Dry powder insufflation of crystalline and amorphous v produced by thin film freezing to mice

European Journal of Pharmaceutics and Biopharmaceutics 81, 600-608

DOI: 10.1016/j.ejpb.2012.04.019

Citation Report

#	Article	IF	CITATIONS
1	Recent Developments in Inhaled Triazoles Against Invasive Pulmonary Aspergillosis. Current Fungal Infection Reports, 2014, 8, 331-342.	0.9	5
2	Enhanced bioavailability and anthelmintic efficacy of mebendazole in redispersible microparticles with low-substituted hydroxypropylcellulose. Drug Design, Development and Therapy, 2014, 8, 1467.	2.0	15
3	Preparation, characterization and pulmonary pharmacokinetics of xyloglucan microspheres as dry powder inhalation. Carbohydrate Polymers, 2014, 102, 529-536.	5.1	42
4	Characterization and pharmacokinetic analysis of crystalline versus amorphous rapamycin dry powder via pulmonary administration in rats. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 136-147.	2.0	39
5	Pharmacokinetic evaluation in mice of amorphous itraconazole-based dry powder formulations for inhalation with high bioavailability and extended lung retention. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 86, 46-54.	2.0	23
8	Development of an Inhaled Controlled Release Voriconazole Dry Powder Formulation for the Treatment of Respiratory Fungal Infection. Molecular Pharmaceutics, 2015, 12, 2001-2009.	2.3	35
9	Development of voriconazole loaded large porous particles for inhalation delivery: effect of surface forces on aerosolisation performance, assessment of in vitro safety potential and uptake by macrophages. RSC Advances, 2015, 5, 38030-38043.	1.7	14
10	Pharmaceutical spray freeze drying. International Journal of Pharmaceutics, 2015, 488, 136-153.	2.6	165
11	Potential of aerosolized rifampicin lipospheres for modulation of pulmonary pharmacokinetics and bio-distribution. International Journal of Pharmaceutics, 2015, 495, 627-632.	2.6	28
12	Understanding pharmaceutical polymorphic transformations II: crystallization variables and influence on dosage forms. Therapeutic Delivery, 2015, 6, 721-740.	1.2	2
13	Dry Powder Inhalers: A Focus on Advancements in Novel Drug Delivery Systems. Journal of Drug Delivery, 2016, 2016, 1-17.	2.5	84
14	Pharmacodynamic studies of voriconazole: informing the clinical management of invasive fungal infections. Expert Review of Anti-Infective Therapy, 2016, 14, 731-746.	2.0	20
15	Amorphous powders for inhalation drug delivery. Advanced Drug Delivery Reviews, 2016, 100, 102-115.	6.6	146
16	Highly respirable dry powder inhalable formulation of voriconazole with enhanced pulmonary bioavailability. Expert Opinion on Drug Delivery, 2016, 13, 183-193.	2.4	27
17	Edge activators and a polycationic polymer enhance the formulation of porous voriconazole nanoagglomerate for the use as a dry powder inhaler. Journal of Liposome Research, 2016, 26, 324-335.	1.5	13
18	Development of grafted xyloglucan micelles for pulmonary delivery of curcumin: In vitro and in vivo studies. International Journal of Biological Macromolecules, 2016, 82, 621-627.	3.6	30
19	Development of fine solid-crystal suspension with enhanced solubility, stability, and aerosolization performance for dry powder inhalation. International Journal of Pharmaceutics, 2017, 533, 84-92.	2.6	26
20	Formulation of RNA interference-based drugs for pulmonary delivery: challenges and opportunities. Therapeutic Delivery, 2018, 9, 731-749.	1.2	18

#	Article	IF	CITATIONS
21	Dry powder inhaler formulations of poorly water-soluble itraconazole: A balance between in-vitro dissolution and in-vivo distribution is necessary. International Journal of Pharmaceutics, 2018, 551, 103-110.	2.6	15
22	Carrier free indomethacin microparticles for dry powder inhalation. International Journal of Pharmaceutics, 2018, 549, 169-178.	2.6	18
23	Inhalational Drug Delivery in Pulmonary Aspergillosis. Critical Reviews in Therapeutic Drug Carrier Systems, 2019, 36, 183-217.	1.2	10
24	Processing design space is critical for voriconazole nanoaggregates for dry powder inhalation produced by thin film freezing. Journal of Drug Delivery Science and Technology, 2019, 54, 101295.	1.4	22
25	Enhanced Aerosolization of High Potency Nanoaggregates of Voriconazole by Dry Powder Inhalation. Molecular Pharmaceutics, 2019, 16, 1799-1812.	2.3	33
26	Porous and highly dispersible voriconazole dry powders produced by spray freeze drying for pulmonary delivery with efficient lung deposition. International Journal of Pharmaceutics, 2019, 560, 144-154.	2.6	42
27	Delivery Technologies for Orally Inhaled Products: an Update. AAPS PharmSciTech, 2019, 20, 117.	1.5	36
28	A Critical Review on Emerging Trends in Dry Powder Inhaler Formulation for the Treatment of Pulmonary Aspergillosis. Pharmaceutics, 2020, 12, 1161.	2.0	8
29	Inhaled nanoparticles–An updated review. International Journal of Pharmaceutics, 2020, 587, 119671.	2.6	51
30	Amorphous solid dispersion dry powder for pulmonary drug delivery: Advantages and challenges. International Journal of Pharmaceutics, 2020, 587, 119711.	2.6	27
31	Development of Remdesivir as a Dry Powder for Inhalation by Thin Film Freezing. Pharmaceutics, 2020, 12, 1002.	2.0	86
32	Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection: let the virus be its own demise. Future Virology, 2020, 15, 381-395.	0.9	7
33	Formulation and characterization of voriconazole nanospray dried powders. Pharmaceutical Development and Technology, 2020, 25, 815-822.	1.1	4
34	Contemporary Formulation Development for Inhaled Pharmaceuticals. Journal of Pharmaceutical Sciences, 2021, 110, 66-86.	1.6	26
36	Allergic Diseases Caused by Aspergillus Species in Patients with Cystic Fibrosis. Antibiotics, 2021, 10, 357.	1.5	5
37	Next-Generation COVID-19 Vaccines Should Take Efficiency of Distribution into Consideration. AAPS PharmSciTech, 2021, 22, 126.	1.5	41
38	Pharmacokinetics of rifampicin after repeated intra-tracheal administration of amorphous and crystalline powder formulations to Sprague Dawley rats. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 162, 1-11.	2.0	11
39	Inhaled Antifungal Agents for the Treatment and Prophylaxis of Pulmonary Mycoses. Current Pharmaceutical Design, 2021, 27, 1453-1468.	0.9	9

CITATION REPORT

#	Article	IF	CITATIONS
40	Niclosamide inhalation powder made by thin-film freezing: Multi-dose tolerability and exposure in rats and pharmacokinetics in hamsters. International Journal of Pharmaceutics, 2021, 603, 120701.	2.6	30
41	In vivo pharmacokinetic study of remdesivir dry powder for inhalation in hamsters. International Journal of Pharmaceutics: X, 2021, 3, 100073.	1.2	20
42	The Development of Thin-Film Freezing and Its Application to Improve Delivery of Biologics as Dry Powder Aerosols. KONA Powder and Particle Journal, 2022, 39, 176-192.	0.9	15
43	Crystallization Methods for Preparation of Nanocrystals for Drug Delivery System. Current Pharmaceutical Design, 2015, 21, 3131-3139.	0.9	21
48	Inhaled Antifungal Agents for Treatment and Prophylaxis of Bronchopulmonary Invasive Mold Infections. Pharmaceutics, 2022, 14, 641.	2.0	11
49	Dry powders for inhalation containing monoclonal antibodies made by thin-film freeze-drying. International Journal of Pharmaceutics, 2022, 618, 121637.	2.6	21
50	High dose nanocrystalline solid dispersion powder of voriconazole for inhalation. International Journal of Pharmaceutics, 2022, 622, 121827.	2.6	1
51	Inhaled antifungal therapy: benefits, challenges, and clinical applications. Expert Opinion on Drug Delivery, 2022, 19, 755-769.	2.4	4
52	Pharmaceutical dry powders of small molecules prepared by thin-film freezing and their applications – A focus on the physical and aerosol properties of the powders. International Journal of Pharmaceutics, 2022, 629, 122357.	2.6	7
53	Progress on Thin Film Freezing Technology for Dry Powder Inhalation Formulations. Pharmaceutics, 2022, 14, 2632.	2.0	8
54	Impact of Solid-State Properties on the Aerosolization Performance of Spray-Dried Curcumin Powders. AAPS PharmSciTech, 2023, 24, .	1.5	1
56	Thin-Film Freezing: A State-of-Art Technique for Pulmonary Drug Delivery. , 2023, , 45-69.		0
57	Inhalable Nanomedicines for the Treatment of Pulmonary Aspergillosis. AAPS Advances in the Pharmaceutical Sciences Series, 2023, , 77-94.	0.2	0

CITATION REPORT