CITATION REPORT List of articles citing

DOI: 10.1021/ja307789s
Journal of the American Chemical Society, 2012, 134, 17396-9.

Source: https://exaly.com/paper-pdf/53674371/citation-report.pdf

Version: 2024-04-20

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper IF	Citations
1712	Large Perovskite Grain Growth in Low-Temperature Solution-Processed Planar p-i-n Solar Cells by Sodium Addition.	
1711	Enhanced TiO2/MAPbI3 Electronic Coupling by Interface Modification with PbI2.	
1710	A one-step low temperature processing route for organolead halide perovskite solar cells. 2013 , 49, 7893-5	197
1709	A new terpyridine cobalt complex redox shuttle for dye-sensitized solar cells. 2013, 406, 106-112	18
1708	Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. 2013 , 52, 9019-38	3742
1707	Observing Charge Dynamics in Surface Reactions by Time-Resolved Stark Effects. 2013 , 117, 9171-9177	13
1706	Sequential deposition as a route to high-performance perovskite-sensitized solar cells. 2013 , 499, 316-9	7488
1705	Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell. 2013 , 4, 2423-2429	1104
1704	Post modification of perovskite sensitized solar cells by aluminum oxide for enhanced performance. 2013 , 1, 11735	88
1703	Mechanism of carrier accumulation in perovskite thin-absorber solar cells. 2013 , 4, 2242	702
1702	In Situ Loading Transition Metal Oxide Clusters on TiO2 Nanosheets As Co-catalysts for Exceptional High Photoactivity. 2013 , 3, 2052-2061	135
1701	Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles. 2013 , 13, 4505-10	447
1700	Importance of SpinDrbit Coupling in Hybrid Organic/Inorganic Perovskites for Photovoltaic Applications. 2013 , 4, 2999-3005	853
1699	Charge Transport and Recombination in Perovskite (CH3NH3)PbI3 Sensitized TiO2 Solar Cells. 2013 , 4, 2880-2884	255
1698	Depleted hole conductor-free lead halide iodide heterojunction solar cells. 2013 , 6, 3249	626
1697	Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells. 2013 , 5, 11686-91	253
1696	Doping control via molecularly engineered surface ligand coordination. 2013 , 25, 5586-92	55

(2013-2013)

1695	Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. 2013 , 49, 11089-91	481
1694	Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells. 2013 , 4, 3623-3630	2120
1693	A perspective of mesoscopic solar cells based on metal chalcogenide quantum dots and organometal-halide perovskites. 2013 , 5, e68-e68	129
1692	Small Photocarrier Effective Masses Featuring Ambipolar Transport in Methylammonium Lead Iodide Perovskite: A Density Functional Analysis. 2013 , 4, 4213-6	543
1691	Preparation and performance of organicIhorganic halide perovskites. 2013 , 24, 4862-4867	7
1690	Overcoming ultraviolet light instability of sensitized TiOIwith meso-superstructured organometal tri-halide perovskite solar cells. 2013 , 4, 2885	1367
1689	Full printable processed mesoscopic CHNHPbI/TiOIheterojunction solar cells with carbon counter electrode. 2013 , 3, 3132	574
1688	Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. 2013 , 342, 344-7	5214
1687	Recent developments in sensitizers for mesoporous sensitized solar cells. 2013 , 6, 373-385	5
1686	Photoinduced processes in lead iodide perovskite solid-state solar cells. 2013,	11
1685	Enhanced Performance in Perovskite Organic Lead Iodide Heterojunction Solar Cells with Metal-Insulator-Semiconductor Back Contact. 2013 , 30, 128402	26
1684	Recent trends in mesoscopic solar cells based on molecular and nanopigment light harvesters. 2013 , 16, 11-18	108
1683	Effect of Different Hole Transport Materials on Recombination in CH3NH3PbI3 Perovskite-Sensitized Mesoscopic Solar Cells. 2013 , 4, 1532-6	425
1682	Photoinduced polymerization: An innovative, powerful and environmentally friendly technique for the preparation of polymer electrolytes for dye-sensitized solar cells. 2013 , 16, 1-21	85
1681	High Open-Circuit Voltage Solar Cells Based on Organic-Inorganic Lead Bromide Perovskite. 2013 , 4, 897-902	438
1680	Low-temperature processed meso-superstructured to thin-film perovskite solar cells. 2013 , 6, 1739	1380
1679	Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. 2013 , 13, 1764-9	3520
1678	Efficient inorganic Brganic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. 2013 , 7, 486-491	2185

1677	First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications. 2013 , 117, 13902-13913	767
1676	High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. 2013 , 13, 3124-8	545
1675	CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. 2013, 25, 3727-32	1189
1674	All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. 2013 , 5, 3245-8	375
1673	Facile synthesis, enhanced field emission and photocatalytic activities of Cu2OIIiO2IInO ternary hetero-nanostructures. 2013 , 46, 175303	18
1672	Semiconductor Nanocrystals as Light Harvesters in Solar Cells. 2013 , 6, 445-459	60
1671	High performance hybrid solar cells sensitized by organolead halide perovskites. 2013 , 6, 1480	491
1670	Perovskite enhanced solid state ZnO solar cells. 2013 , 476, 012008	4
1669	Product-to-parent reversion of trenbolone: unrecognized risks for endocrine disruption. 2013 , 342, 347-51	62
1668	Recent advances in small molecular, non-polymeric organic hole transporting materials for solid-state DSSC. 2013 , 4, 40402	20
1667	Mesoscopic photosystems for solar light harvesting and conversion: facile and reversible transformation of metal-halide perovskites. 2014 , 176, 251-69	32
1666	Rutherford Backscattering Spectroscopy of Mass Transport by Transformation of PbI2 into CH3NH3PbI3 within np-TiO2. 2014 , 1,	1
1665	THE PAST AND PRESENT. 2014 , 1-39	
1664	DYE- AND PEROVSKITE-SENSITISED MESOSCOPIC SOLAR CELLS. 2014 , 413-452	1
1663	CHAPTER 7:Perovskite Solar Cells. 242-257	3
1662	CHAPTER 6:Chemistry of Sensitizers for Dye-sensitized Solar Cells. 186-241	2
1661	Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm. 2014 , 2, 081504	91
1660	A Model for the Operation of Perovskite Based Hybrid Solar Cells: Formulation, Analysis, and Comparison to Experiment. 2014 , 74, 1935-1966	45

1659	Integrating Perovskite Solar Cells into a Flexible Fiber. 2014 , 126, 10593-10596	16
1658	Perovskite-based low-cost and high-efficiency hybrid halide solar cells. 2014 , 2, 111	72
1657	Close-Packed Colloidal SiO2as a Nanoreactor: Generalized Synthesis of Metal Oxide Mesoporous Single Crystals and Mesocrystals. 2014 , 26, 5700-5709	36
1656	Moisture assisted perovskite film growth for high performance solar cells. 2014 , 105, 183902	598
1655	Reproducible One-Step Fabrication of Compact MAPbI3\(\text{\text{UClx}}\) Thin Films Derived from Mixed-Lead-Halide Precursors. 2014 , 26, 7145-7150	76
1654	Parameters influencing the deposition of methylammonium lead halide iodide in hole conductor free perovskite-based solar cells. 2014 , 2, 081502	91
1653	The influence of blocking layer on the photovoltaic performance of organometal halide perovskite solar cell. 2014 ,	1
1652	Comparative studies on rigid linker-based organic dyes: structure-property relationships and photovoltaic performance. 2014 , 7, 3396-406	6
1651	Impact of the organic halide salt on final perovskite composition for photovoltaic applications. 2014 , 2, 081802	47
1650	Efficient perovskite solar cells based on low-temperature solution-processed (CH3NH3)PbI3 perovskite/CuInS2 planar heterojunctions. 2014 , 9, 457	15
1649	Bifunctional Moth-Eye Nanopatterned Dye-Sensitized Solar Cells: Light-Harvesting and Self-Cleaning Effects. 2014 , 4, 1300632	66
1648	Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells. 2014 , 24, 151-157	1639
1647	Heterojunctions of TiO2 nanoparticle film and c-Si with different Fermi level positions. 2014 , 116, 1281-1285	4
1646	A maskless synthesis of TiO2-nanofiber-based hierarchical structures for solid-state dye-sensitized solar cells with improved performance. 2014 , 9, 14	22
1645	Nickel oxide electrode interlayer in CH3 NH3 PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells. 2014 , 26, 4107-13	588
1644	Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells. 2014 , 6, 6679-83	255
1643	Simple way to engineer metal-semiconductor interface for enhanced performance of perovskite organic lead iodide solar cells. 2014 , 6, 5651-6	88
1642	Hybrid perovskites for photovoltaics: Insights from first principles. 2014 , 89,	168

1641	Organometal halide perovskites for transformative photovoltaics. <i>Journal of the American Chemical Society</i> , 2014 , 136, 3713-4	37
1640	The Importance of Perovskite Pore Filling in Organometal Mixed Halide Sensitized TiO2-Based Solar Cells. 2014 , 5, 1096-102	200
1639	Perovskite as light harvester: a game changer in photovoltaics. 2014 , 53, 2812-24	783
1638	Investigating charge dynamics in halide perovskite-sensitized mesostructured solar cells. 2014 , 7, 1889-1894	137
1637	Effect of Annealing Temperature on Film Morphology of OrganicIhorganic Hybrid Pervoskite Solid-State Solar Cells. 2014 , 24, 3250-3258	773
1636	Carbon-double-bond-free printed solar cells from TiO//CHNHPbI//CuSCN/Au: structural control and photoaging effects. 2014 , 15, 1194-200	132
1635	High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. 2014 , 5, 1421-6	1292
1634	Current progress and future perspectives for organic/inorganic perovskite solar cells. 2014 , 17, 16-23	293
1633	Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach. 2014 , 26, 2041-6	581
1632	Novel meso-superstructured solar cells with a high efficiency exceeding 12%. 2014 , 26, 2102-4	27
1631	Sol-gel titanium dioxide blocking layers for dye-sensitized solar cells: electrochemical characterization. 2014 , 15, 1056-61	34
1630	A simple 3,4-ethylenedioxythiophene based hole-transporting material for perovskite solar cells. 2014 , 53, 4085-8	345
1629	Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. 2014 , 26, 3748-54	1242
1628	New light on an old story: perovskites go solar. 2014 , 53, 635-7	151
1627	Band-gap tuning of lead halide perovskites using a sequential deposition process. 2014 , 2, 9221-9225	398
1626	Highly ordered mesoporous carbon for mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cell. 2014 , 2, 8607	80
1625	Lead-free solid-state organic[horganic halide perovskite solar cells. 2014 , 8, 489-494	1966
1624	Organohalide lead perovskites for photovoltaic applications. 2014 , 7, 2448-2463	1049

1623	Electrical characterization of TiO2/CH3NH3PbI3 heterojunction solar cells. 2014 , 2, 10244-10249		70
1622	Rutile TiO2-based perovskite solar cells. 2014 , 2, 9251		166
1621	Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells. 2014 , 16, 10512-8		232
1620	Titanium dioxide nanomaterials for photovoltaic applications. 2014 , 114, 10095-130		567
1619	Modified two-step deposition method for high-efficiency TiO2/CH3NH3PbI3 heterojunction solar cells. 2014 , 6, 9711-8		153
1618	Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency. 2014 , 14, 2591-6		352
1617	Synthesis of OrganicIhorganic Lead Halide Perovskite Nanoplatelets: Towards High-Performance Perovskite Solar Cells and Optoelectronic Devices. 2014 , 2, 838-844		316
1616	Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. <i>Journal of the American Chemical Society</i> , 2014 , 136, 8094-9	16.4	1010
1615	Hybrid Lead Halide Iodide and Lead Halide Bromide in Efficient Hole Conductor Free Perovskite Solar Cell. 2014 , 118, 17160-17165		193
1614	Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. 2014 , 7, 80-85		381
1613	Advancements in perovskite solar cells: photophysics behind the photovoltaics. 2014 , 7, 2518-2534		605
1612	Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. 2014 , 5, 3834		670
1611	Unique properties of halide perovskites as possible origins of the superior solar cell performance. 2014 , 26, 4653-8		1321
1610	Solution Deposition-Conversion for Planar Heterojunction Mixed Halide Perovskite Solar Cells. 2014 , 4, 1400355		305
1609	Efficient carrier transport in halide perovskites: theoretical perspectives. 2014 , 2, 9091-9098		360
1608	Perovskite solar cells employing organic charge-transport layers. 2014 , 8, 128-132		1196
1607	Planar heterojunction perovskite solar cells via vapor-assisted solution process. <i>Journal of the American Chemical Society</i> , 2014 , 136, 622-5	16.4	1921
1606	Enhanced electron transport in Nb-doped TiO2 nanoparticles via pressure-induced phase transitions. <i>Journal of the American Chemical Society</i> , 2014 , 136, 419-26	16.4	139

1605	Structure of methylammonium lead iodide within mesoporous titanium dioxide: active material in high-performance perovskite solar cells. 2014 , 14, 127-33	258
1604	The Raman Spectrum of the CH3NH3PbI3 Hybrid Perovskite: Interplay of Theory and Experiment. 2014 , 5, 279-84	476
1603	High efficiency perovskite solar cells: from complex nanostructure to planar heterojunction. 2014 , 2, 5994-6003	237
1602	The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. 2014 , 7, 399-407	838
1601	Flexible high efficiency perovskite solar cells. 2014 , 7, 994	357
1600	Yttrium-substituted nanocrystalline TiOlphotoanodes for perovskite based heterojunction solar cells. 2014 , 6, 1508-14	151
1599	High efficiency electrospun TiOlhanofiber based hybrid organic-inorganic perovskite solar cell. 2014 , 6, 1675-9	163
1598	Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. 2014 , 8, 250-255	567
1597	Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. 2014 , 8, 362-73	617
1596	Solid-State Mesostructured Perovskite CH3NH3PbI3 Solar Cells: Charge Transport, Recombination, and Diffusion Length. 2014 , 5, 490-4	244
1595	NH2CH?NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells. 2014 , 26, 1485-1491	447
1594	Electronic Structure of TiO2/CH3NH3PbI3 Perovskite Solar Cell Interfaces. 2014 , 5, 648-53	384
1593	Organolead Halide Perovskite: New Horizons in Solar Cell Research. 2014 , 118, 5615-5625	549
1592	A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organicIhorganic hybrid solar cells based on a perovskite. 2014 , 7, 1454	337
1591	Role of the Selective Contacts in the Performance of Lead Halide Perovskite Solar Cells. 2014 , 5, 680-5	527
1590	High voltage and efficient bilayer heterojunction solar cells based on an organic-inorganic hybrid perovskite absorber with a low-cost flexible substrate. 2014 , 16, 6033-40	79
1589	Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). 2014 , 14, 1000-4	505
1588	Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. 2014 , 8, 133-138	2165

1587	Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. 2014 , 8, 1674-80	1216
1586	Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. <i>Journal of the American Chemical Society</i> , 2014 , 136, 850-3	937
1585	General working principles of CH3NH3PbX3 perovskite solar cells. 2014 , 14, 888-93	696
1584	Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. 2014 , 7, 982	2706
1583	Optical bleaching of perovskite (CH3NH3)PbI3 through room-temperature phase transformation induced by ammonia. 2014 , 50, 1605-7	141
1582	Electrochemical Characterization of TiO2 Blocking Layers for Dye-Sensitized Solar Cells. 2014 , 118, 16408-164	11£ 81
1581	Organometal halide perovskites as useful materials in sensitized solar cells. 2014 , 43, 5247-51	57
1580	Fabrication of Flexible Plastic Solid-State Dye-Sensitized Solar Cells Using Low Temperature Techniques. 2014 , 118, 16352-16357	15
1579	First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites. 2014 , 378, 290-293	174
1578	Perovskite processing for photovoltaics: a spectro-thermal evaluation. 2014 , 2, 19338-19346	86
1577	Enhanced Hole Extraction in Perovskite Solar Cells Through Carbon Nanotubes. 2014 , 5, 4207-12	126
1576	Modeling of Lead Halide Perovskites for Photovoltaic Applications. 2014 , 118, 28344-28349	115
1575	Nickel-Cathoded Perovskite Solar Cells. 2014 , 118, 25878-25883	50
1574	Controllable perovskite crystallization at a gas-solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%. <i>Journal of the American Chemical Society</i> , 2014 , 16.4 136, 16411-9	340
1573	Perovskite Oxide SrTiO3 as an Efficient Electron Transporter for Hybrid Perovskite Solar Cells. 2014 , 118, 28494-28501	209
1572	Research Update: Physical and electrical characteristics of lead halide perovskites for solar cell applications. 2014 , 2, 040701	114
1571	Reduced ultraviolet light induced degradation and enhanced light harvesting using YVO4:Eu3+down-shifting nano-phosphor layer in organometal halide perovskite solar cells. 2014 , 105, 033904	123
1570	Compact layer free perovskite solar cells with 13.5% efficiency. <i>Journal of the American Chemical Society</i> , 2014 , 136, 17116-22	361

1569	Efficient perovskite solar cells with 13.63 % efficiency based on planar triphenylamine hole conductors. 2014 , 20, 10894-9	122
1568	Defect density and dielectric constant in perovskite solar cells. 2014 , 105, 153502	164
1567	Electrochemical Doping of Compact TiO2 Thin Layers. 2014 , 118, 25970-25977	23
1566	Surface Effects and Adsorption of Methoxy Anchors on Hybrid Lead Iodide Perovskites: Insights for Spiro-MeOTAD Attachment. 2014 , 118, 26947-26954	95
1565	Fabrication and encapsulation of perovskites sensitized solid state solar cells. 2014,	5
1564	Enhanced photocatalytic performance of sensitized mesoporous TiO2 nanoparticles by carbon mesostructures. 2014 , 4, 3332-3339	19
1563	Power from the sun: Perovskite solar cells. 2014 ,	4
1562	An all-carbon counter electrode for highly efficient hole-conductor-free organo-metal perovskite solar cells. 2014 , 4, 52825-52830	158
1561	Femtosecond Excitonic Relaxation Dynamics of Perovskite on Mesoporous Films of Al2O3 and NiO Nanoparticles. 2014 , 126, 9493-9496	29
1560	Surface Photovoltage Spectroscopy Study of Organo-Lead Perovskite Solar Cells. 2014 , 5, 2408-13	75
1559	Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites. 2014 , 7, 3326-3333	234
1558	Influence of moisture on the preparation, crystal structure, and photophysical properties of organohalide perovskites. 2014 , 50, 15819-22	135
1557	The photophysics of perovskite solar cells. 2014 ,	
1556	Graphene oxide as dual functional interface modifier for improving wettability and retarding recombination in hybrid perovskite solar cells. 2014 , 2, 20105-20111	165
1555	MODULATING CH3NH3Pbi3 PEROVSKITE CRYSTALLIZATION BEHAVIOR THROUGH PRECURSOR CONCENTRATION. 2014 , 09, 1440003	8
1554	Improved External Quantum Efficiency from Solution-Processed (CH3NH3)PbI3 Perovskite/PC71BM Planar Heterojunction for High Efficiency Hybrid Solar Cells. 2014 , 118, 25899-25905	37
1553	Optimized Organometal Halide Perovskite Planar Hybrid Solar Cells via Control of Solvent Evaporation Rate. 2014 , 118, 26513-26520	57
1552	Interplay of Orientational Order and Electronic Structure in Methylammonium Lead Iodide: Implications for Solar Cell Operation. 2014 , 26, 6557-6569	252

1551	High voltage in hole conductor free organo metal halide perovskite solar cells. 2014 , 2, 20776-20781	54
1550	Study of the promotion mechanism of the photocatalytic performance and stability of the Ag@AgCl/g-C3N4 composite under visible light. 2014 , 4, 38124-38132	28
1549	ORGANOMETAL HALIDE PEROVSKITE PHOTOVOLTAICS: A DIAMOND IN THE ROUGH. 2014 , 09, 1440002	23
1548	First-Principles Investigation of the TiO2/Organohalide Perovskites Interface: The Role of Interfacial Chlorine. 2014 , 5, 2619-25	228
1547	Shape-controlled synthesis of organolead halide perovskite nanocrystals and their tunable optical absorption. 2014 , 1, 015034	35
1546	Photocurrent induced by conducting channels of hole transporting layer to adjacent photoactive perovskite sensitized TiO2 thin film: solar cell paradigm. 2014 , 30, 12786-94	32
1545	Recent developments in dye-sensitized solar cells. 2014 , 15, 3902-27	73
1544	Controlling the surface nanostructure of ZnO and Al-doped ZnO thin films using electrostatic spraying for their application in 12% efficient perovskite solar cells. 2014 , 6, 9127-38	136
1543	A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. 2014 , 53, 9898-903	1104
1542	Energy level alignment in TiO2/metal sulfide/polymer interfaces for solar cell applications. 2014 , 16, 17099-107	11
1541	A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. 2014 , 53, 11232-5	1217
1540	Femtosecond excitonic relaxation dynamics of perovskite on mesoporous films of AlDland NiO nanoparticles. 2014 , 53, 9339-42	54
1539	Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films. 2014 , 16, 22476-81	360
1538	Quantum Dot-Sensitized Solar Cells. 2014 , 89-136	2
1537	First-Principles Hybrid Functional Study of the OrganicIhorganic Perovskites CH3NH3SnBr3 and CH3NH3SnI3. 2014 , 118, 24383-24388	104
1536	Solid-state D102 dye sensitized/poly(3-hexylthiophene) hybrid solar cells on flexible Ti substrate. 2014 , 72, 22-28	3
1535	Liquid phase deposition of TiO2 nanolayer affords CH3NH3PbI3/nanocarbon solar cells with high open-circuit voltage. 2014 , 176, 271-86	47
1534	Perowskit als Lichtabsorptionsmaterial: ein Durchbruch in der Photovoltaik. 2014 , 126, 2854-2867	85

1533	An Above-Room-Temperature Ferroelectric OrganolMetal Halide Perovskite: (3-Pyrrolinium)(CdCl3). 2014 , 126, 11424-11429	42
1532	A Layered Hybrid Perovskite Solar-Cell Absorber with Enhanced Moisture Stability. 2014 , 126, 11414-11417	577
1531	High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering. 2014 , 7, 1749-1758	180
1530	The light and shade of perovskite solar cells. 2014 , 13, 838-42	1600
1529	Influence of compact TiO2 layer on the photovoltaic characteristics of the organometal halide perovskite-based solar cells. 2014 , 27, 569-576	25
1528	Termination Dependence of Tetragonal CH3NH3PbI3 Surfaces for Perovskite Solar Cells. 2014 , 5, 2903-9	272
1527	Binary-metal perovskites toward high-performance planar-heterojunction hybrid solar cells. 2014 , 26, 6454-60	259
1526	Band filling with free charge carriers in organometal halide perovskites. 2014 , 8, 737-743	772
1525	Extremely Slow Photoconductivity Response of CH3NH3PbI3 Perovskites Suggesting Structural Changes under Working Conditions. 2014 , 5, 2662-9	277
1524	Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process. 2014 , 2, 15897-15903	288
1523	Improved performance of CdS/CdSe quantum dots sensitized solar cell by incorporation of ZnO nanoparticles/reduced graphene oxide nanocomposite as photoelectrode. 2014 , 271, 195-202	27
1522	Multifunctional perovskite capping layers in hybrid solar cells. 2014 , 2, 14973	55
1521	Enabling silicon for solar-fuel production. 2014 , 114, 8662-719	274
1520	Integrating perovskite solar cells into a flexible fiber. 2014 , 53, 10425-8	219
1519	A Fast Deposition-Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells. 2014 , 126, 10056-10061	630
1518	Boosting the power conversion efficiency of perovskite solar cells using self-organized polymeric hole extraction layers with high work function. 2014 , 26, 6461-6	295
1517	Lead methylammonium triiodide perovskite-based solar cells: an interfacial charge-transfer investigation. 2014 , 7, 3088-94	47
1516	Hole-Conductor-Free, Metal-Electrode-Free TiO2/CH3NH3PbI3 Heterojunction Solar Cells Based on a Low-Temperature Carbon Electrode. 2014 , 5, 3241-6	227

1515	Photoanode Based on (001)-Oriented Anatase Nanoplatelets for OrganicIhorganic Lead Iodide Perovskite Solar Cell. 2014 , 26, 4675-4678	38
1514	Low band gap S,N-heteroacene-based oligothiophenes as hole-transporting and light absorbing materials for efficient perovskite-based solar cells. 2014 , 7, 2981	119
1513	Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. 2014 , 114, 9662-707	368
1512	Femtosecond time-resolved transient absorption spectroscopy of CH3NH3PbI3 perovskite films: evidence for passivation effect of PbI2. <i>Journal of the American Chemical Society</i> , 2014 , 136, 12205-8	4 ¹ 7
1511	Radiative Recombination and Photoconversion of Methylammonium Lead Iodide Perovskite by First Principles: Properties of an Inorganic Semiconductor within a Hybrid Body. 2014 , 118, 24843-24853	69
1510	Ultrafast carrier trapping of a metal-doped titanium dioxide semiconductor revealed by femtosecond transient absorption spectroscopy. 2014 , 6, 10022-7	25
1509	Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. 2014 , 345, 1593-6	1920
1508	Charge transfer and recombination at the metal oxide/CH3NH3PbClI2/spiro-OMeTAD interfaces: uncovering the detailed mechanism behind high efficiency solar cells. 2014 , 16, 19984-92	78
1507	Computed and Experimental Absorption Spectra of the Perovskite CH3NH3PbI3. 2014 , 5, 3061-5	80
1506	Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode. 2014 , 6, 16140-6	214
1505	Infrared-driven unimolecular reaction of CHITHOO Criegee intermediates to OH radical products. 2014 , 345, 1596-8	102
1504	Electrochemical Design of Nanostructured ZnO Charge Carrier Layers for Efficient Solid-State Perovskite-Sensitized Solar Cells. 2014 , 4, 1400932	105
1503	An above-room-temperature ferroelectric organo-metal halide perovskite: (3-pyrrolinium)(CdCl) 2014, 53, 11242-7	139
1502	The Role of Chlorine in the Formation Process of ©H3NH3PbI3-xClxPerovskite. 2014, 24, n/a-n/a	173
1501	Zn2SnO4-Based Photoelectrodes for Organolead Halide Perovskite Solar Cells. 2014 , 118, 22991-22994	76
1500	Perovskite photovoltaics: a high-efficiency newcomer to the solar cell family. 2014 , 6, 12287-97	104
1499	Enhanced performance with bismuth ferrite perovskite in ZnO nanorod solid state solar cells. 2014 , 6, 7072-8	27
1498	Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. 2014 , 6, 10505-10	315

1497	A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. 2014 , 345, 295-8	2374
1496	Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. 2014 , 7, 2934-2938	728
1495	A dopant-free hole-transporting material for efficient and stable perovskite solar cells. 2014 , 7, 2963-2967	593
1494	A hybrid lead iodide perovskite and lead sulfide QD heterojunction solar cell to obtain a panchromatic response. 2014 , 2, 11586-11590	64
1493	Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property. 2014 , 104, 063901	401
1492	Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells. 2014 , 118, 16458-16462	554
1491	Organolead halide perovskite: A rising player in high-efficiency solar cells. 2014 , 35, 983-988	22
1490	Structural and electronic properties of organo-halide lead perovskites: a combined IR-spectroscopy and ab initio molecular dynamics investigation. 2014 , 16, 16137-44	195
1489	Composites of small Ag clusters confined in the channels of well-ordered mesoporous anatase TiO2 and their excellent solar-light-driven photocatalytic performance. 2014 , 7, 731-742	88
1488	Organo-metal perovskite based solar cells: sensitized versus planar architecture. 2014 , 4, 29012-29021	51
1487	High-Performance Flexible Broadband Photodetector Based on Organolead Halide Perovskite. 2014 , 24, 7373-7380	652
1486	Mesoporous perovskite solar cells: material composition, charge-carrier dynamics, and device characteristics. 2014 , 176, 301-12	103
1485	Impact of work function of back contact of perovskite solar cells without hole transport material analyzed by device simulation. 2014 , 14, 1428-1433	80
1484	Numerical simulation: Toward the design of high-efficiency planar perovskite solar cells. 2014 , 104, 253508	154
1483	Hole-transporting small molecules based on thiophene cores for high efficiency perovskite solar cells. 2014 , 7, 3420-5	122
1482	Unraveling the nanoscale morphologies of mesoporous perovskite solar cells and their correlation to device performance. 2014 , 14, 2735-40	49
1481	Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. <i>Journal of the American Chemical Society</i> , 2014 , 136, 3760-3	590
1480	Cation Role in Structural and Electronic Properties of 3D OrganicIhorganic Halide Perovskites: A DFT Analysis. 2014 , 118, 12176-12183	143

1479	Influence of Thermal Processing Protocol upon the Crystallization and Photovoltaic Performance of OrganicIhorganic Lead Trihalide Perovskites. 2014 , 118, 17171-17177	214
1478	Vapour-based processing of hole-conductor-free CH3NH3PbI3 perovskite/C60 fullerene planar solar cells. 2014 , 4, 28964-28967	113
1477	Montmorillonite as bifunctional buffer layer material for hybrid perovskite solar cells with protection from corrosion and retarding recombination. 2014 , 2, 13587-13592	231
1476	A highly efficient mesoscopic solar cell based on CHNHPbI(3-x)Cl(x) fabricated via sequential solution deposition. 2014 , 50, 12458-61	79
1475	HIGH-EFFICIENT SOLID-STATE PEROVSKITE SOLAR CELL WITHOUT LITHIUM SALT IN THE HOLE TRANSPORT MATERIAL. 2014 , 09, 1440001	32
1474	Metal-Oxide-Free Methylammonium Lead Iodide Perovskite-Based Solar Cells: the Influence of Organic Charge Transport Layers. 2014 , 4, 1400345	148
1473	Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells. 2014 , 8, 4730-9	241
1472	Effects of Surface Blocking Layer of Sb2S3 on Nanocrystalline TiO2 for CH3NH3PbI3 Perovskite Solar Cells. 2014 , 118, 16995-17000	456
1471	Thermally Activated Exciton Dissociation and Recombination Control the Carrier Dynamics in Organometal Halide Perovskite. 2014 , 5, 2189-94	399
1470	Organolead halide perovskites: a family of promising semiconductor materials for solar cells. 2014 , 59, 2092-2101	15
1469	Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. 2014 , 8, 6797-804	371
1468	Benefits of very thin PCBM and LiF layers for solution-processed pth perovskite solar cells. 2014 , 7, 2642-2646	570
1467	Perovskite solar cells with 12.8% efficiency by using conjugated quinolizino acridine based hole transporting material. <i>Journal of the American Chemical Society</i> , 2014 , 136, 8516-9	228
1466	Hole-Conductor-Free Mesoscopic TiO2/CH3NH3PbI3 Heterojunction Solar Cells Based on Anatase Nanosheets and Carbon Counter Electrodes. 2014 , 5, 2160-4	211
1465	Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility. 2014 , 8, 7147-55	328
1464	Ein Klassiker im neuen Gewand: Perowskit-Solarzellen. 2014 , 126, 647-649	19
1463	A Simple 3,4-Ethylenedioxythiophene Based Hole-Transporting Material for Perovskite Solar Cells. 2014 , 126, 4169-4172	61
1462	Methylammonium lead triiodide perovskite solar cells: A new paradigm in photovoltaics. 2015 , 40, 641-645	34

1461	Hole-transport material-free perovskite-based solar cells. 2015 , 40, 674-680	34
1460	Multifunctional Inverse Opal-Like TiO Electron Transport Layer for Efficient Hybrid Perovskite Solar Cells. 2015 , 2, 1500105	54
1459	Improving the Stability of a Liquid-type Perovskite Solar Cell by Capping Spiro-OMeTAD Layer onto CH3NH3PbI3/TiO2 Film. 2015 , 44, 1446-1448	1
1458	Excitonic emissions and above-band-gap luminescence in the single-crystal perovskite semiconductors CsPbBr3 and CsPbCl3. 2015 , 92,	194
1457	Surface Engineering of ZnO Thin Film for High Efficiency Planar Perovskite Solar Cells. 2015 , 5, 13211	128
1456	Direct Conversion of CH3NH3PbI3 from Electrodeposited PbO for Highly Efficient Planar Perovskite Solar Cells. 2015 , 5, 15889	72
1455	Organometal Halide Perovskites for Photovoltaic Applications. 2015 , 535-566	7
1454	An Effective TiO2 Blocking Layer for Perovskite Solar Cells with Enhanced Performance. 2015 , 44, 624-626	33
1453	Alternative, Lead-free, Hybrid OrganicIhorganic Perovskites for Solar Applications: A DFT Analysis. 2015 , 44, 826-828	60
1452	Conversion efficiency improvement of inverted CH3NH3PbI3 perovskite solar cells with room temperature sputtered ZnO by adding the C60 interlayer. 2015 , 107, 253301	34
1451	Electronic structure and optical properties of Cs2AX2?X4 (A=Ge,Sn,Pb; X?,X=Cl,Br,I). 2015 , 5, 127224	17
1450	Hydrogen Impurity Defects in Rutile TiO2. 2015 , 5, 17634	37
1449	Antiperovskite Chalco-Halides Ba3(FeS4)Cl, Ba3(FeS4)Br, and Ba3(FeSe4)Br with Spin Super-Super Exchange. 2015 , 5, 15910	9
1448	Heavy main-group iodometallates hybridized by alkali metal via 1,10-Phenanthroline-5,6-dione. 2015 , 127, 1531-1538	1
1447	Organic Charge Carriers for Perovskite Solar Cells. 2015 , 8, 3012-28	101
1446	Stable and Efficient Perovskite Solar Cells Based on Titania Nanotube Arrays. 2015 , 11, 5533-9	69
1445	Improving the Extraction of Photogenerated Electrons with SnO2 Nanocolloids for Efficient Planar Perovskite Solar Cells. 2015 , 25, 7200-7207	163
1444	Efficient CH3 NH3 PbI3 Perovskite Solar Cells Employing Nanostructured p-Type NiO Electrode Formed by a Pulsed Laser Deposition. 2015 , 27, 4013-9	414

1443	Beyond Efficiency: the Challenge of Stability in Mesoscopic Perovskite Solar Cells. 2015 , 5, 1501066	335
1442	Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots. 2015 , 54, 15424-8	693
1441	Plasmonic-Induced Photon Recycling in Metal Halide Perovskite Solar Cells. 2015 , 25, 5038-5046	167
1440	Copper(I) Iodide as Hole-Conductor in Planar Perovskite Solar Cells: Probing the Origin of JW Hysteresis. 2015 , 25, 5650-5661	224
1439	Upscaling of Perovskite Solar Cells: Fully Ambient Roll Processing of Flexible Perovskite Solar Cells with Printed Back Electrodes. 2015 , 5, 1500569	258
1438	Effective Electron Blocking of CuPC-Doped Spiro-OMeTAD for Highly Efficient Inorganic@rganic Hybrid Perovskite Solar Cells. 2015 , 5, 1501320	74
1437	Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots. 2015 , 127, 15644-15648	268
1436	Formation of Bi2WO6 Bipyramids with Vacancy Pairs for Enhanced Solar-Driven Photoactivity. 2015 , 25, 3726-3734	117
1435	Efficient Hole Transporting Materials with Two or Four N,N-Di(4-methoxyphenyl)aminophenyl Arms on an Ethene Unit for Perovskite Solar Cells. 2015 , 21, 15919-23	33
1434	Unraveling the Reasons for Efficiency Loss in Perovskite Solar Cells. 2015 , 25, 3925-3933	114
1433	Nonhydrogenic exciton spectrum in perovskite CH3NH3PbI3. 2015 , 9, 559-563	28
1432	Graphene-Based Materials for Photoanodes in Dye-Sensitized Solar Cells. 2015 , 3,	35
1431	Hybrid Organic-Inorganic Perovskites Open a New Era for Low-Cost, High Efficiency Solar Cells. 2015 , 2015, 1-10	14
1430	Perovskite Solar Cells: Potentials, Challenges, and Opportunities. 2015 , 2015, 1-13	47
1429	Development and Prospect of Nanoarchitectured Solar Cells. 2015, 2015, 1-11	4
1428	. 2015,	12
1427	Graphene/SrTiO3 nanocomposites used as an effective electron-transporting layer for high-performance perovskite solar cells. 2015 , 5, 52041-52047	43
1426	Electrochromic bis(terpyridine)metal complex nanosheets. <i>Journal of the American Chemical Society</i> , 2015 , 137, 4681-9	180

1425	Novel planar heterostructure perovskite solar cells with CdS nanorods array as electron transport layer. 2015 , 140, 396-404		57
1424	Perovskite solar cell based on network nanoporous layer consisted of TiO2 nanowires and its interface optimization. 2015 , 290, 144-152		41
1423	Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells. 2015 , 7, 10595-9		251
1422	Photoinduced Reversible Structural Transformations in Free-Standing CH3NH3PbI3 Perovskite Films. 2015 , 6, 2332-8		172
1421	Efficiency Enhancement of Inverted Structure Perovskite Solar Cells via Oleamide Doping of PCBM Electron Transport Layer. 2015 , 7, 13659-65		108
1420	A computational view of the change in the geometric and electronic properties of perovskites caused by the partial substitution of Pb by Sn. 2015 , 17, 17679-87		37
1419	Study on hole-transport-material-free planar TiO2/CH3NH3PbI3 heterojunction solar cells: the simplest configuration of a working perovskite solar cell. 2015 , 3, 14902-14909		39
1418	Critical parameters in TiO2/ZrO2/Carbon-based mesoscopic perovskite solar cell. 2015 , 293, 533-538		93
1417	Growth of large CH3NH3PbX3 (X=I, Br) single crystals in solution. 2015 , 422, 75-79		46
1416	Improving efficiency of planar hybrid CH 3 NH 3 PbI 3lk Cl x perovskite solar cells by isopropanol solvent treatment. 2015 , 24, 205-211		38
1415	Free-standing flexible carbon electrode for highly efficient hole-conductor-free perovskite solar cells. 2015 , 93, 861-868		158
1414	Tunable Optical Properties and Charge Separation in CH3NH3Sn(x)Pb(1-x)I3/TiO2-Based Planar Perovskites Cells. <i>Journal of the American Chemical Society</i> , 2015 , 137, 8227-36	16.4	109
1413	Smooth perovskite thin films and efficient perovskite solar cells prepared by the hybrid deposition method. 2015 , 3, 14631-14641		108
1412	Ferroelectric Polarization of CH3NH3PbI3: A Detailed Study Based on Density Functional Theory and Symmetry Mode Analysis. 2015 , 6, 2223-31		151
1411	Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. 2015 , 8, 2118-2127		1003
1410	An up-scalable approach to CH3NH3PbI3 compact films for high-performance perovskite solar cells. 2015 , 15, 670-678		67
1409	Effects of Oxide Contact Layer on the Preparation and Properties of CH3NH3PbI3 for Perovskite Solar Cell Application. 2015 , 119, 14919-14928		74
1408	Zero-dipole molecular organic cations in mixed organic-inorganic halide perovskites: possible chemical solution for the reported anomalous hysteresis in the current-voltage curve measurements. 2015 , 26, 442001		33

Mechanism of Charge Transfer and Recombination Dynamics in Organo Metal Halide Perovskites and Organic Electrodes, PCBM, and Spiro-OMeTAD: Role of Dark Carriers. <i>Journal of the American</i> 16.4 <i>Chemical Society</i> , 2015 , 137, 16043-8	85
Real-Space Imaging of the Atomic Structure of Organic-Inorganic Perovskite. <i>Journal of the American Chemical Society</i> , 2015 , 137, 16049-54	131
Exploring the performance limiting parameters of perovskite solar cell through experimental analysis and device simulation. 2015 , 122, 773-782	32
Thickness of the hole transport layer in perovskite solar cells: performance versus reproducibility. 2015 , 5, 99356-99360	61
Solvent issues during processing and device lifetime for perovskite solar cells. 2015 , 19, 508-511	17
Effect of ferroelectric nanodomains in perovskite solar cells. 2015,	
Spray PEDOT:PSS coated perovskite with a transparent conducting electrode for low cost scalable photovoltaic devices. 2015 , 19, 482-487	9
Shell-in-Shell TiO2 hollow microspheres and optimized application in light-trapping perovskite solar cells. 2015 , 40, 60-66	16
Using an airbrush pen for layer-by-layer growth of continuous perovskite thin films for hybrid solar	76
cells. 2015 , 7, 2359-66	70
	134
cells. 2015 , 7, 2359-66	,
cells. 2015 , 7, 2359-66 New generation solar cells: concepts, trends and perspectives. 2015 , 51, 3957-72	134
Cells. 2015, 7, 2359-66 New generation solar cells: concepts, trends and perspectives. 2015, 51, 3957-72 Advancements in all-solid-state hybrid solar cells based on organometal halide perovskites. 2015, 2, 378-405 Temperature- and Component-Dependent Degradation of Perovskite Photovoltaic Materials under	134
Cells. 2015, 7, 2359-66 New generation solar cells: concepts, trends and perspectives. 2015, 51, 3957-72 Advancements in all-solid-state hybrid solar cells based on organometal halide perovskites. 2015, 2, 378-405 Temperature- and Component-Dependent Degradation of Perovskite Photovoltaic Materials under Concentrated Sunlight. 2015, 6, 326-30	134 102 394
New generation solar cells: concepts, trends and perspectives. 2015 , 51, 3957-72 Advancements in all-solid-state hybrid solar cells based on organometal halide perovskites. 2015 , 2, 378-405 Temperature- and Component-Dependent Degradation of Perovskite Photovoltaic Materials under Concentrated Sunlight. 2015 , 6, 326-30 Structure and function relationships in alkylammonium lead(II) iodide solar cells. 2015 , 3, 9201-9207 Electronic Structures and Photoconversion Mechanism in Perovskite/Fullerene Heterojunctions.	134 102 394 52
New generation solar cells: concepts, trends and perspectives. 2015, 51, 3957-72 Advancements in all-solid-state hybrid solar cells based on organometal halide perovskites. 2015, 2, 378-405 Temperature- and Component-Dependent Degradation of Perovskite Photovoltaic Materials under Concentrated Sunlight. 2015, 6, 326-30 Structure and function relationships in alkylammonium lead(II) iodide solar cells. 2015, 3, 9201-9207 Electronic Structures and Photoconversion Mechanism in Perovskite/Fullerene Heterojunctions. 2015, 25, 1213-1218	134 102 394 52 81
New generation solar cells: concepts, trends and perspectives. 2015, 51, 3957-72 Advancements in all-solid-state hybrid solar cells based on organometal halide perovskites. 2015, 2, 378-405 Temperature- and Component-Dependent Degradation of Perovskite Photovoltaic Materials under Concentrated Sunlight. 2015, 6, 326-30 Structure and function relationships in alkylammonium lead(II) iodide solar cells. 2015, 3, 9201-9207 Electronic Structures and Photoconversion Mechanism in Perovskite/Fullerene Heterojunctions. 2015, 25, 1213-1218 Organometal Halide Perovskites: Bulk Low-Dimension Materials and Nanoparticles. 2015, 32, 709-720	134 102 394 52 81
	and Organic Electrodes, PCBM, and Spiro-OMeTAD: Role of Dark Carriers. Journal of the American Chemical Society, 2015, 137, 16043-8 Real-Space Imaging of the Atomic Structure of Organic-Inorganic Perovskite. Journal of the American Chemical Society, 2015, 137, 16049-54 Exploring the performance limiting parameters of perovskite solar cell through experimental analysis and device simulation. 2015, 122, 773-782 Thickness of the hole transport layer in perovskite solar cells: performance versus reproducibility. 2015, 5, 99356-99360 Solvent issues during processing and device lifetime for perovskite solar cells. 2015, 19, 508-511 Effect of ferroelectric nanodomains in perovskite solar cells. 2015, Spray PEDOT:PSS coated perovskite with a transparent conducting electrode for low cost scalable photovoltaic devices. 2015, 19, 482-487 Shell-in-Shell TiO2 hollow microspheres and optimized application in light-trapping perovskite solar cells. 2015, 40, 60-66

1389	Control of organicInorganic halide perovskites in solid-state solar cells: a perspective. 2015 , 60, 405-418	37
1388	Exclusion of metal oxide by an RF sputtered Ti layer in flexible perovskite solar cells: energetic interface between a Ti layer and an organic charge transporting layer. 2015 , 44, 6439-48	27
1387	Ferroelectric Domain Wall Induced Band Gap Reduction and Charge Separation in Organometal Halide Perovskites. 2015 , 6, 693-9	258
1386	Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. 2015 , 9, 1955-63	954
1385	Electrolytes in dye-sensitized solar cells. 2015 , 115, 2136-73	744
1384	Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices. 2015 , 7, 4163-70	149
1383	Trap states in lead iodide perovskites. <i>Journal of the American Chemical Society</i> , 2015 , 137, 2089-96 16.4	672
1382	Characterization of Planar Lead Halide Perovskite Solar Cells by Impedance Spectroscopy, Open-Circuit Photovoltage Decay, and Intensity-Modulated Photovoltage/Photocurrent Spectroscopy. 2015 , 119, 3456-3465	310
1381	Engineering a high energy surface of anatase TiO2 crystals towards enhanced performance for energy conversion and environmental applications. 2015 , 5, 20396-20409	67
1380	Investigation on regeneration kinetics at perovskite/oxide interface with scanning electrochemical microscopy. 2015 , 3, 9216-9222	17
1379	A power pack based on organometallic perovskite solar cell and supercapacitor. 2015 , 9, 1782-7	167
1378	Trap-assisted non-radiative recombination in organic-inorganic perovskite solar cells. 2015 , 27, 1837-41	556
1377	PEG-assisted synthesis of crystal TiO2 nanowires with high specific surface area for enhanced photocatalytic degradation of atrazine. 2015 , 268, 170-179	76
1376	Fabrication of metal-oxide-free CH3NH3PbI3 perovskite solar cells processed at low temperature. 2015 , 3, 3271-3275	147
1375	Efficiency enhancement by defect engineering in perovskite photovoltaic cells prepared using evaporated PbI2/CH3NH3I multilayers. 2015 , 3, 9223-9231	63
1374	Perovskite thin-film solar cell: excitation in photovoltaic science. 2015 , 58, 221-238	54
1373	Inorganic p-type contact materials for perovskite-based solar cells. 2015 , 3, 9011-9019	133
1372	Facile preparation of organometallic perovskite films and high-efficiency solar cells using solid-state chemistry. 2015 , 8, 263-270	30

1371	Pressure-assisted CH3NH3PbI3 morphology reconstruction to improve the high performance of perovskite solar cells. 2015 , 3, 5289-5293		66
1370	Improving the Long-Term Stability of Perovskite Solar Cells with a Porous Al2O3 Buffer Layer. 2015 , 6, 432-7		301
1369	Distinct exciton dissociation behavior of organolead trihalide perovskite and excitonic semiconductors studied in the same system. 2015 , 11, 2164-9		68
1368	Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. Journal of the American Chemical Society, 2015 , 137, 1790-3	16.4	345
1367	Fast and low temperature growth of electron transport layers for efficient perovskite solar cells. 2015 , 3, 4909-4915		89
1366	Comparative study of vapor- and solution-crystallized perovskite for planar heterojunction solar cells. 2015 , 7, 3382-8		54
1365	Influence of the number of phenylethynyl units present in porphyrin sensitizer on its light harvesting and cell performance. 2015 , 41, 8713-8724		3
1364	Enhancement of photovoltaic properties of CH3NH3PbBr3 heterojunction solar cells by modifying mesoporous TiO2 surfaces with carboxyl groups. 2015 , 3, 9264-9270		65
1363	Indolocarbazole based small molecules: an efficient hole transporting material for perovskite solar cells. 2015 , 5, 55321-55327		37
1362	AgAl alloy electrode for efficient perovskite solar cells. 2015 , 5, 56037-56044		19
1361	Controllable Grain Morphology of Perovskite Absorber Film by Molecular Self-Assembly toward Efficient Solar Cell Exceeding 17%. <i>Journal of the American Chemical Society</i> , 2015 , 137, 10399-405	16.4	314
1361 1360		16.4	314
	Efficient Solar Cell Exceeding 17%. <i>Journal of the American Chemical Society</i> , 2015 , 137, 10399-405 Three-step approach for computing band offsets and its application to inorganic ABX3 halide	16.4	
1360	Efficient Solar Cell Exceeding 17%. <i>Journal of the American Chemical Society</i> , 2015 , 137, 10399-405 Three-step approach for computing band offsets and its application to inorganic ABX3 halide perovskites. 2015 , 92,	16.4	21
1360 1359	Efficient Solar Cell Exceeding 17%. <i>Journal of the American Chemical Society</i> , 2015 , 137, 10399-405 Three-step approach for computing band offsets and its application to inorganic ABX3 halide perovskites. 2015 , 92, High efficiency stable inverted perovskite solar cells without current hysteresis. 2015 , 8, 2725-2733 Efficient electron-blocking layer-free planar heterojunction perovskite solar cells with a high	16.4	21 479
1360 1359 1358	Efficient Solar Cell Exceeding 17%. <i>Journal of the American Chemical Society</i> , 2015 , 137, 10399-405 Three-step approach for computing band offsets and its application to inorganic ABX3 halide perovskites. 2015 , 92, High efficiency stable inverted perovskite solar cells without current hysteresis. 2015 , 8, 2725-2733 Efficient electron-blocking layer-free planar heterojunction perovskite solar cells with a high open-circuit voltage. 2015 , 26, 265-272 Solvent-assisted growth of organic[horganic hybrid perovskites with enhanced photovoltaic	16.4	47977
1360 1359 1358 1357	Efficient Solar Cell Exceeding 17%. Journal of the American Chemical Society, 2015, 137, 10399-405 Three-step approach for computing band offsets and its application to inorganic ABX3 halide perovskites. 2015, 92, High efficiency stable inverted perovskite solar cells without current hysteresis. 2015, 8, 2725-2733 Efficient electron-blocking layer-free planar heterojunction perovskite solar cells with a high open-circuit voltage. 2015, 26, 265-272 Solvent-assisted growth of organicfhorganic hybrid perovskites with enhanced photovoltaic performances. 2015, 143, 360-368 Efficient Light Harvester Layer Prepared by Solid/Mist Interface Reaction for Perovskite Solar Cells.	16.4	214797714

1353	Ultrafast photoinduced dynamics of the organolead trihalide perovskite CH3NH3PbI3 on mesoporous TiO2 scaffolds in the 320-920 nm range. 2015 , 17, 19238-46	46
1352	Polyelectrolyte based hole-transporting materials for high performance solution processed planar perovskite solar cells. 2015 , 3, 15024-15029	83
1351	Hole-transport-material-free perovskite solar cells based on nanoporous gold back electrode. 2015 , 5, 58543-58548	18
1350	Recent advances in flexible perovskite solar cells. 2015 , 51, 14696-707	71
1349	Transparent conducting oxide free backside illuminated perovskite solar cells. 2015 , 107, 013901	8
1348	CH3NH3PbI3 and CH3NH3PbI3\(\text{\textit{Z}}\)Clx in Planar or Mesoporous Perovskite Solar Cells: Comprehensive Insight into the Dependence of Performance on Architecture. 2015 , 119, 15868-15873	59
1347	Infrared Spectroscopic Study of Vibrational Modes in Methylammonium Lead Halide Perovskites. 2015 , 6, 2913-8	231
1346	Enhancing Stability of Perovskite Solar Cells to Moisture by the Facile Hydrophobic Passivation. 2015 , 7, 17330-6	249
1345	Hole transporting material-free and annealing-free thermal evaporated planar perovskite solar cells with an ultra-thin CH3NH3PbI3区LX layer. 2015 , 26, 104-108	14
1344	Charge Carriers in Planar and Meso-Structured Organic-Inorganic Perovskites: Mobilities, Lifetimes, and Concentrations of Trap States. 2015 , 6, 3082-90	225
1343	ADA-type S,N-heteropentacene-based hole transport materials for dopant-free perovskite solar cells. 2015 , 3, 17738-17746	94
1342	Perovskites for photovoltaics: a combined review of organicIhorganic halide perovskites and ferroelectric oxide perovskites. 2015 , 3, 18809-18828	186
1341	Exciton Binding Energy and the Nature of Emissive States in Organometal Halide Perovskites. 2015 , 6, 2969-75	171
1340	Under the spotlight: The organicihorganic hybrid halide perovskite for optoelectronic applications. 2015 , 10, 355-396	700
1339	Ab Initio Molecular Dynamics Simulations of Methylammonium Lead Iodide Perovskite Degradation by Water. 2015 , 27, 4885-4892	323
1338	Recent progress in efficient hybrid lead halide perovskite solar cells. 2015 , 16, 036004	72
1337	Enhanced efficiency of planar-heterojunction perovskite solar cells through a thermal gradient annealing process. 2015 , 5, 58041-58045	10
1336	Stable and efficient hole transporting materials with a dimethylfluorenylamino moiety for perovskite solar cells. 2015 , 51, 9305-8	60

1	1335	, 7, 9645-51	108
	1334	Hybrid Perovskite Films by a New Variant of Pulsed Excimer Laser Deposition: A Room-Temperature Dry Process. 2015 , 119, 9177-9185	55
1	1333	An Insight into Atmospheric Plasma Jet Modified ZnO Quantum Dots Thin Film for Flexible Perovskite Solar Cell: Optoelectronic Transient and Charge Trapping Studies. 2015 , 119, 10379-10390	62
-	1332	Direct monitoring of ultrafast electron and hole dynamics in perovskite solar cells. 2015 , 17, 14674-84	124
-	1331	TiO2 nanofibers resembling 'yellow bristle grass' in morphology by a soft chemical transformation. 2015 , 44, 9637-45	12
-	1330	Insight into Perovskite Solar Cells Based on SnO2 Compact Electron-Selective Layer. 2015 , 119, 10212-10217	179
-	1329	Direct observation of an inhomogeneous chlorine distribution in CH3NH3PbI3\(\text{Layers: surface depletion and interface enrichment. 2015, 8, 1609-1615}	92
-	1328	Use of Anodic TiO2 Nanotube Layers as Mesoporous Scaffolds for Fabricating CH3NH3PbI3 Perovskite-Based Solid-State Solar Cells. 2015 , 2, 824-828	32
-	1327	Recent Progress on Hole-Transporting Materials for Emerging Organometal Halide Perovskite Solar Cells. 2015 , 5, 1500213	376
:	1326	One-step, low-temperature deposited perovskite solar cell utilizing small molecule additive. 2015 , 5, 057405	41
-	1325	Efficient planar perovskite solar cell by spray and brush solution-processing methods. 2015 , 5, 053093	13
	1324	Ferroelectric polarization driven optical absorption and charge carrier transport in CH3NH3PbI3/TiO2-based photovoltaic cells. 2015 , 291, 58-65	8
1	1323	Investigating the charge carrier transport within the hole-transport material free perovskite solar cell processed in ambient air. 2015 , 140, 320-327	40
	1322	Perovskite solar cells prepared by flash evaporation. 2015 , 51, 7376-8	81
-	1321	Inverted perovskite solar cells with inserted cross-linked electron-blocking interlayers for performance enhancement. 2015 , 3, 9291-9297	37
-	1320	High-performance hole-transporting layer-free conventional perovskite/fullerene heterojunction thin-film solar cells. 2015 , 3, 9128-9132	48
	1319	Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. 2015 , 15, 2402-8	357
-	1318	Charge selective contacts, mobile ions and anomalous hysteresis in organic i horganic perovskite solar cells. 2015 , 2, 315-322	338

1317	Tin perovskite/fullerene planar layer photovoltaics: improving the efficiency and stability of lead-free devices. 2015 , 3, 11631-11640	156
1316	Fundamental physics behind high-efficiency organo-metal halide perovskite solar cells. 2015 , 3, 15372-15385	99
1315	Heterometallic Inorganic Drganic Hybrids Containing Polynuclear Halobismuthates Anions and d-Metal Coordination Cations: Structure and Physical Properties. 2015 , 26, 1011-1022	9
1314	Electrostatic gating of hybrid halide perovskite field-effect transistors: balanced ambipolar transport at room-temperature. 2015 , 5, 297-301	124
1313	Metal-halide perovskites for photovoltaic and light-emitting devices. 2015 , 10, 391-402	2083
1312	The mechanism of slow hot-hole cooling in lead-iodide perovskite: first-principles calculation on carrier lifetime from electron-phonon interaction. 2015 , 15, 3103-8	121
1311	Enhancement of solar cell efficiency using perovskite dyes deposited via a two-step process. 2015 , 5, 33515-33523	6
1310	Solid-State Physics Perspective on Hybrid Perovskite Semiconductors. 2015 , 119, 10161-10177	175
1309	Editorial for the ACS select virtual issue on inorganic chemistry driving the energy sciences. 2015 , 54, 3079-83	3
1308	Light Harvesting and Charge Recombination in CH3NH3PbI3 Perovskite Solar Cells Studied by Hole Transport Layer Thickness Variation. 2015 , 9, 4200-9	167
1307	A facile solvothermal growth of single crystal mixed halide perovskite CH3NH3Pb(Br(1-x)Cl(x))3. 2015 , 51, 7820-3	114
1306	Performance enhancement of perovskite-sensitized mesoscopic solar cells using Nb-doped TiO2 compact layer. 2015 , 8, 1997-2003	88
1305	Efficient Solution-Processed Bulk Heterojunction Perovskite Hybrid Solar Cells. 2015 , 5, 1402024	90
1304	Perovskite-Based Solar Cells With Nickel-Oxidized Nickel Oxide Hole Transfer Layer. 2015 , 62, 1590-1595	23
1303	Hierarchical iß and iß porous heterojunction in planar perovskite solar cells. 2015 , 3, 10526-10535	13
1302	Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability. Journal of the American Chemical Society, 2015 , 137, 13130-7	308
1301	First-principles study of trimethylamine adsorption on anatase TiO2 nanorod surfaces. 2015 , 134, 1	7
1300	Bath temperature and deposition potential dependences of CuSCN nanorod arrays prepared by electrochemical deposition. 2015 , 50, 7866-7874	9

1299	Working Mechanism for Flexible Perovskite Solar Cells with Simplified Architecture. 2015 , 15, 6514-20	82
1298	Managing Carrier Lifetime and Doping Property of Lead Halide Perovskite by Postannealing Processes for Highly Efficient Perovskite Solar Cells. 2015 , 119, 22812-22819	100
1297	Refractive index and extinction coefficient of CH_3NH_3PbI_3 studied by spectroscopic ellipsometry. 2015 , 5, 29	106
1296	Imaging Luminescent Traps on Single Anatase TiO2 Crystals: The Influence of Surface Capping on Photoluminescence and Charge Transport. 2015 , 119, 26212-26218	8
1295	A Liquid Junction Photoelectrochemical Solar Cell Based on p-Type MeNH3PbI3 Perovskite with 1.05 V Open-Circuit Photovoltage. <i>Journal of the American Chemical Society</i> , 2015 , 137, 14758-64	41
1294	Improving the interfacial contact between CH3NH3PbI3\(\mathbb{L}\)Clx and Au by LiTFSI solution treatment for efficient photoelectric devices. 2015 , 24, 693-697	11
1293	Functional p-Type, Polymerized Organic Electrode Interlayer in CHNHPbIIPerovskite/Fullerene Planar Heterojunction Hybrid Solar Cells. 2015 , 7, 24973-81	30
1292	Improvement of CHNHPbIlFormation for Efficient and Better Reproducible Mesoscopic Perovskite Solar Cells. 2015 , 7, 24726-32	42
1291	Fabrication and Properties of High-Efficiency Perovskite/PCBM Organic Solar Cells. 2015, 10, 1020	51
1290	Hole-conductor-free planar perovskite solar cells with 16.0% efficiency. 2015 , 3, 18389-18394	73
1289	Subphthalocyanine as hole transporting material for perovskite solar cells. 2015 , 5, 69813-69818	40
1288	Large-scale aligned crystalline CH3NH3PbI3 perovskite array films. 2015 , 3, 18847-18851	18
1287	Ab initio design of CsSn(XxY 1 \square)3 (X and Y = Cl, Br, and I) perovskites for photovoltaics. 2015 , 5, 077158	8
1286	A modified sequential method used to prepare high quality perovskite on ZnO nanorods. 2015 , 639, 283-288	24
1285	Characterization of low-frequency excess noise in perovskite-based photovoltaic cells. 2015,	
1284	In-situ fabrication of dual porous titanium dioxide films as anode for carbon cathode based perovskite solar cell. 2015 , 24, 736-743	21
1283	Effect of temperature on the efficiency of organometallic perovskite solar cells. 2015 , 24, 729-735	42
1282	Dopants Control Electron-Hole Recombination at Perovskite-TiOlInterfaces: Ab Initio Time-Domain Study. 2015 , 9, 11143-55	103

1281	The simulation of physical mechanism for HTM-free perovskite organic lead iodide planar heterojunction solar cells. 2015 , 17, 105904	20
1280	Investigation on optoelectronic characteristics of porous silicon/TiO2/CH3NH3PbI3/graphene heterostructure light-emitting diodes prepared by spin-coating. 2015 ,	
1279	Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. 2015 , 25, 1-29	679
1278	Highly efficient planar perovskite solar cells through band alignment engineering. 2015 , 8, 2928-2934	949
1277	Efficient charge-transport in hybrid lead iodide perovskite solar cells. 2015 , 44, 16914-22	17
1276	Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells. 2015 , 3, 19353-19359	191
1275	Tracking the formation of methylammonium lead triiodide perovskite. 2015 , 107, 061904	67
1274	Consecutive Morphology Controlling Operations for Highly Reproducible Mesostructured Perovskite Solar Cells. 2015 , 7, 20707-13	39
1273	Smooth CH3NH3PbI3 from controlled solidgas reaction for photovoltaic applications. 2015 , 5, 73760-73766	16
1272	Efficient Perovskite Hybrid Solar Cells via Controllable Crystallization Film Morphology. 2015 , 5, 1402-1407	4
1271	Cupric bromide hybrid perovskite heterojunction solar cells. 2015 , 209, 247-250	75
1270	Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid Emmonium chlorides. 2015 , 7, 703-11	898
1269	Influence of the Synthetic Procedures on the Structural and Optical Properties of Mixed-Halide (Br, I) Perovskite Films. 2015 , 119, 21304-21313	65
1268	Efficient, symmetric oligomer hole transporting materials with different cores for high performance perovskite solar cells. 2015 , 51, 15506-9	23
1267	Influence of halide precursor type and its composition on the electronic properties of vacuum deposited perovskite films. 2015 , 17, 24342-8	35
1266	Solvent-Mediated Crystallization of CH3NH3SnI3 Films for Heterojunction Depleted Perovskite Solar Cells. <i>Journal of the American Chemical Society</i> , 2015 , 137, 11445-52	455
1265	The Renaissance of Halide Perovskites and Their Evolution as Emerging Semiconductors. 2015 , 48, 2791-802	476
1264	Effects of Porosity and Amount of Surface Hydroxyl Groups of a Porous TiO2 Layer on the Performance of a CH3NH3PbI3 Perovskite Photovoltaic Cell. 2015 , 119, 22304-22309	17

1263	Synthesis and characterization of anatase TiO 2 nanosheet arrays on FTO substrate. 2015 , 24, 626-631	15
1262	OrganicIhorganic hybrid perovskites ABI3 (A = CH3NH3, NH2CHNH2; B = Sn, Pb) as potential thermoelectric materials: a density functional evaluation. 2015 , 5, 78701-78707	51
1261	Ambipolar solution-processed hybrid perovskite phototransistors. 2015 , 6, 8238	447
1260	Synergistic enhancement and mechanism study of mechanical and moisture stability of perovskite solar cells introducing polyethylene-imine into the CH3NH3PbI3/HTM interface. 2015 , 3, 22176-22182	68
1259	Controlled reaction for improved CH3NH3PbI3 transition in perovskite solar cells. 2015, 44, 17841-9	12
1258	Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture. 2015 , 17, 171-179	225
1257	Triazatruxene-Based Hole Transporting Materials for Highly Efficient Perovskite Solar Cells. <i>Journal of the American Chemical Society</i> , 2015 , 137, 16172-8	268
1256	Improving the efficiency of CH3NH3PbI3 based photovoltaics by tuning the work function of the PEDOT:PSS hole transport layer. 2015 , 122, 892-899	36
1255	Are Mobilities in Hybrid Organic-Inorganic Halide Perovskites Actually "High"?. 2015 , 6, 4754-7	167
1254	Material Innovation in Advancing Organometal Halide Perovskite Functionality. 2015 , 6, 4862-72	35
1253	Solid state perovskite solar modules by vacuum-vapor assisted sequential deposition on Nd:YVOI laser patterned rutile TiOIhanorods. 2015 , 26, 494002	23
1252	Water Infiltration in Methylammonium Lead Iodide Perovskite: Fast and Inconspicuous. 2015 , 27, 7835-7841	168
1251	Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed PeryleneDiimide Heterojunctions toward High Performance. 2015 , 27, 227-234	208
1250	Inkjet printing of CH3NH3PbI3 on a mesoscopic TiO2 film for highly efficient perovskite solar cells. 2015 , 3, 9092-9097	175
1249	The essential role of the poly(3-hexylthiophene) hole transport layer in perovskite solar cells. 2015 , 274, 1224-1230	72
1248	Effects of interfacial characteristics on photovoltaic performance in CH 3 NH 3 PbBr 3 -based bulk perovskite solar cells with core/shell nanoarray as electron transporter. 2015 , 12, 59-68	51
1247	Metal oxide semiconductors for dye- and quantum-dot-sensitized solar cells. 2015, 11, 1744-74	97
1246	Nanoscale charge localization induced by random orientations of organic molecules in hybrid perovskite CH3NH3PbI3. 2015 , 15, 248-53	211

1245	Density Functional Studies of Stoichiometric Surfaces of Orthorhombic Hybrid Perovskite CH3NH3PbI3. 2015 , 119, 1136-1145	64
1244	Perovskite-based solar cells: impact of morphology and device architecture on device performance. 2015 , 3, 8943-8969	465
1243	High performance planar heterojunction perovskite solar cells with fullerene derivatives as the electron transport layer. 2015 , 7, 1153-9	90
1242	Perovskite solar cell with low cost Cu-phthalocyanine as hole transporting material. 2015 , 5, 3786-3791	126
1241	Perovskite solar cells: from materials to devices. 2015 , 11, 10-25	967
1240	Study of perovskite solar cells synthesized under ambient conditions and of the performance of small cell modules. 2015 , 134, 60-63	47
1239	OrganicInorganic lead halide perovskite solar cell materials: A possible stability problem. 2015 , 619, 193-195	82
1238	Review of recent progress in chemical stability of perovskite solar cells. 2015 , 3, 8970-8980	1337
1237	Maximizing the emissive properties of CH3NH3PbBr3 perovskite nanoparticles. 2015 , 3, 9187-9193	273
1236	Enhanced charge collection with ultrathin AlOx electron blocking layer for hole-transporting material-free perovskite solar cell. 2015 , 17, 4937-44	44
1235	Electrodeposition of PbO and its in situ conversion to CH3NH3PbI3 for mesoscopic perovskite solar cells. 2015 , 51, 1457-60	51
1234	Electro-optics of perovskite solar cells. 2015 , 9, 106-112	1260
1233	PbS colloidal quantum dots as an effective hole transporter for planar heterojunction perovskite solar cells. 2015 , 3, 515-518	124
1232	p-type Mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells. 2014 , 4, 4756	333
1231	Printable solar cells. 2015 , 4, 51-73	10
1230	Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. 2014 , 4, 4467	910
1229	Electronic structures at the interface between Au and CH3NH3PbI3. 2015 , 17, 896-902	72
1228	CH3NH3PbI3 Perovskite Sensitized Solar Cells Using a D-A Copolymer as Hole Transport Material. 2015 , 151, 21-26	50

1227	OrganicInorganic halide perovskites: an ambipolar class of materials with enhanced photovoltaic performances. 2015 , 3, 8981-8991	89
1226	Stable and low-cost mesoscopic CH3NH3PbI2 Br perovskite solar cells by using a thin poly(3-hexylthiophene) layer as a hole transporter. 2015 , 21, 434-9	92
1225	Dual nature of the excited state in organic[horganic lead halide perovskites. 2015, 8, 208-215	312
1224	Temperature induced structural, electrical and optical changes in solution processed perovskite material: Application in photovoltaics. 2015 , 132, 615-622	54
1223	p-Type mesoscopic NiO as an active interfacial layer for carbon counter electrode based perovskite solar cells. 2015 , 44, 3967-73	125
1222	Recent progress in organicIhorganic halide perovskite solar cells: mechanisms and material design. 2015 , 3, 8992-9010	133
1221	Synthesis of oriented TiO2 nanocones with fast charge transfer for perovskite solar cells. 2015 , 11, 409-418	157
1220	Investigation of Interfacial Charge Separation at PbS QDs/(001) TiO2 Nanosheets Heterojunction Solar Cell. 2015 , 32, 483-488	12
1219	Halide perovskite materials for solar cells: a theoretical review. 2015 , 3, 8926-8942	882
1218	Temperature dependence of hole conductor free formamidinium lead iodide perovskite based solar cells. 2015 , 3, 9171-9178	162
1217	A Novel Oligomer as a Hole Transporting Material for Efficient Perovskite Solar Cells. 2015 , 5, 1400980	77
1216	The effect of carbon counter electrodes on fully printable mesoscopic perovskite solar cells. 2015 , 3, 9165-9170	179
1215	Perovskite solar cells: an emerging photovoltaic technology. 2015 , 18, 65-72	1073
1214	Structural and Quantitative Investigation of Perovskite Pore Filling in Mesoporous Metal Oxides. 2016 , 6, 149	6
1213	Optical, Excitonic, and Electronic Properties of CH3NH3PbI3 Thin Films and Their Application in Photovoltaics. 2016 ,	3
1212	Highly Efficient Reproducible Perovskite Solar Cells Prepared by Low-Temperature Processing. 2016 , 21, 542	15
1211	Recent Advances in Interface Engineering for Planar Heterojunction Perovskite Solar Cells. 2016 , 21,	26
1210	Using Low Temperature Photoluminescence Spectroscopy to Investigate CHNHPbl[Hybrid Perovskite Degradation. 2016 , 21,	12

1209	Organometal halide perovskite quantum dots: synthesis, optical properties, and display applications. 2016 , 27, 1124-1130	54
1208	Enhanced Stability of Perovskite Solar Cells with Low-Temperature Hydrothermally Grown SnO2 Electron Transport Layers. 2016 , 26, 6069-6075	128
1207	Inverted Perovskite Solar Cells: Progresses and Perspectives. 2016 , 6, 1600457	294
1206	A close examination of the structure and dynamics of HC(NH)PbI by MD simulations and group theory. 2016 , 18, 27109-27118	41
1205	Pyrolysis preparation of WO3thin films using ammonium metatungstate DMF/water solution for efficient compact layers in planar perovskite solar cells. 2016 , 37, 033002	11
1204	New Horizons for Perovskite Solar Cells Employing DNA-CTMA as the Hole-Transporting Material. 2016 , 9, 1736-42	29
1203	Dopant-Free Spiro-Triphenylamine/Fluorene as Hole-Transporting Material for Perovskite Solar Cells with Enhanced Efficiency and Stability. 2016 , 26, 1375-1381	194
1202	Stable OrganicIhorganic Perovskite Solar Cells without Hole-Conductor Layer Achieved via Cell Structure Design and Contact Engineering. 2016 , 26, 4866-4873	70
1201	Controlled Growth and Reliable Thickness-Dependent Properties of OrganicIhorganic Perovskite Platelet Crystal. 2016 , 26, 5263-5270	52
1200	Impact of Film Stoichiometry on the Ionization Energy and Electronic Structure of CH3 NH3 PbI3 Perovskites. 2016 , 28, 553-9	127
1199	Enhanced Efficiency and Stability of Inverted Perovskite Solar Cells Using Highly Crystalline SnO2 Nanocrystals as the Robust Electron-Transporting Layer. 2016 , 28, 6478-84	382
1198	Terahertz Conductivity within Colloidal CsPbBr3 Perovskite Nanocrystals: Remarkably High Carrier Mobilities and Large Diffusion Lengths. 2016 , 16, 4838-48	370
1197	Characterization of ZnO Interlayers for Organic Solar Cells: Correlation of Electrochemical Properties with Thin-Film Morphology and Device Performance. 2016 , 8, 19787-98	17
1196	Response of Methylammonium Lead Iodide to External Stimuli and Caloric Effects from Molecular Dynamics Simulations. 2016 , 120, 17274-17281	26
1195	Hole-Transporting Materials for Perovskite-Sensitized Solar Cells. 2016 , 4, 891-938	42
1194	Effective Improvement of the Photovoltaic Performance of Carbon-Based Perovskite Solar Cells by Additional Solvents. 2016 , 8, 347-357	63
1193	An efficient perovskite solar cell with symmetrical Zn(ii) phthalocyanine infiltrated buffering porous AlO as the hybrid interfacial hole-transporting layer. 2016 , 18, 27083-27089	31
1192	Perovskite Solar Cells Employing Dopant-Free Organic Hole Transport Materials with Tunable Energy Levels. 2016 , 28, 440-6	217

1191	Enhanced Charge Collection with Passivation Layers in Perovskite Solar Cells. 2016 , 28, 3966-72	140
1190	Recent Advances in Improving the Stability of Perovskite Solar Cells. 2016 , 6, 1501420	251
1189	Solvent Engineering Boosts the Efficiency of Paintable Carbon-Based Perovskite Solar Cells to Beyond 14%. 2016 , 6, 1502087	262
1188	A transparent, solvent-free laminated top electrode for perovskite solar cells. 2016 , 17, 260-266	38
1187	Efficient thermal conductance in organometallic perovskite CH3NH3PbI3 films. 2016 , 108, 081902	21
1186	Ab initio modeling of 2D layered organohalide lead perovskites. 2016 , 144, 164701	32
1185	Quantitative determination of optical and recombination losses in thin-film photovoltaic devices based on external quantum efficiency analysis. 2016 , 120, 064505	81
1184	Ti/Au Cathode for Electronic transport material-free organic-inorganic hybrid perovskite solar cells. 2016 , 6, 39132	11
1183	Improving the photovoltaic performance of perovskite solar cells with acetate. 2016 , 6, 38670	41
1182	High Consistency Perovskite Solar Cell with a Consecutive Compact and Mesoporous TiO Film by One-Step Spin-Coating. 2016 , 8, 35440-35446	25
1181	The nature of hydrogen-bonding interaction in the prototypic hybrid halide perovskite, tetragonal CH3NH3PbI3. 2016 , 6, 21687	95
1180	Fabrication ofsolar cell usingextracted biomolecules from tea leaves and hybrid perovskites. 2016 , 3, 3498-3504	14
1179	Tunable bandgap in hybrid perovskite CH3NH3Pb(Br3囗Xy) single crystals and photodetector applications. 2016 , 6, 045115	50
1178	Iodine and Chlorine Element Evolution in CH3NH3PbI3\(\mathbb{N}\)Clx Thin Films for Highly Efficient Planar Heterojunction Perovskite Solar Cells. 2016 , 28, 2742-2749	48
1177	Perovskites as new radical photoinitiators for radical and cationic polymerizations. 2016 , 72, 7686-7690	15
1176	Efficient Perovskite Hybrid Photovoltaics via Alcohol-Vapor Annealing Treatment. 2016 , 26, 101-110	101
1175	Perovskite Solar Cells: Influence of Hole Transporting Materials on Power Conversion Efficiency. 2016 , 9, 10-27	237
1174	Improving performance and reducing hysteresis in perovskite solar cells by using F8BT as electron transporting layer. 2016 , 157, 79-84	23

1173	Enhanced TiO2/MAPbI3 Electronic Coupling by Interface Modification with PbI2. 2016, 28, 3612-3615	54
1172	Well-Defined Nanostructured, Single-Crystalline TiO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells. 2016 , 10, 6029-36	161
1171	Ultrafast charge carrier dynamics in CH3NH3PbI3: evidence for hot hole injection into spiro-OMeTAD. 2016 , 4, 5922-5931	29
1170	Progress in emerging solution-processed thin film solar cells (Part II: Perovskite solar cells. 2016 , 62, 1012-1031	93
1169	Molecular Origins of Defects in Organohalide Perovskites and Their Influence on Charge Carrier Dynamics. 2016 , 120, 12392-12402	76
1168	Mobile Ions in Organohalide Perovskites: Interplay of Electronic Structure and Dynamics. 2016 , 1, 182-188	143
1167	Hole Conductor Free Perovskite-based Solar Cells. 2016 ,	5
1166	Hole Transport Material (HTM) Free Perovskite Solar Cell. 2016 , 9-24	
1165	Enhanced performances of flexible ZnO/perovskite solar cells by piezo-phototronic effect. 2016 , 23, 27-33	94
1164	Advancements in the stability of perovskite solar cells: degradation mechanisms and improvement approaches. 2016 , 6, 38079-38091	131
1163	Efficient and stable perovskite solar cells based on functional graphene-modified P3HT hole-transporting layer. 2016 , 6, 36356-36361	34
1162	Mechanism of biphasic charge recombination and accumulation in TiO2 mesoporous structured perovskite solar cells. 2016 , 18, 12128-34	24
1161	Dynamical Origin of the Rashba Effect in Organohalide Lead Perovskites: A Key to Suppressed Carrier Recombination in Perovskite Solar Cells?. 2016 , 7, 1638-45	220
1160	Molecular Origin of Properties of Organic-Inorganic Hybrid Perovskites: The Big Picture from Small Clusters. 2016 , 7, 1596-603	50
1159	Ruddlesden P opper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors. 2016 , 28, 2852-2867	1166
1158	Preparation of ZnO nanorod arrays by hydrothermal procedure and its application in perovskite solar cells. 2016 , 20, 338-342	6
1157	Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications. 2016 , 6, 022001	170
1156	Three-dimensional self-branching anatase TiO2 nanorods with the improved carrier collection for SrTiO3-based perovskite solar cells. 2016 , 679, 32-38	13

(2016-2016)

1155	sensitized, and perovskite solar cells. 2016 , 13, 859-906	3
1154	State and prospects of solar cells based on perovskites. 2016 , 52, 5-15	6
1153	ZnO nanowalls grown at low-temperature for electron collection in high-efficiency perovskite solar cells. 2016 , 154, 18-22	37
1152	Morphology control of planar heterojunction perovskite solar cells with fluorinated PDI films as organic electron transport layer. 2016 , 133, 331-338	41
1151	Coordination engineering toward high performance organic[horganic hybrid perovskites. 2016 , 320-321, 53-65	30
1150	All solid-state solar cells based on CH3NH3PbI3-sensitized TiO2 nanotube arrays. 2016 , 83, 322-328	4
1149	Efficient, high yield perovskite/fullerene planar-heterojunction solar cells via one-step spin-coating processing. 2016 , 6, 48449-48454	7
1148	Optimal Design and Simulation of High-Performance Organic-Metal Halide Perovskite Solar Cells. 2016 , 52, 1-6	23
1147	A review of organic small molecule-based hole-transporting materials for meso-structured organicIhorganic perovskite solar cells. 2016 , 4, 15788-15822	120
1146	Film Grain-Size Related Long-Term Stability of Inverted Perovskite Solar Cells. 2016 , 9, 2666-2672	79
1145	Perovskite Solar Cells Employing Molecularly Engineered Zn(II) Phthalocyanines as Hole-transporting Materials. 2016 , 30, 853-857	41
1144	Amorphous TiO2 Compact Layers via ALD for Planar Halide Perovskite Photovoltaics. 2016 , 8, 24310-4	52
1143	Electronic and optical properties of MAPbX perovskites (X = I, Br, Cl): a unified DFT and GW theoretical analysis. 2016 , 18, 27158-27164	108
1142	Recent progress on stability issues of organicihorganic hybrid lead perovskite-based solar cells. 2016 , 6, 89356-89366	57
1141	Perspectives on organolead halide perovskite photovoltaics. 2016 , 6, 032001	4
1140	High-quality perovskite in thick scaffold: a core issue for hole transport material-free perovskite solar cells. 2016 , 61, 1680-1688	15
1139	A perspective on the recent progress in solution-processed methods for highly efficient perovskite solar cells. 2016 , 17, 650-658	26
1138	Hole-Transport Materials for Perovskite Solar Cells. 2016 , 55, 14522-14545	601

1137	Numerical simulations: Toward the design of 27.6% efficient four-terminal semi-transparent perovskite/SiC passivated rear contact silicon tandem solar cell. 2016 , 100, 656-666	35
1136	Low-temperature prepared carbon electrodes for hole-conductor-free mesoscopic perovskite solar cells. 2016 , 218, 84-90	25
1135	PbS quantum dots-induced trap-assisted charge injection in perovskite photodetectors. 2016 , 30, 27-35	79
1134	Enhanced electronic properties in CH3NH3PbI3via LiCl mixing for hole-conductor-free printable perovskite solar cells. 2016 , 4, 16731-16736	72
1133	Structural diversity in substituted-pyridinium iodo- and bromoplumbates: a matter of halide and temperature. 2016 , 18, 8207-8219	20
1132	Investigation of moisture stability and PL characteristics of terpineol-passivated organic I horganic hybrid perovskite. 2016 , 5, 1	21
1131	The effects of electron and hole transport layer with the electrode work function on perovskite solar cells. 2016 , 30, 1650341	18
1130	Large Planar EConjugated Porphyrin for Interfacial Engineering in p-i-n Perovskite Solar Cells. 2016 , 8, 27438-27443	56
1129	Formulation engineering for optimizing ternary electron acceptors exemplified by isomeric PC71BM in planar perovskite solar cells. 2016 , 4, 18776-18782	22
1128	Near-Infrared Photoresponse of One-Sided Abrupt MAPbI3/TiO2 Heterojunction through a Tunneling Process. 2016 , 26, 8545-8554	21
1127	Constructing water-resistant CH3NH3PbI3 perovskite films via coordination interaction. 2016 , 4, 17018-17024	1 69
1126	p-type Li, Cu-codoped NiOx hole-transporting layer for efficient planar perovskite solar cells. 2016 , 24, A1349-A1359	58
1125	Nano-structured CuO-Cu2O Complex Thin Film for Application in CH3NH3PbI3 Perovskite Solar Cells. 2016 , 11, 402	50
1124	Solar Energy Conversion in Photoelectrochemical Systems. 2016 , 67-143	4
1123	Air-stable, hole-conductor-free high photocurrent perovskite solar cells with CH3NH3PbI3NiO nanoparticles composite. 2016 , 27, 535-544	61
1122	Excellent green but less impressive blue luminescence from CsPbBr3 perovskite nanocubes and nanoplatelets. 2016 , 27, 325708	87
1121	Optimization of PbI2/MAPbI3 Perovskite Composites by Scanning Electrochemical Microscopy. 2016 , 120, 19890-19895	42
1120	Enhancing Efficiency of Perovskite Solar Cells via N-doped Graphene: Crystal Modification and Surface Passivation. 2016 , 28, 8681-8686	228

1119	Fast self-diffusion of ions in CH3NH3PbI3: the interstiticaly mechanism versus vacancy-assisted mechanism. 2016 , 4, 13105-13112	53
1118	High Performance Perovskite Solar Cells. 2016 , 3, 1500201	88
1117	First-Principles Modeling of Organohalide Thin Films and Interfaces. 2016 , 19-52	4
1116	Hexadecafluorophthalocyaninatocopper as an electron conductor for high-efficiency fullerene-free planar perovskite solar cells. 2016 , 157, 510-516	7
1115	One-step fabrication of a mixed-halide perovskite film for a high-efficiency inverted solar cell and module. 2016 , 4, 13525-13533	72
1114	Novel organic-perovskite hybrid structure forward photo field effect transistor. 2016 , 38, 158-163	30
1113	Towards nanostructured perovskite solar cells with enhanced efficiency: Coupled optical and electrical modeling. 2016 , 137, 364-370	38
1112	Band Edge Energies and Excitonic Transition Probabilities of Colloidal CsPbX3 (X = Cl, Br, I) Perovskite Nanocrystals. 2016 , 1, 665-671	325
1111	Advances in the Application of Atomic Layer Deposition for Organometal Halide Perovskite Solar Cells. 2016 , 3, 1600505	18
1110	Spontaneous configurational evolution induced by an in situ self-formed p-type CuI interface layer in perovskite solar cells. 2016 , 6, 82759-82762	7
1109	Cu2O particles mediated growth of perovskite for high efficient hole-transporting-layer free solar cells in ambient conditions. 2016 , 157, 937-942	29
1108	Internal resistance of perovskite solar cells under low illuminance conditions. 2016,	
1107	Interface engineering via an insulating polymer for highly efficient and environmentally stable perovskite solar cells. 2016 , 52, 11355-11358	51
1106	Ambient Air Synthesis of Hole Transport Layer Free CH3NH3PbI3 Solar Cells. 2016 , 864, 149-153	
1105	Interface modification for organic and perovskite solar cells. 2016 , 59, 743-756	21
1104	Potentials and challenges towards application of perovskite solar cells. 2016 , 59, 769-778	13
1103	Characteristics of Perovskite Solar Cells under Low-Illuminance Conditions. 2016 , 120, 18986-18990	33
1102	All-Inorganic Perovskite Solar Cells. <i>Journal of the American Chemical Society</i> , 2016 , 138, 15829-15832 16.4	700

1101	Review on charge transfer and chemical activity of TiO 2 : Mechanism and applications. 2016 , 91, 183-202	58
1100	Carrier Decay Properties of Mixed Cation Formamidinium-Methylammonium Lead Iodide Perovskite [HC(NH)][CHNH]PbI Nanorods. 2016 , 7, 5036-5043	56
1099	Carbon-Based CsPbBr Perovskite Solar Cells: All-Ambient Processes and High Thermal Stability. 2016 , 8, 33649-33655	208
1098	Flame-made ultra-porous TiO layers for perovskite solar cells. 2016 , 27, 505403	9
1097	Effective-mass model and magneto-optical properties in hybrid perovskites. 2016 , 6, 28576	88
1096	Potential of perovskite solar cells for power sources of IoT applications. 2016,	1
1095	Tuning PbI2 layers by n-butanol additive for improving CH3NH3PbI3 light harvesters of perovskite solar cells. 2016 , 6, 89609-89613	12
1094	Preparation and Characterization of CH3NH3PbI3 Perovskite Deposited onto Polyacrylonitrile (PAN) Nanofiber Substrates. 2016 , 45, 312-314	8
1093	Highly stabilized perovskite solar cell prepared using vacuum deposition. 2016 , 6, 93525-93531	9
1092	Domain-dependent electronic structure and optical absorption property in hybrid organic-inorganic perovskite. 2016 , 18, 27358-27365	9
1091	Evidence for reduced charge recombination in carbon nanotube/perovskite-based active layers. 2016 , 662, 35-41	33
1090	Advanced Materials for Biomedical Engineering Applications. 2016 , 384-420	
1089	Advances in Perovskite Solar Cells. 2016 , 3, 1500324	397
1088	New advances in small molecule hole-transporting materials for perovskite solar cells. 2016 , 27, 1293-1303	16
1087	The effect of moisture on the structures and properties of lead halide perovskites: a first-principles theoretical investigation. 2016 , 18, 23174-83	71
1086	Morphology Engineering for High-Performance and Multicolored Perovskite Light-Emitting Diodes with Simple Device Structures. 2016 , 12, 4412-20	95
1085	Influences of bulk and surface recombinations on the power conversion efficiency of perovskite solar cells. 2016 , 49, 275106	1
1084	Low-cost and Efficient Hole-Transport-Material-free perovskite solar cells employing controllable electron-transport layer based on P25 nanoparticles. 2016 , 213, 83-88	30

(2016-2016)

1083	6, 1600664	46
1082	Soluble butyl substituted copper phthalocyanine as alternative hole-transporting material for solution processed perovskite solar cells. 2016 , 212, 929-933	36
1081	A study on utilizing different metals as the back contact of CH3NH3PbI3 perovskite solar cells. 2016 , 4, 13488-13498	114
1080	An amorphous precursor route to the conformable oriented crystallization of CH3NH3PbBr3 in mesoporous scaffolds: toward efficient and thermally stable carbon-based perovskite solar cells. 2016 , 4, 12897-12912	63
1079	Few-Layer MoS2 Flakes as Active Buffer Layer for Stable Perovskite Solar Cells. 2016 , 6, 1600920	135
1078	Photovoltaic Diode Effect Induced by Positive Bias Poling of Organic Layer-Mediated Interface in Perovskite Heterostructure HC(NH2)2PbI3/TiO2. 2016 , 3, 1600267	9
1077	Highly Efficient, Reproducible, Uniform (CH3 NH3)PbI3 Layer by Processing Additive Dripping for Solution-Processed Planar Heterojunction Perovskite Solar Cells. 2016 , 11, 2399-405	5
1076	Using elemental Pb surface as a precursor to fabricate large area CH3NH3PbI3 perovskite solar cells. 2016 , 389, 540-546	26
1075	Chemical Trends of Electronic Properties of Two-Dimensional Halide Perovskites and Their Potential Applications for Electronics and Optoelectronics. 2016 , 120, 24682-24687	32
1074	High Performance of Perovskite Solar Cells via Catalytic Treatment in Two-Step Process: The Case of Solvent Engineering. 2016 , 8, 30107-30115	20
1073	Lochtransportmaterialien f⊞Perowskit-Solarzellen. 2016 , 128, 14740-14764	54
1072	Optimization of Lead-free OrganicIhorganic Tin(II) Halide Perovskite Semiconductors by Scanning Electrochemical Microscopy. 2016 , 220, 205-210	34
1071	Optoelectronic modelling of perovskite solar cells under humid conditions and their correlation with power losses to quantify material degradation. 2016 , 39, 258-266	8
1070	Colloidal Precursor-Induced Growth of Ultra-Even CHNHPbI for High-Performance Paintable Carbon-Based Perovskite Solar Cells. 2016 , 8, 30184-30192	47
1069	Intrinsic and Extrinsic Charge Transport in CH3NH3PbI3 Perovskites Predicted from First-Principles. 2016 , 7, 19968	103
1068	Efficient semi-transparent planar perovskite solar cells using a ⊞olecular glue□ 2016 , 30, 542-548	54
1067	Controlled Synthesis of Lead-Free and Stable Perovskite Derivative Cs2SnI6 Nanocrystals via a Facile Hot-Injection Process. 2016 , 28, 8132-8140	239
1066	Silver nanoparticle plasmonic effects on hole-transport material-free mesoporous heterojunction perovskite solar cells. 2016 , 139, 475-483	28

1065	Synthesis and characterization of tetratriphenylamine Zn phthalocyanine as hole transporting material for perovskite solar cells. 2016 , 140, 60-65	27
1064	Improved efficiency of solution-processed bulk-heterojunction organic solar cells and planar-heterojunction perovskite solar cells with efficient hole-extracting Si nanocrystals. 2016 , 6, 104962-104	1968
1063	Manipulating multicrystalline grain size in CH3NH3PbI3 thin films for application in photovoltaics. 2016 , 139, 518-523	15
1062	Structure-Tuned Lead Halide Perovskite Nanocrystals. 2016 , 28, 566-73	196
1061	Fast Diffusion of Native Defects and Impurities in Perovskite Solar Cell Material CH3NH3PbI3. 2016 , 28, 4349-4357	112
1060	Numerical simulation and light trapping in perovskite solar cell. 2016 , 6, 025507	14
1059	Polyethylenimine as a dual functional additive for electron transporting layer in efficient solution processed planar heterojunction perovskite solar cells. 2016 , 6, 57793-57798	19
1058	Nb2O5 hole blocking layer for hysteresis-free perovskite solar cells. 2016 , 181, 103-107	39
1057	Pure- or mixed-solvent assisted treatment for crystallization dynamics of planar lead halide perovskite solar cells. 2016 , 155, 166-175	16
1056	Curing of degraded MAPbI3 perovskite films. 2016 , 6, 60620-60625	13
1055	Insight into the CH3NH3PbI3/C interface in hole-conductor-free mesoscopic perovskite solar cells. 2016 , 8, 14163-70	19
1054	Achieving Ultrafast Hole Transfer at the Monolayer MoS2 and CH3NH3PbI3 Perovskite Interface by Defect Engineering. 2016 , 10, 6383-91	90
1053	Tin chloride perovskite-sensitized core/shell photoanode solar cell with spiro-MeOTAD hole transport material for enhanced solar light harvesting. 2016 , 20, 2633-2642	10
1052	Improving the efficiency of inverted mixed-organic-cation perovskite absorber based photovoltaics by tailing the surface roughness of PEDOT: PSS thin film. 2016 , 134, 445-451	31
1051	Ultralong Perovskite Microrods: One- versus Two-Step Synthesis and Enhancement of Hole-Transfer During Light Soaking. 2016 , 120, 12273-12283	15
1050	Electroabsorption Spectroscopy Measurements of the Exciton Binding Energy, ElectronHole Reduced Effective Mass, and Band Gap in the Perovskite CH3NH3PbI3. 2016 , 3, 1060-1068	82
1049	Is CH3NH3PbI3 Polar?. 2016 , 7, 2412-9	116
1048	Atomic Layer Deposition of TiO2 for a High-Efficiency Hole-Blocking Layer in Hole-Conductor-Free Perovskite Solar Cells Processed in Ambient Air. 2016 , 8, 17999-8007	55

1047	Highly Efficient Organic Hole Transporting Materials for Perovskite and Organic Solar Cells with Long-Term Stability. 2016 , 28, 686-93	151
1046	Oxidized Ni/Au Transparent Electrode in Efficient CH3 NH3 PbI3 Perovskite/Fullerene Planar Heterojunction Hybrid Solar Cells. 2016 , 28, 3290-7	50
1045	Advances in the structure and materials of perovskite solar cells. 2016 , 42, 625-639	10
1044	Improved morphology and enhanced stability via solvent engineering for planar heterojunction perovskite solar cells. 2016 , 31, 142-148	36
1043	Trap States and Their Dynamics in Organometal Halide Perovskite Nanoparticles and Bulk Crystals. 2016 , 120, 3077-3084	105
1042	A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. 2016 , 4, 6772-6801	655
1041	Dark-blue mirror-like perovskite dense films for efficient organicIhorganic hybrid solar cells. 2016 , 4, 3689-3696	5
1040	Recent progress in electron transport layers for efficient perovskite solar cells. 2016 , 4, 3970-3990	393
1039	High-performance, stable and low-cost mesoscopic perovskite (CH3NH3PbI3) solar cells based on poly(3-hexylthiophene)-modified carbon nanotube cathodes. 2016 , 9, 71-80	34
1038	Investigating relation of photovoltaic factors with properties of perovskite films based on various solvents. 2016 , 21, 51-61	54
1037	Identification and characterization of the intermediate phase in hybrid organic-inorganic MAPbI3 perovskite. 2016 , 45, 3806-13	212
1036	Recent progress and challenges of organometal halide perovskite solar cells. 2016 , 79, 026501	97
1035	Dynamic Growth of Pinhole-Free Conformal CH3NH3PbI3 Film for Perovskite Solar Cells. 2016 , 8, 4684-90	44
1034	Perovskite sensitized solar cell using solid polymer electrolyte. 2016 , 41, 2847-2852	30
1033	A perovskite cell with a record-high-V(oc) of 1.61 V based on solvent annealed CH3NH3PbBr3/ICBA active layer. 2016 , 8, 4077-85	100
1032	Flexible, hole transporting layer-free and stable CH 3 NH 3 PbI 3 /PC 61 BM planar heterojunction perovskite solar cells. 2016 , 30, 281-288	60
1031	Guanidinium: A Route to Enhanced Carrier Lifetime and Open-Circuit Voltage in Hybrid Perovskite Solar Cells. 2016 , 16, 1009-16	400
1030	A highly photoconductive composite prepared by incorporating polyoxometalate into perovskite for photodetection application. 2016 , 52, 3304-7	32

1029	Self-powered, ultraviolet-visible perovskite photodetector based on TiO2 nanorods. 2016 , 6, 6205-6208	40
1028	PbCl2-assisted film formation for high-efficiency heterojunction perovskite solar cells. 2016 , 6, 648-655	16
1027	Color-Tuned Perovskite Films Prepared for Efficient Solar Cell Applications. 2016 , 120, 42-47	83
1026	Effect of cesium chloride modification on the film morphology and UV-induced stability of planar perovskite solar cells. 2016 , 4, 11688-11695	84
1025	Using a low-temperature carbon electrode for preparing hole-conductor-free perovskite heterojunction solar cells under high relative humidity. 2016 , 8, 7017-23	107
1024	Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. 2016 , 45, 655-89	1049
1023	Perovskite Solar Cells Based on Low-Temperature Processed Indium Oxide Electron Selective Layers. 2016 , 8, 8460-6	100
1022	A low-temperature processed flower-like TiO2 array as an electron transport layer for high-performance perovskite solar cells. 2016 , 4, 6521-6526	36
1021	Atomistic investigation into the mechanical behaviour of crystalline and amorphous TiO2 nanotubes. 2016 , 6, 28121-28129	10
1020	Copolymers based on thiazolothiazole-dithienosilole as hole-transporting materials for high efficient perovskite solar cells. 2016 , 33, 142-149	27
1019	Photoferroelectric and Photopiezoelectric Properties of Organometal Halide Perovskites. 2016 , 7, 1460-5	59
1018	Organohalide Lead Perovskites for Photovoltaic Applications. 2016 , 7, 851-66	125
1017	Zero-Dimensional Hybrid Organic-Inorganic Halide Perovskite Modeling: Insights from First Principles. 2016 , 7, 888-99	35
1016	Super-ion inspired colorful hybrid perovskite solar cells. 2016 , 4, 4728-4737	74
1015	Bulk heterojunction perovskite P CBM solar cells with high fill factor. 2016 , 10, 196-200	476
1014	Reversible Healing Effect of Water Molecules on Fully Crystallized MetalHalide Perovskite Film. 2016 , 120, 4759-4765	45
1013	Surface Properties of CH3NH3PbI3 for Perovskite Solar Cells. 2016 , 49, 554-61	119
1012	Spray reaction prepared FA1NCsxPbI3 solid solution as a light harvester for perovskite solar cells with improved humidity stability. 2016 , 6, 14792-14798	77

(2016-2016)

1011	perovskites. 2016 , 8, 11426-31	69
1010	Fabrication of lead halide perovskite solar cells by annealing spin-coated PbI2thin films in CH3NH3I vapor. 2016 , 55, 02BF11	4
1009	Solvent-extraction crystal growth for highly efficient carbon-based mesoscopic perovskite solar cells free of hole conductors. 2016 , 4, 3872-3878	68
1008	Organohalide Perovskites for Solar Energy Conversion. 2016 , 49, 545-53	122
1007	A modified sequential deposition method for fabrication of perovskite solar cells. 2016 , 126, 243-251	33
1006	sec-Butyl alcohol assisted pinhole-free perovskite film growth for high-performance solar cells. 2016 , 4, 3438-3445	40
1005	Electrochemical recycling of lead from hybrid organicIhorganic perovskites using deep eutectic solvents. 2016 , 18, 2946-2955	35
1004	Fine control of perovskite-layered morphology and composition via sequential deposition crystallization process towards improved perovskite solar cells. 2016 , 311, 130-136	25
1003	Phase transition kinetics and surface binding states of methylammonium lead iodide perovskite. 2016 , 18, 7284-92	64
1002	Solution-Processed CuS NPs as an Inorganic Hole-Selective Contact Material for Inverted Planar Perovskite Solar Cells. 2016 , 8, 7800-5	103
1001	Cross-stacked superaligned carbon nanotube electrodes for efficient hole conductor-free perovskite solar cells. 2016 , 4, 5569-5577	82
1000	A novel dimethylformamide (DMF) free bar-cast method to deposit organolead perovskite thin films with improved stability. 2016 , 52, 4301-4	15
999	Near room temperature approaches for the preparation of air-stable and crystalline CH3NH3PbI3. 2016 , 173, 491-497	1
998	Graphene in perovskite solar cells: device design, characterization and implementation. 2016 , 4, 6185-6235	149
997	Self limiting atomic layer deposition of Al2O3 on perovskite surfaces: a reality?. 2016, 8, 7459-65	24
996	Improving Efficiency of Blue Organic Light-Emitting Diode with Sulfobutylated Lignin Doped PEDOT as Anode Buffer Layer. 2016 , 4, 2004-2011	11
995	Plasmonic Nanoparticle Enhancement of Solution-Processed Solar Cells: Practical Limits and Opportunities. 2016 , 3, 158-173	85
994	Organic-inorganic and all-inorganic lead halide nanoparticles [Invited]. 2016 , 24, A285-301	58

993	Stable and efficient star-shaped hole transporting materials with EDOT moiety as side arm for perovskite solar cells. 2016 , 126, 179-185	20
992	Designing nanobowl arrays of mesoporous TiOlas an alternative electron transporting layer for carbon cathode-based perovskite solar cells. 2016 , 8, 6393-402	80
991	Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification. 2016 , 9, 490-498	450
990	Role of Ferroelectric Nanodomains in the Transport Properties of Perovskite Solar Cells. 2016 , 16, 988-92	64
989	Unraveling Charge Carriers Generation, Diffusion, and Recombination in Formamidinium Lead Triiodide Perovskite Polycrystalline Thin Film. 2016 , 7, 204-10	58
988	Perovskite solar cells based on bottom-fused TiO2 nanocones. 2016 , 4, 1520-1530	30
987	Rapid combinatorial screening of inkjet-printed alkyl-ammonium cations in perovskite solar cells. 2016 , 164, 472-475	64
986	Progress in research on the stability of organometal perovskite solar cells. 2016 , 123, 74-87	100
985	Organometal halide perovskite thin films and solar cells by vapor deposition. 2016 , 4, 6693-6713	177
984	Tetra methyl substituted Cu(II) phthalocyanine as alternative hole transporting material for organometal halide perovskite solar cells. 2016 , 360, 767-771	46
983	Influence of organic cations on high-performance CH 3 NH 3 PbI 3 based photovoltaics. 2016 , 145, 375-381	33
982	Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers. 2016 , 9, 12-30	396
981	A dual-functional asymmetric squaraine-based low band gap hole transporting material for efficient perovskite solar cells. 2016 , 8, 6335-40	28
980	Structural and electrical properties of Nb doped TiO2 films prepared by the solgel layer-by-layer technique. 2016 , 74, 15-20	13
979	Organometal halide perovskite solar cells: degradation and stability. 2016 , 9, 323-356	1188
978	Interfacial modification of hole transport layers for efficient large-area perovskite solar cells achieved via blade-coating. 2016 , 144, 309-315	75
977	Lead-free pseudo-three-dimensional organicIhorganic iodobismuthates for photovoltaic applications. 2017 , 1, 308-316	72
976	Tailoring interface of lead-halide perovskite solar cells. 2017 , 10, 1471-1497	35

975	Ultrasmooth Perovskite Film via Mixed Anti-Solvent Strategy with Improved Efficiency. 2017, 9, 3667-3676	86
974	Crystallization process of perovskite modified by adding lead acetate in precursor solution for better morphology and higher device efficiency. 2017 , 43, 189-195	12
973	Exploring stability of formamidinium lead trihalide for solar cell application. 2017 , 62, 249-255	27
972	Design of Lead-Free Inorganic Halide Perovskites for Solar Cells via Cation-Transmutation. <i>Journal of the American Chemical Society</i> , 2017 , 139, 2630-2638	490
971	Lead acetate film as precursor for two-step deposition of CH3NH3PbI3. 2017 , 89, 89-96	6
970	Applications of cesium in the perovskite solar cells. 2017 , 38, 011003	23
969	Moving into the domain of perovskite sensitized solar cell. 2017 , 72, 907-915	19
968	A review of materials selection for optimized efficiency in quantum dot sensitized solar cells: A simplified approach to reviewing literature data. 2017 , 73, 408-422	22
967	Nucleation mediated interfacial precipitation for architectural perovskite films with enhanced photovoltaic performance. 2017 , 9, 2569-2578	22
966	Substrate-dependent electronic structure and film formation of MAPbI perovskites. 2017 , 7, 40267	189
965	Probe Decomposition of Methylammonium Lead Iodide Perovskite in N and O by in Situ Infrared Spectroscopy. 2017 , 121, 1169-1174	28
964	Full printable perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO (carbon nanotubes) architecture. 2017 , 144, 158-165	56
963	Excitons in Orthorhombic and Tetragonal Hybrid OrganicIhorganic Perovskites. 2017, 121, 3156-3160	7
962	Charge Carrier Trapping at Surface Defects of Perovskite Solar Cell Absorbers: A First-Principles Study. 2017 , 8, 742-746	181
961	Carbon-Based Perovskite Solar Cells without Hole Transport Materials: The Front Runner to the Market?. 2017 , 29, 1603994	199
960	Advances in hole transport materials engineering for stable and efficient perovskite solar cells. 2017 , 34, 271-305	278
959	Modeling and analysis of HTM-free perovskite solar cells based on ZnO electron transport layer. 2017 , 104, 167-177	36
958	Effect of the Microstructure of the Functional Layers on the Efficiency of Perovskite Solar Cells. 2017 , 29, 1601715	80

957	Effect of hole-transporting materials on the photovoltaic performance and stability of all-ambient-processed perovskite solar cells. 2017 , 26, 584-591	18
956	The synergistic effect of H2O and DMF towards stable and 20% efficiency inverted perovskite solar cells. 2017 , 10, 808-817	315
955	Between the Sheets: Postsynthetic Transformations in Hybrid Perovskites. 2017 , 29, 1868-1884	67
954	Highly Efficient Electron-Selective Layer Free Perovskite Solar Cells by Constructing Effective pli Heterojunction. 2017 , 1, 1600027	59
953	Perovskite-Like Organic-Inorganic Hybrid Lead Iodide with a Large Organic Cation Incorporated within the Layers. 2017 , 56, 2467-2472	18
952	Atomistic modelling Impact and opportunities in thin-film photovoltaic solar cell technologies. 2017 , 43, 774-796	4
951	Synergy of ammonium chloride and moisture on perovskite crystallization for efficient printable mesoscopic solar cells. 2017 , 8, 14555	234
950	Strong Interaction at the Perovskite/TiO2 Interface Facilitates Ultrafast Photoinduced Charge Separation: A Nonadiabatic Molecular Dynamics Study. 2017 , 121, 3797-3806	60
949	Brief review of emerging photovoltaic absorbers. 2017 , 4, 8-15	45
948	The rapid evolution of highly efficient perovskite solar cells. 2017 , 10, 710-727	811
71	···	011
947	Electrospray technique in fabricating perovskite-based hybrid solar cells under ambient conditions. 2017 , 7, 10985-10991	12
	Electrospray technique in fabricating perovskite-based hybrid solar cells under ambient conditions.	
947	Electrospray technique in fabricating perovskite-based hybrid solar cells under ambient conditions. 2017, 7, 10985-10991 CHNHPbI grain growth and interfacial properties in meso-structured perovskite solar cells	12
947	Electrospray technique in fabricating perovskite-based hybrid solar cells under ambient conditions. 2017, 7, 10985-10991 CHNHPbI grain growth and interfacial properties in meso-structured perovskite solar cells fabricated by two-step deposition. 2017, 18, 253-262 Inhibition of a structural phase transition in one-dimensional organometal halide perovskite	12 36
947 946 945	Electrospray technique in fabricating perovskite-based hybrid solar cells under ambient conditions. 2017, 7, 10985-10991 CHNHPbI grain growth and interfacial properties in meso-structured perovskite solar cells fabricated by two-step deposition. 2017, 18, 253-262 Inhibition of a structural phase transition in one-dimensional organometal halide perovskite nanorods grown inside porous silicon nanotube templates. 2017, 95,	12 36 11
947946945944	Electrospray technique in fabricating perovskite-based hybrid solar cells under ambient conditions. 2017, 7, 10985-10991 CHNHPbl grain growth and interfacial properties in meso-structured perovskite solar cells fabricated by two-step deposition. 2017, 18, 253-262 Inhibition of a structural phase transition in one-dimensional organometal halide perovskite nanorods grown inside porous silicon nanotube templates. 2017, 95, Simulation of perovskite solar cell with P3HT hole-transporting materials. 2017, 11, 032510 Two New Polymeric Haloplumbates Directed by Diammonium Cations: Structures and Properties.	12 36 11 20
947946945944943	Electrospray technique in fabricating perovskite-based hybrid solar cells under ambient conditions. 2017, 7, 10985-10991 CHNHPbl grain growth and interfacial properties in meso-structured perovskite solar cells fabricated by two-step deposition. 2017, 18, 253-262 Inhibition of a structural phase transition in one-dimensional organometal halide perovskite nanorods grown inside porous silicon nanotube templates. 2017, 95, Simulation of perovskite solar cell with P3HT hole-transporting materials. 2017, 11, 032510 Two New Polymeric Haloplumbates Directed by Diammonium Cations: Structures and Properties. 2017, 28, 1551-1564 Synthesizing conditions for organic-inorganic hybrid perovskite using methylammonium lead	12 36 11 20 8

(2017-2017)

939	Recent progress of dopant-free organic hole-transporting materials in perovskite solar cells. 2017 , 38, 011005	21
938	Calculation studies on point defects in perovskite solar cells. 2017 , 38, 011006	16
937	CHNHPbICl under Different Fabrication Strategies: Electronic Structures and Energy-Level Alignment with an Organic Hole Transport Material. 2017 , 9, 7859-7865	17
936	A contact study in hole conductor free perovskite solar cells with low temperature processed carbon electrodes. 2017 , 7, 20732-20737	18
935	Novel electronic properties of a new MoS 2 /TiO 2 heterostructure and potential applications in solar cells and photocatalysis. 2017 , 414, 34-40	32
934	Efficient Perovskite Solar Cells Based on a Solution Processable Nickel(II) Phthalocyanine and Vanadium Oxide Integrated Hole Transport Layer. 2017 , 7, 1602556	78
933	Controlled Growth of CH NH PbI Using a Dynamically Dispensed Spin-Coating Method: Improving Efficiency with a Reproducible PbI Blocking Layer. 2017 , 10, 2677-2684	13
932	Graphene oxide as an efficient hole-transporting material for high-performance perovskite solar cells with enhanced stability. 2017 , 5, 9852-9858	76
931	Metal-Nanowire-Electrode-Based Perovskite Solar Cells: Challenging Issues and New Opportunities. 2017 , 7, 1602751	44
930	Development of electron and hole selective contact materials for perovskite solar cells. 2017 , 28, 1144-1152	11
929	Amino-functionalized conjugated polymer electron transport layers enhance the UV-photostability of planar heterojunction perovskite solar cells. 2017 , 8, 4587-4594	39
928	Solution-processable electron transport layer for efficient hybrid perovskite solar cells beyond fullerenes. 2017 , 169, 78-85	30
927	A Band-Edge Potential Gradient Heterostructure to Enhance Electron Extraction Efficiency of the Electron Transport Layer in High-Performance Perovskite Solar Cells. 2017 , 27, 1700878	58
926	Lead-free organicIhorganic hybrid perovskite heterojunction composites for photocatalytic applications. 2017 , 7, 2753-2762	19
925	Recent progress in hybrid perovskite solar cells based on n-type materials. 2017 , 5, 10092-10109	118
924	Unraveling the multifunctional capabilities of PCBM thin films in inverted-type CH 3 NH 3 PbI 3 based photovoltaics. 2017 , 169, 40-46	16
923	Recent progress and remaining challenges in organometallic halides based perovskite solar cells. 2017 , 78, 1-14	39
922	Relationship between ion migration and interfacial degradation of CHNHPbI perovskite solar cells under thermal conditions. 2017 , 7, 1200	93

921	Rashba Band Splitting in Organohalide Lead Perovskites: Bulk and Surface Effects. 2017 , 8, 2247-2252	76
920	Efficient planar perovskite solar cells using halide Sr-substituted Pb perovskite. 2017 , 36, 213-222	83
919	Influence of Schottky contact on the C-V and J-V characteristics of HTM-free perovskite solar cells. 2017 , 8, 85501	16
918	A large-area hole-conductor-free perovskite solar cell based on a low-temperature carbon counter electrode. 2017 , 96, 196-200	9
917	Carbon-Based Materials Used for Perovskite Solar Cells. 2017 , 3, 75-88	21
916	Control of preferred orientation with slow crystallization for carbon-based mesoscopic perovskite solar cells attaining efficiency 15%. 2017 , 5, 739-747	69
915	Size-controlled CdSe quantum dots to boost light harvesting capability and stability of perovskite photovoltaic cells. 2017 , 9, 10075-10083	16
914	First principles study of 2D layered organohalide tin perovskites. 2017 , 146, 234703	15
913	Femtosecond Charge-Injection Dynamics at Hybrid Perovskite Interfaces. 2017 , 18, 2381-2389	21
912	Tunability of Band Gap and Photoluminescence in CHNHPbI Films by Anodized Aluminum Oxide Templates. 2017 , 7, 1918	23
911	Optimization of a compact layer of TiO2via atomic-layer deposition for high-performance perovskite solar cells. 2017 , 1, 1533-1540	53
910	Performance enhancement of perovskite solar cell by controlling deposition temperature of copper phthalocyanine as a dopant-free hole transporting layer. 2017 , 48, 211-216	19
909	Hetero-epitaxial growth control of single-crystalline anatase TiO2 nanosheets predominantly exposing the {001} facet on oriented crystalline substrates. 2017 , 19, 4734-4741	3
908	Electrochemistry and Electrochemiluminescence of Organometal Halide Perovskite Nanocrystals in Aqueous Medium. <i>Journal of the American Chemical Society</i> , 2017 , 139, 8772-8776	121
907	The Rashba effect and indirect electron-hole recombination in hybrid organic-inorganic perovskites. 2017 , 19, 14907-14912	25
906	Understanding perovskite formation through the intramolecular exchange method in ambient conditions. 2017 , 7, 022002	12
905	Two cyclohexanofullerenes used as electron transport materials in perovskite solar cells. 2017 , 468, 146-151	9
904	Temperature Dependent Characteristics of Perovskite Solar Cells. 2017 , 2, 4469-4477	19

(2017-2017)

903	An efficient copper phthalocyanine additive of perovskite precursor for improving the photovoltaic performance of planar perovskite solar cells. 2017 , 359, 303-310	32
902	Organic/Bismuth Iodides Hybrids: Structural Perturbation of Substitutes and Their Photocurrent Response Properties. 2017 , 28, 983-994	15
901	Current state and perspectives for organo-halide perovskite solar cells. Part 1. Crystal structures and thin film formation, morphology, processing, degradation, stability improvement by carbon nanotubes. A review. 2017 , 3, 1-25	20
900	Recent efficient strategies for improving the moisture stability of perovskite solar cells. 2017 , 5, 15447-15459	104
899	SiW -TiO Mesoporous Layer for Enhanced Electron-Extraction Efficiency and Conductivity in Perovskite Solar Cells. 2017 , 10, 2218-2225	19
898	Hydrazine sensors development based on a glassy carbon electrode modified with a nanostructured TiO2 films by electrochemical approach. 2017 , 184, 2123-2129	45
897	Ag-Incorporated Organic-Inorganic Perovskite Films and Planar Heterojunction Solar Cells. 2017 , 17, 3231-3237	127
896	Microwave-synthesized tin oxide nanocrystals for low-temperature solution-processed planar junction organo-halide perovskite solar cells. 2017 , 5, 7759-7763	37
895	Acridine-based novel hole transporting material for high efficiency perovskite solar cells. 2017 , 5, 7603-7611	44
894	Fast Fabrication of a Stable Perovskite Solar Cell with an Ultrathin Effective Novel Inorganic Hole Transport Layer. 2017 , 33, 3624-3634	15
893	Bose E instein oscillators and the excitation mechanism of free excitons in 2D layered organic I horganic perovskites. 2017 , 7, 18366-18373	7
892	Organic-Inorganic Copper(II)-Based Material: A Low-Toxic, Highly Stable Light Absorber for Photovoltaic Application. 2017 , 8, 1804-1809	79
891	Synthesis and characterization of perovskite FAPbBr3⊠I x thin films for solar cells. 2017 , 148, 835-844	16
890	Potassium-chemical synthesis of 3D graphene from CO2 and its excellent performance in HTM-free perovskite solar cells. 2017 , 5, 7749-7752	46
889	Bulk heterojunction perovskite solar cells based on room temperature deposited hole-blocking layer: Suppressed hysteresis and flexible photovoltaic application. 2017 , 351, 123-129	57
888	Enhancement of the hole conducting effect of NiO by a N blow drying method in printable perovskite solar cells with low-temperature carbon as the counter electrode. 2017 , 9, 5475-5482	30
887	Boron Doping of Multiwalled Carbon Nanotubes Significantly Enhances Hole Extraction in Carbon-Based Perovskite Solar Cells. 2017 , 17, 2496-2505	138
886	Tailoring a compact and stable Langmuir bi-dimensional PbX-based layered perovskite film at the air-water interface and on solid support. 2017 , 498, 194-201	O

885	Thermally Induced Crystallization of High Quality CH NH PbI Film with Large Grains for Highly Efficient Perovskite Solar Cells. 2017 , 23, 5658-5662	6
884	High Members of the 2D Ruddlesden-Popper Halide Perovskites: Synthesis, Optical Properties, and Solar Cells of (CH3(CH2)3NH3)2(CH3NH3)4Pb5I16. 2017 , 2, 427-440	285
883	An ammonia modified PEDOT: PSS for interfacial engineering in inverted planar perovskite solar cells. 2017 , 46, 22-27	28
882	Current status of electron transport layers in perovskite solar cells: materials and properties. 2017 , 7, 17044-17062	218
881	Atomic Layer Deposition Enabled Perovskite/PEDOT Solar Cells in a Regular n ip Architectural Design. 2017 , 4, 1700043	20
880	Nano metal-enhanced power conversion efficiency in CH 3 NH 3 PbI 3 solar cells. 2017 , 103, 16-21	1
879	Molten Salt-Assisted Growth of Perovskite Films with Submillimeter-Sized Grains. 2017, 56, 524-529	3
878	Crystallization process of PbI2 solution in two-step deposition of CH3NH3PbI3 for high-performance perovskite solar cells. 2017 , 161, 444-448	11
877	Shape-Evolution Control of hybrid perovskite CH3NH3PbI3 crystals via solvothermal synthesis. 2017 , 459, 167-172	13
876	Hybrid Perovskite Photovoltaic Devices: Properties, Architecture, and Fabrication Methods. 2017 , 5, 373-401	21
875	Indirect to direct bandgap transition in methylammonium lead halide perovskite. 2017, 10, 509-515	237
874	High Efficiency and High Open Circuit Voltage in Quasi 2D Perovskite Based Solar Cells. 2017 , 27, 1604733	161
873	Preface for the Halide Perovskites Forum. 2017 , 56, 1-2	4
872	Mixed-Organic-Cation (FA)(MA)PbI Planar Perovskite Solar Cells with 16.48% Efficiency via a Low-Pressure Vapor-Assisted Solution Process. 2017 , 9, 2449-2458	80
871	Solution-Processed Nb:SnO Electron Transport Layer for Efficient Planar Perovskite Solar Cells. 2017 , 9, 2421-2429	240
870	Structure-Band Gap Relationships in Hexagonal Polytypes and Low-Dimensional Structures of Hybrid Tin Iodide Perovskites. 2017 , 56, 56-73	158
869	Versatile plasmonic-effects at the interface of inverted perovskite solar cells. 2017, 9, 1229-1236	42
868	Morphology Engineering: A Route to Highly Reproducible and High Efficiency Perovskite Solar Cells. 2017 , 10, 1624-1630	40

(2017-2017)

86	67	Ultrathin Buffer Layers of SnO2 by Atomic Layer Deposition: Perfect Blocking Function and Thermal Stability. 2017 , 121, 342-350	84
80	66	Spacer improvement for efficient and fully printable mesoscopic perovskite solar cells. 2017 , 7, 10118-10123	16
86	65	Mesoporous TiO@N-doped carbon composite nanospheres synthesized by the direct carbonization of surfactants after sol-gel process for superior lithium storage. 2017 , 9, 1539-1546	50
80	64	First principles modelling of perovskite solar cells based on TiO2 and Al2O3: stability and interfacial electronic structure. 2017 , 5, 2339-2345	28
86	63	Depth-resolved band alignments of perovskite solar cells with significant interfacial effects. 2017 , 5, 2563-2571	30
86	52	Lead-Free Hybrid Material with an Exceptional Dielectric Phase Transition Induced by a Chair-to-Boat Conformation Change of the Organic Cation. 2017 , 56, 13078-13085	25
86	51	Vapor-Deposited Perovskites: The Route to High-Performance Solar Cell Production?. 2017 , 1, 431-442	205
86	60	Rapid, cool sintering of wet processed yttria-stabilized zirconia ceramic electrolyte thin films. 2017 , 7, 12458	7
85	59	Highly conductive Na-embedded carbon nanowalls for hole-transport-material-free perovskite solar cells without metal electrodes. 2017 , 5, 24126-24130	18
85	58	Fully functional semi-transparent perovskite solar cell fabricated in ambient air. 2017 , 1, 2120-2127	24
85	57	17% efficient printable mesoscopic PIN metal oxide framework perovskite solar cells using cesium-containing triple cation perovskite. 2017 , 5, 22952-22958	95
85	56	Improved efficiency of perovskite-silicon tandem solar cell near the matched optical absorption between the subcells. 2017 , 50, 405501	5
85	55	TiO Electron Transport Bilayer for Highly Efficient Planar Perovskite Solar Cell. 2017, 13, 1701535	67
85	54	New insights into the electronic structures and optical properties in the orthorhombic perovskite MAPbI3: a mixture of Pb and Ge/Sn. 2017 , 41, 11413-11421	23
85	53	A facilely synthesized apirolhole-transporting material based on spiro[3.3]heptane-2,6-dispirofluorene for efficient planar perovskite solar cells. 2017 , 7, 41903-41908	23
85	52	Modelling and loss analysis of meso-structured perovskite solar cells. 2017 , 122, 083105	19
85	51	Numerical simulation of HTM-free and WOx based perovskite cells: Effects of interface conditions. 2017 ,	
85	50	Effects of TiCl treatment on the structural and electrochemical properties of a porous TiO layer in CHNHPbI perovskite solar cells. 2017 , 19, 26898-26905	16

849	High performance photomultiplication perovskite photodetectors with PC60BM and NPB as the interlayers. 2017 , 51, 200-206	12
848	Enhanced Performance for Planar Perovskite Solar Cells with Samarium-Doped TiO2 Compact Electron Transport Layers. 2017 , 121, 20150-20157	48
847	Controlling Crystallization of All-Inorganic Perovskite Films for Ultralow-Threshold Amplification Spontaneous Emission. 2017 , 9, 32920-32929	20
846	Improvement and Regeneration of Perovskite Solar Cells via Methylamine Gas Post-Treatment. 2017 , 27, 1703060	68
845	Colloidal Synthesis and Photophysics of M3Sb2I9 (M=Cs and Rb) Nanocrystals: Lead-Free Perovskites. 2017 , 129, 14375-14379	52
844	Colloidal Synthesis and Photophysics of M Sb I (M=Cs and Rb) Nanocrystals: Lead-Free Perovskites. 2017 , 56, 14187-14191	143
843	A benzobis(thiadiazole)-based small molecule as a solution-processing electron extraction material in planar perovskite solar cells. 2017 , 5, 10777-10784	22
842	Effect of calcination environments and plasma treatment on structural, optical and electrical properties of FTO transparent thin films. 2017 , 7, 075101	4
841	Hole Conductor Free Organometal Halide Perovskite Solar Cells: Properties and Different Architectures. 2017 , 111-146	
840	Fast Drying Boosted Performance Improvement of Low-Temperature Paintable Carbon-Based Perovskite Solar Cell. 2017 , 5, 9758-9765	28
839	Formation of Stable Tin Perovskites Co-crystallized with Three Halides for Carbon-Based Mesoscopic Lead-Free Perovskite Solar Cells. 2017 , 56, 13819-13823	62
838	Formation of Stable Tin Perovskites Co-crystallized with Three Halides for Carbon-Based Mesoscopic Lead-Free Perovskite Solar Cells. 2017 , 129, 14007-14011	19
837	The interface degradation of planar organicIhorganic perovskite solar cell traced by light beam induced current (LBIC). 2017 , 7, 42973-42978	11
836	Current progress and scientific challenges in the advancement of organicIhorganic lead halide perovskite solar cells. 2017 , 41, 10508-10527	19
835	Comprehensive Study of Sol-Gel versus Hydrolysis-Condensation Methods To Prepare ZnO Films: Electron Transport Layers in Perovskite Solar Cells. 2017 , 9, 26234-26241	24
834	Enhanced UV-light stability of organometal halide perovskite solar cells with interface modification and a UV absorption layer. 2017 , 5, 8682-8687	47
833	In situ strategy to prepare PDPB/SnO2 pl heterojunction with a high photocatalytic activity. 2017 , 7, 24064-24069	15
832	Controlling the crystallization and grain size of sequentially deposited planar perovskite films via the permittivity of the conversion solution. 2017 , 50, 87-93	15

831 Impeding phonon transport through superlattices of organicIhorganic halide perovskites. 2017, 7, 37015-3702@2

830	Charge transport study of perovskite solar cells through constructing electron transport channels. 2017 , 214, 1700089	5
829	Modeling and simulation of band-gap profiling with planar heterojunction of hole-transporting layer-free perovskite solar cells. 2017 , 4, 075505	6
828	Aerosol-Jet-Assisted Thin-Film Growth of CH3NH3PbI3 Perovskites Means to Achieve High Quality, Defect-Free Films for Efficient Solar Cells. 2017 , 7, 1701151	46
827	Electron transport properties in dye-sensitized solar cells with {001} facet-dominant TiO nanoparticles. 2017 , 19, 22129-22140	10
826	Atomic-Level Design of Water-Resistant Hybrid Perovskites for Solar Cells by Using Cluster Ions. 2017 , 8, 3726-3733	10
825	Stabilizing and scaling up carbon-based perovskite solar cells. 2017 , 32, 3011-3020	24
824	Enhancing the Photovoltaic Performance of Perovskite Solar Cells with a Down-Conversion Eu-Complex. 2017 , 9, 26958-26964	59
823	Role of Quantum-Confinement in Anatase Nanosheets. 2017 , 8, 3867-3873	17
822	From colossal magnetoresistance to solar cells: An overview on 66 years of research into perovskites. 2017 , 214, 1700394	11
821	Bromine substitution improves excited-state dynamics in mesoporous mixed halide perovskite films. 2017 , 9, 12005-12013	19
820	EMIMBF-Assisted SnO-Based Planar Perovskite Films for Label-Free Photoelectrochemical Sensing. 2017 , 2, 4341-4346	2
819	High efficiency quasi 2D lead bromide perovskite solar cells using various barrier molecules. 2017 , 1, 1935-1943	74
818	Resonant silicon nanoparticles for enhancement of light absorption and photoluminescence from hybrid perovskite films and metasurfaces. 2017 , 9, 12486-12493	48
817	Ultrafast Electron Dynamics in Solar Energy Conversion. 2017 , 117, 10940-11024	202
816	Influence of Ebridge conjugation on the electrochemical properties within hole transporting materials for perovskite solar cells. 2017 , 9, 12916-12924	26
815	Complementary Methodical Approach for the Analysis of a Perovskite Solar Cell Layered System. 2017 , 23, 1978-1979	1
814	Photon Energy-Dependent Hysteresis Effects in Lead Halide Perovskite Materials. 2017 , 121, 26180-26187	16

813	Improved efficient perovskite solar cells based on Ta-doped TiO nanorod arrays. 2017, 9, 18897-18907	51
812	Segregation of Native Defects to the Grain Boundaries in Methylammonium Lead Iodide Perovskite. 2017 , 8, 5935-5942	40
811	Unique Trapped Dimer State of the Photogenerated Hole in Hybrid Orthorhombic CHNHPbI Perovskite: Identification, Origin, and Implications. 2017 , 17, 7724-7730	14
810	Millisecond-pulsed photonically-annealed tin oxide electron transport layers for efficient perovskite solar cells. 2017 , 5, 24110-24115	32
809	First-Principles Study of Electron Injection and Defects at the TiO/CHNHPbI Interface of Perovskite Solar Cells. 2017 , 8, 5840-5847	22
808	Unraveling the Light-Induced Degradation Mechanisms of CH3NH3PbI3 Perovskite Films. 2017 , 3, 1700158	89
807	. 2017 , 64, 5034-5041	7
806	Ultrasound-spray deposition of multi-walled carbon nanotubes on NiO nanoparticles-embedded perovskite layers for high-performance carbon-based perovskite solar cells. 2017 , 42, 322-333	59
805	Revealing the Influence of Doping and Surface Treatment on the Surface Carrier Dynamics in Hematite Nanorod Photoanodes. 2017 , 9, 41265-41272	29
804	Solution-processed SnO2 thin film for a hysteresis-free planar perovskite solar cell with a power conversion efficiency of 19.2%. 2017 , 5, 24790-24803	119
803	Enhanced photovoltaic properties of perovskite solar cells by TiO homogeneous hybrid structure. 2017 , 4, 170942	10
802	Mechanical and Optical Properties of Cs4BX6 (B = Pb, Sn; $X = Cl$, Br, I) Zero-Dimension Perovskites. 2017 , 121, 27053-27058	48
801	Surface engineering of perovskite films for efficient solar cells. 2017 , 7, 14478	33
800	Low-Cost Perovskite Solar Cells Employing Dimethoxydiphenylamine-Substituted Bistricyclic Aromatic Enes as Hole Transport Materials. 2017 , 10, 3825-3832	30
799	Interplay between Iodide and Tin Vacancies in CsSnI3 Perovskite Solar Cells. 2017, 121, 16447-16453	49
798	Strategies for Improving Efficiency and Stability of Perovskite Solar Cells. 2017 , 2, 3051-3060	3
797	Understanding the physical properties of hybrid perovskites for photovoltaic applications. 2017, 2,	673
796	Novel Perovskite Solar Cell Architecture Featuring Efficient Light Capture and Ultrafast Carrier Extraction. 2017 , 9, 23624-23634	7

795	Planar heterojunction perovskite solar cell based on CdS electron transport layer. 2017 , 636, 512-518	21
794	Temperature-dependent photoluminescence properties of [HC(NH 2) 2]PbI 3 perovskite nanorods. 2017 , 188, 232-234	11
793	Effect of temperature annealing treatments and acceptors in CH3NH3PbI3 perovskite solar cell fabrication. 2017 , 695, 2453-2457	8
792	Nanosheet-based printable perovskite solar cells. 2017 , 159, 518-525	40
791	Solution processed deposition of electron transport layers on perovskite crystal surface modeling based study. 2017 , 394, 488-497	6
790	Efficient spin-coating-free planar heterojunction perovskite solar cells fabricated with successive brush-painting. 2017 , 339, 33-40	42
789	Controlling nucleation, growth, and orientation of metal halide perovskite thin films with rationally selected additives. 2017 , 5, 113-123	92
788	Interplay between nucleation and crystal growth during the formation of CH3NH3PbI3 thin films and their application in solar cells. 2017 , 159, 583-589	46
787	Solution-Processed ZnO-Based Low-Cost (hbox {CH}_{3} hbox {NH}_{3} hbox {PbI}_{3}) Solar Cells by Ambient Air, Hole Transport Layer-Free Synthesis. 2017 , 42, 4317-4325	
786	Efficiency enhancement of hole-conductor-free perovskite solar cell based on ZnO nanostructure by Al doping in ZnO. 2017 , 692, 492-502	29
7 ⁸ 5	Chlorine Incorporation in the CHNHPbI Perovskite: Small Concentration, Big Effect. 2017, 56, 74-83	36
784	Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. 2017 , 68, 234-246	641
783	Clean and flexible synthesis of TiO2 nanocrystallites for dye-sensitized and perovskite solar cells. 2017 , 159, 336-344	7
782	High-resolution patterning of organohalide lead perovskite pixels for photodetectors using orthogonal photolithography. 2017 , 214, 1600302	28
781	Organic-inorganic halide perovskite solar cell with CH3NH3PbI2Br as hole conductor. 2017 , 339, 61-67	27
78o	Manipulating the molecular structure of PEDOT chains through controlling the viscosity of PEDOT:PSS solutions to improve the photovoltaic performance of CH3NH3PbI3 solar cells. 2017 , 161, 7-13	22
779	Carbon-doped titanum dioxide nanocrystals for highly efficient dye-sensitized solar cells. 2017 , 281, 636-641	22
778	DC magnetron sputtered TiO2 thin film as efficient hole blocking layer for perovskite solar cell. 2017 ,	О

777	Recent advances of flexible hybrid perovskite solar cells. 2017 , 71, 593-607	14
776	Charge separation and carrier dynamics in donor-acceptor heterojunction photovoltaic systems. 2017 , 4, 061503	8
775	Novel electronic properties of 2D MoS2/TiO2van der Waals heterostructure. 2017 , 32, 105011	11
774	Parameters affecting morphologies and efficiencies of mesoporous perovskite solars cells. 2017 , 220, 012023	
773	Facile solvothermal method to synthesize hybrid perovskite CH_3NH_3PbX_3 (X = I, Br, Cl) crystals. 2017 , 7, 4156	9
772	Thickness-dependent nonlinear optical properties of CsPbBr perovskite nanosheets. 2017 , 42, 3371-3374	43
771	TiO_2 nanotube/TiO_2 nanoparticle hybrid photoanode for hole-conductor-free perovskite solar cells based on carbon counter electrodes. 2017 , 7, 3322	10
770	The Effect of Solvents on the Performance of CH3NH3PbI3 Perovskite Solar Cells. 2017 , 10, 599	30
769	Influence of the Porosity of the TiO2 Film on the Performance of the Perovskite Solar Cell. 2017 , 2017, 1-10	10
768	Tin oxide as an emerging electron transport medium in perovskite solar cells. 2018 , 179, 102-117	32
767	Yttrium-doped TiO2 nanorod arrays and application in perovskite solar cells for enhanced photocurrent density. 2018 , 651, 117-123	11
766	Organic/Inorganic Metal Halide Perovskite Optoelectronic Devices beyond Solar Cells. 2018 , 5, 1700780	100
765	[(CH)NH]PbX (X = Cl and Br), 2D-Perovskite Related Hybrids with Dielectric Transitions and Broadband Photoluminiscent Emission. 2018 , 57, 3215-3222	26
764	Entire mirror-like perovskite films for high-performance perovskite solar cells: The role of polar anti-solvent sec-pentyl alcohol. 2018 , 57, 133-139	14
763	Slot die coated planar perovskite solar cells via blowing and heating assisted one step deposition. 2018 , 179, 80-86	79
762	Impact of grain boundary defect on performance of perovskite solar cell. 2018 , 79, 46-52	16
761	Growth of Compact CHNHPbI Thin Films Governed by the Crystallization in PbI Matrix for Efficient Planar Perovskite Solar Cells. 2018 , 10, 8649-8658	13
760	Inorganic Hole Transporting Materials for Stable and High Efficiency Perovskite Solar Cells. 2018 , 122, 14039-14063	125

759 Flexible Photovoltaic Systems. **2018**, 105-137

758	Evolution of organometal halide solar cells. 2018 , 35, 74-107	22
757	Ultrafast zero-bias photocurrent and terahertz emission in hybrid perovskites. 2018, 1,	24
756	Recent progress on printable power supply devices and systems with nanomaterials. 2018 , 11, 3065-3087	49
755	Optimizing the efficiency of perovskite solar cells by a sub-nanometer compact titanium oxide electron transport layer. 2018 , 49, 230-236	13
754	Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells. 2018 , 9, 1625	242
753	Synthesis and luminescence of Mn-doped CsAgInCl double perovskites. 2018 , 54, 5205-5208	127
752	All-inorganic perovskite CsPbBr3-based self-powered light-emitting photodetectors with ZnO hollow balls as an ultraviolet response center. 2018 , 6, 5113-5121	27
75 ¹	Low-cost synthesis of heterocyclic spiro-type hole transporting materials for perovskite solar cell applications. 2018 , 42, 7332-7339	13
75°	A review of perovskite solar cells with a focus on wire-shaped devices. 2018 , 25, 17-23	5
749	The Deposition Environment Controlling Method: A Vapor-Phase Solvent-Assisted Approach to Fabricate High-Quality Crystalline Perovskite. 2018 , 1-6	1
748	Efficient and stable hole-conductor-free mesoscopic perovskite solar cells using SiO2 as blocking layer. 2018 , 58, 69-74	16
747	Tunable Crystallization and Nucleation of Planar CHNHPbI through Solvent-Modified Interdiffusion. 2018 , 10, 14673-14683	13
746	All-inorganic CsPbBr3 perovskite quantum dots as a photoluminescent probe for ultrasensitive Cu2+ detection. 2018 , 6, 4793-4799	52
745	Cost effective perovskite solar cells with a high efficiency and open-circuit voltage based on a perovskite-friendly carbon electrode. 2018 , 6, 8271-8279	31
744	The influence of perovskite precursor composition on the morphology and photovoltaic performance of mixed halide MAPbI3-xClx solar cells. 2018 , 163, 215-223	29
743	Efficient CH3NH3PbI3 perovskite/fullerene planar heterojunction hybrid solar cells with oxidized Ni/Au/Cu transparent electrode. 2018 , 112, 071103	9
742	All Sequential Dip-Coating Processed Perovskite Layers from an Aqueous Lead Precursor for High Efficiency Perovskite Solar Cells. 2018 , 8, 2168	54

741	Research progress on organicihorganic halide perovskite materials and solar cells. 2018, 51, 093001	46
740	Remarkable Increase in Field Effect Mobility of Amorphous IZTO Thin-Film Transistors With Purified ZrOx Gate Insulator. 2018 , 39, 371-374	35
739	Inorganic Perovskite Solar Cells: A Rapidly Growing Field. 2018 , 2, 1700188	154
738	First-Principle Study on the Origin of Ferromagnetism in Non-magnetic Halide Perovskite CsCdM3 (M = Cl and Br) Doped with B, C, and N. 2018 , 31, 2935-2940	7
737	Electrodeposition of organicIhorganic tri-halide perovskites solar cell. 2018, 378, 717-731	26
736	Design Principles for the Atomic and Electronic Structure of Halide Perovskite Photovoltaic Materials: Insights from Computation. 2018 , 24, 8708-8716	18
735	Formation of n-n type heterojunction-based tin organic-inorganic hybrid perovskite composites and their functions in the photocatalytic field. 2018 , 20, 6980-6989	9
734	Stability and charge separation of different CH3NH3SnI3/TiO2 interface: A first-principles study. 2018 , 441, 394-400	14
733	High Performance BiOCl Nanosheets/TiO2 Nanotube Arrays Heterojunction UV Photodetector: The Influences of Self-Induced Inner Electric Fields in the BiOCl Nanosheets. 2018 , 28, 1707178	262
732	Optical Characteristics and Operational Principles of Hybrid Perovskite Solar Cells. 2018 , 215, 1700730	31
731	Metal Oxides in Photovoltaics: All-Oxide, Ferroic, and Perovskite Solar Cells. 2018 , 267-356	22
730	A New Iodobismuthate-Based Hybrid Containing Mixed Iodobismuthate Clusters Templated by Diammonium Cation: Structure and Photocurrent Response. 2018 , 29, 367-374	8
729	Environmental Surface Stability of the MAPbBr3 Single Crystal. 2018, 122, 3513-3522	39
728	Simultaneous Improvement of Photovoltaic Performance and Stability by In Situ Formation of 2D Perovskite at (FAPbI3)0.88(CsPbBr3)0.12/CuSCN Interface. 2018 , 8, 1702714	191
727	Large-Grain Tin-Rich Perovskite Films for Efficient Solar Cells via Metal Alloying Technique. 2018 , 30, 1705998	94
726	Formation and Diffusion of Metal Impurities in Perovskite Solar Cell Material CHNHPbI: Implications on Solar Cell Degradation and Choice of Electrode. 2018 , 5, 1700662	82
725	Electrochemical synthesis of self-organized TiO crystalline nanotubes without annealing. 2018, 29, 095604	14
724	Carbon-sandwiched perovskite solar cell. 2018 , 6, 1382-1389	77

(2018-2018)

723	Effect of guanidinium on the optical properties and structure of the methylammonium lead halide perovskite. 2018 , 739, 1059-1064	12
722	Origin of low electronfiole recombination rate in metal halide perovskites. 2018 , 11, 101-105	86
721	Direct Observation of Ultrafast Exciton Dissociation in Lead Iodide Perovskite by 2D Electronic Spectroscopy. 2018 , 5, 852-860	45
720	TiO Phase Junction Electron Transport Layer Boosts Efficiency of Planar Perovskite Solar Cells. 2018 , 5, 1700614	54
719	Probing interfacial electronic properties of graphene/CH3NH3PbI3 heterojunctions: A theoretical study. 2018 , 440, 35-41	38
718	Band Engineering via Sn-doping of Zinc Oxide Electron Transport Materials for Perovskite Solar Cells. 2018 , 3, 363-367	8
717	Mixed (5-AVA)xMA1NPbI3N(BF4)y perovskites enhance the photovoltaic performance of hole-conductor-free printable mesoscopic solar cells. 2018 , 6, 2360-2364	33
716	Perovskite-based solar cells with inorganic inverted hybrid planar heterojunction structure. 2018 , 8, 015109	15
715	New-generation integrated devices based on dye-sensitized and perovskite solar cells. 2018, 11, 476-526	277
714	A strategic review on processing routes towards highly efficient perovskite solar cells. 2018 , 6, 2406-2431	150
713	A Solution-Processed Transparent NiO Hole-Extraction Layer for High-Performance Inverted Perovskite Solar Cells. 2018 , 24, 2845-2849	40
712	Progress in hole-transporting materials for perovskite solar cells. 2018 , 27, 650-672	71
711	Study of carbon-based hole-conductor-free perovskite solar cells. 2018 , 43, 11403-11410	10
710	Fabrication of hole-conductor-free perovskite solar cells based on Al doped ZnO and low-cost carbon electrode. 2018 , 29, 10092-10101	5
709	Synthesis and Characterization of an Efficient Hole-Conductor Free Halide Perovskite CH3NH3PbI3Semiconductor Absorber Based Photovoltaic Device for IOT. 2018 , 165, B3023-B3029	21
708	Scalable fabrication of perovskite solar cells. 2018 , 3,	532
707	Factors influencing the performance of paintable carbon-based perovskite solar cells fabricated in ambient air. 2018 , 27, 038402	1
706	First-Principles Modeling of Bismuth Doping in the MAPbI3 Perovskite. 2018 , 122, 14107-14112	41

705	A Multifunctional Bis-Adduct Fullerene for Efficient Printable Mesoscopic Perovskite Solar Cells. 2018 , 10, 10835-10841	25
704	Effects of anti-solvent (iodobenzene) volume on the formation of CH 3 NH 3 PbI 3 thin films and their application in photovoltaic cells. 2018 , 445, 24-29	26
703	Anharmonicity and Disorder in the Black Phases of Cesium Lead Iodide Used for Stable Inorganic Perovskite Solar Cells. 2018 , 12, 3477-3486	359
702	Improving the photovoltaic performance of planar heterojunction perovskite solar cells by mixed solvent vapor treatment 2018 , 8, 11574-11579	6
701	First-principles investigation of the Lewis acid-base adduct formation at the methylammonium lead iodide surface. 2018 , 20, 11183-11195	7
700	Large-area perovskite solar cells - a review of recent progress and issues 2018 , 8, 10489-10508	114
699	Investigation of Al 2 O 3 and ZrO 2 spacer layers for fully printable and hole-conductor-free mesoscopic perovskite solar cells. 2018 , 430, 632-638	36
698	Recent progress in perovskite solar cells. 2018 , 81, 2812-2822	109
697	Hole-conductor-free perovskite solar cells prepared with carbon counter electrode. 2018 , 430, 531-538	32
696	Economic overview of the use and production of photovoltaic solar energy in brazil. 2018, 81, 181-191	84
695	Tuning electronic structures of thiazolo[5,4-d]thiazole-based hole-transporting materials for efficient perovskite solar cells. 2018 , 180, 334-342	17
694	Simulation study on improving efficiencies of perovskite solar cell: Introducing nano textures on it. 2018 , 410, 117-122	17
693	Sm3+f2e3+-doped glass-ceramic waveguide as reduced ultraviolet light induced degradation and improved photon harvesting for perovskite solar cells. 2018 , 731, 1009-1013	8
692	Printable carbon-based hole-conductor-free mesoscopic perovskite solar cells: From lab to market. 2018 , 7, 221-231	35
691	Role of organic cations on hybrid halide perovskite CH3NH3PbI3 surfaces. 2018 , 258, 488-494	9
690	New class of lead free perovskite material for low-cost solar cell application. 2018 , 97, 572-577	33
689	Organic hole-transporting materials for efficient perovskite solar cells. 2018 , 7, 208-220	69
688	Recent advancement in metal cathode and hole-conductor-free perovskite solar cells for low-cost and high stability: A route towards commercialization. 2018 , 82, 845-857	59

687	Time-Resolved Laser Spectroscopy in Molecular Devices for Solar Energy Conversion. 2018, 385-432	2
686	Stability of Molecular Devices: Halide Perovskite Solar Cells. 2018 , 477-531	1
685	Hot-Substrate Deposition of Hole- and Electron-Transport Layers for Enhanced Performance in Perovskite Solar Cells. 2018 , 8, 1701659	18
684	Recent advances in the design of dopant-free hole transporting materials for highly efficient perovskite solar cells. 2018 , 29, 219-231	32
683	Perovskite solar cells: Materials, configurations and stability. 2018 , 82, 2471-2489	73
682	Prediction on electronic structure of CH3NH3Pbl3/Fe3O4 interfaces. 2018 , 269, 90-95	2
681	All-inorganic perovskite nanocrystal assisted extraction of hot electrons and biexcitons from photoexcited CdTe quantum dots. 2018 , 10, 639-645	21
680	Influence of Solvent Coordination on Hybrid OrganicIhorganic Perovskite Formation. 2018, 3, 92-97	173
679	A Design Based on a Charge-Transfer Bilayer as an Electron Transport Layer for Improving the Performance and Stability in Planar Perovskite Solar Cells. 2018 , 122, 236-244	37
678	Enhancing Ferroelectric Dipole Ordering in OrganicIhorganic Hybrid Perovskite CH3NH3PbI3: Strain and Doping Engineering. 2018 , 122, 177-184	24
677	The merit of perovskite's dimensionality; can this replace the 3D halide perovskite?. 2018 , 11, 234-242	157
676	Room-Temperature-Operated Ultrasensitive Broadband Photodetectors by Perovskite Incorporated with Conjugated Polymer and Single-Wall Carbon Nanotubes. 2018 , 28, 1705541	51
675	Anti-solvent surface engineering via diethyl ether to enhance the photovoltaic conversion efficiency of perovskite solar cells to 18.76%. 2018 , 113, 761-768	21
674	High-efficiency perovskite solar cells based on MAI(PbI2)1⊠(FeCl2)x absorber layers. 2018 , 159, 786-793	18
673	Dynamical Rashba Band Splitting in Hybrid Perovskites Modeled by Local Electric Fields. 2018 , 122, 124-132	7
672	Inorganic Hole-Transporting Materials for Perovskite Solar Cells. 2018 , 2, 1700280	100
671	Frontiers, opportunities, and challenges in perovskite solar cells: A critical review. 2018 , 35, 1-24	205
670	Oscillatory Magnetic Circular Dichroism of Free-Carrier Absorption and Determination of the Rashba Dispersions in Hybrid Organic-Inorganic Perovskites. 2018 , 9, 1-7	10

669	Interface Engineering for Highly Efficient and Stable Planar p-i-n Perovskite Solar Cells. 2018 , 8, 1701883	249
668	Photoconductive noise microscopy revealing quantitative effect of localized electronic traps on the perovskite-based solar cell performance. 2018 , 43, 29-36	13
667	Recent progress in organohalide lead perovskites for photovoltaic and optoelectronic applications. 2018 , 373, 258-294	41
666	. 2018,	6
665	Stability of Perovskite Solar Cell with Optimized CuSCN as Hole Transport Layer*. 2018,	0
664	Using microgels to control the morphology and optoelectronic properties of hybrid organic-inorganic perovskite films. 2018 , 20, 27959-27969	7
663	. 2018,	5
662	Possible Dual Bandgap in (C4H9NH3)2PbI4 2D Layered Perovskite: Single-Crystal and Exfoliated Few-Layer. 2018 , 3, 2940-2946	55
661	Functional materials, device architecture, and flexibility of perovskite solar cell. 2018, 1, 133-154	67
660	First-Principles Insight into the Degradation Mechanism of CH3NH3PbI3 Perovskite: Light-Induced Defect Formation and Water Dissociation. 2018 , 122, 27340-27349	18
659	Theoretical Insights into Perovskite Compounds MAPb1 $\mathbf{R}\mathbf{B}\mathbf{M}$ (X = Ge, Sn; Y = Cl, Br): An Exploration for Superior Optical Performance. 2018 , 122, 27205-27213	5
658	Organic-Inorganic Hybrid Perovskite Solar Cells. 2018 , 463-507	1
657	Hole-Transporting Materials Incorporating Carbazole into Spiro-Core for Highly Efficient Perovskite Solar Cells. 2018 , 29, 1807094	49
656	Charge-Selective Contact Materials for Perovskite Solar Cells (PSCs). 2018 , 131-153	
655	Estimation of the Rashba Strength from Second Harmonic Generation in 2D and 3D Hybrid OrganicIhorganic Perovskites. 2018 , 122, 29607-29612	10
654	A spatially smoothed device model for meso-structured perovskite solar cells. 2018 , 124, 193103	2
653	Materials toward the Upscaling of Perovskite Solar Cells: Progress, Challenges, and Strategies. 2018 , 28, 1803753	104
652	Effects of Electron-Phonon Coupling on Electronic Properties of Methylammonium Lead Iodide Perovskites. 2018 , 9, 7090-7097	27

651	Major Impediment to Highly Efficient, Stable and Low-Cost Perovskite Solar Cells. 2018, 8, 964	18
650	Dopant-Free Hole Transporting Materials for Perovskite Solar Cells. 2018 , 2, 1800200	65
649	Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency perovskite solar cell: A review. 2018 , 98, 469-488	25
648	Bilayer SnO2 as Electron Transport Layer for Highly Efficient Perovskite Solar Cells. 2018 , 1, 6027-6039	61
647	Recent Advances in Synthesis and Properties of Hybrid Halide Perovskites for Photovoltaics. 2018 , 10, 68	29
646	Nature of the Electronic and Optical Excitations of Ruddlesden-Popper Hybrid Organic-Inorganic Perovskites: The Role of the Many-Body Interactions. 2018 , 9, 5891-5896	38
645	Large-area perovskite solar cells with CsxFA1NPbI3NBry thin films deposited by a vaporNolid reaction method. 2018 , 6, 21143-21148	47
644	The effect of solution process control on the formation of the FAPbI3 perovskite: FAPbI3 versus MAPbI3 solar cells. 2018 , 174, 780-785	9
643	Attaining High Photovoltaic Efficiency and Stability with Multidimensional Perovskites. 2018, 11, 4193-4202	12
642	A Method for the Preparation of Highly Oriented MAPbI Crystallites for High-Efficiency Perovskite Solar Cells to Achieve an 86% Fill Factor. 2018 , 12, 10355-10364	88
641	Intrinsic Defect Properties in Halide Double Perovskites for Optoelectronic Applications. 2018, 10,	69
640	Phase Control of TiO2 Photocatalyst. 2018 , 133-172	
639	Significant Stability Enhancement of Perovskite Solar Cells by Facile Adhesive Encapsulation. 2018 , 122, 25260-25267	19
638	Retardation of Trap-Assisted Recombination in Lead Halide Perovskite Solar Cells by a Dimethylbiguanide Anchor Layer. 2019 , 25, 1076-1082	2
637	Efficient flexible printed perovskite solar cells based on lead acetate precursor. 2018, 176, 406-411	13
636	Shape-Pure, Nearly Monodispersed CsPbBr Nanocubes Prepared Using Secondary Aliphatic Amines. 2018 , 18, 7822-7831	88
635	Enhancing Stability and Photostability of CsPbI3 by Reducing Its Dimensionality. 2018, 30, 8017-8024	46
634	A Review of Inorganic Hole Transport Materials for Perovskite Solar Cells. 2018 , 5, 1800882	122

633	Synthesis of organo tin halide perovskites via simple aqueous acidic solution-based method. 2018 , 3, 471-477	11
632	Rational Strategies for Large-area Perovskite Solar Cells. 2018 , 307-337	1
631	Modulating the electronic properties of perovskite via Interfacial interactions: A computational study. 2018 , 6, 114203	5
630	Efficient Electron Transport Scaffold Made up of Submicron TiO2 Spheres for High-Performance Hole-Transport Material Free Perovskite Solar Cells. 2018 ,	9
629	Precursor effects on methylamine gas-induced CH3NH3PbI3 films for stable carbon-based perovskite solar cells. 2018 , 174, 139-148	11
628	Effects of mixed solvent on morphology of CH3NH3PbI3 absorption layers and photovoltaic performance of perovskite solar cells. 2018 , 29, 18868-18877	1
627	Investigation of Inverted Perovskite Solar Cells for Viscosity of PEDOT:PSS Solution. 2018 , 8, 358	6
626	Ultra-thin Cadmium Sulfide Electron-transporting Layer for Planar Perovskite Solar Cell. 2018 , 47, 1350-1353	2
625	Controlled growth of highly pure TiO2 nanorod arrays/nanoflower clusters via one-step hydrothermal route. 2018 , 29, 12169-12177	3
624	Super Atomic Clusters: Design Rules and Potential for Building Blocks of Materials. 2018 , 118, 5755-5870	265
623	A Review on Halide Perovskites as Color Conversion Layers in White Light Emitting Diode Applications. 2018 , 215, 1800120	59
622	Less toxic tin incorporated perovskite solar cell using polymer electrolyte processed in the air. 2018 , 169, 166-171	13
621	Highly Efficient Perovskite Solar Cells with Gradient Bilayer Electron Transport Materials. 2018, 18, 3969-3977	107
620	Formation and characterization of preferred oriented perovskite thin films on single-crystalline substrates. 2018 , 5, 066403	3
619	Enhanced charge extraction by setting intermediate energy levels in all-inorganic CsPbBr3 perovskite solar cells. 2018 , 279, 84-90	38
618	Dual-step thermal engineering technique: A new approach for fabrication of efficient CH3NH3PbI3-based perovskite solar cell in open air condition. 2018 , 185, 145-152	24
617	Computational Study of Ternary Devices: Stable, Low-Cost, and Efficient Planar Perovskite Solar Cells. 2018 , 10, 51	28
616	Monolayer methylammonium lead iodide films deposited on Au(111). 2018 , 675, 78-82	5

(2018-2018)

615	Restrained light-soaking and reduced hysteresis in perovskite solar cells employing a helical perylene diimide interfacial layer. 2018 , 6, 10379-10387	33
614	Fullerene derivative as an additive for highly efficient printable mesoscopic perovskite solar cells. 2018 , 62, 653-659	7
613	Fabrication of Perovskite Uniform Film in Air via Introduction of Aniline Cations. 2018, 3, 7023-7029	2
612	Perovskite Solar Cell Architectures. 2018 , 89-121	1
611	Hole Conductor E ree Perovskite Solar Cells. 2018 , 289-321	1
610	Enhancement of photo-electrochemical reactions in MAPbI3/Au. 2018, 9, 303-310	6
609	The Influence of the Work Function of Hybrid Carbon Electrodes on Printable Mesoscopic Perovskite Solar Cells. 2018 , 122, 16481-16487	36
608	Stability of Perovskites at the Surface Analytic Level. 2018 , 9, 4657-4666	13
607	Random lasing in uniform perovskite thin films. 2018 , 26, A75-A84	38
606	Enhanced perovskite phototransistor by multi-step slow annealing strategy. 2018 , 84, 498-503	13
605	Controllable Synthesis of 2D Perovskite on Different Substrates and Its Application as Photodetector. 2018 , 8,	15
604	A C60 Modification Layer Using a Scalable Deposition Technology for Efficient Printable Mesoscopic Perovskite Solar Cells. 2018 , 2, 1800174	12
603	Preparations of Organo-Lead Halide Perovskite Layers in Humid Air Atmosphere and their Characteristics. 2018 , 1057, 012007	
602	Electron-Transport Materials in Perovskite Solar Cells. 2018 , 2, 1800082	84
601	Engineered Nanomaterials for Renewable Energy. 2018 , 829-845	2
600	Compact TiO2/Anatase TiO2 Single-Crystalline Nanoparticle Electron-Transport Bilayer for Efficient Planar Perovskite Solar Cells. 2018 , 6, 12070-12078	31
599	Energy Level Alignment at Interfaces in Metal Halide Perovskite Solar Cells. 2018 , 5, 1800260	147
598	Design of Cone-Shaped Hole Transporting Material Organic Structures for Perovskite Solar Cells Applications. 2018 , 3, 8159-8166	3

597	Analysis of Defects and Traps in NIP Layered-Structure of Perovskite Solar Cells by Charge-Based Deep Level Transient Spectroscopy (Q-DLTS). 2018 , 122, 17601-17611	17
596	Progress in tailoring perovskite based solar cells through compositional engineering: Materials properties, photovoltaic performance and critical issues. 2018 , 9, 440-486	40
595	Fabrication and characterization of TiO2 nanotubes sensitized with PbS quantum dotsIIH3NH3PbI3 heterostructures as photoanodes with liquid electrolyte. 2018 , 229, 357-359	1
594	Higher efficiency perovskite solar cells using Au@SiO2 core⊠hell nanoparticles. 2018 , 2, 2260-2267	15
593	Dependence of power conversion properties of hole-conductor-free mesoscopic perovskite solar cells on the loading of perovskite crystallites. 2018 , 61, 119-124	29
592	Oxygen aging time: A dominant step for spiro-OMeTAD in perovskite solar cells. 2018 , 10, 043702	6
591	Recent Advances of Rare-Earth Ion Doped Luminescent Nanomaterials in Perovskite Solar Cells. 2018 , 8,	34
590	The Impact of Hybrid Compositional Film/Structure on Organic?Inorganic Perovskite Solar Cells. 2018 , 8,	20
589	Influence of Hot Spot Heating on Stability of Large Size Perovskite Solar Module with a Power Conversion Efficiency of ~14%. 2018 , 1, 3565-3570	9
588	Probing the structure-property-composition relationship in organic-inorganic tri-halide perovskites. 2018 , 20, 20489-20496	2
587	An Er-doped TiO2 phase junction as an electron transport layer for efficient perovskite solar cells fabricated in air. 2018 , 6, 15348-15358	27
586	Introducing lead acetate into stoichiometric perovskite lewis acid-base precursor for improved solar cell photovoltaic performance. 2018 , 767, 829-837	6
585	Titanium dioxide nanostructures for photoelectrochemical applications. 2018 , 98, 299-385	148
584	Phonon Coupling with Excitons and Free Carriers in Formamidinium Lead Bromide Perovskite Nanocrystals. 2018 , 9, 4245-4250	45
583	Laser-Induced Flash-Evaporation Printing CHNHPbI Thin Films for High-Performance Planar Solar Cells. 2018 , 10, 26206-26212	7
582	Effect of PbI2 solution on air-preparation of perovskite solar cells for enhanced performance. 2018 , 458, 172-182	18
581	Solution-synthesized SnO2 nanorod arrays for highly stable and efficient perovskite solar cells. 2018 , 283, 1134-1145	7
580	Nanocomposite perovskite based optical sensor with broadband absorption spectrum. 2018 , 280, 47-51	9

579	Perovskite-Perovskite Homojunctions via Compositional Doping. 2018 , 9, 2770-2775	54
578	Evolution of Photoluminescence, Raman, and Structure of CHNHPbI Perovskite Microwires Under Humidity Exposure. 2018 , 13, 79	21
577	Materials in harnessing solar power. 2018 , 41, 1	9
576	Ultra-compact titanium oxide prepared by ultrasonic spray pyrolysis method for planar heterojunction perovskite hybrid solar cells. 2018 , 659, 41-47	7
575	Calcium doped MAPbI3 with better energy state alignment in perovskite solar cells. 2018 , 112, 193901	26
574	Oxygen management in carbon electrode for high-performance printable perovskite solar cells. 2018 , 53, 160-167	59
573	Charge carrier transport in polycrystalline CH3NH3PbI3 perovskite thin films in a lateral direction characterized by time-of-flight photoconductivity. 2018 , 220, 182-189	7
572	Studying the Effect of MoO3 in Hole-Conductor-Free Perovskite Solar Cells. 2018 , 3, 2240-2245	24
571	Investigation Au Nanoparticles Fabrication and Efficiency of the TiO2/Au NPs Mesoporous Perovskite Solar Cells. 2018 ,	
570	Graphene-Based Semiconductor Heterostructures for Photodetectors. 2018 , 9,	50
57° 569	Graphene-Based Semiconductor Heterostructures for Photodetectors. 2018, 9, Nonlinear absorption and temperature-dependent fluorescence of perovskite FAPbBr nanocrystal. 2018, 43, 122-125	50 28
	Nonlinear absorption and temperature-dependent fluorescence of perovskite FAPbBr nanocrystal.	
569	Nonlinear absorption and temperature-dependent fluorescence of perovskite FAPbBr nanocrystal. 2018, 43, 122-125 Effect of functional group position change of pyridinesulfonic acid as interface-modified layer on	28
569 568	Nonlinear absorption and temperature-dependent fluorescence of perovskite FAPbBr nanocrystal. 2018, 43, 122-125 Effect of functional group position change of pyridinesulfonic acid as interface-modified layer on perovskite solar cell. 2018, 462, 517-525	28
569 568 567	Nonlinear absorption and temperature-dependent fluorescence of perovskite FAPbBr nanocrystal. 2018, 43, 122-125 Effect of functional group position change of pyridinesulfonic acid as interface-modified layer on perovskite solar cell. 2018, 462, 517-525 New hole transport materials with 1,2-dimethoxyphenyl as the terminal groups. 2018, 244, 150-154	28
569568567566	Nonlinear absorption and temperature-dependent fluorescence of perovskite FAPbBr nanocrystal. 2018, 43, 122-125 Effect of functional group position change of pyridinesulfonic acid as interface-modified layer on perovskite solar cell. 2018, 462, 517-525 New hole transport materials with 1,2-dimethoxyphenyl as the terminal groups. 2018, 244, 150-154 Recent Advances of Layered Thermoelectric Materials. 2018, 2, 1800046 Stability of organometal halide perovskite solar cells and role of HTMs: recent developments and	28 14 3
569 568 567 566	Nonlinear absorption and temperature-dependent fluorescence of perovskite FAPbBr nanocrystal. 2018, 43, 122-125 Effect of functional group position change of pyridinesulfonic acid as interface-modified layer on perovskite solar cell. 2018, 462, 517-525 New hole transport materials with 1,2-dimethoxyphenyl as the terminal groups. 2018, 244, 150-154 Recent Advances of Layered Thermoelectric Materials. 2018, 2, 1800046 Stability of organometal halide perovskite solar cells and role of HTMs: recent developments and future directions 2018, 8, 20952-20967 Insights in Perovskite Solar Cell Fabrication: Unraveling the Hidden Challenges of Each Layer. 2018,	28 14 3 25 18

561	Overcoming Defect-Induced Charge Recombination Loss in Organic Solar Cells by FEster Resonance Energy Transfer. 2018 , 6, 9699-9706	3
560	Obtaining white perovskite film for efficient solar cells. 2018 , 51, 295105	3
559	The charge carrier dynamics, efficiency and stability of two-dimensional material-based perovskite solar cells. 2019 , 48, 4854-4891	83
558	OrganicIhorganic hybrid perovskites based on methylamine lead halide solar cell. 2019 , 189, 421-425	14
557	Carbon nanotubes in hybrid photovoltaics: dye sensitized and perovskites solar cells. 2019 , 201-248	1
556	Scalable Fabrication of Metal Halide Perovskite Solar Cells and Modules. 2019 , 4, 2147-2167	110
555	Ultrafast Carrier Dynamics and Terahertz Photoconductivity of Mixed-Cation and Lead Mixed-Halide Hybrid Perovskites. 2019 , 36, 028401	1
554	Metal Cations in Efficient Perovskite Solar Cells: Progress and Perspective. 2019 , 31, e1902037	48
553	Sensitization of TiO2 by a symmetric anionic polymethine dye with three conjugated chromophores. 2019 , 45, 4043-4052	5
552	Optimization of rotation speed for CuSCN hole transport layer in perovskite solar cell using spin coating. 2019 , 1195, 012025	2
551	Molecular doping of CuSCN for hole transporting layers in inverted-type planar perovskite solar cells. 2019 , 6, 2158-2166	22
550	High irradiance performance of cesium-formamidinium-based mixed-halide perovskite for concentrator photovoltaics under various operating conditions. 2019 , 135, 109093	7
549	Recent progress in fundamental understanding of halide perovskite semiconductors. 2019 , 106, 100580	69
548	Bacteriorhodopsin Enhances Efficiency of Perovskite Solar Cells. 2019 , 11, 30728-30734	16
547	Charge Localization, Stabilization, and Hopping in Lead Halide Perovskites: Competition between Polaron Stabilization and Cation Disorder. 2019 , 4, 2013-2020	32
546	Quantum Dot Based Solar Cells: Role of Nanoarchitectures, Perovskite Quantum Dots, and Charge-Transporting Layers. 2019 , 12, 4724-4753	17
545	Low-temperature growth of uniform ultrathin TiO2 blocking layer for efficient perovskite solar cell. 2019 , 75, 105379	4
544	Two-dimensional lead-free iodide-based hybrid double perovskites: crystal growth, thin-film preparation and photocurrent responses. 2019 , 7, 19662-19667	54

543	Design rules for high mobility xanthene-based hole transport materials. 2019 , 10, 8360-8366	14
542	Functional Metal Oxides in Perovskite Solar Cells. 2019 , 20, 2580-2586	21
541	Concentration-Dependent Impact of Alkali Li Metal Doped Mesoporous TiO2 Electron Transport Layer on the Performance of CH3NH3PbI3 Perovskite Solar Cells. 2019 , 123, 19376-19384	24
540	Water-Resistant and Flexible Perovskite Solar Cells via a Glued Interfacial Layer. 2019 , 29, 1902629	64
539	Deposition of zinc oxide as an electron transport layer in planar perovskite solar cells by spray and SILAR methods comparable with spin coating 2019 , 9, 20917-20924	27
538	The Influence of Humid Atmosphere during the MAPbI3 Perovskite Layer Preparation on the Characteristics of Its Solar Cells. 2019 , 1245, 012065	1
537	High-performance g-C3N4 added carbon-based perovskite solar cells insulated by Al2O3 layer. 2019 , 193, 859-865	21
536	Dual excitonic emissions and structural phase transition of octylammonium lead iodide 2D layered perovskite single crystal. 2019 , 6, 124002	7
535	Synthesis and optical properties of colloidal CsAgSbBiCl double perovskite nanocrystals. 2019, 151, 161101	21
534	Toward Broadband Imaging: Surface-Engineered PbS Quantum Dot/Perovskite Composite Integrated Ultrasensitive Photodetectors. 2019 , 11, 44430-44437	25
533	Post-functionalization of polyvinylcarbazoles: An open route towards hole transporting materials for perovskite solar cells. 2019 , 193, 878-884	5
532	Charge Carrier Dynamics in Electron-Transport-Layer-Free Perovskite Solar Cells. 2019 , 1, 2334-2341	4
531	Inpainting-Based Virtual Try-on Network for Selective Garment Transfer. 2019 , 7, 134125-134136	3
530	Charge carrier migration and hole extraction from MAPbI3. 2019 , 1220, 012053	
529	Inorganic perovskite solar cells: an emerging member of the photovoltaic community. 2019 , 7, 21036-21068	93
528	Significance of Ni Doping in CsPbX3 Nanocrystals via Postsynthesis CationAnion Coexchange. 2019 , 123, 24979-24987	15
527	Modulating Crystallization in Semitransparent Perovskite Films Using Submicrometer Spongelike Polymer Colloid Particles to Improve Solar Cell Performance. 2019 , 2, 6624-6633	6
526	Modeling of a high performance bandgap graded Pb-free HTM-free perovskite solar cell. 2019 , 87, 10101	7

525	Optical deformation potential and self-trapped excitons in 2D hybrid perovskites. 2019 , 21, 22293-22301	11
524	Structural, Photophysical, and Electronic Properties of CHNHPbCl Single Crystals. 2019 , 9, 13311	18
523	4-(Aminoethyl)pyridine as a Bifunctional Spacer Cation for Efficient and Stable 2D Ruddlesden-Popper Perovskite Solar Cells. 2019 , 11, 37804-37811	24
522	Alkali metal ions passivation to decrease interface defects of perovskite solar cells. 2019 , 193, 220-226	3
521	Alternative Electron Transport Layer Based on Al-Doped ZnO and SnO2 for Perovskite Solar Cells: Impact on Microstructure and Stability. 2019 , 2, 7183-7195	20
520	Perovskite Solar Fibers: Current Status, Issues and Challenges. 2019 , 1, 101-125	16
519	Atomic layer deposition for efficient and stable perovskite solar cells. 2019 , 55, 2403-2416	52
518	Enhanced Photoresponsivity of Fullerene in the Presence of Phthalocyanine: A Time-Resolved X-ray Photoelectron Spectroscopy Study of Phthalocyanine/C60/TiO2(110). 2019 , 123, 4388-4395	8
517	A low-temperature carbon electrode with good perovskite compatibility and high flexibility in carbon based perovskite solar cells. 2019 , 55, 2765-2768	28
516	Effects of energetics with {001} facet-dominant anatase TiO2 scaffold on electron transport in CH3NH3PbI3 perovskite solar cells. 2019 , 300, 445-454	11
515	Stability and Performance of Nanostructured Perovskites for Light-Harvesting Applications. 2019 , 3, 1800404	8
514	Enhanced photovoltaic property and stability of perovskite solar cells using the interfacial modified layer of anatase TiO2 nanocuboids. 2019 , 166, 255-263	8
513	Room-temperature curable carbon cathode for hole-conductor free perovskite solar cells. 2019 , 187, 261-268	12
512	Improved conversion efficiency of perovskite solar cells converted from thermally deposited lead iodide with dimethyl sulfoxide-treated poly(3,4-ethylenedioxythiophene) poly(styrene sulfonate). 2019 , 73, 266-272	3
511	Pyridine-Functionalized Fullerene Electron Transport Layer for Efficient Planar Perovskite Solar Cells. 2019 , 11, 23982-23989	25
510	Electrospun Hybrid Perovskite Fibers-Flexible Networks of One-Dimensional Semiconductors for Light-Harvesting Applications. 2019 , 11, 25163-25169	7
509	Blocking effect of morphology-controllable TiO2 films in carbon-based hole-conductor-free perovskite solar cells. 2019 , 6, 095501	3
508	Impact of solvent exposure on the structure and electronic properties of CH3NH3PbI3\(\mathbb{R}\)Clx mixed halide perovskite films. 2019 , 125, 1	3

Different Methods of Introduction Gold NPs into Perovskite Solar Cells with Their Efficiencies. 2019 507 , 538, 012026 CH3NH3PbI3/CdS planar photovoltaic junction by spin-dip coating: Studies on the effects of PbI2 506 layer thickness and rapid thermal treatments. 2019, 187, 427-437 Announcing the 2019 ACS Nano Award Lecture Laureates. 2019, 13, 4859-4861 505 \circ A SrGeO3 inorganic electron-transporting layer for high-performance perovskite solar cells. 2019, 504 7 7, 14559-14564 Efficiency stability: dopant-free hole transporting materials towards stabilized perovskite solar 503 125 cells. 2019. 10. 6748-6769 Compositional, Processing, and Interfacial Engineering of Nanocrystal- and Quantum-Dot-Based 66 Perovskite Solar Cells. 2019, 31, 6387-6411 Applications of 3D Potassium-Ion Pre-Intercalated Graphene for Perovskite and Dye-Sensitized 501 10 Solar Cells. 2019, 500 Unraveling the Spin Relaxation Mechanism in Hybrid Organic Inorganic Perovskites. 2019, 123, 14701-14706 4 Efficient and stable carbon-based perovskite solar cells enabled by the inorganic interface of 60 499 CuSCN and carbon nanotubes. **2019**, 7, 12236-12243 498 Ferroelectricity of the Orthorhombic and Tetragonal MAPbBr Single Crystal. 2019, 10, 2522-2527 25 Understanding the Solution Chemistry of Lead Halide Perovskites Precursors. 2019, 2, 3400-3409 497 40 496 Perovskite Solar Cells Processed by Solution Nanotechnology. 2019, 119-174 ACS Journals Celebrate 10 Years of Perovskite Photovoltaics. 2019, 4, 1055-1056 495 2 Open atmospheric processed perovskite solar cells using dopant-free, highly hydrophobic hole-transporting materials: Influence of thiophene and selenophene Espacers on charge 494 13 transport and recombination properties. 2019, 199, 66-74 Phosphors for improving performance of perovskite solar cells. 2019, 493 1 Porphyrin based hole transport layers for enhanced charge transport and stability in perovskite 492 solar cells. 2019, 30, 7866-7872 Precision construction of high-efficiency heterojunction polymer memory devices via 491 4 electrochemical polymerization. 2019, 69, 153-159 Uncovering the Mechanism Behind the Improved Stability of 2D Organic-Inorganic Hybrid 18 490 Perovskites. 2019, 15, e1900462

489	Electronic and optical properties of perovskite compounds MA FA PbI X (X = Cl, Br) explored for photovoltaic applications 2019 , 9, 7015-7024	10
488	TiOINanoparticles/Nanotubes for Efficient Light Harvesting in Perovskite Solar Cells. 2019 , 9,	22
487	Recent Challenges in Perovskite Solar Cells Toward Enhanced Stability, Less Toxicity, and Large-Area Mass Production. 2019 , 6, 1801758	36
486	Two-dimensional polythiophene homopolymer as promising hole transport material for high-performance perovskite solar cells. 2019 , 426, 55-60	15
485	Efficient and stable planar perovskite solar cells with carbon quantum dots-doped PCBM electron transport layer. 2019 , 43, 7130-7135	22
484	Hole transport materials doped to absorber film for improving the performance of the perovskite solar cells. 2019 , 98, 113-120	5
483	Interfacial charge transport in MAPbI3 perovskite on ZnO. 2019 , 13, 102207	2
482	Effects of thiourea on the perovskite crystallization for fully printable solar cells. 2019 , 196, 105-110	25
481	Combination of high and low temperature carbon pastes to fabricate counter electrode of perovskite solar cell. 2019 , 6, 075510	1
480	Ultrahigh energy density CH3NH3PbI3 perovskite based supercapacitor with fast discharge. 2019 , 307, 334-340	12
479	Two-Dimensional Halide Perovskites in Solar Cells: 2D or not 2D?. 2019 , 12, 1560-1575	114
478	Sol G el Deposition of Thin Films. 2019 , 1-18	3
477	Causes and Solutions of Recombination in Perovskite Solar Cells. 2019 , 31, e1803019	242
476	Molecular engineering of enamine-based small organic compounds as hole-transporting materials for perovskite solar cells. 2019 , 7, 2717-2724	11
475	Encapsulation of Printable Mesoscopic Perovskite Solar Cells Enables High Temperature and Long-Term Outdoor Stability. 2019 , 29, 1809129	75
474	Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities. 2019 , 795, 1-51	262
473	Efficient and Stable Perovskite Solar Cell with TiO2 Thin Insulator Layer as Electron Transport. 2019 ,	2
472	Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. 2019 , 119, 3036-3103	1189

471	Halide Perovskites: Is It All about the Interfaces?. 2019 , 119, 3349-3417	287
470	Interfacial Engineering Determines Band Alignment and Steers Charge Separation and Recombination at an Inorganic Perovskite Quantum Dot/WS Junction: A Time Domain Ab Initio Study. 2019 , 10, 1234-1241	19
469	Construction of Coordination Nanosheets Based on Tris(2,2'-bipyridine)-Iron (Fe) Complexes as Potential Electrochromic Materials. 2019 , 11, 11893-11903	37
468	Interaction between Colloidal Quantum Dots and Halide Perovskites: Looking for Constructive Synergies. 2019 , 10, 1099-1108	26
467	Understanding the Impact of Cu-In-Ga-S Nanoparticles Compactness on Holes Transfer of Perovskite Solar Cells. 2019 , 9,	6
466	A Review of Perovskites Solar Cell Stability. 2019 , 29, 1808843	554
465	Enhance the performance of ZnO-based perovskite solar cells under ambient conditions. 2019 , 89, 375-381	9
464	Highly Efficient Perovskite Solar Cells Processed Under Ambient Conditions Using In Situ Substrate-Heating-Assisted Deposition. 2019 , 3, 1800318	29
463	Investigation of the Electrical, Optical & Structural Characteristics of Mixed Halide Perovskite Thin Films. 2019 ,	
462	Optimized Spin Coating Rate for TiO2 Layer in Perovskite Solar Cell. 2019 ,	
461	BiFeO3/CH3NH3PbI3 Perovskite Heterojunction Based Near-Infrared Photodetector. 2019 , 40, 1961-1964	15
460	Evaluation of Perovskite Photo-sensors with Electron-beam Evaporated Titanium Dioxide Films. 2019 ,	О
459	Self-assembled naphthalimide derivatives as an efficient and low-cost electron extraction layer for n-i-p perovskite solar cells. 2019 , 55, 13239-13242	12
459 458		12 7
	n-i-p perovskite solar cells. 2019 , 55, 13239-13242 A Facile Way to Improve the Performance of Perovskite Solar Cells by Toluene and Diethyl Ether	
458	n-i-p perovskite solar cells. 2019 , 55, 13239-13242 A Facile Way to Improve the Performance of Perovskite Solar Cells by Toluene and Diethyl Ether Mixed Anti-Solvent Engineering. 2019 , 9, 766	7
458 457	n-i-p perovskite solar cells. 2019 , 55, 13239-13242 A Facile Way to Improve the Performance of Perovskite Solar Cells by Toluene and Diethyl Ether Mixed Anti-Solvent Engineering. 2019 , 9, 766 Nanostructured Materials for Treating Aquatic Pollution. 2019 ,	7

453	A Novel Perovskite Solar Cell with ZnO-Cu2O as Electron Transport Material-Hole Transport Material. 2019 ,	1
452	Recent Innovation of Metal-Organic Frameworks for Carbon Dioxide Photocatalytic Reduction. 2019 , 11,	28
451	Resonant free-carrier absorption in 2D hybrid organic-inorganic perovskites: The Rashba effect or small polarons?. 2019 , 151, 204106	O
450	Carbon-based materials for stable, cheaper and large-scale processable perovskite solar cells. 2019 , 12, 3437-3472	134
449	Polystyrene enhanced crystallization of perovskites towards high performance solar cells. 2019 , 1, 76-85	10
448	Enhancing the efficiency and stability of perovskite solar cells by incorporating CdS and Cd(SCN2H4)2Cl2 into the CH3NH3PbI3 active layer. 2019 , 7, 1124-1137	26
447	Enhanced Photovoltaic Performance and Thermal Stability of CHNHPbI Perovskite through Lattice Symmetrization. 2019 , 11, 740-746	13
446	Ideal half-filled intermediate band position in CuGaS2 generated by Sb-related defect complex: a first-principles study. 2019 , 12, 021002	2
445	All ambient environment-based perovskite film fabrication for photovoltaic applications. 2019 , 43, 806-813	15
444	Emerging solar cells energy trade-off: Interface engineering materials impact on stability and efficiency progress. 2019 , 43, 1670-1688	7
443	Application of combinative TiO2nanorods and nanoparticles layer as the electron transport film in highly efficient mixed halides perovskite solar cells. 2019 , 297, 1071-1078	9
442	Management of Crystallization Kinetics for Efficient and Stable Low-Dimensional Ruddlesden-Popper (LDRP) Lead-Free Perovskite Solar Cells. 2019 , 6, 1800793	68
441	Recent Progress in the Design and Synthesis of Nitrides for Mesoscopic and Perovskite Solar Cells. 2019 , 12, 772-786	2
440	Carrier Transfer Behaviors at Perovskite/Contact Layer Heterojunctions in Perovskite Solar Cells. 2019 , 6, 1801253	18
439	SnO2-based electron transporting layer materials for perovskite solar cells: A review of recent progress. 2019 , 35, 144-167	83
438	Numerical simulation of carrier transporting layer free planar perovskite cells. 2019 , 179, 1019-1026	6
437	Electronic structure, magnetism properties and optical absorption of organometal halide perovskite CH3NH3XI3 ($X = Fe, Mn$). 2019 , 125, 1	7
436	Correlating variability of modeling parameters with photovoltaic performance: Monte Carlo simulation of a meso-structured perovskite solar cell. 2019 , 237, 131-144	17

(2020-2019)

435	Light enhanced room temperature resistive NO sensor based on a gold-loaded organic-inorganic hybrid perovskite incorporating tin dioxide. 2019 , 186, 47	23
434	Enhanced Stability and Optical Absorption in the Perovskite-Based Compounds MA Cs PbI Br. 2019 , 20, 489-498	4
433	Progress and challenges in perovskite photovoltaics from single- to multi-junction cells. 2019 , 12, 70-94	50
432	Photoexcited Dynamics in Metal Halide Perovskites: From Relaxation Mechanisms to Applications. 2019 , 123, 3255-3269	7
431	Comparative evaluation of lead emissions and toxicity potential in the life cycle of lead halide perovskite photovoltaics. 2019 , 166, 1089-1096	53
430	NiO@carbon spheres: A promising composite electrode for scalable fabrication of planar perovskite solar cells at low cost. 2019 , 55, 470-476	37
429	Perovskite Methylammonium Lead Trihalide Heterostructures: Progress and Challenges. 2019 , 18, 1-12	58
428	Probing the 3-step Lithium Storage Mechanism in CH3NH3PbBr3 Perovskite Electrode by Operando-XRD Analysis. 2019 , 6, 456-460	14
427	Rapid Crystallization for Efficient 2D Ruddlesden P opper (2DRP) Perovskite Solar Cells. 2019 , 29, 1806831	68
426	Novel Insight into the Role of Chlorobenzene Antisolvent Engineering for Highly Efficient Perovskite Solar Cells: Gradient Diluted Chlorine Doping. 2019 , 11, 792-801	31
425	A comparative study of planar and mesoporous perovskite solar cells with printable carbon electrodes. 2019 , 412, 118-124	27
424	Stability Challenges for Perovskite Solar Cells. 2019 , 5, 253-265	24
423	N-type Doping of Organic-Inorganic Hybrid Perovskites Toward High-Performance Photovoltaic Devices. 2019 , 3, 1800269	10
422	Self-passivated perovskite solar cells with wider bandgap perovskites as electron blocking layer. 2019 , 465, 420-426	4
421	Method to control the optical properties: Band gap energy of mixed halide Organolead perovskites. 2020 , 13, 988-997	12
420	A Review on Additives for Halide Perovskite Solar Cells. 2020 , 10, 1902492	131
419	A series of porphyrins as interfacial materials for inverted perovskite solar cells. 2020 , 77, 105522	9
418	Recent Advances in Lead Halide Perovskites for Radiation Detectors. 2020 , 4, 1900210	29

417	Strategies Toward Extending the Near-Infrared Photovoltaic Response of Perovskite Solar Cells. 2020 , 4, 1900280	8
416	Modeling Thin Film Solar Cells: From Organic to Perovskite. 2020 , 7, 1901397	23
415	The low temperature solution-processable SnO2 modified by Bi2O2S as an efficient electron transport layer for perovskite solar cells. 2020 , 330, 135197	14
414	Investigating the effect of polythiocyanogen on morphology and stability of the perovskite layer and its application in the hole-transport material free perovskite solar cell. 2020 , 389, 112218	О
413	One-step P2 scribing of organometal halide perovskite solar cells by picosecond laser of visible wavelength. 2020 , 505, 144408	5
412	Highly Stable FAxMA1 IkPbI3 IkBrxIP Precursor for Crystalizing High-Quality, Large-Area Perovskite Film in an Ambient Atmosphere. 2020 , 4, 1900402	6
411	Prospective randomized controlled trial comparing treatment efficacy and tolerance of picosecond alexandrite laser with a diffractive lens array and triple combination cream in female asian patients with melasma. 2020 , 34, 624-632	9
410	Understanding of carrier dynamics, heterojunction merits and device physics: towards designing efficient carrier transport layer-free perovskite solar cells. 2020 , 49, 354-381	78
409	Designing solar-cell absorber materials through computational high-throughput screening. 2020 , 29, 028803	3
408	Highly efficient inverted hole-transport-layer-free perovskite solar cells. 2020 , 8, 503-512	25
407	Advanced hermetic encapsulation of perovskite solar cells: the route to commercialization. 2020 , 8, 2654-266	5231
406	BCN-M: A Free Computational Tool for Generating Wulff-like Nanoparticle Models with Controlled Stoichiometry. 2020 , 124, 1227-1237	7
405	Photovoltaic Effect Related to Methylammonium Cation Orientation and Carrier Transport Properties in High-Performance Perovskite Solar Cells. 2020 , 12, 3563-3571	7
404	Polymer Electrolytes for Perovskite Solar Cell and Challenges. 2020 , 339-363	
403	Novel inorganic electron transport layers for planar perovskite solar cells: Progress and prospective. 2020 , 68, 104289	45
402	Improved morphological characteristics and electronic properties of MAPbI3 thin film with multiple methylamine spray treatments. 2020 , 78, 105556	3
401	The Role of the Interfaces in Perovskite Solar Cells. 2020 , 7, 1901469	131
400	In situ incorporation of laser ablated PbS nanoparticles in CH3NH3PbI3 films by spin-dip coating and the subsequent effects on the planar junction CdS/CH3NH3PbI3 solar cells. 2020 , 508, 144899	11

(2020-2020)

Efficient materials for thin-film CdTe solar cell based on back surface field and distributed Bragg reflector. 2020 , 126, 1	7
A review on spectral converting nanomaterials as a photoanode layer in dye-sensitized solar cells with implementation in energy storage devices. 2020 , 2, e120	7
Hierarchical flower-like TiO2 microspheres with improved dye-sensitized solar cell performance. 2020 , 31, 1275-1282	2
Perovskite solar cells: The new epoch in photovoltaics. 2020 , 196, 295-309	27
Performance improvement of fully ambient air fabricated perovskite solar cells in an anti-solvent process using TiO hollow spheres. 2020 , 562, 125-132	8
. 2020,	11
Origins of the s-shape characteristic in J-V curve of inverted-type perovskite solar cells. 2020 , 31, 115403	20
Recent progress in development of diverse kinds of hole transport materials for the perovskite solar cells: A review. 2020 , 119, 109608	39
Room-Temperature-Processed Amorphous Sn-In-O Electron Transport Layer for Perovskite Solar Cells. 2019 , 13,	6
Efficiency enhancement of perovskite solar cell by using doubly carrier transport layers with a distinct bandgap of MAPbI3 active layer. 2020 , 224, 165430	8
Radical Molecular Modulator for High-Performance Perovskite Solar Cells. 2020 , 8, 825	2
Enhanced efficiency and reduced hysteresis by TiO2 modification in high-performance perovskite solar cells. 2020 , 86, 105922	3
Chirality-Induced Spin-Orbit Coupling, Spin Transport, and Natural Optical Activity in Hybrid Organic-Inorganic Perovskites. 2020 , 11, 8638-8646	16
High-performance hole conductor-free perovskite solar cell using a carbon nanotube counter electrode 2020 , 10, 35831-35839	22
Elucidating the functional form of the recombination losses in a planar perovskite solar cell: A scaling analysis. 2020 , 128, 123102	2
Formation of Color Centers in Lead Iodide Perovskites: Self-Trapping and Defects in the Bulk and Surfaces. 2020 , 32, 6916-6924	15
TiO Mesocrystals Processed at Low Temperature as the Electron-Transport Material in Perovskite Solar Cells. 2020 , 13, 5256-5263	4
Boosting optoelectronic performance of MAPbI3 perovskite solar cells via ethylammonium chloride additive engineering. 2020 , 63, 2477-2486	15
	reflector. 2020, 126, 1 A review on spectral converting nanomaterials as a photoanode layer in dye-sensitized solar cells with implementation in energy storage devices. 2020, 2, e120 Hierarchical flower-like TiO2 microspheres with improved dye-sensitized solar cell performance. 2020, 31, 1275-1282 Perovskite solar cells: The new epoch in photovoltaics. 2020, 196, 295-309 Performance improvement of fully ambient air fabricated perovskite solar cells in an anti-solvent process using TiO hollow spheres. 2020, 562, 125-132 2020, Origins of the s-shape characteristic in J-V curve of inverted-type perovskite solar cells. 2020, 31, 115403 Recent progress in development of diverse kinds of hole transport materials for the perovskite solar cells. A review. 2020, 119, 109608 Room-Temperature-Processed Amorphous Sn-In-O Electron Transport Layer for Perovskite Solar Cells. 2019, 13, Efficiency enhancement of perovskite solar cell by using doubly carrier transport layers with a distinct bandgap of MAPbI3 active layer. 2020, 224, 165430 Radical Molecular Modulator for High-Performance Perovskite Solar Cells. 2020, 8, 825 Enhanced efficiency and reduced hysteresis by TiO2 modification in high-performance perovskite solar cells. 2020, 86, 105922 Chirality-Induced Spin-Orbit Coupling, Spin Transport, and Natural Optical Activity in Hybrid Organic-Inorganic Perovskites. 2020, 11, 8638-8646 High-performance hole conductor-free perovskite solar cell using a carbon nanotube counter electrode. 2020, 10, 35831-35839 Elucidating the functional form of the recombination losses in a planar perovskite solar cell: A scaling analysis. 2020, 128, 123102 Formation of Color Centers in Lead Iodide Perovskites: Self-Trapping and Defects in the Bulk and Surfaces. 2020, 13, 5916-6924 TiO Mesocrystals Processed at Low Temperature as the Electron-Transport Material in Perovskite Solar Cells. 2020, 13, 5956-5263

381	Electron transport enhancement in perovskite solar cell via the polarized BaTiO3 thin film. 2020 , 35, 2158-2165	6
380	Halide Pb-Free Double B erovskites: Ternary vs. Quaternary Stoichiometry. 2020 , 13, 3516	7
379	Interfacial Coordination Nanosheet Based on Nonconjugated Three-Arm Terpyridine: A Highly Color-Efficient Electrochromic Material to Converge Fast Switching with Long Optical Memory. 2020 , 12, 35181-35192	26
378	Charge-Transporting-Layer-Free, Vacuum-Free, All-Inorganic CsPbIBr Perovskite Solar Cells Via Dipoles-Adjusted Interface. 2020 , 10,	5
377	Recent Progress on the Stability of Perovskite Solar Cells in a Humid Environment. 2020 , 124, 27251-27266	19
376	Improving stability of organometallic-halide perovskite solar cells using exfoliation two-dimensional molybdenum chalcogenides. 2020 , 4,	17
375	Effects of compositional engineering and surface passivation on the properties of halide perovskites: a theoretical understanding. 2020 , 22, 19718-19724	4
374	First-Principles Calculations of Graphene-Coated CH3NH3PbI3 toward Stable Perovskite Solar Cells in Humid Environments. 2020 , 3, 7704-7712	4
373	A novel two-dimensional oxysulfide Sr3.5Pb2.5Sb6O5S10: synthesis, crystal structure, and photoelectric properties. 2020 , 8, 11018-11021	1
372	A simple fabrication of high efficiency planar perovskite solar cells: controlled film growth with methylammonium iodide and green antisolvent sec-butyl alcohol. 2020 , 8, 12560-12567	6
371	Novel mixed solution of ethanol/MACl for improving the crystallinity of air-processed triple cation perovskite solar cells. 2020 , 207, 1240-1246	29
370	Pathway toward market entry of perovskite solar cells: A detailed study on the research trends and collaboration networks through bibliometrics. 2020 , 6, 2075-2085	10
369	Effects of composition modulation on the type of band alignments for Pd2Se3/CsSnBr3 van der waals heterostructure: A transition from type I to type II. 2020 , 478, 229078	17
368	CNTs/Cf based counter electrode for highly efficient hole-transport-material-free perovskite solar cells. 2020 , 403, 112843	6
367	Manipulation of planar oxygen defect arrangements in multifunctional magn[] titanium oxide hybrid systems: from energy conversion to water treatment. 2020 , 13, 5080-5096	6
366	Unravelling the origin of the photocarrier dynamics of fullerene-derivative passivation of SnO2 electron transporters in perovskite solar cells. 2020 , 8, 23607-23616	14
365	Photoinduced Vibrations Drive Ultrafast Structural Distortion in Lead Halide Perovskite. <i>Journal of the American Chemical Society</i> , 2020 , 142, 16569-16578	11
364	Establishing Multifunctional Interface Layer of Perovskite Ligand Modified Lead Sulfide Quantum Dots for Improving the Performance and Stability of Perovskite Solar Cells. 2020 , 16, e2002628	13

(2020-2020)

363	TiO2 Nanotubes: An Advanced Electron Transport Material for Enhancing the Efficiency and Stability of Perovskite Solar Cells. 2020 , 59, 18549-18557	19
362	Antisolvents in Perovskite Solar Cells: Importance, Issues, and Alternatives. 2020 , 7, 2000950	44
361	Perovskite Quantum Dots. 2020 ,	2
360	Effects of HI Additive on the Crystallization of Perovskite in Printed Mesoscopic Scaffolds. 2020 , 49, 7009-70)17 ₀
359	Dual Excitonic Emission in Hybrid 2D Layered Tin Iodide Perovskites. 2020 , 124, 21129-21136	16
358	5-Ammonium Valeric Acid Iodide to Stabilize MAPbI via a Mixed-Cation Perovskite with Reduced Dimension. 2020 , 11, 8170-8176	7
357	Why choosing the right partner is important: stabilization of ternary CsGUAFAPbI perovskites. 2020 , 22, 20880-20890	2
356	Novel Electron Transport Layer Material for Perovskite Solar Cells with Over 22% Efficiency and Long-Term Stability. 2020 , 30, 2004933	33
355	Low-temperature carbon-based electrodes in perovskite solar cells. 2020 , 13, 3880-3916	59
354	Electrochemical Impedance Spectroscopy Analysis of Hole Transporting Material Free Mesoporous and Planar Perovskite Solar Cells. 2020 , 10,	16
353	Recent Progress of Lead Halide Perovskite Sensitized Solar Cells. 2020,	
352	Performance Analysis of Embedded Mechanoluminescence-Perovskite Self-Powered Pressure Sensor for Structural Health Monitoring. 2020 , 4, 190	3
351	Recent Progress and Challenges of Electron Transport Layers in OrganicIhorganic Perovskite Solar Cells. 2020 , 13, 5572	26
350	Photoemission Spectroscopy Characterization of Halide Perovskites. 2020 , 10, 1904007	35
349	Elucidating the role of TiCl4 post-treatment on percolation of TiO2 electron transport layer in perovskite solar cells. 2020 , 53, 385501	3
348	Effect of preheated, delayed annealing process on the ultrafast carriers dynamics of perovskite films using ultrafast absorption spectroscopy. 2020 , 84, 105758	2
347	Solution-processed perovskite solar cells. 2020 , 27, 1104-1133	21
346	Progress in Materials Development for the Rapid Efficiency Advancement of Perovskite Solar Cells. 2020 , 16, e1907531	18

345	Unveiling the Two-Step Formation Pathway of Cs4PbBr6 Nanocrystals. 2020, 32, 4574-4583	10
344	Flexible optoelectronic devices based on metal halide perovskites. 2020 , 13, 1997-2018	23
343	Influence of precursor concentration on printable mesoscopic perovskite solar cells. 2020, 13, 256-264	5
342	Interface Engineering Driven Stabilization of Halide Perovskites against Moisture, Heat, and Light for Optoelectronic Applications. 2020 , 10, 2000768	32
341	Correlation of Dielectric Confinement and Excitonic Binding Energy in 2D Layered Hybrid Perovskites Using Temperature Dependent Photoluminescence. 2020 , 124, 16177-16185	23
340	Device simulation of low cost HTM free perovskite solar cell based on TiO2 electron transport layer. 2020 ,	6
339	Hole-conductor-free perovskite solar cells. 2020 , 45, 449-457	3
338	A Cu-Doping Strategy to Enhance Photoelectric Performance of Self-Powered Hole-Conductor-Free Perovskite Photodetector for Optical Communication Applications. 2020 , 5, 2000260	13
337	Nanocarbon. 2020 , 131-155	
336	Highly stable and Pb-free bismuth-based perovskites for photodetector applications. 2020 , 44, 11282-11290	9
335	Bi3+-Er3+ and Bi3+-Yb3+ Codoped Cs2AgInCl6 Double Perovskite Near-Infrared Emitters. 2020 , 132, 11403-11407	15
334	Charge localization and trapping at surfaces in lead-iodide perovskites: the role of polarons and defects. 2020 , 8, 6882-6892	28
333	Positive effects in perovskite solar cells achieved using down-conversion NaEuF4 nanoparticles. 2020 , 116, 113503	9
332	Bi -Er and Bi -Yb Codoped Cs AgInCl Double Perovskite Near-Infrared Emitters. 2020 , 59, 11307-11311	102
331	Design of hole-transport-material free CH3NH3PbI3/CsSnI3 all-perovskite heterojunction efficient solar cells by device simulation. 2020 , 201, 555-560	60
330	White Light Emission from a Zero-Dimensional Lead Chloride Hybrid Material. 2020 , 7, 1178-1187	19
329	Scalable Synthesis of Micron Size Crystals of CH3NH3PbI3 at Room Temperature in Acetonitrile via Rapid Reactive Crystallization. 2020 , 5, 3266-3271	
328	Conversion efficiency enhancement of methylammonium lead triiodide perovskite solar cells converted from thermally deposited lead iodide via thin methylammonium iodide interlayer. 2020 , 82, 105713	1

327	Optimization of Spin Coated TiO2 Layer for Hole-Free Perovskite Solar Cell. 2020 , 762, 012003	1
326	Dynamical properties of organo lead-halide perovskites and their interfaces to titania: insights from Density Functional Theory. 2020 , 6, e03427	2
325	Evolution of Perovskite Solar Cells: Lessons Learned from Hybrid/Organic Photovoltaics. 2020, 5, 935-937	0
324	Template effects in Cu(I)Bi(III) iodide double perovskites: a study of crystal structure, film orientation, band gap and photocurrent response. 2020 , 8, 7288-7296	18
323	Controllable synthesis of CsxPbyBrz-based perovskites by a polar solvent-triggered transformation method and its application as an invisible security ink. 2020 , 55, 6826-6833	3
322	Understanding of perovskite crystal growth and film formation in scalable deposition processes. 2020 , 49, 1653-1687	184
321	Analyzing Interface Recombination in Lead-Halide Perovskite Solar Cells with Organic and Inorganic Hole-Transport Layers. 2020 , 7, 2000366	28
320	Self-Assembled Hydrophobic Molecule-Based Surface Modification: A Strategy to Improve Efficiency and Stability of Perovskite Solar Cells. 2020 ,	1
319	Aryl Diammonium Iodide Passivation for Efficient and Stable Hybrid Organ-Inorganic Perovskite Solar Cells. 2020 , 30, 2002366	33
318	The role of hafnium acetylacetonate buffer layer on the performance of lead halide perovskite solar cells derived from dehydrated lead acetate as Pb source. 2020 , 10, 075006	1
317	TiO2@PbTiO3 core-shell nanoparticles as mesoporous layer to improve electron transport performance in carbon-based perovskite solar cells. 2020 , 254, 123436	3
316	Theoretical Progress on the Relationship between the Structures and Properties of Perovskite Solar Cells. 2020 , 3, 2000022	4
315	Hydrogen halide-free synthesis of organohalides for organometal trihalide perovskite solar cells. 2020 , 89, 375-382	3
314	Perovskite-Type BaTiO3 Nanocrystal Modifier in TiO2/CH3NH3PbI3 Interface to Enhance the Performance of Planar Perovskite Solar Cells. 2020 , 49, 4601-4609	3
313	Role of defect density on the electronic transport and current-voltage characteristics of the hole transporter free perovskite solar cell. 2020 , 28, 223-229	1
312	Simplified Compact Perovskite Solar Cells with Efficiency of 19.6% via Interface Engineering. 2020 , 3, 5-11	7
311	Enhancing fully printable mesoscopic perovskite solar cell performance using integrated metallic grids to improve carbon electrode conductivity. 2020 , 20, 619-627	16
310	Atomistic Origins of the Limited Phase Stability of Cs+-Rich FAxCs(1☑)PbI3 Mixtures. 2020 , 32, 2605-2614	14

309	Development in the innovation of lead halide-based perovskite quantum dots from rare earth-doped garnet-based phosphors for light-emitting diodes. 2020 , 21-56	1
308	Solvent selection for highly reproducible carbon-based mixed-cation hybrid lead halide perovskite solar cells via adduct approach. 2020 , 199, 761-771	7
307	Enhancing electron transport in perovskite solar cells by incorporating GO to the meso-structured TiO2 layer. 2020 , 31, 3603-3612	4
306	High Efficiency Mesoscopic Solar Cells Using CsPbI Perovskite Quantum Dots Enabled by Chemical Interface Engineering. <i>Journal of the American Chemical Society</i> , 2020 , 142, 3775-3783	92
305	Light-Induced Defect Healing and Strong Many-Body Interactions in Formamidinium Lead Bromide Perovskite Nanocrystals. 2020 , 11, 1239-1246	12
304	Interfacial modification of various alkali metal cations in perovskite solar cells and their influence on photovoltaic performance. 2020 , 44, 8902-8909	8
303	Dopant-Free, Amorphous@rystalline Heterophase SnO2 Electron Transport Bilayer Enables >20% Efficiency in Triple-Cation Perovskite Solar Cells. 2020 , 30, 2001559	45
302	Competing Dissolution Pathways and Ligand Passivation-Enhanced Interfacial Stability of Hybrid Perovskites with Liquid Water. 2020 , 12, 23584-23594	9
301	High-Efficiency Perovskite Solar Cells Enabled by Anatase TiO Nanopyramid Arrays with an Oriented Electric Field. 2020 , 59, 11969-11976	44
300	High-Efficiency Perovskite Solar Cells Enabled by Anatase TiO2 Nanopyramid Arrays with an Oriented Electric Field. 2020 , 132, 12067-12074	5
299	Electronic Structure and Trap States of Two-Dimensional Ruddlesden P opper Perovskites with the Relaxed Goldschmidt Tolerance Factor. 2020 , 2, 1402-1412	11
298	Energy Storage Materials as Emerging Nano-contaminants. 2020 , 33, 1074-1081	3
297	Interphases, Interfaces, and Surfaces of Active Materials in Rechargeable Batteries and Perovskite Solar Cells. 2021 , 33, e1905245	18
296	Numerical modeling and simulation for augmenting the photovoltaic response of HTL free perovskite solar cells. 2021 , 46, 6367-6373	3
295	Solution-processed TiO2 blocking layers in printed carbon-based perovskite solar cells. 2021 , 536, 147888	4
294	Structural, optical and excitonic properties of urea grading doped CH3NH3PbI3 thin films and their application in inverted-type perovskite solar cells. 2021 , 858, 157660	6
293	Vacancies induced enhancement in neodymium doped titania photoanodes based sensitized solar cells and photo-electrochemical cells. 2021 , 220, 110843	5
292	Hollow TiO2 spheres as mesoporous layer for better efficiency and stability of perovskite solar cells. 2021 , 866, 158079	7

(2021-2021)

291	Dielectric confinement for designing compositions and optoelectronic properties of 2D layered hybrid perovskites. 2021 , 23, 82-93	13
290	A Review on Scaling Up Perovskite Solar Cells. 2021 , 31, 2008621	54
289	Mechanisms and Suppression of Photoinduced Degradation in Perovskite Solar Cells. 2021 , 11, 2002326	53
288	Asymmetrical planar acridine-based hole-transporting materials for highly efficient perovskite solar cells. 2021 , 413, 127440	1
287	Co/Eu co-doped electron transport layer enhances charge extraction and light absorption for efficient carbon-based HTM-free perovskite solar cells. 2021 , 45, 5224-5234	1
286	Anti-solvent mixture-mediated reduction of photocurrent hysteresis in high-impurity perovskite precursor based MAPbI3 solar cells. 2021 , 214, 86-92	9
285	Doping in Semiconductor Oxides-Based Electron Transport Materials for Perovskite Solar Cells Application. 2021 , 5, 2000605	9
284	Improving the Performance of Carbon-Based Perovskite Solar Modules (70 cm2) by Incorporating Cesium Halide in Mesoporous TiO2. 2021 , 4, 249-258	2
283	Band gaps of the solar perovskites photovoltaic CsXCl3 (X=Sn, Pb or Ge). 2021 , 122, 105484	30
282	Towards highly stable and efficient planar perovskite solar cells: Materials development, defect control and interfacial engineering. 2021 , 420, 127599	11
281	The Effects of Solvent on Doctor-Bladed Perovskite Light Absorber under Ambient Process Condition for Multiple-Cation Mixed Halide Perovskites. 2021 , 9, 2000792	1
280	Layer dependency of graphene layers in perovskite/graphene solar cells. 2021 , 172, 597-601	8
279	TiO2 electron transport bilayer for all-inorganic perovskite photodetectors with remarkably improved UV stability toward imaging applications. 2021 , 75, 39-47	10
278	Ambient Fabrication of Organic-Inorganic Hybrid Perovskite Solar Cells 2021 , 5, e2000744	23
277	Investigation of the Nanomechanical Properties of Crystalline Anatase Titanium Dioxide Films Synthesized Using Atomic Layer Deposition. 2021 , 73, 534-540	1
276	An overview of the mathematical modelling of perovskite solar cells towards achieving highly efficient perovskite devices. 2021 , 45, 1496-1516	4
275	Numerical Modeling and Analysis of HTM-Free Heterojunction Solar Cell Using SCAPS-1D. 2021 ,	О
274	Studies on Dye-Sensitized Solar Cells Incorporated with Perovskite as Sensitizer Dye. 2021 , 45-81	

273	Elimination of Charge Transport Layers in High-Performance Perovskite Solar Cells by Band Bending. 2021 , 4, 1294-1301	2
272	Triple-Mesoscopic Carbon Perovskite Solar Cells: Materials, Processing and Applications. 2021 , 14, 386	13
271	Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells.	47
270	Combined Effects of Buffer Layers and Electrode Contacts on the Performance of Organic Solar Cells. 2021 , 50, 1397-1411	
269	Role of TiO2 in Highly Efficient Solar Cells. 2021 , 147-168	
268	Ambient Prepared Mesoporous Perovskite Solar Cells with Longer Stability. 2021 , 50, 1535-1543	1
267	Photo-energy conversion efficiency of CH3NH3PbI3/C60 heterojunction perovskite solar cells from first-principles. 2021 , 2, 1665-1675	0
266	Lanthanide-doped nanoparticles in photovoltaics [more than just upconversion.	2
265	Research progress of light irradiation stability of functional layers in perovskite solar cells. 2021 , 0-0	0
264	Structural evolution, optical gap and thermoelectric properties of CH3NH3SnBr3 hybrid perovskite, prepared by mechanochemistry. 2021 , 2, 3620-3628	4
263	Enhanced Power Conversion Efficiency of the P3BT (Poly-3-Butyl Thiophene) Doped Nanocomposites of Gd-TiO3 as Working Electrode. 2021 , 55-68	5
262	Lead-free perovskite compounds CsSnGeIBr explored for superior visible-light absorption. 2021 , 23, 14449-14456	2
261	Improvement in performance of carbon-based perovskite solar cells by adding 1, 8-diiodooctane into hole transport layer 3-hexylthiophene. 2021 , 70, 198403-198403	
260	Device simulation of highly efficient eco-friendly CHNHSnI perovskite solar cell. 2021 , 11, 3082	24
259	Electronic, structural and optical properties of cerium and zinc co-doped organic-inorganic halide perovskites for photovoltaic application. 2021 , 603, 412703	1
258	An investigation of physical properties and photovoltaic performance of methylammonium lead-tin iodide (CH3NH3Sn1-xPbxI3) solar cells. 2021 , 38, 23-32	
257	Composition-Dependent Struggle between Iodine and Tin Chemistry at the Surface of Mixed Tin/Lead Perovskites. 2021 , 6, 969-976	12
256	Synthesis of Hybrid Lead Iodide Perovskite Thin Film by Two-Step Method Modified with a Double Dipping Circle to Control Its Crystallization and Morphology to Improve Solar Cells Performance. 2021 , 2021, 1-7	O

255	Mn2+-doped Cs2NaInCl6 double perovskites and their photoluminescence properties. 2021 , 56, 8048-8059	5
254	Impact of drying temperature on the photovoltaic performance and impedance spectra of hole transport material free air processed perovskite solar cells. 2021 , 32, 5353-5360	1
253	A Review on Emerging Efficient and Stable Perovskite Solar Cells Based on g-CN Nanostructures. 2021 , 14,	6
252	Modeling and Simulation of High-Efficiency Eco-Friendly Perovskite-CZTSe1 IkSx Solar Cell. 2021 , 55, 373-378	O
251	ZnO for stable and efficient perovskite bulk heterojunction solar cell fabricated under ambient atmosphere. 2021 , 216, 164-170	4
250	Intrinsic magnetism and thermoelectric applicability of novel halide perovskites Cs2GeMnX6 (XI=ICl, Br): Route towards spintronics and energy harvesting technologies. 2021 , 265, 114985	4
249	Photovoltaic Recovery of All Printable Mesoporous-Carbon-based Perovskite Solar Cells. 2021 , 5, 2100028	6
248	Efficient application of carbon-based nanomaterials for high-performance perovskite solar cells. 2021 , 40, 2747-2762	1
247	Energy vs Charge Transfer in Manganese-Doped Lead Halide Perovskites 2021 , 6, 1869-1878	12
246	Effect of Metals (Au, Ag, and Ni) as Cathode Electrode on Perovskite Solar Cells. 2021 , 722, 012019	2
245	Performance Improvement of All-Inorganic, Hole-Transport-Layer-Free Perovskite Solar Cells Through Dipoles-Adjustion by Polyethyleneimine Incorporating. 2021 , 42, 537-540	1
244	DFT Simulations as Valuable Tool to Support NMR Characterization of Halide Perovskites: the Case of Pure and Mixed Halide Perovskites. 2021 , 104, e2000231	5
243	Structural and optoelectronic properties of hybrid halide perovskites for solar cells. 2021 , 91, 106077	10
242	On the role of solution-processed bathocuproine in high-efficiency inverted perovskite solar cells. 2021 , 218, 142-149	10
241	Study of perovskite CH3NH3PbI3 thin films under thermal exposure. 2021 , 44, 1	1
240	SnO2/2D-Bi2O2Se new hybrid electron transporting layer for efficient and stable perovskite solar cells. 2021 , 410, 128436	20
239	Impact of precursor concentration on the properties of perovskite solar cells obtained from the dehydrated lead acetate precursors. 2021 , 39, 032801	1
238	Pseudohalide substitution and potassium doping in FA0.98K0.02Pb(SCN)2I for high-stability hole-conductor-free perovskite solar cells. 2021 , 494, 229781	5

237	Comparative Study on TiO2 and C60 Electron Transport Layers for Efficient Perovskite Solar Cells. 2021 , 4, 5543-5553	1
236	LeadBalide perovskites for next-generation self-powered photodetectors: a comprehensive review. 2021 , 9, 968	16
235	Numerical study of high performance HTL-free CH3NH3SnI3-based perovskite solar cell by SCAPS-1D. 2021 , 11, 065102	7
234	Carbon-based all-inorganic perovskite solar cells: Progress, challenges and strategies toward 20% efficiency. 2021 ,	6
233	Effects of component on the photoelectric properties of two-dimensional van der Waals heterostructure Cs2PbI2(1+x) Cl2($1\overline{M}$)/Pd2Se3 with Ruddlesen Popper structure. 2021 , 54, 355110	4
232	Impact of carbon-based charge transporting layer on the performance of perovskite solar cells. 2021 , 221, 254-274	2
231	Zn-Doped SnO2 Compact Layer for Enhancing Performance of Perovskite Solar Cells. 2021 , 2021, 1-10	O
230	Nickel Oxide for Perovskite Photovoltaic Cells. 2021 , 2, 2000178	2
229	A facile gas-driven ink spray (GDIS) deposition strategy toward hole-conductor-free carbon-based perovskite solar cells. 1	4
228	Current Development toward Commercialization of Metal-Halide Perovskite Photovoltaics. 2021 , 9, 2100390	9
227	Advances in cesium lead iodide perovskite solar cells: Processing science matters. 2021 , 47, 156-169	9
226	Study of hybrid organicihorganic halide perovskite solar cells based on MAI[(PbI2)1Id(CuI)x] absorber layers and their long-term stability. 2021 , 32, 20684-20697	1
225	Enhancing charge transport performance of perovskite solar cells by using reduced graphene oxide-cysteine/nanogold hybrid material in the active layer. 2021 , 28, 100254	5
224	A mini review: Constructing perovskite P-N homojunction solar cells. 2021,	O
223	Temperature-Dependent Photoluminescence of Hexafluorobenzene-Intercalated Phenethylammonium Tin Iodide 2D Perovskite. 2021 , 16, 2745-2751	1
222	Band offset in semiconductor heterojunctions. 2021 , 33,	4
221	New isostructural halide double perovskites Cs2GeNiX6 (X= Cl, Br) for semiconductor spintronics and thermoelectric advancements. 2021 , 300, 122196	2
220	NMR spectroscopy probes microstructure, dynamics and doping of metal halide perovskites. 2021 , 5, 624-645	27

219	The effect of rapid atmospheric plasma treatment of FTO substrates on the quality of TiO2 blocking layers for printed perovskite solar cells. 2021 , 131, 105850	3
218	Surface Modulation of Halide Perovskite Films for Efficient and Stable Solar Cells.	O
217	Heterostructural perovskite solar cell constructed with Li-doped p-MAPbI3/n-TiO2 PN junction. 2021 , 226, 446-454	1
216	Analysis on growth mechanism of TiO2 nanorod structures on FTO glass in hydrothermal process. 2021 , 104, 445-445	2
215	Strain mediated light emission using heterojunctions of all-inorganic mixed-halide perovskite nanocrystals via piezo-phototronic effect. 2021 , 87, 106200	9
214	Enhanced charge transport in low temperature carbon-based n-i-p perovskite solar cells with NiOx-CNT hole transport material. 2021 , 230, 111241	4
213	Polymer additive assisted crystallization of perovskite films for high-performance solar cells. 2021 , 96, 106258	2
212	Applications of carbon nanomaterials in perovskite solar cells for solar energy conversion. 2021 , 3, 276-290	4
211	Plasmonic Dye-Sensitized Solar Cells: Fundamentals, Recent Developments, and Future Perspectives. 2021 , 6, 9337-9350	1
210	Designing hole conductor free tin l ead halide based all-perovskite heterojunction solar cell by numerical simulation. 2021 , 156, 110168	4
209	Inorganic Lead-Free B-ECsSnI Perovskite Solar Cells Using Diverse Electron-Transporting Materials: A Simulation Study. 2021 , 6, 26689-26698	2
208	Wide spectral response perovskite solar cells mixed with NaGdF4:Yb3+, Er3+@NaGdF4:Eu3+ core-shell rare earth nanoparticles. 2021 , 119, 111326	4
207	Facile synthesis of BaMoO4 and BaMoO4/BaWO4 heterostructures with type -I band arrangement and enhanced photoluminescence properties. 2021 ,	14
206	Recent advances in carbon nanomaterial-optimized perovskite solar cells. 2021 , 21, 100769	9
205	Femtosecond Upconversion Study of Interfacial Electron Transfer from Photoexcited CsPbBr Perovskite Nanocrystal to Rhodamine 6G. 2021 , 125, 11017-11025	3
204	N,P-codoped carbon quantum dots-decorated TiO nanowires as nanosized heterojunction photocatalyst with improved photocatalytic performance for methyl blue degradation. 2021 , 1	1
203	Carrier Transport Layer-Free Perovskite Solar Cells. 2021 , 14, 4776-4782	2
202	Advances in perovskite solar cells: Film morphology control and interface engineering. 2021, 317, 128368	2

201	Optimizing photovoltaic conversion of solar energy. 2021 , 11, 100701	2
200	Lead-free, mixed tin-copper perovskites with improved stability and optical properties. 2021 , 879, 160325	4
199	Composite electrode based on single-atom Ni doped graphene for planar carbon-based perovskite solar cells. 2021 , 209, 109972	7
198	Nb2C MXenes modified SnO2 as high quality electron transfer layer for efficient and stability perovskite solar cells. 2021 , 89, 106455	8
197	Laser induced corelhell liquid metal quantum dots for high-efficiency carbon-based perovskite solar cells. 2021 , 565, 150470	3
196	Modified thin film perovskite solar cell for high conversion efficiency. 2021 , 246, 167838	О
195	Ambient processed perovskite sensitized porous TiO2 nanorods for highly efficient and stable perovskite solar cells. 2021 , 884, 161061	3
194	Effects of cesium content on the triple-cation lead halide perovskite photodetectors with enhanced detectivity and response time. 2022 , 889, 161621	3
193	A Facile Synthesis of Gadolinium Titanate (GdTiO3) Nanomaterial and Its Effect in Enhanced Current-Voltage Characteristics of Thin Films. 2021 , 69-78	4
192	Centimeter-Sized Single Crystals of Two-Dimensional Hybrid Iodide Double Perovskite (4,4-Difluoropiperidinium)4AgBil8 for High-Temperature Ferroelectricity and Efficient X-Ray Detection. 2021 , 31, 2009457	57
191	Future perspectives of perovskite solar cells: Metal oxide-based inorganic hole-transporting materials. 2021 , 181-219	2
190	Theoretical insight into the CdS/FAPbI3 heterostructure: a promising visible-light absorber. 2021 , 45, 4393-4400	4
189	Perovskite/silicon heterojunction tandem solar cells: Advances in optical simulation. 2021 , 70, 057802-057802	O
188	Excited-State Properties of Defected Halide Perovskite Quantum Dots: Insights from Computation. 2021 , 12, 1005-1011	6
187	Chlorine management of a carbon counter electrode for high performance printable perovskite solar cells. 2021 , 9, 8615-8622	3
186	Towards Simplifying the Device Structure of High-Performance Perovskite Solar Cells. 2020 , 30, 2000863	38
185	Perovskite Photovoltaics: From Laboratory to Industry. 2020 , 219-255	7
184	Origin of Light-Induced Photophysical Effects in Organic Metal Halide Perovskites in the Presence of Oxygen. 2018 , 9, 3891-3896	84

(2021-2016)

183	Chapter 8:First Principles Modeling of Perovskite Solar Cells: Interplay of Structural, Electronic and Dynamical Effects. 2016 , 234-296	2
182	Investigation of parameters affecting the performance of Perovskite solar cells. 2020 , 710, 66-73	1
181	Study of optical, electrical and photovoltaic properties of CH3NH3PbI3 perovskite: ab initio calculations. 2020 , 95, 095104	4
180	Effects of {001} Facet of Anatase TiO2 Single-crystalline Nanosheets on Photoexcited Electron Transfer from Near-infrared Dye-sensitizer. 2017 , 46, 1624-1627	2
179	TiO2/Mg-SnO2 nanoparticle composite compact layer for enhancing the performance of perovskite solar cells. 2020 , 10, 157	10
178	Solar photovoltaics: current state and trends. 2016 , 186, 801-852	21
177	Hysteresis Analysis of Hole-Transport-Material-Free Monolithic Perovskite Solar Cells with Carbon Counter Electrode by Current Density-Voltage and Impedance Spectra Measurements. 2020 , 11,	9
176	Constructing Stable and Potentially High-Performance Hybrid Organic-Inorganic Perovskites with "Unstable" Cations. 2020 , 2020, 1986576	3
175	Modified Becke-Johnson exchange potential: improved modeling of lead halides for solar cell applications. 2016 , 3, 149-159	14
174	Progress of research on new hole transporting materials used in perovskite solar cells. 2015 , 64, 033301	5
173	Recent advances in planar heterojunction organic-inorganic hybrid perovskite solar cells. 2015 , 64, 038401	15
172	Key issues in highly efficient perovskite solar cells. 2015 , 64, 038404	12
171	progress in electron-transport materials in application of perovskite solar cells. 2015 , 64, 038802	9
170	A review of the perovskite solar cells. 2015 , 64, 038805	17
169	Recent research progress in perovskite solar cells. 2016 , 65, 237902	6
168	Quality management of high-efficiency planar heterojunction organic-inorganic hybrid perovskite solar cells. 2018 , 67, 158801	3
167	Preparation and performance of high-efficient hole-transport-material-free carbon based perovskite solar cells. 2018 , 67, 228801	3
166	Unveiling the Effect of Potassium Treatment on the Mesoporous TiO2/ Perovskite Interface in Perovskite Solar Cells. 2021 , 4, 11488-11495	5

165	Processing and Preparation Method for High-Quality Opto-Electronic Perovskite Film. 2021, 8,	1
164	Mechano-Chemical Synthesis, Structural Features and Optical Gap of Hybrid CHNHCdBr Perovskite. 2021 , 14,	О
163	Strategies for improving performance, lifetime, and stability in light-emitting diodes using liquid medium. 2021 , 2, 041302	1
162	Recent advancement in inorganic-organic electron transport layers in perovskite solar cell: current status and future outlook. 2021 , 22, 100595	3
161	Effect of solvent on the perovskite thin film morphology and crystallinity. 2015, 64, 038403	6
160	Computational prediction of lattice defects in multinary compound semiconductors as photovoltaic materials. 2015 , 64, 186102	2
159	2.????????????????????. 2016 , 84, 445-448	
158	Current state and perspectives for organo-halide perovskite solar cells: Crystal structures and thin film formation, morphology, processing, degradation, stability improvement by carbon nanotube. 2017 , 20, 153-193	
157	Efficient hole-conductor-free printable mesoscopic perovskite solar cells based on hybrid carbon electrodes. 2018 ,	
156	All dielectric and plasmonic cross-grating metasurface for efficient perovskite solar cells. 2018,	
155	Rational Screening Strategies for Counter Electrode Nanocomposite Materials for Efficient Solar Energy Conversion. 169-192	
154	Photoinduced charge carrier dynamics and spectral band filling in organometal halide perovskites. 2019 , 68, 018401	
153	Recent advances in photo-stability of lead halide perovskites. 2019 , 68, 157102	4
152	Application of CuSCN and PEDOT:PSS as hole transport material in perovskite solar cell. 2019,	
151	Characterization of Lead Halide Perovskites Using Synchrotron X-ray Techniques. 2020 , 157-179	
150	Highly efficient solar-heat shield based on the bipolaron-assisted PEDOT:PSS thin film. 2020 , 66, 102-108	1
149	Study of Electron Transport Layer-Free and Hole Transport Layer-Free Inverted Perovskite Solar Cells. 2100578	1
148	Organometal Halide Perovskite-Based Materials and Their Applications in Solar Cell Devices. 2020 , 259-281	

147	High performance ZnSe sensitized ZnO heterostructures for photo-detection applications. 2022 , 894, 162263	4
146	Stability study of organometal halide perovskite and its enhanced X-ray scintillation from the incorporation of anodic TiO nanotubes 2020 , 10, 43773-43782	1
145	Operational Principles of Hybrid Perovskite Solar Cells. 2021 , 275-308	1
144	Solvation of NiOfor hole transport layer deposition in perovskite solar cells. 2021 , 33,	1
143	Metal Oxides in Stable and Flexible Halide Perovskite Solar Cells: Toward Self-Powered Internet of Things. 2021 , 273-310	
142	Morphology controlled (CH3NH3)3Bi2Cl9 thin film for lead free perovskite solar cell. 2021 , 625, 413536	1
141	A BICHROMOPHORIC ORGANIC-INORGANIC SEMICONDUCTOR NANOCOMPOSITE: DEVICE READY BROAD SPECTRAL RESPONSE LIGHT-HARVESTING MATERIAL WITH ENHANCED PHOTORESPONSE. 2020 , 597, 124707	
140	Organic building blocks at inorganic nanomaterial interfaces. 2021,	1
139	Tuning optical properties of zinc oxide and methyl ammonium lead iodide by ultrasound assisted method. 2021 , 120, 106649	
138	Effect of 2-propanol Immersing on Organohalide Perovskite Layer in Perovskite Solar Cells Fabricated by Two-step Method. 2021 , 34, 279-284	
137	Preparation and characterization of planar heterojunction perovskite solar cells based on c-TiO2/CH3NH3PbI3/HTM/Ag structure. 2021 , 100, 440-450	0
136	Tuning the Band Gaps of Oxide and Halide Perovskite Compounds via Biaxial Strain in All Directions. 2021 , 125, 25951-25958	O
135	The roles of black phosphorus in performance enhancement of halide perovskite solar cells. 2021 , 67, 672-672	1
134	Recent advances and emerging trends of rare-earth-ion doped spectral conversion nanomaterials in perovskite solar cells. 2021 ,	1
133	The recent process and future of perovskite solar cells materials. 1	
132	Perovskite/P3HT graded heterojunction by an additive-assisted method for high-efficiency perovskite solar cells with carbon electrodes. 2022 , 635, 128072	1
131	Electrochromic coordination nanosheets: Achievements and future perspective. 2022, 454, 214353	1
130	A short review on progress in perovskite solar cells. 2022 , 149, 111700	6

Hydrogen-Iodide Bonding between Glycine and Perovskite Greatly Improve Moisture Stability for 129 Binary PSCs. Superatom-Based Ferroelectrics. 2021, 257-275 128 Influence of SCNImoiety on CH3NH3PbI3 perovskite film properties and the performance of 127 carbon-based hole-transport-layer-free perovskite solar cells. 2022, 33, 1589-1603 Effect of Iodine Octahedral Rotations on Dipole Ordering in OrganicIhorganic Hybrid Perovskite 126 CH3NH3Pbi3. 2022, 126, 779-785 Enhancement of perovskite solar cell performance by external down-conversion of Eu-complex 125 0 film. Study of MAPb(I1☑Brx)3 thin film and perovskite solar cells based on hole transport material-free 124 and carbon electrode. 2022, 33, 2654 Organometal halide perovskite photovoltaics. 2022, 273-317 123 O Revisiting the nontemplate approach for the synthesis of highly green emissive hybrid perovskite 122 nanocrystals: platelets or spheres?. 2022, Uncovering the Influence of Ni2+ Doping in Lead-Halide Perovskite Nanocrystals Using Optically 121 1 Detected Magnetic Resonance Spectroscopy. Two-Dimensional Perovskite/HfS2 van der Waals Heterostructure as an Absorber Material for 120 Photovoltaic Applications. Regioregularity effects of p-type P3CT-Na polymers on inverted perovskite photovoltaic cells. 2022 119 2 , 102, 106449 Determined Ag + and Hg 2+ by ethylenediamine perovskite or ethylenediamine 118 perovskite/graphene oxide composite modified glassy carbon electrodes. Urbach Energy and Open-Circuit Voltage Deficit for Mixed Anion-Cation Perovskite Solar Cells.. 117 7 2022. Review of Two-Step Method for Lead Halide Perovskite Solar Cells. 116 7 Crystallization Kinetics Control Enabled by a Green Ionic Liquid Additive toward Efficient and Stable 115 4 Carbon-Based Mesoscopic Perovskite Solar Cells.. 2022, A theoretical perspective of the ultrafast transient absorption dynamics of CsPbBr.. 2022, 114 Electro-Thermal Small-Signal Analysis of Defects in Large-Area Perovskite Solar Cells. 113 Enhanced crystal quality of perovskite via protonated graphitic carbon nitride added in 112 carbon-based perovskite solar cells.

111	Activating oxygen deficient TiO in the visible region by BiMoO for CO photoreduction to methanol 2022 ,	2
110	Sustainable development of perovskite solar cells: keeping a balance between toxicity and efficiency.	2
109	Recent Advances in Hybrid OrganicInorganic Perovskite Solar Cells with Different Halides and Their Combinations. 2022 , 21-29	
108	Regioregularity Effects of P-Type P3ct-Na Polymers on Inverted Perovskite Photovoltaic Cells.	
107	Preparation of High-Purity Tin Dichloride. 2022 , 58, 177-182	О
106	Design of all-inorganic hole-transport-material-free CsPbI3/CsSnI3 heterojunction solar cells by device simulation. 2022 , 9, 025509	Ο
105	A Review of Recent Developments in Preparation Methods for Large-Area Perovskite Solar Cells. 2022 , 12, 252	6
104	Microwave-Assisted Non-aqueous and Low-Temperature Synthesis of Titania and Niobium-Doped Titania Nanocrystals and Their Application in Halide Perovskite Solar Cells as Electron Transport Layers 2022 , 7, 6616-6626	O
103	Reaction Mechanism of Photocatalytic Hydrogen Production at Water/Tin Halide Perovskite Interfaces. 2022 , 7, 1308-1315	5
102	Importance and advancement of modification engineering in perovskite solar cells.	1
101	Nitrogen-doped tin oxide electron transport layer for stable perovskite solar cells with efficiency over 23%.	9
100	Omnidirectional exciton diffusion in quasi-2D hybrid organic-inorganic perovskites 2022 , 156, 124706	1
99	Enhanced Performance of Carbon-Based, Fully Printed Mesoscopic Perovskite Solar Cells through Defects Passivation. 2100395	1
98	The preparation of CH3NH3SnI3/SnO2/Pd/Au gas sensor material for detecting CO and the function of each component. 2022 , 33, 7463-7476	O
97	Modeling the First-Order Molecular Hyperpolarizability Dispersion from Experimentally Obtained One- and Two-Photon Absorption 2022 ,	0
96	Recent Progress in Understanding the Structural, Optoelectronic, and Photophysical Properties of Lead Based DionIIacobson Perovskites as Well as Their Application in Solar Cells. 891-917	O
95	Investigation of the role of back contact work function for hole transporting layer free perovskite solar cells applications. 2022 , 256, 168749	3
94	First principles approach to solar energy conversion efficiency of semiconductor heterojunctions. 2022 , 236, 445-454	O

93	Dye-sensitized perovskite/organic semiconductor ternary transistors for artificial synapses. 1	2
92	Azide additive acting as a powerful locker for Li+ and TBP in spiro-OMeTAD toward highly efficient and stable perovskite solar cells. 2022 , 96, 107072	5
91	Phosphorene Nanoribbon-Augmented Optoelectronics for Enhanced Hole Extraction <i>Journal of the American Chemical Society</i> , 2021 , 143, 21549-21559	11
90	Multi-Level Passivation of MAPbI 3 Perovskite for Efficient and Stable Photovoltaics. 2108944	6
89	A quick peek at solar cells and a closer insight at perovskite solar cells. 2021, 30, 53-63	
88	Efficient and Stable Wide-Bandgap Perovskite Solar Cells Derived from a Thermodynamic Phase-Pure Intermediate. 2022 , 6, 2100906	4
87	Improving the Efficiency of Hole-Conductor-Free Carbon-Based Planar Perovskite Solar Cells with Long-Term Stability by Using the Hydrazine Acetate Additive via the One-Step Method. 2021 , 3, 5211-5218	2
86	Two dimensional MXenes for highly stable and efficient perovskite solar cells. 2022 , 485-507	O
85	Solvent Effects on the Structural and Optical Properties of MAPbI3 Perovskite Thin Film for Photovoltaic Active Layer. 2022 , 12, 549	O
84	Tuning Spin Texture and Spectroscopic Limited Maximum Efficiency through Chemical Composition Space in Double Halide Perovskites.	2
83	Identifying the potentials for charge transport layers free n-p homojunction-based perovskite solar cells. 2022 , 238, 69-77	2
82	CHAPTER 9. Hybrid Solar Cells. 298-340	
81	Table_1.DOCX. 2020 ,	
80	A review on theoretical studies of structural and optoelectronic properties of FA -based perovskite materials with a focus on FAPbI 3 .	O
79	Reversible Degradation in Hole Transport Layer-Free Carbon-Based Perovskite Solar Cells. 2200281	O
78	Flexible perovskite solar cells: Material selection and structure design. 2022 , 9, 021307	4
77	Efficient perovskite solar cells with low J-V hysteretic behavior based on mesoporous Sn-doped TiO2 electron extraction layer. 2022 , 445, 136761	1
76	Influences of dielectric constant and scan rate on hysteresis effect in perovskite solar cell with simulation and experimental analyses 2022 , 12, 7927	1

75	Investigation of structural, magneto-electronic, elastic, mechanical and thermoelectric properties of novel lead-free halide double perovskite Cs2AgFeCl6: First-principles calcuations. 2022 , 110795	3
74	Fabrication of perovskite solar cells by reaction between spin-coated precursor films and CH 3 NH 3 I vapor. 2017 , 14, 1600192	
73	Yb-doped SnO2 electron transfer layer assisting the fabrication of high-efficiency and stable perovskite solar cells in air. 2022 , 12, 14631-14638	1
72	Electronic structure of oxide and halide perovskites. 2022,	
71	Two-dimensional Dion-Jacobson halide perovskites as new-generation light absorbers for perovskite solar cells. 2022 , 166, 112614	1
70	Halide Perovskite Single Crystals: Growth, Characterization, and Stability for Optoelectronic Applications.	4
69	Dual Effect of Superhalogen Ionic Liquids Ensures Efficient Carrier Transport for Highly Efficient and Stable Perovskite Solar Cells.	1
68	A Hybrid Functional Study on Perovskite-Based Compounds CsPb1程nBIC(X = Cl or Br). 5900-5909	Ο
67	Configuration of Methylammonium Lead Iodide Perovskite Solar Cell and its Effect on the Device's Performance: A Review. 2200042	1
66	High-Efficiency Electron Transport Layer-Free Perovskite/GeTe Tandem Solar Cell: Numerical Simulation. 2022 , 12, 878	1
65	Impact of HTM on lead-free perovskite solar cell with high efficiency. 2022 , 54,	0
64	Role of built-in potential over ETL/perovskite interface on the performance of HTL-free perovskite solar cells. 2022 , 129, 112517	3
63	Construction of multilevel network structured carbon nanofiber counter electrode and back interface engineering in all inorganic HTLE perovskite solar cells. 2022 , 648, 129420	1
62	Hydrogen-iodide bonding between glycine and perovskite greatly improve moisture stability for binary PSCs. 2022 , 108, 106573	
61	Balanced-Strength Additive for High-Efficiency Stable Perovskite Solar Cells.	3
60	Developments in Perovskite materials based Solar Cells: In Pursuit of Hysteresis Effect, Stability issues and Lead-Free based perovskite materials. 2022 , 12,	
59	Impact of anisotropy in spin-orbit coupling on the magneto-optical properties of bulk lead halide perovskites. 2022 , 106,	2
58	Tuning bandgap and energy stability of Organic-Inorganic halide perovskites through surface engineering. 2022 , 213, 111649	O

57	Progress and challenges of halide perovskite-based solar cell- a brief review. 2022 , 150, 106953	1
56	Recent Criterion on Stability Enhancement of Perovskite Solar Cells. 2022 , 10, 1408	O
55	Absence of Ferroelectricity in Organic-Inorganic Hybrid Perovskite Methylammonium Lead Chloride Single Crystal, Mapbcl3.	
54	Stabilized perovskite photovoltaics via Supramolecules composed of carbon/graphene quantum dots and Triiso-Propylsilylethynyl agents.	
53	Surface optimization of metal halide perovskite solar cells using ZnS nanorods.	
52	Fabrication and Modification Strategies of Metal Halide Perovskite Absorbers. 2023, 11, 61-77	
51	High-performance carbon-based all-inorganic CsPbI2Br perovskite solar cells via ethylammonium iodide and phenethylammonium iodide synergistic passivation. 2022 , 247, 111963	2
50	First-principles study of lead-free Ge-based 2D Ruddlesden P opper hybrid perovskites for solar cell applications. 2022 , 24, 21052-21060	О
49	Hybrid organic[horganic perovskites as microwave radiation switches.	0
48	Roles of Inorganic Oxide Based HTMs towards Highly Efficient and Long-Term Stable PSCA Review. 2022 , 12, 3003	3
47	Investigation of Electron Transport Material-Free Perovskite/CIGS Tandem Solar Cell. 2022 , 15, 6326	6
46	Electrospun Tri-Cation Perovskite Nanofibers for Infrared Photodetection. 2207326	1
45	Stabilization of Perovskite Solar Cells: Recent Developments and Future Perspectives. 2204380	7
44	Single-Crystal Hybrid Lead Halide Perovskites: Growth, Properties, and Device Integration for Solar Cell Application. 2022 , 22, 6338-6362	О
43	Improvement Strategies for Stability and Efficiency of Perovskite Solar Cells. 2022, 12, 3295	0
42	Methylammonium Chloride Additive in Lead Iodide Optimizing the Crystallization Process for Efficient Perovskite Solar Cells. 2022 , 2022, 1-8	O
41	APPLICATION OF POROCITIES IN THE TRANSPARENTELECTRODE LAYER OF A PEROVSKITE SOLAR CELLFOR PERFORMANCE ENHANCEMENT.	0
40	Stable and efficient soft perovskite crystalline film based solar cells with a facile encapsulation method.	1

39	Sn-Based Perovskites for Photovoltaic Applications. 2023 , 303-310	0
38	Modeling of a Sn-Based HTM-Free Perovskite Solar Cell Using a One-Dimensional Solar Cell Capacitance Simulator Tool.	1
37	Metal Halide Perovskite/Electrode Contacts in Charge-Transporting-Layer-Free Devices. 2203683	O
36	Develop a molecular dynamics approach to simulate the single-/multi-layer CsGeX3 (XI=1, Cl, and Br) perovskite stress-strain structure at different temperatures and pressures for solar cell in building energy management. 2022 , 145, 396-403	O
35	The Device Simulation of MXene-added Hole-Transport Free Perovskite Solar Cells.	O
34	Highly efficient and stable hole-transport-layer-free inverted perovskite solar cells achieved 22% efficiency through p-type molecular synergistic doping. 2022 , 104, 107988	2
33	Comparative Study of Nanomaterials in the Conditions of their Operation as Part of Color-Sensitized and Perovskite Solar Cells. 2022 , 139-158	O
32	Functionalized MXene Nanosheets and Al-Doped ZnO Nanoparticles for Flexible Transparent Electrodes.	1
31	Low-temperature in situ deposited CuI-based hole-transporter for perovskite solar cells efficiency enhancement.	О
30	Absence of presumed ferroelectricity in methylammonium lead chloride single crystals representing organic-inorganic hybrid perovskites. 2023 , 295, 127169	O
29	Deciphering the Nature of Temperature-Induced Phases of MAPbBr3 by Ab Initio Molecular Dynamics. 2022 , 34, 10459-10469	О
28	Reduction of extrinsic defects in ZnSe:perovskite composites based solar devices. 2022 , 24,	O
27	An Overview of Current Printing Technologies for Large-Scale Perovskite Solar Cell Development. 2023 , 16, 190	1
26	Interweaving Polar Charge Orders in a Layered Metallic Superatomic Crystal. 2022 , 12,	O
25	Observation of abnormal photoluminescence upon structural phase competence and transition-induced disorder of stable FAPbI3. 2023 , 13, 263	О
24	Engineering Stable Lead-free Tin Halide Perovskite Solar Cells: Lessons from Materials Chemistry. 2206684	O
23	A DFT Study of Alkaline Earth Metal-Doped FAPbI3 (111) and (100) Surfaces. 2023, 28, 372	0
22	Stability of perovskite solar cells: issues and prospects. 2023 , 13, 1787-1810	2

21	A poly(methyl methacrylate)-encapsulated perovskite solar antenna with a long lifespan. 2023 , 114, 106748	0
20	Triazine: An Important Building Block of Organic Materials for Solar Cell Application. 2023, 28, 257	1
19	Synthesis techniques of metal halide perovskites. 2023 , 91-151	0
18	Water∃lcohol⊞iO2 dispersions as sustainable ink.	O
17	Fe2O3-NiO doped carbon counter electrode for High-performance and long-term stable photovoltaic perovskite solar cells. 2023 ,	1
16	Slot-die coating fabrication of perovskite solar cells toward commercialization. 2023 , 942, 169104	O
15	Metal halide perovskite nanomaterials for solar energy. 2023 , 149-168	0
14	3D printing and solar cell fabrication methods: A review of challenges, opportunities, and future prospects. 2023 , 11, 100385	O
13	Scanning Electrochemical Microscope Studies of Charge Transfer Kinetics at the Interface of the Perovskite/Hole Transport Layer. 2023 , 2023, 1-12	O
12	Tunable Phase Transformation Behavior of Two-Dimensional TiO2 Revealed by In Situ Transmission Electron Microscopy. 2023 , 127, 3640-3646	O
11	Preparation of High-Efficiency (>14%) HTL-Free Carbon-Based All-Inorganic Perovskite Solar Cells by Passivation with PABr Derivatives.	0
10	Enhanced stability of two-dimensional halide perovskites under an electric field for photocatalytic HI splitting. 2023 , 11, 6311-6320	O
9	Cubic or Not Cubic? Combined Experimental and Computational Investigation of the Short-Range Order of Tin Halide Perovskites. 2023 , 14, 2178-2186	0
8	Ultrafast optical investigation of carrier and spin dynamics in low-dimensional perovskites.	O
7	Improving the Performance of a Triboelectric Nanogenerator by Using an Asymmetric TiO2/PDMS Composite Layer. 2023 , 13, 832	1
6	Recycling Useful Materials of Perovskite Solar Cells toward Sustainable Development. 2300014	O
5	Lead-Free Perovskite Homojunction-Based HTM-Free Perovskite Solar Cells: Theoretical and Experimental Viewpoints. 2023 , 13, 983	0
4	Tuning the band gap edges of perovskite material by Cd doping for achieving high current density in perovskite solar cells. 2023 ,	O

CITATION REPORT

Ambient-Air-Stable Inverted Perovskite Solar Cells by Carbazole Analog Tailored Perovskite Thin Films.

Advances in the large-scale production, fabrication, stability, and lifetime considerations of electronic materials for clean energy applications. 2023, 27-60

Numerical Investigation of Power Conversion Efficiency of Sustainable Perovskite Solar Cells. 2023, 212, 1762