Sox10 promotes the formation and maintenance of gian

Nature Cell Biology 14, 882-890 DOI: 10.1038/ncb2535

Citation Report

#	Article	IF	CITATIONS
1	RhoJ Regulates Melanoma Chemoresistance by Suppressing Pathways That Sense DNA Damage. Cancer Research, 2012, 72, 5516-5528.	0.4	53
2	SOX10 is a novel marker of acinus and intercalated duct differentiation in salivary gland tumors: a clue to the histogenesis for tumor diagnosis. Modern Pathology, 2013, 26, 1041-1050.	2.9	146
3	Testing the cancer stem cell hypothesis in melanoma: The clinics will tell. Cancer Letters, 2013, 338, 74-81.	3.2	50
4	Insights into neural crest development and evolution from genomic analysis. Genome Research, 2013, 23, 1069-1080.	2.4	107
5	Diagnostic SOX10 gene signatures in salivary adenoid cystic and breast basal-like carcinomas. British Journal of Cancer, 2013, 109, 444-451.	2.9	73
6	Links between <scp>S</scp> chwann cells and melanocytes in development and disease. Pigment Cell and Melanoma Research, 2013, 26, 634-645.	1.5	43
8	SOX10 Ablation Arrests Cell Cycle, Induces Senescence, and Suppresses Melanomagenesis. Cancer Research, 2013, 73, 5709-5718.	0.4	70
9	Targeted therapy in melanoma – the role of BRAF, RAS and KIT mutations. European Journal of Cancer, Supplement, 2013, 11, 92-96.	2.2	41
10	Riding the crest of the wave: parallels between the neural crest and cancer in epithelialâ€toâ€mesenchymal transition and migration. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2013, 5, 511-522.	6.6	51
11	NRAS mutant melanoma: biological behavior and future strategies for therapeutic management. Oncogene, 2013, 32, 3009-3018.	2.6	127
12	Primary Melanoma of the CNS in Children Is Driven by Congenital Expression of Oncogenic <i>NRAS</i> in Melanocytes. Cancer Discovery, 2013, 3, 458-469.	7.7	61
13	A Dual Role for SOX10 in the Maintenance of the Postnatal Melanocyte Lineage and the Differentiation of Melanocyte Stem Cell Progenitors. PLoS Genetics, 2013, 9, e1003644.	1.5	85
14	Gene Expression Profiling using Nanostring Digital RNA Counting to Identify Potential Target Antigens for Melanoma Immunotherapy. Clinical Cancer Research, 2013, 19, 4941-4950.	3.2	53
15	Postnatal lineage mapping of follicular melanocytes with the <scp>T</scp> yr:: <scp>C</scp> re <scp>ER^T</scp> ² transgene. Pigment Cell and Melanoma Research, 2013, 26, 269-274.	1.5	10
16	Histopathological atlas and proposed classification for melanocytic lesions in <i>Tyr::<scp>NR</scp>as</i> ^{<i>Q61K</i>} <i>; Cdkn2a</i> ^{<i>â^'/â^'</i>} transgenic mice. Pigment Cell and Melanoma Research, 2013, 26, 735-742.	1.5	11
17	Putative role of HIF transcriptional activity in melanocytes and melanoma biology. Dermato-Endocrinology, 2013, 5, 239-251.	1.9	39
19	Pathways and therapeutic targets in melanoma. Oncotarget, 2014, 5, 1701-1752.	0.8	202
20	Neural Crest Cells and Cancer. , 2014, , 335-357.		3

#	Article	IF	CITATIONS
21	SWI/SNF Chromatin Remodeling Enzymes in Melanocyte Differentiation and Melanoma. Critical Reviews in Eukaryotic Gene Expression, 2014, 24, 151-161.	0.4	21
22	SOX10 Promotes Melanoma Cell Invasion by Regulating Melanoma Inhibitory Activity. Journal of Investigative Dermatology, 2014, 134, 2212-2220.	0.3	70
23	How, and from which cell sources, do nevi really develop?. Experimental Dermatology, 2014, 23, 310-313.	1.4	25
24	Neural crest stem cells in melanoma development. Current Opinion in Oncology, 2014, 26, 215-221.	1.1	48
25	Mosaicism in Human Skin. , 2014, , .		69
26	The Profile of Tumor Antigens Which Can be Targeted by Immunotherapy Depends Upon the Tumor's Anatomical Site. Molecular Therapy, 2014, 22, 1936-1948.	3.7	14
27	Developmental pathways activated in melanocytes and melanoma. Archives of Biochemistry and Biophysics, 2014, 563, 13-21.	1.4	84
28	When Old Hematopoietic Stem Cells Get DamAged. Cell Stem Cell, 2014, 15, 399-400.	5.2	2
29	RAB7 Controls Melanoma Progression by Exploiting a Lineage-Specific Wiring of the Endolysosomal Pathway. Cancer Cell, 2014, 26, 61-76.	7.7	86
30	Stem Cells in Cancer: Should We Believe or Not?. , 2014, , .		2
31	Reinventing the Neural Crest: Direct Reprogramming Makes iNCCs. Cell Stem Cell, 2014, 15, 397-399.	5.2	0
32	An Aggressive Hypoxia Related Subpopulation of Melanoma Cells is TRP-2 Negative. Translational Oncology, 2014, 7, 206-212.	1.7	15
33	De- and re-differentiation of the melanocytic lineage. European Journal of Cell Biology, 2014, 93, 30-35.	1.6	18
34	Coexpression of SOX10/CD271 (p75 ^{NTR}) and β-Galactosidase in Large to Giant Congenital Melanocytic Nevi of Pediatric Patients. Dermatopathology (Basel, Switzerland), 2014, 1, 35-46.	0.7	3
35	Open questions: development of tumor cell heterogeneity and its implications for cancer treatment. BMC Biology, 2014, 12, 15.	1.7	2
36	Genetics of melanocytic nevi. Pigment Cell and Melanoma Research, 2015, 28, 661-672.	1.5	135
37	Tumorstammzellen im Melanom. JDDG - Journal of the German Society of Dermatology, 2015, 13, 118-124.	0.4	0
38	SOXE transcription factors form selective dimers on non-compact DNA motifs through multifaceted interactions between dimerization and high-mobility group domains. Scientific Reports, 2015, 5, 10398.	1.6	65

#	Article	IF	CITATIONS
39	Can Redirected T Cells Outsmart Aggressive Melanoma? The Promise and Challenge of Adoptive Cell Therapy. , 0, , .		0
40	Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state. Nature Communications, 2015, 6, 6683.	5.8	365
41	Microphthalmiaâ€associated transcription factor in melanoma development and <scp>MAP</scp> â€kinase pathway targeted therapy. Pigment Cell and Melanoma Research, 2015, 28, 390-406.	1.5	168
43	In Vitro Derivation of Melanocytes from Embryonic Neural Crest Stem Cells. Methods in Molecular Biology, 2015, , 1.	0.4	8
44	Downregulation of the Ubiquitin Ligase RNF125 Underlies Resistance of Melanoma Cells to BRAF Inhibitors via JAK1 Deregulation. Cell Reports, 2015, 11, 1458-1473.	2.9	55
45	Extended Multipotency of Neural Crest Cells and Neural Crest-Derived Cells. Current Topics in Developmental Biology, 2015, 111, 69-95.	1.0	27
46	The melanocyte lineage in development and disease. Development (Cambridge), 2015, 142, 620-632.	1.2	286
47	Melanoma stem cells. JDDG - Journal of the German Society of Dermatology, 2015, 13, 118-124.	0.4	9
48	The epigenetic modifier EZH2 controls melanoma growth and metastasis through silencing of distinct tumour suppressors. Nature Communications, 2015, 6, 6051.	5.8	281
49	Modulation of Sox10, HIF-1α, Survivin, and YAP by Minocycline in the Treatment of Neurodevelopmental Handicaps following Hypoxic Insult. American Journal of Pathology, 2015, 185, 2364-2378.	1.9	9
50	Genomic analysis reveals distinct mechanisms and functional classes of SOX10-regulated genes in melanocytes. Human Molecular Genetics, 2015, 24, 5433-5450.	1.4	34
51	Antagonistic Cross-Regulation between Sox9 and Sox10 Controls an Anti-tumorigenic Program in Melanoma. PLoS Genetics, 2015, 11, e1004877.	1.5	85
52	Genes conserved in bilaterians but jointly lost with Myc during nematode evolution are enriched in cell proliferation and cell migration functions. Development Genes and Evolution, 2015, 225, 259-273.	0.4	11
53	Clonogenic Cell Subpopulations Maintain Congenital Melanocytic Nevi. Journal of Investigative Dermatology, 2015, 135, 824-833.	0.3	13
54	Case Reports of Fatal or Metastasizing Melanoma in Children and Adolescents: AÂSystematic Analysis of the Literature. Pediatric Dermatology, 2015, 32, 13-22.	0.5	55
55	Acute Inhibition of MEK Suppresses Congenital Melanocytic Nevus Syndrome in a Murine Model Driven by Activated NRAS and Wnt Signaling. Journal of Investigative Dermatology, 2015, 135, 2093-2101.	0.3	19
56	Serotonergic regulation of melanocyte conversion: A bioelectrically regulated network for stochastic all-or-none hyperpigmentation. Science Signaling, 2015, 8, ra99.	1.6	49
57	A caveolin-dependent and PI3K/AKT-independent role of PTEN in β-catenin transcriptional activity. Nature Communications, 2015, 6, 8093.	5.8	58

#	Article	IF	CITATIONS
58	A personalized Approach for Targeting the Melanoma: Inhibition of Oncogenic Signaling in Combination with Small Molecules. General Medicine (Los Angeles, Calif), 2016, 04, .	0.2	1
59	A mutation in the <i>Cdon</i> gene potentiates congenital nevus development mediated by NRAS ^{Q61K} . Pigment Cell and Melanoma Research, 2016, 29, 459-464.	1.5	8
62	NOTCH1 and SOX10 are Essential for Proliferation and Radiation Resistance of Cancer Stem–Like Cells in Adenoid Cystic Carcinoma. Clinical Cancer Research, 2016, 22, 2083-2095.	3.2	46
63	Expression of SOX10, ABCB5 and CD271 in melanocytic lesions and correlation with survival data of patients with melanoma. Clinical and Experimental Dermatology, 2016, 41, 709-716.	0.6	18
64	Clinical and molecular insights into adenoid cystic carcinoma: Neural crestâ€ŀike stemness as a target. Laryngoscope Investigative Otolaryngology, 2016, 1, 60-77.	0.6	15
65	Analysis of gelsolin expression pattern in developing chicken embryo reveals high GSN expression level in tissues of neural crest origin. Brain Structure and Function, 2016, 221, 515-534.	1.2	7
66	A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation. Science, 2016, 351, aad2197.	6.0	339
67	Tracking the origins of tumorigenesis. Science, 2016, 351, 453-454.	6.0	4
68	Structure and decoy-mediated inhibition of the SOX18/ <i>Prox1</i> -DNA interaction. Nucleic Acids Research, 2016, 44, 3922-3935.	6.5	44
69	Genomic analysis and clinical management of adolescent cutaneous melanoma. Pigment Cell and Melanoma Research, 2017, 30, 307-316.	1.5	12
70	Sox10 regulates skin melanocyte proliferation by activating the DNA replication licensing factor MCM5. Journal of Dermatological Science, 2017, 85, 216-225.	1.0	17
71	SOX10 is over-expressed in bladder cancer and contributes to the malignant bladder cancer cell behaviors. Clinical and Translational Oncology, 2017, 19, 1035-1044.	1.2	15
72	Sox10+ adult stem cells contribute to biomaterial encapsulation and microvascularization. Scientific Reports, 2017, 7, 40295.	1.6	15
73	Biomarker Accessible and Chemically Addressable Mechanistic Subtypes of BRAF Melanoma. Cancer Discovery, 2017, 7, 832-851.	7.7	49
74	Sox2 is not required for melanomagenesis, melanoma growth and melanoma metastasis in vivo. Oncogene, 2017, 36, 4508-4515.	2.6	17
75	Sox2 is dispensable for primary melanoma and metastasis formation. Oncogene, 2017, 36, 4516-4524.	2.6	30
76	Transcription factor Sox10 regulates oligodendroglial Sox9 levels via microRNAs. Glia, 2017, 65, 1089-1102.	2.5	41
77	Expression Profiling of Clinical Specimens Supports the Existence of Neural Progenitor-Like Stem Cells in Basal Breast Cancers. Clinical Breast Cancer, 2017, 17, 298-306.e7.	1.1	22

#	Article	IF	CITATIONS
78	<i>MITF</i> -High and <i>MITF</i> -Low Cells and a Novel Subpopulation Expressing Genes of Both Cell States Contribute to Intra- and Intertumoral Heterogeneity of Primary Melanoma. Clinical Cancer Research, 2017, 23, 7097-7107.	3.2	57
79	The Histone Methyltransferase Ezh2 Controls Mechanisms of Adaptive Resistance to Tumor Immunotherapy. Cell Reports, 2017, 20, 854-867.	2.9	258
80	Sox10 ⁺ Cells Contribute to Vascular Development in Multiple Organs—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1727-1731.	1.1	19
81	The low affinity neurotrophin receptor CD271 regulates phenotype switching in melanoma. Nature Communications, 2017, 8, 1988.	5.8	64
82	Beyond <scp>MITF</scp> : Multiple transcription factors directly regulate the cellular phenotype in melanocytes and melanoma. Pigment Cell and Melanoma Research, 2017, 30, 454-466.	1.5	87
83	Targeting Adenosine in BRAF-Mutant Melanoma Reduces Tumor Growth and Metastasis. Cancer Research, 2017, 77, 4684-4696.	0.4	80
84	Comprehensive DNA methylation study identifies novel progression-related and prognostic markers for cutaneous melanoma. BMC Medicine, 2017, 15, 101.	2.3	62
85	CD114: A New Member of the Neural Crest-Derived Cancer Stem Cell Marker Family. Journal of Cellular Biochemistry, 2017, 118, 221-231.	1.2	19
86	Adrenal cortical and chromaffin stem cells: Is there a common progeny related to stress adaptation?. Molecular and Cellular Endocrinology, 2017, 441, 156-163.	1.6	21
87	Melanoma: Genetic Abnormalities, Tumor Progression, Clonal Evolution and Tumor Initiating Cells. Medical Sciences (Basel, Switzerland), 2017, 5, 28.	1.3	22
88	A molecular atlas of the developing ectoderm defines neural, neural crest, placode, and nonneural progenitor identity in vertebrates. PLoS Biology, 2017, 15, e2004045.	2.6	44
89	SOX10-MITF pathway activity in melanoma cells. Archives of Medical Science, 2017, 6, 1493-1503.	0.4	31
90	Cuprous oxide nanoparticle-inhibited melanoma progress by targeting melanoma stem cells. International Journal of Nanomedicine, 2017, Volume 12, 2553-2567.	3.3	19
91	Creâ€driver lines used for genetic fate mapping of neural crest cells in the mouse: An overview. Genesis, 2018, 56, e23105.	0.8	39
92	Multi-stage Differentiation Defines Melanoma Subtypes with Differential Vulnerability to Drug-Induced Iron-Dependent Oxidative Stress. Cancer Cell, 2018, 33, 890-904.e5.	7.7	575
93	Injury-activated glial cells promote wound healing of the adult skin in mice. Nature Communications, 2018, 9, 236.	5.8	119
94	Keratinocyte Sonic Hedgehog Upregulation Drives the Development of Giant Congenital Nevi via Paracrine Endothelin-1ASecretion. Journal of Investigative Dermatology, 2018, 138, 893-902.	0.3	9
95	ERK-mediated phosphorylation regulates SOX10 sumoylation and targets expression in mutant BRAF melanoma. Nature Communications, 2018, 9, 28.	5.8	60

#	Article	IF	CITATIONS
96	High MITF Expression Is Associated with Super-Enhancers and Suppressed by CDK7 Inhibition in Melanoma. Journal of Investigative Dermatology, 2018, 138, 1582-1590.	0.3	46
97	Interleukin 8 mediates bclâ€xLâ€induced enhancement of human melanoma cell dissemination and angiogenesis in a zebrafish xenograft model. International Journal of Cancer, 2018, 142, 584-596.	2.3	51
98	Wholeâ€exome sequencing of oral mucosal melanoma reveals mutational profile and therapeutic targets. Journal of Pathology, 2018, 244, 358-366.	2.1	52
99	Neurocristopathies: New insights 150 years after the neural crest discovery. Developmental Biology, 2018, 444, S110-S143.	0.9	136
100	The miR-31-SOX10 axis regulates tumor growth and chemotherapy resistance of melanoma via PI3K/AKT pathway. Biochemical and Biophysical Research Communications, 2018, 503, 2451-2458.	1.0	20
101	Deciphering mechanisms of brain metastasis in melanoma - the gist of the matter. Molecular Cancer, 2018, 17, 106.	7.9	46
102	Loss of neural crestâ€associated gene <i>FOXD1</i> impairs melanoma invasion and migration <i>via RAC1B</i> downregulation. International Journal of Cancer, 2018, 143, 2962-2972.	2.3	25
103	Identification and functional analysis of SOX10 phosphorylation sites in melanoma. PLoS ONE, 2018, 13, e0190834.	1.1	24
104	An FDA-Approved Drug Screen for Compounds Influencing Craniofacial Skeletal Development and Craniosynostosis. Molecular Syndromology, 2019, 10, 98-114.	0.3	11
105	Whole transcriptome analysis reveals correlation of long noncoding RNA ZEB1-AS1 with invasive profile in melanoma. Scientific Reports, 2019, 9, 11350.	1.6	21
106	Developmental Biology of Melanocytes. , 2019, , 3-19.		0
107	Melanomics: Comprehensive Molecular Analysis of Normal and Neoplastic Melanocytes. , 2019, , 181-224.		0
108	Circadian Rhythms and Personalized Melanoma Therapy. Europeanization and Globalization, 2019, , 327-340.	0.1	0
109	MEK inhibition remodels the active chromatin landscape and induces SOX10 genomic recruitment in BRAF(V600E) mutant melanoma cells. Epigenetics and Chromatin, 2019, 12, 50.	1.8	12
110	Adaptive Responses as Mechanisms of Resistance to BRAF Inhibitors in Melanoma. Cancers, 2019, 11, 1176.	1.7	20
111	Personalized Medicine in Healthcare Systems. Europeanization and Globalization, 2019, , .	0.1	2
112	Local Inhibition of MEK/Akt Prevents Cellular Growth in Human Congenital Melanocytic Nevi. Journal of Investigative Dermatology, 2019, 139, 2004-2015.e13.	0.3	14
113	Stem Cell-Derived Models of Neural Crest Are Essential to Understand Melanoma Progression and Therapy Resistance. Frontiers in Molecular Neuroscience, 2019, 12, 111.	1.4	23

#	Article	IF	CITATIONS
114	MITF—the first 25 years. Genes and Development, 2019, 33, 983-1007.	2.7	261
115	Yin Yang 1 Orchestrates a Metabolic Program Required for Both Neural Crest Development and Melanoma Formation. Cell Stem Cell, 2019, 24, 637-653.e9.	5.2	44
116	Overexpression of the cancer stem cell marker CD133 confers a poor prognosis in invasive breast cancer. Breast Cancer Research and Treatment, 2019, 174, 387-399.	1.1	53
117	SOX9 is a dose-dependent metastatic fate determinant in melanoma. Journal of Experimental and Clinical Cancer Research, 2019, 38, 17.	3.5	24
118	The myelin protein PMP2 is regulated by SOX10 and drives melanoma cell invasion. Pigment Cell and Melanoma Research, 2019, 32, 424-434.	1.5	22
119	TET2-Dependent Hydroxymethylome Plasticity Reduces Melanoma Initiation and Progression. Cancer Research, 2019, 79, 482-494.	0.4	20
120	The role of SOX family members in solid tumours and metastasis. Seminars in Cancer Biology, 2020, 67, 122-153.	4.3	238
121	The Evolution of Melanoma – Moving beyond Binary Models of Genetic Progression. Journal of Investigative Dermatology, 2020, 140, 291-297.	0.3	7
122	Transcriptional regulators and alterations that drive melanoma initiation and progression. Oncogene, 2020, 39, 7093-7105.	2.6	20
123	The Stress-Like Cancer Cell State Is a Consistent Component of Tumorigenesis. Cell Systems, 2020, 11, 536-546.e7.	2.9	65
124	Sex-Determining Region Y Chromosome-Related High-Mobility-Group Box 10 in Cancer: A Potential Therapeutic Target. Frontiers in Cell and Developmental Biology, 2020, 8, 564740.	1.8	6
125	Severe reaction to radiotherapy provoked by hypomorphic germline mutations in <i>ATM</i> (ataxia–telangiectasia mutated gene). Molecular Genetics & Genomic Medicine, 2020, 8, e1409.	0.6	8
126	Decoding the Role of CD271 in Melanoma. Cancers, 2020, 12, 2460.	1.7	15
127	Insights into Differentiation of Melanocytes from Human Stem Cells and Their Relevance for Melanoma Treatment. Cancers, 2020, 12, 2508.	1.7	8
128	Glioblastoma epigenome profiling identifies SOX10 as a master regulator of molecular tumour subtype. Nature Communications, 2020, 11, 6434.	5.8	48
129	Cancer stem cells, epigenetics, tumor microenvironment and future therapeutics in cutaneous malignant melanoma: a review. Future Oncology, 2020, 16, 1549-1567.	1.1	9
130	Loss of <i>prdm1a</i> accelerates melanoma onset and progression. Molecular Carcinogenesis, 2020, 59, 1052-1063.	1.3	7
131	Nuclear DLC1 exerts oncogenic function through association with FOXK1 for cooperative activation of MMP9 expression in melanoma. Oncogene, 2020, 39, 4061-4076.	2.6	12

#	Article	IF	CITATIONS
132	Geometric regulation of histone state directs melanoma reprogramming. Communications Biology, 2020, 3, 341.	2.0	19
133	Genomic analysis of metastatic melanoma in an adult with giant congenital melanocytic nevus. Pigment Cell and Melanoma Research, 2020, 33, 633-636.	1.5	1
134	SOX13 promotes colorectal cancer metastasis by transactivating SNAI2 and c-MET. Oncogene, 2020, 39, 3522-3540.	2.6	32
135	<i>SOX10</i> - <i>Cre</i> -Labeled Cells Under the Tongue Epithelium Serve as Progenitors for Taste Bud Cells That Are Mainly Type III and Keratin 8-Low. Stem Cells and Development, 2020, 29, 638-647.	1.1	4
136	BRAFi induced demethylation of miR-152-5p regulates phenotype switching by targeting TXNIP in cutaneous melanoma. Apoptosis: an International Journal on Programmed Cell Death, 2020, 25, 179-191.	2.2	8
137	Temporal activation of WNT/β-catenin signaling is sufficient to inhibit SOX10 expression and block melanoma growth. Oncogene, 2020, 39, 4132-4154.	2.6	23
138	Analysis of CRISPR as9 screens identifies genetic dependencies in melanoma. Pigment Cell and Melanoma Research, 2021, 34, 122-131.	1.5	10
139	Reemergence of neural crest stem cell-like states in melanoma during disease progression and treatment. Stem Cells Translational Medicine, 2021, 10, 522-533.	1.6	41
140	Classification and Grading of Melanocytic Lesions in a Mouse Model of NRAS-driven Melanomagenesis. Journal of Histochemistry and Cytochemistry, 2021, 69, 203-218.	1.3	0
142	Single-Cell Multiomic Approaches Reveal Diverse Labeling of the Nervous System by Common Cre-Drivers. Frontiers in Cellular Neuroscience, 2021, 15, 648570.	1.8	5
143	Transcriptional signatures underlying dynamic phenotypic switching and novel disease biomarkers in a linear cellular model of melanoma progression. Neoplasia, 2021, 23, 439-455.	2.3	5
144	LACTB suppresses melanoma progression by attenuating PP1A and YAP interaction. Cancer Letters, 2021, 506, 67-82.	3.2	21
145	Melanoma models for the next generation of therapies. Cancer Cell, 2021, 39, 610-631.	7.7	90
146	Effect of melanoma stem cells on melanoma metastasis (Review). Oncology Letters, 2021, 22, 566.	0.8	13
147	Functional in vivo characterization of sox10 enhancers in neural crest and melanoma development. Communications Biology, 2021, 4, 695.	2.0	7
148	Sperm-Specific Glycolysis Enzyme Glyceraldehyde-3-Phosphate Dehydrogenase Regulated by Transcription Factor SOX10 to Promote Uveal Melanoma Tumorigenesis. Frontiers in Cell and Developmental Biology, 2021, 9, 610683.	1.8	6
150	Evaluation of Melanocyte Loss in Mycosis Fungoides Using SOX10 Immunohistochemistry. Dermatopathology (Basel, Switzerland), 2021, 8, 277-284.	0.7	0
151	Nucleotide stress responses in neural crest cell fate and melanoma. Cell Cycle, 2021, 20, 1455-1467.	1.3	4

	Стл	ation Report	
#	Article	IF	Citations
152	SFPQ promotes an oncogenic transcriptomic state in melanoma. Oncogene, 2021, 40, 5192-5203.	2.6	15
153	Epigenetic control of melanoma cell invasiveness by the stem cell factor SALL4. Nature Communications, 2021, 12, 5056.	5.8	15
154	Proteomics and Phosphoproteomics Profiling of Drug-Addicted BRAFi-Resistant Melanoma Cells. Journal of Proteome Research, 2021, 20, 4381-4392.	1.8	3
155	Developmental chromatin programs determine oncogenic competence in melanoma. Science, 2021, 37 eabc1048.	73, 6.0	80
157	PITX1 inhibits the growth and proliferation of melanoma cells through regulation of SOX family genes. Scientific Reports, 2021, 11, 18405.	1.6	6
158	SOX10 Knockdown Inhibits Melanoma Cell Proliferation via Notch Signaling Pathway. Cancer Management and Research, 2021, Volume 13, 7225-7234.	0.9	4
159	Melanoma-derived induced pluripotent stem cells. , 2021, , 191-219.		2
163	Comparative oncogenomics identifies tyrosine kinase FES as a tumor suppressor in melanoma. Journal of Clinical Investigation, 2017, 127, 2310-2325.	3.9	26
164	A Review of the Molecular Pathways Involved in Resistance to BRAF Inhibitors in Patients with Advanced-Stage Melanoma. Medical Science Monitor, 2020, 26, e920957.	0.5	43
165	The Nerve Growth Factor Receptor CD271 Is Crucial to Maintain Tumorigenicity and Stem-Like Properties of Melanoma Cells. PLoS ONE, 2014, 9, e92596.	1.1	80
166	Elevated Levels of SOX10 in Serum from Vitiligo and Melanoma Patients, Analyzed by Proximity Ligation Assay. PLoS ONE, 2016, 11, e0154214.	n 1.1	4
167	Deep-proteome mapping of WM-266-4 human metastatic melanoma cells: From oncogenic addiction to druggable targets. PLoS ONE, 2017, 12, e0171512.	0 1.1	21
168	SOX10, a novel HMG-box-containing tumor suppressor, inhibits growth and metastasis of digestive cancers by suppressing the Wnt/β-catenin pathway. Oncotarget, 2014, 5, 10571-10583.	0.8	56
169	Lineage-restricted sympathoadrenal progenitors confer neuroblastoma origin and its tumorigenicity. Oncotarget, 2020, 11, 2357-2371.	0.8	7
170	RAB7 counteracts PI3K-driven macropinocytosis activated at early stages of melanoma development. Oncotarget, 2015, 6, 11848-11862.	0.8	19
171	Regulation of SOX10 stability via ubiquitination-mediated degradation by Fbxw7α modulates melanom cell migration. Oncotarget, 2015, 6, 36370-36382.	1a 0.8	19
172	Nevi. , 2014, , 69-108.		1
173	Melanom. , 2014, , 31-97.		0

#	Article	IF	CITATIONS
174	Cancer Stem Cells in Melanoma. , 2014, , 203-228.		0
175	Developmental Biology of Melanocytes. , 2018, , 1-17.		0
176	Melanomics: Comprehensive Molecular Analysis of Normal and Neoplastic Melanocytes. , 2018, , 1-44.		0
178	Neural Crest Stem Cells. , 2019, , 650-659.		0
179	Diagnosis of Stage IV Melanoma. , 2019, , 1-47.		1
180	A large‑scale collection of giant congenital melanocytic nevi: Clinical and histopathological characteristics. Experimental and Therapeutic Medicine, 2020, 19, 313-318.	0.8	6
183	Diagnosis of Stage IV Melanoma. , 2020, , 997-1043.		0
186	Biologically distinct subsets of nevi. Giornale Italiano Di Dermatologia E Venereologia, 2016, 151, 365-84.	0.8	11
187	Retaining antigenicity and DNA in the melanin bleaching of melanin-containing tissues. International Journal of Clinical and Experimental Pathology, 2020, 13, 2027-2034.	0.5	0
188	Transcriptional profile and chromatin accessibility in zebrafish melanocytes and melanoma tumors. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	3
189	Signal pathways of melanoma and targeted therapy. Signal Transduction and Targeted Therapy, 2021, 6, 424.	7.1	115
190	Tfap2b specifies an embryonic melanocyte stem cell that retains adult multifate potential. Cell Reports, 2022, 38, 110234.	2.9	15
191	DEPDC1B Promotes Melanoma Angiogenesis and Metastasis through Sequestration of Ubiquitin Ligase CDC16 to Stabilize Secreted SCUBE3. Advanced Science, 2022, 9, e2105226.	5.6	9
193	Gene Expression and Mutational Profile in BAP-1 Inactivated Melanocytic Lesions of Progressive Malignancy from a Patient with Multiple Lesions. Genes, 2022, 13, 10.	1.0	6
194	Targeting SOX10-deficient cells to reduce the dormant-invasive phenotype state in melanoma. Nature Communications, 2022, 13, 1381.	5.8	31
195	Analysis of long and short enhancers in melanoma cell states. ELife, 2021, 10, .	2.8	18
196	NUMB as a Therapeutic Target for Melanoma. Journal of Investigative Dermatology, 2022, 142, 1882-1892.e5.	0.3	5
197	SOX10 requirement for melanoma tumor growth is due, in part, to immune-mediated effects. Cell Reports 2021 37 110085	2.9	12

#	Article	IF	CITATIONS
198	Therapeutic combination silencing VEGF and SOX10 increases the antiangiogenic effect in the mouse melanoma model B16-F10 - and studies. Postepy Dermatologii I Alergologii, 2021, 38, 887-898.	0.4	0
199	Aldh2 is a lineage-specific metabolic gatekeeper in melanocyte stem cells. Development (Cambridge), 2022, 149, .	1.2	4
200	Topical therapy for regression and melanoma prevention of congenital giant nevi. Cell, 2022, 185, 2071-2085.e12.	13.5	13
201	The Immunohistochemical Expression of SOX-10 in Urothelial Carcinoma and the Non Neoplastic Urothelium; and a Correlation with the Tumor Features. Asian Pacific Journal of Cancer Prevention, 2022, 23, 1425-1432.	0.5	1
202	Oncogenic properties via <scp>MAPK</scp> signaling of the <scp>SOX5â€RAF1</scp> fusion gene identified in a <i>wildâ€type</i> <scp>NRAS</scp> / <scp>BRAF</scp> giant congenital nevus. Pigment Cell and Melanoma Research, 2022, 35, 450-460.	1.5	1
203	Sex-determining Region Y-box transcription factor 13 promotes breast cancer cell proliferation and glycolysis by activating the tripartite motif containing 11-mediated Wnt/β-catenin signaling pathway. Bioengineered, 2022, 13, 13033-13044.	1.4	3
204	Loss of YY1, a Regulator of Metabolism in Melanoma, Drives Melanoma Cell Invasiveness and Metastasis Formation. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	3
205	Making a mouse out of a molehill: how precision modeling repurposes drugs for congenital giant nevi. Trends in Cancer, 2022, , .	3.8	0
206	The renal lineage factor PAX8 controls oncogenic signalling in kidney cancer. Nature, 2022, 606, 999-1006.	13.7	24
209	Treatment for giant congenital nevi moves a step closer. Cell Research, 2022, 32, 799-800.	5.7	1
210	LACTB, a Metabolic Therapeutic Target in Clinical Cancer Application. Cells, 2022, 11, 2749.	1.8	1
211	Human Papillary and Reticular Fibroblasts Show Distinct Functions on Tumor Behavior in 3D-Organotypic Cultures Mimicking Melanoma and HNSCC. International Journal of Molecular Sciences, 2022, 23, 11651.	1.8	4
212	Melanoma metastasis: What role does melanin play? (Review). Oncology Reports, 2022, 48, .	1.2	7
213	Computer-Assisted Annotation of Digital H&E/SOX10 Dual Stains Generates High-Performing Convolutional Neural Network for Calculating Tumor Burden in H&E-Stained Cutaneous Melanoma. International Journal of Environmental Research and Public Health, 2022, 19, 14327.	1.2	3
214	CEACAM1 is a direct SOX10 target and inhibits melanoma immune infiltration and stemness. IScience, 2022, 25, 105524.	1.9	5
216	Histopathological and Immunohistochemical Features of Small to Big Satellite Nevus Uncover the Nevogenesis of Large/Giant Congenital Melanocytic Nevus. Journal of Immunology Research, 2022, 2022, 1-11.	0.9	0
217	SM22α Deletion Contributes to Neurocognitive Impairment in Mice through Modulating Vascular Smooth Muscle Cell Phenotypes. International Journal of Molecular Sciences, 2023, 24, 7117.	1.8	0
218	<scp>BORIS</scp> / <scp>CTCFL</scp> â€mediated chromatin accessibility alterations promote a proâ€invasive transcriptional signature in melanoma cells. Pigment Cell and Melanoma Research, 0, , .	1.5	0

#	Article	IF	CITATIONS
	Reactivation of embryonic genetic programs in tissue regeneration and disease. Nature Genetics, 2023, 55, 1792-1806.	9.4	0