidia chinensis and preliminary studies on their possible use as antagonists against Pseudomonas syringae pv. actinidiae. Journal of Berry Research, 2016, 6, 395-406.	0.7	17
19	Toxicity effects on metal sequestration by microbially-induced carbonate precipitation. Journal of Hazardous Materials, 2016, 314, 237-248.	6.5	93

#	Article	IF	CITATIONS
20	Biosynthesis of copper nanoparticles using copper-resistant Bacillus cereus, a soil isolate. Process Biochemistry, 2016, 51, 1348-1356.	1.8	69
21	Microbial stress response to heavy metals in the environment. RSC Advances, 2016, 6, 109862-109877.	1.7	136
22	Cultivable endophytic bacteria from heavy metal(loid)-tolerant plants. Archives of Microbiology, 2016, 198, 941-956.	1.0	30
23	Unravelling the one arbon metabolism of the acetogen <scp><i>S</i></scp> <i>poromusa</i> strain <scp>A</scp> n4 by genome and proteome analysis. Environmental Microbiology, 2016, 18, 2843-2855.	1.8	25
24	Diversity and distribution of the endophytic bacterial community at different stages of Eucalyptus growth. Antonie Van Leeuwenhoek, 2016, 109, 755-771.	0.7	29
25	From Rare to Dominant: a Fine-Tuned Soil Bacterial Bloom during Petroleum Hydrocarbon Bioremediation. Applied and Environmental Microbiology, 2016, 82, 888-896.	1.4	119
26	Copper-tolerant rhizosphere bacteria—characterization and assessment of plant growth promoting factors. Environmental Science and Pollution Research, 2017, 24, 9723-9733.	2.7	25
27	Occurrence of copper-resistant Pseudomonas syringae pv. syringae strains isolated from rain and kiwifruit orchards also infected by P. s. pv. actinidiae. European Journal of Plant Pathology, 2017, 149, 953-968.	0.8	20
28	Copper Oxide Nanoparticles Induce Lysogenic Bacteriophage and Metal-Resistance Genes in <i>Pseudomonas aeruginosa</i> PAO1. ACS Applied Materials & Interfaces, 2017, 9, 22298-22307.	4.0	72
29	Transcriptomic analysis of nickel exposure in Sphingobium sp. ba1 cells using RNA-seq. Scientific Reports, 2017, 7, 8262.	1.6	11
30	An experimental study on the influence of water stagnation and temperature change on water quality in a full-scale domestic drinking water system. Water Research, 2017, 123, 761-772.	5.3	125
31	Rapid bacteria identification from environmental mining samples using MALDI-TOF MS analysis. Environmental Science and Pollution Research, 2017, 24, 3717-3726.	2.7	31
32	Metagenomic analysis of microbial community and function involved in cd-contaminated soil. BMC Microbiology, 2018, 18, 11.	1.3	148
33	Synthesis of extracellular gold nanoparticles using <i>Cupriavidus metallidurans</i> CH34 cells. IET Nanobiotechnology, 2018, 12, 40-46.	1.9	24
34	Shifts in the structure and function of the microbial community in response to metal pollution of fresh water sediments in Finland. Journal of Soils and Sediments, 2018, 18, 3324-3333.	1.5	10
35	Profiling of heavy metal(loid)-resistant bacterial community structure by metagenomic-DNA fingerprinting using PCR–DGGE for monitoring and bioremediation of contaminated environment. Energy, Ecology and Environment, 2018, 3, 102-109.	1.9	19
36	Response of ammonia oxidizing archaea and bacteria to decabromodiphenyl ether and copper contamination in river sediments. Chemosphere, 2018, 191, 858-867.	4.2	31
37	Essential Gene Clusters Identified in Stenotrophomonas MB339 for Multiple Metal/Antibiotic Resistance and Xenobiotic Degradation. Current Microbiology, 2018, 75, 1484-1492.	1.0	16

#	Article	IF	CITATIONS
38	The responses of a soil bacterial community under saline stress are associated with Cd availability in long-term wastewater-irrigated field soil. Chemosphere, 2019, 236, 124372.	4.2	41
39	Efficiency of Phage φ6 for Biocontrol of Pseudomonas syringae pv. syringae: An in Vitro Preliminary Study. Microorganisms, 2019, 7, 286.	1.6	64
40	Soil copper uptake by land snails: A semi-field experiment with juvenile Cantareus aspersus snails. Environmental Toxicology and Pharmacology, 2019, 72, 103243.	2.0	4
41	Genetic basis of copper-tolerance in Australian Pseudomonas syringae pv. tomato. Australasian Plant Pathology, 2019, 48, 425-437.	0.5	2
42	Responses of soil microbial communities and their network interactions to saline-alkaline stress in Cd-contaminated soils. Environmental Pollution, 2019, 252, 1609-1621.	3.7	135
43	Heavy metal resistance genes and plasmid-mediated quinolone resistance genes in Arthrobacter sp. isolated from Brazilian soils. Antonie Van Leeuwenhoek, 2019, 112, 1553-1558.	0.7	8
44	Metal Resistance in Bacteria from Contaminated Arctic Sediment is Driven by Metal Local Inputs. Archives of Environmental Contamination and Toxicology, 2019, 77, 291-307.	2.1	7
45	Plasmids associated with heavy metal resistance and herbicide degradation potential in bacterial isolates obtained from two Brazilian regions. Environmental Monitoring and Assessment, 2019, 191, 314.	1.3	6
46	Multiple Lines of Evidences Reveal Mechanisms Underpinning Mercury Resistance and Volatilization by Stenotrophomonas sp. MA5 Isolated from the Savannah River Site (SRS), USA. Cells, 2019, 8, 309.	1.8	19
47	Manipulation of the rhizosphere bacterial community by biofertilizers is associated with mitigation of cadmium phytotoxicity. Science of the Total Environment, 2019, 649, 413-421.	3.9	61
48	Responses of soil aggregates and bacterial communities to soil-Pb immobilization induced by biofertilizer. Chemosphere, 2019, 220, 828-836.	4.2	39
49	Streptomycin resistance in <i>Clavibacter michiganensis</i> subsp. <i>michiganensis</i> strains from Chile is related to an <i>rpsL</i> gene mutation. Plant Pathology, 2019, 68, 426-433.	1.2	11
50	Copper in Wood Preservatives Delayed Wood Decomposition and Shifted Soil Fungal but Not Bacterial Community Composition. Applied and Environmental Microbiology, 2019, 85, .	1.4	18
51	The responses of cadmium phytotoxicity in rice and the microbial community in contaminated paddy soils for the application of different long-term N fertilizers. Chemosphere, 2020, 238, 124700.	4.2	31
52	Self-defending additively manufactured bone implants bearing silver and copper nanoparticles. Journal of Materials Chemistry B, 2020, 8, 1589-1602.	2.9	65
53	Use of phage ϕ6 to inactivate Pseudomonas syringae pv. actinidiae in kiwifruit plants: in vitro and ex vivo experiments. Applied Microbiology and Biotechnology, 2020, 104, 1319-1330.	1.7	43
54	Removal of Heavy Metals Zinc, Lead, and Cadmium by Biomineralization of Urease-Producing Bacteria Isolated from Iranian Mine Calcareous Soils. Journal of Soil Science and Plant Nutrition, 2020, 20, 206-219.	1.7	99
55	Heavy metal-immobilizing bacteria combined with calcium polypeptides reduced the uptake of Cd in wheat and shifted the rhizosphere bacterial communities. Environmental Pollution, 2020, 267, 115432.	3.7	56

#	Article	IF	CITATIONS
56	Draft whole genome sequence for four highly copper resistant soil isolates Pseudomonas lactis strain UKR1, Pseudomonas panacis strain UKR2, and Pseudomonas veronii strains UKR3 and UKR4. Current Research in Microbial Sciences, 2020, 1, 44-52.	1.4	7
57	The possible mechanisms of copper resistance in the pathogen Pseudomonas syringae pathovars in stone fruit trees. Phytoparasitica, 2020, 48, 705-718.	0.6	3
58	Effects of Long-Term exposure to Heavy Metals upon Rhizosphere Bacteria from Baia Mare Area (MaramureÅŸ County, Romania). Geomicrobiology Journal, 2020, 37, 867-876.	1.0	1
59	Effects of Mercury II on Cupriavidus metallidurans Strain MSR33 during Mercury Bioremediation under Aerobic and Anaerobic Conditions. Processes, 2020, 8, 893.	1.3	13
60	Microbial mechanisms responsible for the variation of soil Cd availability under different pe+pH environments. Ecotoxicology and Environmental Safety, 2020, 206, 111057.	2.9	18
61	Bioremediation by Cupriavidus metallidurans Strain MSR33 of Mercury-Polluted Agricultural Soil in a Rotary Drum Bioreactor and Its Effects on Nitrogen Cycle Microorganisms. Microorganisms, 2020, 8, 1952.	1.6	22
62	Non-phytotoxic zinc based nanoparticle adjuvant for improving rainfastness and sustained release of streptomycin. Environmental Nanotechnology, Monitoring and Management, 2020, 14, 100355.	1.7	5
63	Dynamics Relationship of Phyllosphere and Rhizosphere Bacterial Communities During the Development of Bothriochloa ischaemum in Copper Tailings. Frontiers in Microbiology, 2020, 11, 869.	1.5	5
64	Bioremediation of Copper and Nickel from Freshwater Fish Cyprinus carpio Using Rhiozoplane Bacteria Isolated from Pistia stratiotes. Environmental Processes, 2020, 7, 443-461.	1.7	10
65	Antimicrobial surfaces for use on inhabited space craft: A review. Life Sciences in Space Research, 2020, 26, 125-131.	1.2	3
66	Combined Application of Bacteriophages and Carvacrol in the Control of Pseudomonas syringae pv. actinidiae Planktonic and Biofilm Forms. Microorganisms, 2020, 8, 837.	1.6	22
67	Biogenic copper nanoparticles synthesized by using a copper-resistant strain Shigella flexneri SNT22 reduced the translocation of cadmium from soil to wheat plants. Journal of Hazardous Materials, 2020, 398, 123175.	6.5	92
68	Ecofriendly Synthesis and Insecticidal Application of Copper Nanoparticles against the Storage Pest Tribolium castaneum. Nanomaterials, 2020, 10, 587.	1.9	122
69	Targeting Plasmids to Limit Acquisition and Transmission of Antimicrobial Resistance. Frontiers in Microbiology, 2020, 11, 761.	1.5	83
70	Effect of copper-resistant <i>Stenotrophomonas maltophilia</i> on maize (<i>Zea mays</i>) growth, physiological properties, and copper accumulation: potential for phytoremediation into biofortification. International Journal of Phytoremediation, 2020, 22, 662-668.	1.7	22
71	Complete genome analysis of Clutamicibacter creatinolyticus from mare abscess and comparative genomics provide insight of diversity and adaptation for Glutamicibacter. Gene, 2020, 741, 144566.	1.0	14
72	Relationship Between Heavy Metal Accumulation in Fish Muscle and Heavy Metal Resistance Genes in Bacteria Isolated from Fish. Biological Trace Element Research, 2021, 199, 1595-1603.	1.9	11
73	Synthetic biology approaches to copper remediation: bioleaching, accumulation and recycling. FEMS Microbiology Ecology, 2021, 97, .	1.3	11

	Ci	CITATION REPORT	
#	Article	IF	CITATIONS
74	Kiwifruit bacterial canker: an integrative view focused on biocontrol strategies. Planta, 2021, 253, 49.	. 1.6	32
75	Overview of the Role of Nitrogen in Copper Pollution and Bioremediation Mediated by Plant–Micro Interactions. Soil Biology, 2021, , 249-264.	be 0.6	1
76	Microbial Bioremediation of Heavy Metals. Advances in Environmental Engineering and Green Technologies Book Series, 2021, , 417-439.	0.3	3
77	Antimicrobial Properties of the Ag, Cu Nanoparticle System. Biology, 2021, 10, 137.	1.3	74
78	Inoculation with Rhizobacteria Enhanced Tolerance of Tomato (Solanum lycopersicum L.) Plants in Response to Cadmium Stress. Journal of Plant Growth Regulation, 2022, 41, 445-460.	2.8	26
79	Transcriptome Analysis on the Mechanism of Ethylicin Inhibiting Pseudomonas syringae pv. actinidiae on Kiwifruit. Microorganisms, 2021, 9, 724.	1.6	17
80	Microbial Diversity of Psychrotolerant Bacteria Isolated from Wild Flora of Andes Mountains and Patagonia of Chile towards the Selection of Plant Growth-Promoting Bacterial Consortia to Alleviate Cold Stress in Plants. Microorganisms, 2021, 9, 538.	1.6	30
81	Bacterial community tolerance to Cu in soils with geochemical baseline concentrations (GBCs) of heavy metals: Importance for pollution induced community tolerance (PICT) determinations using the leucine incorporation method. Soil Biology and Biochemistry, 2021, 155, 108157.	2 4.2	8
82	Biodiversity, and biotechnological contribution of beneficial soil microbiomes for nutrient cycling, plant growth improvement and nutrient uptake. Biocatalysis and Agricultural Biotechnology, 2021, 3 102009.	3, 1.5	57
83	Effects of heavy metals on bacterial community structure in the rhizosphere of <i>Salsola collina</i> and bulk soil in the Jinchuan mining area. Geomicrobiology Journal, 2021, 38, 620-630.	1.0	16
84	Co-occurrence and patterns of phosphate solubilizing, salt and metal tolerant and antibiotic-resistant bacteria in diverse soils. 3 Biotech, 2021, 11, 356.	1.1	4
85	Magnesium Oxide Nanomaterial, an Alternative for Commercial Copper Bactericides: Field-Scale Tomato Bacterial Spot Disease Management and Total and Bioavailable Metal Accumulation in Soil. Environmental Science & Technology, 2021, 55, 13561-13570.	4.6	19
86	Testing the Capacity of Staphylococcus equorum for Calcium and Copper Removal through MICP Process. Minerals (Basel, Switzerland), 2021, 11, 905.	0.8	13
87	Salt stress-induced changes in microbial community structures and metabolic processes result in in increased soil cadmium availability. Science of the Total Environment, 2021, 782, 147125.	3.9	21
88	lsolation and identification of arsenic resistant bacteria: a tool for bioremediation of arsenic toxicity. International Journal of Environmental Science and Technology, 2022, 19, 9883-9900.	1.8	9
89	Trace metals and animal health: Interplay of the gut microbiota with iron, manganese, zinc, and copper. Animal Nutrition, 2021, 7, 750-761.	2.1	83
90	Soil microbial community responses to the application of a combined amendment in a historical zinc smelting area. Environmental Science and Pollution Research, 2022, 29, 13056-13070.	2.7	4
91	Soil bacteria, genes, and metabolites stimulated during sulfur cycling and cadmium mobilization under sodium sulfate stress. Environmental Research, 2021, 201, 111599.	3.7	29

#	Article	IF	CITATIONS
92	The role of available phosphorous in vanadate decontamination by soil indigenous microbial consortia. Environmental Pollution, 2021, 289, 117839.	3.7	18
93	Response of antibiotic resistance to the co-exposure of sulfamethoxazole and copper during swine manure composting. Science of the Total Environment, 2022, 805, 150086.	3.9	28
94	Effects of environmental factors on soil bacterial community structure and diversity in different contaminated districts of Southwest China mine tailings. Science of the Total Environment, 2022, 802, 149899.	3.9	69
95	Properties, mechanism and applications of diamond as an antibacterial material. Functional Diamond, 2021, 1, 1-28.	1.7	18
96	Advancement of Omics: Prospects for Bioremediation of Contaminated Soils. , 2020, , 113-142.		17
99	Effects of cadmium perturbation on the microbial community structure and heavy metal resistome of a tropical agricultural soil. Bioresources and Bioprocessing, 2020, 7, .	2.0	41
100	The potential capability of bacteria and yeast strains isolated from Rungkut Industrial Sewage in Indonesia as a bioaccumulators and biosorbents of copper. Biodiversitas, 2017, 18, 971-977.	0.2	10
101	Biological links between nanoparticle biosynthesis and stress responses in bacteria. Mexican Journal of Biotechnology, 2018, 3, 44-69.	0.2	1
102	Manganese-II oxidation and Copper-II resistance in endospore forming Firmicutes isolated from uncontaminated environmental sites. AIMS Environmental Science, 2016, 3, 220-238.	0.7	8
103	Microbial Response against Metal Toxicity. Advances in Environmental Engineering and Green Technologies Book Series, 2016, , 75-96.	0.3	5
104	Effects of Heavy Metal Pollution of Apple Orchard Surface Soils Associated with Past Use of Metal-Based Pesticides on Soil Microbial Biomass and Microbial Communities. Journal of Environmental Protection, 2013, 04, 27-36.	0.3	10
105	The resistance of chernozem soil microorganisms to soluble copper compounds. Faktori Eksperimental Noi Evolucii Organizmiv, 0, 23, 273-278.	0.0	1
106	Heavy Metal Resistant Bacteria: A Potential Candidate for Bioremediation. Pakistan Journal of Chemistry, 2017, 7, 12.	0.1	0
107	Deciphering the Key Factors for Heavy Metal Resistance in Gram-Negative Bacteria. , 2020, , 101-116.		3
108	Metagenomics in Agriculture: State-of-the-Art. , 2020, , 167-187.		3
109	Copper Tolerance Mechanism of the Novel Marine Multi-Stress Tolerant Yeast Meyerozyma guilliermondii CXDK6 as Revealed by Integrated Omics Analysis. Frontiers in Microbiology, 2021, 12, 771878.	1.5	4
110	Isolation of the Novel Phage PHB09 and Its Potential Use against the Plant Pathogen Pseudomonas syringae pv. actinidiae. Viruses, 2021, 13, 2275.	1.5	11
111	Diversity and Application of Heavy-Metal Resistant Microbes. , 2021, , 153-174.		1

#	Article	IF	CITATIONS
112	Inhibition of cadmium uptake by wheat with urease-producing bacteria combined with sheep manure under field conditions. Chemosphere, 2022, 293, 133534.	4.2	13
113	Responses of Bacterial Taxonomical Diversity Indicators to Pollutant Loadings in Experimental Wetland Microcosms. Water (Switzerland), 2022, 14, 251.	1.2	5
114	A Review on the Resistance and Accumulation of Heavy Metals by Different Microbial Strains. , 0, , .		3
115	Inorganic nanomaterials usable in plant protection strategies. , 2022, , 211-231.		1
116	Study on the Bacterial Communities of the Biofilms on Titanium, Aluminum, and Copper Alloys at 5,772 m Undersea in Yap Trench. Frontiers in Microbiology, 2022, 13, 831984.	1.5	2
117	Challenges in Reducing Phytotoxicity of Metals in Soils Affected by Non-Ferrous Smelter Operations. Geography, Environment, Sustainability, 2022, 15, 112-121.	0.6	1
118	Microbial responses are unreliable indicators of copper ecotoxicity in soils contaminated by mining activities. Chemosphere, 2022, 300, 134517.	4.2	6
119	Wood vinegar facilitated growth and Cd/Zn phytoextraction of Sedum alfredii Hance by improving rhizosphere chemical properties and regulating bacterial community. Environmental Pollution, 2022, 305, 119266.	3.7	11
120	Drying and rewetting induce changes in biofilm characteristics and the subsequent release of metal ions. Journal of Hazardous Materials, 2022, 433, 128832.	6.5	4
121	Prospects for the creation of antimicrobial preparations based on copper and copper oxides nanoparticles. Acta Biomedica Scientifica, 2021, 6, 37-50.	0.1	1
123	Effect of Biochar on Metal Distribution and Microbiome Dynamic of a Phytostabilized Metalloid-Contaminated Soil Following Freeze–Thaw Cycles. Materials, 2022, 15, 3801.	1.3	5
124	Comparative insights into influences of co-contamination by rare-earth elements and heavy metals on soil bacterial and fungal communities. Journal of Soils and Sediments, 2022, 22, 2499-2515.	1.5	11
125	Antimicrobial Multiresistant Phenotypes of Genetically Diverse Pseudomonas spp. Isolates Associated with Tomato Plants in Chilean Orchards. Horticulturae, 2022, 8, 750.	1.2	1
126	Complete Genome Sequencing of Polar Arthrobacter sp. PAMC25284, Copper Tolerance Potential Unraveled with Genomic Analysis. International Journal of Microbiology, 2022, 2022, 1-12.	0.9	3
127	Influence of cadmium and microplastics on physiological responses, ultrastructure and rhizosphere microbial community of duckweed. Ecotoxicology and Environmental Safety, 2022, 243, 114011.	2.9	18
128	Insight on bacteria communities in outdoor bronze and marble artefacts in a changing environment. Science of the Total Environment, 2022, 850, 157804.	3.9	3
129	New approach strategy for heavy metals immobilization and microbiome structure long-term industrially contaminated soils. Chemosphere, 2022, 308, 136332.	4.2	2
130	Antibiotic and metal resistance of Stenotrophomonas maltophilia isolates from Eboling permafrost of the Tibetan Plateau. Environmental Science and Pollution Research, 2023, 30, 11798-11810.	2.7	3

#	Article	IF	CITATIONS
131	The Role of Cellulose in Microbial Diversity Changes in the Soil Contaminated with Cadmium. Sustainability, 2022, 14, 14242.	1.6	3
132	Immune Mechanism of Ethylicin-Induced Resistance to <i>Xanthomonas oryzae</i> pv. oryzae in Rice. Journal of Agricultural and Food Chemistry, 2023, 71, 288-299.	2.4	3
133	Bioremoval of copper by filamentous fungi isolated from contaminated soils of PuchuncavÃ-Ventanas Central Chile. Environmental Geochemistry and Health, 2023, 45, 4275-4293.	1.8	5
134	Comparative genomics reveals the acquisition of mobile genetic elements by the plant growth-promoting Pantoea eucrina OB49 in polluted environments. Genomics, 2023, 115, 110579.	1.3	2
135	Particelle nanostrutturate di idrossiapatite biomimetica come sistema di delivery di micro e macro elementi nelle colture biologiche. BIO Web of Conferences, 2023, 56, 01003.	0.1	0
136	Response of Bacterial Communities to Heavy Metal Contamination in an Abandoned Chromate Factory. Geomicrobiology Journal, 2023, 40, 462-472.	1.0	2