The past, present and future of heterogeneous catalysis

Catalysis Today 189, 2-27

DOI: 10.1016/j.cattod.2012.04.003

Citation Report

#	Article	IF	CITATIONS
1	Carbon heterogeneous surface modification on a mesoporous TiO2-supported catalyst and its enhanced hydrodesulfurization performance. Chemical Communications, 2012, 48, 11525.	2.2	43
4	Effect of nickel nanoparticle size in Ni/α-Al2O3 on CO methanation reaction for the production of synthetic natural gas. Catalysis Science and Technology, 2013, 3, 2009.	2.1	110
5	X-Ray Structural and Functional Diagnostics of Heterogeneous Catalysts. Theoretical and Experimental Chemistry, 2013, 49, 71-87.	0.2	7
6	Production of Liquid Feedstock from Biomass <i>via</i> Steam Pyrolysis in a Fluidized Bed Reactor. Energy & Energy & Ene	2.5	52
8	Catalytic behavior of MnMCM-48 and WMnMCM-48 ordered mesoporous catalysts in a reductive environment: a study of the conversion of methylcyclopentane. Catalysis Science and Technology, 2013, 3, 444-453.	2.1	28
9	Synthesis of Ni/Mo/N catalyst and its application in benzene hydrogenation in the presence of thiophene. Chinese Journal of Catalysis, 2013, 34, 159-166.	6.9	10
10	Influence of the hydroxylation of \hat{I}^3 -Al2O3 surfaces on the stability and growth of Cu for Cu/ \hat{I}^3 -Al2O3 catalyst: A DFT study. Applied Surface Science, 2013, 270, 728-736.	3.1	38
11	Theoretical investigation of the Friedl \tilde{A} π der reaction catalysed by CuBTC: Concerted effect of the adjacent Cu2+ sites. Catalysis Today, 2013, 204, 101-107.	2.2	33
12	Electron-deficient adduct site in the ring opening of methylcyclopentane (MCP) on tungsten-oxide-supported Pt, Ir and Pt–Ir catalysts. Comptes Rendus Chimie, 2013, 16, 433-441.	0.2	6
13	Unique Mesoporous Silicoaluminophosphate Assembled from Faujasite-type SAPO-37 Precursor: A Potential Catalyst for Isomerization. Chemistry Letters, 2013, 42, 1160-1162.	0.7	24
14	Heterogeneous Metal Catalysts for Oxidation Reactions. Journal of Nanomaterials, 2014, 2014, 1-23.	1,5	55
15	Man's Search for Extra-Ordinary Answers in Life: Silence as a Catalyst for Crisis-Solving. , 2014, , 239-250.		4
16	Precious Metals in Automotive Technology: An Unsolvable Depletion Problem?. Minerals (Basel,) Tj ETQq0 0 0 rgE	3T /Overlo	ck 10 Tf 50 20
17	Electronic properties of unsupported trimetallic catalysts. Catalysis Today, 2014, 220-222, 106-112.	2.2	7
18	The magnetic properties of Ce/Pd surface alloys investigated using DFT. Chemical Physics Letters, 2014, 605-606, 5-9.	1.2	5
19	Élaboration de catalyseurs à base de bentonite et de kieselguhr pour le craquage catalytique des coupes pétroliÃ"res. Comptes Rendus Chimie, 2014, 17, 746-751.	0.2	2
20	Manganese(III) tetrapyridylporphyrin-chloromethylated MIL-101 hybrid material: A highly active catalyst for oxidation of hydrocarbons. Applied Catalysis A: General, 2014, 477, 34-41.	2.2	47
21	In situ synthesis and characterization of TiO2/HPM cellulose hybrid material for the photocatalytic degradation of 4-NP under visible light. Comptes Rendus Chimie, 2014, 17, 839-848.	0.2	13

#	Article	IF	CITATIONS
22	Doping level effect on visible-light irradiation W-doped TiO2–anatase photocatalysts for Congo red photodegradation. Comptes Rendus Chimie, 2014, 17, 818-823.	0.2	33
23	Preparation of porous paper composites with ruthenium hydroxide and catalytic alcohol oxidation in a multiphase gas–liquid–solid reaction. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 184, 7-13.	1.7	4
24	Kinetic and equilibrium studies of lead(II) adsorption from aqueous media by KIT-6 mesoporous silica functionalized with –COOH. Comptes Rendus Chimie, 2014, 17, 869-880.	0.2	30
25	Effect of synthesis atmosphere on photocatalytic hydrogen production of NaNbO3. Physica B: Condensed Matter, 2014, 447, 12-14.	1.3	19
26	Concept and progress in coupling of dehydrogenation and hydrogenation reactions through catalysts. Journal of Chemical Sciences, 2014, 126, 311-317.	0.7	11
27	Substrateâ€Selective Catalysis. Chemistry - A European Journal, 2014, 20, 13432-13481.	1.7	37
28	Band gap engineering of NaTaO ₃ using density functional theory: a charge compensated codoping strategy. Physical Chemistry Chemical Physics, 2014, 16, 17116.	1.3	49
29	A study to initiate development of sustainable Ni/l³-Al ₂ O ₃ catalyst for hydrogen production from steam reforming of biomass-derived glycerol. RSC Advances, 2014, 4, 32429-32437.	1.7	15
30	Activity enhancement of zeolite MCM-22 by interlayer expansion enabling higher Ce loading and room temperature CO oxidation. Journal of Materials Chemistry A, 2014, 2, 15722-15725.	5.2	29
31	Aldol reaction of kojic acid using alumina supported base catalyst and enzymatic resolution of the aldol adduct by CALB. Tetrahedron Letters, 2014, 55, 5846-5850.	0.7	7
32	Multi-scale modeling of diffusion and reaction–diffusion phenomena in catalytic porous layers: Comparison with the 1D approach. Chemical Engineering Science, 2014, 117, 364-375.	1.9	22
33	Application of quasi-equilibrated thermodesorption of linear and di-branched paraffin molecules for detailed porosity characterization of the mono-layered zeolite MCM-56, in comparison with MCM-22 and ZSM-5. Dalton Transactions, 2014, 43, 10574-10583.	1.6	15
34	Recent Advances in Reactions of Alkylbenzenes Over Novel Zeolites: The Effects of Zeolite Structure and Morphology. Catalysis Reviews - Science and Engineering, 2014, 56, 333-402.	5.7	148
35	Reactivity Descriptor in Solid Acid Catalysis: Predicting Turnover Frequencies for Propene Methylation in Zeotypes. Journal of Physical Chemistry Letters, 2014, 5, 1516-1521.	2.1	96
36	Morphology-dependent nanocatalysts: Rod-shaped oxides. Chemical Society Reviews, 2014, 43, 1543-1574.	18.7	445
37	Exhaust constituent emission factors of printed circuit board pyrolysis processes and its exhaust control. Journal of Hazardous Materials, 2014, 264, 545-551.	6.5	29
38	Cathode catalysts degradation mechanism from liquid electrolyte to membrane electrode assembly. Comptes Rendus Chimie, 2014, 17, 752-759.	0.2	9
39	Étude de l'élimination du Cr(VI) par l'oxyde mixte obtenu par calcination de l'hydroxyde double lamellaire MgAl. Comptes Rendus Chimie, 2014, 17, 860-868.	0.2	8

#	Article	IF	Citations
40	Silicoaluminophosphate molecular sieves as potential catalysts for hydroisomerization of alkanes and alkenes. Applied Catalysis A: General, 2014, 481, 143-160.	2.2	98
41	Revisiting active sites in heterogeneous catalysis: Their structure and their dynamic behaviour. Applied Catalysis A: General, 2014, 474, 40-50.	2.2	91
42	Electrolysis Process Analysis by Using Low Carbon Content Additives: A Batch Test Study. Energy Procedia, 2015, 72, 196-201.	1.8	5
43	Synthesis of Ethanol from Syngas over Rh/MCM-41 Catalyst: Effect of Water on Product Selectivity. Catalysts, 2015, 5, 1737-1755.	1.6	19
44	Correlation between the Photocatalytic Degradability of PAHs over Pt/TiO ₂ -SiO ₂ in Water and Their Quantitative Molecular Structure. Journal of Nanomaterials, 2015, 2015, 1-11.	1.5	11
45	Nanoporous Materials as New Engineered Catalysts for the Synthesis of Green Fuels. Molecules, 2015, 20, 5638-5666.	1.7	77
46	Spectroscopic characterisation of hydroxyapatite and nanocrystalline apatite with grafted aminopropyltriethoxysilane: nature of silane–surface interaction. Journal of Materials Science, 2015, 50, 5746-5757.	1.7	39
47	Synthesis of mesoporous MCM-41 supported reduced graphene oxide-Fe catalyst for heterogeneous Fenton degradation of phenol. RSC Advances, 2015, 5, 103989-103998.	1.7	18
48	Catalysis in Diesel engine NO $<$ sub $><$ i $>xi></sub>aftertreatment: a review. Journal of Lithic Studies, 2015, 1, 155-173.$	0.1	57
49	Physicochemical properties of vanadium impregnated Al-PILCs: Effect of vanadium source. Applied Surface Science, 2015, 330, 455-464.	3.1	6
50	Enhanced diesel fuel fraction from waste high-density polyethylene and heavy gas oil pyrolysis using factorial design methodology. Waste Management, 2015, 36, 166-176.	3.7	20
51	UV Raman Spectroscopic Characterization of Catalysts and Catalytic Active Sites. Catalysis Letters, 2015, 145, 468-481.	1.4	40
52	Catalysts for Thermochemical Conversion of Biomass. , 2015, , 109-132.		10
53	NiMo catalysts supported on graphene-modified mesoporous TiO2 toward highly efficient hydrodesulfurization of dibenzothiophene. Applied Catalysis A: General, 2015, 502, 157-165.	2.2	34
54	Elemental distribution and porosity enhancement in advanced nano bimetallic catalyst. Powder Technology, 2015, 280, 42-52.	2.1	5
55	Effect of syngas conversion and catalyst reduction temperature in the synthesis of ethanol: concentration of water vapor in mesoporous Rh/MCM-41 catalyst. Catalysis Communications, 2015, 69, 183-187.	1.6	6
56	Swelling and Interlayer Chemistry of Layered MWW Zeolites MCM-22 and MCM-56 with High Al Content. Chemistry of Materials, 2015, 27, 4620-4629.	3.2	64
57	Acid–base characterization of heterogeneous catalysts: an up-to-date overview. Research on Chemical Intermediates, 2015, 41, 9387-9423.	1.3	76

#	Article	IF	Citations
58	The ADOR mechanism for the synthesis of new zeolites. Chemical Society Reviews, 2015, 44, 7177-7206.	18.7	275
59	3D ordered mesoporous Fe-KIT-6 catalysts for methylcyclopentane (MCP) conversion and carbon dioxide (CO2) hydrogenation for energy and environmental applications. Applied Catalysis A: General, 2015, 504, 672-681.	2.2	51
60	Macroporous Helical Silica Immobilizing Cobalt-Salen Complex Catalyzed Asymmetric Hydrolytic Kinetic Resolution of Epoxides. Catalysis Surveys From Asia, 2015, 19, 236-248.	1.0	4
61	Aromatization of n-hexane over Ga, Mo and Zn modified H-ZSM-5 zeolite catalysts. Catalysis Communications, 2015, 72, 49-52.	1.6	80
62	Urea-containing metal-organic frameworks as heterogeneous organocatalysts. Journal of Materials Chemistry A, 2015, 3, 20408-20415.	5.2	54
63	Operando characterization and DFT modelling of nanospinels: Some examples showing the relationship with catalytic activity. Applied Catalysis A: General, 2015, 504, 631-641.	2.2	11
64	Mesoporous silico-aluminophosphates derived from microporous precursors as promising catalyst for hydroisomerization. Catalysis Today, 2015, 245, 155-162.	2.2	19
65	Mesoporous silica supported Rh catalysts for high concentration N2O decomposition. Applied Catalysis B: Environmental, 2015, 165, 158-168.	10.8	50
66	Improving the catalytic performances of metal nanoparticles by combining shape control and encapsulation. Applied Catalysis A: General, 2015, 504, 504-508.	2.2	12
67	Influence of oxygen nonstoichiometry and doping with 2p-, 3p-, 6p- and 3d-elements on electronic structure, optical properties and photocatalytic activity of rutile and anatase: Ab initio approaches. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 22, 58-83.	5.6	28
68	Boron nitride supported Pd catalysts for the hydrogenation of lactose. Catalysis Today, 2015, 241, 200-207.	2.2	31
69	Improved photocatalytic activity in a surfactant-assisted synthesized Ti-containing MOF photocatalyst under blue LED irradiation. New Journal of Chemistry, 2015, 39, 931-937.	1.4	23
70	Comparison between a Water-Based and a Solvent-Based Impregnation Method towards Dispersed CuO/SBA-15 Catalysts: Texture, Structure and Catalytic Performance in Automotive Exhaust Gas Abatement. Catalysts, 2016, 6, 164.	1.6	14
71	Porous aluminosilicate inorganic polymers (geopolymers): a new class of environmentally benign heterogeneous solid acid catalysts. Applied Catalysis A: General, 2016, 524, 173-181.	2.2	57
72	Framework-substituted cerium MCM-22 zeolite and its interlayer expanded derivative MWW-IEZ. Catalysis Science and Technology, 2016, 6, 2742-2753.	2.1	27
73	Submerged Barriers in the Ni ⁺ Assisted Decomposition of Propionaldehyde. Journal of Physical Chemistry A, 2016, 120, 2275-2284.	1.1	5
74	Effect of titanium source on structural properties and acidity of Ti-pillared bentonite. Chemical Papers, 2016, 70, .	1.0	9
75	Hollow Core–Shell Titania Photocatalysts for Selective Organic Synthesis. Nanostructure Science and Technology, 2016, , 137-146.	0.1	0

#	Article	IF	CITATIONS
76	Power-to-Fuel and Artificial Photosynthesis for Chemical Energy Storage., 2016,, 493-566.		0
77	Graphene-Based Metal-Free Catalysts for Catalytic Reactions in the Liquid Phase. ACS Catalysis, 2016, 6, 6948-6958.	5.5	104
78	Transformations of Organic Molecules over Metal Surfaces: Insights from Computational Catalysis. Chemical Record, 2016, 16, 2388-2404.	2.9	14
79	Selectively forming light olefins via macroporous iron-based Fischer–Tropsch catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2016, 119, 457-468.	0.8	7
80	Ruthenium nanoparticles supported over mesoporous TiO ₂ as an efficient bifunctional nanocatalyst for esterification of biomass-derived levulinic acid and transfer-hydrogenation reactions. RSC Advances, 2016, 6, 73440-73449.	1.7	16
81	ZrO2/MoS2 heterojunction photocatalysts for efficient photocatalytic degradation of methyl orange. Electronic Materials Letters, 2016, 12, 812-823.	1.0	44
82	Generation of singlet oxygen on the surface of metal oxides. Optics and Spectroscopy (English) Tj ETQq0 0 0 rgB1	Overloc 0.2	R 10 Tf 50 50
83	Interconversion of the CDO Layered Precursor ZSM-55 between FER and CDO Frameworks by Controlled Deswelling and Reassembly. Chemistry of Materials, 2016, 28, 3616-3619.	3.2	16
84	Facile synthesis of crystalline nanoporous Mg3(PO4)2 and its application to aerobic oxidation of alcohols. Catalysis Communications, 2016, 84, 129-133.	1.6	11
85	Effect of Zeolite Membrane Shell Thickness on Reactant Selectivity for Hydrocarbon Steam Reforming Using Layered Catalysts. Energy & Samp; Fuels, 2016, 30, 5300-5308.	2.5	14
86	Preparation, Characterization, and Testing of a Carbon-Supported Catalyst Obtained by Slow Pyrolysis of Nickel Salt Impregnated Vegetal Material. Industrial & Engineering Chemistry Research, 2016, 55, 1491-1502.	1.8	16
87	Nano-CuFe2O4-supported sulfonic acid as a novel and recyclable nanomagnetic acid for diazotization of aromatic amines: efficient synthesis of various azo dyes. Journal of the Iranian Chemical Society, 2016, 13, 1045-1054.	1.2	9
88	Self-functionalization of cellular alumina monoliths in hydrothermal conditions. Journal of the European Ceramic Society, 2016, 36, 1053-1058.	2.8	3
89	Heterogeneous partial oxidation catalysis on metal oxides. Comptes Rendus Chimie, 2016, 19, 1203-1225.	0.2	72
90	Stability and nucleation of Ir n (n = $1\hat{a}\in$ "5) clusters on different \hat{i}^3 -Al 2 O 3 surfaces: A density functional theory study. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 718-725.	0.9	8
91	Two-dimensional zeolites in catalysis: current status and perspectives. Catalysis Science and Technology, 2016, 6, 2467-2484.	2.1	161
92	Catalytic properties and activity of copper and silver containing Al-pillared bentonite for CO oxidation. Journal of Molecular Structure, 2016, 1106, 382-389.	1.8	12
93	Mesoporous helical silica immobilizing manganese(III)-salen complex for oxidative kinetic resolution of secondary alcohols. Journal of Porous Materials, 2016, 23, 19-33.	1.3	7

#	ARTICLE	IF	CITATIONS
94	Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment. Chemical Engineering Journal, 2017, 310, 407-427.	6.6	247
95	Industrial-Quality Graphene Oxide Switched Highly Efficient Metal- and Solvent-Free Synthesis of β-Ketoenamines under Feasible Conditions. ACS Sustainable Chemistry and Engineering, 2017, 5, 1253-1259.	3.2	26
96	Effect of zeolite pore morphology on solvent-less alkylation of benzene with 1-hexene. Materials Today Chemistry, 2017, 4, 45-52.	1.7	13
97	Influence of a ZrO ₂ Support and Its Surface Structures on the Stability and Nucleation of Pt <i>>_n</i> (<i>n</i> = 1–5) Clusters: A Density Functional Theory Study. Journal of Physical Chemistry B, 2017, 121, 2132-2141.	1.2	25
98	Structural, optical, and improved photocatalytic properties of CdS/SnO 2 hybrid photocatalyst nanostructure. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 221, 63-72.	1.7	34
99	Exploring structural features of USY zeolite in the catalytic cracking of Jatropha Curcas L. seed oil towards higher gasoline/diesel yield and lower CO2 emission. Fuel, 2017, 202, 563-571.	3.4	26
100	H-ZSM-5 zeolite model crystals: Structure-diffusion-activity relationship in methanol-to-olefins catalysis. Journal of Catalysis, 2017, 345, 11-23.	3.1	96
102	Novel eco-friendly biocatalyst: soybean peroxidase immobilized onto activated carbon obtained from agricultural waste. RSC Advances, 2017, 7, 16460-16466.	1.7	34
104	Mechanochemical Synthesis of Dipeptides Using Mgâ€Al Hydrotalcite as Activating Agent under Solventâ€Free Reaction Conditions. European Journal of Organic Chemistry, 2017, 2017, 687-694.	1.2	37
105	Facile synthesis of new hierarchical aluminosilicate inorganic polymer solid acids and their catalytic performance in alkylation reactions. Microporous and Mesoporous Materials, 2017, 241, 316-325.	2.2	27
106	Cost-Effective Catalytic Materials for AOP Treatment Units. Handbook of Environmental Chemistry, 2017, , 309-343.	0.2	6
107	NO oxidation catalyzed by Ir4-based nanoclusters: the role of alloying on the catalytic activity. Theoretical Chemistry Accounts, 2017, 136, 1.	0.5	1
108	Water splitting catalyzed by titanium dioxide decorated with plasmonic nanoparticles. Pure and Applied Chemistry, 2017, 89, 1817-1827.	0.9	28
109	Embedded Cluster Model for Al ₂ O ₃ and AlPO ₄ Surfaces Using Point Charges and Periodic Electrostatic Potential. Journal of Physical Chemistry C, 2017, 121, 20242-20253.	1.5	7
110	Boosting Chemical Stability, Catalytic Activity, and Enantioselectivity of Metal–Organic Frameworks for Batch and Flow Reactions. Journal of the American Chemical Society, 2017, 139, 13476-13482.	6.6	110
111	Grand challenges for catalysis in the Science and Technology Roadmap on Catalysis for Europe: moving ahead for a sustainable future. Catalysis Science and Technology, 2017, 7, 5182-5194.	2.1	71
112	Valorization of waste "date seeds―bio-glycerol for synthesizing oxidative green fuel additive. Journal of Cleaner Production, 2017, 165, 1090-1096.	4.6	16
113	State of the art and prospective of lipase-catalyzed transesterification reaction for biodiesel production. Energy Conversion and Management, 2017, 141, 339-353.	4.4	246

#	Article	IF	CITATIONS
114	MOF catalysts in biomass upgrading towards value-added fine chemicals. CrystEngComm, 2017, 19, 4092-4117.	1.3	166
115	New Paradigms and Future Critical Directions in Heterogeneous Catalysis and Multifunctional Reactors. Chemical Engineering Communications, 2017, 204, 1-27.	1.5	9
116	Sixteen isostructural phosphonate metal-organic frameworks with controlled Lewis acidity and chemical stability for asymmetric catalysis. Nature Communications, 2017, 8, 2171.	5.8	97
117	0D, 1D, 2D, and 3D Soft and Hard Templates for Catalysis. Studies in Surface Science and Catalysis, 2017, , 317-357.	1.5	2
118	Recent Overview on the Abatement of Pesticide Residues in Water by Photocatalytic Treatment Using TiO2. , 0, , .		11
119	Two-Dimensional Silica-Based Inorganic Networks. , 2017, , 475-501.		1
120	In Situ X-Ray Absorption Spectroscopy Studies of Functional Nanomaterials., 2018,, 159-188.		1
121	Major Advances and Challenges in Heterogeneous Catalysis for Environmental Applications: A Review. Ecological Chemistry and Engineering S, 2018, 25, 9-34.	0.3	58
122	Feasibility of modified bentonite as acidic heterogeneous catalyst in low temperature catalytic cracking process of biofuel production from nonedible vegetable oils. Journal of Molecular Liquids, 2018, 254, 260-266.	2.3	51
123	Palladiumâ€Loaded Cucurbit[7]urilâ€Modified Iron Oxide Nanoparticles for Câ^'C Crossâ€Coupling Reactions. Chemistry - A European Journal, 2018, 24, 2349-2353.	1.7	14
124	The role of water in the reusability of aminated silica catalysts for aldol reactions. Journal of Catalysis, 2018, 361, 51-61.	3.1	39
125	Preparation of CuO/SBA-15 catalyst by the modified ammonia driven deposition precipitation method with a high thermal stability and an efficient automotive CO and hydrocarbons conversion. Applied Catalysis B: Environmental, 2018, 223, 103-115.	10.8	30
126	Pillaring of layered zeolite precursors with ferrierite topology leading to unusual molecular sieves on the micro/mesoporous border. Dalton Transactions, 2018, 47, 3029-3037.	1.6	16
127	The effect of hot liquid water treatment on the properties and catalytic activity of MWW zeolites with various layered structures. Catalysis Today, 2018, 304, 22-29.	2.2	10
128	Controllable synthesis of mesoporous cobalt oxide for peroxide free catalytic epoxidation of alkenes under aerobic conditions. Applied Catalysis B: Environmental, 2018, 221, 681-690.	10.8	61
129	Synthesis, optical properties and efficient photocatalytic activity of CdO/ZnO hybrid nanocomposite. Journal of Physics and Chemistry of Solids, 2018, 112, 20-28.	1.9	109
130	Zeolite constructor kit: Design for catalytic applications. Catalysis Today, 2018, 304, 2-11.	2.2	10
131	Photocatalytic oxidation of six pesticides listed as endocrine disruptor chemicals from wastewater using two different TiO2 samples at pilot plant scale under sunlight irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 353, 271-278.	2.0	52

#	ARTICLE	IF	CITATIONS
132	Pulse EPR Study of Gas Adsorption in Cu2+-Doped Metal–Organic Framework [Zn2(1,4-bdc)2(dabco)]. Applied Magnetic Resonance, 2018, 49, 255-264.	0.6	20
133	Removal of methyl orange by heterogeneous Fenton catalysts prepared using glycerol as green reducing agent. Environmental Technology (United Kingdom), 2018, 39, 2822-2833.	1.2	8
134	Metal–Organic Frameworks-Based Catalysts for Biomass Processing. Catalysts, 2018, 8, 368.	1.6	40
135	Sonochemically synthesized Ag/CaCO3 nanocomposites: A highly efficient reusable catalyst for reduction of 4-nitrophenol. Materials Chemistry and Physics, 2018, 220, 409-416.	2.0	23
136	An approach to classification and hi-tech applications of room-temperature ionic liquids (RTILs): A review. Journal of Molecular Liquids, 2018, 271, 403-420.	2.3	78
137	Fundamentals of heterogeneous catalysis. , 2018, , 1-41.		17
138	Metal-free heterogeneous and mesoporous biogenic graphene-oxide nanoparticle-catalyzed synthesis of bioactive benzylpyrazolyl coumarin derivatives. RSC Advances, 2018, 8, 17373-17379.	1.7	26
139	Concluding remarks and challenges of heterogeneous catalysis on metal oxides * *Personal views and conclusions/challenges drawn for the different chapters in this book. , 2018, , 551-569.		7
140	Nanomagnetic-Supported Catalysts. , 2018, , 333-371.		5
141	Mechanism of heterogeneous catalytic oxidation of organic compounds to carboxylic acids. Russian Chemical Reviews, 2018, 87, 586-603.	2.5	10
142	Synthesis of glycerol carbonate over a 2D coordination polymer built with Nd ³⁺ ions and organic ligands. Dalton Transactions, 2018, 47, 10976-10988.	1.6	3
143	Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nature Catalysis, 2018, 1, 385-397.	16.1	725
144	Carbonaceous materials modified catalysts for simultaneous SO ₂ /NO _x removal from flue gas: A review. Catalysis Reviews - Science and Engineering, 2019, 61, 134-161.	5.7	61
145	2D Oxide Nanomaterials to Address the Energy Transition and Catalysis. Advanced Materials, 2019, 31, e1801712.	11.1	88
146	Continuous-Flow Process for Glycerol Conversion to Solketal Using a Brönsted Acid Functionalized Carbon-Based Catalyst. Catalysts, 2019, 9, 609.	1.6	18
147	Porous ceramic nanofibers as new catalysts toward heterogeneous reactions. Composites Communications, 2019, 15, 168-178.	3.3	39
148	Understanding the role of catalytic active sites for heterogeneous photocatalytic oxidation of methanol and thermal reduction of NOx. Molecular Catalysis, 2019, 476, 110505.	1.0	5
149	Atomic layer deposited photocatalysts: comprehensive review on viable fabrication routes and reactor design approaches for photo-mediated redox reactions. Journal of Materials Chemistry A, 2019, 7, 17703-17734.	5.2	31

#	Article	IF	CITATIONS
150	Importance, features and uses of metal oxide catalysts in heterogeneous catalysis. Chinese Journal of Catalysis, 2019, 40, 1627-1636.	6.9	95
151	Selective oxidation of thioanisole by titanium complexes immobilized on mesoporous silica nanoparticles: elucidating the environment of titanium(iv) species. Catalysis Science and Technology, 2019, 9, 620-633.	2.1	16
152	Effect of ball milling on optical properties and visible photocatalytic activity of Fe doped ZnO nanoparticles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 240, 33-40.	1.7	44
153	Designing and Fabricating Ordered Mesoporous Metal Oxides for CO2 Catalytic Conversion: A Review and Prospect. Materials, 2019, 12, 276.	1.3	29
154	Removing NO _x , CO and HC from automobile exhaust based on chemical looping combustion. Journal of Chemical Technology and Biotechnology, 2019, 94, 2969-2979.	1.6	3
155	Removal of Pesticides with Endocrine Disruptor Activity in Wastewater Effluent by Solar Heterogeneous Photocatalysis Using ZnO/Na2S2O8. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	19
156	A new layered MWW zeolite synthesized with the bifunctional surfactant template and the updated classification of layered zeolite forms obtained by direct synthesis. Journal of Materials Chemistry A, 2019, 7, 7701-7709.	5.2	41
157	Enhancement of photodegradation efficiency, photoluminescence quantum yield, and magnetization in highly Yb3+-doped CdO nanoparticles synthesized via sol–gel method. Research on Chemical Intermediates, 2019, 45, 3183-3198.	1.3	6
158	Binary Oxides Prepared by Microwave-Assisted Solution Combustion: Synthesis, Characterization and Catalytic Activity. Materials, 2019, 12, 910.	1.3	6
159	A study of the external and internal sites of 2D and 3D zeolites through the FTIR investigation of the adsorption of ammonia and pivalonitrile. Applied Catalysis A: General, 2019, 578, 63-69.	2.2	11
160	Discrete Polyoxopalladates as Molecular Precursors for Supported Palladium Metal Nanoparticles as Hydrogenation Catalysts. Inorganic Chemistry, 2019, 58, 5576-5582.	1.9	24
161	Electrospun Nanofibers for Catalysts. , 2019, , 695-717.		14
162	Free fatty acids esterification catalyzed by acid Faujasite type zeolite. RSC Advances, 2019, 9, 4900-4907.	1.7	22
163	Si-MCM-41 obtained from different sources of silica and its application as support for nickel catalysts used in dry reforming of methane. International Journal of Hydrogen Energy, 2019, 44, 32003-32018.	3.8	32
164	Visible-light assisted CdO nanowires photocatalyst for toxic dye degradation studies. Optik, 2019, 179, 535-544.	1.4	35
165	Metal Oxides in Heterogeneous Oxidation Catalysis: State of the Art and Challenges for a More Sustainable World. ChemSusChem, 2019, 12, 577-588.	3.6	179
166	Solar photocatalytic reclamation of agro-waste water polluted with twelve pesticides for agricultural reuse. Chemosphere, 2019, 214, 839-845.	4.2	39
167	Environmental Catalysis: Present and Future. ChemCatChem, 2019, 11, 18-38.	1.8	87

#	ARTICLE	IF	CITATIONS
168	A novel method of synthesis and a new insight into the vanadium incorporation in three dimensional mesoporous KIT-6. Materials Research Express, 2019, 6, 015021.	0.8	4
169	Structural transformation and chemical modifications of the unusual layered zeolite MWW form SSZ-70. Catalysis Today, 2020, 354, 133-140.	2.2	11
170	Synthesis of mesoporous ZSM-5 zeolite encapsulated in an ultrathin protective shell of silicalite-1 for MTH conversion. Microporous and Mesoporous Materials, 2020, 292, 109730.	2.2	44
171	Multicomponent Reductive Crossâ€Coupling of an Inorganic Sulfur Dioxide Surrogate: Straightforward Construction of Diversely Functionalized Sulfones. Angewandte Chemie, 2020, 132, 1362-1369.	1.6	25
172	Multicomponent Reductive Crossâ€Coupling of an Inorganic Sulfur Dioxide Surrogate: Straightforward Construction of Diversely Functionalized Sulfones. Angewandte Chemie - International Edition, 2020, 59, 1346-1353.	7.2	159
173	Sustainability in Catalytic Cyclohexane Oxidation: The Contribution of Porous Support Materials. Catalysts, 2020, 10, 2.	1.6	16
174	Metal organic frameworks as solid catalysts for liquid-phase continuous flow reactions. Chemical Communications, 2020, 56, 26-45.	2.2	47
175	Recyclable Solid-Supported Catalysts for Quaternary Ammonium Iodide-Catalyzed Living Radical Polymerization. Macromolecules, 2020, 53, 51-58.	2.2	22
176	Multi-purpose structured catalysts designed and manufactured by 3D printing. Materials and Design, 2020, 187, 108377.	3.3	31
177	The role of H2 on the stability of the single-metal-site Ir1/AC catalyst for heterogeneous methanol carbonylation. Journal of Catalysis, 2020, 381, 193-203.	3.1	21
178	Synthesis of Ce-MCM-22 and its enhanced catalytic performance for the removal of olefins from aromatic stream. Journal of Porous Materials, 2020, 27, 1649-1658.	1.3	10
179	Radio Frequency Driven Heating of Catalytic Reactors for Portable Green Chemistry. Advanced Sustainable Systems, 2020, 4, 2000095.	2.7	8
180	Salt-washing Improvement of the Electrochemical Properties of Zeolite-sulfur Cathode for Lithium-sulfur Batteries. Journal Wuhan University of Technology, Materials Science Edition, 2020, 35, 665-670.	0.4	2
181	Catalytic cracking of polyethylene terephthalate (PET) plastic waste and palm fibre mixtures using Ni-USY zeolite catalyst. Journal of Physics: Conference Series, 2020, 1567, 022034.	0.3	1
182	Catalytic Cracking of n-Hexadecane Using Carbon Nanostructures/Nano-Zeolite-Y Composite Catalyst. Catalysts, 2020, 10, 1385.	1.6	6
183	Solid Nanoporosity Governs Catalytic CO ₂ and N ₂ Reduction. ACS Nano, 2020, 14, 7734-7759.	7.3	59
184	End-of-life recycling rates of platinum group metals in the automotive industry: Insight into regional disparities. Journal of Cleaner Production, 2020, 266, 121942.	4.6	40
185	Development of tethered dual catalysts: synergy between photo- and transition metal catalysts for enhanced catalysis. Chemical Science, 2020, 11, 6256-6267.	3.7	20

#	Article	IF	CITATIONS
186	Nanotechnology and remediation of agrochemicals. , 2020, , 487-533.		5
187	Chemical Synthesis of Single Atomic Site Catalysts. Chemical Reviews, 2020, 120, 11900-11955.	23.0	806
188	Versatile bifunctional nitrogen-doped porous carbon derived from biomass in catalytic reduction of 4-nitrophenol and oxidation of styrene. Chinese Journal of Catalysis, 2020, 41, 1217-1229.	6.9	36
189	Functionalized Metal-Organic Framework Catalysts for Sustainable Biomass Valorization. Advances in Polymer Technology, 2020, 2020, 1-11.	0.8	10
190	Recent Development of Catalytic Materials for Ethylbenzene Oxidation. Journal of Nanomaterials, 2020, 2020, 1-20.	1.5	11
191	Ensembles of Metastable States Govern Heterogeneous Catalysis on Dynamic Interfaces. Accounts of Chemical Research, 2020, 53, 447-458.	7.6	134
192	Study of ethylbenzene oxidation over polymer-silica hybrid supported Co (II) and Cu (II) complexes. Catalysis Today, 2021, 375, 601-613.	2.2	17
193	Heterogeneous carbon-based catalyst modified by alkaline earth metal oxides for biodiesel production: Parametric and kinetic study. Energy Conversion and Management: X, 2021, 10, 100047.	0.9	28
194	Green synthesis of faujasite-La0.6Sr0.4Co0.2Fe0.8O3-δ mineral nanocomposite membrane for low temperature advanced fuel cells. International Journal of Hydrogen Energy, 2021, 46, 9826-9834.	3.8	13
195	Catalytic performance of a metal-free graphene oxide-Al2O3 composite assembled by 3D printing. Journal of the European Ceramic Society, 2021, 41, 1399-1406.	2.8	12
196	New aspects of covalent triazine frameworks in heterogeneous catalysis. , 2021, , 1-32.		1
197	Atom migration-trapping towardÂsingle-atom catalysts for energy electrocatalysis. Materials Today Energy, 2021, 19, 100586.	2.5	15
198	Green palladium nanoparticles prepared with glycerol and supported on maghemite for dye removal application. Journal of Environmental Chemical Engineering, 2021, 9, 104856.	3.3	12
199	Synergistic catalysis by Mn promoted ceria for molecular oxygen assisted epoxidation. Applied Catalysis B: Environmental, 2021, 282, 119573.	10.8	39
200	Pyrolysis of oil sludge from the offshore petroleum industry: influence of different mesoporous zeolites catalysts to obtain paraffinic products. Environmental Technology (United Kingdom), 2021, 42, 1013-1022.	1.2	23
201	Current heterogeneous catalytic processes for environmental remediation of air, water, and soil. Interface Science and Technology, 2021, , 443-498.	1.6	0
202	The design and synthesis of heterogeneous catalysts for environmental applications. Dalton Transactions, 2021, 50, 4765-4771.	1.6	12
203	Al-ZSM-5 Nanocrystal Catalysts Grown from Silicalite-1 Seeds for Methane Conversion. Energies, 2021, 14, 485.	1.6	10

#	Article	IF	CITATIONS
204	MWW and MFI Frameworks as Model Layered Zeolites: Structures, Transformations, Properties, and Activity. ACS Catalysis, 2021, 11, 2366-2396.	5.5	63
205	Liquid-Phase Peak Force Infrared Microscopy for Chemical Nanoimaging and Spectroscopy. Analytical Chemistry, 2021, 93, 3567-3575.	3.2	17
206	Mechanochemical Synthesis of Catalytic Materials. Chemistry - A European Journal, 2021, 27, 6819-6847.	1.7	130
207	Non-hydrolytic sol–gel as a versatile route for the preparation of hybrid heterogeneous catalysts. Journal of Sol-Gel Science and Technology, 2021, 97, 505-522.	1.1	10
208	"Desert Rose―MCM-22 microsphere: Synthesis, formation mechanism and alkylation performance. Microporous and Mesoporous Materials, 2021, 315, 110910.	2.2	16
209	Precisely Constructed Silver Active Sites in Gold Nanoclusters for Chemical Fixation of CO ₂ . Angewandte Chemie - International Edition, 2021, 60, 10573-10576.	7.2	60
210	Precisely Constructed Silver Active Sites in Gold Nanoclusters for Chemical Fixation of CO ₂ . Angewandte Chemie, 2021, 133, 10667-10670.	1.6	21
211	Silver nanoparticles embedded on in-vitro biomineralized vaterite: A highly efficient catalyst with enhanced catalytic activity towards 4-Nitrophenol reduction. Molecular Catalysis, 2021, 504, 111433.	1.0	17
212	Photocatalytic C–H Activation with Alcohol as a Hydrogen Atom Transfer Agent in a 9-Fluorenone Based Metal–Organic Framework. ACS Applied Materials & Samp; Interfaces, 2021, 13, 25898-25905.	4.0	12
213	Pulsed Laser in Liquids Made Nanomaterials for Catalysis. Chemical Reviews, 2021, 121, 7568-7637.	23.0	100
214	Oxidative Strong Metal–Support Interactions. Catalysts, 2021, 11, 896.	1.6	16
215	3D Magnetic Field-Controlled Synthesis, Collective Motion, and Bioreaction Enhancement of Multifunctional Peasecod-like Nanochains. ACS Applied Materials & Samp; Interfaces, 2021, 13, 36157-36170.	4.0	14
216	Fabrication and Sterilization Characteristics of Visible Light Photocatalyst of CuO/ZrO2/CB/Coal-Tar-Pitch-SAC. Coatings, 2021, 11, 816.	1.2	3
217	Hybrid Porous Crystalline Materials from Metal Organic Frameworks and Covalent Organic Frameworks. Advanced Science, 2021, 8, e2101883.	5.6	83
218	\hat{I}^3 -Valerolactone synthesis from \hat{I} ±-angelica lactone and levulinic acid over biobased multifunctional nanohybrid catalysts. Catalysis Today, 2022, 394-396, 268-281.	2.2	7
219	Maghemite/ZnO nanocomposites: A highly efficient, reusable and non-noble metal catalyst for reduction of 4-nitrophenol. Advanced Powder Technology, 2021, 32, 2905-2915.	2.0	14
220	How the Ti Precursor is Involved in the Effectiveness of Pt-TiO2 Materials in Photodegrading Methyl Orange. Revista Facultad De Ciencias $B\tilde{A}_i$ sicas, 2021, 16, 21-30.	0.2	2
221	Regulation of Strong Metalâ€Support Interaction by Alkaline Earth Metal Salts. Chemistry - an Asian Journal, 2021, 16, 2633-2640.	1.7	4

#	Article	IF	CITATIONS
222	Influence of N-Substituents on the Adsorption Geometry of OH-Functionalized Chiral N-Heterocyclic Carbenes. Langmuir, 2021, 37, 10029-10035.	1.6	18
223	Platinum nanoparticles supported on zeolite MWW nanosheets prepared via homogeneous solution route. Catalysis Today, 2022, 390-391, 335-342.	2.2	1
224	Single sites in heterogeneous catalysts: separating myth from reality. Trends in Chemistry, 2021, 3, 850-862.	4.4	23
225	Versatile functionalized mesoporous Zr/SBA-15 for catalytic transfer hydrogenation and oxidation reactions. Renewable Energy, 2021, 178, 1070-1083.	4.3	12
226	Modular Design of Advanced Catalytic Materials Using Hybrid Organic–Inorganic Raspberry Particles. Advanced Functional Materials, 2018, 28, 1704559.	7.8	31
227	Highly selective and stable Zn–Fe/ZSM-5 catalyst for aromatization of propane. Applied Petrochemical Research, 2020, 10, 55-65.	1.3	20
228	In-situ confinement of ultrasmall palladium nanoparticles in silicalite-1 for methane combustion with excellent activity and hydrothermal stability. Applied Catalysis B: Environmental, 2020, 276, 119142.	10.8	61
229	Molecular reactions and oxidation corrosion on UN (001) surface under exposure to environment gases: A DFT study. Journal of Nuclear Materials, 2020, 533, 152095.	1.3	5
230	Development of new technological solutions for recovery of heavy nonÂferrous metals from technogenic waste of electroplating plants and sludge of water treatment systems. Eastern-European Journal of Enterprise Technologies, 2018, 2, 17-24.	0.3	4
231	REMOVAL OF CADMIUM (II) FROM AQUEOUS MEDIA USING COOH/TUD-1 MESOPOROUS SOLID. KINETIC AND THERMODYNAMIC STUDIES. Environmental Engineering and Management Journal, 2014, 13, 2675-2686.	0.2	9
232	Catalytic activity enhancement in pillared zeolites produced from exfoliated MWW monolayers in solution. Catalysis Today, 2022, 390-391, 272-280.	2,2	5
233	Effects of Cerium, Iron and Copper Incorporation on the Structural Properties and Activities of Ti-Pillared Bentonites. Cumhuriyet Science Journal, 2018, 39, 477-495.	0.1	1
234	The Effects of Catalyst Carrier and Reaction Conditions on the Hydrogenation Deoxidation of Bio-Oil Model Compound Phenol. Journal of Organic Chemistry Research, 2019, 07, 1-10.	0.1	0
236	Roles of Coordination Geometry in Single-Atom Catalysts. ACS Symposium Series, 2020, , 37-76.	0.5	4
237	Effect of the simultaneous presence of sodium and potassium cations on the hydrothermal synthesis of MCM-22 zeolite. Research, Society and Development, 2021, 10, e192101421744.	0.0	0
238	CHAPTER 3. Aerobic Oxidation Reactions Using Metal-based Heterogeneous Systems. RSC Catalysis Series, 2020, , 50-77.	0.1	O
239	Homogeneous Catalysis for Sustainable Energy: Hydrogen and Methanol Economies, Fuels from Biomass, and Related Topics. Chemical Reviews, 2022, 122, 385-441.	23.0	223
240	Acid-Base Properties of Cobalt Ferrite Surface Examined by Different PhysicoÑhemical Methods. Theoretical Foundations of Chemical Engineering, 2020, 54, 1306-1313.	0.2	2

#	Article	IF	CITATIONS
241	Mesoporous CuO/TiO2 catalysts prepared by the ammonia driven deposition precipitation method for CO preferential oxidation: Effect of metal loading. Fuel, 2022, 311, 122491.	3.4	12
242	<i>In situ</i> observation of heterogeneous catalytic organic reactions <i>via</i> aggregation-induced emission luminogens. Chemical Communications, 2022, 58, 1601-1604.	2.2	6
243	The utilization of ball-mill in the fabrication of metallic titanium incorporated carbon nitride as an active visible light sensitive photocatalyst. Inorganic Chemistry Communication, 2022, 137, 109194.	1.8	1
244	Microscopic mechanisms of cooperative communications within single nanocatalysts. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	5
245	Progress in Development of Magadiite to Produce Multifunctional Lamellar Materials. ACS Applied Materials & Samp; Interfaces, 2022, , .	4.0	2
246	An excellent universal catalyst support-mesoporous silica: Preparation, modification and applications in energy-related reactions. International Journal of Hydrogen Energy, 2022, 47, 9537-9565.	3.8	23
247	Dicarbonyl compounds in the synthesis of heterocycles under green conditions. ChemistrySelect, 2020, .	0.7	1
248	Coupling mesoscale transport to catalytic surface reactions in a hybrid model. Journal of Chemical Physics, 2022, 156, 084105.	1.2	2
249	<scp>Singleâ€atom</scp> catalysts supported on ordered porous materials: Synthetic strategies and applications. InformaÄnÄ-MateriÄ¡ly, 2022, 4, .	8.5	32
250	Adsorption of Pb2+ ions in aqueous media using the new zeolite nanocomposite adsorbent CaOCdO/ZSM5 synthesized with new techniques. Open Journal of Analytical and Bioanalytical Chemistry, 2022, 6, 001-003.	0.4	0
251	A novel physisorption model based on mathematical morphology operators preserving exact pore morphology and connectivity. Microporous and Mesoporous Materials, 2022, 337, 111847.	2,2	4
252	Carbon-based bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions: Optimization strategies and mechanistic analysis. Journal of Energy Chemistry, 2022, 71, 234-265.	7.1	78
253	Kinetic Modeling of Ethene Oligomerization on Bifunctional Nickel and Acid \hat{l}^2 Zeolites. Industrial & Engineering Chemistry Research, 2022, 61, 3860-3876.	1.8	5
254	Chromium oxide silica catalyst: Synthesis and characterization. Materials Today: Proceedings, 2021, , .	0.9	0
255	Shadowing Effect in Catalyst Activity: Experimental Observation. ACS Catalysis, 2022, 12, 5455-5463.	5.5	1
256	Preparation of Ca- and Na-Modified Activated Clay as a Promising Heterogeneous Catalyst for Biodiesel Production via Transesterification. Applied Sciences (Switzerland), 2022, 12, 4667.	1.3	4
257	Sulfur-doped graphitic carbon nitride decorated with starch, Fe3O4, and Ag nanoparticles: As efficient and magnetic recoverable nanocatalyst for hydrogenation of nitroaromatics in aqueous media. Diamond and Related Materials, 2022, 126, 109078.	1.8	4
258	High Yield Silica-Based Emerging Nanoparticles Activities for Hybrid Catalyst Applications. Topics in Catalysis, 2022, 65, 1706-1718.	1.3	12

#	Article	IF	CITATIONS
259	Green and high-efficiency synthesis of 2-hydroxyethyl acrylate with ion exchange resins as Cr(III) support and collector. Chemical Engineering Journal, 2022, 446, 137130.	6.6	5
260	Simple Model and Spectral Analysis for a Fluxional Catalyst: Intermediate Abundances, Pathway Fluxes, Rates, and Transients. ACS Catalysis, 2022, 12, 8038-8047.	5.5	4
261	Integrated processes involving adsorption, photolysis, and photocatalysis., 2022, , 117-153.		3
262	Biogenic Synthesis of Magnetic Palladium Nanoparticles Decorated Over Reduced Graphene Oxide Using Piper Betle Petiole Extract (Pd-rGO@Fe3O4 NPs) as Heterogeneous Hybrid Nanocatalyst for Applications in Suzuki-Miyaura Coupling Reactions of Biphenyl Compounds. Topics in Catalysis, 0, , .	1.3	12
263	Resolving the Effect of Oxygen Vacancies on Co Nanostructures Using Soft XAS/X-PEEM. ACS Catalysis, 2022, 12, 9125-9134.	5.5	9
264	Molecular and Electronic Structure of Isolated Platinum Sites Enabled by the Expedient Measurement of sup > 195 < sup > Pt Chemical Shift Anisotropy. Journal of the American Chemical Society, 2022, 144, 13511-13525.	6.6	14
265	Synthesis of Heterogeneous Catalysts in Catalyst Informatics to Bridge Experiment and High-Throughput Calculation. Journal of the American Chemical Society, 2022, 144, 15735-15744.	6.6	8
266	Recent advances in catalytic synthesis of pyridine derivatives. , 2023, , 503-580.		3
267	$\mbox{\ensuremath{\mbox{\scriptsize (i)}}}$ In situ $\mbox{\ensuremath{\mbox{\scriptsize (i)}}}$ study of the evolution of NiFe nanocatalysts in reductive and oxidative environments upon thermal treatments. Faraday Discussions, 0, , .	1.6	0
268	A Cu(<scp>ii</scp>) complex supported on Fe ₃ O ₄ @SiO ₂ as a magnetic heterogeneous catalyst for the reduction of environmental pollutants. RSC Advances, 2022, 12, 26527-26541.	1.7	3
269	Alkali-activated materials as catalysts in chemical processes. , 2022, , 355-379.		0
270	Surface Organometallic Chemistry for Single-site Catalysis and Single-atom Catalysis. Chemical Research in Chinese Universities, 2022, 38, 1139-1145.	1.3	4
271	Oxovanadium(IV)â€salophen covalently immobilized on silicaâ€coated Fe ₃ O ₄ nanoparticles: A magnetically recoverable nanocatalyst for the selective oxidation of sulfides. Applied Organometallic Chemistry, 2023, 37, .	1.7	2
272	Metal single atom doped 2D materials for photocatalysis: current status and future perspectives. Progress in Energy, 2023, 5, 012001.	4.6	9
273	Catalytic hydrodeoxygenation of corn cob and pinus bark derived lignin into hydrocarbons and phenols using Ru@CNF with mechanistic details. Biomass Conversion and Biorefinery, 0, , .	2.9	1
274	Trans-level multi-scale simulation of porous catalytic systems: Bridging reaction kinetics and reactor performance. Chemical Engineering Journal, 2023, 455, 140745.	6.6	3
275	Active-Site Determination and Mechanistic Insights in a MOF-Supported Polymerization Catalyst. Journal of Physical Chemistry C, 2022, 126, 20388-20394.	1.5	2
276	Collagen and Silk Fibroin as Promising Candidates for Constructing Catalysts. Polymers, 2023, 15, 375.	2.0	2

#	ARTICLE	IF	CITATIONS
277	Catalysts informatics: paradigm shift towards data-driven catalyst design. Chemical Communications, 2023, 59, 2222-2238.	2.2	16
278	Liquid Metal Patterning and Unique Properties for Nextâ€Generation Soft Electronics. Advanced Science, 2023, 10, .	5.6	29
279	Citric acid supported on melamine-based COP [CA@MIP] in metal-free on-water synthesis of quinazolinones., 2023, 1, 100002.		4
280	Isothiocyanate-functionalized silica as an efficient heterogeneous catalyst for carotenoid isomerization. Food Chemistry, 2023, 410, 135388.	4.2	6
281	Mechanistic Insights into Molecular Crystalline Organometallic Heterogeneous Catalysis through Parahydrogen-Based Nuclear Magnetic Resonance Studies. Journal of the American Chemical Society, 2023, 145, 2619-2629.	6.6	1
282	Exfoliating layered zeolite MFI into unilamellar nanosheets in solution as precursors for the synthesis of hierarchical nanocomposites and oriented films. Inorganic Chemistry Frontiers, 2023, 10, 1511-1521.	3.0	6
283	Green Synthesis and Photocatalytic Dye Degradation Activity of CuO Nanoparticles. Catalysts, 2023, 13, 502.	1.6	19
284	Novel Nanomaterials for Catalytic and Biological Applications. Crystals, 2023, 13, 427.	1.0	O
285	Acceleration of indirect detection 195Pt solid-state NMR experiments by sideband selective excitation or alternative indirect sampling schemes. Journal of Magnetic Resonance, 2023, 352, 107457.	1.2	0
286	Magnetic nanoparticles embedded hexagonal boron nitride tethered N-heterocyclic carbene-palladium(II): An efficient and reusable magnetic catalyst for fluoride-free Hiyama cross-coupling and 4-nitrophenol reduction reactions. Journal of Physics and Chemistry of Solids, 2023, 177, 111283.	1.9	6
287	Catalytic Conversion of Low Alcohol to Hydrocarbons: Challenges, Prospects, and Future Work Considerations. International Journal of Energy Research, 2023, 2023, 1-28.	2,2	5
290	Biodiesel Production from Waste Oil Catalysed by Metal-Organic Framework (MOF-5): Insights on Activity and Mechanism. Catalysts, 2023, 13, 503.	1.6	3
292	An expedient heterogeneous catalyst for one-pot tandem synthesis of 1-aryl-1, 2, 3-triazoles through Huisgen 1,3-cycloaddition. Research on Chemical Intermediates, 2023, 49, 2433-2453.	1.3	3
293	Friedel-Crafts acylation of anisole with acetic anhydride over single- to multiple-layer MWW zeolites: Catalytic behavior and kinetic mechanism. Chemical Engineering Journal, 2023, 466, 143098.	6.6	2
295	MOFganic Chemistry: Challenges and Opportunities for Metal–Organic Frameworks in Synthetic Organic Chemistry. Chemistry of Materials, 2023, 35, 4883-4896.	3.2	4
308	Megalibraries: Supercharged acceleration of materials discovery. MRS Bulletin, 2023, 48, 1172-1183.	1.7	1
311	Electrocatalysis with molecules and molecular assemblies within gas diffusion electrodes. Chemical Science, 2023, 14, 13696-13712.	3.7	0
323	Advanced Nanostructured Materials for Heterogeneous Catalysis—Past, Present and Future. Advances in Material Research and Technology, 2024, , 23-59.	0.3	0

#	Article	IF	CITATIONS
324	Hierarchical surface-modification of nano-Cu toward one pot H-transfer-coupling–cyclization–CO ₂ fixation tandem reactions. Materials Horizons, 2024, 11, 1957-1963.	6.4	0