The Type 1 Insulin-Like Growth Factor Receptor (IGF-II Follistatin-Induced Skeletal Muscle Hypertrophy

Endocrinology 153, 241-253 DOI: 10.1210/en.2011-1687

Citation Report

#	Article	IF	CITATIONS
1	Interference with Myostatin/ActRIIB Signaling as a Therapeutic Strategy for Duchenne Muscular Dystrophy. Current Gene Therapy, 2012, 12, 245-259.	0.9	55
2	Multifaceted Role of Insulin-Like Growth Factors and Mammalian Target of Rapamycin in Skeletal Muscle. Endocrinology and Metabolism Clinics of North America, 2012, 41, 297-322.	1.2	27
3	Mechanisms Modulating Skeletal Muscle Phenotype. , 2013, 3, 1645-1687.		191
4	Decorin activates <scp>A</scp> kt downstream of <scp>IGF″R</scp> and promotes myoblast differentiation. Animal Science Journal, 2013, 84, 669-674.	0.6	15
5	The Imprinted H19 LncRNA Antagonizes Let-7 MicroRNAs. Molecular Cell, 2013, 52, 101-112.	4.5	969
6	Muscle protein synthesis, mTORC1/MAPK/Hippo signaling, and capillary density are altered by blocking of myostatin and activins. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E41-E50.	1.8	76
7	Mechanisms regulating skeletal muscle growth and atrophy. FEBS Journal, 2013, 280, 4294-4314.	2.2	1,115
8	Skeletal muscle hypertrophy and regeneration: interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways. Cellular and Molecular Life Sciences, 2013, 70, 4117-4130.	2.4	229
9	The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass. Journal of Cell Biology, 2013, 203, 345-357.	2.3	166
10	How β2-adrenergic agonists induce skeletal muscle hypertrophy?. The Journal of Physical Fitness and Sports Medicine, 2013, 2, 423-428.	0.2	5
11	Follistatin could promote the proliferation of duck primary myoblasts by activating PI3K/Akt/mTOR signalling. Bioscience Reports, 2014, 34, .	1.1	16
12	Myostatin signaling regulates Akt activity via the regulation of miR-486 expression. International Journal of Biochemistry and Cell Biology, 2014, 47, 93-103.	1.2	107
13	Effects of the regulation of follistatin mRNA expression by IGF-1 in duck (Anas platyrhynchos) skeletal muscle. Growth Hormone and IGF Research, 2014, 24, 35-41.	0.5	3
14	Endocrine regulation of fetal skeletal muscle growth: impact on future metabolic health. Journal of Endocrinology, 2014, 221, R13-R29.	1.2	97
15	Optimizing IGF-I for skeletal muscle therapeutics. Growth Hormone and IGF Research, 2014, 24, 157-163.	0.5	56
16	Differential Muscle Hypertrophy Is Associated with Satellite Cell Numbers and Akt Pathway Activation Following Activin Type IIB Receptor Inhibition in Mtm1 p.R69C Mice. American Journal of Pathology, 2014, 184, 1831-1842.	1.9	29
17	Leukocyte IGF-1 Receptor Expression during Muscle Recovery. Medicine and Science in Sports and Exercise, 2015, 47, 92-99.	0.2	12
18	Elevated insulin-like growth factor 2 expression may contribute to the hypermuscular phenotype of myostatin null mice. Growth Hormone and IGF Research, 2015, 25, 207-218.	0.5	12

CITATION REPORT

#	Article	IF	CITATIONS
19	Role of IGF-I in follistatin-induced skeletal muscle hypertrophy. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E557-E567.	1.8	24
20	Role of IGF-I signaling in muscle bone interactions. Bone, 2015, 80, 79-88.	1.4	122
21	Myostatin/activin blocking combined with exercise reconditions skeletal muscle expression profile of mdx mice. Molecular and Cellular Endocrinology, 2015, 399, 131-142.	1.6	21
22	Protein Profiles for Muscle Development and Intramuscular Fat Accumulation at Different Post-Hatching Ages in Chickens. PLoS ONE, 2016, 11, e0159722.	1.1	40
23	The developmental transcriptome sequencing of bovine skeletal muscle reveals a long noncoding RNA, lncMD , promotes muscle differentiation by sponging miR-125b. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2835-2845.	1.9	120
24	S6K1 Is Required for Increasing Skeletal Muscle Force during Hypertrophy. Cell Reports, 2016, 17, 501-513.	2.9	89
25	<i>H19</i> controls reactivation of the imprinted gene network during muscle regeneration. Development (Cambridge), 2016, 143, 962-971.	1.2	65
26	In vitro drug testing based on contractile activity of C2C12 cells in an epigenetic drug model. Scientific Reports, 2017, 7, 44570.	1.6	29
27	IGF1 stimulates greater muscle hypertrophy in the absence of myostatin in male mice. Journal of Endocrinology, 2017, 234, 187-200.	1.2	38
28	IGF-1 potentiates sensory innervation signalling by modulating the mitochondrial fission/fusion balance. Scientific Reports, 2017, 7, 43949.	1.6	11
29	Comparative Proteomic and Transcriptomic Analysis of Follistatin-Induced Skeletal Muscle Hypertrophy. Journal of Proteome Research, 2017, 16, 3477-3490.	1.8	22
30	Hormonal responses following eccentric exercise in humans. Hormones, 2018, 16, 405-413.	0.9	16
31	Mechanisms involved in follistatinâ€induced hypertrophy and increased insulin action in skeletal muscle. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 1241-1257.	2.9	47
32	Sarcopenia in Chronic Kidney Disease: Factors, Mechanisms, and Therapeutic Interventions. Biological and Pharmaceutical Bulletin, 2019, 42, 1437-1445.	0.6	74
34	Myokines: A potential key factor in development, treatment, and biomarker of sarcopenia. , 2021, , 171-185.		1
35	Palmitic Acid Impairs Myogenesis and Alters Temporal Expression of miR-133a and miR-206 in C2C12 Myoblasts. International Journal of Molecular Sciences, 2021, 22, 2748.	1.8	11
36	Activation of IGF-1 pathway and suppression of atrophy related genes are involved in Epimedium extract (icariin) promoted C2C12 myotube hypertrophy. Scientific Reports, 2021, 11, 10790.	1.6	11
37	p21-Activated Kinase 1 Is Permissive for the Skeletal Muscle Hypertrophy Induced by Myostatin Inhibition. Frontiers in Physiology, 2021, 12, 677746.	1.3	3

CITATION REPORT

#	Article	IF	CITATIONS
39	Vitellogenin 2 promotes muscle development and stimulates the browning of white fat. Aging, 2021, 13, 22985-23003.	1.4	1
41	Uremic Solutes and Sarcopenia. , 2020, , 131-147.		0
42	Molecular Mechanism of Muscle Wasting in CKD. , 2020, , 15-33.		0
44	Molecular and biochemical regulation of skeletal muscle metabolism. Journal of Animal Science, 2022, 100, .	0.2	9
45	Muscular myostatin gene expression and plasma concentrations are decreased in critically ill patients. Critical Care, 2022, 26, .	2.5	0
46	Evolutionary analysis and functional characterization reveal the role of the insulin-like growth factor system in a diversified selection of chickens (Gallus gallus). Poultry Science, 2023, 102, 102411.	1.5	2
47	Identification of Key Genes and Biological Pathways Associated with Skeletal Muscle Maturation and Hypertrophy in Bos taurus, Ovis aries, and Sus scrofa. Animals, 2022, 12, 3471.	1.0	7
48	Signaling pathways of adipose stem cell-derived exosomes promoting muscle regeneration. Chinese Medical Journal, 2022, 135, 2525-2534.	0.9	5