Effects of sampling and mineral separation on accuracy

Geochemistry, Geophysics, Geosystems

13,

DOI: 10.1029/2012gc004106

Citation Report

CITATIC	NN DI	EDOL	т

#	Article	IF	CITATIONS
1	Assessing the sediment factory: The role of single grain analysis. Earth-Science Reviews, 2012, 115, 97-120.	4.0	173
2	Uâ€Pb Detrital Zircon Analysis – Results of an Inter″aboratory Comparison. Geostandards and Geoanalytical Research, 2013, 37, 243-259.	1.7	95
3	Bias in detrital zircon geochronology and thermochronometry. Chemical Geology, 2013, 359, 90-107.	1.4	114
4	Continental growth and the crustal record. Tectonophysics, 2013, 609, 651-660.	0.9	135
5	Title is missing!. , 2013, 9, 126.		10
6	Uranium-Lead, Detrital Zircon. , 2014, , 1-21.		1
7	Sedimentary provenance, age and possible correlation of the Iona Group SW Scotland. Scottish Journal of Geology, 2014, 50, 143-158.	0.1	11
8	Nano-particulate pressed powder tablets for LA-ICP-MS. Journal of Analytical Atomic Spectrometry, 2014, 29, 990-1000.	1.6	133
9	Detrital zircon geochronology and provenance of the Neoproterozoic Hammamat Group (Igla Basin), Egypt and the Thalbah Group, NW Saudi Arabia: Implications for regional collision tectonics. Precambrian Research, 2014, 245, 225-243.	1.2	53
10	The dispersal of the Gondwana Super-fan System in the eastern Mediterranean: New insights from detrital zircon geochronology. Gondwana Research, 2014, 25, 1230-1241.	3.0	42
11	Provenance of Quartz Arenites of the Early Paleozoic Midcontinent Region, USA. Journal of Geology, 2014, 122, 201-216.	0.7	50
12	Zircon provenance of SW Caledonian phyllites reveals a distant Timanian sediment source. Journal of the Geological Society, 2015, 172, 465-478.	0.9	33
13	Detrital zircon geochronology in blueschist-facies meta-conglomerates from the Western Alps: implications for the late Carboniferous to early Permian palaeogeography. International Journal of Earth Sciences, 2015, 104, 703-731.	0.9	29
14	Quaternary dust source variation across the Chinese Loess Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 435, 254-264.	1.0	96
15	U–Pb ages and Hf isotopic composition of zircons in Austrian last glacial loess: constraints on heavy mineral sources and sediment transport pathways. International Journal of Earth Sciences, 2015, 104, 1365-1385.	0.9	21
16	Detrital zircon age patterns and provenance assessment for pre-glacial to post-glacial successions of the Neoproterozoic Macaúbas Group, AraçuaÃ-orogen, Brazil. Precambrian Research, 2015, 266, 12-26.	1.2	65
17	The Eoarchaean foundation of the North Atlantic Craton. Geological Society Special Publication, 2015, 389, 261-279.	0.8	8
18	Detrital zircon geochronology in the Doraâ€Maira and Zone Houillère: a record of sediment travel paths in the Carboniferous. Terra Nova, 2016, 28, 279-288.	0.9	24

CITATION REPORT

#	Article	IF	CITATIONS
19	U-Pb detrital zircon geochronology of the Upper Paleocene to Lower Eocene Wilcox Group, east-central Texas. , 2016, 12, 1517-1531.		20
20	The volcaniclastic series from the Luang Prabang Basin, Laos: A witness of a triassic magmatic arc?. Journal of Asian Earth Sciences, 2016, 120, 159-183.	1.0	43
21	Dealing with discordance: a novel approach for analysing U–Pb detrital zircon datasets. Journal of the Geological Society, 2016, 173, 577-585.	0.9	30
22	Application of U–Pb detrital zircon geochronology to drill cuttings for age control in hydrocarbon exploration wells: A case study from the Rukwa Rift Basin, Tanzania. AAPG Bulletin, 2017, 101, 143-159.	0.7	19
23	The zircon evidence of temporally changing sediment transport—the NW Gondwana margin during Cambrian to Devonian time (Aoucert and Smara areas, Moroccan Sahara). International Journal of Earth Sciences, 2017, 106, 2747-2769.	0.9	37
24	Secondary Ionization Mass Spectrometry Analysis in Petrochronology. Reviews in Mineralogy and Geochemistry, 2017, 83, 199-230.	2.2	31
25	A review of Himalayan stratigraphy, magmatism, and structure. Gondwana Research, 2017, 49, 42-80.	3.0	82
26	U–Pb laser ablation ICP-MS zircon dating across the Ediacaran–Cambrian transition of the Montagne Noire, southern France. Comptes Rendus - Geoscience, 2017, 349, 380-390.	0.4	16
27	Linking Olympic Dam and the Cariewerloo Basin: Was a sedimentary basin involved in formation of the world's largest uranium deposit?. Precambrian Research, 2017, 300, 168-180.	1.2	21
28	3â€Ð Characterization of Detrital Zircon Grains and its Implications for Fluvial Transport, Mixing, and Preservation Bias. Geochemistry, Geophysics, Geosystems, 2017, 18, 4655-4673.	1.0	21
29	Tracking ancient magmatism and Cenozoic topographic growth within the Northern Andes forearc: Constraints from detrital U-Pb zircon ages. Bulletin of the Geological Society of America, 2017, 129, 415-428.	1.6	25
30	Provenance analysis reveals mountain uplift in the midsection of the Altyn Tagh Fault during the Middle Miocene. Canadian Journal of Earth Sciences, 2017, 54, 278-289.	0.6	3
31	Interrogating the provenance of large river systems: multi-proxy <i>in situ</i> analyses in the Millstone Grit, Yorkshire. Journal of the Geological Society, 2017, 174, 75-87.	0.9	27
32	The Indosinian orogeny: A perspective from sedimentary archives of north Vietnam. Journal of Asian Earth Sciences, 2018, 158, 352-380.	1.0	36
33	Source-to-sink dynamics in the Kyrgyz Tien Shan from the Jurassic to the Paleogene: Insights from sedimentological and detrital zircon U-Pb analyses. Gondwana Research, 2018, 54, 180-204.	3.0	35
34	Cadomian volcanosedimentary complexes across the Ediacaran–Cambrian transition of the Eastern Pyrenees, southwestern Europe. International Journal of Earth Sciences, 2018, 107, 1579-1601.	0.9	18
35	Depositional history of a condensed shallow marine reservoir succession: stratigraphy and detrital zircon geochronology of the Jurassic StÃ, Formation, Barents Sea. Journal of the Geological Society, 2018, 175, 130-145.	0.9	19
36	Use and abuse of detrital zircon U-Pb geochronology—A case from the RÃo Orinoco delta, eastern Venezuela. Geology, 0, , .	2.0	25

CITATION REPORT

#	Article	IF	CITATIONS
37	Timing of deep-water slope evolution constrained by large-n detrital and volcanic ash zircon geochronology, Cretaceous Magallanes Basin, Chile. Bulletin of the Geological Society of America, 2018, 130, 438-454.	1.6	53
38	Early Palaeozoic sedimentary record and provenance of flysch sequences in the Hovd Zone (western) Tj ETQq1 1 Gondwana Research, 2018, 64, 163-183.	0.784314 3.0	rgBT /Overlo 25
39	Approaches and challenges to the study of loess—Introduction to the LoessFest Special Issue. Quaternary Research, 2018, 89, 563-618.	1.0	92
40	Evidence for an Early Silurian Synorogenic Basin Within the Metamorphic Hinterland of the North Atlantic Caledonides: Insights From the Uâ€₽b Zircon Geochronology of the Funzie Conglomerate, Shetland, Scotland. Tectonics, 2018, 37, 2798-2817.	1.3	5
41	Provenance of detrital zircon from siliciclastic rocks of the Sebkha Gezmayet unit of the Adrar Souttouf Massif (Moroccan Sahara) –ÂPalaeogeographic implications. Comptes Rendus - Geoscience, 2018, 350, 255-266.	0.4	19
42	Provenance variations of the Tengger Desert since 2.35†Ma and its linkage with the Northern Tibetan Plateau: Evidence from U-Pb age spectra of detrital zircons. Quaternary Science Reviews, 2019, 223, 105916.	1.4	13
43	Sedimentology and U-Pb dating of Carboniferous to Permian continental series of the northern Massif Central (France): Local palaeogeographic evolution and larger scale correlations. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 533, 109228.	1.0	17
44	Neogene Kinematic Evolution and Exhumation of the NW India Himalaya: Zircon Geo―and Thermochronometric Insights From the Foldâ€Thrust Belt and Foreland Basin. Tectonics, 2019, 38, 2059-2086.	1.3	18
45	Heavy Minerals for Junior Woodchucks. Minerals (Basel, Switzerland), 2019, 9, 148.	0.8	103
46	Dilution and propagation of provenance trends in sand and mud: Geochemistry and detrital zircon geochronology of modern sediment from central California (U.S.A.). Numerische Mathematik, 2019, 319, 846-902.	0.7	29
47	Sedimentary provenance and maximum depositional age analysis of the Cretaceous? Lapur and Muruanachok sandstones (Turkana Grits), Turkana Basin, Kenya. Geological Magazine, 2019, 156, 1334-1356.	0.9	6
48	The pre-orogenic detrital zircon record of the Peri-Gondwanan crust. Geological Magazine, 2019, 156, 281-307.	0.9	101
49	Assessing mineral fertility and bias in sedimentary provenance studies: examples from the Barents Shelf. Geological Society Special Publication, 2020, 484, 255-274.	0.8	21
50	Glaciations at high-latitude Southern Australia during the Early Cretaceous. Australian Journal of Earth Sciences, 2020, 67, 1045-1095.	0.4	39
51	Provenance bias between detrital zircons from sandstones and river sands: AÂquantification approach using 3-D grain shape, composition and age. Geoscience Frontiers, 2020, 11, 835-842.	4.3	5
52	Provenance of Ordovician–Silurian and Carboniferous–Permian glaciogenic successions in Ethiopia revealed by detrital zircon U–Pb geochronology. Journal of the Geological Society, 2020, 177, 141-152.	0.9	8
53	The geologic interpretation of the detrital thermochronology record within a stratigraphic framework, with examples from the European Alps, Taiwan and the Himalayas. Earth-Science Reviews, 2020, 201, 103074.	4.0	33
54	Revealing exhumation of the central Alps during the Early Oligocene by detrital zircon U–Pb age and fission-track double dating in the Taveyannaz Formation. International Journal of Earth Sciences, 2020, 109, 2425-2446.	0.9	5

ARTICLE

IF CITATIONS

55 Stratigraphy and geochronological constraints of the Serra Sul Formation (CarajÃis Basin, Amazonian) Tj ETQq0 0 Q12BT /Ovgrlock 10 T

56	A new concordia age for the 'forearc' Bay of Islands Ophiolite Complex, Western Newfoundland utilizing spatially-resolved LA-ICP-MS U-Pb analyses of zircon. Gondwana Research, 2020, 86, 1-22.	3.0	8
57	Sourcing the sand: Accessory mineral fertility, analytical and other biases in detrital U-Pb provenance analysis. Earth-Science Reviews, 2020, 202, 103093.	4.0	85
58	Constraining recycled detritus in quartzâ€rich sandstones: Insights from a multiâ€proxy provenance study of the Midâ€Carboniferous, Clare Basin, western Ireland. Basin Research, 2021, 33, 342-363.	1.3	16
59	Reduce or recycle? Revealing source to sink links through integrated zircon–feldspar provenance fingerprinting. Sedimentology, 2021, 68, 531-556.	1.6	21
60	Provenance of Ediacaran-Ordovician sediments of the Medio Armorican Domain, Brittany, West France: Constraints from U/Pb detrital zircon and Sm–Nd isotope data. Gondwana Research, 2021, 90, 63-76.	3.0	9
61	Removal of barite from zircon using an aqueous solution of diethylenetriaminepentaacetic acid and potassium carbonate. American Mineralogist, 2021, , .	0.9	0
62	Ancestral transâ~`North American Bell River system recorded in late Oligocene to early Miocene sediments in the Labrador Sea and Canadian Great Plains. Bulletin of the Geological Society of America, 0, , .	1.6	6
63	Every zircon deserves a date: selection bias in detrital geochronology. Geological Magazine, 2021, 158, 1135-1142.	0.9	25
64	Recent Developments in Instrumentation and its Application in Absolute Dating: Historical Perspective and Overview. Journal of Asian Earth Sciences, 2021, 211, 104690.	1.0	7
65	RECOGNIZING PORPHYRY COPPER POTENTIAL FROM TILL ZIRCON COMPOSITION: A CASE STUDY FROM THE HIGHLAND VALLEY PORPHYRY DISTRICT, SOUTH-CENTRAL BRITISH COLUMBIA. Economic Geology, 2021, 116, 1035-1045.	1.8	13
66	Heavy minerals in provenance studies: an overview. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	14
67	Analyses from a validated global U Pb detrital zircon database: Enhanced methods for filtering discordant U Pb zircon analyses and optimizing crystallization age estimates. Earth-Science Reviews, 2021, 220, 103745.	4.0	37
68	Thin-section detrital zircon geochronology mitigates bias in provenance investigations. Journal of the Geological Society, 2022, 179, .	0.9	11
69	Grain size and transport biases in an Ediacaran detrital zircon record. Journal of Sedimentary Research, 2021, 91, 913-928.	0.8	10
70	Tracking Proterozoic–Triassic sediment routing to western Laurentia via bivariate non-negative matrix factorization of detrital provenance data. Journal of the Geological Society, 2021, 178, .	0.9	6
71	A detrital zircon test of large-scale terrane displacement along the Arctic margin of North America. Geology, 2021, 49, 545-550.	2.0	20
72	Late Cretaceous sediment provenance in the eastern Gulf Coastal Plain (U.S.A.) based on detrital-zircon U-Pb ages and Th/U values. Journal of Sedimentary Research, 2021, 91, 1025-1039.	0.8	5

CITATION REPORT

#	Article	IF	CITATIONS
73	Detrital Zircon Perspectives on Heavy Mineral Sand Systems, Eucla Basin, Australia. Economic Geology, 2022, 117, 383-399.	1.8	2
74	Uranium–Lead, Detrital Zircon. Encyclopedia of Earth Sciences Series, 2015, , 869-882.	0.1	Ο
75	A window into an older orogenic cycle: <i>P–T</i> conditions and timing of the preâ€Alpine history of the Doraâ€Maira Massif (Western Alps). Journal of Metamorphic Geology, 2022, 40, 789-821.	1.6	18
76	The provenance of late Cenozoic East Asian Red Clay: Tectonic-metamorphic history of potential source regions and a novel combined zircon-rutile approach. Earth-Science Reviews, 2022, 225, 103909.	4.0	9
77	Implications for sedimentary transport processes in southwestern Africa: a combined zircon morphology and age study including extensive geochronology databases. International Journal of Earth Sciences, 2022, 111, 767-788.	0.9	4
78	Early Evolution of the Adelaide Superbasin. Geosciences (Switzerland), 2022, 12, 154.	1.0	5
79	Detrital zircon provenance and transport pathways of Pleistocene-Holocene eolian sediment in the Pampean Plains, Argentina. Bulletin of the Geological Society of America, 2023, 135, 435-448.	1.6	3
80	Continental shelves as detrital mixers: <scp>U–Pb</scp> and <scp>Lu–Hf</scp> detrital zircon provenance of the Pleistocene–Holocene Bering Sea and its margins. Depositional Record, 2022, 8, 1008-1030.	0.8	3
81	Sediment provenance in the Murchison and Maruia basins, Aotearoa/New Zealand: a record of Neogene strike-slip displacement, convergence, and basement exhumation along the Australian–Pacific plate boundary. New Zealand Journal of Geology, and Geophysics, 2024, 67, 45-83.	1.0	2
82	The European continental crust through detrital zircons from modern rivers: Testing representativity of detrital zircon U-Pb geochronology. Earth-Science Reviews, 2022, 232, 104145.	4.0	3
83	Source-to-sink analysis of deepwater systems: Principles, applications and case studies. , 2022, , 407-441.		0
84	Provenance evidence for the early-to-middle Pleistocene drainage reorganization of the Songhua River, NE China. Catena, 2023, 224, 107004.	2.2	1
85	Deciphering a cryptic unconformity in the Surat Basin using high frequency detrital zircon U-Pb geochronology: Insights into basin dynamics on the north-east margin of Gondwana. Gondwana Research, 2023, 118, 117-134.	3.0	0
86	Multimethod provenance analysis using detrital zircon and rutile U-Pb geochronology across Devonian basin systems in the Tasmanides of eastern Australia. Gondwana Research, 2023, 118, 174-191.	3.0	3
87	One size does not fit all: Refining zircon provenance interpretations via integrated grain shape, geochronology, and Hf isotope analysis. Geoscience Frontiers, 2023, 14, 101579.	4.3	3
88	Mesoproterozoic basins (Yukon, Canada) in the evolution of supercontinent Columbia. Canadian Journal of Earth Sciences, 2023, 60, 912-973.	0.6	3
97	Geological sampling. , 2023, , .		0