BMP8B Increases Brown Adipose Tissue Thermogenesis Peripheral Actions

Cell 149, 871-885 DOI: 10.1016/j.cell.2012.02.066

Citation Report

#	Article	IF	CITATIONS
1	Thyroid Hormone Control of Thermogenesis and Energy Balance. Thyroid, 1995, 5, 481-492.	2.4	333
2	Searching for ways to switch on brown fat: are we getting warmer?. Journal of Molecular Endocrinology, 2012, 49, R79-R87.	1.1	15
3	The effects of early under-nutrition on the development of wBAT and obesity. Adipocyte, 2012, 1, 265-270.	1.3	2
4	Notable advances 2012. Nature Medicine, 2012, 18, 1732-1734.	15.2	0
5	Turning on Brown Fat and Muscle Metabolism: Hedging Your Bets. Cell, 2012, 151, 248-250.	13.5	1
6	Targeting adipose tissue. Diabetology and Metabolic Syndrome, 2012, 4, 43.	1.2	31
7	lsoenergetic Feeding of Low Carbohydrate-High Fat Diets Does Not Increase Brown Adipose Tissue Thermogenic Capacity in Rats. PLoS ONE, 2012, 7, e38997.	1.1	18
8	Hypothalamic mTOR Signaling Mediates the Orexigenic Action of Ghrelin. PLoS ONE, 2012, 7, e46923.	1.1	101
9	Recent Insights into the Role of Hypothalamic AMPK Signaling Cascade upon Metabolic Control. Frontiers in Neuroscience, 2012, 6, 185.	1.4	29
10	Brain regulation of energy balance and body weight. Reviews in Endocrine and Metabolic Disorders, 2013, 14, 387-407.	2.6	128
11	An update on the regulation of adipogenesis. Drug Discovery Today Disease Mechanisms, 2013, 10, e15-e19.	0.8	7
12	Regulation of glucose homoeostasis by brown adipose tissue. Lancet Diabetes and Endocrinology,the, 2013, 1, 353-360.	5.5	97
13	Feeding the heat on brown fat. Annals of the New York Academy of Sciences, 2013, 1302, 11-23.	1.8	8
14	Increased Mitochondrial Activity in BMP7-Treated Brown Adipocytes, Due to Increased CPT1- and CD36-Mediated Fatty Acid Uptake. Antioxidants and Redox Signaling, 2013, 19, 243-257.	2.5	85
15	Brown and beige fat: development, function and therapeutic potential. Nature Medicine, 2013, 19, 1252-1263.	15.2	1,846
16	Novel Aspects of Brown Adipose Tissue Biology. Endocrinology and Metabolism Clinics of North America, 2013, 42, 89-107.	1.2	35
17	Systemic control of brown fat thermogenesis: integration of peripheral and central signals. Annals of the New York Academy of Sciences, 2013, 1302, 35-41.	1.8	17
18	The Role of Hypothalamic H1 Receptor Antagonism in Antipsychotic-Induced Weight Gain. CNS Drugs, 2013, 27, 423-434.	2.7	90

ATION RED

#	Article	IF	CITATIONS
19	In vitro brown and "briteâ€łâ€œbeige―adipogenesis: Human cellular models and molecular aspects. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 905-914.	1.2	43
20	Modelling hypothalamic pathways in diabetes and obesity. Drug Discovery Today: Disease Models, 2013, 10, e95-e100.	1.2	0
21	Genetic variants in BMP8B gene are associated with growth traits in Chinese native cattle. Gene, 2013, 532, 115-120.	1.0	10
22	Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature, 2013, 495, 379-383.	13.7	338
23	White-to-brown transdifferentiation of omental adipocytes in patients affected by pheochromocytoma. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 950-959.	1.2	192
24	Mitochondrial Fatty Acid Oxidation in Obesity. Antioxidants and Redox Signaling, 2013, 19, 269-284.	2.5	175
25	Pharmacological strategies for targeting BAT thermogenesis. Trends in Pharmacological Sciences, 2013, 34, 347-355.	4.0	65
26	Bone morphogenic proteins signaling in adipogenesis and energy homeostasis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 915-923.	1.2	31
27	Beyond the Sympathetic Tone: The New Brown Fat Activators. Cell Metabolism, 2013, 17, 638-643.	7.2	191
28	Brown Adipose Tissue in Adult Humans: A Metabolic Renaissance. Endocrine Reviews, 2013, 34, 413-438.	8.9	164
29	White, Brown, Beige/Brite: Different Adipose Cells for Different Functions?. Endocrinology, 2013, 154, 2992-3000.	1.4	437
30	Brown adipose tissue: a new human organ?. Expert Review of Endocrinology and Metabolism, 2013, 8, 123-125.	1.2	0
31	Brown adipose tissue: development, metabolism and beyond. Biochemical Journal, 2013, 453, 167-178.	1.7	153
32	Energy balance regulation by thyroid hormones at central level. Trends in Molecular Medicine, 2013, 19, 418-427.	3.5	164
33	An endocrine role for brown adipose tissue?. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E567-E572.	1.8	156
34	The Orexigenic Effect of Orexin-A Revisited: Dependence of an Intact Growth Hormone Axis. Endocrinology, 2013, 154, 3589-3598.	1.4	11
35	When BAT is lacking, WAT steps up. Cell Research, 2013, 23, 868-869.	5.7	9
36	Firing Up Brown Fat with Brain Amylin. Endocrinology, 2013, 154, 2263-2265.	1.4	4

#	Article	IF	CITATIONS
37	Effects of Neonatal Programming on Hypothalamic Mechanisms Controlling Energy Balance. Hormone and Metabolic Research, 2013, 45, 935-944.	0.7	19
38	Detection of thermogenesis in rodents in response to anti-obesity drugs and genetic modification. Frontiers in Physiology, 2013, 4, 64.	1.3	16
39	Assessment of brown adipose tissue function. Frontiers in Physiology, 2013, 4, 128.	1.3	80
40	Hypothalamic Ceramide Levels Regulated by CPT1C Mediate the Orexigenic Effect of Ghrelin. Diabetes, 2013, 62, 2329-2337.	0.3	82
41	Food for Thought: Understanding the Multifaceted Nature of Orexins. Endocrinology, 2013, 154, 3990-3999.	1.4	19
42	Desâ€acyl ghrelin analogs prevent highâ€fatâ€dietâ€induced dysregulation of glucose homeostasis. FASEB Journal, 2013, 27, 1690-1700.	0.2	68
43	Brown Adipose Tissue Growth and Development. Scientifica, 2013, 2013, 1-14.	0.6	99
44	Brown Adipose Tissue: Research Milestones of a Potential Player in Human Energy Balance and Obesity. Hormone and Metabolic Research, 2013, 45, 774-785.	0.7	39
45	Inappropriate heat dissipation ignites brown fat thermogenesis in mice with a mutant thyroid hormone receptor α1. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16241-16246.	3.3	86
46	BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E798-807.	3.3	254
47	Adaptive thermogenesis in adipocytes: Is beige the new brown?. Genes and Development, 2013, 27, 234-250.	2.7	700
48	Gene expression of bone morphogenic protein 8B in the primary site, peripheral blood and bone marrow of patients with gastric cancer. Oncology Letters, 2013, 6, 387-392.	0.8	17
49	BMP7 Activates Brown Adipose Tissue and Reduces Diet-Induced Obesity Only at Subthermoneutrality. PLoS ONE, 2013, 8, e74083.	1.1	82
50	Brown Fat Determination and Development from Muscle Precursor Cells by Novel Action of Bone Morphogenetic Protein 6. PLoS ONE, 2014, 9, e92608.	1.1	35
51	Unacylated Ghrelin Suppresses Ghrelin-Induced Neuronal Activity in the Hypothalamus and Brainstem of Male Rats. PLoS ONE, 2014, 9, e98180.	1.1	33
52	Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells. World Journal of Stem Cells, 2014, 6, 33.	1.3	193
53	Central Ceramide-Induced Hypothalamic Lipotoxicity and ER Stress Regulate Energy Balance. Cell Reports, 2014, 9, 366-377.	2.9	195
54	Olanzapine depot formulation in rat: a step forward in modelling antipsychotic-induced metabolic adverse effects. International Journal of Neuropsychopharmacology, 2014, 17, 91-104.	1.0	42

#	Article	IF	CITATIONS
55	Recent advance in brown adipose physiology and its therapeutic potential. Experimental and Molecular Medicine, 2014, 46, e78-e78.	3.2	42
56	Cellular energy sensors: AMPK and beyond. Molecular and Cellular Endocrinology, 2014, 397, 1-3.	1.6	4
57	Brown adipose tissue and its therapeutic potential. Journal of Internal Medicine, 2014, 276, 364-377.	2.7	119
58	Central Nervous System Regulation of Brown Adipose Tissue. , 2014, 4, 1677-1713.		110
59	Berberine activates thermogenesis in white and brown adipose tissue. Nature Communications, 2014, 5, 5493.	5.8	367
60	Peripheral cannabinoid 1 receptor blockade activates brown adipose tissue and diminishes dyslipidemia and obesity. FASEB Journal, 2014, 28, 5361-5375.	0.2	85
61	NAG-1/GDF-15 prevents obesity by increasing thermogenesis, lipolysis and oxidative metabolism. International Journal of Obesity, 2014, 38, 1555-1564.	1.6	177
62	Brown fat fuel use and regulation of energy homeostasis. Current Opinion in Clinical Nutrition and Metabolic Care, 2014, 17, 368-372.	1.3	24
63	Direct activating effects of adrenocorticotropic hormone (ACTH) on brown adipose tissue are attenuated by corticosterone. FASEB Journal, 2014, 28, 4857-4867.	0.2	68
64	Growth Differentiation Factor-5 Promotes Brown Adipogenesis in Systemic Energy Expenditure. Diabetes, 2014, 63, 162-175.	0.3	60
65	Hypothalamic histamine H1 receptor-AMPK signaling time-dependently mediates olanzapine-induced hyperphagia and weight gain in female rats. Psychoneuroendocrinology, 2014, 42, 153-164.	1.3	72
66	Central Neural Regulation of Brown Adipose Tissue Thermogenesis and Energy Expenditure. Cell Metabolism, 2014, 19, 741-756.	7.2	352
67	Recent advances in brown adipose tissue biology. Science Bulletin, 2014, 59, 4030-4040.	1.7	4
68	Nicotine Improves Obesity and Hepatic Steatosis and ER Stress in Diet-Induced Obese Male Rats. Endocrinology, 2014, 155, 1679-1689.	1.4	79
69	Adipose tissue browning and metabolic health. Nature Reviews Endocrinology, 2014, 10, 24-36.	4.3	882
70	Brown adipose tissue as an antiâ€obesity tissue in humans. Obesity Reviews, 2014, 15, 92-106.	3.1	71
71	A New Era in Brown Adipose Tissue Biology: Molecular Control of Brown Fat Development and Energy Homeostasis. Annual Review of Physiology, 2014, 76, 225-249.	5.6	348
72	What We Talk About When We Talk About Fat. Cell, 2014, 156, 20-44.	13.5	1,789

\sim	 	Re		
	ON		הט	121
				IX I

ARTICLE IF CITATIONS # A Systems Biology Approach to Study Metabolic Syndrome., 2014,,. 5 73 Irisin ERKs the Fat. Diabetes, 2014, 63, 381-383. 74 SRA Gene Knockout Protects against Diet-induced Obesity and Improves Glucose Tolerance. Journal of 75 1.6 93 Biological Chemistry, 2014, 289, 13000-13009. Brown adipose tissue and thermogenesis. Hormone Molecular Biology and Clinical Investigation, 2014, 139 19, 25-37. Cold-activated brown adipose tissue in human adults: methodological issues. American Journal of 77 0.9 131 Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R103-R113. PACAP is essential for the adaptive thermogenic response of brown adipose tissue to cold exposure. Journal of Endocrinology, 2014, 222, 327-339. 1.2 FGF21 Acts Centrally to Induce Sympathetic Nerve Activity, Energy Expenditure, and Weight Loss. Cell 79 7.2 403 Metabolism, 2014, 20, 670-677. Hypothalamic mTOR: The Rookie Energy Sensor. Current Molecular Medicine, 2014, 14, 3-21. Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. Journal of 81 1.2 218 Endocrinology, 2014, 220, T25-T46. Improved methodologies for the study of adipose biology: insights gained and opportunities ahead. Journal of Lipid Research, 2014, 55, 605-624. Brown and white adipose tissues: intrinsic differences in gene expression and response to cold 83 296 1.8 exposure in mice. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E945-E964. ENPP2 Contributes to Adipose Tissue Expansion and Insulin Resistance in Diet-Induced Obesity. Diabetes, 0.3 2014, 63, 4154-4164. Role of bone morphogenetic protein 4 in the differentiation of brown fat-like adipocytes. American 85 1.8 65 Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E363-E372. Review Article: An Adipocentric View of the Metabolic Syndrome and Cardiovascular Disease. Current 0.8 Cardiovascular Risk Reports, 2014, 8, 1. Genes Downregulated in Endometriosis Are Located Near the Known Imprinting Genes. Reproductive 87 1.1 9 Sciences, 2014, 21, 966-972. MECHANISMS IN ENDOCRINOLOGY: White, brown and pink adipocytes: the extraordinary plasticity of 199 the adipose organ. European Journal of Endocrinology, 2014, 170, Ŕ159-R171. 89 The different shades of fat. Nature, 2014, 510, 76-83. 378 13.7 BMP-9 as a potent brown adipogenic inducer with anti-obesity capacity. Biomaterials, 2014, 35, 3172-3179.

#	Article	IF	CITATIONS
91	Rescuing the BMPR2 signaling axis in pulmonary arterial hypertension. Drug Discovery Today, 2014, 19, 1241-1245.	3.2	24
92	Hypothalamic effects of thyroid hormones on metabolism. Best Practice and Research in Clinical Endocrinology and Metabolism, 2014, 28, 703-712.	2.2	47
93	A standardized infrared imaging technique that specifically detects UCP1-mediated thermogenesis inÂvivo. Molecular Metabolism, 2014, 3, 490-494.	3.0	82
94	Estradiol Regulates Brown Adipose Tissue Thermogenesis via Hypothalamic AMPK. Cell Metabolism, 2014, 20, 41-53.	7.2	342
95	PI3K/Akt is involved in brown adipogenesis mediated by growth differentiation factor-5 in association with activation of the Smad pathway. Biochemical and Biophysical Research Communications, 2014, 450, 255-260.	1.0	33
96	Adipose tissue plasticity from WAT to BAT and in between. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 358-369.	1.8	166
97	Dehydrozingerone exerts beneficial metabolic effects in highâ€fat dietâ€induced obese mice <i>via </i> <scp>AMPK</scp> activation in skeletal muscle. Journal of Cellular and Molecular Medicine, 2015, 19, 620-629.	1.6	9
98	Brown adipose tissue: a potential target in the fight against obesity and the metabolic syndrome. Clinical Science, 2015, 129, 933-949.	1.8	74
99	Hypothalamic Regulation of Brown Adipose Tissue Thermogenesis and Energy Homeostasis. Frontiers in Endocrinology, 2015, 6, 136.	1.5	52
100	Biodegradable Polymeric Microsphere-Based Drug Delivery for Inductive Browning of Fat. Frontiers in Endocrinology, 2015, 6, 169.	1.5	18
101	Hypothalamic control of brown adipose tissue thermogenesis. Frontiers in Systems Neuroscience, 2015, 9, 150.	1.2	80
102	Biphasic Effects of FGF2 on Adipogenesis. PLoS ONE, 2015, 10, e0120073.	1.1	36
103	The brown fat secretome: metabolic functions beyond thermogenesis. Trends in Endocrinology and Metabolism, 2015, 26, 231-237.	3.1	164
104	Serum FGF21 levels are associated with brown adipose tissue activity in humans. Scientific Reports, 2015, 5, 10275.	1.6	111
105	Pregnancy Induces Resistance to the Anorectic Effect of Hypothalamic Malonyl-CoA and the Thermogenic Effect of Hypothalamic AMPK Inhibition in Female Rats. Endocrinology, 2015, 156, 947-960.	1.4	50
106	RNA-Seq and Mass-Spectrometry-Based Lipidomics Reveal Extensive Changes of Glycerolipid Pathways in Brown Adipose Tissue in Response to Cold. Cell Reports, 2015, 13, 2000-2013.	2.9	74
107	H19 IncRNA alters DNA methylation genome wide by regulating S-adenosylhomocysteine hydrolase. Nature Communications, 2015, 6, 10221.	5.8	206
108	Role of the cAMP Pathway in Glucose and Lipid Metabolism. Handbook of Experimental Pharmacology, 2015, 233, 29-49.	0.9	96

#	Article	IF	Citations
109	Fenofibrate (PPARalpha agonist) induces beige cell formation in subcutaneous white adipose tissue from diet-induced male obese mice. Molecular and Cellular Endocrinology, 2015, 402, 86-94.	1.6	110
110	Potential novel therapeutic strategies from understanding adipocyte transdifferentiation mechanisms. Expert Review of Endocrinology and Metabolism, 2015, 10, 143-152.	1.2	1
111	Human Adipocytes Induce Inflammation and Atrophy in Muscle Cells During Obesity. Diabetes, 2015, 64, 3121-3134.	0.3	146
112	Wt1, the mesothelium and the origins and heterogeneity of visceral fat progenitors. Adipocyte, 2015, 4, 217-221.	1.3	25
113	Myocardin-Related Transcription Factor A Regulates Conversion of Progenitors to Beige Adipocytes. Cell, 2015, 160, 105-118.	13.5	129
114	Brown and beige fat: the metabolic function, induction, and therapeutic potential. Frontiers of Medicine, 2015, 9, 162-172.	1.5	26
115	BMP4 and BMP Antagonists Regulate Human White and Beige Adipogenesis. Diabetes, 2015, 64, 1670-1681.	0.3	167
116	Myocardial ischemic protection in natural mammalian hibernation. Basic Research in Cardiology, 2015, 110, 9.	2.5	17
117	Hypothalamic GLP-1: the control of BAT thermogenesis and browning of white fat. Adipocyte, 2015, 4, 141-145.	1.3	45
118	The thermogenic circuit: Regulators of thermogenic competency and differentiation. Genes and Diseases, 2015, 2, 164-172.	1.5	13
119	Regulatory expression of components in the BMP pathway in white adipose tissues of cattle. Livestock Science, 2015, 174, 144-149.	0.6	1
120	Orexins (hypocretins) and energy balance: More than feeding. Molecular and Cellular Endocrinology, 2015, 418, 17-26.	1.6	24
121	Non-sympathetic control of brown adipose tissue. International Journal of Obesity Supplements, 2015, 5, S40-S44.	12.5	19
122	Of mice and men: novel insights regarding constitutive and recruitable brown adipocytes. International Journal of Obesity Supplements, 2015, 5, S15-S20.	12.5	27
123	The Beneficial Effects of Brown Fat Transplantation: Further Evidence of an Endocrine Role of Brown Adipose Tissue. Endocrinology, 2015, 156, 2368-2370.	1.4	32
124	Hypothalamic-autonomic control of energy homeostasis. Endocrine, 2015, 50, 276-291.	1.1	142
125	Brown adipose tissue activity as a target for the treatment of obesity/insulin resistance. Frontiers in Physiology, 2015, 6, 4.	1.3	178
126	Clonal analyses and gene profiling identify genetic biomarkers of the thermogenic potential of human brown and white preadipocytes. Nature Medicine, 2015, 21, 760-768.	15.2	240

#	Article	IF	CITATIONS
127	Cognitive and autonomic determinants of energy homeostasis in obesity. Nature Reviews Endocrinology, 2015, 11, 489-501.	4.3	86
128	Estrogens and the control of energy homeostasis: a brain perspective. Trends in Endocrinology and Metabolism, 2015, 26, 411-421.	3.1	103
129	Human Brown Adipose Tissue: What We Have Learned So Far. Diabetes, 2015, 64, 2352-2360.	0.3	171
130	Adipokines and the Endocrine Role of Adipose Tissues. Handbook of Experimental Pharmacology, 2015, 233, 265-282.	0.9	61
131	The Whitening of Brown Fat and Its Implications for Weight Management in Obesity. Current Obesity Reports, 2015, 4, 224-229.	3.5	108
132	Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis. Journal of Clinical Investigation, 2015, 125, 478-486.	3.9	547
133	cGMP and Brown Adipose Tissue. Handbook of Experimental Pharmacology, 2015, 233, 283-299.	0.9	20
134	Pilot study on the effects of a 2-week hiking vacation at moderate versus low altitude on plasma parameters of carbohydrate and lipid metabolism in patients with metabolic syndrome. BMC Research Notes, 2015, 8, 103.	0.6	14
135	Enhanced <i>GAB2</i> Expression Is Associated with Improved Survival in High-Grade Serous Ovarian Cancer and Sensitivity to PI3K Inhibition. Molecular Cancer Therapeutics, 2015, 14, 1495-1503.	1.9	26
136	Estrogens increase expression of bone morphogenetic protein 8b in brown adipose tissue of mice. Biology of Sex Differences, 2015, 6, 7.	1.8	40
137	Genetic ablation of macrohistone H2A1 leads to increased leanness, glucose tolerance and energy expenditure in mice fed a high-fat diet. International Journal of Obesity, 2015, 39, 331-338.	1.6	20
138	Can Brown Fat Win the Battle Against White Fat?. Journal of Cellular Physiology, 2015, 230, 2311-2317.	2.0	28
139	Discrete Aspects of FGF21 InÂVivo Pharmacology Do Not Require UCP1. Cell Reports, 2015, 11, 991-999.	2.9	133
140	PPARâ€Î± agonist elicits metabolically active brown adipocytes and weight loss in dietâ€induced obese mice. Cell Biochemistry and Function, 2015, 33, 249-256.	1.4	44
141	Transcriptional control and hormonal response of thermogenic fat. Journal of Endocrinology, 2015, 225, R35-R47.	1.2	17
142	Physiology and relevance of human adaptive thermogenesis response. Trends in Endocrinology and Metabolism, 2015, 26, 238-247.	3.1	45
143	Adipose Structure (White, Brown, Beige). , 2015, , 1-29.		0
144	Neuronal Control of Brown Fat Activity. Trends in Endocrinology and Metabolism, 2015, 26, 657-668.	3.1	53

	Сітаті	on Report	
#	Article	IF	CITATIONS
145	Brown and Beige Fat: Physiological Roles beyond Heat Generation. Cell Metabolism, 2015, 22, 546-559.	7.2	763
146	Revisiting the adipocyte: a model for integration of cytokine signaling in the regulation of energy metabolism. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E691-E714.	1.8	207
147	Regulation of brown fat by AMP-activated protein kinase. Trends in Molecular Medicine, 2015, 21, 571-579.	3.5	62
148	Celastrol Protects against Obesity and Metabolic Dysfunction through Activation of a HSF1-PGC1α Transcriptional Axis. Cell Metabolism, 2015, 22, 695-708.	7.2	272
149	Soluble LR11/SorLA represses thermogenesis in adipose tissue and correlates with BMI in humans. Nature Communications, 2015, 6, 8951.	5.8	59
150	Endogenous ways to stimulate brown adipose tissue in humans. Annals of Medicine, 2015, 47, 123-132.	1.5	25
151	The brain and brown fat. Annals of Medicine, 2015, 47, 150-168.	1.5	124
152	Brown, Beige, and White: The New Color Code of Fat and Its Pharmacological Implications. Annual Review of Pharmacology and Toxicology, 2015, 55, 207-227.	4.2	127
153	Thermogenic brown and beige/brite adipogenesis in humans. Annals of Medicine, 2015, 47, 169-177.	1.5	68
154	Fatty Acids and Hypothalamic Dysfunction in Obesity. , 2016, , 557-582.		0
155	Brown Fat and Browning for the Treatment of Obesity and Related Metabolic Disorders. Diabetes and Metabolism Journal, 2016, 40, 12.	1.8	180
156	Differential Role of AMP-Activated Protein Kinase in Brown and White Adipose Tissue Components and Its Consequences in Metabolic Diseases. Journal of Diabetes & Metabolism, 2016, 07, .	0.2	0
157	Hypothalamic AMPK as a Regulator of Energy Homeostasis. Neural Plasticity, 2016, 2016, 1-12.	1.0	51
158	Biology of Beige Adipocyte and Possible Therapy for Type 2 Diabetes and Obesity. International Journal of Endocrinology, 2016, 2016, 1-10.	0.6	30
159	Sex differences in sympathetic innervation and browning of white adipose tissue of mice. Biology of Sex Differences, 2016, 7, 67.	1.8	95
160	Modulation of brown adipocyte activity by milk byâ€products: Stimulation of brown adipogenesis by buttermilk. Cell Biochemistry and Function, 2016, 34, 647-656.	1.4	1
161	AHNAK deficiency promotes browning and lipolysis in mice via increased responsiveness to β-adrenergic signalling. Scientific Reports, 2016, 6, 23426.	1.6	29
162	Brown adipose tissue and its therapeutic application. Science Bulletin, 2016, 61, 1498-1503.	4.3	7

#	Article	IF	CITATIONS
163	Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues. Diabetologia, 2016, 59, 1075-1088.	2.9	298
164	Loss of BMP receptor type 1A in murine adipose tissue attenuates age-related onset of insulin resistance. Diabetologia, 2016, 59, 1769-1777.	2.9	16
165	Hypothalamic AMPK: a canonical regulator of whole-body energy balance. Nature Reviews Endocrinology, 2016, 12, 421-432.	4.3	227
166	Adipose Tissue and Energy Expenditure: Central and Peripheral Neural Activation Pathways. Current Obesity Reports, 2016, 5, 241-250.	3.5	21
167	BMP-9 enhances fibroblast growth factor 21 expression and suppresses obesity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1237-1246.	1.8	17
168	Molecular mechanisms of appetite and obesity: a role for brain AMPK. Clinical Science, 2016, 130, 1697-1709.	1.8	18
169	Susceptibility of brown adipocytes to pro-inflammatory cytokine toxicity and reactive oxygen species. Bioscience Reports, 2016, 36, .	1.1	33
170	Adipocyte-specific Hypoxia-inducible gene 2 promotes fat deposition and diet-induced insulin resistance. Molecular Metabolism, 2016, 5, 1149-1161.	3.0	42
171	A Functional Link between AMPK and Orexin Mediates the Effect of BMP8B on Energy Balance. Cell Reports, 2016, 16, 2231-2242.	2.9	102
172	Hypothalamus and thermogenesis: Heating the BAT, browning the WAT. Molecular and Cellular Endocrinology, 2016, 438, 107-115.	1.6	80
173	Brown adipose tissue: Updates in cellular and molecular biology. Tissue and Cell, 2016, 48, 452-460.	1.0	64
174	Estradiol and brown fat. Best Practice and Research in Clinical Endocrinology and Metabolism, 2016, 30, 527-536.	2.2	23
175	Bmp4 Promotes a Brown to White-like AdipocyteÂShift. Cell Reports, 2016, 16, 2243-2258.	2.9	95
176	AMPK/α-Ketoglutarate Axis Dynamically Mediates DNA Demethylation in the Prdm16 Promoter and Brown Adipogenesis. Cell Metabolism, 2016, 24, 542-554.	7.2	195
177	The emerging roles of human trace amines and human trace amine-associated receptors (hTAARs) in central nervous system. Biomedicine and Pharmacotherapy, 2016, 83, 439-449.	2.5	76
178	Organization of nuclear architecture during adipocyte differentiation. Nucleus, 2016, 7, 249-269.	0.6	19
179	Adipose tissue in control of metabolism. Journal of Endocrinology, 2016, 231, R77-R99.	1.2	423
180	Contribution of adaptive thermogenesis to the hypothalamic regulation of energy balance. Biochemical Journal 2016 473 4063-4082	1.7	20

	CITATION R	EPORT	
# 181	ARTICLE Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channelâ€dependent mechanisms. British Journal of Pharmacology, 2016, 173, 2369-2389.	IF 2.7	Citations 236
182	Imaging of Brown Adipose Tissue: State of the Art. Radiology, 2016, 280, 4-19.	3.6	69
183	Thermogenic activation represses autophagy in brown adipose tissue. International Journal of Obesity, 2016, 40, 1591-1599.	1.6	45
184	GDF1 is a novel mediator of macrophage infiltration in brown adipose tissue of obese mice. Biochemistry and Biophysics Reports, 2016, 5, 216-223.	0.7	4
185	Bone Morphogenetic Proteins. Cold Spring Harbor Perspectives in Biology, 2016, 8, a021899.	2.3	356
186	Targeting adipose tissue in the treatment of obesity-associated diabetes. Nature Reviews Drug Discovery, 2016, 15, 639-660.	21.5	518
187	Extensive metabolic disorders are present in APCmin tumorigenesis mice. Molecular and Cellular Endocrinology, 2016, 427, 57-64.	1.6	15
188	Essential role of UCP1 modulating the central effects of thyroid hormones on energy balance. Molecular Metabolism, 2016, 5, 271-282.	3.0	96
189	New therapeutic approaches for the treatment of obesity. Science Translational Medicine, 2016, 8, 323rv2.	5.8	78
190	Adipose Structure (White, Brown, Beige). , 2016, , 369-396.		1
191	Fatty acid metabolism and the basis of brown adipose tissue function. Adipocyte, 2016, 5, 98-118.	1.3	103
193	Morphogenetics in brown, beige and white fat development. Adipocyte, 2016, 5, 130-135.	1.3	12
194	Convertible visceral fat as a therapeutic target to curb obesity. Nature Reviews Drug Discovery, 2016, 15, 405-424.	21.5	177
195	Bone morphogenetic proteins in inflammation, glucose homeostasis and adipose tissue energy metabolism. Cytokine and Growth Factor Reviews, 2016, 27, 105-118.	3.2	70
196	Biological activity and inÂvivo half-life of pro-activin A in male rats. Molecular and Cellular Endocrinology, 2016, 422, 84-92.	1.6	14
197	Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity. Molecular and Cellular Biology, 2016, 36, 184-196.	1.1	41
198	Crosstalk between adipokines and myokines in fat browning. Acta Physiologica, 2017, 219, 362-381.	1.8	154
199	The activin- β A/BMP-2 chimera AB204 is a strong stimulator of adipogenesis. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1524-1531.	1.3	5

#	Article	IF	CITATIONS
200	Browning of white adipose tissue: lessons from experimental models. Hormone Molecular Biology and Clinical Investigation, 2017, 31, .	0.3	102
201	TRPV1 activation counters diet-induced obesity through sirtuin-1 activation and PRDM-16 deacetylation in brown adipose tissue. International Journal of Obesity, 2017, 41, 739-749.	1.6	84
202	Turning up the heat against metabolic syndrome and non-alcoholic fatty liver disease. Clinical Science, 2017, 131, 327-328.	1.8	0
203	Phenyl-Î ³ -valerolactones, flavan-3-ol colonic metabolites, protect brown adipocytes from oxidative stress without affecting their differentiation or function. Molecular Nutrition and Food Research, 2017, 61, 1700074.	1.5	31
204	EJE PRIZE 2017: Hypothalamic AMPK: a golden target against obesity?. European Journal of Endocrinology, 2017, 176, R235-R246.	1.9	53
205	Factors involved in whiteâ€toâ€brown adipose tissue conversion and in thermogenesis: a review. Obesity Reviews, 2017, 18, 495-513.	3.1	137
206	The kielin/chordin-like protein (KCP) attenuates high-fat diet-induced obesity and metabolic syndrome in mice. Journal of Biological Chemistry, 2017, 292, 9051-9062.	1.6	25
207	Brown Adipose Tissue. , 2017, , 91-147.		21
208	Traveling from the hypothalamus to the adipose tissue: The thermogenic pathway. Redox Biology, 2017, 12, 854-863.	3.9	74
209	The significance of beige and brown fat in humans. Endocrine Connections, 2017, 6, R70-R79.	0.8	63
210	BMP8A sustains spermatogenesis by activating both SMAD1/5/8 and SMAD2/3 in spermatogonia. Science Signaling, 2017, 10, .	1.6	39
211	Thyroid hormones induce browning of white fat. Journal of Endocrinology, 2017, 232, 351-362.	1.2	126
212	Dibenzazepine-Loaded Nanoparticles Induce Local Browning of White Adipose Tissue to Counteract Obesity. Molecular Therapy, 2017, 25, 1718-1729.	3.7	46
213	Nonâ€shivering thermogenesis as a mechanism to facilitate sustainable weight loss. Obesity Reviews, 2017, 18, 819-831.	3.1	54
214	Brown adipose tissue (BAT) specific vaspin expression is increased after obesogenic diets and cold exposure and linked to acute changes in DNA-methylation. Molecular Metabolism, 2017, 6, 482-493.	3.0	29
215	Estradiol effects on hypothalamic AMPK and BAT thermogenesis: A gateway for obesity treatment?. , 2017, 178, 109-122.		53
216	AT1 receptor antagonist induces thermogenic beige adipocytes in the inguinal white adipose tissue of obese mice. Endocrine, 2017, 55, 786-798.	1.1	17
217	Defective adaptive thermogenesis contributes to metabolic syndrome and liver steatosis in obese mice. Clinical Science, 2017, 131, 285-296.	1.8	32

#	Article	IF	CITATIONS
218	Decreased circulating BMP-9 levels in patients with TypeÂ2 diabetes is a signature of insulin resistance. Clinical Science, 2017, 131, 239-246.	1.8	37
219	Second messenger signaling mechanisms of the brown adipocyte thermogenic program: an integrative perspective. Hormone Molecular Biology and Clinical Investigation, 2017, 31, .	0.3	30
220	Reestablishment of Energy Balance in a Male Mouse Model With POMC Neuron Deletion of BMPR1A. Endocrinology, 2017, 158, 4233-4245.	1.4	12
221	Enhancing natriuretic peptide signaling in adipose tissue, but not in muscle, protects against diet-induced obesity and insulin resistance. Science Signaling, 2017, 10, .	1.6	82
222	Brown and Beige Adipose Tissues in Health and Disease. , 2017, 7, 1281-1306.		127
223	Endocrine and autocrine/paracrine modulators of brown adipose tissue mass and activity as novel therapeutic strategies against obesity and type 2 diabetes. Hormone Molecular Biology and Clinical Investigation, 2017, 31, .	0.3	7
224	Extracellular calcium modulates brown adipocyte differentiation and identity. Scientific Reports, 2017, 7, 8888.	1.6	27
225	Hormonal factors in the control of the browning of white adipose tissue. Hormone Molecular Biology and Clinical Investigation, 2017, 31, .	0.3	12
226	Human brown adipose tissue — function and therapeutic potential in metabolic disease. Current Opinion in Pharmacology, 2017, 37, 1-9.	1.7	29
227	Characterization of the central neural projections to brown, white, and beige adipose tissue. FASEB Journal, 2017, 31, 4879-4890.	0.2	35
228	Estradiol Regulation of Brown Adipose Tissue Thermogenesis. Advances in Experimental Medicine and Biology, 2017, 1043, 315-335.	0.8	22
229	Brown Adipose Tissue: an Update on Recent Findings. Current Obesity Reports, 2017, 6, 389-396.	3.5	144
230	Understanding the Biology of Thermogenic Fat: Is Browning A New Approach to the Treatment of Obesity?. Archives of Medical Research, 2017, 48, 401-413.	1.5	78
231	The Lives and Times of Brown Adipokines. Trends in Endocrinology and Metabolism, 2017, 28, 855-867.	3.1	75
232	Beiging of white adipose tissue as a therapeutic strategy for weight loss in humans. Hormone Molecular Biology and Clinical Investigation, 2017, 31, .	0.3	70
233	AMPKα1 deficiency suppresses brown adipogenesis in favor of fibrogenesis during brown adipose tissue development. Biochemical and Biophysical Research Communications, 2017, 491, 508-514.	1.0	18
234	Bone-Derived Factors: A New Gateway to Regulate Glycemia. Calcified Tissue International, 2017, 100, 174-183.	1.5	23
235	Rutin ameliorates obesity through brown fat activation. FASEB Journal, 2017, 31, 333-345.	0.2	151

~		_	
C^{+}		REPORT	Г
\sim		KLFOK	

#	Article	IF	CITATIONS
236	Hypothalamic Lipids: Key Regulators of Whole Body Energy Balance. Neuroendocrinology, 2017, 104, 398-411.	1.2	16
237	Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Research Reviews, 2017, 35, 200-221.	5.0	483
238	Oncostatin m impairs brown adipose tissue thermogenic function and the browning of subcutaneous white adipose tissue. Obesity, 2017, 25, 85-93.	1.5	18
239	Reduction of Hypothalamic Endoplasmic Reticulum Stress Activates Browning of White Fat and Ameliorates Obesity. Diabetes, 2017, 66, 87-99.	0.3	90
240	Brown adipose tissue as a secretory organ. Nature Reviews Endocrinology, 2017, 13, 26-35.	4.3	493
241	Brain Ceramide Metabolism in the Control of Energy Balance. Frontiers in Physiology, 2017, 8, 787.	1.3	30
242	MicroRNA Regulation of Brown Adipogenesis and Thermogenic Energy Expenditure. Frontiers in Endocrinology, 2017, 8, 205.	1.5	28
243	Increased inflammation, oxidative stress and mitochondrial respiration in brown adipose tissue from obese mice. Scientific Reports, 2017, 7, 16082.	1.6	139
244	Transforming growth factor beta superfamily regulation of adipose tissue biology in obesity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1160-1171.	1.8	85
245	Activation of hypothalamic <scp>RIP</scp> â€Cre neurons promotes beiging of <scp>WAT</scp> via sympathetic nervous system. EMBO Reports, 2018, 19, .	2.0	26
246	Analyzing AMPK Function in the Hypothalamus. Methods in Molecular Biology, 2018, 1732, 433-448.	0.4	3
247	Maternal diet-induced obesity programmes cardiac dysfunction in male mice independently of post-weaning diet. Cardiovascular Research, 2018, 114, 1372-1384.	1.8	88
248	Brown Adipokines. Handbook of Experimental Pharmacology, 2018, 251, 239-256.	0.9	13
249	Circulating molecules that control brown/beige adipocyte differentiation and thermogenic capacity. Cell Biology International, 2018, 42, 701-710.	1.4	4
250	Restoration of metabolic health by decreased consumption of branchedâ€chain amino acids. Journal of Physiology, 2018, 596, 623-645.	1.3	242
251	NAMPT-mediated NAD biosynthesis is indispensable for adipose tissue plasticity and development of obesity. Molecular Metabolism, 2018, 11, 178-188.	3.0	55
252	Brown and beige adipose tissues: phenotype and metabolic potential in mice and men. Journal of Applied Physiology, 2018, 124, 482-496.	1.2	36
253	Diabetes and Adipocyte Dysfunction. , 2018, , 69-84.		0

ARTICLE IF CITATIONS # Do estrogens enhance activation of brown and beiging of adipose tissues?. Physiology and Behavior, 254 1.0 31 2018, 187, 24-31. Spatial and temporal expression of bmp8a and its role in regulation of lipid metabolism in zebrafish 0.4 Danio rerio. Gene Reports, 2018, 10, 33-41. Microfluidic systems for studying dynamic function of adipocytes and adipose tissue. Analytical and 256 1.9 24 Bioanalytical Chemistry, 2018, 410, 791-800. Biology and pathological implications of brown adipose tissue: promises and caveats for the control of obesity and its associated complications. Biological Reviews, 2018, 93, 1145-1164. Role of brown adipose tissue in metabolic syndrome, aging, and cancer cachexia. Frontiers of 258 1.5 47 Medicine, 2018, 12, 130-138. Hypothalamic GRP78, a new target against obesity?. Adipocyte, 2018, 7, 63-66. 1.3 260 Adipose Organ Development and Remodeling., 2018, 8, 1357-1431. 127 Hypothalamic AMPK as a Mediator of Hormonal Regulation of Energy Balance. International Journal of 1.8 Molecular Sciences, 2018, 19, 3552. Brown adipose tissue as a heat-producing thermoeffector. Handbook of Clinical Neurology / Edited By 262 1.0 65 P J Vinken and G W Bruyn, 2018, 156, 137-152. Adipocyte-secreted BMP8b mediates adrenergic-induced remodeling of the neuro-vascular network in 5.8 104 adipose tissue. Nature Communications, 2018, 9, 4974. Estradiol Regulates Energy Balance by Ameliorating Hypothalamic Ceramide-Induced ER Stress. Cell 264 2.9 68 Reports, 2018, 25, 413-423.e5. Metabolic regulation of female puberty via hypothalamic AMPK–kisspeptin signaling. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10758-E10767. 3.3 BATLAS: Deconvoluting Brown Adipose Tissue. Cell Reports, 2018, 25, 784-797.e4. 266 2.9 89 Activin E Controls Energy Homeostasis in Both Brown and White Adipose Tissues as a Hepatokine. Cell Reports, 2018, 25, 1193-1203. 54 <scp>CPEB<scp> 2â \in dependent translation of long 3â \in 2â \in -<scp>UTR<scp> Ucp1 <scp>mRNA<scp> promotes $_{3.5}$ 268 22 thermogenesis in brown adipose tissue. EMBO Journal, 2018, 37, . Central regulation of energy metabolism by estrogens. Molecular Metabolism, 2018, 15, 104-115. Membrane-Initiated Estrogen Receptor Signaling Mediates Metabolic Homeostasis via Central 270 0.3 20 Activation of Protein Phosphatase 2A. Diabetes, 2018, 67, 1524-1537. Reduced adiposity by compensatory WAT browning upon iBAT removal in mice. Biochemical and 271 Biophysical Research Communications, 2018, 501, 807-813.

#	Article	IF	CITATIONS
272	Spectral Unmixing Imaging for Differentiating Brown Adipose Tissue Mass and Its Activation. Contrast Media and Molecular Imaging, 2018, 2018, 1-7.	0.4	4
273	Effects of the Mitochondrial and Nuclear Genomes on Nonshivering Thermogenesis in a Wild Derived Rodent. Integrative and Comparative Biology, 2018, 58, 532-543.	0.9	5
274	AMPK signaling to acetyl-CoA carboxylase is required for fasting- and cold-induced appetite but not thermogenesis. ELife, 2018, 7, .	2.8	58
275	AMP-Activated Protein Kinase (AMPK) Regulates Energy Metabolism through Modulating Thermogenesis in Adipose Tissue. Frontiers in Physiology, 2018, 9, 122.	1.3	178
276	miR-199a-3p regulates brown adipocyte differentiation through mTOR signaling pathway. Molecular and Cellular Endocrinology, 2018, 476, 155-164.	1.6	37
277	Regulation of Human Adipose Tissue Activation, Gallbladder Size, and Bile Acid Metabolism by a β3-Adrenergic Receptor Agonist. Diabetes, 2018, 67, 2113-2125.	0.3	121
278	Cold-induced epigenetic programming of the sperm enhances brown adipose tissue activity in the offspring. Nature Medicine, 2018, 24, 1372-1383.	15.2	87
279	Global Transcriptome Analysis of Brown Adipose Tissue of Diet-Induced Obese Mice. International Journal of Molecular Sciences, 2018, 19, 1095.	1.8	17
280	Browning of Pig White Preadipocytes by Co-Overexpressing Pig PGC-1α and Mice UCP1. Cellular Physiology and Biochemistry, 2018, 48, 556-568.	1.1	10
281	p38αÂblocks brown adipose tissue thermogenesis through p38δÂinhibition. PLoS Biology, 2018, 16, e2004455.	2.6	30
282	Hypothalamic <scp>AMPK</scp> and energy balance. European Journal of Clinical Investigation, 2018, 48, e12996.	1.7	78
283	Genetic Targeting of GRP78 in the VMH Improves Obesity Independently of Food Intake. Genes, 2018, 9, 357.	1.0	14
284	New approaches targeting brown adipose tissue transplantation as a therapy in obesity. Biochemical Pharmacology, 2018, 155, 346-355.	2.0	39
285	Whole exome sequencing of benign pulmonary metastasizing leiomyoma reveals mutation in the BMP8B gene. BMC Medical Genetics, 2018, 19, 20.	2.1	8
286	TGF-β receptor 1 regulates progenitors that promote browning of white fat. Molecular Metabolism, 2018, 16, 160-171.	3.0	33
287	SF1-Specific AMPKα1 Deletion Protects Against Diet-Induced Obesity. Diabetes, 2018, 67, 2213-2226.	0.3	48
288	Adipose transcriptome analysis provides novel insights into molecular regulation of prolonged fasting in northern elephant seal pups. Physiological Genomics, 2018, 50, 495-503.	1.0	15
289	Multifaceted Roles of Beige Fat in Energy Homeostasis Beyond UCP1. Endocrinology, 2018, 159, 2545-2553.	1.4	22

#	Article	IF	CITATIONS
290	Transcriptional control of intestinal cholesterol absorption, adipose energy expenditure and lipid handling by Sortilin. Scientific Reports, 2018, 8, 9006.	1.6	17
291	Differential actions of PPAR-α and PPAR-β/δ on beige adipocyte formation: A study in the subcutaneous white adipose tissue of obese male mice. PLoS ONE, 2018, 13, e0191365.	1.1	39
292	Adipose Tissue. , 2019, , 370-384.		2
293	Effects of visfatin on brown adipose tissue energy regulation using T37i cells. Cytokine, 2019, 113, 248-255.	1.4	9
294	Adipose Tissue Expression of PACAP, VIP, and Their Receptors in Response to Cold Stress. Journal of Molecular Neuroscience, 2019, 68, 427-438.	1,1	12
295	Brown and beige fat: From molecules to physiology and pathophysiology. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 37-50.	1.2	45
296	Switching on the furnace: Regulation of heat production in brown adipose tissue. Molecular Aspects of Medicine, 2019, 68, 60-73.	2.7	52
297	Locating potentially lethal genes using the abnormal distributions of genotypes. Scientific Reports, 2019, 9, 10543.	1.6	0
298	RepSox, a small molecule inhibitor of the TGFβ receptor, induces brown adipogenesis and browning of white adipocytes. Acta Pharmacologica Sinica, 2019, 40, 1523-1531.	2.8	19
299	Role of bone morphogenetic proteinâ€9 in the regulation of glucose and lipid metabolism. FASEB Journal, 2019, 33, 10077-10088.	0.2	35
300	Experimental comparative study of coupled shear wall systems with steel and reinforced concrete link beams. Structural Design of Tall and Special Buildings, 2019, 28, e1678.	0.9	8
301	The Beige Adipocyte as a Therapy for Metabolic Diseases. International Journal of Molecular Sciences, 2019, 20, 5058.	1.8	63
302	Interâ€organ communication: a gatekeeper for metabolic health. EMBO Reports, 2019, 20, e47903.	2.0	94
303	GDF5 Promotes White Adipose Tissue Thermogenesis via p38 MAPK Signaling Pathway. DNA and Cell Biology, 2019, 38, 1303-1312.	0.9	14
304	Peptide/Receptor Co-evolution Explains the Lipolytic Function of the Neuropeptide TLQP-21. Cell Reports, 2019, 28, 2567-2580.e6.	2.9	20
305	Liver Derived FGF21 Maintains Core Body Temperature During Acute Cold Exposure. Scientific Reports, 2019, 9, 630.	1.6	63
306	Fibroblast Growth Factor 21 and Browning of White Adipose Tissue. Frontiers in Physiology, 2019, 10, 37.	1.3	99
307	Regulation of the Energy Balance. , 2019, , 227-243.		2

#	Article	IF	CITATIONS
308	Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. Journal of Lipid Research, 2019, 60, 1648-1697.	2.0	197
309	Adipose Tissue-Derived Signatures for Obesity and Type 2 Diabetes: Adipokines, Batokines and MicroRNAs. Journal of Clinical Medicine, 2019, 8, 854.	1.0	116
310	Brown and Beige Adipose Tissue and Aging. Frontiers in Endocrinology, 2019, 10, 368.	1.5	122
311	Bone Morphogenetic Protein-8B Expression is Induced in Steatotic Hepatocytes and Promotes Hepatic Steatosis and Inflammation In Vitro. Cells, 2019, 8, 457.	1.8	16
312	Lycopene supplementation attenuates western diet-induced body weight gain through increasing the expressions of thermogenic/mitochondrial functional genes and improving insulin resistance in the adipose tissue of obese mice. Journal of Nutritional Biochemistry, 2019, 69, 63-72.	1.9	36
313	Noggin depletion in adipocytes promotes obesity in mice. Molecular Metabolism, 2019, 25, 50-63.	3.0	14
314	Activin E enhances insulin sensitivity and thermogenesis by activating brown/beige adipocytes. Journal of Veterinary Medical Science, 2019, 81, 646-652.	0.3	8
315	Melanocortin 4 receptor–mediated effects of amylin on thermogenesis and regulation of food intake. Diabetes/Metabolism Research and Reviews, 2019, 35, e3149.	1.7	16
316	AMP-activated protein kinase: the current landscape for drug development. Nature Reviews Drug Discovery, 2019, 18, 527-551.	21.5	425
317	Interleukin-6 released from differentiating human beige adipocytes improves browning. Experimental Cell Research, 2019, 377, 47-55.	1.2	58
318	Metformin enhances mitochondrial biogenesis and thermogenesis in brown adipocytes of mice. Biomedicine and Pharmacotherapy, 2019, 111, 1156-1165.	2.5	45
319	Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. Journal of Clinical Investigation, 2019, 129, 3990-4000.	3.9	389
320	Orexins/Hypocretins: Key Regulators of Energy Homeostasis. Frontiers in Endocrinology, 2019, 10, 830.	1.5	39
321	Differential Role of Hypothalamic AMPKα Isoforms in Fish: an Evolutive Perspective. Molecular Neurobiology, 2019, 56, 5051-5066.	1.9	7
322	Beyond the bone: Bone morphogenetic protein signaling in adipose tissue. Obesity Reviews, 2019, 20, 648-658.	3.1	60
323	Small molecules for fat combustion: targeting thermosensory and satiety signals in the central nervous system. Drug Discovery Today, 2019, 24, 300-306.	3.2	10
324	Activation of brown adipose tissue enhances the efficacy of caloric restriction for treatment of nonalcoholic steatohepatitis. Laboratory Investigation, 2019, 99, 4-16.	1.7	22
325	Ventromedial hypothalamus glucoseâ€inhibited neurones: A role in glucose and energy homeostasis?. Journal of Neuroendocrinology, 2020, 32, e12773.	1.2	32

#	Article	IF	Citations
326	Adipocyte–progenitor cell communication that influences adipogenesis. Cellular and Molecular Life Sciences, 2020, 77, 115-128.	2.4	16
327	Hypothalamic AMPKα2 regulates liver energy metabolism in rainbow trout through vagal innervation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R122-R134.	0.9	7
328	Brown Adipose Crosstalk in Tissue Plasticity and Human Metabolism. Endocrine Reviews, 2020, 41, 53-65.	8.9	109
329	HYPOTHesizing about central comBAT against obesity. Journal of Physiology and Biochemistry, 2020, 76, 193-211.	1.3	3
330	Intact vitamin A transport is critical for cold-mediated adipose tissue browning and thermogenesis. Molecular Metabolism, 2020, 42, 101088.	3.0	14
331	AMPK in the Ventromedial Nucleus of the Hypothalamus: A Key Regulator for Thermogenesis. Frontiers in Endocrinology, 2020, 11, 578830.	1.5	13
332	The Heating Microenvironment: Intercellular Cross Talk Within Thermogenic Adipose Tissue. Diabetes, 2020, 69, 1599-1604.	0.3	22
333	Gender differences in brown adipose tissue-related brain functional networks: an 18F-FDG-PET study. Nuclear Medicine Communications, 2020, 41, 526-532.	0.5	3
334	Control of Adipose Cell Browning and Its Therapeutic Potential. Metabolites, 2020, 10, 471.	1.3	18
335	CRISPR-mediated BMP9 ablation promotes liver steatosis via the down-regulation of PPARα expression. Science Advances, 2020, 6, .	4.7	20
336	The Remaining Mysteries about Brown Adipose Tissues. Cells, 2020, 9, 2449.	1.8	9
337	Stimulation of brown adipose tissue by polyphenols in extra virgin olive oil. Critical Reviews in Food Science and Nutrition, 2020, 61, 1-8.	5.4	7
338	Hypothalamic <scp>CDK</scp> 4 regulates thermogenesis by modulating sympathetic innervation of adipose tissues. EMBO Reports, 2020, 21, e49807.	2.0	12
339	Studying Brown Adipose Tissue in a Human in vitro Context. Frontiers in Endocrinology, 2020, 11, 629.	1.5	24
340	AMPK-Dependent Mechanisms but Not Hypothalamic Lipid Signaling Mediates GH-Secretory Responses to GHRH and Ghrelin. Cells, 2020, 9, 1940.	1.8	3
341	There and Back Again: Leptin Actions in White Adipose Tissue. International Journal of Molecular Sciences, 2020, 21, 6039.	1.8	62
342	Uncovering the Role of p38 Family Members in Adipose Tissue Physiology. Frontiers in Endocrinology, 2020, 11, 572089.	1.5	25
343	AMPK and the Need to Breathe and Feed: What's the Matter with Oxygen?. International Journal of Molecular Sciences, 2020, 21, 3518.	1.8	12

#	Article	IF	CITATIONS
344	Molecular Mechanisms of Adipogenesis: The Anti-adipogenic Role of AMP-Activated Protein Kinase. Frontiers in Molecular Biosciences, 2020, 7, 76.	1.6	118
345	Urolithin A Induces Brown-like Phenotype in 3T3-L1 White Adipocytes via β3-adrenergic Receptor-p38 MAPK Signaling Pathway. Biotechnology and Bioprocess Engineering, 2020, 25, 345-355.	1.4	23
346	Bone morphogenetic protein 8B promotes the progression of non-alcoholic steatohepatitis. Nature Metabolism, 2020, 2, 514-531.	5.1	31
347	Phthalate exposure causes browning-like effects on adipocytes in vitro and in vivo. Food and Chemical Toxicology, 2020, 142, 111487.	1.8	11
348	Effects of Royal Jelly and Tocotrienol Rich Fraction in obesity treatment of calorie-restricted obese rats: a focus on white fat browning properties and thermogenic capacity. Nutrition and Metabolism, 2020, 17, 42.	1.3	9
349	Indirubin, a small molecular deriving from connectivity map (CMAP) screening, ameliorates obesity-induced metabolic dysfunction by enhancing brown adipose thermogenesis and white adipose browning. Nutrition and Metabolism, 2020, 17, 21.	1.3	15
350	Impact of adipokines and myokines on fat browning. Journal of Physiology and Biochemistry, 2020, 76, 227-240.	1.3	20
351	PPAR-α activation counters brown adipose tissue whitening: a comparative study between high-fat– and high-fructose–fed mice. Nutrition, 2020, 78, 110791.	1.1	29
352	Deficiency of bone morphogenetic protein-3b induces metabolic syndrome and increases adipogenesis. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E363-E375.	1.8	9
353	Impact of Adaptive Thermogenesis in Mice on the Treatment of Obesity. Cells, 2020, 9, 316.	1.8	33
354	Genetic background and diet affect brown adipose gene coexpression networks associated with metabolic phenotypes. Physiological Genomics, 2020, 52, 223-233.	1.0	4
355	pâ€Coumaric acid prevents obesity via activating thermogenesis in brown adipose tissue mediated by mTORC1â€RPS6. FASEB Journal, 2020, 34, 7810-7824.	0.2	30
356	Role of Brown Adipose Tissue in Adiposity Associated With Narcolepsy Type 1. Frontiers in Endocrinology, 2020, 11, 145.	1.5	8
357	BMPR2 promotes fatty acid oxidation and protects white adipocytes from cell death in mice. Communications Biology, 2020, 3, 200.	2.0	15
358	Nicotine' actions on energy balance: Friend or foe?. , 2021, 219, 107693.		20
359	AMP-activated protein kinase (AMPK) signaling in GnRH neurons links energy status and reproduction. Metabolism: Clinical and Experimental, 2021, 115, 154460.	1.5	16
360	Shortâ€ŧerm protein restriction at advanced age stimulates FGF21 signalling, energy expenditure and browning of white adipose tissue. FEBS Journal, 2021, 288, 2257-2277.	2.2	18
361	Adipose tissue plasticity and the pleiotropic roles of BMP signaling. Journal of Biological Chemistry, 2021, 296, 100678.	1.6	22

#	Article	IF	CITATIONS
362	Brown and beige adipose tissue: a novel therapeutic strategy for obesity and type 2 diabetes mellitus. Adipocyte, 2021, 10, 48-65.	1.3	158
363	Epigenetic Regulation of Adipogenesis in Development of Metabolic Syndrome. Frontiers in Cell and Developmental Biology, 2020, 8, 619888.	1.8	27
364	Hypothalamic BMP9 suppresses glucose production by central PI3K/Akt/mTOR pathway. Journal of Endocrinology, 2021, 248, 221-235.	1.2	4
365	Precision Nutrition to Activate Thermogenesis as a Complementary Approach to Target Obesity and Associated-Metabolic-Disorders. Cancers, 2021, 13, 866.	1.7	12
366	κ-Opioid Signaling in the Lateral Hypothalamic Area Modulates Nicotine-Induced Negative Energy Balance. International Journal of Molecular Sciences, 2021, 22, 1515.	1.8	11
367	<scp>BMP11</scp> regulates thermogenesis in white and brown adipocytes. Cell Biochemistry and Function, 2021, 39, 496-510.	1.4	4
368	An improved method for the precise unravelment of non-shivering brown fat thermokinetics. Scientific Reports, 2021, 11, 4799.	1.6	11
369	Natural Extracts to Augment Energy Expenditure as a Complementary Approach to Tackle Obesity and Associated Metabolic Alterations. Biomolecules, 2021, 11, 412.	1.8	5
370	The cellular and functional complexity of thermogenic fat. Nature Reviews Molecular Cell Biology, 2021, 22, 393-409.	16.1	203
371	The phytochemical hyperforin triggers thermogenesis in adipose tissue via a Dlat-AMPK signaling axis to curb obesity. Cell Metabolism, 2021, 33, 565-580.e7.	7.2	79
371 372	The phytochemical hyperforin triggers thermogenesis in adipose tissue via a Dlat-AMPK signaling axis to curb obesity. Cell Metabolism, 2021, 33, 565-580.e7. Natural Bioactive Compounds as Potential Browning Agents in White Adipose Tissue. Pharmaceutical Research, 2021, 38, 549-567.	7.2	79 14
	to curb obesity. Cell Metabolism, 2021, 33, 565-580.e7. Natural Bioactive Compounds as Potential Browning Agents in White Adipose Tissue. Pharmaceutical		
372	to curb obesity. Cell Metabolism, 2021, 33, 565-580.e7. Natural Bioactive Compounds as Potential Browning Agents in White Adipose Tissue. Pharmaceutical Research, 2021, 38, 549-567.	1.7	14
372 373	 to curb obesity. Cell Metabolism, 2021, 33, 565-580.e7. Natural Bioactive Compounds as Potential Browning Agents in White Adipose Tissue. Pharmaceutical Research, 2021, 38, 549-567. Signaling Pathways Regulating Thermogenesis. Frontiers in Endocrinology, 2021, 12, 595020. The endocrine role of brown adipose tissue: An update on actors and actions. Reviews in Endocrine 	1.7 1.5	14 38
372 373 374	 to curb obesity. Cell Metabolism, 2021, 33, 565-580.e7. Natural Bioactive Compounds as Potential Browning Agents in White Adipose Tissue. Pharmaceutical Research, 2021, 38, 549-567. Signaling Pathways Regulating Thermogenesis. Frontiers in Endocrinology, 2021, 12, 595020. The endocrine role of brown adipose tissue: An update on actors and actions. Reviews in Endocrine and Metabolic Disorders, 2022, 23, 31-41. Contribution of thermogenic mechanisms by male and female mice lacking pituitary adenylate cyclase-activating polypeptide in response to cold acclimation. American Journal of Physiology - 	1.7 1.5 2.6	14 38 70
372 373 374 375	 to curb obesity. Cell Metabolism, 2021, 33, 565-580.e7. Natural Bioactive Compounds as Potential Browning Agents in White Adipose Tissue. Pharmaceutical Research, 2021, 38, 549-567. Signaling Pathways Regulating Thermogenesis. Frontiers in Endocrinology, 2021, 12, 595020. The endocrine role of brown adipose tissue: An update on actors and actions. Reviews in Endocrine and Metabolic Disorders, 2022, 23, 31-41. Contribution of thermogenic mechanisms by male and female mice lacking pituitary adenylate cyclase-activating polypeptide in response to cold acclimation. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E475-E487. Developmental exposure to DDT or DDE alters sympathetic innervation of brown adipose in adult 	1.7 1.5 2.6 1.8	14 38 70 7
372 373 374 375 376	 to curb obesity. Cell Metabolism, 2021, 33, 565-580.e7. Natural Bioactive Compounds as Potential Browning Agents in White Adipose Tissue. Pharmaceutical Research, 2021, 38, 549-567. Signaling Pathways Regulating Thermogenesis. Frontiers in Endocrinology, 2021, 12, 595020. The endocrine role of brown adipose tissue: An update on actors and actions. Reviews in Endocrine and Metabolic Disorders, 2022, 23, 31-41. Contribution of thermogenic mechanisms by male and female mice lacking pituitary adenylate cyclase-activating polypeptide in response to cold acclimation. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E475-E487. Developmental exposure to DDT or DDE alters sympathetic innervation of brown adipose in adult female mice. Environmental Health, 2021, 20, 37. Balance Comparison between Iranian Elderly with and without Knee Range of Motion Limitations. 	1.7 1.5 2.6 1.8 1.7	14 38 70 7 10

#	Article	IF	CITATIONS
380	Thermogenic Fat: Development, Physiological Function, and Therapeutic Potential. International Journal of Molecular Sciences, 2021, 22, 5906.	1.8	14
381	Brown/Beige adipose tissues and the emerging role of their secretory factors in improving metabolic health: The batokines. Biochimie, 2021, 184, 26-39.	1.3	36
382	Human plasma proteomic profiles indicative of cardiorespiratory fitness. Nature Metabolism, 2021, 3, 786-797.	5.1	36
383	Endocrine role of bone in the regulation of energy metabolism. Bone Research, 2021, 9, 25.	5.4	55
384	Central vs. Peripheral Action of Thyroid Hormone in Adaptive Thermogenesis: A Burning Topic. Cells, 2021, 10, 1327.	1.8	13
385	MECHANISMS IN ENDOCRINOLOGY: Human brown adipose tissue as a therapeutic target: warming up or cooling down?. European Journal of Endocrinology, 2021, 184, R243-R259.	1.9	24
386	Adipocytes and Stromal Cells Regulate Brown Adipogenesis Through Secretory Factors During the Postnatal White-to-Brown Conversion of Adipose Tissue in Syrian Hamsters. Frontiers in Cell and Developmental Biology, 2021, 9, 698692.	1.8	4
387	DNA Methylation Changes Associated With Type 2 Diabetes and Diabetic Kidney Disease in an East Asian Population. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e3837-e3851.	1.8	15
388	Molecular Imaging of Brown Adipose Tissue Mass. International Journal of Molecular Sciences, 2021, 22, 9436.	1.8	13
389	A Differential Pattern of Batokine Expression in Perivascular Adipose Tissue Depots From Mice. Frontiers in Physiology, 2021, 12, 714530.	1.3	7
390	Interconnections between circadian clocks and metabolism. Journal of Clinical Investigation, 2021, 131,	3.9	63
391	AMPK in the brain: its roles in glucose and neural metabolism. FEBS Journal, 2022, 289, 2247-2262.	2.2	38
392	BMP8 and activated brown adipose tissue in human newborns. Nature Communications, 2021, 12, 5274.	5.8	24
393	Obesity–An Update on the Basic Pathophysiology and Review of Recent Therapeutic Advances. Biomolecules, 2021, 11, 1426.	1.8	35
394	Di(2-ethylhexyl)phthalate exposure exacerbates metabolic disorders in diet-induced obese mice. Food and Chemical Toxicology, 2021, 156, 112439.	1.8	15
395	Bone morphogenetic proteins (BMPs) in the central regulation of energy balance and adult neural plasticity. Metabolism: Clinical and Experimental, 2021, 123, 154837.	1.5	26
396	Adipose Tissue Function and Expandability as Determinants of Lipotoxicity and the Metabolic Syndrome. Advances in Experimental Medicine and Biology, 2017, 960, 161-196.	0.8	136
397	The Energy Sensor AMPK: Adaptations to Exercise, Nutritional and Hormonal Signals. Research and Perspectives in Endocrine Interactions, 2017, , 13-24.	0.2	10

#	Article	IF	CITATIONS
398	PET Imaging of Human Brown Adipose Tissue with the TSPO Tracer [11C]PBR28. Molecular Imaging and Biology, 2018, 20, 188-193.	1.3	27
399	Regulation of thermogenic adipocytes during fasting and cold. Molecular and Cellular Endocrinology, 2020, 512, 110869.	1.6	23
400	Resveratrol promotes white adipocytes browning and improves metabolic disorders in Sirt1â€dependent mannerÂin mice. FASEB Journal, 2020, 34, 4527-4539.	0.2	27
401	Gene Co-Expression Network Analysis Provides Novel Insights into Myostatin Regulation at Three Different Mouse Developmental Timepoints. PLoS ONE, 2015, 10, e0117607.	1.1	12
402	Inverse Agonistic Action of 3-lodothyronamine at the Human Trace Amine-Associated Receptor 5. PLoS ONE, 2015, 10, e0117774.	1.1	62
403	On the role of macrophages in the control of adipocyte energy metabolism. Endocrine Connections, 2019, 8, R105-R121.	0.8	19
404	Exercise and Activation of Brown Adipose Tissue. The Asian Journal of Kinesiology, 2018, 20, 1-11.	0.1	2
405	Marigold Supercritical Extract as Potential Co-adjuvant in Pancreatic Cancer: The Energetic Catastrophe Induced via BMP8B Ends Up With Autophagy-Induced Cell Death. Frontiers in Bioengineering and Biotechnology, 2019, 7, 455.	2.0	10
406	BMP pathway regulation of insulin signaling components promotes lipid storage in Caenorhabditis elegans. PLoS Genetics, 2021, 17, e1009836.	1.5	11
407	Small extracellular vesicle-mediated targeting of hypothalamic AMPKα1 corrects obesity through BAT activation. Nature Metabolism, 2021, 3, 1415-1431.	5.1	45
408	The evolving view of thermogenic adipocytes — ontogeny, niche and function. Nature Reviews Endocrinology, 2021, 17, 726-744.	4.3	81
409	FGF2 disruption enhances thermogenesis in brown and beige fat to protect against adiposity and hepatic steatosis. Molecular Metabolism, 2021, 54, 101358.	3.0	10
410	The Central Nervous System in Metabolic Syndrome. , 2014, , 137-156.		0
411	Brown and Beige Fat: Therapeutic Potential in Obesity. Indonesian Biomedical Journal, 2014, 6, 65.	0.2	1
412	Therapeutic Applications of the Recent Understanding of Brown or Beige Adipocyte Physiology. Advanced Techniques in Biology & Medicine, 2015, 03, .	0.1	1
414	Peptide/Receptor Evolution Explains the Lipolytic Function of the Neuropeptide TLQP-21. SSRN Electronic Journal, 0, , .	0.4	0
416	In vitro evaluation of Hydrilla verticillata for anti-adipogenesis activity on 3T3 L1 cell lines. Pharmacognosy Magazine, 2020, 16, 498.	0.3	2
419	Brown Adipose Tissue in Obesity and Diabetes. , 2020, , 35-54.		0

#	Article	IF	CITATIONS
420	Human Brown Adipose Tissue and Metabolic Health: Potential for Therapeutic Avenues. Cells, 2021, 10, 3030.	1.8	32
421	Effects of noni on cellular viability and osteogenic differentiation of gingiva‑derived stem cells demonstrated by RNA sequencing and quantitative PCR. Experimental and Therapeutic Medicine, 2021, 23, 32.	0.8	5
422	The Effect of Hydro-Alcoholic Extract of Nigella sativa on Bmp7 and Bmp8b Expression in Rats Fed with a High-Fat Diet. Jundishapur Journal of Natural Pharmaceutical Products, 2020, 15, .	0.3	0
423	Orally Induced Hyperthyroidism Regulates Hypothalamic AMP-Activated Protein Kinase. Nutrients, 2021, 13, 4204.	1.7	2
424	Bone morphogenic protein 9 is a novel thermogenic hepatokine secreted in response to cold exposure. Metabolism: Clinical and Experimental, 2022, 129, 155139.	1.5	5
425	The Cross-Talks Among Bone Morphogenetic Protein (BMP) Signaling and Other Prominent Pathways Involved in Neural Differentiation. Frontiers in Molecular Neuroscience, 2022, 15, 827275.	1.4	22
426	Bone Morphogenetic Protein-8B Levels at Birth and in the First Year of Life: Relation to Metabolic-Endocrine Variables and Brown Adipose Tissue Activity. Frontiers in Pediatrics, 2022, 10, 869581.	0.9	3
427	Progressive brown adipocyte dysfunction: Whitening and impaired nonshivering thermogenesis as long-term obesity complications. Journal of Nutritional Biochemistry, 2022, 105, 109002.	1.9	37
428	Obesity induces resistance to central action of BMP8B through a mechanism involving the BBSome. Molecular Metabolism, 2022, 59, 101465.	3.0	6
429	The Heartwarming Effect of Brown Adipose Tissue. Molecular Pharmacology, 2022, 102, 39-50.	1.0	9
430	Differing impact of phosphoglycerate mutase 1-deficiency on brown and white adipose tissue. IScience, 2022, 25, 104268.	1.9	2
436	DNA Methylation Modulates Aging Process in Adipocytes. , 2022, 13, 433.		9
437	The Relationship of Antipsychotic Treatment with Reduced Brown Adipose Tissue Activity in Patients with Schizophrenia. Psychoneuroendocrinology, 2022, , 105775.	1.3	2
438	Many Ways to Rome: Exercise, Cold Exposure and Diet—Do They All Affect BAT Activation and WAT Browning in the Same Manner?. International Journal of Molecular Sciences, 2022, 23, 4759.	1.8	20
439	Hypothalamic AMPK as a possible target for energy balance-related diseases. Trends in Pharmacological Sciences, 2022, 43, 546-556.	4.0	25
440	Inhibition of STAT3 enhances UCP1 expression and mitochondrial function in brown adipocytes. European Journal of Pharmacology, 2022, 926, 175040.	1.7	2
441	Brown Adipose Tissue—A Translational Perspective. Endocrine Reviews, 2023, 44, 143-192.	8.9	49
442	The Role of Thermogenic Fat Tissue in Energy Consumption. Current Issues in Molecular Biology, 2022, 44, 3166-3179.	1.0	2

#	Article	IF	CITATIONS
443	The evolving view of thermogenic fat and its implications in cancer and metabolic diseases. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	15
444	Role of Distinct Fat Depots in Metabolic Regulation and Pathological Implications. Reviews of Physiology, Biochemistry and Pharmacology, 2022, , 135-176.	0.9	6
445	Signaling pathways in obesity: mechanisms and therapeutic interventions. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	72
446	Pomegranate Extract Augments Energy Expenditure Counteracting the Metabolic Stress Associated with High-Fat-Diet-Induced Obesity. International Journal of Molecular Sciences, 2022, 23, 10460.	1.8	1
447	Monitoring and Management of Bardet-Biedl Syndrome: What the Multi-Disciplinary Team Can Do. Journal of Multidisciplinary Healthcare, 0, Volume 15, 2153-2167.	1.1	3
449	Brown adipose tissue as an endocrine organ: updates on the emerging role of batokines. Hormone Molecular Biology and Clinical Investigation, 2023, 44, 219-227.	0.3	7
450	RNAseq Analysis of Brown Adipose Tissue and Thyroid of Newborn Lambs Subjected to Short-Term Cold Exposure Reveals Signs of Early Whitening of Adipose Tissue. Metabolites, 2022, 12, 996.	1.3	2
451	Early Life Low-Calorie Sweetener Consumption Impacts Energy Balance during Adulthood. Nutrients, 2022, 14, 4709.	1.7	3
452	The importance of estradiol for body weight regulation in women. Frontiers in Endocrinology, 0, 13, .	1.5	12
454	Disease progression promotes changes in adipose tissue signatures in type 2 diabetic (db/db) mice: The potential pathophysiological role of batokines. Life Sciences, 2023, 313, 121273.	2.0	7
455	Neuregulin 4 as a novel adipokine in energy metabolism. Frontiers in Physiology, 0, 13, .	1.3	5
456	Adipokines in obesity and metabolic-related-diseases. Biochimie, 2023, 212, 48-59.	1.3	11
457	Adipocyte YTH N(6)-methyladenosine RNA-binding protein 1 protects against obesity by promoting white adipose tissue beiging in male mice. Nature Communications, 2023, 14, .	5.8	6
466	Adipose Structure (White, Brown, Beige). , 2023, , 1-32.		0
			-

479 Adipose Structure (White, Brown, Beige). , 2023, , 303-334.