Ten major rivers in monsoon Asia-Pacific: An assessme

Applied Geography 32, 441-454 DOI: 10.1016/j.apgeog.2011.05.003

Citation Report

#	Article	IF	CITATIONS
1	Chapter 10 Myanmar: Assessing Freshwater Vulnerability in the Irrawaddy and Salween River Basins. Community, Environment and Disaster Risk Management, 2012, , 177-206.	0.2	1
2	Nutrient Balance Assessment in the Mekong Basin: Nitrogen and Phosphorus Dynamics in a Catchment Scale. International Journal of Water Resources Development, 2012, 28, 373-391.	2.0	19
3	The Major Central Asian River Basins: An Assessment of Vulnerability. International Journal of Water Resources Development, 2012, 28, 433-452.	2.0	31
4	The Indus basin in the framework of current and future water resources management. Hydrology and Earth System Sciences, 2012, 16, 1063-1083.	4.9	166
5	Fully connected Bayesian belief networks: A modeling procedure with a case study of the Ganges river basin. Integrated Environmental Assessment and Management, 2012, 8, 491-502.	2.9	10
6	Using Global Datasets to Create Environmental Profiles for Data-Poor Regions: A Case from the Irrawaddy and Salween River Basins. Environmental Management, 2013, 51, 897-911.	2.7	21
7	Web data mining for automatic inventory of geohazards at national scale. Applied Geography, 2013, 43, 147-158.	3.7	48
8	Changes in the Danube delta according to remote sensing data by Landsat satellite. Arid Ecosystems, 2013, 3, 258-262.	0.8	5
9	The drivers of risk to water security in Shanghai. Regional Environmental Change, 2013, 13, 329-340.	2.9	31
10	Assessment of hydrological changes in the lower Mekong Basin from Basinâ€Wide development scenarios. Hydrological Processes, 2013, 27, 2115-2125.	2.6	88
11	Hydrological long-term dry and wet periods in the Xijiang River basin, South China. Hydrology and Earth System Sciences, 2013, 17, 135-148.	4.9	41
12	Using Reanalysis and Remotely Sensed Temperature and Precipitation Data for Hydrological Modeling in Monsoon Climate: Mekong River Case Study. Journal of Hydrometeorology, 2014, 15, 1532-1545.	1.9	80
13	<scp>M</scp> yanmar under reform: Emerging pressures on water, energy and food security. Natural Resources Forum, 2014, 38, 85-98.	3.6	44
14	Freshwater discharge into the Caribbean Sea from the rivers of Northwestern South America (Colombia): Magnitude, variability and recent changes. Journal of Hydrology, 2014, 509, 266-281.	5.4	68
15	China's stressed waters: Societal and environmental vulnerability in China's internal and transboundary river systems. Applied Geography, 2014, 53, 105-116.	3.7	39
16	The unfolding water drama in the Anthropocene: towards a resilienceâ€based perspective on water for global sustainability. Ecohydrology, 2014, 7, 1249-1261.	2.4	197
17	Projections of the Ganges–Brahmaputra precipitation—Downscaled from GCM predictors. Journal of Hydrology, 2014, 517, 120-134.	5.4	93
18	Exploring the Modifiable Areal Unit Problem in Spatial Water Assessments: A Case of Water Shortage in Monsoon Asia. Water (Switzerland), 2015, 7, 898-917.	2.7	18

ARTICLE IF CITATIONS GIS Based Measurement and Regulatory Zoning of Urban Ecological Vulnerability. Sustainability, 2015, 19 3.2 39 7,9924-9942. China's southbound transboundary river basins: a case of asymmetry. Water International, 2015, 40, 1.0 113-138. Hydropower development in Myanmar and its implications on regional energy cooperation. 0.1 22 International Journal of Sustainable Society, 2015, 7, 42. Social vulnerability in three high-poverty climate change hot spots: What does the climate change literature tell us?. Regional Environmental Change, 2015, 15, 783-800. An integrated approach of flood risk assessment in the eastern part of Dhaka City. Natural Hazards, 23 3.4 101 2015, 79, 1499-1530. Vulnerability of ecosystem services provisioning to urbanization: A case of China. Ecological Indicators, 2015, 57, 505-513. 6.3 Medium Navy: A Trilateral Capability Building for HA/DR in Asia Pacific. Procedia Engineering, 2015, 107, 25 1.2 1 122-132. Categorizing social vulnerability patterns in Chinese coastal cities. Ocean and Coastal Management, 4.4 26 57 2015, 116, 1-8. Trends of labile trace metals in tropical urban water under highly contrasted weather conditions. 27 5.3 7 Environmental Science and Pollution Research, 2015, 22, 13842-13857. Social capital and community preparation for urban flooding in China. Applied Geography, 2015, 64, 1-11. Climate change and agricultural water resources: A vulnerability assessment of the Black Sea 29 4.9 50 catchment. Environmental Science and Policy, 2015, 46, 57-69. A dynamic assessment of water scarcity risk in the Lower Brahmaputra River Basin: An integrated 6.3 84 approach. Ecological Indicators, 2015, 48, 120-131. Mekong River flow and hydrological extremes under climate change. Hydrology and Earth System $\mathbf{31}$ 4.9 154 Sciences, 2016, 20, 3027-3041. A review of current and possible future human–water dynamics in Myanmar's river basins. Hydrology and Earth System Sciences, 2016, 20, 4913-4928. Water-Energy-Food Nexus in Large Asian River Basins. Water (Switzerland), 2016, 8, 446. 33 2.7 21 The Water-Energy-Food Nexus and the Transboundary Context: Insights from Large Asian Rivers. Water (Switzerland), 2016, 8, 193. Evolutionary social and biogeophysical changes in the Amazon, Ganges–Brahmaputra–Meghna and 35 4.9 10 Mekong deltas. Sustainability Science, 2016, 11, 555-574. Water Resources Vulnerability Assessment of MENA Countries Considering Energy and Virtual Water 1.2

CITATION REPORT

Interactions. Procedia Engineering, 2016, 145, 900-907.

#

21

#	Article	IF	CITATIONS
37	An evaluation of the Standardized Precipitation Index for assessing interâ€annual rice yield variability in the Ganges–Brahmaputra–Meghna region. International Journal of Climatology, 2016, 36, 2210-2222.	3.5	14
38	Over the hills and further away from coast: global geospatial patterns of human and environment over the 20th–21st centuries. Environmental Research Letters, 2016, 11, 034010.	5.2	143
39	The vulnerability of thermoelectric power generation to water scarcity in China: Current status and future scenarios for power planning and climate change. Applied Energy, 2016, 171, 444-455.	10.1	79
40	Assessing vulnerability to climate change in the Ganges Basin using a combined macro- and micro-level approach. Climate and Development, 2016, 8, 312-323.	3.9	13
41	Assessment of the ecological health of heavily utilized, large lowland rivers: example of the lower Yellow River, China. Limnology, 2017, 18, 17-29.	1.5	11
42	Boundary matters: the potential of system dynamics to support sustainability?. Journal of Cleaner Production, 2017, 140, 312-323.	9.3	99
43	Climate Hazard Crises in Asian Societies and Environments. , 0, , .		3
44	High Asia: The International Dynamics of Climate Change and Water Security. Journal of Asian Studies, 2017, 76, 457-480.	0.1	14
45	Mainstreaming ecosystem-based climate change adaptation into integrated water resources management in the Mekong region. Regional Environmental Change, 2017, 17, 1907-1920.	2.9	6
46	Wastewater discharge impact on drinking water sources along the Yangtze River (China). Science of the Total Environment, 2017, 599-600, 1399-1407.	8.0	54
47	Changes in seasonal streamflow extremes experienced in rivers of Northwestern South America (Colombia). Acta Geophysica, 2017, 65, 377-394.	2.0	3
48	Dam Construction in Lancangâ€Mekong River Basin Could Mitigate Future Flood Risk From Warmingâ€Induced Intensified Rainfall. Geophysical Research Letters, 2017, 44, 10,378.	4.0	79
49	Vulnerability Evaluation from 1995 to 2016 in Central Dry Zone Area of Myanmar. International Journal of Engineering Research in Africa, 2017, 32, 139-154.	0.7	5
50	Four dimensions of water security with a case of the indirect role of water in global food security. Water Security, 2017, 1, 36-45.	2.5	45
51	China's water resources vulnerability: A spatio-temporal analysis during 2003–2013. Journal of Cleaner Production, 2017, 142, 2901-2910.	9.3	85
52	Managing the Indus in a Warming World: The Potential for Transboundary Cooperation in Coping with Climate Change. Water Security in A New World, 2017, , 91-120.	0.1	1
53	Imagining Industan. Water Security in A New World, 2017, , .	0.1	11
54	Aquatic Ecosystem Impacts of Land Sharing Versus Sparing: Nutrient Loading to Southeast Asian Rivers. Ecosystems, 2017, 20, 393-405.	3.4	3

#	Article	IF	CITATIONS
55	Gridded global datasets for Gross Domestic Product and Human Development Index over 1990–2015. Scientific Data, 2018, 5, 180004.	5.3	337
56	Changing water system vulnerability in Western Australia's Wheatbelt region. Applied Geography, 2018, 91, 131-143.	3.7	6
57	Exposure and resilience of China's cities to floods and droughts: a double-edged sword. International Journal of Water Resources Development, 2018, 34, 547-565.	2.0	18
58	Mechanical Stability of River Banks Submitted to Fluctuations of the Water Level. , 2018, , 335-360.		0
59	Central Asia's Ili River Ecosystem as a Wicked Problem: Unraveling Complex Interrelationships at the Interface of Water, Energy, and Food. Water (Switzerland), 2018, 10, 541.	2.7	33
60	Carbon dynamics and CO ₂ and CH ₄ outgassing in the Mekong delta. Biogeosciences, 2018, 15, 1093-1114.	3.3	53
61	A process-based framework to examine China's approach to transboundary water management. International Journal of Water Resources Development, 2018, 34, 705-731.	2.0	15
62	Simulating Future Flows and Salinity Intrusion Using Combined One- and Two-Dimensional Hydrodynamic Modelling—The Case of Hau River, Vietnamese Mekong Delta. Water (Switzerland), 2018, 10, 897.	2.7	40
63	Information Entropy Suggests Stronger Nonlinear Associations between Hydro-Meteorological Variables and ENSO. Entropy, 2018, 20, 38.	2.2	15
64	Modelling seasonal flows alteration in the Vietnamese Mekong Delta under upstream discharge changes, rainfall changes and sea level rise. International Journal of River Basin Management, 2019, 17, 435-449.	2.7	15
65	The Planet's Stressed River Basins: Too Much Pressure or Too Little Adaptive Capacity?. Earth's Future, 2019, 7, 1118-1135.	6.3	33
66	Co-designing Indus Water-Energy-Land Futures. One Earth, 2019, 1, 185-194.	6.8	54
67	Operational Flood Risk Index Mapping for Disaster Risk Reduction Using Earth Observations and Cloud Computing Technologies: A Case Study on Myanmar. Frontiers in Environmental Science, 2019, 7, .	3.3	32
68	The Mekong's future flows under multiple drivers: How climate change, hydropower developments and irrigation expansions drive hydrological changes. Science of the Total Environment, 2019, 649, 601-609.	8.0	98
69	Hydropower dams of the Mekong River basin: A review of their hydrological impacts. Journal of Hydrology, 2019, 568, 285-300.	5.4	247
70	Responses of river discharge and sediment load to climate change in the transboundary Mekong River Basin. Water and Environment Journal, 2020, 34, 367-380.	2.2	17
71	Impacts of climate change and reservoir operation on streamflow and flood characteristics in the Lancang-Mekong River Basin. Journal of Hydrology, 2020, 590, 125472.	5.4	71
72	Profiling resilience and adaptation in mega deltas: A comparative assessment of the Mekong, Yellow, Yangtze, and Rhine deltas. Ocean and Coastal Management, 2020, 198, 105362.	4.4	12

#	Article	IF	CITATIONS
73	Water Scarcity: A Big Challenge to Slums in Africa to Fight against COVID-19. Science and Technology Libraries, 2020, 39, 281-288.	1.8	15
74	Applicability of Lumped Hydrological Models in a Data-Constrained River Basin of Asia. Journal of Hydrologic Engineering - ASCE, 2020, 25, .	1.9	15
75	Seasonal and spatial variability in δ18O and ÎƊ values in waters of the Godavari River basin: Insights into hydrological processes. Journal of Hydrology: Regional Studies, 2020, 30, 100706.	2.4	7
76	Projection of extreme flood inundation in the Mekong River basin under 4K increasing scenario using large ensemble climate data. Hydrological Processes, 2020, 34, 4350-4364.	2.6	19
77	Modeling urban development and its exposure to river flood risk in Southeast Asia. Computers, Environment and Urban Systems, 2021, 87, 101620.	7.1	21
78	A multisource trend analysis of floods in Asia-Pacific 1990–2018: Implications for climate change in sustainable development goals. International Journal of Disaster Risk Reduction, 2021, 59, 102237.	3.9	26
79	Climate change and health vulnerability in Nepal: A systematic review of the literature since 2010. Global Public Health, 2022, 17, 1406-1419.	2.0	6
80	Mapping socio-ecological resilience along the seven economic corridors of the Belt and Road Initiative. Journal of Cleaner Production, 2021, 309, 127341.	9.3	11
81	Reducing Climate Change Induced Flood at the Cost of Hydropower in the Lancangâ€Mekong River Basin. Geophysical Research Letters, 2021, 48, e2021GL094243.	4.0	11
82	What Is the Future of the Lower Mekong Basin Struggling against Human Activities? A Review. , 0, , .		3
86	Earthquake Vulnerability Assessment for Urban Areas Using an ANN and Hybrid SWOT-QSPM Model. Remote Sensing, 2021, 13, 4519.	4.0	9
87	Editorial: Urban Flood Resilience and Sustainable Flood Management Strategies in Megacities. Frontiers in Water, 2022, 3, .	2.3	0
88	A Collaborative Framework for Hydropower Development and Sustainable Livelihood of Farmers in the Lancang-Mekong River Basin: A Review with the Perspective of Energy-Water-Food Nexus. Water (Switzerland), 2022, 14, 499.	2.7	3
89	Spatiotemporal changes and driving forces of ecosystem vulnerability in the Yangtze River Basin, China: Quantification using habitat-structure-function framework. Science of the Total Environment, 2022, 835, 155494.	8.0	38
90	Global human exposure to urban riverine floods and storms. , 2022, 1, 80-90.		3
91	Towards an integrated system modeling of water scarcity with projected changes in climate and socioeconomic conditions. Sustainable Production and Consumption, 2022, 33, 543-556.	11.0	5
92	Effects of Upstream Activities of Tigris-Euphrates River Basin on Water and Soil Resources of Shatt Al-Arab Border River. SSRN Electronic Journal, 0, , .	0.4	0
93	Effects of upstream activities of Tigris-Euphrates River Basin on water and soil resources of Shatt al-Arab Border River. Science of the Total Environment, 2023, 858, 159751.	8.0	5

#	Article	IF	CITATIONS
94	Integrated assessment of flood risk in Arial Khan floodplain of Bangladesh under changing climate and socioeconomic conditions. Journal of Flood Risk Management, 2023, 16, .	3.3	2
95	Flood Increase and Drought Mitigation Under a Warming Climate in the Southern Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	3.3	2
97	Evaluation of groundwater level, quality and recharge: a case study of Can Tho City, Viet Nam. Science and Technology, 2023, 61, 120-136.	0.2	1
98	A new method for multispace analysis of multidimensional social exclusion. Geo Journal, 2023, 88, 4697-4715.	3.1	1
99	Selected global flood preparation and response lessons: implications for more resilient Chinese Cities. Natural Hazards, 2023, 118, 1767-1796.	3.4	2
100	An observation study of the combined river discharge and sea level impact on the duration of saltwater intrusion in Pearl River estuary–Modaomen waterway. Natural Hazards, 2024, 120, 409-428.	3.4	0
101	Integrated impact assessment of climate change and hydropower operation on streamflow and inundation in the lower Mekong Basin. Progress in Earth and Planetary Science, 2023, 10, .	3.0	1