RTEL1 Dismantles T Loops and Counteracts Telomeric C

Cell 149, 795-806

DOI: 10.1016/j.cell.2012.03.030

Citation Report

#	Article	IF	CITATIONS
1	20. Iron-sulfur proteins and genome stability. , 2014, , 541-562.		0
2	Human Stn1 protects telomere integrity by promoting efficient lagging-strand synthesis at telomeres and mediating C-strand fill-in. Cell Research, 2012, 22, 1681-1695.	12.0	88
3	Werner syndrome protein suppresses the formation of large deletions during the replication of human telomeric sequences. Cell Cycle, 2012, 11, 3036-3044.	2.6	47
4	Getting in (and out of) the loop: regulating higher order telomere structures. Frontiers in Oncology, 2012, 2, 180.	2.8	15
5	From yeast to mammals: Recent advances in genetic control of homologous recombination. DNA Repair, 2012, 11, 781-788.	2.8	53
6	Human CST Has Independent Functions during Telomere Duplex Replication and C-Strand Fill-In. Cell Reports, 2012, 2, 1096-1103.	6.4	138
7	A three-state model of telomere control over human proliferative boundaries. Current Opinion in Cell Biology, 2012, 24, 731-738.	5.4	75
8	DNA secondary structures: stability and function of G-quadruplex structures. Nature Reviews Genetics, 2012, 13, 770-780.	16.3	1,162
9	A TRF1-controlled common fragile site containing interstitial telomeric sequences. Chromosoma, 2012, 121, 465-474.	2.2	46
10	RTEL1 and TERT polymorphisms are associated with astrocytoma risk in the Chinese Han population. Tumor Biology, 2013, 34, 3659-3666.	1.8	25
11	DNA helicases involved in DNA repair and their roles in cancer. Nature Reviews Cancer, 2013, 13, 542-558.	28.4	280
12	Causes of Genome Instability. Annual Review of Genetics, 2013, 47, 1-32.	7.6	372
13	TRF2 Interaction with Ku Heterotetramerization Interface Gives Insight into c-NHEJ Prevention at Human Telomeres. Cell Reports, 2013, 5, 194-206.	6.4	51
14	Genomes and G-Quadruplexes: For Better or for Worse. Journal of Molecular Biology, 2013, 425, 4782-4789.	4.2	109
15	Updates on the biology and management of dyskeratosis congenita and related telomere biology disorders. Expert Review of Hematology, 2013, 6, 327-337.	2.2	157
16	The THO complex component Thp2 counteracts telomeric R-loops and telomere shortening. EMBO Journal, 2013, 32, 2861-2871.	7.8	125
17	RPA provides checkpoint-independent cell cycle arrest and prevents recombination at uncapped telomeres of Saccharomyces cerevisiae. DNA Repair, 2013, 12, 212-226.	2.8	3
18	The Human Specialized DNA Polymerases and Non-B DNA: Vital Relationships to Preserve Genome Integrity. Journal of Molecular Biology, 2013, 425, 4767-4781.	4.2	51

#	ARTICLE	IF	CITATIONS
19	Coordinated Actions of SLX1-SLX4 and MUS81-EME1 for Holliday Junction Resolution in Human Cells. Molecular Cell, 2013, 52, 234-247.	9.7	252
20	Replication of Telomeres and the Regulation of Telomerase. Cold Spring Harbor Perspectives in Biology, 2013, 5, a010405-a010405.	5.5	102
21	Telomere shortening by mutations in the <i><scp>RTEL1</scp></i> helicase cause severe form of dyskeratosis congenita, Hoyerallâ€Hreidarsson syndrome. Clinical Genetics, 2013, 84, 210-210.	2.0	6
22	DNA polymerase \hat{l}' stalls on telomeric lagging strand templates independently from G-quadruplex formation. Nucleic Acids Research, 2013, 41, 10323-10333.	14.5	36
23	RTEL1 Is a Replisome-Associated Helicase That Promotes Telomere and Genome-Wide Replication. Science, 2013, 342, 239-242.	12.6	186
24	Localization-Dependent and -Independent Roles of SLX4 in Regulating Telomeres. Cell Reports, 2013, 4, 853-860.	6.4	76
25	Constitutional Mutations in RTEL1 Cause Severe Dyskeratosis Congenita. American Journal of Human Genetics, 2013, 92, 448-453.	6.2	191
26	Germline mutations of regulator of telomere elongation helicase 1, RTEL1, in Dyskeratosis congenita. Human Genetics, 2013, 132, 473-480.	3.8	198
27	The yin and yang of repair mechanisms in DNA structure-induced genetic instability. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2013, 743-744, 118-131.	1.0	22
28	Human RECQL5: Guarding the crossroads of DNA replication and transcription and providing backup capability. Critical Reviews in Biochemistry and Molecular Biology, 2013, 48, 289-299.	5.2	30
29	Mammalian DNA2 helicase/nuclease cleaves G-quadruplex DNA and is required for telomere integrity. EMBO Journal, 2013, 32, 1425-1439.	7.8	138
30	Disease-causing missense mutations in human DNA helicase disorders. Mutation Research - Reviews in Mutation Research, 2013, 752, 138-152.	5.5	47
31	Short telomeres: from dyskeratosis congenita to sporadic aplastic anemia and malignancy. Translational Research, 2013, 162, 353-363.	5.0	73
32	A quantitative telomeric chromatin isolation protocol identifies different telomeric states. Nature Communications, 2013, 4, 2848.	12.8	95
33	DNA Repair at Telomeres: Keeping the Ends Intact. Cold Spring Harbor Perspectives in Biology, 2013, 5, a012666-a012666.	5.5	51
34	Organization and Evolution of Drosophila Terminin: Similarities and Differences between Drosophila and Human Telomeres. Frontiers in Oncology, 2013, 3, 112.	2.8	24
35	A Recessive Founder Mutation in Regulator of Telomere Elongation Helicase 1, RTEL1, Underlies Severe Immunodeficiency and Features of Hoyeraal Hreidarsson Syndrome. PLoS Genetics, 2013, 9, e1003695.	3.5	106
36	The G4 Genome. PLoS Genetics, 2013, 9, e1003468.	3.5	437

#	ARTICLE	IF	CITATIONS
37	Human TEN1 Maintains Telomere Integrity and Functions in Genome-wide Replication Restart. Journal of Biological Chemistry, 2013, 288, 30139-30150.	3.4	73
38	Inherited mutations in the helicase RTEL1 cause telomere dysfunction and Hoyeraal–Hreidarsson syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3408-16.	7.1	127
39	The shelterin protein POT-1 anchors <i>Caenorhabditis elegans</i> telomeres through SUN-1 at the nuclear periphery. Journal of Cell Biology, 2013, 203, 727-735.	5.2	44
40	Human RTEL1 deficiency causes Hoyeraal–Hreidarsson syndrome with short telomeres and genome instability. Human Molecular Genetics, 2013, 22, 3239-3249.	2.9	150
41	One Identity or More for Telomeres?. Frontiers in Oncology, 2013, 3, 48.	2.8	56
42	Molecular basis of telomere syndrome caused by <i>CTC1</i> mutations. Genes and Development, 2013, 27, 2099-2108.	5.9	101
43	Specialization among Iron-Sulfur Cluster Helicases to Resolve G-quadruplex DNA Structures That Threaten Genomic Stability. Journal of Biological Chemistry, 2013, 288, 28217-28229.	3.4	113
45	Beyond Telomerase: Telomere Instability as a Novel Target for Cancer Therapy. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2013, 07, .	0.1	2
46	Chromatin Structure in Telomere Dynamics. Frontiers in Oncology, 2013, 3, 46.	2.8	72
47	Biological Systems that Control Transcription of DNA Repair and Telomere Maintenance-Associated Genes. , 2013, , .		2
48	Shelterin complex in telomere protection: recent insights and pathological significance. Cell Health and Cytoskeleton, 0 , 11 .	0.7	0
49	A TIN2 dyskeratosis congenita mutation causes telomerase-independent telomere shortening in mice. Genes and Development, 2014, 28, 153-166.	5.9	49
50	Novel Function of the Fanconi Anemia Group J or RECQ1 Helicase to Disrupt Protein-DNA Complexes in a Replication Protein A-stimulated Manner. Journal of Biological Chemistry, 2014, 289, 19928-19941.	3.4	35
51	TRF1 negotiates TTAGGG repeat-associated replication problems by recruiting the BLM helicase and the TPP1/POT1 repressor of ATR signaling. Genes and Development, 2014, 28, 2477-2491.	5.9	156
52	Topoll $\hat{\mathbb{I}}\pm$ prevents telomere fragility and formation of ultra thin DNA bridges during mitosis through TRF1-dependent binding to telomeres. Cell Cycle, 2014, 13, 1463-1481.	2.6	36
53	The meiosis-specific modification of mammalian telomeres. Cell Cycle, 2014, 13, 2024-2028.	2.6	47
54	Assembly of telomeric chromatin to create ALTernative endings. Trends in Cell Biology, 2014, 24, 675-685.	7.9	54
55	A Polymerase Theta-dependent repair pathway suppresses extensive genomic instability at endogenous G4 DNA sites. Nature Communications, 2014, 5, 3216.	12.8	179

#	Article	IF	CITATIONS
56	Mitosis, double strand break repair, and telomeres: A view from the end. BioEssays, 2014, 36, 1054-1061.	2.5	14
57	G-quadruplex interacting small molecules and drugs: from bench toward bedside. Expert Review of Clinical Pharmacology, 2014, 7, 663-679.	3.1	76
58	Resolution of telomere associations by TRF1 cleavage in mouse embryonic stem cells. Molecular Biology of the Cell, 2014, 25, 1958-1968.	2.1	11
59	RTEL1: functions of a disease-associated helicase. Trends in Cell Biology, 2014, 24, 416-425.	7.9	105
60	If the cap fits, wear it: an overview of telomeric structures over evolution. Cellular and Molecular Life Sciences, 2014, 71, 847-865.	5.4	37
61	Molecular functions and cellular roles of the ChlR1 (DDX11) helicase defective in the rare cohesinopathy Warsaw breakage syndrome. Cellular and Molecular Life Sciences, 2014, 71, 2625-2639.	5.4	57
62	Rapid induction of alternative lengthening of telomeres by depletion of the histone chaperone ASF1. Nature Structural and Molecular Biology, 2014, 21, 167-174.	8.2	207
63	Metabolism of DNA secondary structures at the eukaryotic replication fork. DNA Repair, 2014, 19, 152-162.	2.8	54
64	Two steps forward, one step back: Determining XPD helicase mechanism by single-molecule fluorescence and high-resolution optical tweezers. DNA Repair, 2014, 20, 58-70.	2.8	25
65	The replicometer is broken: telomeres activate cellular senescence in response to genotoxic stresses. Aging Cell, 2014, 13, 780-786.	6.7	47
66	Telomeropathies: An emerging spectrum disorder. Journal of Cell Biology, 2014, 205, 289-299.	5.2	148
67	Telomere Dysfunction and Hematologic Disorders. Progress in Molecular Biology and Translational Science, 2014, 125, 133-157.	1.7	11
68	Telomere Dynamics and Aging. Progress in Molecular Biology and Translational Science, 2014, 125, 89-111.	1.7	45
69	The Role of Double-Strand Break Repair Pathways at Functional and Dysfunctional Telomeres. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016576-a016576.	5.5	107
70	Regulation of DNA Pairing in Homologous Recombination. Cold Spring Harbor Perspectives in Biology, 2014, 6, a017954-a017954.	5.5	82
71	Telomeric Overhang Length Determines Structural Dynamics and Accessibility to Telomerase and ALT-Associated Proteins. Structure, 2014, 22, 842-853.	3.3	62
72	RTEL1 Inhibits Trinucleotide Repeat Expansions and Fragility. Cell Reports, 2014, 6, 827-835.	6.4	34
73	Human RecQ Helicases in DNA Repair, Recombination, and Replication. Annual Review of Biochemistry, 2014, 83, 519-552.	11.1	461

#	ARTICLE	IF	Citations
74	Nucleases in homologous recombination as targets for cancer therapy. FEBS Letters, 2014, 588, 2446-2456.	2.8	21
75	G4â€associated human diseases. EMBO Reports, 2015, 16, 910-922.	4.5	261
76	Unraveling the pathogenesis of Hoyeraal–Hreidarsson syndrome, a complex telomere biology disorder. British Journal of Haematology, 2015, 170, 457-471.	2.5	105
77	Replication Stress in Mammalian Cells and Its Consequences for Mitosis. Genes, 2015, 6, 267-298.	2.4	91
78	Understanding the stability of DNA G-quadruplex units in long human telomeric strands. Biochimie, 2015, 113, 125-133.	2.6	30
79	SMARCAL1 maintains telomere integrity during DNA replication. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14864-14869.	7.1	67
80	SLX4 contributes to telomere preservation and regulated processing of telomeric joint molecule intermediates. Nucleic Acids Research, 2015, 43, 5912-5923.	14.5	55
81	FANCJ suppresses microsatellite instability and lymphomagenesis independent of the Fanconi anemia pathway. Genes and Development, 2015, 29, 2532-2546.	5. 9	51
82	Elevated levels of TRF2 induce telomeric ultrafine anaphase bridges and rapid telomere deletions. Nature Communications, 2015, 6, 10132.	12.8	63
83	A homozygous mutation of RTEL1 in a child presenting with an apparently isolated natural killer cell deficiency. Journal of Allergy and Clinical Immunology, 2015, 136, 1113-1114.	2.9	37
84	The SLX4 Complex Is a SUMO E3 Ligase that Impacts on Replication Stress Outcome and Genome Stability. Molecular Cell, 2015, 57, 123-137.	9.7	111
85	TRF2 Recruits RTEL1 to Telomeres in S Phase to Promote T-Loop Unwinding. Molecular Cell, 2015, 57, 622-635.	9.7	143
86	Telomere-Regulating Genes and the Telomere Interactome in Familial Cancers. Molecular Cancer Research, 2015, 13, 211-222.	3.4	29
87	Contributions of the specialised DNA polymerases to replication of structured DNA. DNA Repair, 2015, 29, 83-90.	2.8	40
88	Visualization and quantitative analysis of extrachromosomal telomere-repeat DNA in individual human cells by Halo-FISH. Nucleic Acids Research, 2015, 43, 2152-2163.	14.5	9
89	Rare Variants in <i>RTEL1</i> Are Associated with Familial Interstitial Pneumonia. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 646-655.	5. 6	170
90	The <i>Arabidopsis thaliana</i> Homolog of the Helicase RTEL1 Plays Multiple Roles in Preserving Genome Stability Â. Plant Cell, 2015, 26, 4889-4902.	6.6	40
91	Genetic Architecture of Natural Variation of Telomere Length in <i>Arabidopsis thaliana</i> . Genetics, 2015, 199, 625-635.	2.9	26

#	Article	IF	CITATIONS
92	Repeat instability during DNA repair: Insights from model systems. Critical Reviews in Biochemistry and Molecular Biology, 2015, 50, 142-167.	5.2	158
93	Deficiency of the <i>Arabidopsis</i> Helicase RTEL1 Triggers a SOG1-Dependent Replication Checkpoint in Response to DNA Cross-Links. Plant Cell, 2015, 27, 149-161.	6.6	44
94	Biogenesis of cytosolic and nuclear iron–sulfur proteins and their role in genome stability. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1528-1539.	4.1	192
95	A Distinct Triplex DNA Unwinding Activity of ChlR1 Helicase. Journal of Biological Chemistry, 2015, 290, 5174-5189.	3.4	45
96	Human regulator of telomere elongation helicase 1 (RTEL1) is required for the nuclear and cytoplasmic trafficking of pre-U2 RNA. Nucleic Acids Research, 2015, 43, 1834-1847.	14.5	26
97	Regulation of Recombination and Genomic Maintenance. Cold Spring Harbor Perspectives in Biology, 2015, 7, a016501.	5 . 5	85
98	Replicating through telomeres: a means to an end. Trends in Biochemical Sciences, 2015, 40, 504-515.	7. 5	113
99	Short loop length and high thermal stability determine genomic instability induced by Gâ€quadruplexâ€forming minisatellites. EMBO Journal, 2015, 34, 1718-1734.	7.8	117
100	No DDRama at chromosome ends: TRF2 takes centre stage. Trends in Biochemical Sciences, 2015, 40, 275-285.	7. 5	46
101	Exome sequencing links mutations in PARN and RTEL1 with familial pulmonary fibrosis and telomere shortening. Nature Genetics, 2015, 47, 512-517.	21.4	385
102	Telomere Dysfunction, Chromosomal Instability and Cancer. Recent Results in Cancer Research, 2015, 200, 61-79.	1.8	34
103	Complex interactions between the DNA-damage response and mammalian telomeres. Nature Structural and Molecular Biology, 2015, 22, 859-866.	8.2	171
104	A G-quadruplex DNA structure resolvase, RHAU, is essential for spermatogonia differentiation. Cell Death and Disease, 2015, 6, e1610-e1610.	6.3	27
105	Flap Endonuclease 1 Limits Telomere Fragility on the Leading Strand. Journal of Biological Chemistry, 2015, 290, 15133-15145.	3.4	29
108	Structure and Functions of Telomeres in Organismal Homeostasis and Disease., 2015,, 247-283.		0
109	G-quadruplexes and their regulatory roles in biology. Nucleic Acids Research, 2015, 43, 8627-8637.	14.5	1,183
110	Molecular basis of telomere dysfunction in human genetic diseases. Nature Structural and Molecular Biology, 2015, 22, 867-874.	8.2	66
111	How homologous recombination maintains telomere integrity. Chromosoma, 2015, 124, 119-130.	2.2	14

#	Article	IF	CITATIONS
112	Extended clinical and genetic spectrum associated with biallelic RTEL1 mutations. Blood Advances, 2016, 1, 36-46.	5.2	19
113	The Immunologic Complications and Genetic Origins of Telomere Disorders. , 2016, , 451-457.		0
114	Molecular Diagnosis and Precision Therapeutic Approaches for Telomere Biology Disorders. , 0, , .		2
115	Getting Ready for the Dance: FANCJ Irons Out DNA Wrinkles. Genes, 2016, 7, 31.	2.4	19
116	STN1 OB Fold Mutation Alters DNA Binding and Affects Selective Aspects of CST Function. PLoS Genetics, 2016, 12, e1006342.	3.5	34
117	Telomere- and Telomerase-Associated Proteins and Their Functions in the Plant Cell. Frontiers in Plant Science, 2016, 7, 851.	3.6	31
118	Telomere and telomerase stability in human diseases and cancer. Frontiers in Bioscience - Landmark, 2016, 21, 203-224.	3.0	13
119	The wideâ€ranging clinical implications of the short telomere syndromes. Internal Medicine Journal, 2016, 46, 393-403.	0.8	33
120	G-quadruplex recognition and remodeling by the FANCJ helicase. Nucleic Acids Research, 2016, 44, 8742-8753.	14.5	80
121	Peroxiredoxin 1 Protects Telomeres from Oxidative Damage and Preserves Telomeric DNA for Extension by Telomerase. Cell Reports, 2016, 17, 3107-3114.	6.4	85
122	HHV-8-unrelated primary effusion-like lymphoma associated with clonal loss of inherited chromosomally-integrated human herpesvirus-6A from the telomere of chromosome 19q. Scientific Reports, 2016, 6, 22730.	3.3	21
123	G-quadruplexes and helicases. Nucleic Acids Research, 2016, 44, 1989-2006.	14.5	360
124	Stop pulling my strings â€" what telomeres taught us about the DNA damage response. Nature Reviews Molecular Cell Biology, 2016, 17, 364-378.	37.0	148
125	Early Loss of Telomerase Action in Yeast Creates a Dependence on the DNA Damage Response Adaptor Proteins. Molecular and Cellular Biology, 2016, 36, 1908-1919.	2.3	13
126	Telomere Replication Stress Induced by POT1 Inactivation Accelerates Tumorigenesis. Cell Reports, 2016, 15, 2170-2184.	6.4	94
127	The long and the short of TRF2 in neurogenesis. Cell Cycle, 2016, 15, 3026-3032.	2.6	13
128	TRF2 Protein Interacts with Core Histones to Stabilize Chromosome Ends. Journal of Biological Chemistry, 2016, 291, 20798-20810.	3.4	16
129	TMPyP4 promotes cancer cell migration at low doses, but induces cell death at high doses. Scientific Reports, 2016, 6, 26592.	3.3	42

#	Article	IF	CITATIONS
130	Proteomic Profiling Reveals a Specific Role for Translesion DNA Polymerase $\hat{\iota}$ in the Alternative Lengthening of Telomeres. Cell Reports, 2016, 17, 1858-1871.	6.4	113
131	Telomeres and Chromosome Stability. , 2016, , 127-154.		0
132	TRF2-RAP1 is required to protect telomeres from engaging in homologous recombination-mediated deletions and fusions. Nature Communications, 2016, 7, 10881.	12.8	106
133	Enhanced electrostatic force microscopy reveals higher-order DNA looping mediated by the telomeric protein TRF2. Scientific Reports, 2016, 6, 20513.	3.3	30
134	Structure and function of the telomeric CST complex. Computational and Structural Biotechnology Journal, 2016, 14, 161-167.	4.1	91
135	Getting it done at the ends: Pif1 family DNA helicases and telomeres. DNA Repair, 2016, 44, 151-158.	2.8	41
136	DNA damage processing at telomeres: The ends justify the means. DNA Repair, 2016, 44, 159-168.	2.8	35
137	Structure and mechanism of nucleases regulated by SLX4. Current Opinion in Structural Biology, 2016, 36, 97-105.	5.7	11
138	DNA replication and cancer: From dysfunctional replication origin activities to therapeutic opportunities. Seminars in Cancer Biology, 2016, 37-38, 16-25.	9.6	56
139	Mechanism of Homologous Recombination. , 2016, , 73-109.		0
140	Quadruplex Nucleic Acids as Novel Therapeutic Targets. Journal of Medicinal Chemistry, 2016, 59, 5987-6011.	6.4	481
141	Guanine quadruplex structures localize to heterochromatin. Nucleic Acids Research, 2016, 44, 152-163.	14.5	60
142	The molecular genetics of the telomere biology disorders. RNA Biology, 2016, 13, 696-706.	3.1	144
143	Conformational variability of recombination R-triplex formed by the mammalian telomeric sequence. Journal of Biomolecular Structure and Dynamics, 2016, 34, 1298-1306.	3.5	2
144	Telomere-associated aging disorders. Ageing Research Reviews, 2017, 33, 52-66.	10.9	128
145	DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nature Reviews Molecular Cell Biology, 2017, 18, 279-284.	37.0	667
146	Rescue from replication stress during mitosis. Cell Cycle, 2017, 16, 613-633.	2.6	51
147	Cell Culture Systems To Study Human Herpesvirus 6A/B Chromosomal Integration. Journal of Virology, 2017, 91, .	3.4	30

#	Article	IF	CITATIONS
148	Interstitial telomeric sequences in vertebrate chromosomes: Origin, function, instability and evolution. Mutation Research - Reviews in Mutation Research, 2017, 773, 51-65.	5.5	65
149	Life and cancer without telomerase: ALT and other strategies for making sure ends (don't) meet. Critical Reviews in Biochemistry and Molecular Biology, 2017, 52, 57-73.	5 . 2	41
150	Polymorphisms in Telomere Length Associated TERC and TERT predispose for Ischemic Stroke in a Chinese Han population. Scientific Reports, 2017, 7, 40151.	3.3	6
151	Probing the Potential Role of Non-B DNA Structures at Yeast Meiosis-Specific DNA Double-Strand Breaks. Biophysical Journal, 2017, 112, 2056-2074.	0.5	18
152	Role of recombination and replication fork restart in repeat instability. DNA Repair, 2017, 56, 156-165.	2.8	56
153	Loopingâ€out mechanism for resolution of replicative stress at telomeres. EMBO Reports, 2017, 18, 1412-1428.	4.5	21
154	The human CTC1/STN1/TEN1 complex regulates telomere maintenance in ALT cancer cells. Experimental Cell Research, 2017, 355, 95-104.	2.6	27
155	Introduction to Telomeres and Telomerase. Methods in Molecular Biology, 2017, 1587, 1-13.	0.9	1
156	Control of structure-specific endonucleases to maintain genome stability. Nature Reviews Molecular Cell Biology, 2017, 18, 315-330.	37.0	138
157	Alternative Lengthening of Telomeres: DNA Repair Pathways Converge. Trends in Genetics, 2017, 33, 921-932.	6.7	132
158	G-quadruplex unwinding helicases and their function <i>in vivo</i> . Biochemical Society Transactions, 2017, 45, 1173-1182.	3.4	132
159	<i>Escherichia coli</i> and <i>Neisseria gonorrhoeae</i> UvrD helicase unwinds G4 DNA structures. Biochemical Journal, 2017, 474, 3579-3597.	3.7	15
160	Regulation of DNA repair pathway choice in S and G2 phases by the NHEJ inhibitor CYREN. Nature, 2017, 549, 548-552.	27.8	184
161	BLM and SLX4 play opposing roles in recombinationâ€dependent replication at human telomeres. EMBO Journal, 2017, 36, 2907-2919.	7.8	127
162	TRF2 binds branched DNA to safeguard telomere integrity. Nature Structural and Molecular Biology, 2017, 24, 734-742.	8.2	63
163	Extrachromosomal telomere repeat DNA is linked to ALT development via cGAS-STING DNA sensing pathway. Nature Structural and Molecular Biology, 2017, 24, 1124-1131.	8.2	103
164	Quantitative telomeric chromatin isolation protocol for human cells. Methods, 2017, 114, 28-38.	3.8	8
165	Silica inhalation altered telomere length and gene expression of telomere regulatory proteins in lung tissue of rats. Scientific Reports, 2017, 7, 17284.	3.3	12

#	ARTICLE	IF	CITATIONS
166	The DNA damage response at dysfunctional telomeres, and at interstitial and subtelomeric DNA double-strand breaks. Genes and Genetic Systems, 2017, 92, 135-152.	0.7	15
167	13 Iron-sulphur proteins and genome stability. , 2017, , 347-368.		0
168	DNA Replication Origins and Fork Progression at Mammalian Telomeres. Genes, 2017, 8, 112.	2.4	57
169	Chromosomally Integrated Human Herpesvirus 6: Models of Viral Genome Release from the Telomere and Impacts on Human Health. Viruses, 2017, 9, 184.	3.3	18
170	Solving the Telomere Replication Problem. Genes, 2017, 8, 55.	2.4	68
171	Ubiquitination and SUMOylation in Telomere Maintenance and Dysfunction. Frontiers in Genetics, 2017, 8, 67.	2.3	14
172	Clinical and Molecular Heterogeneity of RTEL1 Deficiency. Frontiers in Immunology, 2017, 8, 449.	4.8	35
173	The mre11 A470 alleles influence the hereditability and the segregation of telosomes in Saccharomyces cerevisiae. PLoS ONE, 2017, 12, e0183549.	2.5	1
174	Telomere Maintenance in the Dynamic Nuclear Architecture., 2017,, 325-352.		2
175	Interactive Roles of DNA Helicases and Translocases with the Single-Stranded DNA Binding Protein RPA in Nucleic Acid Metabolism. International Journal of Molecular Sciences, 2017, 18, 1233.	4.1	29
176	Genome-wide mapping of endogenous G-quadruplex DNA structures by chromatin immunoprecipitation and high-throughput sequencing. Nature Protocols, 2018, 13, 551-564.	12.0	214
177	A Distinct Class of Genome Rearrangements Driven by Heterologous Recombination. Molecular Cell, 2018, 69, 292-305.e6.	9.7	33
178	When Telomerase Causes Telomere Loss. Developmental Cell, 2018, 44, 281-283.	7.0	6
179	RAD51 and RTEL1 compensate telomere loss in the absence of telomerase. Nucleic Acids Research, 2018, 46, 2432-2445.	14.5	19
180	Impact of oxidative stress on telomere biology. Differentiation, 2018, 99, 21-27.	1.9	95
181	RecQ and Feâ€"S helicases have unique roles in DNA metabolism dictated by their unwinding directionality, substrate specificity, and protein interactions. Biochemical Society Transactions, 2018, 46, 77-95.	3.4	21
182	Stabilization of Reversed Replication Forks by Telomerase Drives Telomere Catastrophe. Cell, 2018, 172, 439-453.e14.	28.9	79
183	Telomere chromatin establishment and its maintenance during mammalian development. Chromosoma, 2018, 127, 3-18.	2.2	42

#	Article	IF	CITATIONS
184	Genome-wide Control of Heterochromatin Replication by the Telomere Capping Protein TRF2. Molecular Cell, 2018, 70, 449-461.e5.	9.7	52
185	The BUB3-BUB1 Complex Promotes Telomere DNA Replication. Molecular Cell, 2018, 70, 395-407.e4.	9.7	54
186	Pathways for maintenance of telomeres and common fragile sites during DNA replication stress. Open Biology, 2018, 8, 180018.	3.6	61
187	Human RTEL1 stabilizes long G-overhangs allowing telomerase-dependent over-extension. Nucleic Acids Research, 2018, 46, 4533-4545.	14.5	24
188	The Detection and Analysis of Chromosome Fragile Sites. Methods in Molecular Biology, 2018, 1672, 471-482.	0.9	6
189	The binding efficiency of RPA to telomeric G-strands folded into contiguous G-quadruplexes is independent of the number of G4 units. Biochimie, 2018, 146, 68-72.	2.6	12
190	Telomeres, Telomerase and Ageing. Sub-Cellular Biochemistry, 2018, 90, 221-308.	2.4	71
191	Pif1 is essential for efficient replisome progression through lagging strand G-quadruplex DNA secondary structures. Nucleic Acids Research, 2018, 46, 11847-11857.	14.5	75
192	Dyskeratosis Congenita and the Telomere Biology Disorders. Pediatric Oncology, 2018, , 111-135.	0.5	4
193	Telomere length measurement as a clinical biomarker of aging and disease. Critical Reviews in Clinical Laboratory Sciences, 2018, 55, 443-465.	6.1	103
194	Bone Marrow Failure. Pediatric Oncology, 2018, , .	0.5	2
195	SLX4: multitasking to maintain genome stability. Critical Reviews in Biochemistry and Molecular Biology, 2018, 53, 475-514.	5.2	35
196	Shelterin-Mediated Telomere Protection. Annual Review of Genetics, 2018, 52, 223-247.	7.6	568
197	Generation of an Rtel1-CreERT2 knock-in mouse model for lineage tracing RTEL1+ stem cells during development. Transgenic Research, 2018, 27, 571-578.	2.4	2
198	Heterozygous RTEL1 variants in bone marrow failure and myeloid neoplasms. Blood Advances, 2018, 2, 36-48.	5.2	44
199	Diagnostic algorithm for lower-risk myelodysplastic syndromes. Leukemia, 2018, 32, 1679-1696.	7.2	10
200	Platinum Complexes Can Bind to Telomeres by Coordination. International Journal of Molecular Sciences, 2018, 19, 1951.	4.1	5
201	Helicases and Their Relevance to Aging. , 2018, , 995-1023.		0

#	Article	IF	Citations
202	<i>In planta</i> gene targeting can be enhanced by the use of CRISPR/Cas12a. Plant Journal, 2019, 100, 1083-1094.	5.7	77
203	Post-replication repair: Rad5/HLTF regulation, activity on undamaged templates, and relationship to cancer. Critical Reviews in Biochemistry and Molecular Biology, 2019, 54, 301-332.	5.2	18
204	Drugging the R-loop interactome: RNA-DNA hybrid binding proteins as targets for cancer therapy. DNA Repair, 2019, 84, 102642.	2.8	28
205	Replication Stress at Telomeric and Mitochondrial DNA: Common Origins and Consequences on Ageing. International Journal of Molecular Sciences, 2019, 20, 4959.	4.1	38
206	Helicases FANCJ, RTEL1 and BLM Act on Guanine Quadruplex DNA in Vivo. Genes, 2019, 10, 870.	2.4	33
207	CDK phosphorylation of TRF2 controls t-loop dynamics during the cell cycle. Nature, 2019, 575, 523-527.	27.8	68
208	DNA- and DNA-Protein-Crosslink Repair in Plants. International Journal of Molecular Sciences, 2019, 20, 4304.	4.1	15
209	SLX4IP acts with SLX4 and XPF–ERCC1 to promote interstrand crosslink repair. Nucleic Acids Research, 2019, 47, 10181-10201.	14.5	26
210	Mechanisms of DNA Replication and Repair: Insights from the Study of G-Quadruplexes. Molecules, 2019, 24, 3439.	3.8	65
211	Developing Novel G-Quadruplex Ligands: from Interaction with Nucleic Acids to Interfering with Nucleic Acid–Protein Interaction. Molecules, 2019, 24, 396.	3.8	85
212	Replication of G Quadruplex DNA. Genes, 2019, 10, 95.	2.4	121
213	Telomeres in Plants and Humans: Not So Different, Not So Similar. Cells, 2019, 8, 58.	4.1	39
214	An Arabidopsis FANCJ helicase homologue is required for DNA crosslink repair and rDNA repeat stability. PLoS Genetics, 2019, 15, e1008174.	3.5	24
215	Mammalian CST averts replication failure by preventing G-quadruplex accumulation. Nucleic Acids Research, 2019, 47, 5243-5259.	14.5	62
216	The FANCM-BLM-TOP3A-RMI complex suppresses alternative lengthening of telomeres (ALT). Nature Communications, 2019, 10, 2252.	12.8	125
217	Resolving Roadblocks to Telomere Replication. Methods in Molecular Biology, 2019, 1999, 31-57.	0.9	11
218	Long-read sequencing reveals intra-species tolerance of substantial structural variations and new subtelomere formation in <i>C. elegans</i>	5.5	67
219	The chromatin structuring protein HMGA2 influences human subtelomere stability and cancer chemosensitivity. PLoS ONE, 2019, 14, e0215696.	2.5	15

#	Article	IF	CITATIONS
220	The Response to DNA Damage at Telomeric Repeats and Its Consequences for Telomere Function. Genes, 2019, 10, 318.	2.4	47
221	Telomere Function and the G-Quadruplex Formation are Regulated by hnRNP U. Cells, 2019, 8, 390.	4.1	16
222	Roles of <scp>RAD</scp> 51 and <scp>RTEL</scp> 1 in telomere and <scp>rDNA</scp> stability in <i>Physcomitrella patens</i> . Plant Journal, 2019, 98, 1090-1105.	5.7	36
223	MycobacteriumÂtuberculosis UvrD1 and UvrD2 helicases unwind Gâ€quadruplex DNA. FEBS Journal, 2019, 286, 2062-2086.	4.7	19
224	At the Beginning of the End and in the Middle of the Beginning: Structure and Maintenance of Telomeric DNA Repeats and Interstitial Telomeric Sequences. Genes, 2019, 10, 118.	2.4	68
225	2D gel electrophoresis reveals dynamics of t-loop formation during the cell cycle and t-loop in maintenance regulated by heterochromatin state. Journal of Biological Chemistry, 2019, 294, 6645-6656.	3.4	5
226	Telomerase Variants in Patients with Cirrhosis Awaiting Liver Transplantation. Hepatology, 2019, 69, 2652-2663.	7.3	10
227	Integrating Genomics Into Management ofÂFibrotic Interstitial Lung Disease. Chest, 2019, 155, 1026-1040.	0.8	37
228	The MCM8/9 complex: A recent recruit to the roster of helicases involved in genome maintenance. DNA Repair, 2019, 76, 1-10.	2.8	40
229	Telomeres and telomerase: three decades of progress. Nature Reviews Genetics, 2019, 20, 299-309.	16. 3	534
230	$2\hat{a}$ €²-Deoxy- $2\hat{a}$ €²-fluoro-arabinonucleic acid: a valid alternative to DNA for biotechnological applications using charge transport. Physical Chemistry Chemical Physics, 2019, 21, 22869-22878.	2.8	6
231	DNA Helicases as Safekeepers of Genome Stability in Plants. Genes, 2019, 10, 1028.	2.4	11
232	The Replisome Mediates A-NHEJ Repair of Telomeres Lacking POT1-TPP1 Independently of MRN Function. Cell Reports, 2019, 29, 3708-3725.e5.	6.4	10
233	DNA damage and genome instability by G-quadruplex ligands are mediated by R loops in human cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 816-825.	7.1	217
234	Regulator of telomere length 1 (<i>RTEL1</i>) mutations are associated with heterogeneous pulmonary and extra-pulmonary phenotypes. European Respiratory Journal, 2019, 53, 1800508.	6.7	45
235	Helicase Dysfunctions in Human Diseases. , 2019, , 191-210.		2
236	The Structure and Function of DNA G-Quadruplexes. Trends in Chemistry, 2020, 2, 123-136.	8.5	499
237	The genetic script of metastasis. Biological Reviews, 2020, 95, 244-266.	10.4	9

#	Article	IF	Citations
238	Structural biology of telomeres and telomerase. Cellular and Molecular Life Sciences, 2020, 77, 61-79.	5.4	117
239	Multiple roles of DNA2 nuclease/helicase in DNA metabolism, genome stability and human diseases. Nucleic Acids Research, 2020, 48, 16-35.	14.5	71
240	Assembly of a G-Quadruplex Repair Complex by the FANCJ DNA Helicase and the REV1 Polymerase. Genes, $2020,11,5.$	2.4	21
241	DNA helicases and their roles in cancer. DNA Repair, 2020, 96, 102994.	2.8	20
242	Photosensitizers Based on G-Quadruplex Ligand for Cancer Photodynamic Therapy. Genes, 2020, 11, 1340.	2.4	25
243	Fundamentals of G-quadruplex biology. Annual Reports in Medicinal Chemistry, 2020, 54, 3-44.	0.9	12
244	G-quadruplex DNA and RNA: Their roles in regulation of DNA replication and other biological functions. Biochemical and Biophysical Research Communications, 2020, 531, 25-38.	2.1	24
245	Telomere damage induces internal loops that generate telomeric circles. Nature Communications, 2020, 11, 5297.	12.8	34
246	Replication stress conferred by POT1 dysfunction promotes telomere relocalization to the nuclear pore. Genes and Development, 2020, 34, 1619-1636.	5.9	36
247	Break-induced replication promotes fragile telomere formation. Genes and Development, 2020, 34, 1392-1405.	5.9	41
248	Single-molecule fluorescence studies on cotranscriptional G-quadruplex formation coupled with R-loop formation. Nucleic Acids Research, 2020, 48, 9195-9203.	14.5	31
249	Microcephalin 1/BRIT1-TRF2 interaction promotes telomere replication and repair, linking telomere dysfunction to primary microcephaly. Nature Communications, 2020, 11, 5861.	12.8	13
250	G4 Structures in Control of Replication and Transcription of rRNA Genes. Frontiers in Plant Science, 2020, 11, 593692.	3.6	15
251	RTEL1 suppresses G-quadruplex-associated R-loops at difficult-to-replicate loci in the human genome. Nature Structural and Molecular Biology, 2020, 27, 424-437.	8.2	60
252	SLX4 interacts with RTEL1 to prevent transcription-mediated DNA replication perturbations. Nature Structural and Molecular Biology, 2020, 27, 438-449.	8.2	39
253	Synthetic Lethality between DNA Polymerase Epsilon and RTEL1 in Metazoan DNA Replication. Cell Reports, 2020, 31, 107675.	6.4	11
254	Functional Diversification of Replication Protein A Paralogs and Telomere Length Maintenance in Arabidopsis. Genetics, 2020, 215, 989-1002.	2.9	12
255	Characterization of t-loop formation by TRF2. Nucleus, 2020, 11, 164-177.	2.2	34

#	Article	IF	CITATIONS
256	Telomere replicationâ€"When the going gets tough. DNA Repair, 2020, 94, 102875.	2.8	9
257	Full length RTEL1 is required for the elongation of the single-stranded telomeric overhang by telomerase. Nucleic Acids Research, 2020, 48, 7239-7251.	14.5	20
258	Human RTEL1 associates with Poldip3 to facilitate responses to replication stress and R-loop resolution. Genes and Development, 2020, 34, 1065-1074.	5.9	27
259	Shelterin and the replisome: at the intersection of telomere repair and replication. Current Opinion in Genetics and Development, 2020, 60, 77-84.	3.3	22
260	Telomerase Repairs Collapsed Replication Forks at Telomeres. Cell Reports, 2020, 30, 3312-3322.e3.	6.4	28
261	History of DNA Helicases. Genes, 2020, 11, 255.	2.4	61
262	Twenty years of t-loops: A case study for the importance of collaboration in molecular biology. DNA Repair, 2020, 94, 102901.	2.8	21
263	Current understanding of human herpesvirus 6 (HHV-6) chromosomal integration. Antiviral Research, 2020, 176, 104720.	4.1	41
264	A comprehensive evaluation of a typical plant telomeric G-quadruplex (G4) DNA reveals the dynamics of G4 formation, rearrangement, and unfolding. Journal of Biological Chemistry, 2020, 295, 5461-5469.	3.4	19
265	EXO1 resection at G-quadruplex structures facilitates resolution and replication. Nucleic Acids Research, 2020, 48, 4960-4975.	14.5	26
266	The regulation and functions of DNA and RNA G-quadruplexes. Nature Reviews Molecular Cell Biology, 2020, 21, 459-474.	37.0	707
267	Familial Interstitial Lung Disease. Seminars in Respiratory and Critical Care Medicine, 2020, 41, 229-237.	2.1	10
268	Molecular mechanisms of telomere biology disorders. Journal of Biological Chemistry, 2021, 296, 100064.	3.4	62
269	TRF2-independent chromosome end protection during pluripotency. Nature, 2021, 589, 103-109.	27.8	41
270	Cancerâ€associated mutations in the condensin II subunit CAPH2 cause genomic instability through telomere dysfunction and anaphase chromosome bridges. Journal of Cellular Physiology, 2021, 236, 3579-3598.	4.1	14
271	DNA folds threaten genetic stability and can be leveraged for chemotherapy. RSC Chemical Biology, 2021, 2, 47-76.	4.1	39
272	Stabilization of telomeric G-quadruplex by ligand binding increases susceptibility to S1 nuclease. Chemical Communications, 2021, 57, 7236-7239.	4.1	8
273	Cancer-Prone Inherited Bone Marrow Failure, Myelodysplastic, and Acute Myeloid Leukemia Syndromes., 2021,, 267-314.		0

#	ARTICLE	IF	CITATIONS
275	Recent Developments in Small-Molecule Ligands of Medicinal Relevance for Harnessing the Anticancer Potential of G-Quadruplexes. Molecules, 2021, 26, 841.	3.8	38
276	G-quadruplexes: a promising target for cancer therapy. Molecular Cancer, 2021, 20, 40.	19.2	239
277	How to untie G-quadruplex knots and why?. Cell Chemical Biology, 2021, 28, 436-455.	5.2	42
278	Telomere Replication: Solving Multiple End Replication Problems. Frontiers in Cell and Developmental Biology, 2021, 9, 668171.	3.7	52
279	PCNA, a focus on replication stress and the alternative lengthening of telomeres pathway. DNA Repair, 2021, 100, 103055.	2.8	9
280	RTEL1 influences the abundance and localization of TERRA RNA. Nature Communications, 2021, 12, 3016.	12.8	30
281	The decreased exclusion of nuclear eccDNA: From molecular and subcellular levels to human aging and age-related diseases. Ageing Research Reviews, 2021, 67, 101306.	10.9	15
282	Telomere biology disorders. Npj Genomic Medicine, 2021, 6, 36.	3.8	29
283	Budding yeast Rap1, but not telomeric DNA, is inhibitory for multiple stages of DNA replication in vitro. Nucleic Acids Research, 2021, 49, 5671-5683.	14.5	12
287	Extrachromosomal circular DNA: a new potential role in cancer progression. Journal of Translational Medicine, 2021, 19, 257.	4.4	36
288	Dealing with DNA lesions: When one cell cycle is not enough. Current Opinion in Cell Biology, 2021, 70, 27-36.	5.4	24
289	GGGCTA repeats can fold into hairpins poorly unfolded by replication protein A: a possible origin of the length-dependent instability of GGGCTA variant repeats in human telomeres. Nucleic Acids Research, 2021, 49, 7588-7601.	14.5	1
290	An emerging picture of FANCJ's role in G4 resolution to facilitate DNA replication. NAR Cancer, 2021, 3, zcab034.	3.1	12
291	Challenging endings: How telomeres prevent fragility. BioEssays, 2021, 43, 2100157.	2.5	11
292	The makings of TERRA R-loops at chromosome ends. Cell Cycle, 2021, 20, 1745-1759.	2.6	36
293	Variation in human herpesvirus 6B telomeric integration, excision, and transmission between tissues and individuals. ELife, $2021,10,10$	6.0	6
294	Multi-functions of exonuclease 1 in DNA damage response and cancer susceptibility. Radiation Medicine and Protection, 2021, 2, 146-154.	0.8	2
295	Homologous recombination within repetitive DNA. Current Opinion in Genetics and Development, 2021, 71, 143-153.	3.3	17

#	Article	IF	CITATIONS
296	The rDNA Lociâ€"Intersections of Replication, Transcription, and Repair Pathways. International Journal of Molecular Sciences, 2021, 22, 1302.	4.1	15
297	Visualising G-quadruplex DNA dynamics in live cells by fluorescence lifetime imaging microscopy. Nature Communications, 2021, 12, 162.	12.8	101
298	RTEL1 Regulates G4/R-Loops to Avert Replication-Transcription Collisions. Cell Reports, 2020, 33, 108546.	6.4	38
299	SMARCAL1 and telomeres: Replicating the troublesome ends. Nucleus, 2016, 7, 270-274.	2.2	11
300	G-quadruplex–R-loop interactions and the mechanism of anticancer G-quadruplex binders. Nucleic Acids Research, 2020, 48, 11942-11957.	14.5	81
304	The end protection problemâ€"an unexpected twist in the tail. Genes and Development, 2021, 35, 1-21.	5.9	29
305	AKTIP/Ft1, a New Shelterin-Interacting Factor Required for Telomere Maintenance. PLoS Genetics, 2015, 11, e1005167.	3.5	38
306	The Analysis of Pendolino (peo) Mutants Reveals Differences in the Fusigenic Potential among Drosophila Telomeres. PLoS Genetics, 2015, 11, e1005260.	3.5	21
307	The RTR Complex Partner RMI2 and the DNA Helicase RTEL1 Are Both Independently Involved in Preserving the Stability of 45S rDNA Repeats in Arabidopsis thaliana. PLoS Genetics, 2016, 12, e1006394.	3.5	29
308	The Mph1 Helicase Can Promote Telomere Uncapping and Premature Senescence in Budding Yeast. PLoS ONE, 2012, 7, e42028.	2.5	32
309	Single telomere length analysis in Ustilago maydis, a high-resolution tool for examining fungal telomere length distribution and C-strand 5'-end processing. Microbial Cell, 2018, 5, 393-403.	3.2	6
310	Structural and functional association of androgen receptor with telomeres in prostate cancer cells. Aging, 2013, 5, 3-17.	3.1	22
311	Association of <i>RTEL1</i> gene polymorphisms with stroke risk in a Chinese Han population. Oncotarget, 2017, 8, 114995-115001.	1.8	3
312	G4-Interacting DNA Helicases and Polymerases: Potential Therapeutic Targets. Current Medicinal Chemistry, 2019, 26, 2881-2897.	2.4	40
313	Biological Function and Medicinal Research Significance of G-Quadruplex Interactive Proteins. Current Topics in Medicinal Chemistry, 2015, 15, 1971-1987.	2.1	12
314	Transformation-induced stress at telomeres is counteracted through changes in the telomeric proteome including SAMHD1. Life Science Alliance, 2018, 1, e201800121.	2.8	18
315	Srs2 promotes synthesis-dependent strand annealing by disrupting DNA polymerase \hat{l} -extending D-loops. ELife, 2017, 6, .	6.0	54
316	TRF1 averts chromatin remodelling, recombination and replication dependent-break induced replication at mouse telomeres. ELife, 2020, 9, .	6.0	27

#	Article	IF	CITATIONS
317	The human telomeric proteome during telomere replication. Nucleic Acids Research, 2021, 49, 12119-12135.	14.5	15
318	TRF2-mediated ORC recruitment underlies telomere stability upon DNA replication stress. Nucleic Acids Research, 2021, 49, 12234-12251.	14.5	7
319	dRTEL1 is essential for the maintenance of Drosophila male germline stem cells. PLoS Genetics, 2021, 17, e1009834.	3.5	1
320	The Effect of Atypical Nucleic Acids Structures in DNA Double Strand Break Repair: A Tale of R-loops and G-Quadruplexes. Frontiers in Genetics, 2021, 12, 742434.	2.3	4
321	Characterization of G-Quadruplex DNA- and RNA-Binding Protein., 2015,, 57-65.		0
324	Dykeratosis Congenita. , 2019, , 1-12.		0
325	Telomere dynamics in adult hematological malignancies. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2019, 163, 1-7.	0.6	3
330	Detection of Telomeric DNA:RNA Hybrids Using TeloDRIP-qPCR. International Journal of Molecular Sciences, 2020, 21, 9774.	4.1	1
333	Loss of p53 suppresses replication stress-induced DNA damage in ATRX-deficient neuroblastoma. Oncogenesis, 2021, 10, 73.	4.9	13
334	Association between regulator of telomere elongation helicase 1 polymorphism and susceptibility to glioma. International Journal of Clinical and Experimental Medicine, 2015, 8, 690-7.	1.3	2
335	Singleâ€Cell Visualization of Monogenic RNA Gâ€quadruplex and Occupied Gâ€quadruplex Ratio through a Moduleâ€Assembled Multifunctional Probes Assay (MAMPA). Angewandte Chemie - International Edition, 2022, 61, .	13.8	11
336	Singleâ€Cell Visualization of Monogenic RNA Gâ€quadruplex and Occupied Gâ€quadruplex Ratio through a Moduleâ€Assembled Multifunctional Probes Assay (MAMPA). Angewandte Chemie, 2022, 134, e202111132.	2.0	1
337	The Cellular Functions and Molecular Mechanisms of G-Quadruplex Unwinding Helicases in Humans. Frontiers in Molecular Biosciences, 2021, 8, 783889.	3.5	13
338	Dykeratosis Congenita., 2021, , 1546-1556.		0
340	Telomeric Câ€circles localize at nuclear pore complexes in <i>Saccharomyces cerevisiae</i> Journal, 2022, 41, e108736.	7.8	7
341	Telomerase in Cancer: Function, Regulation, and Clinical Translation. Cancers, 2022, 14, 808.	3.7	30
342	Functions of ADP-ribose transferases in the maintenance of telomere integrity. Cellular and Molecular Life Sciences, 2022, 79, 215.	5.4	8
343	MutS \hat{l}^2 regulates G4-associated telomeric R-loops to maintain telomere integrity in ALT cancer cells. Cell Reports, 2022, 39, 110602.	6.4	13

#	Article	IF	CITATIONS
344	A near-infrared indicator for sensitive imaging of G-Quadruplexes in live cells. Dyes and Pigments, 2022, 201, 110194.	3.7	2
345	Consequences of telomere replication failure: the other end-replication problem. Trends in Biochemical Sciences, 2022, 47, 506-517.	7.5	16
347	Resonance assignment and secondary structure of the tandem harmonin homology domains of human RTEL1. Biomolecular NMR Assignments, 2022, 16, 159-164.	0.8	2
348	Follicular helper T cell signature of replicative exhaustion, apoptosis, and senescence in common variable immunodeficiency. European Journal of Immunology, 2022, 52, 1171-1189.	2.9	9
349	Targeting telomeres: advances in telomere maintenance mechanism-specific cancer therapies. Nature Reviews Cancer, 2022, 22, 515-532.	28.4	68
350	Telomere Length Regulation. Frontiers in Oncology, 0, 12, .	2.8	11
351	Telomere Biology. , 2022, , .		0
352	Germline thymidylate synthase deficiency impacts nucleotide metabolism and causes dyskeratosis congenita. American Journal of Human Genetics, 2022, 109, 1472-1483.	6.2	9
354	Creation and resolution of non-B-DNA structural impediments during replication. Critical Reviews in Biochemistry and Molecular Biology, 2022, 57, 412-442.	5.2	8
355	Genetics of human telomere biology disorders. Nature Reviews Genetics, 2023, 24, 86-108.	16.3	50
357	Telomeres as dynamic structures of human genome: the effect of endogenous and exogenous factors. Ecological Genetics, 2022, 20, 111-140.	0.5	2
358	Dynamic alternative DNA structures in biology and disease. Nature Reviews Genetics, 2023, 24, 211-234.	16.3	40
359	Râ€loop: The new genome regulatory element in plants. Journal of Integrative Plant Biology, 2022, 64, 2275-2289.	8.5	6
360	Regulator of telomere elongation helicase 1 gene and its association with malignancy. Cancer Reports, 2023, 6, .	1.4	1
361	TRF1 uses a noncanonical function of TFIIH to promote telomere replication. Genes and Development, 0, , .	5.9	2
362	Telomere organization and the interstitial telomeric sites involvement in insects and vertebrates chromosome evolution. Genetics and Molecular Biology, 2022, 45, .	1.3	8
364	A non-catalytic N-terminus domain of WRN prevents mitotic telomere deprotection. Scientific Reports, 2023, 13, .	3.3	1
365	Genomic Fingerprint Associated with Familial Idiopathic Pulmonary Fibrosis: A Review. International Journal of Medical Sciences, 2023, 20, 329-345.	2.5	0

#	Article	IF	CITATIONS
366	Telomere Fragility and MiDAS: Managing the Gaps at the End of the Road. Genes, 2023, 14, 348.	2.4	2
367	Discovery of a new hereditary RECQ helicase disorder RECON syndrome positions the replication stress response and genome homeostasis as centrally important processes in aging and age-related disease. Ageing Research Reviews, 2023, 86, 101887.	10.9	1
370	RTEL1 and MCM10 overcome topological stress during vertebrate replication termination. Cell Reports, 2023, 42, 112109.	6.4	3
371	Case report: A novel mutation in RTEL1 gene in dyskeratosis congenita. Frontiers in Oncology, 0, 13, .	2.8	0
372	The telomerase reverse transcriptase elongates reversed replication forks at telomeric repeats. Science Advances, 2023, 9, .	10.3	0
373	Telomeres: Structure and Function. , 2023, , 1-17.		0
374	Homology directed telomere clustering, ultrabright telomere formation and nuclear envelope rupture in cells lacking TRF2B and RAP1. Nature Communications, 2023, 14, .	12.8	2
375	Genome-wide association study of lung adenocarcinoma in East Asia and comparison with a European population. Nature Communications, 2023, 14, .	12.8	11
376	The THO complex counteracts TERRA R-loop-mediated telomere fragility in telomerase+ cells and telomeric recombination in ALT+ cells. Nucleic Acids Research, 2023, 51, 6702-6722.	14.5	5
377	G-quadruplexes and associated proteins in aging and Alzheimer's disease. Frontiers in Aging, 0, 4, .	2.6	6
378	In vivo dynamics and regulation of DNA G-quadruplex structures in mammals. Cell and Bioscience, 2023, 13, .	4.8	4
379	Cooperative interaction of <scp>CST</scp> and <scp>RECQ4</scp> resolves Gâ€quadruplexes and maintains telomere stability. EMBO Reports, 0, , .	4.5	1
380	Telomeres: Structure and Function. , 2023, , 1317-1333.		0
381	G-quadruplex resolution: From molecular mechanisms to physiological relevance. DNA Repair, 2023, 130, 103552.	2.8	7
382	<scp>DHX36</scp> maintains genomic integrity by unwinding Gâ€quadruplexes. Genes To Cells, 2023, 28, 694-708.	1.2	0
383	The many faces of the helicase RTEL1 at telomeres and beyond. Trends in Cell Biology, 2024, 34, 109-121.	7.9	2
384	Mouse HP1Î ³ regulates TRF1 expression and telomere stability. Life Sciences, 2023, 331, 122030.	4.3	0
385	Telomouseâ€"a mouse model with human-length telomeres generated by a single amino acid change in RTEL1. Nature Communications, 2023, 14, .	12.8	1

#	Article	IF	CITATIONS
386	Genome stability from the perspective of telomere length. Trends in Genetics, 2024, 40, 175-186.	6.7	2
387	RTEL1 is upregulated in colorectal cancer and promotes tumor progression. Pathology Research and Practice, 2023, 252, 154958.	2.3	0
388	Telomeres cooperate with the nuclear envelope to maintain genome stability. BioEssays, 2024, 46, .	2.5	0
391	Irreversible inhibition of TRF2TRFH recruiting functions by a covalent cyclic peptide induces telomeric replication stress in cancer cells. Cell Chemical Biology, 2023, , .	5.2	0
392	Human RTEL1 Interacts with KPNB1 (Importin \hat{I}^2) and NUP153 and Connects Nuclear Import to Nuclear Envelope Stability in S-Phase. Cells, 2023, 12, 2798.	4.1	0
393	Positive and negative regulators of RAD51/DMC1 in homologous recombination and DNA replication. DNA Repair, 2024, 134, 103613.	2.8	1
394	Harmonin homology domain-mediated interaction of RTEL1 helicase with RPA and DNA provides insights into its recruitment to DNA repair sites. Nucleic Acids Research, 2024, 52, 1450-1470.	14.5	1
395	BG4 antibody can recognize telomeric G-quadruplexes harboring destabilizing base modifications and lesions. Nucleic Acids Research, 2024, 52, 1763-1778.	14.5	0
397	Terahertz Photons Inhibit Cancer Cells Long Term by Suppressing Nano Telomerase Activity. ACS Nano, 2024, 18, 4796-4810.	14.6	0
398	Guardians of the Genome: How the Single-Stranded DNA-Binding Proteins RPA and CST Facilitate Telomere Replication. Biomolecules, 2024, 14, 263.	4.0	0
399	Spotlight on G-Quadruplexes: From Structure and Modulation to Physiological and Pathological Roles. International Journal of Molecular Sciences, 2024, 25, 3162.	4.1	0