Nanostructured high-energy cathode materials for adva

Nature Materials 11, 942-947 DOI: 10.1038/nmat3435

Citation Report

#	Article	IF	CITATIONS
2	Cellulose-based Li-ion batteries: a review. Cellulose, 2013, 20, 1523-1545.	2.4	262
3	Assembling metal oxide nanocrystals into dense, hollow, porous nanoparticles for lithium-ion and lithium–oxygen battery application. Nanoscale, 2013, 5, 10390.	2.8	40
4	Synthesis of uniform and superparamagnetic Fe3O4 nanocrystals embedded in a porous carbon matrix for a superior lithium ion battery anode. Journal of Materials Chemistry A, 2013, 1, 11011.	5.2	42
5	Bimetallic Cyanide-Bridged Coordination Polymers as Lithium Ion Cathode Materials: Core@Shell Nanoparticles with Enhanced Cyclability. Journal of the American Chemical Society, 2013, 135, 2793-2799.	6.6	205
6	Uniform hierarchical MoO2/carbon spheres with high cycling performance for lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 12038.	5.2	62
7	Synthesis of nanostructured materials by using metal-cyanide coordination polymers and their lithium storage properties. Nanoscale, 2013, 5, 11087.	2.8	28
8	Cobalt-Free Nickel Rich Layered Oxide Cathodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 11434-11440.	4.0	236
9	Hierarchically structured materials for lithium batteries. Nanotechnology, 2013, 24, 424004.	1.3	30
10	Spherical concentration-gradient LiMn1.87Ni0.13O4 spinel as a high performance cathode for lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 4010.	5.2	62
11	Pyrolysis of in situ formed lithium stearate: An effective strategy to activate Li2MnO3. Electrochimica Acta, 2013, 113, 424-432.	2.6	10
12	Layered Li[Ni0.5Co0.2Mn0.3]O2–Li2MnO3 core–shell structured cathode material with excellent stability. Journal of Power Sources, 2013, 242, 589-596.	4.0	70
13	Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (xÂ=Â1/3, 0.5,) Tj ETQq 121-130.	1 1 0.7843 4.0	314 rgBT /0 1,694
14	Polymer-assisted synthesis of LiNi2/3Mn1/3O2 cathode material with enhanced electrochemical performance. Journal of Alloys and Compounds, 2013, 559, 203-208.	2.8	20
15	Monodisperse Li1.2Mn0.6Ni0.2O2 microspheres with enhanced lithium storage capability. Journal of Materials Chemistry A, 2013, 1, 5301.	5.2	66
16	Electrochemical synthesis of nanostructured materials for electrochemical energy conversion and storage. Nanoscale, 2013, 5, 4056.	2.8	97
17	V2O5 quantum dots/graphene hybrid nanocomposite with stable cyclability for advanced lithium batteries. Nano Energy, 2013, 2, 916-922.	8.2	76
18	Cathode Material with Nanorod Structure—An Application for Advanced High-Energy and Safe Lithium Batteries. Chemistry of Materials, 2013, 25, 2109-2115.	3.2	137
19	Why Do Sulfone-Based Electrolytes Show Stability at High Voltages? Insight from Density Functional Theory. Journal of Physical Chemistry Letters, 2013, 4, 3992-3999.	2.1	99

TATION REDO

#	Article	IF	CITATIONS
20	Thin, Deformable, and Safetyâ€Reinforced Plastic Crystal Polymer Electrolytes for Highâ€Performance Flexible Lithiumâ€Ion Batteries. Advanced Functional Materials, 2014, 24, 44-52.	7.8	195
21	Enhancing the Electrochemical Performance of the LiMn ₂ O ₄ Hollow Microsphere Cathode with a LiNi _{0.5} Mn _{1.5} O ₄ Coated Layer. Chemistry - A European Journal, 2014, 20, 824-830.	1.7	53
22	Catecholâ€Mediated Reversible Binding of Multivalent Cations in Eumelanin Halfâ€Cells. Advanced Materials, 2014, 26, 6572-6579.	11.1	126
23	Iron Fluoride Hollow Porous Microspheres: Facile Solutionâ€Phase Synthesis and Their Application for Liâ€Ion Battery Cathodes. Chemistry - A European Journal, 2014, 20, 5815-5820.	1.7	52
24	Lithiation of an Iron Oxideâ€Based Anode for Stable, Highâ€Capacity Lithiumâ€Ion Batteries of Porous Carbon–Fe ₃ O ₄ /Li[Ni _{0.59} Co _{0.16} Mn _{0.25}]O <s Energy Technology, 2014, 2, 778-785.</s 	u b.8 2 <td>0 4.4</td>	0 4.4
25	Structure Design and Performance of LiNi _x Co _y Mn _{1â€xâ€y} O ₂ Cathode Materials for Lithiumâ€ion Batteries: A Review. Journal of the Chinese Chemical Society, 2014, 61, 1071-1083.	0.8	20
26	Comparison of Nanorodâ€5tructured Li[Ni _{0.54} Co _{0.16} Mn _{0.30}]O ₂ with Conventional Cathode Materials for Liâ€lon Batteries. ChemSusChem, 2014, 7, 245-252.	3.6	36
27	Aluminum Insertionâ€Induced Enhanced Performance of Li(Ni _{0.83â€<i>x</i>} Co _{0.10} Mn _{0.07} Al _{<i>y</i>})O _{2Microspheres for Lithiumâ€Ion Batteries Design. ChemElectroChem, 2014, 1, 601-610.}	>1.7	19
28	Synthesis of Spherical Core-Shell Ni(OH)2-Ni½Mn½(OH)2Particles via a Continuously Stirred Tank Reactor. Journal of the Electrochemical Society, 2014, 161, A890-A895.	1.3	8
29	Growth of SnO ₂ nanosheet arrays on various conductive substrates as integrated electrodes for lithium-ion batteries. Materials Horizons, 2014, 1, 133-138.	6.4	66
30	Hierarchical functional layers on high-capacity lithium-excess cathodes for superior lithium ion batteries. Journal of Power Sources, 2014, 247, 95-104.	4.0	37
31	Anticorrosive flexible pyrolytic polyimide graphite film as a cathode current collector in lithium bis(trifluoromethane sulfonyl) imide electrolyte. Electrochemistry Communications, 2014, 44, 70-73.	2.3	13
32	Synthesis and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 as a concentration-gradient cathode material for lithium batteries. Chinese Chemical Letters, 2014, 25, 883-886.	4.8	31
33	Hydrothermal synthesis of LiMn2O4 onto carbon fiber paper current collector for binder free lithium-ion battery positive electrodes. Journal of Power Sources, 2014, 251, 411-416.	4.0	38
34	Amorphous carbon coated TiO2 nanocrystals embedded in a carbonaceous matrix derived from polyvinylpyrrolidone decomposition for improved Li-storage performance. Chemical Engineering Journal, 2014, 240, 379-386.	6.6	20
35	Hierarchical nanowires for high-performance electrochemical energy storage. Frontiers of Physics, 2014, 9, 303-322.	2.4	20
36	Probing the evolution and morphology of hard carbon spheres. Carbon, 2014, 68, 104-111.	5.4	44
37	An approach to application for LiNi0.6Co0.2Mn0.2O2 cathode material at high cutoff voltage by TiO2 coating. Journal of Power Sources, 2014, 256, 20-27.	4.0	265

#	Article	IF	CITATIONS
38	Effect of Residual Lithium Compounds on Layer Ni-Rich Li[Ni _{0.7} Mn _{0.3}]O ₂ . Journal of the Electrochemical Society, 2014, 161, A920-A926.	1.3	267
39	Defect-induced plating of lithium metal within porous graphene networks. Nature Communications, 2014, 5, 3710.	5.8	381
40	A Highâ€Energy Liâ€Ion Battery Using a Siliconâ€Based Anode and a Nanoâ€Structured Layered Composite Cathode. Advanced Functional Materials, 2014, 24, 3036-3042.	7.8	139
41	Oneâ€pot fabrication of largeâ€scale ordered NiTe nanosheets and its application in lithiumâ€ion batteries. Crystal Research and Technology, 2014, 49, 414-417.	0.6	5
42	Mica-like vanadium pentoxide-nanostructured thin film as high-performance cathode for lithium-ion batteries. Journal of Power Sources, 2014, 266, 1-6.	4.0	15
43	Enhanced electrochemical performance in LiNi0.8Co0.15Al0.05O2 cathode material: Resulting from Mn-surface-modification using a facile oxidizing–coating method. Materials Letters, 2014, 115, 49-52.	1.3	26
44	Optimization of Layered Cathode Material with Full Concentration Gradient for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2014, 118, 175-182.	1.5	37
45	Control of Carbon Nanotube Electronic Properties by Lithium Cation Intercalation. Journal of Physical Chemistry Letters, 2014, 5, 4129-4133.	2.1	17
46	Carbon nanorods derived from natural based nanocrystalline cellulose for highly efficient capacitive deionization. Journal of Materials Chemistry A, 2014, 2, 20966-20972.	5.2	24
47	Tuning the structure and property of nanostructured cathode materials of lithium ion and lithium sulfur batteries. Journal of Materials Chemistry A, 2014, 2, 19941-19962.	5.2	56
48	Improvement of electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material by graphene nanosheets modification. Electrochimica Acta, 2014, 149, 86-93.	2.6	122
49	Quantum chemistry study of the oxidation-induced stability and decomposition of propylene carbonate-containing complexes. Physical Chemistry Chemical Physics, 2014, 16, 6560.	1.3	33
50	Core–Shell Prussian Blue Analogue Molecular Magnet Mn _{1.5} [Cr(CN) ₆]· <i>m</i> H ₂ O@Ni _{1.5} [Cr(CN) _{6for Hydrogen Storage. ACS Applied Materials & Interfaces, 2014, 6, 17579-17588.}	o>} 4Â⊙ xi>n≺	/i 2k l ₂
51	Single Particle Nanomechanics in Operando Batteries via Lensless Strain Mapping. Nano Letters, 2014, 14, 5123-5127.	4.5	94
52	Application prospects of high-voltage cathode materials in all-solid-state lithium-ion batteries. Science Bulletin, 2014, 59, 1950-1963.	1.7	9
53	High rate sodium ion insertion into core–shell nanoparticles of Prussian blue analogues. Chemical Communications, 2014, 50, 1353-1355.	2.2	94
54	High-capacity full lithium-ion cells based on nanoarchitectured ternary manganese–nickel–cobalt carbonate and its lithiated derivative. Journal of Materials Chemistry A, 2014, 2, 14947.	5.2	52
55	Ultrasonic-assisted co-precipitation to synthesize lithium-rich cathode Li1.3Ni0.21Mn0.64O2+ materials for lithium-ion batteries. Journal of Power Sources, 2014, 272, 922-928.	4.0	22

#	Article	IF	Citations
56	High-Energy Layered Oxide Cathodes with Thin Shells for Improved Surface Stability. Chemistry of Materials, 2014, 26, 5973-5979.	3.2	41
57	Enhanced Li Storage Performance of LiNi _{0.5} Mn _{1.5} O ₄ –Coated 0.4Li ₂ MnO ₃ ·0.6LiNi _{1/3} Co _{1/3} Mn _{1/3} O _{2 Cathode Materials for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 16888-16894.}		65
58	Synthesis of Ligand-Stabilized Metal Oxide Nanocrystals and Epitaxial Core/Shell Nanocrystals <i>via</i> a Lower-Temperature Esterification Process. ACS Nano, 2014, 8, 64-75.	7.3	82
59	Study of full concentration-gradient Li(Ni0.8Co0.1Mn0.1)O2 cathode material for lithium ion batteries. Journal of Alloys and Compounds, 2014, 614, 264-270.	2.8	46
60	Effects of heat-treatment atmosphere on electrochemical performances of Ni-rich mixed-metal oxide (LiNi0.80Co0.15Mn0.05O2) as a cathode material for lithium ion battery. Electrochimica Acta, 2014, 138, 15-21.	2.6	75
61	Lithium-active molybdenum trioxide coated LiNi0.5Co0.2Mn0.3O2 cathode material with enhanced electrochemical properties for lithium-ion batteries. Journal of Power Sources, 2014, 269, 747-754.	4.0	81
62	A high-energy, full concentration-gradient cathode material with excellent cycle and thermal stability for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 17130-17138.	5.2	104
63	New dry carbon nanotube coating of over-lithiated layered oxide cathode for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 19670-19677.	5.2	53
64	Synthesis and characterization of manganese-, nickel-, and cobalt-containing carbonate precursors for high capacity Li-ion battery cathodes. Journal of Solid State Electrochemistry, 2014, 18, 2123-2129.	1.2	13
65	Surface modification of LiNi0.8Co0.1Mn0.1O2 with conducting polypyrrole. Journal of Solid State Electrochemistry, 2014, 18, 2619-2624.	1.2	103
66	Mesoporous carbon with large pores as anode for Na-ion batteries. Science Bulletin, 2014, 59, 2186-2190.	1.7	36
67	Development of Microstrain in Aged Lithium Transition Metal Oxides. Nano Letters, 2014, 14, 4873-4880.	4.5	171
68	Prediction of Quaternary Spinel Oxides as Li-Battery Cathodes: Cation Site Preference, Metal Mixing, Voltage and Phase Stability. Journal of the Electrochemical Society, 2014, 161, A1440-A1446.	1.3	14
69	Mitigating Voltage Fade in Cathode Materials by Improving the Atomic Level Uniformity of Elemental Distribution. Nano Letters, 2014, 14, 2628-2635.	4.5	273
70	Stepwise co-precipitation to synthesize LiNi1/3Co1/3Mn1/3O2 one-dimensional hierarchical structure for lithium ion batteries. Journal of Power Sources, 2014, 272, 144-151.	4.0	78
71	Hierarchically porous three-dimensional electrodes of CoMoO ₄ and ZnCo ₂ O ₄ and their high anode performance for lithium ion batteries. Nanoscale, 2014, 6, 10556.	2.8	77
72	A comprehensive study on electrochemical performance of Mn-surface-modified LiNi0.8Co0.15Al0.05O2 synthesized by an in situ oxidizing-coating method. Journal of Power Sources, 2014, 252, 200-207.	4.0	125
73	Flexible High-Energy Li-Ion Batteries with Fast-Charging Capability. Nano Letters, 2014, 14, 4083-4089.	4.5	122

#	Article	IF	CITATIONS
74	Highly Reversible Mg Insertion in Nanostructured Bi for Mg Ion Batteries. Nano Letters, 2014, 14, 255-260.	4.5	257
75	Synthesis and characterization of concentration–gradient LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries. Journal of Alloys and Compounds, 2014, 613, 296-305.	2.8	28
76	Formation of Li2MnO3 investigated by in situ synchrotron probes. Journal of Power Sources, 2014, 266, 341-346.	4.0	20
77	Unravelling the Surface Chemistry of Metal Oxide Nanocrystals, the Role of Acids and Bases. Journal of the American Chemical Society, 2014, 136, 9650-9657.	6.6	100
78	High Precision Coulometry Studies of Single-Phase Layered Compositions in the Li-Mn-Ni-O System. Journal of the Electrochemical Society, 2014, 161, A1189-A1193.	1.3	13
79	A review on structure model and energy system design of lithium-ion battery in renewable energy vehicle. Renewable and Sustainable Energy Reviews, 2014, 37, 627-633.	8.2	93
80	Li-ion and Na-ion insertion into size-controlled nickel hexacyanoferrate nanoparticles. RSC Advances, 2014, 4, 24955.	1.7	36
81	Origin of the Increased Li ⁺ â€Storage Capacity of Stacked SnS ₂ /Graphene Nanocomposite. ChemElectroChem, 2015, 2, 1138-1143.	1.7	29
83	Advanced Concentration Gradient Cathode Material with Twoâ€Slope for Highâ€Energy and Safe Lithium Batteries. Advanced Functional Materials, 2015, 25, 4673-4680.	7.8	127
85	An Approach towards Synthesis of Nanoarchitectured LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ Cathode Material for Lithium Ion Batteries. Chinese Journal of Chemistry, 2015, 33, 261-267.	2.6	27
86	Ammonium Polyphosphate/Melamine Cyanurate Synergetic Flame Retardant System for Use in Papermaking. BioResources, 2015, 11, .	0.5	4
87	Exploring Lithium-ion Battery Performance through in situ Characterization. Microscopy and Microanalysis, 2015, 21, 1541-1542.	0.2	0
88	Black titanium oxide nanoarray electrodes for high rate Li-ion microbatteries. Journal of Materials Chemistry A, 2015, 3, 11183-11188.	5.2	77
89	Understanding the Origin of Enhanced Performances in Core–Shell and Concentration-Gradient Layered Oxide Cathode Materials. ACS Applied Materials & Interfaces, 2015, 7, 12864-12872.	4.0	61
90	Recent Advances on the Understanding of Structural and Composition Evolution of LMR Cathodes for Li-ion Batteries. Frontiers in Energy Research, 2015, 3, .	1.2	19
91	Facile preparation of core@shell and concentration-gradient spinel particles for Li-ion battery cathode materials. Science and Technology of Advanced Materials, 2015, 16, 015006.	2.8	10
92	The Impact of Compositionally Induced Residual Stress on Electrochemical Shock in Battery Electrode Particles. Journal of the Electrochemical Society, 2015, 162, A1282-A1288.	1.3	2
93	High-performance electrode materials for lithium-ion batteries for electric vehicles. , 2015, , 191-241.		9

#	Article	IF	CITATIONS
94	Improved Performances of Li[Ni _{0.65} Co _{0.08} Mn _{0.27}]O ₂ Cathode Material with Full Concentration Gradient for Li-Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A3059-A3063.	1.3	30
95	Fast and large lithium storages from CoMoO4 nanorods-graphene composite. Ionics, 2015, 21, 2993-2999.	1.2	21
96	In-situ Neutron Diffraction Study of a High Voltage Li(Ni0.42Mn0.42Co0.16)O2/Graphite Pouch Cell. Electrochimica Acta, 2015, 180, 234-240.	2.6	39
97	Control of electrochemical properties of nickel-rich layered cathode materials for lithium ion batteries by variation of the manganese to cobalt ratio. Journal of Power Sources, 2015, 275, 877-883.	4.0	109
98	Naphthyridine Derivatives as a Model System for Potential Lithium–Sulfur Energyâ€Storage Applications. European Journal of Organic Chemistry, 2015, 2015, 933-937.	1.2	11
99	Synthesis and characterization of full concentration-gradient LiNi 0.7 Co 0.1 Mn 0.2 O 2 cathode material for lithium-ion batteries. Journal of Alloys and Compounds, 2015, 635, 92-100.	2.8	26
100	Surface coating effect on thermal properties of delithiated lithium nickel manganese layer oxide. Journal of Power Sources, 2015, 282, 511-519.	4.0	12
101	Synthesis of phase-pure Li 2 MnSiO 4 @C porous nanoboxes for high-capacity Li-ion battery cathodes. Nano Energy, 2015, 12, 305-313.	8.2	31
102	A New Coating Method for Alleviating Surface Degradation of LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ Cathode Material: Nanoscale Surface Treatment of Primary Particles. Nano Letters, 2015, 15, 2111-2119.	4.5	452
103	Future generations of cathode materials: an automotive industry perspective. Journal of Materials Chemistry A, 2015, 3, 6709-6732.	5.2	679
104	Stable Alkali Metal Ion Intercalation Compounds as Optimized Metal Oxide Nanowire Cathodes for Lithium Batteries. Nano Letters, 2015, 15, 2180-2185.	4.5	160
105	Improved electrochemical and thermal properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by SiO2 coating. Journal of Power Sources, 2015, 282, 45-50.	4.0	270
106	Surface-modified concentration-gradient Ni-rich layered oxide cathodes for high-energy lithium-ion batteries. Journal of Power Sources, 2015, 282, 429-436.	4.0	125
107	Hydrogen peroxide assisted synthesis of LiNi1/3Co1/3Mn1/3O2 as high-performance cathode for lithium-ion batteries. Journal of Power Sources, 2015, 280, 263-271.	4.0	57
108	The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage. Angewandte Chemie - International Edition, 2015, 54, 3431-3448.	7.2	1,772
109	Composites of porous Co ₃ O ₄ grown on Li ₂ MnO ₃ microspheres as cathode materials for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 4840-4845.	5.2	45
110	A generalized method for high throughput in-situ experiment data analysis: An example of battery materials exploration. Journal of Power Sources, 2015, 279, 246-251.	4.0	11
111	Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Physical Chemistry Chemical Physics, 2015, 17, 4799-4844.	1.3	237

#	Article	IF	CITATIONS
112	A peanut-like hierarchical micro/nano-Li _{1.2} Mn _{0.54} Ni _{0.18} Co _{0.08} O ₂ catho material for lithium-ion batteries with enhanced electrochemical performance. Journal of Materials Chemistry A, 2015, 3, 14291-14297.	de 5.2	76
113	3D Si/C particulate nanocomposites internally wired with graphene networks for high energy and stable batteries. Journal of Materials Chemistry A, 2015, 3, 18684-18695.	5.2	38
114	2D and 3D Imaging of Li-Ion Battery Materials Using Synchrotron Radiation Sources. Green Energy and Technology, 2015, , 393-418.	0.4	1
115	An electrochemical approach to graphene oxide coated sulfur for long cycle life. Nanoscale, 2015, 7, 13249-13255.	2.8	20
116	Molecular-based design and emerging applications of nanoporous carbon spheres. Nature Materials, 2015, 14, 763-774.	13.3	838
117	Microscale characterization of coupled degradation mechanism of graded materials in lithium batteries of electric vehicles. Renewable and Sustainable Energy Reviews, 2015, 50, 1445-1461.	8.2	17
118	Al2O3 Coated Concentration-Gradient Li[Ni0.73Co0.12Mn0.15]O2 Cathode Material by Freeze Drying for Long-Life Lithium Ion Batteries. Electrochimica Acta, 2015, 174, 1185-1191.	2.6	61
119	Fluorine-doped porous carbon-decorated Fe3O4-FeF2 composite versus LiNi0.5Mn1.5O4 towards a full battery with robust capability. Electrochimica Acta, 2015, 169, 291-299.	2.6	32
120	Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries. Nature Communications, 2015, 6, 6865.	5.8	210
121	Synthesis of layered xLi2MnO3·(1Ⱂx)LiMnO2 nanoplates and its electrochemical performance as Li-rich cathode materials for Li-ion battery. Electrochimica Acta, 2015, 165, 182-190.	2.6	26
122	Why is tris(trimethylsilyl) phosphite effective as an additive for high-voltage lithium-ion batteries?. Journal of Materials Chemistry A, 2015, 3, 10900-10909.	5.2	112
123	Preparation of Tunable (BaSrMg)O for Oxygen Chemisorption: Formation Mechanism and Characterization. Inorganic Chemistry, 2015, 54, 5419-5425.	1.9	3
124	NaCrO ₂ cathode for high-rate sodium-ion batteries. Energy and Environmental Science, 2015, 8, 2019-2026.	15.6	307
125	Nickelâ€Rich Layered Lithium Transitionâ€Metal Oxide for Highâ€Energy Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2015, 54, 4440-4457.	7.2	1,512
126	In situ strain evolution during a disconnection event in a battery nanoparticle. Physical Chemistry Chemical Physics, 2015, 17, 10551-10555.	1.3	40
127	Ultralong SrLi2Ti6O14 nanowires composed of single-crystalline nanoparticles: Promising candidates for high-power lithium ions batteries. Nano Energy, 2015, 13, 18-27.	8.2	79
128	The migration mechanism of transition metal ions in LiNi _{0.5} Mn _{1.5} O ₄ . Journal of Materials Chemistry A, 2015, 3, 13031-13038.	5.2	20
129	Rational material design for ultrafast rechargeable lithium-ion batteries. Chemical Society Reviews, 2015, 44, 5926-5940.	18.7	857

#	Article	IF	CITATIONS
130	Role of Mn Content on the Electrochemical Properties of Nickel-Rich Layered LiNi _{0.8–<i>x</i>} Co _{0.1} Mn _{0.1+<i>x</i>} O ₂ (0.0 ≤i>x </td <td>i>)4TpETQ</td> <td>ე01£50 rgBT /(</td>	i>)4TpETQ	ე0 1£50 rgBT /(
131	Voltage induced electrochemical reactions in the single lithium-rich layer-oxide nanoparticles. Physical Chemistry Chemical Physics, 2015, 17, 10257-10264.	1.3	17
132	A high-capacity Li[Ni _{0.8} Co _{0.06} Mn _{0.14}]O ₂ positive electrode with a dual concentration gradient for next-generation lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 22183-22190.	5.2	84
133	Promoting the cyclic and rate performance of lithium-rich ternary materials via surface modification and lattice expansion. RSC Advances, 2015, 5, 93048-93056.	1.7	11
134	A comparative investigation of carbon black (Super-P) and vapor-grown carbon fibers (VGCFs) as conductive additives for lithium-ion battery cathodes. RSC Advances, 2015, 5, 95073-95078.	1.7	57
135	Self-assembled LiNi1/3Co1/3Mn1/3O2 nanosheet cathodes with tunable rate capability. Nano Energy, 2015, 17, 36-42.	8.2	105
136	Construction of sandwiched graphene paper@Fe ₃ O ₄ nanorod array@graphene for large and fast lithium storage with an extended lifespan. Journal of Materials Chemistry A, 2015, 3, 19384-19392.	5.2	44
137	Self-Terminated Artificial SEI Layer for Nickel-Rich Layered Cathode Material via Mixed Gas Chemical Vapor Deposition. Chemistry of Materials, 2015, 27, 7370-7379.	3.2	61
138	Rational synthesis of Ni nanoparticle-embedded porous graphitic carbon nanosheets with enhanced lithium storage properties. Nanoscale, 2015, 7, 18211-18217.	2.8	30
139	High-energy cathode materials for Li-ion batteries: A review of recent developments. Science China Technological Sciences, 2015, 58, 1809-1828.	2.0	74
140	Electromagnetic effects model and design of energy systems for lithium batteries with gradient structure in sustainable energy electric vehicles. Renewable and Sustainable Energy Reviews, 2015, 52, 842-851.	8.2	15
141	Superior electrochemical performance of LiCoO2 electrodes enabled by conductive Al2O3-doped ZnO coating via magnetron sputtering. Journal of Power Sources, 2015, 298, 114-122.	4.0	63
143	Crystal Chemistry of Electrochemically and Chemically Lithiated Layered α _I -LiVOPO ₄ . Chemistry of Materials, 2015, 27, 6699-6707.	3.2	45
144	Design of Nickel-rich Layered Oxides Using <i>d</i> Electronic Donor for Redox Reactions. Chemistry of Materials, 2015, 27, 6450-6456.	3.2	52
145	Facile hydrothermal method synthesis of coralline-like Li1.2Mn0.54Ni0.13Co0.13O2 hierarchical architectures as superior cathode materials for lithium-ion batteries. Materials Research Bulletin, 2015, 63, 256-264.	2.7	24
146	Effect of outer layer thickness on full concentration gradient layered cathode material for lithium-ion batteries. Journal of Power Sources, 2015, 273, 663-669.	4.0	23
147	Electrochemical performance of nanocrystalline Li2CoTiO4 cathode materials for lithium ion batteries. Journal of Alloys and Compounds, 2015, 618, 210-216.	2.8	10
148	Controllable Hydrothermal Conversion from Ni-Co-Mn Carbonate Nanoparticles to Microspheres. Crystals, 2016, 6, 156.	1.0	2

#	Article	IF	CITATIONS
149	Low-cost LiMO2 (M = Ni and Fe) Positive-Electrode Materials for Lithium Ion Batteries. International Journal of Electrochemical Science, 2016, , 5924-5934.	0.5	2
150	Enhancing Interfacial Bonding between Anisotropically Oriented Grains Using a Glueâ€Nanofiller for Advanced Liâ€Ion Battery Cathode. Advanced Materials, 2016, 28, 4705-4712.	11.1	106
151	Enhancing the Kinetics of Liâ€Rich Cathode Materials through the Pinning Effects of Gradient Surface Na ⁺ Doping. Advanced Energy Materials, 2016, 6, 1501914.	10.2	288
152	High-voltage materials for positive electrodes of lithium ion batteries (review). Russian Journal of Electrochemistry, 2016, 52, 501-524.	0.3	22
153	Understanding Voltage Decay in Lithium-Rich Manganese-Based Layered Cathode Materials by Limiting Cutoff Voltage. ACS Applied Materials & Interfaces, 2016, 8, 18867-18877.	4.0	43
154	Ni and Co Segregations on Selective Surface Facets and Rational Design of Layered Lithium Transitionâ€Metal Oxide Cathodes. Advanced Energy Materials, 2016, 6, 1502455.	10.2	100
155	Direct X-Ray Imaging as a Tool for Understanding Multiphysics Phenomena in Energy Storage. Journal of Electrochemical Energy Conversion and Storage, 2016, 13, .	1.1	4
156	The Large Scale Synthesis of Aligned Plate Nanostructures. Scientific Reports, 2016, 6, 29972.	1.6	7
157	Improved performances of a LiNi _{0.6} Co _{0.15} Mn _{0.25} O ₂ cathode material with full concentration-gradient for lithium ion batteries. RSC Advances, 2016, 6, 103747-103753.	1.7	17
158	The role of nanotechnology in the development of battery materials for electric vehicles. Nature Nanotechnology, 2016, 11, 1031-1038.	15.6	581
159	Magnetic proximity effect in ferrimagnetic–ferromagnetic core–shell Prussian blue analogues molecular magnet. Chemical Physics Letters, 2016, 651, 155-160.	1.2	22
160	Nickelâ€Rich and Lithiumâ€Rich Layered Oxide Cathodes: Progress and Perspectives. Advanced Energy Materials, 2016, 6, 1501010.	10.2	946
161	High-energy-density lithium-ion battery using a carbon-nanotube–Si composite anode and a compositionally graded Li[Ni _{0.85} Co _{0.05} Mn _{0.10}]O ₂ cathode. Energy and Environmental Science, 2016, 9, 2152-2158.	15.6	269
162	One-pot hydrothermal synthesis of hollow Fe3O4 microspheres assembled with nanoparticles for lithium-ion battery anodes. Materials Letters, 2016, 172, 76-80.	1.3	9
163	Tailoring atomic distribution in micron-sized and spherical Li-rich layered oxides as cathode materials for advanced lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 7689-7699.	5.2	55
164	Rapid Self-Assembly Spherical Li _{1.2} Mn _{0.56} Ni _{0.16} Co _{0.08} O ₂ with Improved Performances by Microwave Hydrothermal Method as Cathode for Lithium-Ion Batteries. ACS Applied Materials & amp: Interfaces, 2016, 8, 11476-11487.	4.0	82
165	Synthesis and Electrochemical Performance of Nickel-Rich Layered-Structure LiNi0.65Co0.08Mn0.27O2Cathode Materials Comprising Particles with Ni and Mn Full Concentration Gradients. Journal of the Electrochemical Society, 2016, 163, A1348-A1358.	1.3	19
166	Well-dispersed sulfur wrapped in reduced graphene oxide nanoscroll as cathode material for lithium–sulfur battery. Journal of Electroanalytical Chemistry, 2016, 780, 19-25.	1.9	37

#	ARTICLE	IF	CITATIONS
167	Aligned Li ⁺ Tunnels in Core–Shell Li(Ni _{<i>x</i>} Mn _{<i>y</i>} Co _{<i>z</i>})O ₂ @LiFePO _{4Enhances Its High Voltage Cycling Stability as Li-ion Battery Cathode. Nano Letters, 2016, 16, 6357-6363.}	b×4.5	117
168	A Chemical-Adsorption Strategy to Enhance the Reaction Kinetics of Lithium-Rich Layered Cathodes via Double-Shell Surface Modification. ACS Applied Materials & Interfaces, 2016, 8, 24594-24602.	4.0	8
169	Electrospun Li2MnO3-modified Li1.2NixCo0.1Mn0.9-xO2 nanofibers: Synthesis and enhanced electrochemical performance for lithium-ion batteries. Electronic Materials Letters, 2016, 12, 804-811.	1.0	10
170	Conflicting Roles of Anion Doping on the Electrochemical Performance of Li-Ion Battery Cathode Materials. Chemistry of Materials, 2016, 28, 6942-6952.	3.2	118
171	The roles of oxygen non-stoichiometry on the electrochemical properties of oxide-based cathode materials. Nano Today, 2016, 11, 678-694.	6.2	72
172	A comprehensive study of the role of transition metals in O3-type layered Na[Ni _x Co _y Mn _z]O ₂ (x = 1/3, 0.5, 0.6, and 0.8) cathodes for sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 17952-17959.	5.2	110
173	Toxicity, a serious concern of thermal runaway from commercial Li-ion battery. Nano Energy, 2016, 27, 313-319.	8.2	186
174	Core/Double-Shell Type Gradient Ni-Rich LiNi _{0.76} Co _{0.10} Mn _{0.14} O ₂ with High Capacity and Long Cycle Life for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 24543-24549.	4.0	60
175	In Operando XRD and TXM Study on the Metastable Structure Change of NaNi _{1/3} Fe _{1/3} Mn _{1/3} O ₂ under Electrochemical Sodiumâ€ion Intercalation. Advanced Energy Materials, 2016, 6, 1601306.	10.2	147
176	Three-Dimensional Adhesion Map Based on Surface and Interfacial Cutting Analysis System for Predicting Adhesion Properties of Composite Electrodes. ACS Applied Materials & Interfaces, 2016, 8, 23688-23695.	4.0	19
177	Compositionally Graded Cathode Material with Longâ€Term Cycling Stability for Electric Vehicles Application. Advanced Energy Materials, 2016, 6, 1601417.	10.2	137
178	Redox Species-Based Electrolytes for Advanced Rechargeable Lithium Ion Batteries. ACS Energy Letters, 2016, 1, 529-534.	8.8	51
179	Anodeâ€Free Rechargeable Lithium Metal Batteries. Advanced Functional Materials, 2016, 26, 7094-7102.	7.8	495
180	Glucose-assisted combustion synthesis of Li _{1.2} Ni _{0.13} Co _{0.13} Mn _{0.54} O ₂ cathode materials with superior electrochemical performance for lithium-ion batteries. RSC Advances, 2016, 6, 79050-79057.	1.7	17
181	Electrical energy storage: Materials challenges and prospects. MRS Bulletin, 2016, 41, 624-631.	1.7	26
182	A stable lithium-rich surface structure for lithium-rich layered cathode materials. Nature Communications, 2016, 7, 13598.	5.8	153
183	Flexible foams of graphene entrapped SnO ₂ –Co ₃ O ₄ nanocubes with remarkably large and fast lithium storage. Journal of Materials Chemistry A, 2016, 4, 16101-16107.	5.2	38
184	A Study of Li-Ion Cells Operated to 4.5 V and at 55°C. Journal of the Electrochemical Society, 2016, 163, A2399-A2406.	1.3	25

#	Article	IF	CITATIONS
185	Facile synthesis of a novel structured Li[Ni0.66Co0.1Mn0.24]O2 cathode material with improved cycle life and thermal stability via ion diffusion. Journal of Power Sources, 2016, 327, 38-43.	4.0	16
186	Quaternary phase diagrams of spinel <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Li</mml:mi><mml:mi> mathvariant="normal">O</mml:mi><mml:mn>4<td>yk‡mml:n</td><td>ni⁊ </td></mml:mn></mml:msub></mml:mrow></mml:math 	yk‡mml:n	ni ⁊
187	Mitigating Voltage Decay of Li-Rich Cathode Material via Increasing Ni Content for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 20138-20146.	4.0	197
188	In situ analyses for ion storage materials. Chemical Society Reviews, 2016, 45, 5717-5770.	18.7	101
189	Structural model, size effect and nano-energy system design for more sustainable energy of solid state automotive battery. Renewable and Sustainable Energy Reviews, 2016, 65, 685-697.	8.2	11
190	Redox Shuttles with Axisymmetric Scaffold for Overcharge Protection of Lithiumâ€lon Batteries. Advanced Energy Materials, 2016, 6, 1600795.	10.2	33
191	A new tavorite LiTiPO4F electrode material for aqueous rechargeable lithium ion battery. Journal of Solid State Electrochemistry, 2016, 20, 2619-2631.	1.2	11
192	Reduction of Manganese Dioxide by Dissolved Lithium in Liquid Ammonia for Li–Mnâ€O Spinels. ChemistrySelect, 2016, 1, 3438-3442.	0.7	1
193	Tailoring Nucleation at Two Interfaces Enables Single Crystalline NiO Nanowires via Vapor–Liquid–Solid Route. ACS Applied Materials & Interfaces, 2016, 8, 27892-27899.	4.0	6
194	Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials, 2016, 1, .	23.3	3,562
195	Effect of Na ₂ SO ₄ Coating layer on Nickelâ€Rich Li(Ni <i>_x</i> Co <i>_y</i> Mn <i>_z</i>)O ₂ Cathode Materials for Lithiumâ€Ion Batteries. Advanced Materials Interfaces, 2016, 3, 1600784.	1.9	21
196	Modification of Ni-Rich FCG NMC and NCA Cathodes by Atomic Layer Deposition: Preventing Surface Phase Transitions for High-Voltage Lithium-Ion Batteries. Scientific Reports, 2016, 6, 26532.	1.6	196
197	Alleviating Surface Degradation of Nickel-Rich Layered Oxide Cathode Material by Encapsulating with Nanoscale Li-Ions/Electrons Superionic Conductors Hybrid Membrane for Advanced Li-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 30879-30889.	4.0	131
198	Nanoparticle Decorated Ultrathin Porous Nanosheets as Hierarchical Co3O4 Nanostructures for Lithium Ion Battery Anode Materials. Scientific Reports, 2016, 6, 20592.	1.6	68
199	Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nature Energy, 2016, 1, .	19.8	1,388
200	Metal segregation in hierarchically structured cathode materials for high-energy lithiumÂbatteries. Nature Energy, 2016, 1, .	19.8	209
201	The Effect of Interdiffusion on the Properties of Lithium-Rich Core-Shell Cathodes. Journal of the Electrochemical Society, 2016, 163, A2841-A2848.	1.3	12
202	Persistent Stateâ€ofâ€Charge Heterogeneity in Relaxed, Partially Charged Li _{1â^'} <i>_x</i> Ni _{1/3} Co _{1/3} Mn _{1/3} O ₂ Secondary Particles. Advanced Materials, 2016, 28, 6631-6638.	11.1	142

	CITATION RI	PORT	
#	Article	IF	CITATIONS
203	High-energy x-ray scattering studies of battery materials. MRS Bulletin, 2016, 41, 460-465.	1.7	8
204	Comparative Study of Ni-Rich Layered Cathodes for Rechargeable Lithium Batteries: Li[Ni _{0.85} Co _{0.11} Al _{0.04}]O ₂ and Li[Ni _{0.84} Co _{0.06} Mn _{0.09} Al _{0.01}]O ₂ with Two-Step Full Concentration Gradients. ACS Energy Letters. 2016. 1, 283-289.	8.8	110
205	Influences of transition metal on structural and electrochemical properties of Li[NixCoyMnz]O2 (0.6≤â‰ 6 .8) cathode materials for lithium-ion batteries. Transactions of Nonferrous Metals Society of China, 2016, 26, 1396-1402.	1.7	17
206	A facile cathode design combining Ni-rich layered oxides with Li-rich layered oxides for lithium-ion batteries. Journal of Power Sources, 2016, 325, 620-629.	4.0	46
207	Nitrogen-doped graphene nanosheets decorated Li3V2(PO4)3/C nanocrystals as high-rate and ultralong cycle-life cathode for lithium-ion batteries. Electrochimica Acta, 2016, 210, 45-52.	2.6	66
208	Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chemical Society Reviews, 2016, 45, 3479-3563.	18.7	1,134
209	Controlled synthesis of concentration gradient LiNi _{0.84} Co _{0.10} Mn _{0.04} Al _{0.02} O _{1.90} F _{0.1 with improved electrochemical properties in Li-ion batteries. RSC Advances, 2016, 6, 58173-58181.}	.0 <i>4/s</i> ub>	17
210	Effects of PVP-assisted Co3O4 coating on the electrochemical and storage properties of LiNi0.6Co0.2Mn0.2O2 at high cut-off voltage. Electrochimica Acta, 2016, 210, 548-556.	2.6	62
211	Highâ€Performance Lowâ€Temperature Li ⁺ Intercalation in Disordered Rockâ€Salt Li–Cr–V Oxyfluorides. ChemElectroChem, 2016, 3, 892-895.	1.7	32
212	Controlled synthesis of spherical hierarchical LiNi1â^'xâ^'yCoxAlyO2 (0 <x, 190,="" 2016,="" 932-938.<="" a="" acta,="" as="" batteries.="" cathode="" cation="" electrochimica="" exchange="" for="" high-performance="" lithium="" materials="" novel="" process="" td="" via="" y<0.2)=""><td>2.6</td><td>32</td></x,>	2.6	32
213	Synthesis of porous MnCo ₂ O ₄ microspheres with yolk–shell structure induced by concentration gradient and the effect on their performance in electrochemical energy storage. RSC Advances, 2016, 6, 10763-10774.	1.7	33
214	Variation of coulombic efficiency versus upper cutoff potential of Li-ion cells tested with aggressive protocols. Journal of Power Sources, 2016, 306, 233-240.	4.0	31
215	Extending the High-Voltage Capacity of LiCoO ₂ Cathode by Direct Coating of the Composite Electrode with Li ₂ CO ₃ via Magnetron Sputtering. Journal of Physical Chemistry C, 2016, 120, 422-430.	1.5	97
216	Self-template synthesis of Li 1.13 Ni 0.30 Mn 0.57 O 2 anothorn spheres and nanorods as high-performance cathode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2016, 658, 867-874.	2.8	10
217	Encapsulation of organic active materials in carbon nanotubes for application to high-electrochemical-performance sodium batteries. Energy and Environmental Science, 2016, 9, 1264-1269.	15.6	148
218	In Situ X-ray Diffraction Study of Layered Li–Ni–Mn–Co Oxides: Effect of Particle Size and Structural Stability of Core–Shell Materials. Chemistry of Materials, 2016, 28, 162-171.	3.2	139
219	Investigation of new manganese orthophosphate Mn3(PO4)2 coating for nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode and improvement of its thermal properties. Electrochimica Acta, 2016, 198, 77-83.	2.6	117
220	A novel synthesis of gadolinium-doped Li3V2(PO4)3/C with excellent rate capacity and cyclability. RSC Advances, 2016, 6, 28624-28632.	1.7	9

#	Article	IF	CITATIONS
221	Overcoming the chemical instability on exposure to air of Ni-rich layered oxide cathodes by coating with spinel LiMn _{1.9} Al _{0.1} O ₄ . Journal of Materials Chemistry A, 2016, 4, 5839-5841.	5.2	119
222	Electrochemistry and structure of Li-rich cathode composites: Li _{1.26} Fe _{0.22} Mn _{0.52} O ₂ in situ integrated with conductive network-graphene oxide for lithium-ion batteries. RSC Advances, 2016, 6, 31762-31768.	1.7	10
223	Unique walnut-shaped porous MnO ₂ /C nanospheres with enhanced reaction kinetics for lithium storage with high capacity and superior rate capability. Journal of Materials Chemistry A, 2016, 4, 4264-4272.	5.2	53
224	Lithium Phosphorus Oxynitride Coated Concentration Gradient Li[Ni0.73Co0.12Mn0.15]O2 Cathode Material with Enhanced Electrochemical Properties. Electrochimica Acta, 2016, 192, 340-345.	2.6	33
225	Graphene-based materials with tailored nanostructures for energy conversion and storage. Materials Science and Engineering Reports, 2016, 102, 1-72.	14.8	221
226	Fibrous-Root-Inspired Design and Lithium Storage Applications of a Co–Zn Binary Synergistic Nanoarray System. ACS Nano, 2016, 10, 2500-2508.	7.3	41
227	Effect of Sodium Content on the Reversible Lithium Intercalation into Sodium-Deficient Cobalt–Nickel–Manganese Oxides Na _{<i>x</i>} Co _{1/3} Ni _{1/3} Mn _{1/3} O ₂ (0.38 â‰)¤Tj E	тф б ооо	rgði /Overlo
228	Role of fluorine surface modification in improving electrochemical cyclability of concentration gradient Li[Ni _{0.73} Co _{0.12} Mn _{0.15}]O ₂ cathode material for Li-ion batteries. RSC Advances, 2016, 6, 26307-26316.	1.7	28
229	Unraveling the Origin of Instability in Ni-Rich LiNi _{1–2<i>x</i>} Co _{<i>x</i>} Mn _{<i>x</i>} O ₂ (NCM) Cathode Materials. Journal of Physical Chemistry C, 2016, 120, 6383-6393.	1.5	154
230	Re-heating effect of Ni-rich cathode material on structure and electrochemical properties. Journal of Power Sources, 2016, 313, 1-8.	4.0	65
231	Rational design of silicon-based composites for high-energy storage devices. Journal of Materials Chemistry A, 2016, 4, 5366-5384.	5.2	154
232	Mesoporous Li1.2Mn0.54Ni0.13Co0.13O2 nanotubes for high-performance cathodes in Li-ion batteries. Journal of Power Sources, 2016, 311, 35-41.	4.0	68
233	Concentration-gradient LiMn0.8Fe0.2PO4 cathode material for high performance lithium ion battery. Journal of Power Sources, 2016, 304, 293-300.	4.0	41
234	Preparing micro/nano core–shell sphere CeO2 via a low temperature route for improved lithium storage performance. Materials Letters, 2016, 168, 80-82.	1.3	21
235	Understanding the effects of a multi-functionalized additive on the cathode–electrolyte interfacial stability of Ni-rich materials. Journal of Power Sources, 2016, 302, 431-438.	4.0	82
236	Nano-energy system coupling model and failure characterization of lithium ion battery electrode in electric energy vehicles. Renewable and Sustainable Energy Reviews, 2016, 54, 1250-1261.	8.2	18
237	Electrochemical behaviours of SiO 2 -coated LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode materials by a novel modification method. Journal of Alloys and Compounds, 2016, 657, 570-581.	2.8	160
238	Vinyl ethylene carbonate as an electrolyte additive for high-voltage LiNi0.4Mn0.4Co0.2O2/graphite Li-ion batteries. Ionics, 2016, 22, 201-208.	1.2	11

#	Article	IF	CITATIONS
239	Properties of LiNi0.8Co0.1Mn0.1O2 as a high energy cathode material for lithium-ion batteries. Korean Journal of Chemical Engineering, 2016, 33, 514-526.	1.2	49
240	Synthesis of full concentration gradient cathode studied by high energy X-ray diffraction. Nano Energy, 2016, 19, 522-531.	8.2	66
241	Porous Oneâ€Dimensional Nanomaterials: Design, Fabrication and Applications in Electrochemical Energy Storage. Advanced Materials, 2017, 29, 1602300.	11.1	615
242	Synthesis of Li-Rich Cathode Material with High C-Rate Performance by Reductive Treatment. Journal of Electronic Materials, 2017, 46, 1855-1861.	1.0	5
243	Intrinsic Origins of Crack Generation in Ni-rich LiNi0.8Co0.1Mn0.1O2 Layered Oxide Cathode Material. Scientific Reports, 2017, 7, 39669.	1.6	225
244	Synthesis of micro sphere CeO 2 by a chemical precipitation method with enhanced electrochemical performance. Materials Letters, 2017, 193, 115-118.	1.3	6
245	Preparation and electrochemical performances of carbon sphere@ZnO core-shell nanocomposites for supercapacitor applications. Scientific Reports, 2017, 7, 40167.	1.6	87
246	Urchin-like CoO–C micro/nano hierarchical structures as high performance anode materials for Li-ion batteries. RSC Advances, 2017, 7, 2637-2643.	1.7	16
247	Selfâ€Induced Concentration Gradient in Nickelâ€Rich Cathodes by Sacrificial Polymeric Bead Clusters for Highâ€Energy Lithiumâ€Ion Batteries. Advanced Energy Materials, 2017, 7, 1602559.	10.2	80
248	Safety of Rechargeable Energy Storage Systems with a focus on Li-ion Technology. , 2017, , 253-290.		13
249	Cathode Materials for Future Electric Vehicles and Energy Storage Systems. ACS Energy Letters, 2017, 2, 703-708.	8.8	95
250	Synthesis of graphene/Ca2Ge7O16 nanofibers composite as anode materials for lithium-ion batteries. Materials Letters, 2017, 196, 157-160.	1.3	4
251	Enhanced Li–S battery performance based on solution-impregnation-assisted sulfur/mesoporous carbon cathodes and a carbon-coated separator. Journal of Materials Chemistry A, 2017, 5, 5750-5760.	5.2	48
252	Unravelling the growth mechanism of hierarchically structured Ni1/3Co1/3Mn1/3(OH)2 and their application as precursors for high-power cathode materials. Electrochimica Acta, 2017, 232, 123-131.	2.6	60
253	Depolarization effect to enhance the performance of lithium ions batteries. Nano Energy, 2017, 33, 497-507.	8.2	79
254	Preparation and Electrochemical Properties of Highâ€Voltage Spinel LiNi _{0.5} Mn _{1.5} O ₄ Synthesized by using Different Manganese Sources. ChemElectroChem, 2017, 4, 1205-1213.	1.7	23
255	High capacity spinel@layered Li1.5MnTiO4+ as thermally stable core-shell-driven cathode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2017, 704, 459-468.	2.8	13
256	Preparation of Li-rich layered-layered type x Li 2 MnO 3 ·(1â^' x)LiMnO 2 nanorods and its electrochemical performance as cathode material for Li-ion battery. Journal of Power Sources, 2017, 353, 323-332.	4.0	31

#	Article	IF	CITATIONS
257	Effects of macromolecular configuration of thermally sensitive binder in lithiumâ€ion battery. Journal of Applied Polymer Science, 2017, 134, 45078.	1.3	7
258	A Practical Highâ€Energy Cathode for Sodiumâ€Ion Batteries Based on Uniform P2â€Na _{0.7} CoO ₂ Microspheres. Angewandte Chemie - International Edition, 2017, 56, 5801-5805.	7.2	197
259	Revealing mechanism responsible for structural reversibility of single-crystal VO2 nanorods upon lithiation/delithiation. Nano Energy, 2017, 36, 197-205.	8.2	65
260	Oxygen Release and Its Effect on the Cycling Stability of LiNi _x Mn _y Co _z O ₂ (NMC) Cathode Materials for Li-Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A1361-A1377.	1.3	813
261	Methods for the Stabilization of Nanostructured Electrode Materials for Advanced Rechargeable Batteries. Small Methods, 2017, 1, 1700094.	4.6	50
262	Alleviating structural degradation of nickel-rich cathode material by eliminating the surface Fm <mml:math <br="" altimg="si0001.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mover accent="true"><mml:mn>3</mml:mn><mml:mrow><mml:mo stretchy="true">Â⁻</mml:mo </mml:mrow></mml:mover></mml:math> m phase. Energy Storage	9.5	30
263	Constructing a Heterostructural LiNi _{0.4} Mn _{1.6} O _{4â^îî} Material from Concentration-Gradient Framework to Significantly Improve Its Cycling Performance. ACS Applied Materials & Interfaces, 2017, 9, 15822-15829.	4.0	11
264	Mesoporous Silicon Anodes by Using Polybenzimidazole Derived Pyrrolic N-Enriched Carbon toward High-Energy Li-Ion Batteries. ACS Energy Letters, 2017, 2, 1279-1287.	8.8	122
265	A Practical Highâ€Energy Cathode for Sodiumâ€Ion Batteries Based on Uniform P2â€Na _{0.7} CoO ₂ Microspheres. Angewandte Chemie, 2017, 129, 5895-5899.	1.6	25
266	High-voltage positive electrode materials for lithium-ion batteries. Chemical Society Reviews, 2017, 46, 3006-3059.	18.7	986
267	Exploring Lithium Deficiency in Layered Oxide Cathode for Liâ€lon Battery. Advanced Sustainable Systems, 2017, 1, 1700026.	2.7	1
268	Enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode at high cutoff voltage by modifying electrode/electrolyte interface with lithium metasilicate. Electrochimica Acta, 2017, 246, 27-34.	2.6	63
269	Transport-Geometry Interactions in Li-Ion Cathode Materials Imaged Using X-ray Nanotomography. Journal of the Electrochemical Society, 2017, 164, A1412-A1424.	1.3	28
270	Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes. Chemistry of Materials, 2017, 29, 5574-5582.	3.2	655
271	Exploring ion migration in Li ₂ MnSiO ₄ for Li-ion batteries through strain effects. RSC Advances, 2017, 7, 26089-26096.	1.7	15
272	A Short Review on Layered LiNi 0.8 Co 0.1 Mn 0.1 O 2 Positive Electrode Material for Lithium-ion Batteries. Energy Procedia, 2017, 105, 2941-2952.	1.8	56
273	Preparation of Î ³ -LiV2O5 from polyoxovanadate cluster Li7[V15O36(CO3)] as a high-performance cathode material and its reaction mechanism revealed by operando XAFS. Journal of Power Sources, 2017, 360, 150-156.	4.0	14
274	Electrochemical Cycle-Life Characterization of High Energy Lithium-Ion Cells with Thick Li(Ni _{0.6} Mn _{0.2} Co _{0.2})O ₂ and Graphite Electrodes. Journal of the Electrochemical Society, 2017, 164, A10 <u>37-A1049</u> .	1.3	57

#	Article	IF	CITATIONS
275	High-capacity sodium ion battery anodes based on CuO nanosheets and carboxymethyl cellulose binder. Materials Technology, 2017, 32, 598-605.	1.5	26
276	Recent progresses on nickel-rich layered oxide positive electrode materials used in lithium-ion batteries for electric vehicles. Applied Energy, 2017, 195, 586-599.	5.1	164
277	Sodium-ion batteries: present and future. Chemical Society Reviews, 2017, 46, 3529-3614.	18.7	3,436
278	Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications. Advanced Science, 2017, 4, 1700032.	5.6	363
279	High energy density and lofty thermal stability nickel-rich materials for positive electrode of lithium ion batteries. Journal of Solid State Electrochemistry, 2017, 21, 2219-2229.	1.2	15
280	Solving Key Challenges in Battery Research Using In Situ Synchrotron and Neutron Techniques. Advanced Energy Materials, 2017, 7, 1602831.	10.2	67
281	High Tap Density Li ₄ Ti ₅ O ₁₂ Microspheres: Synthetic Conditions and Advanced Electrochemical Performance. Energy Technology, 2017, 5, 1680-1686.	1.8	16
282	A novel LiCoPO ₄ -coated core–shell structure for spinel LiNi _{0.5} Mn _{1.5} O ₄ as a high-performance cathode material for lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 996-1004.	5.2	58
283	Tunable Pseudocapacitance in 3D TiO _{2â^'δ} Nanomembranes Enabling Superior Lithium Storage Performance. ACS Nano, 2017, 11, 821-830.	7.3	124
284	Transition Metal Oxyfluorides for Nextâ€Generation Rechargeable Batteries. ChemNanoMat, 2017, 3, 146-159.	1.5	44
285	Design principles and energy system scale analysis technologies of new lithium-ion and aluminum-ion batteries for sustainable energy electric vehicles. Renewable and Sustainable Energy Reviews, 2017, 71, 645-651.	8.2	59
286	Lithium-Ion Batteries and Materials. , 2017, , 449-494.		11
287	Atomic Insights into the Enhanced Surface Stability in High Voltage Cathode Materials by Ultrathin Coating. Advanced Functional Materials, 2017, 27, 1602873.	7.8	37
288	Core–shell and concentration-gradient cathodes prepared via co-precipitation reaction for advanced lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 4254-4279.	5.2	163
289	Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries: Achievements and Perspectives. ACS Energy Letters, 2017, 2, 196-223.	8.8	1,033
290	Sustainability and in situ monitoring in battery development. Nature Materials, 2017, 16, 45-56.	13.3	930
291	Enhancing Electrochemical Performance of LiNi0.6Co0.2Mn0.2O2 by Lithium-ion Conductor Surface Modification. Electrochimica Acta, 2017, 224, 171-177.	2.6	51
292	Nd-doped LiNi0.5Co0.2Mn0.3O2 as a cathode material for better rate capability in high voltage cycling of Li-ion batteries. Electrochimica Acta, 2017, 254, 50-58.	2.6	75

#	Article	IF	CITATIONS
293	Surface/Interfacial Structure and Chemistry of Highâ€Energy Nickelâ€Rich Layered Oxide Cathodes: Advances and Perspectives. Small, 2017, 13, 1701802.	5.2	228
294	Hydrothermal Synthesis of Hierarchical Hollow Li(Ni _{0.} <scp>₈Co₀<scp>_.<scp>₁₅Al_{0Microspheres for Lithium Ion Batteries. Bulletin of the Korean Chemical Society, 2017, 38, 1269-1274.}</scp></scp></scp>	ıb ı.0 /scp>	< <i>s</i> ub>.05
295	Synthetic Control of Kinetic Reaction Pathway and Cationic Ordering in Highâ€Ni Layered Oxide Cathodes. Advanced Materials, 2017, 29, 1606715.	11.1	127
296	Scalable Dry Printing Manufacturing to Enable Longâ€Life and High Energy Lithiumâ€Ion Batteries. Advanced Materials Technologies, 2017, 2, 1700106.	3.0	30
297	In situ transmission electron microscopy study of individual nanostructures during lithiation and delithiation processes. Journal of Materials Chemistry A, 2017, 5, 20072-20094.	5.2	27
298	Electrochemical effects of annealing on atomic layer deposited Al 2 O 3 coatings on LiNi 0.5 Mn 0.3 Co 0.2 O 2. Journal of Power Sources, 2017, 365, 61-67.	4.0	18
299	Lithium titanate hydrates with superfast and stable cycling in lithium ion batteries. Nature Communications, 2017, 8, 627.	5.8	110
300	Layered LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Prepared through Calcination in Air with Preoxidized Precursor. Journal of the Electrochemical Society, 2017, 164, A2670-A2676.	1.3	19
301	Self-Assembled Cu–Sn–S Nanotubes with High (De)Lithiation Performance. ACS Nano, 2017, 11, 10347-10356.	7.3	35
302	Suppressed oxygen extraction and degradation of LiNi x Mn y Co z O2 cathodes at high charge cut-off voltages. Nano Research, 2017, 10, 4221-4231.	5.8	77
303	A materials perspective on Li-ion batteries at extreme temperatures. Nature Energy, 2017, 2, .	19.8	542
304	Application of Synchrotron Radiation Technologies to Electrode Materials for Li―and Naâ€ŀon Batteries. Advanced Energy Materials, 2017, 7, 1700460.	10.2	39
305	Synthesis and properties of nanostructured LiNi1/3Co1/3Mn1/3O2 as cathode with lithium bis(oxalate)borate-based electrolyte to improve cycle performance in Li-ion battery. Journal of Alloys and Compounds, 2017, 723, 887-893.	2.8	13
306	Narrowing the Gap between Theoretical and Practical Capacities in Liâ€lon Layered Oxide Cathode Materials. Advanced Energy Materials, 2017, 7, 1602888.	10.2	455
307	Stabilizing the Electrode/Electrolyte Interface of LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ through Tailoring Aluminum Distribution in Microspheres as Long-Life, High-Rate, and Safe Cathode for Lithium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2017, 9, 29643-29653.	4.0	133
308	Mechanical Modeling of Particles with Active Core–Shell Structures for Lithium-Ion Battery Electrodes. Journal of Physical Chemistry C, 2017, 121, 19022-19030.	1.5	34
309	Suppressing the Structure Deterioration of Ni-Rich LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ through Atom-Scale Interfacial Integration of Self-Forming Hierarchical Spinel Layer with Ni Gradient Concentration. ACS Applied Materials & amp; Interfaces, 2017, 9, 29794-29803.	4.0	104
310	The nanoscale circuitry of battery electrodes. Science, 2017, 358, .	6.0	235

#	Article	IF	CITATIONS
311	High-Energy Ni-Rich Li[Ni _{<i>x</i>} Co _{<i>y</i>} Mn _{1<i>–x–y</i>}]O ₂ Cathodes via Compositional Partitioning for Next-Generation Electric Vehicles. Chemistry of Materials, 2017, 29, 10436-10445.	3.2	189
312	High-Thermal- and Air-Stability Cathode Material with Concentration-Gradient Buffer for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 42829-42835.	4.0	74
313	Achieving high specific capacity of lithium-ion battery cathodes by modification with "N–O˙―radicals and oxygen-containing functional groups. Journal of Materials Chemistry A, 2017, 5, 24636-24644.	5.2	17
314	Dielectric Polarization of a High-Energy Density Graphite Anode and Its Physicochemical Effect on Li-Ion Batteries. Industrial & Engineering Chemistry Research, 2017, 56, 13776-13782.	1.8	5
315	Co/Ti co-substituted layered LiNiO2 prepared using a concentration gradient method as an effective cathode material for Li-ion batteries. Journal of Power Sources, 2017, 372, 107-115.	4.0	32
316	Improved electrochemical performance of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ cathode materials via incorporation of rubidium cations into the original Li sites. RSC Advances, 2017, 7, 51721-51728.	1.7	55
317	Graphene-Roll-Wrapped Prussian Blue Nanospheres as a High-Performance Binder-Free Cathode for Sodium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2017, 9, 25317-25322.	4.0	75
318	Advances in electrode materials for Li-based rechargeable batteries. RSC Advances, 2017, 7, 33789-33811.	1.7	30
319	Hierarchical MoO2/C microspheres: Preparation and application asÂanode materials for lithium ion batteries. Journal of Alloys and Compounds, 2017, 723, 1113-1120.	2.8	26
320	Control of Chemical Structure in Core–Shell Nanocrystals for the Stabilization of Battery Electrode/Electrolyte Interfaces. Chemistry of Materials, 2017, 29, 5896-5905.	3.2	17
321	Sulfur-doped nanoporous carbon spheres with ultrahigh specific surface area and high electrochemical activity for supercapacitor. Journal of Power Sources, 2017, 360, 373-382.	4.0	146
322	Interfacial reactions in lithium batteries. Journal Physics D: Applied Physics, 2017, 50, 303001.	1.3	13
323	Sulfonate-immobilized artificial cathode electrolyte interphases layer on Ni-rich cathode. Journal of Power Sources, 2017, 360, 480-487.	4.0	45
324	High-Performance Li-Ion Battery Anodes Based on Silicon-Graphene Self-Assemblies. Journal of the Electrochemical Society, 2017, 164, A6075-A6083.	1.3	37
325	Full microwave synthesis of advanced Li-rich manganese based cathode material for lithium ion batteries. Journal of Power Sources, 2017, 337, 82-91.	4.0	84
326	In Situ Probing and Synthetic Control of Cationic Ordering in Niâ€Rich Layered Oxide Cathodes. Advanced Energy Materials, 2017, 7, 1601266.	10.2	200
327	A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries. Energy Storage Materials, 2017, 6, 125-139.	9.5	478
328	Multishelled Niâ€Rich Li(Ni <i>_x</i> Co <i>_y</i> Mn <i>_z</i>)O ₂ Hollow Fibers with Low Cation Mixing as Highâ€Performance Cathode Materials for Liâ€Ion Batteries. Advanced Science, 2017. 4. 1600262.	5.6	172

		15	0
#		IF	CITATIONS
329	for robust lithium storage. Chemical Engineering Journal, 2017, 309, 272-277.	6.6	27
330	Lithium Metal Anodes and Rechargeable Lithium Metal Batteries. Springer Series in Materials Science, 2017, , .	0.4	70
331	High performance lithium-manganese-rich cathode material with reduced impurities. Nano Energy, 2017, 31, 247-257.	8.2	25
332	Nanoparticles Encapsulated in Porous Carbon Matrix Coated on Carbon Fibers: An Ultrastable Cathode for Liâ€lon Batteries. Advanced Energy Materials, 2017, 7, 1601363.	10.2	48
333	Application of Lithium Metal Anodes. Springer Series in Materials Science, 2017, , 153-188.	0.4	1
334	Novel Surface Coating Strategies for Better Battery Materials. Surface Innovations, 2017, , 1-23.	1.4	11
335	Impact of the Range of Voltage Change on the Electrode/Electrolyte Interface of Layered Rock-Salt Positive Electrode Materials. Journal of the Electrochemical Society, 2017, 164, A3848-A3857.	1.3	1
337	Superlattice Formation of Crystal Water in Layered Double Hydroxides for Longâ€Term and Fast Operation of Aqueous Rechargeable Batteries. Advanced Energy Materials, 2018, 8, 1703572.	10.2	17
338	Surface-engineering of layered LiNi 0.815 Co 0.15 Al 0.035 O 2 cathode material for high-energy and stable Li-ion batteries. Journal of Energy Chemistry, 2018, 27, 559-564.	7.1	38
339	Visualizing elemental deposition patterns on carbonaceous anodes from lithium ion batteries: A laser ablation-inductively coupled plasma-mass spectrometry study on factors influencing the deposition of lithium, nickel, manganese and cobalt after dissolution and migration from the Li1Ni1/3Mn1/3Co1/31O2 and LiMn1 5 Ni0 5O4 cathode Journal of Power Sources 2018 380 194-201	4.0	26
340	Co-precipitation spray-drying synthesis and electrochemical performance of stabilized LiNi0.5Mn1.5O4 cathode materials. Journal of Solid State Electrochemistry, 2018, 22, 1963-1969.	1.2	7
341	Electrochemical performance and thermal stability analysis of LiNi Co Mn O2 cathode based on a composite safety electrolyte. Journal of Hazardous Materials, 2018, 351, 260-269.	6.5	66
342	Towards deriving Ni-rich cathode and oxide-based anode materials from hydroxides by sharing a facile co-precipitation method. Dalton Transactions, 2018, 47, 6934-6941.	1.6	5
343	Oxygen Release Induced Chemomechanical Breakdown of Layered Cathode Materials. Nano Letters, 2018, 18, 3241-3249.	4.5	237
344	Surfactant-Assisted Synthesis of High Energy {010} Facets Beneficial to Li-Ion Transport Kinetics with Layered LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ . ACS Sustainable Chemistry and Engineering, 2018, 6, 6312-6320.	3.2	35
345	Synergistic effects of ion doping and surface-modifying for lithium transition-metal oxide: Synthesis and characterization of La 2 O 3 -modified LiNi 1/3 Co 1/3 Mn 1/3 O 2. Electrochimica Acta, 2018, 272, 11-21.	2.6	56
346	A general strategy for the synthesis of two-dimensional holey nanosheets as cathodes for superior energy storage. Journal of Materials Chemistry A, 2018, 6, 8374-8381.	5.2	27
347	Improving cycling performance and rate capability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode materials by Li4Ti5O12 coating. Electrochimica Acta, 2018, 268, 358-365.	2.6	186

#	Article	IF	CITATIONS
348	Toward a stable solid-electrolyte-interfaces on nickel-rich cathodes: LiPO 2 F 2 salt-type additive and its working mechanism for LiNi 0.5 Mn 0.25 Co 0.25 O 2 cathodes. Journal of Power Sources, 2018, 380, 149-157.	4.0	116
349	High-voltage electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode materials via Al concentration gradient modification. Ceramics International, 2018, 44, 8809-8817.	2.3	44
350	Stabilization of a High-Capacity and High-Power Nickel-Based Cathode for Li-Ion Batteries. CheM, 2018, 4, 690-704.	5.8	128
351	Mechanisms of Degradation and Strategies for the Stabilization of Cathode–Electrolyte Interfaces in Li-Ion Batteries. Accounts of Chemical Research, 2018, 51, 299-308.	7.6	94
352	Synthesis of Li and Mn-Rich Layered Oxides as Concentration-Gradients for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A425-A433.	1.3	11
353	Nature-Inspired 2D-Mosaic 3D-Gradient Mesoporous Framework: Bimetal Oxide Dual-Composite Strategy toward Ultrastable and High-Capacity Lithium Storage. ACS Nano, 2018, 12, 2035-2047.	7.3	40
354	Challenges in Developing Electrodes, Electrolytes, and Diagnostics Tools to Understand and Advance Sodiumâ€ion Batteries. Advanced Energy Materials, 2018, 8, 1702403.	10.2	221
355	Sodium Ion Stabilized Vanadium Oxide Nanowire Cathode for Highâ€Performance Zincâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1702463.	10.2	650
356	Multiwalled Carbon Nanotubes Anode in Lithium-Ion Battery with LiCoO ₂ , Li[Ni _{1/3} Co _{1/3} Mn _{1/3}]O ₂ , and LiFe _{1/4} Mn _{1/2} Co _{1/4} PO ₄ Cathodes. ACS Sustainable Chemistry and Engineering, 2018, 6, 3225-3232.	3.2	47
357	Dual or multi carbonaceous coating strategies for next-generation batteries. Journal of Materials Chemistry A, 2018, 6, 1900-1914.	5.2	32
358	Multifunctional NiTiO ₃ nanocoating fabrication based on the dual-Kirkendall effect enabling a stable cathode/electrolyte interface for nickel-rich layered oxides. Journal of Materials Chemistry A, 2018, 6, 2643-2652.	5.2	16
359	A facile structure design of LiNi0.90Co0.07Al0.03O2 as advanced cathode materials for lithium ion batteries via carbonation decomposition of NaAl(OH)4 solution. Journal of Alloys and Compounds, 2018, 739, 335-344.	2.8	31
360	Simultaneous Stabilization of LiNi _{0.76} Mn _{0.14} Co _{0.10} O ₂ Cathode and Lithium Metal Anode by Lithium Bis(oxalato)borate as Additive. ChemSusChem, 2018, 11, 2211-2220.	3.6	89
361	Effect of calcination temperature on the electrochemical properties of nickel-rich LiNi0.76Mn0.14Co0.10O2 cathodes for lithium-ion batteries. Nano Energy, 2018, 49, 538-548.	8.2	213
362	Effect of lithium-site doping on enhancing the lithium storage performance of SrLi2Ti6O14. Electrochimica Acta, 2018, 265, 437-447.	2.6	4
363	Highâ€Capacity Concentration Gradient Li[Ni _{0.865} Co _{0.120} Al _{0.015}]O ₂ Cathode for Lithiumâ€ion Batteries. Advanced Energy Materials, 2018, 8, 1703612.	10.2	154
364	Zeolite-Templated Mesoporous Silicon Particles for Advanced Lithium-Ion Battery Anodes. ACS Nano, 2018, 12, 3853-3864.	7.3	89
365	Effect of precursor structures on the electrochemical performance of Ni-rich LiNi0.88Co0.12O2 cathode materials. Electrochimica Acta, 2018, 270, 319-329.	2.6	29

#	Article	IF	CITATIONS
366	Improving Li ⁺ Kinetics and Structural Stability of Nickel-Rich Layered Cathodes by Heterogeneous Inactive-Al ³⁺ Doping. ACS Sustainable Chemistry and Engineering, 2018, 6, 5653-5661.	3.2	60
367	Polymer-chelation synthesis of compositionally homogeneous LiNi1/3Co1/3Mn1/3O2 crystals for lithium-ion cathode. Electrochimica Acta, 2018, 269, 724-732.	2.6	18
368	Achieving high capacity hybrid-cathode FeF ₃ @Li ₂ C ₆ 6/rGO based on morphology control synthesis and interface engineering. Chemical Communications, 2018, 54, 3235-3238.	2.2	11
369	Understanding the structural evolution and Na+ kinetics in honeycomb-ordered O′3-Na3Ni2SbO6 cathodes. Nano Research, 2018, 11, 3258-3271.	5.8	35
370	Core-shell structured Li[(Ni0.9Co0.05Al0.05)0.6(Ni0.4Co0.2Mn0.4)0.4]O2 cathode material for high-energy lithium ion batteries. Ionics, 2018, 24, 1293-1304.	1.2	11
371	Mitigating thermal runaway of lithiumâ€ion battery by using thermally sensitive polymer blend as cathode binder. Journal of Applied Polymer Science, 2018, 135, 45737.	1.3	8
372	Toward practical all-solid-state lithium-ion batteries with high energy density and safety: Comparative study for electrodes fabricated by dry- and slurry-mixing processes. Journal of Power Sources, 2018, 375, 93-101.	4.0	267
373	NANOMATERIALS AND NANOSTRUCTURES FOR REGULATING IONS AND ELECTRON TRANSPORT IN ADVANCED ENERGY STORAGE DEVICES. , 2018, , 757-809.		0
374	Effect of Al2O3 ceramic fillers in LiNi1/3Co1/3Mn1/3O2 cathodes for improving high-voltage cycling and rate capability performance. Electrochimica Acta, 2018, 259, 578-586.	2.6	27
375	Prospect and Reality of Niâ€Rich Cathode for Commercialization. Advanced Energy Materials, 2018, 8, 1702028.	10.2	574
376	High capacity binder-free nanocrystalline GeO2 inverse opal anodes for Li-ion batteries with long cycle life and stable cell voltage. Nano Energy, 2018, 43, 11-21.	8.2	78
377	Recent Developments on and Prospects for Electrode Materials with Hierarchical Structures for Lithiumâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1701415.	10.2	436
378	Layered Oxide Cathodes for Sodiumâ€ion Batteries: Phase Transition, Air Stability, and Performance. Advanced Energy Materials, 2018, 8, 1701912.	10.2	519
379	Water‣ubricated Intercalation in V ₂ O ₅ ·nH ₂ O for High apacity and Highâ€Rate Aqueous Rechargeable Zinc Batteries. Advanced Materials, 2018, 30, 1703725.	11.1	1,084
380	Chemomechanical behaviors of layered cathode materials in alkali metal ion batteries. Journal of Materials Chemistry A, 2018, 6, 21859-21884.	5.2	139
381	Investigation of carbon-decorated LiVPO4F nanoparticles as cathode for lithium-ion batteries with enhanced rate capability and cyclic performance. Solid State Ionics, 2018, 327, 71-75.	1.3	6
382	Capacity Degradation Mechanism and Cycling Stability Enhancement of AlF ₃ -Coated Nanorod Gradient Na[Ni _{0.65} Co _{0.08} Mn _{0.27}]O ₂ Cathode for Sodium-Ion Batteries. ACS Nano, 2018, 12, 12912-12922.	7.3	82
383	Performance and Life Degradation Characteristics Analysis of NCM LIB for BESS. Electronics (Switzerland), 2018, 7, 406.	1.8	27

#	Article	IF	CITATIONS
384	Ion Conducting Behavior of Silsesquioxane-Based Materials Used in Fuel Cell and Rechargeable Battery Applications. Journal of Structural Chemistry, 2018, 59, 1744-1752.	0.3	10
385	Direct Correlation between Local Surface Potential Measured by Kelvin Probe Force Microscope and Electrochemical Potential of LiNi _{0.80} Co _{0.15} Al _{0.05} O ₂ Cathode at Different State of Charge. Journal of Physical Chemistry C, 2018, 122, 28556-28563.	1.5	16
386	Surface Gradient Ti-Doped MnO ₂ Nanowires for High-Rate and Long-Life Lithium Battery. ACS Applied Materials & Interfaces, 2018, 10, 44376-44384.	4.0	41
387	Metal-Organic Frameworks for Batteries. Joule, 2018, 2, 2235-2259.	11.7	462
388	Facile Mn Surface Doping of Ni-Rich Layered Cathode Materials for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 38915-38921.	4.0	69
389	ICAC 2018: The First International Conference Focused on NCM & NCA Cathode Materials for Lithium Ion Batteries. ACS Energy Letters, 2018, 3, 2757-2760.	8.8	9
390	Sequential precipitation induced interdiffusion: a general strategy to synthesize microtubular materials for high performance lithium ion battery electrodes. Journal of Materials Chemistry A, 2018, 6, 18430-18437.	5.2	12
391	Surface and Subsurface Reactions of Lithium Transition Metal Oxide Cathode Materials: An Overview of the Fundamental Origins and Remedying Approaches. Advanced Energy Materials, 2018, 8, 1802057.	10.2	207
392	Crystal structural design of exposed planes: express channels, high-rate capability cathodes for lithium-ion batteries. Nanoscale, 2018, 10, 17435-17455.	2.8	82
393	Understanding the effects of surface modification on improving the high-voltage performance of Ni-rich cathode materials. Materials Today Energy, 2018, 10, 40-47.	2.5	17
394	Electrophoretic Deposition of Mesoporous Niobium(V)Oxide Nanoscopic Films. Chemistry of Materials, 2018, 30, 6549-6558.	3.2	16
395	Unique Co ₃ O ₄ /nitrogen-doped carbon nanospheres derived from metal–organic framework: insight into their superior lithium storage capabilities and electrochemical features in high-voltage batteries. Journal of Materials Chemistry A, 2018, 6, 12466-12474	5.2	85
396	Optimal synthetic conditions for a novel and high performance Ni-rich cathode material of LiNi _{0.68} Co _{0.10} Mn _{0.22} O ₂ . Sustainable Energy and Fuels, 2018, 2, 1772-1780.	2.5	27
397	The quest for manganese-rich electrodes for lithium batteries: strategic design and electrochemical behavior. Sustainable Energy and Fuels, 2018, 2, 1375-1397.	2.5	59
398	Improving the cathode properties of Ni-rich LiNi0.6Co0.2Mn0.2O2 at high voltages under 5â€ [–] C by Li2SiO3 coating and Si4+ doping. Journal of Alloys and Compounds, 2018, 762, 827-834.	2.8	34
399	Multishell Precursors Facilitated Synthesis of Concentration-Gradient Nickel-Rich Cathodes for Long-Life and High-Rate Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 24508-24515.	4.0	38
400	Transition metal speciation as a degradation mechanism with the formation of a solid-electrolyte interphase (SEI) in Ni-rich transition metal oxide cathodes. Journal of Materials Chemistry A, 2018, 6, 14449-14463.	5.2	37
401	Coupling of electrochemically triggered thermal and mechanical effects to aggravate failure in a layered cathode. Nature Communications, 2018, 9, 2437.	5.8	200

ARTICLE IF CITATIONS # Empowering multicomponent cathode materials for sodium ion batteries by exploring three-dimensional compositional heterogeneities. Energy and Environmental Science, 2018, 11, 402 45 15.6 2496-2508. Constructing a Protective Pillaring Layer by Incorporating Gradient Mn⁴⁺ to Stabilize the Surface/Interfacial Structure of 4.0 LiNi_{0.815}Co_{0.15}Al_{0.035}O₂ Cathode. ACS Applied Materials & amp: Interfaces, 2018, 10, 27821-27830. Improved Structural Reversibility and Cycling Stability of Li₂MnSiO₄ Cathode Material by the Pillar Effect of $[\hat{T}iO(sub) \cdot (i)x(i) \cdot (jsub)]$ Polyanions. ChemistrySelect, 2018, 3, 404 2 0.7 4047-4057. Nitrogen-doped carbon coated LiNi0.6Co0.2Mn0.2O2 cathode with enhanced electrochemical 44 performance for Li-Ion batteries. Electrochimica Acta, 2018, 284, 526-533. 2.20 Batteries., 2018,, 629-662. 406 9 Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nature Nanotechnology, 2018, 13, 715-722. 15.6 964 Solid electrolytes and interfaces in all-solid-state sodium batteries: Progress and perspective. Nano 408 8.2 211 Energy, 2018, 52, 279-291. Compatibility between lithium difluoro (oxalate) borate-based electrolytes and Li1.2Mn0.54Ni0.13Co0.13O2 cathode for lithium-ion batteries. Journal of Electroanalytical Chemistry, 409 2018, 823, 688-696. Advanced Lithiumâ€Ion Batteries for Practical Applications: Technology, Development, and Future 410 3.0 112 Perspectives. Advanced Materials Technologies, 2018, 3, 1700376. Synchronous Tailoring Surface Structure and Chemical Composition of Liâ€Rich–Layered Oxide for Highâ€Energy Lithiumâ€Ion Batteries. Advanced Functional Materials, 2018, 28, 1803392. A rechargeable aluminum-ion battery based on a VS₂ nanosheet cathode. Physical 412 1.3 97 Chemistry Chemical Physics, 2018, 20, 22563-22568. Nanonetwork-structured yolk-shell FeS2@C as high-performance cathode materials for Li-ion 5.4 batteries. Carbon, 2018, 140, 433-440. Compositional core-shell design by nickel leaching on the surface of Ni-rich cathode materials for 414 4.0 43 advanced high-energy and safe rechargeable batteries. Journal of Power Sources, 2018, 400, 87-95. Marcasite iron sulfide as a high-capacity electrode material for sodium storage. Journal of Materials Chemistry A, 2018, 6, 17111-17119. 5.2 Fundamental mechanisms of fracture and its suppression in Ni-rich layered cathodes: Mechanics-based 416 2.0 17 multiscale approaches. Extreme Mechanics Letters, 2018, 22, 98-105. Selecting the Best Graphite for Long-Life, High-Energy Li-Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A1837-A1845. Li-rich and Ni-rich transition metal oxides: Coating and core-shell structures. Applied Surface Science, 418 3.127 2019, 474, 25-33. Controllable Cathode–Electrolyte Interface of Li[Ni_{0.8}Co_{0.1}Mn_{0.1}]O₂ for Lithium Ion Batteries: A 419 273 Review. Advanced Energy Materials, 2019, 9, 1901597.

#	Article	IF	CITATIONS
420	Carbon Nitride Transforms into a High Lithium Storage Capacity Nitrogen-Rich Carbon. ACS Nano, 2019, 13, 9279-9291.	7.3	58
421	A 4 V Class Potassium Metal Battery with Extremely Low Overpotential. ACS Nano, 2019, 13, 9306-9314.	7.3	76
422	Electrode Materials with a Craterâ€Type Morphology Prepared by Electrospraying for Highâ€Performance Lithiumâ€Ion Batteries. ChemSusChem, 2019, 12, 4487-4492.	3.6	4
423	Voltage Decay in Layered Li-Rich Mn-Based Cathode Materials. Electrochemical Energy Reviews, 2019, 2, 606-623.	13.1	108
424	Inorganic sulfide solid electrolytes for all-solid-state lithium secondary batteries. Journal of Materials Chemistry A, 2019, 7, 20540-20557.	5.2	135
425	Highly wrinkled carbon tubes as an advanced anode for K-ion full batteries. Journal of Materials Chemistry A, 2019, 7, 20675-20682.	5.2	29
426	Apparent activation energy of multicomponent transition metal oxalates to probe synthesis of battery precursor materials. Powder Technology, 2019, 354, 158-164.	2.1	9
427	Nanorod Gradient Cathode: Preventing Electrolyte Penetration into Cathode Particles. ACS Applied Energy Materials, 2019, 2, 6002-6011.	2.5	45
428	One-pot solvothermal synthesis of V2O5/MWCNT composite cathode for Li ion batteries. Applied Surface Science, 2019, 493, 1106-1114.	3.1	15
429	Understanding the role of Mg-doped on core-shell structured layered oxide LiNi0.6Co0.2Mn0.2O2. Electrochimica Acta, 2019, 319, 822-831.	2.6	39
430	Enabling non-flammable Li-metal batteries <i>via</i> electrolyte functionalization and interface engineering. Journal of Materials Chemistry A, 2019, 7, 17995-18002.	5.2	46
431	A review on the key issues of the lithium ion battery degradation among the whole life cycle. ETransportation, 2019, 1, 100005.	6.8	854
432	The full gradient design in Li-rich cathode for high performance lithium ion batteries with reduced voltage decay. Journal of Power Sources, 2019, 437, 226902.	4.0	34
433	Designing a Safe Electrolyte Enabling Longâ€Life Li/S Batteries. ChemSusChem, 2019, 12, 4176-4184.	3.6	26
434	Identifying and Addressing Critical Challenges of High-Voltage Layered Ternary Oxide Cathode Materials. Chemistry of Materials, 2019, 31, 6033-6065.	3.2	164
435	Tailoring structure of Ni-rich layered cathode enable robust calendar life and ultrahigh rate capability for lithium-ion batteries. Electrochimica Acta, 2019, 320, 134587.	2.6	18
436	Insight into the evolution of precursor and electrochemical performance of Ni-rich cathode modulated by ammonia during hydroxide precipitation. Journal of Alloys and Compounds, 2019, 803, 538-545.	2.8	9
437	Seamless mode transfer control for master–slavemicrogrid. IET Power Electronics, 2019, 12, 3158-3165.	1.5	19

#	Article	IF	CITATIONS
438	Cooling Induced Surface Reconstruction during Synthesis of Highâ€Ni Layered Oxides. Advanced Energy Materials, 2019, 9, 1901915.	10.2	34
439	Designing In-Situ-Formed Interphases Enables Highly Reversible Cobalt-Free LiNiO2 Cathode for Li-ion and Li-metal Batteries. Joule, 2019, 3, 2550-2564.	11.7	167
440	Ultrahigh Rate Performance of a Robust Lithium Nickel Manganese Cobalt Oxide Cathode with Preferentially Orientated Li-Diffusing Channels. ACS Applied Materials & Interfaces, 2019, 11, 41178-41187.	4.0	20
441	Novel Conjugated Side Chain Fluorinated Polymers Based on Fluorene for Lightâ€Emitting and Ternary Flash Memory Devices. ChemistryOpen, 2019, 8, 1267-1275.	0.9	6
442	Pharmacokinetics of ceftiofur sodium in cats following a single intravenous and subcutaneous injection. Journal of Veterinary Pharmacology and Therapeutics, 2019, 42, 602-608.	0.6	2
443	Budget Constraint Roadside Units Placement for Traffic Flows Monitoring System with Reliability in Vehicular Networks. , 2019, , .		2
444	Dopant Segregation Boosting Highâ€Voltage Cyclability of Layered Cathode for Sodium Ion Batteries. Advanced Materials, 2019, 31, e1904816.	11.1	89
445	Tiâ€Gradient Doping to Stabilize Layered Surface Structure for High Performance Highâ€Ni Oxide Cathode of Liâ€Ion Battery. Advanced Energy Materials, 2019, 9, 1901756.	10.2	169
446	Ni/NHC-catalyzed cross-coupling of methyl sulfinates and amines for direct access to sulfinamides. Tetrahedron Letters, 2019, 60, 151260.	0.7	8
447	Simultaneous Coating and Doping of a Nickel-Rich Cathode by an Oxygen Ion Conductor for Enhanced Stability and Power of Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 33901-33912.	4.0	50
448	On-chip micro/nano devices for energy conversion and storage. Nano Today, 2019, 28, 100764.	6.2	33
449	LiNi _{0.90} Co _{0.07} Mg _{0.03} O ₂ cathode materials with Mg-concentration gradient for rechargeable lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 20958-20964.	5.2	54
450	Probing and quantifying cathode charge heterogeneity in Li ion batteries. Journal of Materials Chemistry A, 2019, 7, 23628-23661.	5.2	55
451	Boron improved electrochemical performance of LiNi0.8Co0.1Mn0.1O2 by enhancing the crystal growth with increased lattice ordering. Journal of Materials Science: Materials in Electronics, 2019, 30, 18200-18210.	1.1	11
452	Recent advances in nanostructured electrode-electrolyte design for safe and next-generation electrochemical energy storage. Materials Today Nano, 2019, 8, 100057.	2.3	31
453	Design and Tuning of the Electrochemical Properties of Vanadium-Based Cation-Disordered Rock-Salt Oxide Positive Electrode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 39848-39858.	4.0	21
454	MoSe2–CoSe2/N-doped graphene aerogel nanocomposites with high capacity and excellent stability for lithium-ion batteries. Journal of Power Sources, 2019, 439, 227112.	4.0	55
455	Identifying Active Sites for Parasitic Reactions at the Cathode–Electrolyte Interface. Journal of Physical Chemistry Letters, 2019, 10, 589-594.	2.1	31

#	Article	IF	CITATIONS
456	Synergistic coupling effect of sodium and fluorine co-substitution on enhancing rate capability and cycling performance of Ni-rich cathode for lithium ion battery. Journal of Alloys and Compounds, 2019, 786, 56-64.	2.8	54
457	Flame Aerosol Synthesis and Electrochemical Characterization of Ni-Rich Layered Cathode Materials for Li-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 1319-1329.	2.5	23
458	H3PO4 treatment to enhance the electrochemical properties of Li(Ni1/3Mn1/3Co1/3)O2 and Li(Ni0.5Mn0.3Co0.2)O2 cathodes. Electrochimica Acta, 2019, 301, 8-22.	2.6	50
459	Electrodeposition of Polymer Electrolyte Into Porous LiNi0.5Mn1.5O4 for High Performance All-Solid-State Microbatteries. Frontiers in Chemistry, 2019, 6, 675.	1.8	12
460	Dual-component LixTiO2@silica functional coating in one layer for performance enhanced LiNi0.6Co0.2Mn0.2O2 cathode. Nano Energy, 2019, 58, 673-679.	8.2	84
461	Interlayer-Expanded V ₆ O ₁₃ Â <i>n</i> H ₂ O Architecture Constructed for an Advanced Rechargeable Aqueous Zinc-Ion Battery. ACS Applied Energy Materials, 2019, 2, 1988-1996.	2.5	143
462	Lithium-ion batteries: outlook on present, future, and hybridized technologies. Journal of Materials Chemistry A, 2019, 7, 2942-2964.	5.2	1,266
463	Smart Materials and Design toward Safe and Durable Lithium Ion Batteries. Small Methods, 2019, 3, 1900323.	4.6	47
464	A simple method to enhance the lifetime of Ni-rich cathode by using low-temperature dehydratable molecular sieve as water scavenger. Journal of Power Sources, 2019, 435, 226773.	4.0	16
465	Customizing a Li–metal battery that survives practical operating conditions for electric vehicle applications. Energy and Environmental Science, 2019, 12, 2174-2184.	15.6	130
466	Enhancing high-voltage performances of nickel-based cathode material via aluminum and progressive concentration gradient modification. Electrochimica Acta, 2019, 317, 459-467.	2.6	10
467	Surface coating with Li-Ti-O to improve the electrochemical performance of Ni-rich cathode material. Applied Surface Science, 2019, 489, 913-921.	3.1	36
468	Commercialization of Lithium Battery Technologies for Electric Vehicles. Advanced Energy Materials, 2019, 9, 1900161.	10.2	865
469	Yolk-shell structured V2O3 microspheres wrapped in N, S co-doped carbon as pea-pod nanofibers for high-capacity lithium ion batteries. Chemical Engineering Journal, 2019, 374, 545-553.	6.6	86
470	Strengthening the Electrodes for Li-Ion Batteries with a Porous Adhesive Interlayer through Dry-Spraying Manufacturing. ACS Applied Materials & Interfaces, 2019, 11, 25081-25089.	4.0	14
471	Tuning Li-enrichment in high-Ni layered oxide cathodes to optimize electrochemical performance for Li-ion battery. Nano Energy, 2019, 62, 709-717.	8.2	33
472	Earth-abundant transition metal and metal oxide nanomaterials: Synthesis and electrochemical applications. Progress in Materials Science, 2019, 106, 100574.	16.0	184
473	Realizing superior cycling stability of Ni-Rich layered cathode by combination of grain boundary engineering and surface coating. Nano Energy, 2019, 62, 30-37.	8.2	115

#	Article	IF	CITATIONS
474	Review of Recent Development of In Situ/Operando Characterization Techniques for Lithium Battery Research. Advanced Materials, 2019, 31, e1806620.	11.1	390
475	Trimethylsilyl azide (C3H9N3Si): a highly efficient additive for tailoring fluoroethylene carbonate (FEC) based electrolytes for Li-metal batteries. Journal of Materials Chemistry A, 2019, 7, 13441-13448.	5.2	34
476	Flexible and High-Voltage Coaxial-Fiber Aqueous Rechargeable Zinc-Ion Battery. Nano Letters, 2019, 19, 4035-4042.	4.5	202
477	Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nature Energy, 2019, 4, 484-494.	19.8	345
478	Next generation and beyond lithium chemistries. , 2019, , 253-284.		0
480	Chemical, Structural, and Electronic Aspects of Formation and Degradation Behavior on Different Length Scales of Niâ€Rich NCM and Liâ€Rich HEâ€NCM Cathode Materials in Liâ€Ion Batteries. Advanced Materials, 2019, 31, e1900985.	11.1	319
481	Recent Advances and Perspectives of Carbon-Based Nanostructures as Anode Materials for Li-ion Batteries. Materials, 2019, 12, 1229.	1.3	102
482	Highly Stabilized Ni-Rich Cathode Material with Mo Induced Epitaxially Grown Nanostructured Hybrid Surface for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 16629-16638.	4.0	142
483	Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. Nature Nanotechnology, 2019, 14, 594-601.	15.6	451
484	Enhanced Electrochemical Properties of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ at Elevated Temperature by Simultaneous Structure and Interface Regulating. Journal of the Electrochemical Society, 2019, 166, A1439-A1448.	1.3	44
485	Oxygen Release Degradation in Liâ€lon Battery Cathode Materials: Mechanisms and Mitigating Approaches. Advanced Energy Materials, 2019, 9, 1900551.	10.2	293
486	Preparation and Performance of the Heterostructured Material with a Ni-Rich Layered Oxide Core and a LiNi _{0.5} Mn _{1.5} O ₄ -like Spinel Shell. ACS Applied Materials & Interfaces, 2019, 11, 16556-16566.	4.0	31
487	Thermochemical conversion of eggshell as biological waste and its application as a functional material for lithium-ion batteries. Chemical Engineering Journal, 2019, 372, 765-773.	6.6	49
488	Ni- and/or Mn-based layered transition metal oxides as cathode materials for sodium ion batteries: status, challenges and countermeasures. Journal of Materials Chemistry A, 2019, 7, 10138-10158.	5.2	123
489	Cobalt based metal-organic frameworks and their derivatives for electrochemical energy conversion and storage. Chemical Engineering Journal, 2019, 370, 37-59.	6.6	96
490	Hollow microspherical layered xLi2MnO3·(1-x)LiNiO2 (x=0.3–0.7) as cathode material for lithium–ion batteries. Journal of Alloys and Compounds, 2019, 790, 1034-1042.	2.8	6
491	Recent progress on lithium-ion batteries with high electrochemical performance. Science China Chemistry, 2019, 62, 533-548.	4.2	136
492	Progressive concentration gradient nickel-rich oxide cathode material for high-energy and long-life lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 7728-7735.	5.2	61

#	Article	IF	CITATIONS
493	Rod-like porous CoMoO4@C as excellent anode for high performance lithium ion battery. Journal of Alloys and Compounds, 2019, 790, 891-899.	2.8	35
494	Recent advance in new-generation integrated devices for energy harvesting and storage. Nano Energy, 2019, 60, 600-619.	8.2	190
495	Synthesizing LiNi0.8Co0.1Mn0.1O2 with novel shell-pore structure for enhanced rate performance. Journal of Alloys and Compounds, 2019, 789, 736-743.	2.8	13
497	Anomalous metal segregation in lithium-rich material provides design rules for stable cathode in lithium-ion battery. Nature Communications, 2019, 10, 1650.	5.8	60
498	Full-gradient structured LiNi0.8Co0.1Mn0.1O2 cathode material with improved rate and cycle performance for lithium ion batteries. Electrochimica Acta, 2019, 309, 74-85.	2.6	39
499	High-rate lithium ion energy storage to facilitate increased penetration of photovoltaic systems in electricity grids. MRS Energy & Sustainability, 2019, 6, 1.	1.3	10
500	Comparison of electrochemical performance of LiNi _{1â^'x} Co _x O ₂ cathode materials synthesized from coated (1â^' <i>x</i>)Ni(OH) ₂ @ <i>x</i> Co(OH) ₂ and doped Ni _{1â^'x} Co _x (OH) ₂ precursors. RSC Advances, 2019, 9, 9079-9085.	1.7	4
501	Antiâ€Oxygen Leaking LiCoO ₂ . Advanced Functional Materials, 2019, 29, 1901110.	7.8	60
502	Tunable LiAlO ₂ /Al ₂ O ₃ Coating through a Wet-Chemical Method To Improve Cycle Stability of Nano-LiCoO ₂ . ACS Applied Energy Materials, 2019, 2, 3098-3113.	2.5	25
503	Simultaneously Dual Modification of Niâ€Rich Layered Oxide Cathode for Highâ€Energy Lithiumâ€lon Batteries. Advanced Functional Materials, 2019, 29, 1808825.	7.8	430
504	Preparation of Graphene Liquid Cells for the Observation of Lithium-ion Battery Material. Journal of Visualized Experiments, 2019, , .	0.2	3
505	Insights into the structural evolution and Li/O loss in high-Ni layered oxide cathodes. Nano Energy, 2019, 59, 327-335.	8.2	25
506	Nano/Microstructured Silicon–Graphite Composite Anode for High-Energy-Density Li-Ion Battery. ACS Nano, 2019, 13, 2624-2633.	7.3	219
507	Application of nanoparticles and composite materials for energy generation and storage. IET Nanodielectrics, 2019, 2, 115-122.	2.0	24
508	A Ni-rich Cathode Material for Lithium-ion Batteries with Improved Safety and Cost. , 2019, , .		3
509	Structural insights into the formation and voltage degradation of lithium- and manganese-rich layered oxides. Nature Communications, 2019, 10, 5365.	5.8	166
510	Brief review of batteries for XEV applications. ETransportation, 2019, 2, 100032.	6.8	19
511	Exposed Surface Engineering of High-voltage LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ Cathode Materials Enables High-rate and Durable Li-ion Batteries. Industrial & Engineering Chemistry Research, 2019, 58, 23099-23105.	1.8	16

#	Article	IF	CITATIONS
512	Gradient Li-rich oxide cathode particles immunized against oxygen release by a molten salt treatment. Nature Energy, 2019, 4, 1049-1058.	19.8	248
513	All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nature Energy, 2019, 4, 882-890.	19.8	557
514	Grafting Benzenediazonium Tetrafluoroborate onto LiNi <i>_x</i> Co <i>_y</i> Mn <i>_z</i> O ₂ Materials Achieves Subzeroâ€Temperature Highâ€Capacity Lithiumâ€Ion Storage via a Diazonium Softâ€Chemistry Method Advanced Energy Materials, 2019, 9, 1802946.	.10.2	50
515	Plastic crystal polymer electrolytes containing boron based anion acceptors for room temperature all-solid-state sodium-ion batteries. Energy Storage Materials, 2019, 22, 57-65.	9.5	48
516	<i>Operando</i> Structural and Electrochemical Investigation of Li _{1.5} V ₃ O ₈ Nanorods in Li-ion Batteries. ACS Applied Energy Materials, 2019, 2, 852-859.	2.5	7
517	Compact Lithium-Ion Battery Electrodes with Lightweight Reduced Graphene Oxide/Poly(Acrylic Acid) Current Collectors. ACS Applied Energy Materials, 2019, 2, 905-912.	2.5	9
518	An Organic Anode for High Temperature Potassiumâ€lon Batteries. Advanced Energy Materials, 2019, 9, 1802986.	10.2	151
519	Enhanced Electrochemical Performance of LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ Cathode Material via Li ₂ TiO ₃ Nanoparticles Coating. Journal of the Electrochemical Society, 2019, 166. A143-A150.	1.3	27
520	Alkali ions pre-intercalated layered vanadium oxide nanowires for stable magnesium ions storage. Nano Energy, 2019, 58, 347-354.	8.2	72
521	Hierarchically Structured Core–Shell Design of a Lithium Transition-Metal Oxide Cathode Material for Excellent Electrochemical Performance. ACS Applied Materials & Interfaces, 2019, 11, 4017-4027.	4.0	13
522	Lithium-ion conductive coating layer on nickel rich layered oxide cathode material with improved electrochemical properties for Li-ion battery. Journal of Alloys and Compounds, 2019, 784, 1311-1322.	2.8	60
523	Preparation and performance of poly(ethylene oxide)â€based composite solid electrolyte for all solidâ€state lithium batteries. Journal of Applied Polymer Science, 2019, 136, 47498.	1.3	38
524	Ultrastable and High-Performance Zn/VO ₂ Battery Based on a Reversible Single-Phase Reaction. Chemistry of Materials, 2019, 31, 699-706.	3.2	227
525	Improved electrochemical properties of LiNi0.8Co0.15Mn0.05O2 prepared using Mn3O4-coated Ni0.842Co0.158(OH)2. Journal of Solid State Electrochemistry, 2019, 23, 259-268.	1.2	4
526	Hin und zurück – die Entwicklung von LiNiO ₂ als Kathodenaktivmaterial. Angewandte Chemie, 2019, 131, 10542-10569.	1.6	25
527	There and Back Again—The Journey of LiNiO ₂ as a Cathode Active Material. Angewandte Chemie - International Edition, 2019, 58, 10434-10458.	7.2	400
528	Correlation between long range and local structural changes in Ni-rich layered materials during charge and discharge process. Journal of Power Sources, 2019, 412, 336-343.	4.0	109
529	Electrochemical effect of graphite fluoride modification on Li-rich cathode material in lithium ion battery. Ceramics International, 2019, 45, 160-167.	2.3	23

#	Article	IF	CITATIONS
530	Yttrium modified Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced electrochemical performance as high energy density cathode material at 4.5â€V high voltage. Journal of Alloys and Compounds, 2019, 774, 82-92.	2.8	114
531	Sb@S–N–C nanocomposite as long-cycle stable anode material for lithium ion batteries. Journal of Alloys and Compounds, 2020, 814, 152161.	2.8	7
532	A nearâ€infrared fluorescent pH sensing film for wound milieu pH monitoring. Experimental Dermatology, 2020, 29, 107-111.	1.4	12
533	Degradation Mechanisms and Mitigation Strategies of Nickel-Rich NMC-Based Lithium-Ion Batteries. Electrochemical Energy Reviews, 2020, 3, 43-80.	13.1	393
534	Binder-free NaTi2(PO4)3 anodes for high-performance coaxial-fiber aqueous rechargeable sodium-ion batteries. Nano Energy, 2020, 67, 104212.	8.2	70
535	Highly stable Ni-rich layered oxide cathode enabled by a thick protective layer with bio-tissue structure. Energy Storage Materials, 2020, 24, 291-296.	9.5	51
536	A review on synthesis and engineering of crystal precursors produced <i>via</i> coprecipitation for multicomponent lithium-ion battery cathode materials. CrystEngComm, 2020, 22, 1514-1530.	1.3	92
537	Formation of Nitrogenâ€Doped Carbonâ€Coated CoP Nanoparticles Embedded within Graphene Oxide for Lithiumâ€lon Batteries Anode. Energy Technology, 2020, 8, 1901089.	1.8	22
538	Improved cycling stability of LiNi0.6Co0.2Mn0.2O2 through microstructure consolidation by TiO2 coating for Li-ion batteries. Journal of Power Sources, 2020, 448, 227439.	4.0	56
539	Tuning of aluminum concentration distribution in high nickel cathode particles for lithium ion batteries. Journal of Alloys and Compounds, 2020, 816, 152677.	2.8	5
540	Lithium storage kinetics of highly conductive F-doped SnO2 interfacial layer on lithium manganese oxide surface. Applied Surface Science, 2020, 499, 144057.	3.1	20
541	Enhanced electrochemical properties of Ni-rich LiNi0.8Co0.1Mn0.1O2 by SnO2 coating under high cutoff voltage. Ionics, 2020, 26, 2681-2688.	1.2	9
542	Building Safe Lithium-Ion Batteries for Electric Vehicles: A Review. Electrochemical Energy Reviews, 2020, 3, 1-42.	13.1	448
543	Surface/Interface Structure Degradation of Niâ€Rich Layered Oxide Cathodes toward Lithiumâ€lon Batteries: Fundamental Mechanisms and Remedying Strategies. Advanced Materials Interfaces, 2020, 7, 1901749.	1.9	134
544	Surface and Interfacial Chemistry in the Nickelâ€Rich Cathode Materials. Batteries and Supercaps, 2020, 3, 309-322.	2.4	29
545	Preparation and application of poly(ethylene oxide)â€based all solidâ€state electrolyte with a walnutâ€like SiO ₂ as nanoâ€fillers. Journal of Applied Polymer Science, 2020, 137, 48810.	1.3	29
546	Enhanced mechanical strength and electrochemical performance of core–shell structured high–nickel cathode material. Journal of Power Sources, 2020, 448, 227395.	4.0	32
547	Design strategies for development of nickel-rich ternary lithium-ion battery. lonics, 2020, 26, 1063-1080.	1.2	18

#	Article	IF	CITATIONS
548	Niâ€Rich Layered Cathode Materials with Electrochemoâ€Mechanically Compliant Microstructures for Allâ€Solidâ€State Li Batteries. Advanced Energy Materials, 2020, 10, 1903360.	10.2	136
549	Nano/Microstructured Silicon–Carbon Hybrid Composite Particles Fabricated with Corn Starch Biowaste as Anode Materials for Li-Ion Batteries. Nano Letters, 2020, 20, 625-635.	4.5	164
550	Glassâ€Ceramicâ€Like Vanadate Cathodes for Highâ€Rate Lithiumâ€lon Batteries. Advanced Energy Materials, 2020, 10, 1903411.	10.2	18
551	Towards the high-energy-density battery with broader temperature adaptability: Self-discharge mitigation of quaternary nickel-rich cathode. Energy Storage Materials, 2020, 33, 239-249.	9.5	10
552	Breaking Free from Cobalt Reliance in Lithium-Ion Batteries. IScience, 2020, 23, 101505.	1.9	80
553	Lithium-ion batteries – Current state of the art and anticipated developments. Journal of Power Sources, 2020, 479, 228708.	4.0	401
554	Recent Progress and Perspective of Advanced Highâ€Energy Coâ€Less Niâ€Rich Cathodes for Liâ€Ion Batteries: Yesterday, Today, and Tomorrow. Advanced Energy Materials, 2020, 10, 2002027.	10.2	221
555	High-Efficiency Electrolyte for Li-Rich Cathode Materials Achieving Enhanced Cycle Stability and Suppressed Voltage Fading Capable of Practical Applications on a Li-Ion Battery. ACS Applied Materials & Interfaces, 2020, 12, 49666-49679.	4.0	15
556	Heterogeneous structured MoSe ₂ –MoO ₃ quantum dots with enhanced sodium/potassium storage. Journal of Materials Chemistry A, 2020, 8, 23395-23403.	5.2	48
557	Fundamental interplay between phase-transition kinetics and thermodynamics of manganese-based sodium layered oxides during cationic and anionic redox. Journal of Materials Chemistry A, 2020, 8, 21142-21150.	5.2	15
558	Multifunctional Fluoroethylene Carbonate for Improving High-Temperature Performance of LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ SiO _{<i>x</i>} @Graphite Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 9989-10000.	2.5	19
559	Synthesis of the Se-HPCF composite <i>via</i> a liquid-solution route and its stable cycling performance in Li–Se batteries. Dalton Transactions, 2020, 49, 14536-14542.	1.6	5
560	Confined growth of primary grains towards stabilizing integrated structure of Ni-rich materials. Journal of Power Sources, 2020, 478, 228737.	4.0	15
561	Correlating the phase evolution and anionic redox in Co-Free Ni-Rich layered oxide cathodes. Nano Energy, 2020, 78, 105365.	8.2	36
562	Hierarchical Hollow Bimetal Oxide Microspheres Synthesized through a Recrystallization Mechanism for Highâ€Performance Lithiumâ€Ion Batteries. ChemElectroChem, 2020, 7, 3468-3477.	1.7	7
563	Sublimation-Induced Gas-Reacting Process for High-Energy-Density Ni-Rich Electrode Materials. ACS Applied Materials & Interfaces, 2020, 12, 11745-11752.	4.0	23
564	Electrolyte Solutions for Rechargeable Li-Ion Batteries Based on Fluorinated Solvents. ACS Applied Energy Materials, 2020, 3, 7485-7499.	2.5	31
565	Understanding Reactivities of Ni-Rich Li[Ni _{<i>x</i>} Mn _{<i>y</i>} Co _{1–<i>x</i>–<i>y</i>}]O ₂ Single-Crystal Cathode Materials. ACS Applied Energy Materials, 2020, 3, 12238-12245.	2.5	24

		CITATION REPORT	
#	Article	IF	CITATIONS
566	Sulfate-Containing Composite Based on Ni-Rich Layered Oxide LiNi0.8Mn0.1Co0.1O2 as High-Performance Cathode Material for Li-ion Batteries. Nanomaterials, 2020, 10, 2381.	1.9	12
567	Nax(Cu–Fe–Mn)O2 system as cathode materials for Na-ion batteries. Nano Energy, 2020, 78, 105142.	8.2	29
568	Lithium-ion (de)intercalation mechanism in core-shell layered Li(Ni,Co,Mn)O2 cathode materials. Nano Energy, 2020, 78, 105231.	8.2	50
569	Electrochemical characteristics and energy densities of lithium-ion batteries using mesoporous silicon and graphite as anodes. Electrochimica Acta, 2020, 357, 136870.	2.6	25
570	lons Transfer Behavior during water washing for LiNi0.815Co0.15Al0.035O2: Role of Excess Lithium. Materials Today Energy, 2020, 17, 100440.	2.5	14
571	Comprehensive Study of Al- and Zr-Modified LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ through Synergy of Coating and Doping. ACS Applied Energy Materials, 2020, 3, 8978-8987.	2.5	46
572	Recent advances in Ni-rich layered oxide particle materials for lithium-ion batteries. Particuology, 2020, 53, 1-11.	2.0	60
573	Stabilizing P3â€Type Oxides as Cathodes for Highâ€Rate and Longâ€Life Sodium Ion Batteries by Disordered Distribution of Transition Metals. Small Methods, 2020, 4, 2000422.	4.6	33
574	Heuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge. Nature Energy, 2020, 5, 860-869.	19.8	278
575	Structure Design of Cathode Electrodes for Solidâ€State Batteries: Challenges and Progress. Small Structures, 2020, 1, 2000042.	6.9	73
576	Niobiumâ€Doped Titanium Dioxide with High Dopant Contents for Enhanced Lithiumâ€lon Storage. ChemElectroChem, 2020, 7, 4016-4023.	1.7	18
577	Sustainable Encapsulation Strategy of Silicon Nanoparticles in Microcarbon Sphere for High-Performance Lithium-Ion Battery Anode. ACS Sustainable Chemistry and Engineering, 2020, 8, 14150-14158.	3.2	37
578	Challenges and Strategies to Advance Highâ€Energy Nickelâ€Rich Layered Lithium Transition Metal Oxide Cathodes for Harsh Operation. Advanced Functional Materials, 2020, 30, 2004748.	7.8	146
579	Insights on the Activation and Stabilization of NCA Cathode Interface: Surface Chemical State Modulations of Aluminum-Mediated Li _{0.73} CoO ₂ Coatings. ACS Sustainable Chemistry and Engineering, 2020, 8, 14975-14984.	3.2	12
580	Probing and Resolving the Heterogeneous Degradation of Nickelâ€Rich Layered Oxide Cathodes across Multiâ€Length Scales. Small Methods, 2020, 4, 2000551.	4.6	18
581	A general route of fluoride coating on the cyclability regularity of high-voltage NCM cathodes. Chemical Communications, 2020, 56, 12009-12012.	2.2	23
582	Ni-Rich Layered Oxide with Preferred Orientation (110) Plane as a Stable Cathode Material for High-Energy Lithium-Ion Batteries. Nanomaterials, 2020, 10, 2495.	1.9	19
583	Interlinking Primary Grains with Lithium Boron Oxide to Enhance the Stability of LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ . ACS Applied Materials & Interfaces, 2020, 12, 56963-56973.	4.0	22

#	Article	IF	CITATIONS
584	Niâ€Rich Layered Cathode Materials by a Mechanochemical Method for Highâ€Energy Lithiumâ€lon Batteries. ChemistrySelect, 2020, 5, 14596-14601.	0.7	4
585	Recovery of Cobalt and Nickel from Hard Alloy Scraps for the Synthesis of Li(Ni1â^'xâ^'yCoxMny)O2 Lithium-Ion Battery Cathodes. Journal of Sustainable Metallurgy, 2020, 6, 775-784.	1.1	4
586	Experimental and mechanism research of gradient structured LiNi0.8Co0.1Mn0.1O2 cathode material for Li-ion batteries. Solid State Ionics, 2020, 357, 115504.	1.3	7
587	Probing the Thermal-Driven Structural and Chemical Degradation of Ni-Rich Layered Cathodes by Co/Mn Exchange. Journal of the American Chemical Society, 2020, 142, 19745-19753.	6.6	122
588	Gradient-morph LiCoO ₂ single crystals with stabilized energy density above 3400 W h L ^{â^'1} . Energy and Environmental Science, 2020, 13, 1865-1878.	15.6	118
589	Structural and Electrochemical Properties of Low-Cobalt-Content LiNi _{0.6+<i>x</i>} Co _{0.2–<i>x</i>} Mn _{0.2} O ₂ (0.0 â‰≱Tj ETQ 28253-28263	2q110.78 4.0	4314 rgBT
590	Nano LiFePO4 coated Ni rich composite as cathode for lithium ion batteries with high thermal ability and excellent cycling performance. Journal of Power Sources, 2020, 464, 228235.	4.0	49
591	Thread like structured VO2 microspheres for improved lithium-ion storage kinetics and stability. Journal of Alloys and Compounds, 2020, 842, 155721.	2.8	9
592	High-temperature storage deterioration behaviors of lithium-ion batteries using nickel-rich cathode and SiO–C composite anode. SN Applied Sciences, 2020, 2, 1.	1.5	6
593	Emerging investigator series: first-principles and thermodynamics comparison of compositionally-tuned delafossites: cation release from the (001) surface of complex metal oxides. Environmental Science: Nano, 2020, 7, 1642-1651.	2.2	11
594	Influence of core and shell components on the Ni-rich layered oxides with core–shell and dual-shell structures. Chemical Engineering Journal, 2020, 400, 125821.	6.6	21
595	Harnessing the surface structure to enable high-performance cathode materials for lithium-ion batteries. Chemical Society Reviews, 2020, 49, 4667-4680.	18.7	88
596	Probing solid-state reaction through microstrain: A case study on synthesis of LiCoO2. Journal of Power Sources, 2020, 469, 228422.	4.0	17
597	Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes. Nature Communications, 2020, 11, 1474.	5.8	298
598	Insights into the Enhanced Cycle and Rate Performances of the F‧ubstituted P2â€Type Oxide Cathodes for Sodiumâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2000135.	10.2	57
599	Lifting the energy density of lithium ion batteries using graphite film current collectors. Journal of Power Sources, 2020, 455, 227991.	4.0	19
600	Beyond Doping and Coating: Prospective Strategies for Stable High-Capacity Layered Ni-Rich Cathodes. ACS Energy Letters, 2020, 5, 1136-1146.	8.8	313
601	Improving LiNi _x Co _y Mn _{1â^'xâ^'y} O ₂ cathode electrolyte interface under high voltage in lithium ion batteries. Nano Select, 2020, 1, 111-134.	1.9	36

#	ARTICLE	IF	CITATIONS
602	Radially Microstructural Design of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode Material toward Long-Term Cyclability and High Rate Capability at High Voltage. ACS Applied Energy Materials, 2020, 3, 6657-6669.	2.5	26
603	Spinel-layered Li1.1[Mn0.6Co0.8Ni0.6]O4-σ nanocrystals: Synthesis and electrochemistry at high potentials. Journal of Solid State Chemistry, 2020, 288, 121365.	1.4	0
604	Fast-Charging Cathodes from Polymer-Templated Mesoporous LiVPO ₄ F. ACS Applied Materials & Interfaces, 2020, 12, 33775-33784.	4.0	14
605	Multiscale factors in designing alkali-ion (Li, Na, and K) transition metal inorganic compounds for next-generation rechargeable batteries. Energy and Environmental Science, 2020, 13, 4406-4449.	15.6	77
606	Facile renewable synthesis of nitrogen/oxygen co-doped graphene-like carbon nanocages as general lithium-ion and potassium-ion batteries anode. Carbon, 2020, 167, 685-695.	5.4	69
607	Layered ternary metal oxides: Performance degradation mechanisms as cathodes, and design strategies for high-performance batteries. Progress in Materials Science, 2020, 111, 100655.	16.0	115
608	Novel Charging-Optimized Cathode for a Fast and High-Capacity Zinc-Ion Battery. ACS Applied Materials & Interfaces, 2020, 12, 10420-10427.	4.0	43
609	Toward a high-voltage fast-charging pouch cell with TiO2 cathode coating and enhanced battery safety. Nano Energy, 2020, 71, 104643.	8.2	72
610	A cyclic phosphate-based battery electrolyte for high voltage and safe operation. Nature Energy, 2020, 5, 291-298.	19.8	250
611	Enhancing the Cycling Stability of Ni-Rich LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ Cathode at a High Cutoff Voltage with Ta Doping. ACS Sustainable Chemistry and Engineering, 2020, 8, 3082-3090.	3.2	64
612	In situ growth of CuO submicro-sheets on optimized Cu foam to induce uniform Li deposition and stripping for stable Li metal batteries. Electrochimica Acta, 2020, 339, 135941.	2.6	36
613	Degradation and Aging Routes of Ni-Rich Cathode Based Li-Ion Batteries. Batteries, 2020, 6, 8.	2.1	73
614	Niâ€Rich/Coâ€Poor Layered Cathode for Automotive Liâ€ion Batteries: Promises and Challenges. Advanced Energy Materials, 2020, 10, 1903864.	10.2	242
615	Distinct Surface and Bulk Thermal Behaviors of LiNi _{0.6} Mn _{0.2} Co _{0.2} O ₂ Cathode Materials as a Function of State of Charge. ACS Applied Materials & Interfaces, 2020, 12, 11643-11656.	4.0	19
616	Rechargeable Aqueous Zinc–Manganese Dioxide/Graphene Batteries with High Rate Capability and Large Capacity. ACS Applied Energy Materials, 2020, 3, 1742-1748.	2.5	46
617	Role of Amorphous Phases in Enhancing Performances of Electrode Materials for Alkali Ion Batteries. Frontiers in Materials, 2020, 6, .	1.2	25
618	Research Frontiers in Energyâ€Related Materials and Applications for 2020–2030. Advanced Sustainable Systems, 2020, 4, 1900145.	2.7	30
619	Al-doped NaNi1/3Mn1/3Fe1/3O2 for high performance of sodium ion batteries. Ionics, 2020, 26, 1797-1804.	1.2	25

ARTICLE IF CITATIONS Layered Oxide Cathodes Promoted by Structure Modulation Technology for Sodiumâ€ion Batteries. 620 7.8 142 Advanced Functional Materials, 2020, 30, 2001334. Inhibited voltage decay and enhanced electrochemical performance of the Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material by CeAlOl surface coating modification. Applied Surface 3.1 Science, 2020, 521, 146504. 3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed 622 5.8 217 tomography and modelling. Nature Communications, 2020, 11, 2079. Novel layered K0.7Mn0.7Ni0.3O2 cathode material with enlarged diffusion channels for high energy density sodium-ion batteries. Science China Materials, 2020, 63, 1163-1170. Na2Li2Ti6O14 nanowires as ultra-long cycling performance anode material for lithium ion storage. 624 2.3 10 Ceramics International, 2020, 46, 15699-15704. Improving the Structure and Cycling Stability of Ni-Rich Layered Cathodes by Dual Modification of Yttrium Doping and Surface Coating. ACS Applied Materials & amp; Interfaces, 2020, 12, 19483-19494. 4.0 626 Fracture behavior in battery materials. JPhys Energy, 2020, 2, 022002. 2.3 38 Structural, electrochemical and catalytic activity of Prussian blue analogues embedded with functionalized carbon for solid state battery applications. International Journal of Hydrogen Energy, 3.8 2020, 45, 15317-15326. Interphases, Interfaces, and Surfaces of Active Materials in Rechargeable Batteries and Perovskite 628 11.1 30 Solar Cells. Advanced Materials, 2021, 33, e1905245. The Layered Oxides in Lithium and Sodiumâ€lon Batteries: A Solidâ€State Chemistry Approach. Advanced 629 10.2 Energy Materials, 2021, 11, 2001201. Enhancing high-potential stability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode with PrF3 coating. Ceramics 630 2.329 International, 2021, 47, 6341-6351. Mesoporous VO2(B) nanorods deposited onto graphene architectures for enhanced rate capability and cycle life of Li ion battery cathodes. Journal of Alloys and Compounds, 2021, 855, 157361. 2.8 24 Nickelâ€Rich Layered Cathode Materials for Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2021, 632 1.7 44 27, 4249-4269. Diverting Exploration of Silicon Anode into Practical Way: A Review Focused on Silicon-Graphite 248 Composite for Lithium Ion Batteries. Energy Storage Materials, 2021, 35, 550-576. Yolkâ€"Shell P3â€**T**ype K_{0.5}[Mn_{0.85}Ni_{0.1}Co_{0.05}]O₂: A Lowâ€Cost 634 7.3 36 Cathode for Potassiumâ€Ion Batteries. Energy and Environmental Materials, 2022, 5, 261-269. A nanorod-like Ni-rich layered cathode with enhanced Li⁺ diffusion pathways for 5.2 58 high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 2830-2839. Single Li ion conducting solid-state polymer electrolytes based on carbon quantum dots for Li-metal 636 8.2 60 batteries. Nano Energy, 2021, 82, 105698. Using a Couetteâ€"Taylor vortex flow reactor to prepare a uniform and highly stable 2.8 Li[NiÕÅ·80CoO·15AlÓ.05]O2 cathode material. Journal of Alloys and Compounds, 2021, 857, 157594.

#	Article	IF	CITATIONS
638	Copper-substituted NaxMO2 (MÂ=ÂFe, Mn) cathodes for sodium ion batteries: Enhanced cycling stability through suppression of Mn(III) formation. Chemical Engineering Journal, 2021, 406, 126830.	6.6	39
639	Structure, modification, and commercialization of high nickel ternary material (LiNi0.8Co0.1Mn0.1O2) Tj ETQq1 3 387-410.	l 0.78431 1.2	4 rgBT /Ove 16
640	Ultrathin 3 V Spinel Clothed Layered Lithiumâ€Rich Oxides as Heterostructured Cathode for Highâ€Energy and Highâ€Power Liâ€ion Batteries â€. Chinese Journal of Chemistry, 2021, 39, 345-352.	2.6	12
641	Mitigating Particle Cracking and Surface Deterioration for Better Cycle Stability by Encapsulating NCM811 primary particles into LiBO2. International Journal of Electrochemical Science, 2021, 16, 150880.	0.5	1
642	Multiscale Doping Chemistry in Co-Free High Energy Layered Cathodes. , 2022, , 14-23.		1
643	Scalable nanoporous carbon films allow line-of-sight 3D atomic layer deposition of Pt: towards a new generation catalyst layer for PEM fuel cells. Materials Horizons, 2021, 8, 2451-2462.	6.4	20
644	Applications of POSS nanocomposites in the energy field. , 2021, , 471-480.		5
645	Temperature-Swing Synthesis of Large-Size Single-Crystal LiNi _{0.6} Mn _{0.2} Co _{0.2} O ₂ Cathode Materials. Journal of the Electrochemical Society, 2021, 168, 010534.	1.3	36
646	Recent Advances in Heterostructured Anode Materials with Multiple Anions for Advanced Alkaliâ€Ion Batteries. Advanced Energy Materials, 2021, 11, 2003058.	10.2	60
647	Hierarchical hollow structured Ni _x Co _{3â^'x} O ₄ particles for high-performance hybrid supercapacitors with ultralong cyclic stability. Sustainable Energy and Fuels, 2021, 5, 2018-2027.	2.5	5
648	Intelligence-assisted predesign for the sustainable recycling of lithium-ion batteries and beyond. Energy and Environmental Science, 2021, 14, 5801-5815.	15.6	59
649	Triphenyl phosphate as an Efficient Electrolyte Additive for Ni-rich NCM Cathode Materials. Journal of Electrochemical Science and Technology, 2021, 12, 67-73.	0.9	9
650	Porous Manganese Oxide Networks as High-Capacity and High-Rate Anodes for Lithium-Ion Batteries. Energies, 2021, 14, 1299.	1.6	1
651	Fe Doping in LiMn _{1.5} Ni _{0.5} O ₄ by Atomic Layer Deposition Followed by Annealing: Depths and Occupation Sites. Journal of Physical Chemistry C, 2021, 125, 7560-7567.	1.5	10
652	Insights into Liâ€Rich Mnâ€Based Cathode Materials with High Capacity: from Dimension to Lattice to Atom. Advanced Energy Materials, 2022, 12, 2003885.	10.2	70
653	Core–Multishell‧tructured Digitalâ€Gradient Cathode Materials with Enhanced Mechanical and Electrochemical Durability. Small, 2021, 17, e2100040.	5.2	10
654	Electrolyte Regulating toward Stabilization of Cobalt-Free Ultrahigh-Nickel Layered Oxide Cathode in Lithium-Ion Batteries. ACS Energy Letters, 2021, 6, 1324-1332.	8.8	53
655	Real-Time Observation of Chemomechanical Breakdown in a Layered Nickel-Rich Oxide Cathode Realized by In Situ Scanning Electron Microscopy. ACS Energy Letters, 2021, 6, 1703-1710.	8.8	30

#	Article	IF	CITATIONS
656	Hierarchical nickel valence gradient stabilizes high-nickel content layered cathode materials. Nature Communications, 2021, 12, 2350.	5.8	59
657	Recent progress on strategies to improve the high-voltage stability of layered-oxide cathode materials for sodium-ion batteries. JPhys Materials, 2021, 4, 032004.	1.8	19
658	Layered-rocksalt intergrown cathode for high-capacity zero-strain battery operation. Nature Communications, 2021, 12, 2348.	5.8	43
659	Enhancing the stabilities and electrochemical performances of LiNi0.5Co0.2Mn0.3O2 cathode material by simultaneous LiAlO2 coating and Al doping. Electrochimica Acta, 2021, 376, 138038.	2.6	29
660	Unveiling decaying mechanism through quantitative structure-activity relationship in electrolytes for lithium-ion batteries. Nano Energy, 2021, 83, 105843.	8.2	23
661	Reviving the lithium-manganese-based layered oxide cathodes for lithium-ion batteries. Matter, 2021, 4, 1511-1527.	5.0	107
662	One-step bulk and surface co-modification of LiNi0.8Co0.15Al0.05O2 cathode material towards excellent long-term cyclability. Electrochimica Acta, 2021, 379, 138124.	2.6	2
663	Multidimensional Nonstoichiometric Electrode Materials for Electrochemical Energy Conversion and Storage. Advanced Energy Materials, 2022, 12, 2100640.	10.2	25
664	From material properties to multiscale modeling to improve lithium-ion energy storage safety. MRS Bulletin, 2021, 46, 402-409.	1.7	1
665	Bulk Mg-doping and surface polypyrrole-coating enable high-rate and long-life for Ni-rich layered cathodes. Chemical Engineering Journal, 2021, 412, 128625.	6.6	48
666	Fundamental and solutions of microcrack in Ni-rich layered oxide cathode materials of lithium-ion batteries. Nano Energy, 2021, 83, 105854.	8.2	264
667	Electrochemical ion insertion from the atomic to the device scale. Nature Reviews Materials, 2021, 6, 847-867.	23.3	84
668	Development of cathode-electrolyte-interphase for safer lithium batteries. Energy Storage Materials, 2021, 37, 77-86.	9.5	78
669	Valuation of Surface Coatings in High-Energy Density Lithium-ion Battery Cathode Materials. Energy Storage Materials, 2021, 38, 309-328.	9.5	175
670	A review on the stability and surface modification of layered transition-metal oxide cathodes. Materials Today, 2021, 46, 155-182.	8.3	132
671	Resolving atomic-scale phase transformation and oxygen loss mechanism in ultrahigh-nickel layered cathodes for cobalt-free lithium-ion batteries. Matter, 2021, 4, 2013-2026.	5.0	69
672	Substantial Doping Engineering in Layered LiNi _{0.5+x} Co _{0.2â^'x} Mn _{0.3} O ₂ Materials for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2021, 168, 060534.	1.3	7
673	Surface-dependent stress-corrosion cracking in Ni-rich layered oxide cathodes. Acta Materialia, 2021, 212, 116914.	3.8	20

#	Article	IF	CITATIONS
674	High-performance Si/nano-Cu/CNTs/C anode derived from photovoltaic silicon waste: A potential photovoltaic-energy storage strategy. Materials Today Energy, 2021, 20, 100671.	2.5	17
675	Influences of direction and magnitude of Mg2+ doping concentration gradient on the performance of full concentration gradient cathode material. Journal of Solid State Electrochemistry, 2021, 25, 1959-1974.	1.2	12
676	Surface Modification of Nanocrystalline LiMn2O4 Using Graphene Oxide Flakes. Materials, 2021, 14, 4134.	1.3	12
677	Boosting ultrafast Li storage kinetics of conductive Nb-doped TiO2 functional layer coated on LiMn2O4. Journal of Alloys and Compounds, 2021, 870, 159404.	2.8	19
678	Surface enrichment and diffusion enabling gradient-doping and coating of Ni-rich cathode toward Li-ion batteries. Nature Communications, 2021, 12, 4564.	5.8	153
679	Heterogeneous Degradation in Thick Nickelâ€Rich Cathodes During Highâ€Temperature Storage and Mitigation of Thermal Instability by Regulating Cationic Disordering. Small, 2021, 17, e2102055.	5.2	8
680	Modification of LiNi0.8Co0.1Mn0.1O2 cathode materials from the perspective of chemical stabilization and kinetic hindrance. Journal of Power Sources, 2021, 499, 229756.	4.0	19
681	Combinatorial Performance Mapping of Near-NMC111 Li-ion Cathodes. Journal of Materiomics, 2021, , .	2.8	1
682	Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials. Nano Energy, 2021, 85, 105878.	8.2	116
683	Synthesis and Processing by Design of Highâ€Nickel Cathode Materials. Batteries and Supercaps, 2022, 5, .	2.4	11
684	Enhanced cyclic stability of NCM-622 cathode by Ti3+ doped TiO2 coating. Journal of Alloys and Compounds, 2021, 872, 159664.	2.8	18
685	Structural and chemical evolution in layered oxide cathodes of lithium-ion batteries revealed by synchrotron techniques. National Science Review, 2022, 9, nwab146.	4.6	27
686	Revealing two distinctive intergranular cracking mechanisms of Ni-rich layered cathode by cross-sectional scanning electron microscopy. Journal of Power Sources, 2021, 503, 230066.	4.0	16
687	Electrochemically Inert Li2MnO3: The Key to Improving the Cycling Stability of Li-Rich Manganese Oxide Used in Lithium-Ion Batteries. Materials, 2021, 14, 4751.	1.3	Ο
688	Lithium solid-state batteries: State-of-the-art and challenges for materials, interfaces and processing. Journal of Power Sources, 2021, 502, 229919.	4.0	92
689	Understanding Li roles in chemical reversibility of O2-type Li-rich layered cathode materials. Journal of Energy Chemistry, 2022, 66, 666-675.	7.1	13
690	High-conversion reduction synthesis of porous silicon for advanced lithium battery anodes. Electrochimica Acta, 2021, 391, 138967.	2.6	9
691	Towards superior cyclability of LiNi0.8Co0.15Al0.05O2 cathode material for lithium ion batteries via yttrium modification. Journal of Alloys and Compounds, 2021, 874, 159713.	2.8	11

#	Article	IF	CITATIONS
692	Understanding the relationship of electrochemical properties and structure of microstructure-controlled core shell gradient type Ni-rich cathode material by single particle measurement. Electrochimica Acta, 2021, 390, 138813.	2.6	7
693	Layered Li–Ni–Mn–Co oxide cathodes. Nature Energy, 2021, 6, 933-933.	19.8	67
694	Microcrack generation and modification of Ni-rich cathodes for Li-ion batteries: A review. Sustainable Materials and Technologies, 2021, 29, e00305.	1.7	25
695	Interfacial Model Deciphering Highâ€Voltage Electrolytes for High Energy Density, High Safety, and Fastâ€Charging Lithiumâ€Ion Batteries. Advanced Materials, 2021, 33, e2102964.	11.1	122
696	Carbon in lithium-ion and post-lithium-ion batteries: Recent features. Synthetic Metals, 2021, 280, 116864.	2.1	15
697	Recent advance in structure regulation of highâ€capacity Niâ€rich layered oxide cathodes. EcoMat, 2021, 3, e12141.	6.8	38
698	Recycling-oriented cathode materials design for lithium-ion batteries: Elegant structures versus complicated compositions. Energy Storage Materials, 2021, 41, 380-394.	9.5	46
699	Degradation identification of LiNi0.8Co0.1Mn0.1O2/graphite lithium-ion batteries under fast charging conditions. Electrochimica Acta, 2021, 392, 138979.	2.6	30
700	Recent progress in Li and Mn rich layered oxide cathodes for Li-ion batteries. Journal of Energy Chemistry, 2021, 61, 368-385.	7.1	43
701	Recent advancements in development of different cathode materials for rechargeable lithium ion batteries. Journal of Energy Storage, 2021, 43, 103112.	3.9	32
702	Improvement in potassium ion batteries electrodes: Recent developments and efficient approaches. Journal of Energy Chemistry, 2021, 62, 307-337.	7.1	73
703	Superior long-term cycling of high-voltage lithium-ion batteries enabled by single-solvent electrolyte. Nano Energy, 2021, 89, 106299.	8.2	21
704	Computational comparison of oxidation stability: Sulfones vs. fluorinated sulfones. Chemical Physics, 2021, 551, 111328.	0.9	2
705	Preparation of LiNiO·6CoO·2MnO·2O2 by PVP modified liquid-phase assisted solid-phase method and its electrochemical energy storage performance. Ceramics International, 2021, 47, 30266-30272.	2.3	7
706	Nano high-entropy alloy with strong affinity driving fast polysulfide conversion towards stable lithium sulfur batteries. Energy Storage Materials, 2021, 43, 212-220.	9.5	65
707	Stress accumulation in Ni-rich layered oxide cathodes: Origin, impact, and resolution. Journal of Energy Chemistry, 2022, 65, 236-253.	7.1	65
708	Coupling effects of thermodynamics in multiple ion co-precipitation for precursors towards a layered oxide cathode. Materials Advances, 2021, 2, 3752-3759.	2.6	1
709	An SiO _x anode strengthened by the self-catalytic growth of carbon nanotubes. Nanoscale, 2021, 13, 3808-3816.	2.8	26

#	Article	IF	CITATIONS
710	Core-shell structure LiNi0.8Co0.1Mn0.1O2 cathode material with improved electrochemical performance at high voltage. Ionics, 2021, 27, 949-959.	1.2	7
711	Outstanding Lowâ€Temperature Performance of Structureâ€Controlled Graphene Anode Based on Surfaceâ€Controlled Charge Storage Mechanism. Advanced Functional Materials, 2021, 31, 2009397.	7.8	34
712	Direct Imaging of Superwetting Behavior on Solid–Liquid–Vapor Triphase Interfaces. Advanced Materials, 2017, 29, 1703009.	11.1	10
713	High‣afety and Highâ€Energyâ€Density Lithium Metal Batteries in a Novel Ionicâ€Liquid Electrolyte. Advanced Materials, 2020, 32, e2001741.	11.1	176
714	Lithium/Oxygen Incorporation and Microstructural Evolution during Synthesis of Liâ€Rich Layered Li[Li _{0.2} Ni _{0.2} Mn _{0.6}]O ₂ Oxides. Advanced Energy Materials, 2019, 9, 1803094.	10.2	78
715	Atomically ordered and epitaxially grown surface structure in core-shell NCA/NiAl2O4 enabling high voltage cyclic stability for cathode application. Electrochimica Acta, 2019, 300, 437-444.	2.6	10
716	Fire-extinguishing organic electrolytes for safe batteries. Nature Energy, 2018, 3, 22-29.	19.8	642
717	Layered Ni-rich Cathode Materials. , 2019, , 26-43.		2
718	Synergistic Effect of Microstructure Engineering and Local Crystal Structure Tuning to Improve the Cycling Stability of Ni-Rich Cathodes. ACS Applied Materials & Interfaces, 2021, 13, 48720-48729.	4.0	17
719	Quasi-compensatory effect in emerging anode-free lithium batteries. EScience, 2021, 1, 3-12.	25.0	48
720	Perspectives for next generation lithium-ion battery cathode materials. APL Materials, 2021, 9, .	2.2	44
721	Revealing the Thermal Safety of Prussian Blue Cathode for Safer Nonaqueous Batteries. Advanced Energy Materials, 2021, 11, 2101764.	10.2	29
722	Rational design of mechanically robust Ni-rich cathode materials via concentration gradient strategy. Nature Communications, 2021, 12, 6024.	5.8	80
723	Improving high-temperature performance of lithium-rich cathode by roll-to-roll atomic layer deposition of titania nanocoating for lithium-ion batteries. Journal of Energy Storage, 2021, 44, 103348.	3.9	7
724	Particle Design and Mechanical Synthesis of Cathode Materials for Lithium-Ion Batteries. Journal of the Society of Powder Technology, Japan, 2015, 52, 600-605.	0.0	1
725	Cathode Materials, Samples, Pristine, Layered, Doping, Discharge Capacity. , 2019, , 73-161.		0
726	Impacts of Interfaces, Interphases, and Defects in Battery Electrodes. , 2020, , .		0
727	Effect of Sulfate-based Cathode-Electrolyte Interphases on Electrochemical Performance of Ni-rich Cathode Material. Journal of Electrochemical Science and Technology, 0, , .	0.9	1

#	Article	IF	CITATIONS
728	Selfâ€Healing: An Emerging Technology for Nextâ€Generation Smart Batteries. Advanced Energy Materials, 2022, 12, 2102652.	10.2	47
729	Highâ€Voltage and Highâ€Safety Practical Lithium Batteries with Ethylene Carbonateâ€Free Electrolyte. Advanced Energy Materials, 2021, 11, 2102299.	10.2	59
730	Revisiting Classical Rocking Chair Lithium-Ion Battery. Macromolecular Research, 2020, 28, 1175-1191.	1.0	14
732	APS: High-Energy X-rays Expediting Applied and Fundamental Research. Synchrotron Radiation News, 2020, 33, 44-50.	0.2	4
733	Fabricating a thin gradient surface layer to enhance the cycle stability of Ni-rich cathode materials. Journal of Alloys and Compounds, 2022, 893, 162162.	2.8	2
734	Self-Healing of a Covalently Cross-Linked Polymer Electrolyte Membrane by Diels-Alder Cycloaddition and Electrolyte Embedding for Lithium Ion Batteries. Polymers, 2021, 13, 4155.	2.0	4
735	Air/water/temperature-stable cathode for all-climate sodium-ion batteries. Cell Reports Physical Science, 2021, 2, 100665.	2.8	86
736	Microstructure-optimized concentration-gradient NCM cathode for long-life Li-ion batteries. Materials Today, 2022, 52, 9-18.	8.3	43
737	Polyaniline nanoarrays/carbon cloth as binder-free and flexible cathode for magnesium ion batteries. Chemical Engineering Journal, 2022, 433, 133772.	6.6	34
738	Synergistic Effects of Surface Coating and Bulk Doping in Niâ€Rich Lithium Nickel Cobalt Manganese Oxide Cathode Materials for Highâ€Energy Lithium Ion Batteries. ChemSusChem, 2022, 15, .	3.6	9
739	Effect of Li Excess on Electrochemical Performance of Ni-Rich LiNi _{0.9} Co _{0.05} Mn _{0.05} O ₂ Cathode Materials for Li-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 14295-14308.	2.5	22
740	Electrochemo-mechanical effects as a critical design factor for all-solid-state batteries. Current Opinion in Solid State and Materials Science, 2022, 26, 100977.	5.6	32
741	Nickel fluoride (NiF2)/porous carbon nanocomposite synthesized via ammonium fluoride (NH4F) treatment for lithium-ion battery cathode applications. Journal of Power Sources, 2022, 521, 230935.	4.0	10
742	Advances in and prospects of nanomaterials' morphological control for lithium rechargeable batteries. Nano Energy, 2022, 93, 106860.	8.2	40
743	Ion-intercalation regulation of MXene-derived hydrated vanadates for high-rate and long-life Zn-Ion batteries. Energy Storage Materials, 2022, 45, 568-577.	9.5	49
744	Sodium doping derived electromagnetic center of lithium layered oxide cathode materials with enhanced lithium storage. Nano Energy, 2022, 94, 106900.	8.2	57
745	Relieving the Reaction Heterogeneity at the Subparticle Scale in Ni-Rich Cathode Materials with Boosted Cyclability. ACS Applied Materials & Interfaces, 2022, 14, 6729-6739.	4.0	4
746	The mechanical hybrid of V2O5 microspheres/graphene as an excellent cathode for lithium-ion batteries. Journal of Solid State Electrochemistry, 2022, 26, 729-738.	1.2	8

#	Article	IF	Citations
747	Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries. Nano Research, 2022, 15, 4091-4099.	5.8	96
748	Toward Practical Highâ€Energy and Highâ€Power Lithium Battery Anodes: Present and Future. Advanced Science, 2022, 9, e2105213.	5.6	84
749	Oxide cathodes for sodiumâ€ion batteries: Designs, challenges, and perspectives. , 2022, 4, 170-199.		76
750	Binary Fe/Mn-Based Nanocomposites as Li-Free Cathode Materials for Li Batteries Assembled in Charged State. Industrial & Engineering Chemistry Research, 0, , .	1.8	4
751	A three-in-one engineering strategy to achieve LiNi0.8Co0.1Mn0.1O2 cathodes with enhanced high-voltage cycle stability and high-rate capacities towards lithium storage. Journal of Power Sources, 2022, 524, 231035.	4.0	27
752	Stabilized Li metal anode with robust C-Li3N interphase for high energy density batteries. Energy Storage Materials, 2022, 46, 563-569.	9.5	28
753	Effects of in situ-converted Li3PO4 coating on electrochemical performance of MOF-assisted LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2022, 33, 6872-6887.	1.1	3
754	Challenges, interface engineering, and processing strategies toward practical <scp>sulfideâ€based allâ€solidâ€state</scp> lithium batteries. InformaÄnÃ-Materiály, 2022, 4, .	8.5	92
755	One-dimensional lithium-rich Li1.17Ni0.35Mn0.48O2 cathode and carbon-coated MnO anode materials for highly reversible Li-ion configurations. Journal of Industrial and Engineering Chemistry, 2022, 107, 280-290.	2.9	7
756	A single-crystal nickel-rich material as a highly stable cathode for lithium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 19680-19689.	5.2	18
757	Co Gradient Li-Rich Cathode Relieving the Capacity Decay in Lithium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
758	In Situ Mitigating Cation Mixing of Ni-Rich Cathode at High Voltage Via Li2mno3 Injection. SSRN Electronic Journal, 0, , .	0.4	0
759	Challenges and advances in wide-temperature rechargeable lithium batteries. Energy and Environmental Science, 2022, 15, 1711-1759.	15.6	138
760	Improved cycling stability of V ₂ O ₅ modified spinel LiMn ₂ O ₄ cathode at high cutâ€off voltage for lithiumâ€ion batteries. International Journal of Applied Ceramic Technology, 2022, 19, 2036-2052.	1.1	11
761	A Lowâ€Voltage Layered Na ₂ TiGeO ₅ Anode for Lithiumâ€lon Battery. Small, 2022, 18, e2107608.	5.2	7
762	Nickel-rich layered LiNi0.8Mn0.1Co0.1O2 with dual gradients on both primary and secondary particles in lithium-ion batteries. Cell Reports Physical Science, 2022, 3, 100767.	2.8	13
763	Enhanced cycle stability of Ni-rich LiNi0.83Co0.12Mn0.05O2 with Mg and La co-modification. Journal of Solid State Electrochemistry, 2022, 26, 1085-1095.	1.2	4
764	Modification Strategy for Constructing Li Gradient Combined with Spinel Phase Coating on Li-Rich Mn-Based Materials. ACS Applied Energy Materials, 2022, 5, 4641-4650.	2.5	9

#	Article	IF	CITATIONS
765	Multiphase layered transition metal oxide positive electrodes for sodium ion batteries. Energy Science and Engineering, 2022, 10, 1672-1705.	1.9	20
768	Temperature-dependence of calcination processes of Ni-rich layered oxides. Journal of Power Sources, 2022, 529, 231258.	4.0	3
769	Targeted masking enables stable cycling of LiNi0.6Co0.2Mn0.2O2 at 4.6V. Nano Energy, 2022, 96, 107123.	8.2	42
770	Recent Development of Nickel-Rich and Cobalt-Free Cathode Materials for Lithium-Ion Batteries. Batteries, 2021, 7, 84.	2.1	27
771	In Situ Partial Pyrolysis of Sodium Carboxymethyl Cellulose Constructing Hierarchical Pores in the Silicon Anode for Lithium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 380-386.	2.5	1
772	Gospel for Improving the Lithium Storage Performance of High-Voltage High-Nickel Low-Cobalt Layered Oxide Cathode Materials. ACS Applied Materials & Interfaces, 2021, 13, 58871-58884.	4.0	26
773	Powder Coatings via Atomic Layer Deposition for Batteries: A Review. Chemistry of Materials, 2022, 34, 3539-3587.	3.2	16
774	Optimizations of Graphitic Carbon/Silicon Hybrids for Scalable Preparation with High-Performance Lithium-Ion Storage. ACS Sustainable Chemistry and Engineering, 2022, 10, 5590-5598.	3.2	12
775	Boosting the ionic transport and structural stability of Zn-doped O3-type NaNi1/3Mn1/3Fe1/3O2 cathode material for half/full sodium-ion batteries. Electrochimica Acta, 2022, 418, 140357.	2.6	17
776	Constructing a Li-gradient in Li-Mn-O spinel for long-life lithium-ion batteries. Applied Surface Science, 2022, 593, 153410.	3.1	3
777	Metal-Organic Frameworks (Mofs) and Their Derivative as Electrode Materials for Lithium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
778	Formation of Robust Cei Film on High Voltage Lini0.6co0.2mn0.2o2 Cathode Enabled by Functional [Pivm][Tfsa] Ionic Liquid Additive. SSRN Electronic Journal, 0, , .	0.4	0
779	Al ₂ O ₃ Coated, Single Crystal Zr/Y coâ€Doped Highâ€Ni NCM Cathode Materials for High Performance Lithiumâ€ion Batteries. Particle and Particle Systems Characterization, 0, , 2200061.	1.2	3
780	Structure modification of Ni-rich layered oxide cathode toward advanced lithium-ion batteries. Journal of Materials Research, 2022, 37, 3250-3268.	1.2	4
781	Guidelines for Air-Stable Lithium/Sodium Layered Oxide Cathodes. , 2022, 4, 1074-1086.		17
782	Eu2O3-doped Li4SiO4 coating layer with a high ionic conductivity improving performance of LiNi0.8Co0.1Mn0.1O2 cathode materials. Electrochimica Acta, 2022, 420, 140436.	2.6	4
783	Nickel-rich and cobalt-free layered oxide cathode materials for lithium ion batteries. Energy Storage Materials, 2022, 50, 274-307.	9.5	72
785	In-Situ Visualization of the Transition Metal Dissolution in Layered Cathodes. Journal of Electrochemical Energy Conversion and Storage, 2022, 19, .	1.1	2

#	Article	IF	CITATIONS
786	Determination of sulfur in Lithium Nickel Manganese Cobalt composites by inductively coupled plasma optical emission spectroscopy. Vibroengineering PROCEDIA, 2022, 42, 89-94.	0.3	0
788	Challenges and Modification Strategies of Ni-Rich Cathode Materials Operating at High-Voltage. Nanomaterials, 2022, 12, 1888.	1.9	27
789	Improve the Midpoint Voltage and Structural Stability of Li-Rich Manganese-Based Cathode Material by Increasing the Nickel Content. Catalysts, 2022, 12, 584.	1.6	2
790	Co-gradient Li-rich cathode relieving the capacity decay in Lithium-ion batteries. Nano Energy, 2022, 100, 107439.	8.2	18
791	Molecular Mechanism Underpinning Stable Mechanical Performance and Enhanced Conductivity of Air-Aged Ionic Conductive Elastomers. Macromolecules, 2022, 55, 4665-4674.	2.2	4
792	Formation of robust CEI film on high voltage LiNi0.6Co0.2Mn0.2O2 cathode enabled by functional [PIVM][TFSA] ionic liquid additive. Electrochimica Acta, 2022, 424, 140679.	2.6	7
793	Phosphorus-based nanomaterials for lithium-ion battery anode. , 2023, , 533-549.		5
794	Developments in Surface/Interface Engineering of Niâ€Rich Layered Cathode Materials. Chemical Record, 2022, 22, .	2.9	10
795	Cobalt-free nickel-rich layered LiNi0.9Al0.1-xZrxO2 cathode for high energy density and stable lithium-ion batteries. Journal of the Taiwan Institute of Chemical Engineers, 2022, 136, 104421.	2.7	5
796	<scp>Highâ€Energy</scp> Lithiumâ€Ion Batteries: Recent Progress and a Promising Future in Applications. Energy and Environmental Materials, 2023, 6, .	7.3	77
797	Chemomechanics of Rechargeable Batteries: Status, Theories, and Perspectives. Chemical Reviews, 2022, 122, 13043-13107.	23.0	59
798	Recent progress on the modification of high nickel content NCM: Coating, doping, and single crystallization. , 2022, 1, 330-353.		38
799	Effect of Mg and Al cosubstitution on the structure and electrochemical performance of a Co-free LiNiO2 cathode material. Journal of Materials Science: Materials in Electronics, 2022, 33, 18533-18543.	1.1	2
800	The structure-activity relationship between precursor fine structure and cathode performance in ultra-high Ni layered oxide. Chemical Engineering Science, 2022, 260, 117865.	1.9	9
801	Polydopamine-assisted coating layer of a fast Li-ion conductor Li6.25La3Zr2Al0.25O12 on Ni-rich cathodes for Li-ion batteries. Chemical Engineering Journal, 2022, 450, 137939.	6.6	8
802	Metal-organic frameworks (MOFs) and their derivative as electrode materials for lithium-ion batteries. Coordination Chemistry Reviews, 2022, 470, 214715.	9.5	50
803	Emerging Electrochromic Materials and Devices for Future Displays. Chemical Reviews, 2022, 122, 14679-14721.	23.0	175
804	Modulation of lattice oxygen boosts the electrochemical activity and stability of Co-free Li-rich cathodes. Journal of Energy Chemistry, 2022, 75, 117-126.	7.1	13

# 805	ARTICLE Enhanced cathode materials for advanced lithium-ion batteries using nickel-rich and lithium/manganese-rich LiNi Mn Co O2. Journal of Energy Storage, 2022, 54, 105353.	IF 3.9	CITATIONS 6
806	In situ mitigating cation mixing of Ni-rich cathode at high voltage via Li2MnO3 injection. Energy Storage Materials, 2022, 53, 212-221.	9.5	13
807	Physical and electrochemical properties of new structurally flexible imidazolium phosphate ionic liquids. Physical Chemistry Chemical Physics, 2022, 24, 23289-23300.	1.3	5
808	Conventional and less conventional solution-based synthesis of battery materials: Cathodes, anodes and electrolytes. , 2022, , .		0
809	Ionic Liquid-Type Additive for Lithium Metal Batteries Operated in LiPF ₆ Based-Electrolyte Containing 2500 ppm H ₂ O. ACS Applied Materials & Interfaces, 2022, 14, 41103-41113.	4.0	9
810	Roadmap on Li-ion battery manufacturing research. JPhys Energy, 2022, 4, 042006.	2.3	17
811	Single-Crystal Nickel-Based Cathodes: Fundamentals and Recent Advances. Electrochemical Energy Reviews, 2022, 5, .	13.1	24
812	Cage-like Silicene/CNT Microspheres Synthesized by a Topochemical Reaction as Anodes for Enhanced Stable Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 13476-13483.	3.2	3
813	Lithiumâ€ion battery: A comprehensive research progress of high nickel ternary cathode material. International Journal of Energy Research, 2022, 46, 23145-23172.	2.2	12
814	Integrated Ni and Liâ€Rich Layered Oxide Cathode Materials for High Voltage Cycling in Rechargeable Liâ€ion Batteries. ChemElectroChem, 2022, 9, .	1.7	3
815	Prediction on Discharging Properties of Nickel–Manganese Materials for Highâ€Performance Sodiumâ€lon Batteries via Machine Learning Methods. Energy Technology, 2022, 10, .	1.8	0
816	Recent advances in NASICON-type oxide electrolytes for solid-state sodium-ion rechargeable batteries. Ionics, 2022, 28, 5289-5319.	1.2	12
817	Solvation Structure-Tunable Phase Change Electrolyte for Stable Lithium Metal Batteries. ACS Energy Letters, 2022, 7, 3761-3769.	8.8	12
818	Design and synthesis of high-energy-density heterostructure Na _{0.7} MnO ₂ –Li ₄ Mn ₅ O ₁₂ cathode material for advanced lithium batteries. New Journal of Chemistry, 2022, 46, 21350-21355.	1.4	3
819	Review on Li-Ion Based Battery Chemistry: Challenges and Opportunities. IOP Conference Series: Materials Science and Engineering, 2022, 1258, 012041.	0.3	3
820	Rational design of thermally stable polymorphic layered cathode materials for next generation lithium rechargeable batteries. Materials Today, 2022, 61, 91-103.	8.3	16
821	Nanostructured Coâ€Free Layered Oxide Cathode that Affords Fastâ€Charging Lithiumâ€Ion Batteries for Electric Vehicles. Advanced Energy Materials, 2022, 12, .	10.2	19
822	Synthesis of Micron-Sized LiNi0.8Co0.1Mn0.1O2 and Its Application in Bimodal Distributed High Energy Density Li-Ion Battery Cathodes. Energies, 2022, 15, 8129.	1.6	6

#	Article	IF	CITATIONS
823	Recent Progress in Surface Coatings for Sodium-Ion Battery Electrode Materials. Electrochemical Energy Reviews, 2022, 5, .	13.1	28
824	In Situ Nitrogen Functionalization of 2D-Ti3C2Tx-MXenes for High-Performance Zn-Ion Supercapacitor. Molecules, 2022, 27, 7446.	1.7	22
825	Surface Doping vs. Bulk Doping of Cathode Materials for Lithium-Ion Batteries: A Review. Electrochemical Energy Reviews, 2022, 5, .	13.1	86
826	Oxide Cathodes: Functions, Instabilities, Self Healing, and Degradation Mitigations. Chemical Reviews, 2023, 123, 811-833.	23.0	37
827	Preâ€Deoxidation of Layered Niâ€Rich Cathodes to Construct a Stable Interface with Electrolyte for Long Cycling Life. Advanced Functional Materials, 2023, 33, .	7.8	5
828	Nickel-rich layered oxide cathodes for lithium-ion batteries: Failure mechanisms and modification strategies. Journal of Energy Storage, 2023, 58, 106405.	3.9	13
829	Strain Engineering of Niâ€Rich Cathode Enables Exceptional Cyclability in Pouchâ€Type Full Cells. Advanced Materials, 2023, 35, .	11.1	29
830	Structural studies and selected physical investigations of LiCoO ₂ obtained by combustion synthesis. Beilstein Journal of Nanotechnology, 0, 13, 1473-1482.	1.5	1
831	Multiâ€Scale Characterization Techniques for Polymerâ€Based Solidâ€State Lithium Batteries. Macromolecular Chemistry and Physics, 2023, 224, .	1.1	1
832	Modified cathode-electrolyte interphase toward high-performance batteries. Cell Reports Physical Science, 2022, 3, 101197.	2.8	7
833	Sodium Composite Oxide Cathode Materials:Phase Regulation, Electrochemical Performance and Reaction Mechanism. Batteries and Supercaps, 2023, 6, .	2.4	4
834	Atomic Horizons Interpretation on Enhancing Electrochemical Performance of Niâ€Rich NCM Cathode via W Doping: Dual Improvements in Electronic and Ionic Conductivities from DFT Calculations and Experimental Confirmation. Small, 2023, 19, .	5.2	13
835	Designing better electrolytes. Science, 2022, 378, .	6.0	146
836	Critical Review on Internal and External Battery Thermal Management Systems for Fast Charging Applications. Advanced Energy Materials, 2023, 13, .	10.2	14
837	Ionic liquid/poly(ionic liquid)-based electrolytes for lithium batteries. , 2023, 1, 39-59.		25
838	A universal multifunctional rare earth oxide coating to stabilize high-voltage lithium layered oxide cathodes. Energy Storage Materials, 2023, 56, 155-164.	9.5	21
839	Low-cobalt active cathode materials for high-performance lithium-ion batteries: synthesis and performance enhancement methods. Journal of Materials Chemistry A, 2023, 11, 3789-3821.	5.2	16
840	Predicting the Stoichiometric Ratio of Synthesized Hydroxides in Nickelâ€Rich Cathode Precursors of Lithiumâ€lon Batteries by Using a Computational Thermodynamics Model. Energy Technology, 2023, 11, .	1.8	2

#	Article	IF	CITATIONS
841	Safety Issues of Layered Nickel-Based Cathode Materials for Lithium-Ion Batteries: Origin, Strategies and Prospects. Batteries, 2023, 9, 156.	2.1	3
842	Stabilization strategies for high-capacity NCM materials targeting for safety and durability improvements. ETransportation, 2023, 16, 100233.	6.8	4
843	Chemomechanically Stable Small Singleâ€crystal Moâ€doped LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ Cathodes for Practical 4.5â€Vâ€class Pouchâ€type Liâ€ion Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	18
844	Chemomechanically Stable Small Singleâ€crystal Moâ€doped LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ Cathodes for Practical 4.5â€Vâ€class Pouchâ€type Liâ€ion Batteries. Angewandte Chemie, 2023, 135, .	1.6	0
845	Activated FeS ₂ @NiS ₂ Core–Shell Structure Boosting Cascade Reaction for Superior Electrocatalytic Oxygen Evolution. Small, 2023, 19, .	5.2	11
846	A comprehensive review of foreign-ion doping and recent achievements for nickel-rich cathode materials. Energy Storage Materials, 2023, 57, 14-43.	9.5	29
847	Micro- and nano-structural design strategies towards polycrystalline nickel-rich layered cathode materials. Journal of Materials Chemistry A, 2023, 11, 7867-7897.	5.2	9
848	AlF3 coating improves cycle and voltage decay of Li-rich manganese oxides. Journal of Materials Science, 2023, 58, 4525-4540.	1.7	6
849	Challenges and Opportunities to Mitigate the Catastrophic Thermal Runaway of Highâ€Energy Batteries. Advanced Energy Materials, 2023, 13, .	10.2	22
850	Timely or early? Breaking away from cobalt-reliant lithium-ion batteries. , 2023, 1, 100004.		0
851	Challenges of Stable Ion Pathways in Cathode Electrode for Allâ€Solidâ€State Lithium Batteries: A Review. Advanced Energy Materials, 2023, 13, .	10.2	22
852	Direct observation of the ultrafast formation of cation-disordered rocksalt oxides as regenerable cathodes for lithium-ion batteries. Chemical Engineering Journal, 2023, 462, 142180.	6.6	2
853	Assessing the roles of mechanical cracks in Ni-rich layered cathodes in the capacity decay of liquid and solid-state batteries. Materials Horizons, 2023, 10, 1856-1864.	6.4	4
854	Status and outlook for lithium-ion battery cathode material synthesis and the application of mechanistic modeling. JPhys Energy, 2023, 5, 022002.	2.3	0
855	Enabling an Intrinsically Safe and Highâ€Energyâ€Density 4.5ÂVâ€Class Lithiumâ€Ion Battery with Synergistically Incorporated Fast Ion Conductors. Advanced Energy Materials, 2023, 13, .	10.2	11
856	Space-Confined Electrochemical Reactions and Materials for High-Energy-Density Batteries. Accounts of Materials Research, 2023, 4, 580-590.	5.9	3
857	Understanding the High Voltage Behavior of LiNiO ₂ Through the Electrochemical Properties of the Surface Layer. Small, 2023, 19, .	5.2	5
858	Architecting "Li-rich Ni-rich―core-shell layered cathodes for high-energy Li-ion batteries. Energy Storage Materials, 2023, 59, 102775.	9.5	12

#	Article	IF	CITATIONS
859	Single additive to regulate lithium-ion solvation structure in carbonate electrolytes for high-performance lithium-metal batteries. Cell Reports Physical Science, 2023, 4, 101379.	2.8	3
860	A novel Co-precipitation assisted Li1.05Ni0.5Mn1.40Ce0.10O4 spinel as an eloquent electrocatalyst for methanol oxidation. Chemical Physics Letters, 2023, , 140518.	1.2	0
861	Ceramics for lithium positive electrode. , 2023, , 43-75.		0
863	The significance of mitigating crosstalk in lithium-ion batteries: a review. Energy and Environmental Science, 2023, 16, 1943-1963.	15.6	32
875	An ultrahigh mass-loading integrated high coulombic efficiency Si–graphite electrode for high-energy-density lithium ion batteries. Sustainable Energy and Fuels, 0, , .	2.5	0
876	The genesis and control of microcracks in nickel-rich cathode materials for lithium-ion batteries. Sustainable Energy and Fuels, 2023, 7, 4805-4824.	2.5	2
878	A review on nickel-rich nickel–cobalt–manganese ternary cathode materials LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ for lithium-ion batteries: performance enhancement by modification. Materials Horizons, 2023, 10, 4776-4826.	6.4	4
895	Morphology controlled performance of ternary layered oxide cathodes. Communications Materials, 2023, 4, .	2.9	1
912	Tailored nonwoven supported non-flammable quasi-solid electrolyte enables an ultra-stable sodium metal battery. Energy Advances, 2024, 3, 419-423.	1.4	0
916	Nanomaterials in batteries. , 2024, , 149-171.		0