Jump-robust volatility estimation using nearest neighb

Journal of Econometrics 169, 75-93 DOI: 10.1016/j.jeconom.2012.01.011

Citation Report

#	Article	IF	CITATIONS
1	Intraday Liquidity Dynamics of the DJIA Stocks Around Price Jumps. SSRN Electronic Journal, 0, , .	0.4	6
2	Jumps in High-Frequency Data: Spurious Detections, Dynamics, and News. SSRN Electronic Journal, 0, , .	0.4	19
3	Fact or Friction: Jumps at Ultra High Frequency. SSRN Electronic Journal, 0, , .	0.4	23
4	Empirical bias in intraday volatility measures. Finance Research Letters, 2012, 9, 231-237.	3.4	8
5	On the volatility–volume relationship in energy futures markets using intraday data. Energy Economics, 2012, 34, 1896-1909.	5.6	49
6	Realized Wavelet Jump-GARCH Model: Can Wavelet Decomposition of Volatility Improve its Forecasting?. SSRN Electronic Journal, 0, , .	0.4	1
7	Financial Risk Measurement for Financial Risk Management. Handbook of the Economics of Finance, 2013, , 1127-1220.	3.1	52
8	Measuring and Forecasting Volatility in Chinese Stock Market Using HAR-CJ-M Model. Abstract and Applied Analysis, 2013, 2013, 1-13.	0.3	33
9	The Analysis of Stochastic Volatility in the Presence of Daily Realized Measures. Journal of Financial Econometrics, 2013, 11, 76-115.	0.8	61
10	A new look at variance estimation based on low, high and closing prices taking into account the drift. Statistica Neerlandica, 2013, 67, 456-481.	0.9	14
11	Disentangling Continuous Volatility From Jumps in Long-Run Risk-Return Relationships. SSRN Electronic Journal, 2013, , .	0.4	0
12	Semiparametric Conditional Quantile Models for Financial Returns and Realized Volatility. SSRN Electronic Journal, 2013, , .	0.4	4
13	Price Jump Behavior During Financial Distress: Intuition, Analysis, and a Regulatory Perspective. , 2014, , 483-507.		1
14	The Economic Value of Realized Jumps: An Asset Allocation Perspective. SSRN Electronic Journal, 0, , .	0.4	0
15	Assessment of Uncertainty in High Frequency Data: The Observed Asymptotic Variance. SSRN Electronic Journal, 2014, , .	0.4	5
16	GARCH-Type Model with Continuous and Jump Variation for Stock Volatility and Its Empirical Study in China. Mathematical Problems in Engineering, 2014, 2014, 1-8.	0.6	0
17	A Frequency-Specific Factorization to Identify Commonalities with an Application to the European Bond Markets. SSRN Electronic Journal, 2014, , .	0.4	2
18	Coupling High-Frequency Data with Nonlinear Models in Multiple-Step-Ahead Forecasting of Energy Markets' Volatility. SSRN Electronic Journal, 2014, , .	0.4	3

\sim	 	D	
		RE	דעהנ
		NLI	

#	Article	IF	CITATIONS
19	Semi-parametric Conditional Quantile Models for Financial Returns and Realized Volatility. Journal of Financial Econometrics, 0, , nbu029.	0.8	9
20	Forecasting Return Volatility of the CSI 300 Index Using the Stochastic Volatility Model with Continuous Volatility and Jumps. Discrete Dynamics in Nature and Society, 2014, 2014, 1-10.	0.5	16
21	A Realized Stochastic Volatility Model With Box–Cox Transformation. Journal of Business and Economic Statistics, 2014, 32, 593-605.	1.8	10
22	Forecasting the volatility of crude oil futures using intraday data. European Journal of Operational Research, 2014, 235, 643-659.	3.5	216
23	Price jumps on European stock markets. Borsa Istanbul Review, 2014, 14, 10-22.	2.4	12
24	Twenty years of jumps in commodity markets. International Review of Applied Economics, 2014, 28, 64-82.	1.3	24
25	Intraday liquidity dynamics and news releases around price jumps: Evidence from the DJIA stocks. Journal of Financial Markets, 2014, 17, 121-149.	0.7	73
26	Disentangling Continuous Volatility from Jumps in Long-Run Risk-Return Relationships. Journal of Financial Econometrics, 2014, 12, 544-583.	0.8	15
27	Fact or friction: Jumps at ultra high frequency. Journal of Financial Economics, 2014, 114, 576-599.	4.6	162
28	The Effects of Oil Price Uncertainty on Global Real Economic Activity. Journal of Money, Credit and Banking, 2014, 46, 1113-1135.	0.9	221
29	System-wide tail comovements: A bootstrap test for cojump identification on the S&P 500, US bonds and currencies. Journal of International Money and Finance, 2014, 48, 147-174.	1.3	15
30	A ROBUST NEIGHBORHOOD TRUNCATION APPROACH TO ESTIMATION OF INTEGRATED QUARTICITY. Econometric Theory, 2014, 30, 3-59.	0.6	29
31	Pricing Nikkei 225 Options Using Realized Volatility. Japanese Economic Review, 2014, 65, 431-467.	0.8	9
32	Quarticity Estimation on ohlc Data. Journal of Financial Econometrics, 2015, 13, 505-519.	0.8	6
33	Forecasting the density of returns in crude oil futures markets. International Journal of Global Energy Issues, 2015, 38, 201.	0.2	2
34	From Risk Analysis to Adversarial Risk Analysis. , 2015, , 351-374.		0
35	Endogenous Markov Switching Regression Models for High-Frequency Data Under Microstructure Noise. SSRN Electronic Journal, 2015, , .	0.4	0
36	Stock Market Reactions to Unconventional Monetary Policy Announcements. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
37	Inference from High-Frequency Data: A Subsampling Approach. SSRN Electronic Journal, 0, , .	0.4	3
38	Two-step estimation of the volatility functions in diffusion models with empirical applications. Journal of Empirical Finance, 2015, 33, 135-159.	0.9	7
39	The Low-Risk Anomaly Revisited onÂHigh-Frequency Data. , 2015, , 397-424.		2
40	A martingale decomposition of discrete Markov chains. Economics Letters, 2015, 133, 14-18.	0.9	4
41	Further Evidence on Foreign Exchange Jumps and News Announcements. Emerging Markets Finance and Trade, 2015, 51, 774-787.	1.7	9
42	Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes. Journal of Econometrics, 2015, 187, 293-311.	3.5	409
43	Explaining the convenience yield in the WTI crude oil market using realized volatility and jumps. Economic Modelling, 2015, 44, 243-251.	1.8	20
44	Does realized skewness predict the cross-section of equity returns?. Journal of Financial Economics, 2015, 118, 135-167.	4.6	399
45	Realized EquiCorrelation: a bird's-eye view of financial stress on equity markets. Applied Economics, 2015, 47, 5013-5033.	1.2	1
46	Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility. Review of Economics and Statistics, 2015, 97, 683-697.	2.3	536
47	News, volatility and jumps: the case of natural gas futures. Quantitative Finance, 2015, 15, 1217-1242.	0.9	55
48	Microstructure noise in the continuous case: Approximate efficiency of the adaptive pre-averaging method. Stochastic Processes and Their Applications, 2015, 125, 2910-2936.	0.4	19
49	Relative liquidity and future volatility. Journal of Financial Markets, 2015, 24, 25-48.	0.7	13
50	Specification and structural break tests for additive models with applications to realized variance data. Journal of Econometrics, 2015, 188, 196-218.	3.5	12
51	Volatility transmission in global financial markets. Journal of Empirical Finance, 2015, 32, 3-18.	0.9	40
52	Are classical option pricing models consistent with observed option second-order moments? Evidence from high-frequency data. Journal of Banking and Finance, 2015, 61, 46-63.	1.4	10
53	The economic value of volatility timing with realized jumps. Journal of Empirical Finance, 2015, 34, 45-59.	0.9	20
54	The course of realized volatility in the LME non-ferrous metal market. Economic Modelling, 2015, 51, 1-12.	1.8	29

#	Article	IF	CITATIONS
55	ABC of SV: Limited information likelihood inference in stochastic volatility jump-diffusion models. Journal of Empirical Finance, 2015, 31, 85-108.	0.9	20
56	Evaluating the performance of futures hedging using multivariate realized volatility. Journal of the Japanese and International Economies, 2015, 38, 148-171.	1.4	1
57	Jump robust two time scale covariance estimation and realized volatility budgets. Quantitative Finance, 2015, 15, 1041-1054.	0.9	32
58	Modeling and Forecasting (Un)Reliable Realized Covariances for More Reliable Financial Decisions. SSRN Electronic Journal, 0, , .	0.4	2
59	Efficient Multipowers. SSRN Electronic Journal, 2016, , .	0.4	2
60	Realised Variance Forecasting Under Box-Cox Transformations. SSRN Electronic Journal, 2016, , .	0.4	0
61	Jump Variation Estimation with Noisy High Frequency Financial Data via Wavelets. Econometrics, 2016, 4, 34.	0.5	10
62	Forecasting Stock Market Volatility: The Gains from Using Intraday Data. SSRN Electronic Journal, 0, , .	0.4	3
63	Information Content of Limit Order Book in Energy Futures Market. SSRN Electronic Journal, 0, , .	0.4	0
64	Volatility Estimation and Jump Testing via Realized Information Variation. SSRN Electronic Journal, 2016, , .	0.4	0
65	Volatility Forecasting of Strategically Linked Commodity ETFs: Gold - Silver. SSRN Electronic Journal, 0, , .	0.4	0
66	Heterogeneous autoregressive model with structural break using nearest neighbor truncation volatility estimators for DAX. SpringerPlus, 2016, 5, 1883.	1.2	4
67	Forecasting and Trading High Frequency Volatility on Large Indices. SSRN Electronic Journal, 2016, , .	0.4	0
68	Modeling Realized Volatility Dynamics with a Genetic Algorithm. Journal of Forecasting, 2016, 35, 434-444.	1.6	5
69	Intraday Serial Correlation,Volatility, and Jump: Evidence from China's Stock Market. Communications in Statistics Part B: Simulation and Computation, 2016, 45, 1226-1239.	0.6	1
70	MODELING DEPENDENCY OF VOLATILITY ON SAMPLING FREQUENCY VIA DELAY EQUATIONS. Annals of Financial Economics, 2016, 11, 1650007.	1.2	5
71	Estimating stochastic volatility models using realized measures. Studies in Nonlinear Dynamics and Econometrics, 2016, 20, .	0.2	6
72	Optimal Estimation Strategies for Bivariate Fractional Cointegration Systems and the Co-persistence Analysis of Stock Market Realized Volatilities. Computational Economics, 2016, 48, 83-104.	1.5	0

#	Article	IF	CITATIONS
73	Stock volatility, return jumps and uncertainty shocks during the Great Depression. Financial History Review, 2016, 23, 165-192.	0.6	16
74	On the relationship between conditional jump intensity and diffusive volatility. Journal of Empirical Finance, 2016, 37, 196-213.	0.9	2
75	Between data cleaning and inference: Pre-averaging and robust estimators of the efficient price. Journal of Econometrics, 2016, 194, 242-262.	3.5	17
76	Volatility forecasting of strategically linked commodity ETFs: gold-silver. Quantitative Finance, 2016, 16, 1809-1822.	0.9	23
77	Do Jumps Matter for Volatility Forecasting? Evidence from Energy Markets. Journal of Futures Markets, 2016, 36, 758-792.	0.9	95
78	Common trends in global volatility. Journal of International Money and Finance, 2016, 67, 194-214.	1.3	3
79	Nonlinearity, Breaks, and Long-Range Dependence in Time-Series Models. Journal of Business and Economic Statistics, 2016, 34, 23-41.	1.8	10
80	Combining high frequency data with non-linear models for forecasting energy market volatility. Expert Systems With Applications, 2016, 55, 222-242.	4.4	28
81	The impact of political risk on return, volatility and discontinuity: Evidence from the international stock and foreign exchange markets. Finance Research Letters, 2016, 17, 222-226.	3.4	22
82	Modeling and forecasting exchange rate volatility in time-frequency domain. European Journal of Operational Research, 2016, 251, 329-340.	3.5	76
83	Model-free jump measures and interest rates: common patterns in US and UK monetary policy around major economic events. European Journal of Finance, 2016, 22, 1388-1413.	1.7	4
84	Exploiting the errors: A simple approach for improved volatility forecasting. Journal of Econometrics, 2016, 192, 1-18.	3.5	299
85	Smoothing it Out: Empirical and Simulation Results for Disentangled Realized Covariances. Journal of Financial Econometrics, 2016, 15, 106-138.	0.8	1
86	Bootstrap prediction in univariate volatility models with leverage effect. Mathematics and Computers in Simulation, 2016, 120, 91-103.	2.4	20
87	Jumps in High-Frequency Data: Spurious Detections, Dynamics, and News. Management Science, 2016, 62, 2198-2217.	2.4	93
88	Price and volatility co-jumps. Journal of Financial Economics, 2016, 119, 107-146.	4.6	133
89	Forecasting stock market volatility using Realized GARCH model: International evidence. Quarterly Review of Economics and Finance, 2016, 59, 222-230.	1.5	39
90	Asymmetric information, volatility components and the volume–volatility relationship for the CAC40 stocks. Global Finance Journal, 2016, 29, 70-84.	2.8	16

#	Article	IF	CITATIONS
91	Volatility forecasting in the Chinese commodity futures market with intraday data. Review of Quantitative Finance and Accounting, 2017, 48, 1123-1173.	0.8	14
92	ESTIMATING THE QUADRATIC VARIATION SPECTRUM OF NOISY ASSET PRICES USING GENERALIZED FLAT-TOP REALIZED KERNELS. Econometric Theory, 2017, 33, 1457-1501.	0.6	29
93	Assessment of Uncertainty in High Frequency Data: The Observed Asymptotic Variance. Econometrica, 2017, 85, 197-231.	2.6	35
94	Liquidity dynamics around intraday price jumps in Chinese stock market. Journal of Systems Science and Complexity, 2017, 30, 434-463.	1.6	6
95	Chasing volatility. Journal of Econometrics, 2017, 198, 122-145.	3.5	17
96	Volatility forecasting in Chinese nonferrous metals futures market. Transactions of Nonferrous Metals Society of China, 2017, 27, 1206-1214.	1.7	22
97	The impact of jumps and leverage in forecasting covolatility. Econometric Reviews, 2017, 36, 638-650.	0.5	11
98	Modeling spot rate using a realized stochastic volatility model with level effect and dynamic driftâ ⁻ †. North American Journal of Economics and Finance, 2017, 40, 200-221.	1.8	1
99	Modeling and forecasting realized volatility in German–Austrian continuous intraday electricity prices. Journal of Forecasting, 2017, 36, 680-690.	1.6	20
100	Inference from high-frequency data: A subsampling approach. Journal of Econometrics, 2017, 197, 245-272.	3.5	18
101	Estimation of integrated quadratic covariation with endogenous sampling times. Journal of Econometrics, 2017, 197, 20-41.	3.5	12
102	High-frequency volatility combine forecast evaluations: An empirical study for DAX. Journal of Finance and Data Science, 2017, 3, 1-12.	1.8	6
103	Volatility forecasting of non-ferrous metal futures: Covariances, covariates or combinations?. Journal of International Financial Markets, Institutions and Money, 2017, 51, 228-247.	2.1	25
104	FUTURES-BASED MEASURES OF MONETARY POLICY AND JUMP RISK. Macroeconomic Dynamics, 2017, 21, 384-405.	0.6	3
105	The effect of non-trading days on volatility forecasts in equity markets. Finance Research Letters, 2017, 23, 39-49.	3.4	14
106	Realised variance forecasting under Box-Cox transformations. International Journal of Forecasting, 2017, 33, 770-785.	3.9	23
107	Robust bootstrap forecast densities for GARCH returns and volatilities. Journal of Statistical Computation and Simulation, 2017, 87, 3152-3174.	0.7	21
108	The Impact of Greek Economic News on European Financial Markets. Evidence from the European Sovereign Debt Crisis. , 2017, , 219-283.		1

#	Article	IF	CITATIONS
110	ldentifying events in financial time series – A new approach with bipower variation. Finance Research Letters, 2017, 22, 42-48.	3.4	5
111	Optimum Thresholding Using Mean and Conditional Mean Square Error. SSRN Electronic Journal, 2017, , .	0.4	0
112	A Slightly Depressing Jump Model: Intraday Volatility Pattern Simulation. SSRN Electronic Journal, 0, , .	0.4	0
113	Business Time Sampling Scheme with Applications to Testing Semi-Martingale Hypothesis and Estimating Integrated Volatility. Econometrics, 2017, 5, 51.	0.5	2
114	Modelling Realized Volatility in Electricity Spot Prices: New Insights and Application to the Japanese Electricity Market. SSRN Electronic Journal, 2017, , .	0.4	1
116	Time-Varying Crash Risk: The Role of Stock Market Liquidity. SSRN Electronic Journal, 2017, , .	0.4	7
117	Realized Semicovariances: Looking for Signs of Direction Inside the Covariance Matrix. SSRN Electronic Journal, 0, , .	0.4	3
118	Efficient Multipowers*. Journal of Financial Econometrics, 2018, 16, 629-659.	0.8	2
119	Volatility jumps and macroeconomic news announcements. Journal of Futures Markets, 2018, 38, 881-897.	0.9	15
120	A separate reducedâ€ f orm volatility forecasting model for nonferrous metal market: Evidence from copper and aluminum. Journal of Forecasting, 2018, 37, 754-766.	1.6	20
121	Modeling returns volatility: Realized GARCH incorporating realized risk measure. Physica A: Statistical Mechanics and Its Applications, 2018, 500, 249-258.	1.2	10
122	Forecasting and trading high frequency volatility on large indices. Quantitative Finance, 2018, 18, 737-748.	0.9	14
123	A slightly depressing jump model: intraday volatility pattern simulation. Quantitative Finance, 2018, 18, 213-224.	0.9	3
124	S&P500 volatility analysis using high-frequency multipower variation volatility proxies. Empirical Economics, 2018, 54, 1297-1318.	1.5	3
125	Stock Market Contagion: a New Approach. Open Economies Review, 2018, 29, 547-577.	0.9	4
126	Is the diurnal pattern sufficient to explain intraday variation in volatility? A nonparametric assessment. Journal of Econometrics, 2018, 205, 336-362.	3.5	35
127	Volatility jumps: The role of geopolitical risks. Finance Research Letters, 2018, 27, 247-258.	3.4	73
128	Testing for Co-jumps in Financial Markets. Journal of Financial Econometrics, 2018, 16, 118-128.	0.8	7

ARTICLE IF CITATIONS # Convenience yield, realised volatility and jumps: Evidence from non-ferrous metals. Economic 129 1.8 7 Modelling, 2018, 70, 496-510. Volatility forecasting: combinations of realized volatility measures and forecasting models. Applied 1.2 Economics, 2018, 50, 1428-1441. 131 Tail Risks and Volatility-of-Volatility. SSRN Electronic Journal, 2018, , . 0.4 0 The Impact of SHFE's Night Trading Session on Volume and Realized Volatility of Aluminum and Copper Future's Markets. SSRN Electronic Journal, 2018, , . Forecasting Bitcoin Risk Measures: A Robust Approach. SSRN Electronic Journal, 0, , . 133 0.4 0 Exploiting Dependence: Day-Ahead Volatility Forecasting for Crude Oil and Natural Gas Exchange-Traded Funds. SSRN Electronic Journal, 0, , . 0.4 The Impact of Equity Tail Risk on Bond Risk Premia: Evidence of Flight-to-Safety from the U.S. Markets. 135 0.4 0 SSRN Electronic Journal, 0, , . Muddying the Waters: Who Induces Volatility in an Emerging Market?. SSRN Electronic Journal, 2018, , . 0.4 136 Volatility–volume relationship of Chinese copper and aluminum futures market. Transactions of 137 5 1.7 Nonferrous Metals Society of China, 2018, 28, 2607-2618. Quantile forecasts using the Realized GARCH-EVT approach. Studies in Economics and Finance, 2018, 35, 1.2 481-504. The Impact of Sentiment and Attention Measures on Stock Market Volatility. SSRN Electronic Journal, 139 0.4 8 0,,. Exploiting dependence: Day-ahead volatility forecasting for crude oil and natural gas exchange-traded 4.5 29 funds. Energy, 2018, 155, 462-473. Modeling the volatility of realized volatility to improve volatility forecasts in electricity markets. 141 5.6 30 Energy Economics, 2018, 74, 767-776. Extended Realized GARCH Models. Springer Proceedings in Mathematics and Statistics, 2018, , 159-168. 142 0.1 Modeling and forecasting (un)reliable realized covariances for more reliable financial decisions. 143 3.5 75 Journal of Econometrics, 2018, 207, 71-91. Efficient asymptotic variance reduction when estimating volatility in high frequency data. Journal of 144 Econometrics, 2018, 206, 103-142. Modeling and forecasting return jumps using realized variation measures. Economic Modelling, 2019, 145 1.8 3 76, 63-80. Unified inference for nonlinear factor models from panels with fixed and large time span. Journal of 146 Econometrics, 2019, 212, 4-25.

#	Article	IF	CITATIONS
147	Volatility Estimation and Jump Testing via Realized Information Variation. Journal of Time Series Analysis, 2019, 40, 753-787.	0.7	4
148	The information content of short-term options. Journal of Financial Markets, 2019, 46, 100504.	0.7	8
149	Overnight momentum, informational shocks, and late informed trading in China. International Review of Financial Analysis, 2019, 66, 101394.	3.1	23
150	Cross-sectional return dispersion and volatility prediction. Pacific-Basin Finance Journal, 2019, 58, 101218.	2.0	8
151	Asymptotic results for the Fourier estimator of the integrated quarticity. Decisions in Economics and Finance, 2019, 42, 471-502.	1.1	2
152	Time-varying risk aversion and realized gold volatility. North American Journal of Economics and Finance, 2019, 50, 101048.	1.8	33
153	Testing if the market microstructure noise is fully explained by the informational content of some variables from the limit order book. Journal of Econometrics, 2019, 209, 289-337.	3.5	15
154	Forecasting (downside and upside) realized exchange-rate volatility: Is there a role for realized skewness and kurtosis?. Physica A: Statistical Mechanics and Its Applications, 2019, 532, 121867.	1.2	17
155	Firm characteristics and jump dynamics in stock prices around earnings announcements. North American Journal of Economics and Finance, 2019, 50, 101003.	1.8	2
156	Estimation of volatility in a high-frequency setting: a short review. Decisions in Economics and Finance, 2019, 42, 351-385.	1.1	6
157	Information content of the limit order book for crude oil futures price volatility. Energy Economics, 2019, 81, 584-597.	5.6	1
158	Incorporating Realized Quarticity into a Realized Stochastic Volatility Model. Asia-Pacific Financial Markets, 2019, 26, 495-528.	1.3	1
159	Nonlinear high-frequency stock market time series: Modeling and combine forecast evaluations. Communications in Statistics Part B: Simulation and Computation, 2021, 50, 2126-2144.	0.6	0
160	The nonlinear characteristics of Chinese stock index futures yield volatility. China Finance Review International, 2019, 10, 175-196.	4.1	13
161	Asymmetric jump beta estimation with implications for portfolio risk management. International Review of Economics and Finance, 2019, 62, 20-40.	2.2	6
162	Forecasting Bitcoin risk measures: A robust approach. International Journal of Forecasting, 2019, 35, 836-847.	3.9	71
163	Forecasting the Chinese stock volatility across global stock markets. Physica A: Statistical Mechanics and Its Applications, 2019, 525, 466-477.	1.2	22
164	Do illiquid stocks jump more frequently?. Applied Economics, 2019, 51, 2764-2769.	1.2	1

#	Article	IF	CITATIONS
165	Forecasting realized volatility of agricultural commodity futures with infinite Hidden Markov HAR models. International Journal of Forecasting, 2022, 38, 51-73.	3.9	40
167	Economic News Releases and Financial Markets in South Africa. Economies, 2019, 7, 112.	1.2	0
168	Jump activity analysis for affine jump-diffusion models: Evidence from the commodity market. Journal of Banking and Finance, 2019, 99, 45-62.	1.4	23
169	Cojumps and asset allocation in international equity markets. Journal of Economic Dynamics and Control, 2019, 98, 1-22.	0.9	15
170	Modeling stock market volatility using new HAR-type models. Physica A: Statistical Mechanics and Its Applications, 2019, 516, 194-211.	1.2	12
171	Central bank announcements and realized volatility of stock markets in G7 countries. Journal of International Financial Markets, Institutions and Money, 2019, 58, 117-135.	2.1	12
172	Optimum thresholding using mean and conditional mean squared error. Journal of Econometrics, 2019, 208, 179-210.	3.5	22
173	Bootstrapping High-Frequency Jump Tests. Journal of the American Statistical Association, 2019, 114, 793-803.	1.8	20
174	Oil shocks and volatility jumps. Review of Quantitative Finance and Accounting, 2020, 54, 247-272.	0.8	12
175	Non-parametric quantile dependencies between volatility discontinuities and political risk. Finance Research Letters, 2020, 32, 101074.	3.4	1
176	Realized volatility and jump testing in the Japanese electricity spot market. Empirical Economics, 2020, 58, 1143-1166.	1.5	4
177	Financial econometrics and big data: A survey of volatility estimators and tests for the presence of jumps and co-jumps. Handbook of Statistics, 2020, 42, 3-59.	0.4	7
178	Greek sovereign crisis and European exchange rates: effects of news releases and their providers. Annals of Operations Research, 2020, 294, 515-536.	2.6	3
179	Local Parametric Estimation in High Frequency Data. Journal of Business and Economic Statistics, 2020, 38, 679-692.	1.8	5
180	Empirical likelihood for high frequency data. Journal of Business and Economic Statistics, 2020, 38, 621-632.	1.8	3
181	Jumps beyond the realms of cricket: India's performance in One Day Internationals and stock market movements. Journal of Applied Statistics, 2020, 47, 1109-1127.	0.6	6
182	Optimal Filter Approximations for Latent Long Memory Stochastic Volatility. Computational Economics, 2020, 56, 547-568.	1.5	1
183	The impact of sentiment and attention measures on stock market volatility. International Journal of Forecasting, 2020, 36, 334-357.	3.9	152

#	Article	IF	CITATIONS
184	The timeâ€ŧoâ€maturity pattern of futures price sensitivity to news. Journal of Futures Markets, 2020, 40, 126-144.	0.9	5
185	Market liquidity and macro announcement around intraday jumps: Evidence from Chinese stock index futures markets. Physica A: Statistical Mechanics and Its Applications, 2020, 541, 123308.	1.2	11
186	Volatility forecasting accuracy for Bitcoin. Economics Letters, 2020, 191, 108836.	0.9	30
187	Trading and non-trading period realized market volatility: Does it matter for forecasting the volatility of US stocks?. International Journal of Forecasting, 2020, 36, 628-645.	3.9	17
188	Forecasting the volatility of Bitcoin: The importance of jumps and structural breaks. European Financial Management, 2020, 26, 1294-1323.	1.7	52
189	Impact of macroeconomic news, regulation and hacking exchange markets on the volatility of bitcoin. Journal of Economic Dynamics and Control, 2020, 119, 103980.	0.9	68
190	The predictive power of oil price shocks on realized volatility of oil: A note. Resources Policy, 2020, 69, 101856.	4.2	30
191	Realized volatility transmission within Islamic stock markets: A multivariate HAR-GARCH-type with nearest neighbor truncation estimator. Borsa Istanbul Review, 2020, 20, S26-S39.	2.4	7
192	The contribution of intraday jumps to forecasting the density of returns. Journal of Economic Dynamics and Control, 2020, 113, 103853.	0.9	1
193	A complex networks based analysis of jump risk in equity returns: An evidence using intraday movements from Pakistan stock market. Journal of Behavioral and Experimental Finance, 2020, 28, 100418.	2.1	1
194	ESTIMATION OF VOLATILITY FUNCTIONS IN JUMP DIFFUSIONS USING TRUNCATED BIPOWER INCREMENTS. Econometric Theory, 2021, 37, 926-958.	0.6	1
195	Volatility Transmission across Financial Markets: A Semiparametric Analysis. Journal of Risk and Financial Management, 2020, 13, 160.	1.1	0
196	A note on oil price shocks and the forecastability of gold realized volatility. Applied Economics Letters, 2021, 28, 1889-1897.	1.0	2
197	Can risk-neutral skewness and kurtosis subsume the information content of historical jumps?. Journal of Financial Markets, 2022, 57, 100614.	0.7	2
198	Time-Varying Crash Risk Embedded in Index Options: The Role of Stock Market Liquidity*. Review of Finance, 0, , .	3.2	8
199	Jumps in energy and nonâ€energy commodities. OPEC Energy Review, 2020, 44, 91-111.	1.0	5
200	Forecasting realized volatility of agricultural commodities. International Journal of Forecasting, 2022, 38, 74-96.	3.9	28
201	On the estimation of integrated volatility in the presence of jumps and microstructure noise. Econometric Reviews, 2020, 39, 991-1013.	0.5	7

#	Article	IF	CITATIONS
202	The dynamics of price jumps in the stock market: an empirical study on Europe and U.S European Journal of Finance, 2022, 28, 718-742.	1.7	12
203	Realized Measures to Explain Volatility Changes over Time. Journal of Risk and Financial Management, 2020, 13, 125.	1.1	14
204	Investor Happiness and Predictability of the Realized Volatility of Oil Price. Sustainability, 2020, 12, 4309.	1.6	20
205	Systemic Importance of China's Financial Institutions: A Jump Volatility Spillover Network Review. Entropy, 2020, 22, 588.	1.1	11
206	Volatility estimation and jump detection for drift–diffusion processes. Journal of Econometrics, 2020, 217, 259-290.	3.5	17
207	A comparison of realised measures for daily REIT volatility. Journal of Property Research, 2020, 37, 1-24.	1.7	5
208	Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss. Journal of International Money and Finance, 2020, 104, 102137.	1.3	97
209	High-frequency jump tests: Which test should we use?. Journal of Econometrics, 2020, 219, 478-487.	3.5	17
210	Realized volatility forecasting: Robustness to measurement errors. International Journal of Forecasting, 2021, 37, 44-57.	3.9	18
211	A note on investor happiness and the predictability of realized volatility of gold. Finance Research Letters, 2021, 39, 101614.	3.4	14
212	Forecasting Realized Volatility of Bitcoin: The Role of the Trade War. Computational Economics, 2021, 57, 29-53.	1.5	31
213	Predicting intraday jumps in stock prices using liquidity measures and technical indicators. Journal of Forecasting, 2021, 40, 416-438.	1.6	15
214	Combining realized measures to forecast REIT volatility. Journal of European Real Estate Research, 2021, 14, 19-39.	0.3	4
215	FX market volatility modelling: Can we use low-frequency data?. Finance Research Letters, 2021, 40, 101776.	3.4	7
216	Nonparametric estimation of jump diffusion models. Journal of Econometrics, 2021, 222, 688-715.	3.5	5
217	Jumps at ultra-high frequency: Evidence from the Chinese stock market. Pacific-Basin Finance Journal, 2021, 68, 101420.	2.0	3
218	Nonlinear dynamic correlation between geopolitical risk and oil prices: A study based on high-frequency data. Research in International Business and Finance, 2021, 56, 101370.	3.1	51
219	The Observed Asymptotic Variance: Hard edges, and a regression approach. Journal of Econometrics, 2021, 222, 411-428.	3.5	1

#	Article	IF	CITATIONS
220	Modeling realized volatility of the EUR/USD exchange rate: Does implied volatility really matter?. International Review of Economics and Finance, 2021, 71, 811-829.	2.2	9
221	The uncertainty in extreme risk forecasts from covariate-augmented volatility models. International Journal of Forecasting, 2021, 37, 675-686.	3.9	3
222	Quantile dependencies between discontinuities and time-varying rare disaster risks. European Journal of Finance, 2021, 27, 932-962.	1.7	9
223	Disentangling Sources of High Frequency Market Microstructure Noise. Journal of Business and Economic Statistics, 2021, 39, 18-39.	1.8	10
224	Modelling the volatility of TOCOM energy futures: A regime switching realised volatility approach. Energy Economics, 2021, 93, 104434.	5.6	7
225	Analysis of Important Nodes in China's Stock Market Based on Jump Volatility Spillover Networks. Advances in Applied Mathematics, 2021, 10, 2648-2659.	0.0	1
226	Cointegration in high frequency data. Electronic Journal of Statistics, 2021, 15, .	0.4	1
227	A Structural Model of Market Friction with Time-Varying Volatility. SSRN Electronic Journal, 0, , .	0.4	0
228	The Role of Binance in Bitcoin Volatility Transmission. SSRN Electronic Journal, 0, , .	0.4	4
229	Beta-Adjusted Covariance Estimation. SSRN Electronic Journal, O, , .	0.4	0
230	Crypto Premium and Jump Risk. SSRN Electronic Journal, 0, , .	0.4	1
231	Analyzing intraday financial data in R: The highfrequency package. SSRN Electronic Journal, 0, , .	0.4	1
232	Modeling Conditional Factor Risk Premia Implied by Index Option Returns. SSRN Electronic Journal, 0, ,	0.4	0
233	Volatility measurement with pockets of extreme return persistence. Journal of Econometrics, 2023, 237, 105048.	3.5	9
234	Scheduled macroeconomic news announcements and Forex volatility forecasting. Journal of Forecasting, 0, , .	1.6	2
235	Realized volatility spillovers between US spot and futures during ECB news: Evidence from the European sovereign debt crisis. International Review of Financial Analysis, 2021, 74, 101706.	3.1	9
236	Uncertainty Due to Infectious Diseases and Stock–Bond Correlation. Econometrics, 2021, 9, 17.	0.5	12
237	Forecasting realized volatility of bitcoin returns: tail events and asymmetric loss. European Journal of Finance, 2021, 27, 1626-1644.	1.7	9

	Сітаті	on Report	
#	Article	IF	CITATIONS
238	The Treasury Market Flash Event of February 25, 2021. FEDS Notes, 2021, 2021, .	0.4	1
239	The realized volatility of commodity futures: Interconnectedness and determinants. International Review of Economics and Finance, 2021, 73, 139-151.	2.2	83
240	Time-to-maturity and commodity futures return volatility: The role of time-varying asymmetric information. Journal of Commodity Markets, 2022, 26, 100191.	0.9	1
241	Structural breaks in Box-Cox transforms of realized volatility: a model selection perspective. Quantitative Finance, 0, , 1-15.	0.9	0
242	Do Jumps Matter in Both Equity Market Returns and Integrated Volatility: A Comparison of Asian Developed and Emerging Markets. Economies, 2021, 9, 92.	1.2	7
243	Forecasting Volatility and Tail Risk in Electricity Markets. Journal of Risk and Financial Management, 2021, 14, 294.	1.1	2
244	Stock market volatility forecasting: Do we need high-frequency data?. International Journal of Forecasting, 2021, 37, 1092-1110.	3.9	28
245	Risk aversion and the predictability of crude oil market volatility: A forecasting experiment with random forests. Journal of the Operational Research Society, 2022, 73, 1755-1767.	2.1	15
246	Testing for the presence of jump components in jump diffusion models. Journal of Econometrics, 2021, , .	3.5	0
247	Are disagreements agreeable? Evidence from information aggregation. Journal of Financial Economics, 2021, 141, 83-101.	4.6	31
248	Stacking hybrid GARCH models for forecasting Bitcoin volatility. Expert Systems With Applications, 2021, 174, 114747.	4.4	28
249	Economic policy uncertainty and gold return dynamics: Evidence from high-frequency data. Resources Policy, 2021, 72, 102078.	4.2	19
250	What drives volatility of the U.S. oil and gas firms?. Energy Economics, 2021, 100, 105367.	5.6	6
251	Diversifying Trends. Econometrics and Statistics, 2021, , .	0.4	1
252	Oil price volatility is effective in predicting food price volatility. Or is it?. Energy Journal, 2021, 42, .	0.9	5
253	What matters when developing oil price volatility forecasting frameworks?. Journal of Forecasting, 2022, 41, 361-382.	1.6	3
254	Realized skewness and the short-term predictability for aggregate stock market volatility. Economic Modelling, 2021, 103, 105614.	1.8	11
255	Volatility forecasting in European government bond markets. International Journal of Forecasting, 2021, 37, 1691-1709.	3.9	5

#	Article	IF	CITATIONS
256	On improving GARCH volatility forecasts for Bitcoin via a meta-learning approach. Knowledge-Based Systems, 2021, 230, 107393.	4.0	15
257	Night trading with futures in China: The case of Aluminum and Copper. Resources Policy, 2021, 73, 102205.	4.2	13
258	The role of coronavirus news in the volatility forecasting of crude oil futures markets: Evidence from China. Resources Policy, 2021, 73, 102173.	4.2	29
259	Herding and market volatility. International Review of Financial Analysis, 2021, 78, 101880.	3.1	8
260	Improving stock market volatility forecasts with complete subset linear and quantile HAR models. Expert Systems With Applications, 2021, 183, 115416.	4.4	10
261	Forecasting volatility of Bitcoin. Research in International Business and Finance, 2022, 59, 101540.	3.1	16
262	What effect did the introduction of Bitcoin futures have on the Bitcoin spot market?. European Journal of Finance, 2021, 27, 1251-1281.	1.7	26
263	Volatility Jump Detection in Thailand Stock Market. Lecture Notes in Computer Science, 2018, , 445-456.	1.0	3
264	Gold-oil dependence dynamics and the role of geopolitical risks: Evidence from a Markov-switching time-varying copula model. Energy Economics, 2020, 88, 104748.	5.6	77
266	A Martingale Decomposition of Discrete Markov Chains. SSRN Electronic Journal, 0, , .	0.4	2
267	Forecasting the Volatility of Bitcoin: The Importance of Jumps and Structural Breaks. SSRN Electronic		2
	Journal, O, , .	0.4	
268	Journal, O, , . Risk Appetite and Jumps in Realized Correlation. Mathematics, 2020, 8, 2255.	0.4	2
268 269	Journal, O, , . Risk Appetite and Jumps in Realized Correlation. Mathematics, 2020, 8, 2255. Modelling Financial Market Volatility Using Asymmetric-Skewed-ARFIMAX and -HARX Models. Engineering Economics, 2016, 27, .	0.4	2
268 269 270	Journal, O, , . Risk Appetite and Jumps in Realized Correlation. Mathematics, 2020, 8, 2255. Modelling Financial Market Volatility Using Asymmetric-Skewed-ARFIMAX and -HARX Models. Engineering Economics, 2016, 27, . Capturing the dynamics of the China crude oil futures: Markov switching, co-movement, and volatility forecasting. Energy Economics, 2021, 103, 105622.	0.4 1.1 1.5 5.6	2 3 80
268 269 270 271	Journal, O, , . Risk Appetite and Jumps in Realized Correlation. Mathematics, 2020, 8, 2255. Modelling Financial Market Volatility Using Asymmetric-Skewed-ARFIMAX and -HARX Models. Engineering Economics, 2016, 27, . Capturing the dynamics of the China crude oil futures: Markov switching, co-movement, and volatility forecasting. Energy Economics, 2021, 103, 105622. Detecting and Forecasting High Frequency Price Jumps in the Stock Market. SSRN Electronic Journal, 0, , .	0.4 1.1 1.5 5.6 0.4	2 3 80 0
268 269 270 271 273	Journal, O, , . Risk Appetite and Jumps in Realized Correlation. Mathematics, 2020, 8, 2255. Modelling Financial Market Volatility Using Asymmetric-Skewed-ARFIMAX and -HARX Models. Engineering Economics, 2016, 27, . Capturing the dynamics of the China crude oil futures: Markov switching, co-movement, and volatility forecasting. Energy Economics, 2021, 103, 105622. Detecting and Forecasting High Frequency Price Jumps in the Stock Market. SSRN Electronic Journal, 0, ,. Relative Liquidity and Future Volatility. SSRN Electronic Journal, 0, ,.	0.4 1.1 1.5 5.6 0.4 0.4	2 3 80 0
268 269 270 271 271 273	Journal, O, , . Risk Appetite and Jumps in Realized Correlation. Mathematics, 2020, 8, 2255. Modelling Financial Market Volatility Using Asymmetric-Skewed-ARFIMAX and -HARX Models. Engineering Economics, 2016, 27, . Capturing the dynamics of the China crude oil futures: Markov switching, co-movement, and volatility forecasting. Energy Economics, 2021, 103, 105622. Detecting and Forecasting High Frequency Price Jumps in the Stock Market. SSRN Electronic Journal, 0, , . Relative Liquidity and Future Volatility. SSRN Electronic Journal, 0, , . Price Jumps during Financial Crisis: From Intuition to Financial Regulation. Politicka Ekonomie, 2014, 62, 32-48.	0.4 1.1 1.5 5.6 0.4 0.4 0.1	2 3 80 0 0 2

#	Article	IF	CITATIONS
276	Volatility Forecasting of Non-Ferrous Metal Futures: Covariances, Covariates or Combinations?. SSRN Electronic Journal, 0, , .	0.4	0
277	Realized Volatility of Precious Metal Returns: HAR-RV. , 0, , .		1
278	Firm-Specific Risk-Neutral Distributions: The Role of CDS Spreads. International Finance Discussion Paper, 2017, 2017, 1-60.	0.4	2
279	Jumps in Stock Prices: New Insights from Old Data. SSRN Electronic Journal, 0, , .	0.4	0
280	Forecasting Realized Volatility of Agricultural Commodities. SSRN Electronic Journal, 0, , .	0.4	1
281	Forecasting Expected Shortfall and Value-at-Risk with the FZ Loss and Realized Variance Measures. SSRN Electronic Journal, 0, , .	0.4	0
282	Forecasting Realized Volatility of Agricultural Commodity Futures with Infinite Hidden Markov HAR Models. SSRN Electronic Journal, 0, , .	0.4	0
283	Uniform Predictive Inference for Factor Models with Instrumental and Idiosyncratic Betas. SSRN Electronic Journal, 0, , .	0.4	0
284	A Frequency-Specific Factorization to Identify Commonalities with an Application to the European Bond Markets*. Journal of Financial Econometrics, 0, , .	0.8	0
285	Jumping CAViAR. SSRN Electronic Journal, 0, , .	0.4	0
286	Forecasting Realized Volatility of Crude Oil Futures Prices based on Variable Selection Approaches. SSRN Electronic Journal, 0, , .	0.4	0
287	Detecting Intra-Day Jumps in Stock Prices with High-Frequency Option Data. SSRN Electronic Journal, 0, , .	0.4	0
288	Bolstering the Modelling and Forecasting of Realized Covariance Matrices using (Directional) Common Jumps. SSRN Electronic Journal, 0, , .	0.4	2
289	Evaluating influential nodes for the Chinese energy stocks based on jump volatility spillover network. International Review of Economics and Finance, 2022, 78, 81-94.	2.2	9
290	Effects of Geopolitical Risks on Gold Market Return Dynamics: Evidence from a Nonparametric Causality-in-quantiles Approach. Defence and Peace Economics, 2023, 34, 308-322.	1.0	9
291	Improving the accuracy of tail risk forecasting models by combining several realized volatility estimators. Economic Modelling, 2021, 107, 105701.	1.8	5
292	Time-varying pricing of risk in sovereign bond futures returns. Finance Research Letters, 2022, 47, 102531.	3.4	0
293	Weighted Least Squares Realized Covariation Estimation. SSRN Electronic Journal, 0, , .	0.4	0

$\mathcal{O} = \mathcal{O}$		_
	イビロい	DT
CITAT	VLF U	IX I

#	Article	IF	CITATIONS
294	Weighted Least Squares Realized Covariation Estimation. Journal of Banking and Finance, 2022, , 106420.	1.4	0
295	Oil price volatility forecasts: What do investors need to know?. Journal of International Money and Finance, 2022, 123, 102594.	1.3	13
296	Jumps in stock prices: New insights from old data. Journal of Financial Markets, 2022, , 100708.	0.7	1
297	Discontinuous movements and asymmetries in cryptocurrency markets. European Journal of Finance, 0, , 1-25.	1.7	11
298	Bias reduction in spot volatility estimation from options. Journal of Econometrics, 2023, 234, 53-81.	3.5	1
299	Oil Price Assumptions for Macroeconomic Policy. SSRN Electronic Journal, 0, , .	0.4	0
300	A Comparison between Parametric and Nonparametric Volatility Forecasting of Stock Index Futures in China. Emerging Markets Finance and Trade, 0, , 1-16.	1.7	2
301	Directed Acyclic Graph based Information Shares for Price Discovery. Journal of Economic Dynamics and Control, 2022, , 104434.	0.9	1
302	Recurrent conditional heteroskedasticity. Journal of Applied Econometrics, 2022, 37, 1031-1054.	1.3	4
303	Greek governmentâ€debt crisis events and European financial markets: News surprises on Greek bond yields and interâ€relations of European financial markets. International Journal of Finance and Economics, 0, , .	1.9	0
304	The driving forces of green bond market volatility and the response of the market to the COVID-19 pandemic. Economic Analysis and Policy, 2022, 75, 288-309.	3.2	27
305	Is Jump Robust Two Times Scaled Estimator Superior among Realized Volatility Competitors?. Mathematics, 2022, 10, 2124.	1.1	1
306	The role of uncertainty measures in volatility forecasting of the crude oil futures market before and during the COVID-19 pandemic. Energy Economics, 2022, 112, 106120.	5.6	23
307	Speculation, Cross-Market Sentiment and the Predictability of Gold Market Volatility. Journal of Behavioral Finance, 0, , 1-18.	0.8	6
308	The size of good and bad volatility shocks does matter for spillovers. Journal of International Financial Markets, Institutions and Money, 2022, 80, 101626.	2.1	17
309	Forecasting Macroeconomic Indicators for Eurozone and Greece: How Useful are the Oil Price Assumptions?. SSRN Electronic Journal, 0, , .	0.4	0
310	A Forest Full of Risk Forecasts for Managing Volatility. SSRN Electronic Journal, 0, , .	0.4	0
311	Tail risk forecasting of realized volatility CAViaR models. Finance Research Letters, 2023, 51, 103326.	3.4	3

#	Article	IF	CITATIONS
312	Realized GARCH, CBOE VIX, and the Volatility Risk Premium. Journal of Financial Econometrics, 2024, 22, 187-223.	0.8	6
313	Modelling returns volatility: mixed-frequency model based on momentum of predictability. Economic Research-Ekonomska Istrazivanja, 2023, 36, .	2.6	0
314	The Role of Binance in Bitcoin Volatility Transmission. Applied Mathematical Finance, 2022, 29, 1-32.	0.8	10
315	The jump dynamics of foreign exchange rates: how reliable and consistent are the results of widely utilized jump detection procedures. Heliyon, 2022, 8, e10909.	1.4	0
316	An oil futures volatility forecast perspective on the selection of high-frequency jump tests. Energy Economics, 2022, 116, 106358.	5.6	4
317	Periodicity in Cryptocurrency Volatility and Liquidity. Journal of Financial Econometrics, 2024, 22, 224-251.	0.8	2
318	A high-frequency approach to VaR measures and forecasts based on the HAR-QREG model with jumps. Physica A: Statistical Mechanics and Its Applications, 2022, 608, 128253.	1.2	1
319	The excess volatility puzzle explained by financial noise amplification from endogenous feedbacks. Scientific Reports, 2022, 12, .	1.6	4
320	Detecting jumps amidst prevalent zero returns: Evidence from the U.S. Treasury securities. Journal of Empirical Finance, 2023, 70, 276-307.	0.9	0
321	Oil price assumptions for macroeconomic policy. Energy Economics, 2023, 117, 106425.	5.6	1
322	Do algorithmic traders exploit volatility?. Journal of Behavioral and Experimental Finance, 2023, 37, 100778.	2.1	2
323	ETF Basket-Adjusted Covariance estimation. Journal of Econometrics, 2022, , .	3.5	Ο
324	Forecasting High-Dimensional Covariance Matrices Using High-Dimensional Principal Component Analysis. Axioms, 2022, 11, 692.	0.9	2
325	Uniform predictive inference for factor models with instrumental and idiosyncratic betas. Journal of Econometrics, 2023, , .	3.5	0
326	Threats to central bank independence and exchange rate volatility: High-frequency identification with Trump's Fed tweets. Finance Research Letters, 2023, , 103641.	3.4	1
327	Information shocks, market returns and volatility: a comparative analysis of developed equity markets in Asia. SN Business & Economics, 2023, 3, .	0.6	1
328	Does natural gas volatility affect Bitcoin volatility? Evidence from the HAR-RV model. Applied Economics, 2024, 56, 414-425.	1.2	6
329	Crossâ€sectional return dispersion and stock market volatility: Evidence from highâ€frequency data. Journal of Forecasting, 2023, 42, 1309-1328.	1.6	2

#	Article	IF	CITATIONS
330	Multiple Measures Realized GARCH Models. Springer Proceedings in Mathematics and Statistics, 2022, , 349-368.	0.1	0
331	Forecasting stock return volatility: Realized volatilityâ€type or durationâ€based estimators. Journal of Forecasting, 2023, 42, 1594-1621.	1.6	0
332	Capturing Measurement Error Bias inÂVolatility Forecasting byÂRealized GARCH Models. Springer Proceedings in Mathematics and Statistics, 2023, , 141-159.	0.1	0
333	From zero-intelligence to queue-reactive: limit-order-book modeling for high-frequency volatility estimation and optimal execution. Quantitative Finance, 2023, 23, 367-388.	0.9	1
334	Estimating Risk in Illiquid Markets: A Model of Market Friction with Stochastic Volatility. Journal of Financial Econometrics, 0, , .	0.8	0