Syndecan–syntenin–ALIX regulates the biogenesis

Nature Cell Biology 14, 677-685

DOI: 10.1038/ncb2502

Citation Report

#	Article	IF	CITATIONS
1	Using Information and Communication Technologies in Tanzania: responses of information professionals. Information Development, 2000, 16, 24-28.	1.4	1
3	Short-Range Exosomal Transfer of Viral RNA from Infected Cells to Plasmacytoid Dendritic Cells Triggers Innate Immunity. Cell Host and Microbe, 2012, 12, 558-570.	5.1	413
4	Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Human Molecular Genetics, 2012, 21, R125-R134.	1.4	775
5	ALIX Is a Lys63-Specific Polyubiquitin Binding Protein that Functions in Retrovirus Budding. Developmental Cell, 2012, 23, 1247-1254.	3.1	69
6	Get on the exosome bus with ALIX. Nature Cell Biology, 2012, 14, 654-655.	4.6	167
7	Biochemical and biological characterization of exosomes containing prominin-1/CD133. Molecular Cancer, 2013, 12, 62.	7.9	93
8	The Yeast Alix Homolog Bro1 Functions as a Ubiquitin Receptor for Protein Sorting into Multivesicular Endosomes. Developmental Cell, 2013, 25, 520-533.	3.1	83
9	Silencing of human papillomavirus (HPV) <i>E6/E7</i> oncogene expression affects both the contents and the amounts of extracellular microvesicles released from HPVâ€positive cancer cells. International Journal of Cancer, 2013, 133, 1631-1642.	2.3	86
10	First identification of Ewing's sarcomaâ€derived extracellular vesicles and exploration of their biological and potential diagnostic implications. Biology of the Cell, 2013, 105, 289-303.	0.7	59
11	Endocytic regulation of alkali metal transport proteins in mammals, yeast and plants. Current Genetics, 2013, 59, 207-230.	0.8	15
12	Syndecan-4 signaling at a glance. Journal of Cell Science, 2013, 126, 3799-804.	1.2	171
13	Virus Budding and the ESCRT Pathway. Cell Host and Microbe, 2013, 14, 232-241.	5.1	445
14	Proteome profiling of exosomes derived from human primary and metastatic colorectal cancer cells reveal differential expression of key metastatic factors and signal transduction components. Proteomics, 2013, 13, 1672-1686.	1.3	296
15	Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma. Proteomics, 2013, 13, 3354-3364.	1.3	501
16	Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. Journal of Cell Science, 2013, 126, 5553-65.	1.2	1,035
17	The molecular basis for selective assembly of the UBAP1-containing, endosome-specific ESCRT-l complex. Journal of Cell Science, 2014, 127, 663-72.	1.2	25
18	Synthetic nucleic acids delivered by exosomes: a potential therapeutic for generelated metabolic brain diseases. Metabolic Brain Disease, 2013, 28, 551-562.	1.4	25
19	Elevated expression of syntenin in breast cancer is correlated with lymph node metastasis and poor patient survival. Breast Cancer Research, 2013, 15, R50.	2.2	39

#	Article	IF	CITATIONS
20	Exosomes function in cell–cell communication during brain circuit development. Current Opinion in Neurobiology, 2013, 23, 997-1004.	2.0	84
21	Molecular Insights into Intracellular RNA Localization. International Review of Cell and Molecular Biology, 2013, 302, 1-39.	1.6	52
22	Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics, 2013, 13, 1554-1571.	1.3	416
23	Hijacking Multivesicular Bodies Enables Long-Term and Exosome-Mediated Long-Distance Action of Anthrax Toxin. Cell Reports, 2013, 5, 986-996.	2.9	171
24	Role of adhesion receptor trafficking in 3D cell migration. Current Opinion in Cell Biology, 2013, 25, 627-632.	2.6	43
25	Tumorâ€derived exosomes and microvesicles in head and neck cancer: Implications for tumor biology and biomarker discovery. Proteomics, 2013, 13, 1608-1623.	1.3	113
26	Extracellular vesicles: Exosomes, microvesicles, and friends. Journal of Cell Biology, 2013, 200, 373-383.	2.3	6,374
27	Molecular Pathways: Tumor-Derived Microvesicles and Their Interactions with Immune Cells <i>In Vivo</i> . Clinical Cancer Research, 2013, 19, 2598-2604.	3.2	54
28	Transfer of extracellular vesicles during immune cellâ€cell interactions. Immunological Reviews, 2013, 251, 125-142.	2.8	271
29	The <scp>AAA ATPase VPS4</scp> / <scp>SKD1</scp> Regulates Endosomal Cholesterol Trafficking Independently of <scp>ESCRTâ€II</scp> . Traffic, 2013, 14, 107-119.	1.3	27
30	Wrapping up the bad news – HIV assembly and release. Retrovirology, 2013, 10, 5.	0.9	51
31	Exosomes as Intercellular Signaling Organelles Involved in Health and Disease: Basic Science and Clinical Applications. International Journal of Molecular Sciences, 2013, 14, 5338-5366.	1.8	328
32	Exosomes: Looking back three decades and into the future. Journal of Cell Biology, 2013, 200, 367-371.	2.3	379
33	Extracellular vesicles: biology and emerging therapeutic opportunities. Nature Reviews Drug Discovery, 2013, 12, 347-357.	21.5	2,563
34	The heparanase/syndecanâ€1 axis in cancer: mechanisms and therapies. FEBS Journal, 2013, 280, 2294-2306.	2.2	156
35	Heparanase Regulates Secretion, Composition, and Function of Tumor Cell-derived Exosomes. Journal of Biological Chemistry, 2013, 288, 10093-10099.	1.6	277
36	Differential protein profiling of renal cell carcinoma urinary exosomes. Molecular BioSystems, 2013, 9, 1220.	2.9	138
37	A pathogenic picornavirus acquires an envelope by hijacking cellular membranes. Nature, 2013, 496, 367-371.	13.7	597

3

#	ARTICLE	IF	Citations
38	Membrane Fission Reactions of the Mammalian ESCRT Pathway. Annual Review of Biochemistry, 2013, 82, 663-692.	5.0	215
39	Distinct lipid compositions of two types of human prostasomes. Proteomics, 2013, 13, 1660-1666.	1.3	120
40	Identification and characterization of the nanoâ€sized vesicles released by muscle cells. FEBS Letters, 2013, 587, 1379-1384.	1.3	102
41	Extracellular vesicles: communication, coercion, and conditioning. Molecular Biology of the Cell, 2013, 24, 1253-1259.	0.9	87
42	Expression patterns of MDA-9/syntenin during development of the mouse embryo. Journal of Molecular Histology, 2013, 44, 159-166.	1.0	11
43	Heparin blocks transfer of extracellular vesicles between donor and recipient cells. Journal of Neuro-Oncology, 2013, 115, 343-351.	1.4	156
44	The Intracellular Interactome of Tetraspanin-enriched Microdomains Reveals Their Function as Sorting Machineries toward Exosomes. Journal of Biological Chemistry, 2013, 288, 11649-11661.	1.6	377
45	Exosomes in Prostate Cancer: Putting Together the Pieces of a Puzzle. Cancers, 2013, 5, 1522-1544.	1.7	65
46	Immunomodulatory Impact of Leishmania-Induced Macrophage Exosomes: A Comparative Proteomic and Functional Analysis. PLoS Neglected Tropical Diseases, 2013, 7, e2185.	1.3	119
47	Release of Luminal Exosomes Contributes to TLR4-Mediated Epithelial Antimicrobial Defense. PLoS Pathogens, 2013, 9, e1003261.	2.1	159
48	ALG-2-interacting Tubby-like protein superfamily member PLSCR3 is secreted by an exosomal pathway and taken up by recipient cultured cells. Bioscience Reports, 2013, 33, e00026.	1.1	19
49	The <i>cis</i> -acting signals that target proteins to exosomes and microvesicles. Biochemical Society Transactions, 2013, 41, 277-282.	1.6	77
50	Lipid Sorting and Multivesicular Endosome Biogenesis. Cold Spring Harbor Perspectives in Biology, 2013, 5, a016816-a016816.	2.3	131
51	Tumor-cell-derived microvesicles as carriers of molecular information in cancer. Current Opinion in Oncology, 2013, 25, 66-75.	1.1	185
53	Extracellular Activities of Aminoacyl-tRNA Synthetases: New Mediators for Cell–Cell Communication. Topics in Current Chemistry, 2013, 344, 145-166.	4.0	30
54	Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17380-17385.	3.3	701
55	Exosome Uptake Depends on ERK1/2-Heat Shock Protein 27 Signaling and Lipid Raft-mediated Endocytosis Negatively Regulated by Caveolin-1. Journal of Biological Chemistry, 2013, 288, 17713-17724.	1.6	532
57	ESCRT requirements for EIAV budding. Retrovirology, 2013, 10, 104.	0.9	28

#	Article	IF	Citations
58	Cancer becomes wasteful: emerging roles of exosomes ^{â€} in cellâ€fate determination. Journal of Extracellular Vesicles, 2013, 2, .	5.5	56
59	Exosomal Proteome Profiling: A Potential Multi-Marker Cellular Phenotyping Tool to Characterize Hypoxia-Induced Radiation Resistance in Breast Cancer. Proteomes, 2013, 1, 87-108.	1.7	44
60	Extracellular vesicles as mediators of neuron-glia communication. Frontiers in Cellular Neuroscience, 2013, 7, 182.	1.8	298
61	Exosomes: mediators of communication in eukaryotes. Biological Research, 2013, 46, 5-11.	1.5	86
62	Emerging roles of extracellular vesicles in the adaptive response of tumour cells to microenvironmental stress. Journal of Extracellular Vesicles, 2013, 2, .	5.5	140
63	The role of trophoblastic microRNAs in placental viral infection. International Journal of Developmental Biology, 2014, 58, 281-289.	0.3	53
64	Human Prominin-1 (CD133) Is Detected in Both Neoplastic and Non-Neoplastic Salivary Gland Diseases and Released into Saliva in a Ubiquitinated Form. PLoS ONE, 2014, 9, e98927.	1.1	27
65	GAIP Interacting Protein C-Terminus Regulates Autophagy and Exosome Biogenesis of Pancreatic Cancer through Metabolic Pathways. PLoS ONE, 2014, 9, e114409.	1.1	59
66	Extracellular vesicles as emerging intercellular communicasomes. BMB Reports, 2014, 47, 531-539.	1.1	199
67	Exosomes Biogenesis and Potentials in Disease Diagnosis and Drug Delivery. Nano LIFE, 2014, 04, 1441017.	0.6	6
68	Exosome identification for personalized diagnosis and therapy. Biomedical Engineering Letters, 2014, 4, 258-268.	2.1	5
69	Endocytic Trafficking of Membrane-Bound Cargo: A Flotillin Point of View. Membranes, 2014, 4, 356-371.	1.4	98
70	Schistosome Syntenin Partially Protects Vaccinated Mice against Schistosoma mansoni Infection. PLoS Neglected Tropical Diseases, 2014, 8, e3107.	1.3	14
71	Mutation of the Highly Conserved Ser-40 of the HIV-1 p6 Gag Protein to Phe Causes the Formation of a Hydrophobic Patch, Enhances Membrane Association, and Polyubiquitination of Gag. Viruses, 2014, 6, 3738-3765.	1.5	8
72	MDA-9/syntenin is a key regulator of glioma pathogenesis. Neuro-Oncology, 2014, 16, 50-61.	0.6	51
73	Role of Exosomes Released by Dendritic Cells and/or by Tumor Targets: Regulation of NK Cell Plasticity. Frontiers in Immunology, 2014, 5, 91.	2.2	38
74	Characterization of Uptake and Internalization of Exosomes by Bladder Cancer Cells. BioMed Research International, 2014, 2014, 1-11.	0.9	172
75	Selective renal vasoconstriction, exaggerated natriuresis and excretion rates of exosomic proteins in essential hypertension. Acta Physiologica, 2014, 212, 106-118.	1.8	29

#	ARTICLE	IF	Citations
76	Micro <scp>RNA</scp> regulation of proteoglycan function in cancer. FEBS Journal, 2014, 281, 5009-5022.	2.2	53
77	Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. Nature Communications, 2014, 5, 5488.	5.8	640
78	The ESCRT-III Adaptor Protein Bro1 Controls Functions of Regulator for Free Ubiquitin Chains 1 (Rfu1) in Ubiquitin Homeostasis. Journal of Biological Chemistry, 2014, 289, 21760-21769.	1.6	11
79	Tetraspanins in Extracellular Vesicle Formation and Function. Frontiers in Immunology, 2014, 5, 442.	2.2	992
80	Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nature Communications, 2014, 5, 3477.	5.8	418
81	Endosome maturation, transport and functions. Seminars in Cell and Developmental Biology, 2014, 31, 2-10.	2.3	398
82	Hepatitis virus hijacks shuttle: Exosome-like vesicles provide protection against neutralizing antibodies. Hepatology, 2014, 59, 2416-2418.	3.6	10
83	Proteomic analysis of cerebrospinal fluid extracellular vesicles: A comprehensive dataset. Journal of Proteomics, 2014, 106, 191-204.	1.2	222
84	Sorting it out: Regulation of exosome loading. Seminars in Cancer Biology, 2014, 28, 3-13.	4.3	592
85	Quantitative proteomics of fractionated membrane and lumen exosome proteins from isogenic metastatic and nonmetastatic bladder cancer cells reveal differential expression of EMT factors. Proteomics, 2014, 14, 699-712.	1.3	148
86	Microvesicles and exosomes for intracardiac communication. Cardiovascular Research, 2014, 102, 302-311.	1.8	228
87	Exosome and microvesicle mediated phene transfer in mammalian cells. Seminars in Cancer Biology, 2014, 28, 31-38.	4.3	41
88	ALIX and the multivesicular endosome: ALIX in Wonderland. Trends in Cell Biology, 2014, 24, 19-25.	3.6	248
89	Exosomes. Circulation Research, 2014, 114, 325-332.	2.0	164
90	Review: Placenta-specific microRNAs in exosomes – Good things come in nano-packages. Placenta, 2014, 35, S69-S73.	0.7	164
91	Exosomes. American Journal of Pathology, 2014, 184, 28-41.	1.9	300
92	The emerging role of extracellular vesicles as biomarkers for urogenital cancers. Nature Reviews Urology, 2014, 11, 688-701.	1.9	242
93	Interaction of HIV-1 Nef Protein with the Host Protein Alix Promotes Lysosomal Targeting of CD4 Receptor. Journal of Biological Chemistry, 2014, 289, 27744-27756.	1.6	30

#	Article	IF	CITATIONS
94	Exosomeâ€mediated extracellular release of polyadenylateâ€binding protein 1 in human metastatic duodenal cancer cells. Proteomics, 2014, 14, 2297-2306.	1.3	36
95	Angiopoietin-2 Secretion by Endothelial Cell Exosomes. Journal of Biological Chemistry, 2014, 289, 510-519.	1.6	79
96	The role of extracellular vesicles in <i>Plasmodium</i> and other protozoan parasites. Cellular Microbiology, 2014, 16, 344-354.	1,1	112
98	BMP-regulated exosomes from <i>Drosophila</i> male reproductive glands reprogram female behavior. Journal of Cell Biology, 2014, 206, 671-688.	2.3	128
99	Surveillance of Nuclear Pore Complex Assembly by ESCRT-III/Vps4. Cell, 2014, 159, 388-401.	13.5	211
100	Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles. Annual Review of Cell and Developmental Biology, 2014, 30, 255-289.	4.0	4,576
101	Exosome Analysis: A Promising Biomarker System with Special Attention to Saliva. Journal of Membrane Biology, 2014, 247, 1129-1136.	1.0	38
102	A comprehensive overview of exosomes as drug delivery vehicles $\hat{a} \in \text{``Endogenous}$ nanocarriers for targeted cancer therapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1846, 75-87.	3.3	430
103	Extracellular vesicles shed by glioma cells: pathogenic role and clinical value. Tumor Biology, 2014, 35, 8425-8438.	0.8	70
104	Biogenesis and secretion of exosomes. Current Opinion in Cell Biology, 2014, 29, 116-125.	2.6	1,389
105	Comparative analysis of discrete exosome fractions obtained by differential centrifugation. Journal of Extracellular Vesicles, 2014, 3, 25011.	5.5	262
106	Identification of distinct circulating exosomes in Parkinson's disease. Annals of Clinical and Translational Neurology, 2015, 2, 353-361.	1.7	111
107	Movement of regulatory <scp>RNA</scp> between animal cells. Genesis, 2015, 53, 395-416.	0.8	47
109	ALG-2 activates the MVB sorting function of ALIX through relieving its intramolecular interaction. Cell Discovery, 2015, 1, 15018.	3.1	32
110	Cytokines and growth factors cross-link heparan sulfate. Open Biology, 2015, 5, 150046.	1.5	55
111	Biological properties of extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles, 2015, 4, 27066.	5.5	3,973
112	Syntenin and syndecan in the biogenesis of exosomes. Biology of the Cell, 2015, 107, 331-341.	0.7	166
113	<scp>ESCRT</scp> s are everywhere. EMBO Journal, 2015, 34, 2398-2407.	3.5	519

#	Article	IF	CITATIONS
114	Tumourâ€derived exosomes: TinyÂenvelopesÂfor big stories. Biology of the Cell, 2015, 107, 287-305.	0.7	77
115	Cloak and Dagger: Alternative Immune Evasion and Modulation Strategies of Poxviruses. Viruses, 2015, 7, 4800-4825.	1.5	38
116	Extracellular Vesicles as Novel Delivery Tools for Cancer Treatment. Current Cancer Drug Targets, 2015, 16, 34-42.	0.8	6
117	Exosomes: Implications in HIV-1 Pathogenesis. Viruses, 2015, 7, 4093-4118.	1.5	148
118	Regulation of the Host Antiviral State by Intercellular Communications. Viruses, 2015, 7, 4707-4733.	1.5	25
119	Exosome Biogenesis, Regulation, and Function in Viral Infection. Viruses, 2015, 7, 5066-5083.	1.5	281
120	Insights into the Mechanism ofÂExosome Formation and Secretion. , 2015, , 1-19.		3
121	Syndecan-4 Regulates Muscle Differentiation and Is Internalized from the Plasma Membrane during Myogenesis. PLoS ONE, 2015, 10, e0129288.	1.1	30
122	Syntenin controls migration, growth, proliferation, and cell cycle progression in cancer cells. Frontiers in Pharmacology, 2015, 6, 241.	1.6	28
123	The Matricellular Receptor LRP1 Forms an Interface for Signaling and Endocytosis in Modulation of the Extracellular Tumor Environment. Frontiers in Pharmacology, 2015, 6, 271.	1.6	42
124	Extracellular Vesicles as Biomarkers of Systemic Lupus Erythematosus. Disease Markers, 2015, 2015, 1-7.	0.6	39
125	Breast Cancer-Derived Extracellular Vesicles: Characterization and Contribution to the Metastatic Phenotype. BioMed Research International, 2015, 2015, 1-13.	0.9	65
126	Role of Extracellular Vesicles in Hematological Malignancies. BioMed Research International, 2015, 2015, 1-9.	0.9	26
127	Resolving sorting mechanisms into exosomes. Cell Research, 2015, 25, 531-532.	5.7	70
129	Binding of Substrates to the Central Pore of the Vps4 ATPase Is Autoinhibited by the Microtubule Interacting and Trafficking (MIT) Domain and Activated by MIT Interacting Motifs (MIMs). Journal of Biological Chemistry, 2015, 290, 13490-13499.	1.6	35
130	Extracellular vesicles: potential applications in cancer diagnosis, prognosis, and epidemiology. BMC Clinical Pathology, 2015, 15, 6.	1.8	120
131	A TRP Channel Senses Lysosome Neutralization by Pathogens to Trigger Their Expulsion. Cell, 2015, 161, 1306-1319.	13.5	227
132	Extracellular microRNAs in Membrane Vesicles and Non-vesicular Carriers. Exs, 2015, 106, 31-53.	1.4	7

#	Article	IF	Citations
133	Circulating microRNAs in Disease Diagnostics and their Potential Biological Relevance. Exs, 2015, , .	1.4	9
134	Minireview: Emerging Roles for Extracellular Vesicles in Diabetes and Related Metabolic Disorders. Molecular Endocrinology, 2015, 29, 1535-1548.	3.7	42
135	Exosome and its roles in cardiovascular diseases. Heart Failure Reviews, 2015, 20, 337-348.	1.7	38
136	Fellâ€Muir Lecture: Syndecans: from peripheral coreceptors to mainstream regulators of cell behaviour. International Journal of Experimental Pathology, 2015, 96, 1-10.	0.6	93
137	Targeting tumor invasion: the roles of MDA-9/Syntenin. Expert Opinion on Therapeutic Targets, 2015, 19, 97-112.	1.5	46
138	ATG12–ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nature Cell Biology, 2015, 17, 300-310.	4.6	226
139	Organizing Polarized Delivery of Exosomes at Synapses. Traffic, 2015, 16, 327-337.	1.3	64
140	The Ether Lipid Precursor Hexadecylglycerol Stimulates the Release and Changes the Composition of Exosomes Derived from PC-3 Cells. Journal of Biological Chemistry, 2015, 290, 4225-4237.	1.6	102
141	Exosome and Exosomal MicroRNA: Trafficking, Sorting, and Function. Genomics, Proteomics and Bioinformatics, 2015, 13, 17-24.	3.0	1,466
142	Extracellular Vesicles in Cancer: Exosomes, Microvesicles and the Emerging Role of Large Oncosomes. Seminars in Cell and Developmental Biology, 2015, 40, 41-51.	2.3	675
143	Exosome-like vesicles derived by Schistosoma japonicum adult worms mediates M1 type immuneactivity of macrophage. Parasitology Research, 2015, 114, 1865-1873.	0.6	119
144	A novel mechanism of generating extracellular vesicles during apoptosis via a beads-on-a-string membrane structure. Nature Communications, 2015, 6, 7439.	5.8	267
145	Viruses transfer the antiviral second messenger cGAMP between cells. Science, 2015, 349, 1228-1232.	6.0	203
146	The potential of tumor-derived exosomes for noninvasive cancer monitoring. Expert Review of Molecular Diagnostics, 2015, 15, 1293-1310.	1.5	117
147	Syntenin is involved in the bacteria clearance response of kuruma shrimp (Marsupenaeus japonicus). Fish and Shellfish Immunology, 2015, 44, 453-461.	1.6	3
148	Increased production of intestinal immunoglobulins in Syntenin-1-deficient mice. Immunobiology, 2015, 220, 597-604.	0.8	16
149	Super-Resolution Imaging of ESCRT-Proteins at HIV-1 Assembly Sites. PLoS Pathogens, 2015, 11, e1004677.	2.1	76
150	Cutting Edge: Regulation of Exosome Secretion by the Integral MAL Protein in T Cells. Journal of Immunology, 2015, 195, 810-814.	0.4	45

#	ARTICLE	IF	CITATIONS
151	Exosomes in cancer: small particle, big player. Journal of Hematology and Oncology, 2015, 8, 83.	6.9	611
152	Identification and Partial Characterization of Two Populations of Prostasomes by a Combination of Dynamic Light Scattering and Proteomic Analysis. Journal of Membrane Biology, 2015, 248, 991-1004.	1.0	17
153	Unravelling the pivotal role of Alix in MVB sorting and silencing of the activated EGFR. Biochemical Journal, 2015, 466, 475-487.	1.7	30
154	Hepatocellular carcinoma-derived exosomes promote motility of immortalized hepatocyte through transfer of oncogenic proteins and RNAs. Carcinogenesis, 2015, 36, 1008-1018.	1.3	213
155	The Function of TrophomiRs and Other MicroRNAs in the Human Placenta. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a023036.	2.9	64
156	Heparanase activates the syndecan-syntenin-ALIX exosome pathway. Cell Research, 2015, 25, 412-428.	5.7	265
157	Directional cell movement through tissues is controlled by exosome secretion. Nature Communications, 2015, 6, 7164.	5.8	457
158	Information transfer by exosomes: A new frontier in hematologic malignancies. Blood Reviews, 2015, 29, 281-290.	2.8	74
159	Extracellular vesicle sorting of \hat{l} ±-Synuclein is regulated by sumoylation. Acta Neuropathologica, 2015, 129, 695-713.	3.9	136
160	Emerging roles of exosomes during epithelial–mesenchymal transition and cancer progression. Seminars in Cell and Developmental Biology, 2015, 40, 60-71.	2.3	190
161	Mass-Spectrometry-Based Molecular Characterization of Extracellular Vesicles: Lipidomics and Proteomics. Journal of Proteome Research, 2015, 14, 2367-2384.	1.8	198
162	Oxidative and other posttranslational modifications in extracellular vesicle biology. Seminars in Cell and Developmental Biology, 2015, 40, 8-16.	2.3	41
163	Insights into the key roles of proteoglycans in breast cancer biology and translational medicine. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1855, 276-300.	3.3	96
164	Mesenchymal Stem Cell-derived Extracellular Vesicles: Toward Cell-free Therapeutic Applications. Molecular Therapy, 2015, 23, 812-823.	3.7	877
165	MicroRNAs in placental health and disease. American Journal of Obstetrics and Gynecology, 2015, 213, S163-S172.	0.7	165
166	Effect of Exosomes from Mesenchymal Stem Cells onÂAngiogenesis. , 2015, , 177-205.		O
167	Exogenous DNA Loading into Extracellular Vesicles via Electroporation is Size-Dependent and Enables Limited Gene Delivery. Molecular Pharmaceutics, 2015, 12, 3650-3657.	2.3	282
168	Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels. Journal of Cell Biology, 2015, 210, 1199-1211.	2.3	88

#	Article	IF	CITATIONS
169	Redefining the Breast Cancer Exosome Proteome by Tandem Mass Tag Quantitative Proteomics and Multivariate Cluster Analysis. Analytical Chemistry, 2015, 87, 10462-10469.	3.2	66
170	The Extracellular Vesicles of the Helminth Pathogen, Fasciola hepatica: Biogenesis Pathways and Cargo Molecules Involved in Parasite Pathogenesis*. Molecular and Cellular Proteomics, 2015, 14, 3258-3273.	2.5	194
171	Rab33B and its autophagic Atg5/12/16L1 effector assist in hepatitis B virus naked capsid formation and release. Cellular Microbiology, 2015, 17, 747-764.	1.1	32
172	RAL-1 controls multivesicular body biogenesis and exosome secretion. Journal of Cell Biology, 2015, 211, 27-37.	2.3	193
173	Proteomic Profiling of Detergent Resistant Membranes (Lipid Rafts) of Prostasomes. Molecular and Cellular Proteomics, 2015, 14, 3015-3022.	2.5	34
174	Rab7a and Rab27b control secretion of endothelial microRNA through extracellular vesicles. FEBS Letters, 2015, 589, 3182-3188.	1.3	63
175	Advances in the molecular functions of syndecan-1 (SDC1/CD138) in the pathogenesis of malignancies. Critical Reviews in Oncology/Hematology, 2015, 94, 1-17.	2.0	76
176	Exosomes and other extracellular vesicles in host–pathogen interactions. EMBO Reports, 2015, 16, 24-43.	2.0	600
177	Extracellular vesicles and their synthetic analogues in aging and age-associated brain diseases. Biogerontology, 2015, 16, 147-185.	2.0	57
178	Therapeutic Applications of Extracellular Vesicles: Clinical Promise and Open Questions. Annual Review of Pharmacology and Toxicology, 2015, 55, 439-464.	4.2	415
179	Proteomics of extracellular vesicles: Exosomes and ectosomes. Mass Spectrometry Reviews, 2015, 34, 474-490.	2.8	336
180	Exosomes in diagnostic and therapeutic applications: biomarker, vaccine and RNA interference delivery vehicle. Expert Opinion on Biological Therapy, 2015, 15, 103-117.	1.4	108
181	Syndecan-1 and Its Expanding List of Contacts. Advances in Wound Care, 2015, 4, 235-249.	2.6	90
182	Podoplanin is a component of extracellular vesicles that reprograms cell-derived exosomal proteins and modulates lymphatic vessel formation. Oncotarget, 2016, 7, 16070-16089.	0.8	67
183	Extracellular Vesicles: A Mechanism to Reverse Metastatic Behaviour as a New Approach to Cancer Therapy. , 0 , , .		0
184	Extracellular vesicle cross-talk in the bone marrow microenvironment: implications in multiple myeloma. Oncotarget, 2016, 7, 38927-38945.	0.8	53
185	Recent Insights into Cell Surface Heparan Sulphate Proteoglycans and Cancer. F1000Research, 2016, 5, 1541.	0.8	38
186	Exosomes as the source of biomarkers of metabolic diseases. Annals of Pediatric Endocrinology and Metabolism, 2016, 21, 119.	0.8	41

#	Article	IF	CITATIONS
187	Potential Therapies by Stem Cell-Derived Exosomes in CNS Diseases: Focusing on the Neurogenic Niche. Stem Cells International, 2016, 2016, 1-16.	1.2	79
188	Biogenesis and Function of T Cell-Derived Exosomes. Frontiers in Cell and Developmental Biology, 2016, 4, 84.	1.8	86
189	Exosomes: The Link between GPCR Activation and Metastatic Potential?. Frontiers in Genetics, 2016, 7, 56.	1.1	21
190	Exosomes as Novel Regulators of Adult Neurogenic Niches. Frontiers in Cellular Neuroscience, 2015, 9, 501.	1.8	108
191	Extracellular Vesicles and a Novel Form of Communication in the Brain. Frontiers in Neuroscience, 2016, 10, 127.	1.4	144
192	Focus on Extracellular Vesicles: Introducing the Next Small Big Thing. International Journal of Molecular Sciences, 2016, 17, 170.	1.8	612
193	Focus on Extracellular Vesicles: Development of Extracellular Vesicle-Based Therapeutic Systems. International Journal of Molecular Sciences, 2016, 17, 172.	1.8	113
194	Focus on Extracellular Vesicles: New Frontiers of Cell-to-Cell Communication in Cancer. International Journal of Molecular Sciences, 2016, 17, 175.	1.8	255
195	Clinical Application of Human Urinary Extracellular Vesicles in Kidney and Urologic Diseases. International Journal of Molecular Sciences, 2016, 17, 1043.	1.8	20
196	Multifaceted Roles of ALG-2 in Ca2+-Regulated Membrane Trafficking. International Journal of Molecular Sciences, 2016, 17, 1401.	1.8	43
197	Syndecans as Cell Surface Receptors in Cancer Biology. A Focus on their Interaction with PDZ Domain Proteins. Frontiers in Pharmacology, 2016, 7, 10.	1.6	35
198	Sorting protein VPS33B regulates exosomal autocrine signaling to mediate hematopoiesis and leukemogenesis. Journal of Clinical Investigation, 2016, 126, 4537-4553.	3.9	72
199	Syndecan Heparan Sulfate Proteoglycans: Regulation, Signaling and Impact on Tumor Biology. Trends in Glycoscience and Glycotechnology, 2016, 28, E79-E90.	0.0	1
200	Extracellular vesicles in renal tissue damage and regeneration. European Journal of Pharmacology, 2016, 790, 83-91.	1.7	63
201	Emerging roles for vascular smooth muscle cell exosomes in calcification and coagulation. Journal of Physiology, 2016, 594, 2905-2914.	1.3	115
202	MDAâ€9/Syntenin Control. Journal of Cellular Physiology, 2016, 231, 545-550.	2.0	17
203	The CD63-Syntenin-1 Complex Controls Post-Endocytic Trafficking of Oncogenic Human Papillomaviruses. Scientific Reports, 2016, 6, 32337.	1.6	74
204	Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis. Journal of Extracellular Vesicles, 2016, 5, 31295.	5.5	118

#	Article	IF	CITATIONS
205	Isolation of human salivary extracellular vesicles by iodixanol density gradient ultracentrifugation and their characterizations. Journal of Extracellular Vesicles, 2016, 5, 30829.	5.5	145
206	The Late Endosome. , 2016, , 201-210.		8
207	ESCRTing around the Cell. , 2016, , 466-474.		0
208	Identification and characterization of EGF receptor in individual exosomes by fluorescenceâ€activated vesicle sorting. Journal of Extracellular Vesicles, 2016, 5, 29254.	5.5	107
209	Exosomes in the Preservation of Cellular Homeostasis. Oxidative Stress in Applied Basic Research and Clinical Practice, 2016, , 17-45.	0.4	0
210	Proteoglycans. , 2016, , 271-278.		5
211	Study of Exosomes Shed New Light on Physiology of Amyloidogenesis. Cellular and Molecular Neurobiology, 2016, 36, 327-342.	1.7	13
212	Protein–Protein Interaction Inhibition (2P2I)-Oriented Chemical Library Accelerates Hit Discovery. ACS Chemical Biology, 2016, 11, 2140-2148.	1.6	33
213	Effective isolation of exosomes with polyethylene glycol from cell culture supernatant for in-depth proteome profiling. Analyst, The, 2016, 141, 4640-4646.	1.7	187
214	Progress and potential of exosome analysis for early pancreatic cancer detection. Expert Review of Molecular Diagnostics, 2016, 16, 757-767.	1.5	21
215	Extracellular Vesicles Exploit Viral Entry Routes for Cargo Delivery. Microbiology and Molecular Biology Reviews, 2016, 80, 369-386.	2.9	207
216	Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. Cellular and Molecular Neurobiology, 2016, 36, 301-312.	1.7	1,168
217	Tumor-Derived Exosomes and Their Role in Cancer Progression. Advances in Clinical Chemistry, 2016, 74, 103-141.	1.8	549
218	Exosomes in colorectal carcinoma formation: ALIX under the magnifying glass. Modern Pathology, 2016, 29, 928-938.	2.9	33
219	Exosome-Mediated Metastasis: From Epithelial–Mesenchymal Transition to Escape from Immunosurveillance. Trends in Pharmacological Sciences, 2016, 37, 606-617.	4.0	393
220	Inhibition of the Expression of the Small Heat Shock Protein \hat{l}_{\pm} B-Crystallin Inhibits Exosome Secretion in Human Retinal Pigment Epithelial Cells in Culture. Journal of Biological Chemistry, 2016, 291, 12930-12942.	1.6	33
221	Heparanase: From basic research to therapeutic applications in cancer and inflammation. Drug Resistance Updates, 2016, 29, 54-75.	6.5	180
222	Extracellular Vesicles in the Intrauterine Environment: Challenges and Potential Functions. Biology of Reproduction, 2016, 95, 109-109.	1.2	65

#	Article	IF	CITATIONS
223	Astrocytes as secretory cells of the central nervous system: idiosyncrasies of vesicular secretion. EMBO Journal, 2016, 35, 239-257.	3.5	318
224	Extracellular Vesicle Biogenesis in Helminths: More than One Route to the Surface?. Trends in Parasitology, 2016, 32, 921-929.	1.5	40
225	Regulation of exosomes released from normal ovarian epithelial cells and ovarian cancer cells. Tumor Biology, 2016, 37, 15763-15771.	0.8	16
226	Isolation of human trophoblastic extracellular vesicles and characterization of their cargo and antiviral activity. Placenta, 2016, 47, 86-95.	0.7	82
227	Exosomes in carcinogenesis: molecular palkis carry signals for the regulation of cancer progression and metastasis. Journal of Cell Communication and Signaling, 2016, 10, 241-249.	1.8	20
228	Extracellular Vesicles Move Toward Use in Clinical Laboratories. Clinics in Laboratory Medicine, 2016, 36, 587-602.	0.7	4
229	Comparative Analysis of Ciliary Membranes and Ectosomes. Current Biology, 2016, 26, 3327-3335.	1.8	85
230	ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nature Communications, 2016, 7, 13588.	5.8	334
231	Mast Cell Degranulation Is Accompanied by the Release of a Selective Subset of Extracellular Vesicles That Contain Mast Cell–Specific Proteases. Journal of Immunology, 2016, 197, 3382-3392.	0.4	49
232	PRNP/prion protein regulates the secretion of exosomes modulating CAV1/caveolin-1-suppressed autophagy. Autophagy, 2016, 12, 2113-2128.	4.3	54
233	Mesenchymal stromal cells as multifunctional cellular therapeutics – a potential role for extracellular vesicles. Transfusion and Apheresis Science, 2016, 55, 62-69.	0.5	31
234	Exosomes in developmental signalling. Development (Cambridge), 2016, 143, 2482-2493.	1.2	167
235	PIKfyve inhibition increases exosome release and induces secretory autophagy. Cellular and Molecular Life Sciences, 2016, 73, 4717-4737.	2.4	187
236	Heparan Sulfate: Biosynthesis, Structure, and Function. International Review of Cell and Molecular Biology, 2016, 325, 215-273.	1.6	214
237	Roles of exosomes in cardioprotection. European Heart Journal, 2017, 38, ehw304.	1.0	213
238	Exosome-mediated Transfer of $\hat{l}\pm\hat{v}^2$ 3 Integrin from Tumorigenic to Nontumorigenic Cells Promotes a Migratory Phenotype. Molecular Cancer Research, 2016, 14, 1136-1146.	1.5	115
239	Cortactin promotes exosome secretion by controlling branched actin dynamics. Journal of Cell Biology, 2016, 214, 197-213.	2.3	226
240	New structural insight of C-terminal region of Syntenin-1, enhancing the molecular dimerization and inhibitory function related on Syndecan-4 signaling. Scientific Reports, 2016, 6, 36818.	1.6	18

#	Article	IF	CITATIONS
241	Different populations of Wnt-containing vesicles are individually released from polarized epithelial cells. Scientific Reports, 2016, 6, 35562.	1.6	52
242	Extracellular vesicle-associated Aβ mediates trans-neuronal bioenergetic and Ca2+-handling deficits in Alzheimer's disease models. Npj Aging and Mechanisms of Disease, 2016, 2, .	4.5	102
243	Adaptor Protein CD2AP and L-type Lectin LMAN2 Regulate Exosome Cargo Protein Trafficking through the Golgi Complex. Journal of Biological Chemistry, 2016, 291, 25462-25475.	1.6	33
244	Changing the (Intercellular) Conversation: a Potential Role for Exosomal Transfer of microRNA in Environmental Health. Current Epidemiology Reports, 2016, 3, 154-160.	1.1	2
245	Insights into the molecular roles of heparan sulfate proteoglycans (HSPGsâ€"syndecans) in autocrine and paracrine growth factor signaling in the pathogenesis of Hodgkin's lymphoma. Tumor Biology, 2016, 37, 11573-11588.	0.8	4
246	Impact of lysosome status on extracellular vesicle content and release. Ageing Research Reviews, 2016, 32, 65-74.	5.0	175
247	Meiotic Clade AAA ATPases: Protein Polymer Disassembly Machines. Journal of Molecular Biology, 2016, 428, 1897-1911.	2.0	56
248	Exosomes: novel implications in diagnosis and treatment of gastrointestinal cancer. Langenbeck's Archives of Surgery, 2016, 401, 1097-1110.	0.8	26
249	The roles and implications of exosomes in sarcoma. Cancer and Metastasis Reviews, 2016, 35, 377-390.	2.7	33
250	Cellâ€free microRNAs in blood and other body fluids, as cancer biomarkers. Cell Proliferation, 2016, 49, 281-303.	2.4	89
251	The ESCRT machinery: new roles at new holes. Current Opinion in Cell Biology, 2016, 38, 1-11.	2.6	83
252	Microvesicles and exosomes: new players in metabolic and cardiovascular disease. Journal of Endocrinology, 2016, 228, R57-R71.	1.2	270
253	Proteomic peptide phage display uncovers novel interactions of the PDZ1â€2 supramodule of syntenin. FEBS Letters, 2016, 590, 3-12.	1.3	24
254	ESCRTâ€II and Vps4: a dynamic multipurpose tool for membrane budding and scission. FEBS Journal, 2016, 283, 3288-3302.	2.2	90
255	Exosomes: potential for early detection in pancreatic cancer. Future Oncology, 2016, 12, 1081-1090.	1.1	36
256	Mitochondrial Reprogramming Regulates Breast Cancer Progression. Clinical Cancer Research, 2016, 22, 3348-3360.	3.2	40
257	Getting to know the extracellular vesicle glycome. Molecular BioSystems, 2016, 12, 1071-1081.	2.9	78
258	Exosomal microRNA Biomarkers: Emerging Frontiers in Colorectal and Other Human Cancers. Expert Review of Molecular Diagnostics, 2016, 16, 553-567.	1.5	64

#	Article	IF	Citations
259	Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E968-77.	3.3	2,548
260	Parkin Modulates Endosomal Organization and Function of the Endo-Lysosomal Pathway. Journal of Neuroscience, 2016, 36, 2425-2437.	1.7	115
261	Role of Alix in miRNA packaging during extracellular vesicle biogenesis. International Journal of Molecular Medicine, 2016, 37, 958-966.	1.8	115
262	HIV-1 Nucleocapsid Mimics the Membrane Adaptor Syntenin PDZ to Gain Access to ESCRTs and Promote Virus Budding. Cell Host and Microbe, 2016, 19, 336-348.	5.1	21
263	Exosomes in Cancer Disease. Methods in Molecular Biology, 2016, 1381, 111-149.	0.4	45
264	Fibronectin on the Surface of Myeloma Cell-derived Exosomes Mediates Exosome-Cell Interactions. Journal of Biological Chemistry, 2016, 291, 1652-1663.	1.6	219
265	Heparanase tailors syndecan for exosome production. Molecular and Cellular Oncology, 2016, 3, e1047556.	0.3	24
266	Multidrug resistant tumour cells shed more microvesicle-like EVs and less exosomes than their drug-sensitive counterpart cells. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 618-627.	1.1	47
267	Bovine milk-derived exosomes for drug delivery. Cancer Letters, 2016, 371, 48-61.	3.2	630
268	Extracellular matrix component signaling in cancer. Advanced Drug Delivery Reviews, 2016, 97, 28-40.	6.6	140
269	Unconventional protein secretion in plants: a critical assessment. Protoplasma, 2016, 253, 31-43.	1.0	96
270	Intravital Imaging Reveals Angiotensin Il–Induced Transcytosis of Albumin by Podocytes. Journal of the American Society of Nephrology: JASN, 2016, 27, 731-744.	3.0	63
271	Syntenin regulates TGF- \hat{l}^21 -induced Smad activation and the epithelial-to-mesenchymal transition by inhibiting caveolin-mediated TGF- \hat{l}^2 type I receptor internalization. Oncogene, 2016, 35, 389-401.	2.6	71
272	Functions of Cancer-Derived Extracellular Vesicles in Immunosuppression. Archivum Immunologiae Et Therapiae Experimentalis, 2017, 65, 311-323.	1.0	89
273	Pyruvate kinase type M2 promotes tumour cell exosome release via phosphorylating synaptosome-associated protein 23. Nature Communications, 2017, 8, 14041.	5.8	210
274	Exosome secretion promotes chemotaxis of cancer cells. Cell Adhesion and Migration, 2017, 11, 187-195.	1.1	96
275	Extracellular vesicle communication pathways as regulatory targets of oncogenic transformation. Seminars in Cell and Developmental Biology, 2017, 67, 11-22.	2.3	105
276	The E3 ubiquitin ligase NEDD4 is an LC3-interactive protein and regulates autophagy. Autophagy, 2017, 13, 522-537.	4.3	67

#	Article	IF	CITATIONS
277	Microglial Biology and Physiology. , 2017, , 167-199.		0
278	Concentration-Normalized Electroanalytical Assaying of Exosomal Markers. Analytical Chemistry, 2017, 89, 3184-3190.	3.2	65
279	Extracellular vesicles and blood diseases. International Journal of Hematology, 2017, 105, 392-405.	0.7	42
280	Tetraspanin 6: a pivotal protein of the multiple vesicular body determining exosome release and lysosomal degradation of amyloid precursor protein fragments. Molecular Neurodegeneration, 2017, 12, 25.	4.4	70
281	Extracellular vesicles: An overview of biogenesis, function, and role in breast cancer. Tumor Biology, 2017, 39, 101042831769118.	0.8	38
282	Exosomes in cancer theranostic: Diamonds in the rough. Cell Adhesion and Migration, 2017, 11, 151-163.	1.1	63
283	Effect of the Microenvironment on Mesenchymal Stem Cell Paracrine Signaling: Opportunities to Engineer the Therapeutic Effect. Stem Cells and Development, 2017, 26, 617-631.	1.1	298
284	Exosomes: Therapy delivery tools and biomarkers of diseases. , 2017, 174, 63-78.		761
285	Engineered Exosomes as Vehicles for Biologically Active Proteins. Molecular Therapy, 2017, 25, 1269-1278.	3.7	244
286	Sulfated glycosaminoglycans in protein aggregation diseases. Glycoconjugate Journal, 2017, 34, 453-466.	1.4	26
287	Tetraspanins in infections by human cytomegalo- and papillomaviruses. Biochemical Society Transactions, 2017, 45, 489-497.	1.6	21
288	Ticket to Ride: Targeting Proteins to Exosomes for Brain Delivery. Molecular Therapy, 2017, 25, 1264-1266.	3.7	11
289	Protein composition of the hepatitis A virus quasi-envelope. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6587-6592.	3.3	78
290	CD63-Mediated Antigen Delivery into Extracellular Vesicles via DNA Vaccination Results in Robust CD8+ T Cell Responses. Journal of Immunology, 2017, 198, 4707-4715.	0.4	45
291	Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nature Communications, 2017, 8, 15287.	5.8	554
292	Herpesviruses hijack host exosomes for viral pathogenesis. Seminars in Cell and Developmental Biology, 2017, 67, 91-100.	2.3	78
293	Roles of exosomes in the normal and diseased eye. Progress in Retinal and Eye Research, 2017, 59, 158-177.	7.3	126
294	Extracellular vesicles at the crossâ€line between basic science and clinical needs. Microcirculation, 2017, 24, e12333.	1.0	4

#	Article	IF	Citations
295	Caspase-8 controls the secretion of inflammatory lysyl-tRNA synthetase in exosomes from cancer cells. Journal of Cell Biology, 2017, 216, 2201-2216.	2.3	81
296	Effects of Inhibiting VPS4 Support a General Role for ESCRTs in Extracellular Vesicle Biogenesis. Biophysical Journal, 2017, 113, 1342-1352.	0.2	78
297	Growing functions of the ESCRT machinery in cell biology and viral replication. Biochemical Society Transactions, 2017, 45, 613-634.	1.6	82
298	KRS: A cut away from release in exosomes. Journal of Cell Biology, 2017, 216, 1891-1893.	2.3	6
299	Proteoglycans, ion channels and cell–matrix adhesion. Biochemical Journal, 2017, 474, 1965-1979.	1.7	36
300	Endocytosis and Synaptic Function. , 2017, , 207-243.		0
301	Dynamic subunit turnover in ESCRT-III assemblies is regulated by Vps4 to mediate membrane remodelling during cytokinesis. Nature Cell Biology, 2017, 19, 787-798.	4.6	222
302	Exosomes: New Biomarkers for Targeted Cancer Therapy. , 2017, , 129-157.		7
304	Cell-based therapy using miR-302-367 expressing cells represses glioblastoma growth. Cell Death and Disease, 2017, 8, e2713-e2713.	2.7	55
305	Polyomavirus microRNAs circulating in biological fluids during viral persistence. Reviews in Medical Virology, 2017, 27, e1927.	3.9	24
306	Inhibition of radiation-induced glioblastoma invasion by genetic and pharmacological targeting of MDA-9/Syntenin. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 370-375.	3.3	79
307	Secreted Glioblastoma Nanovesicles Contain Intracellular Signaling Proteins and Active Ras Incorporated in a Farnesylation-dependent Manner. Journal of Biological Chemistry, 2017, 292, 611-628.	1.6	41
308	Circulating exosomes and exosomal microRNAs as biomarkers in gastrointestinal cancer. Cancer Gene Therapy, 2017, 24, 48-56.	2.2	175
309	Insights into the molecular roles of Zika virus in human reproductive complications and congenital neuropathologies. Pathology, 2017, 49, 707-714.	0.3	3
310	Cardioprotective Effects of Exosomes and Their Potential Therapeutic Use. Advances in Experimental Medicine and Biology, 2017, 998, 163-177.	0.8	2
311	Exosomes Secreted by HeLa Cells Shuttle on Their Surface the Plasma Membrane-Associated Sialidase NEU3. Biochemistry, 2017, 56, 6401-6408.	1.2	29
312	Role of Lymphocyte Subsets in the Immune Response to Primary B Cell–Derived Exosomes. Journal of Immunology, 2017, 199, 2225-2235.	0.4	52
313	Isolation of Extracellular Vesicles by Ultracentrifugation. Methods in Molecular Biology, 2017, 1660, 25-32.	0.4	136

#	ARTICLE	IF	CITATIONS
314	Exosomes as new players in metabolic organ crossâ€ŧalk. Diabetes, Obesity and Metabolism, 2017, 19, 137-146.	2.2	169
315	The extracellular role of DNA damage repair protein APE1 in regulation of IL-6 expression. Cellular Signalling, 2017, 39, 18-31.	1.7	33
316	Glioblastoma Exosomes for Therapeutic Angiogenesis in Peripheral Ischemia. Tissue Engineering - Part A, 2017, 23, 1251-1261.	1.6	29
318	Adipose-Derived Stem Cell-Derived Exosomes Ameliorate Erectile Dysfunction in a Rat Model of Type 2 Diabetes. Journal of Sexual Medicine, 2017, 14, 1084-1094.	0.3	71
319	VPS9a Activates the Rab5 GTPase ARA7 to Confer Distinct Pre- and Postinvasive Plant Innate Immunity. Plant Cell, 2017, 29, 1927-1937.	3.1	28
320	Circulating microRNAs as Biomarkers for Pediatric Astrocytomas. Archives of Medical Research, 2017, 48, 323-332.	1.5	25
321	Effects of syndecan-1 on the expression of syntenin and the migration of U251 glioma cells. Oncology Letters, 2017, 14, 7217-7224.	0.8	10
322	Syntenin mediates SRC function in exosomal cell-to-cell communication. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12495-12500.	3.3	114
323	The use of cell culture platforms to identify novel markers of bone and dentin resorption. Orthodontics and Craniofacial Research, 2017, 20, 89-94.	1.2	9
324	Exosomes: New players in cancer. Oncology Reports, 2017, 38, 665-675.	1.2	122
325	Extracellular Vesicles: Novel Mediators of Cell Communication In Metabolic Disease. Trends in Endocrinology and Metabolism, 2017, 28, 3-18.	3.1	268
326	Small RNA Sequencing in Cells and Exosomes Identifies eQTLs and 14q32 as a Region of Active Export. G3: Genes, Genomes, Genetics, 2017, 7, 31-39.	0.8	16
327	Heparanase regulation of cancer, autophagy and inflammation: new mechanisms and targets for therapy. FEBS Journal, 2017, 284, 42-55.	2.2	182
328	Cross-talk between autophagy and KLF2 determines endothelial cell phenotype and microvascular function in acute liver injury. Journal of Hepatology, 2017, 66, 86-94.	1.8	84
329	Syntenin: Key player in cancer exosome biogenesis and uptake?. Cell Adhesion and Migration, 2017, 11, 124-126.	1.1	42
330	The role of extracellular vesicles in neurodegenerative diseases. Biochemical and Biophysical Research Communications, 2017, 483, 1178-1186.	1.0	147
331	Syndecans – key regulators of cell signaling and biological functions. FEBS Journal, 2017, 284, 27-41.	2.2	217
332	Endothelial- and Immune Cell-Derived Extracellular Vesicles in the Regulation ofÂCardiovascular Health and Disease. JACC Basic To Translational Science, 2017, 2, 790-807.	1.9	104

#	Article	IF	CITATIONS
333	Atg5 Disassociates the V1V0-ATPase to Promote Exosome Production and Tumor Metastasis Independent of Canonical Macroautophagy. Developmental Cell, 2017, 43, 716-730.e7.	3.1	205
334	Decoding the role of extracellular vesicles in liver diseases. Liver Research, 2017, 1, 147-155.	0.5	21
335	Exosomes As Potential Biomarkers and Targeted Therapy in Colorectal Cancer: A Mini-Review. Frontiers in Pharmacology, 2017, 8, 583.	1.6	56
336	Tumor Microenvironment Modulation via Gold Nanoparticles Targeting Malicious Exosomes: Implications for Cancer Diagnostics and Therapy. International Journal of Molecular Sciences, 2017, 18, 162.	1.8	50
337	Mesenchymal Stem/Stromal Cells as Biological Factories. , 2017, , 121-154.		1
338	Exosomal tetraspanins mediate cancer metastasis by altering host microenvironment. Oncotarget, 2017, 8, 62803-62815.	0.8	44
339	Prelysosomal Compartments in the Unconventional Secretion of Amyloidogenic Seeds. International Journal of Molecular Sciences, 2017, 18, 227.	1.8	24
340	Exosomes: From Garbage Bins to Promising Therapeutic Targets. International Journal of Molecular Sciences, 2017, 18, 538.	1.8	371
341	Association of Extracellular Membrane Vesicles with Cutaneous Wound Healing. International Journal of Molecular Sciences, 2017, 18, 956.	1.8	73
342	Extracellular Vesicles in Hematological Malignancies: From Biology to Therapy. International Journal of Molecular Sciences, 2017, 18, 1183.	1.8	31
343	Peptidylarginine Deiminasesâ€"Roles in Cancer and Neurodegeneration and Possible Avenues for Therapeutic Intervention via Modulation of Exosome and Microvesicle (EMV) Release?. International Journal of Molecular Sciences, 2017, 18, 1196.	1.8	70
344	The Drosophila Accessory Gland as a Model for Prostate Cancer and Other Pathologies. Current Topics in Developmental Biology, 2017, 121, 339-375.	1.0	39
345	Extracellular Vesicles in Renal Pathophysiology. Frontiers in Molecular Biosciences, 2017, 4, 37.	1.6	68
346	MSCs-Derived Exosomes and Neuroinflammation, Neurogenesis and Therapy of Traumatic Brain Injury. Frontiers in Cellular Neuroscience, 2017, 11, 55.	1.8	168
347	Extracellular Vesicles As Modulators of Tumor Microenvironment and Disease Progression in Glioma. Frontiers in Oncology, 2017, 7, 144.	1.3	47
348	Chemotherapy-Induced Tissue Injury: An Insight into the Role of Extracellular Vesicles-Mediated Oxidative Stress Responses. Antioxidants, 2017, 6, 75.	2.2	50
349	Role of exosomal proteins in cancer diagnosis. Molecular Cancer, 2017, 16, 145.	7.9	290
350	The small vesicular culprits: the investigation of extracellular vesicles as new targets for cancer treatment. Clinical and Translational Medicine, 2017, 6, 45.	1.7	29

#	Article	IF	CITATIONS
351	Exosomes Potentiate NF- \hat{l}^{ϱ} B Signaling, Tumor Progression, and Metastasis in Hepatocellular Carcinoma. , 2017, , 449-463.		0
352	Hypoxia promotes IL-32 expression in myeloma cells, and high expression is associated with poor survival and bone loss. Blood Advances, 2017, 1, 2656-2666.	2.5	53
353	Extracellular Vesicles From Mesenchymal Stem Cells and Their Potential in Tumor Therapy. , 2017, , 521-549.		0
354	Atg12–Atg3 Coordinates Basal Autophagy, Endolysosomal Trafficking, and Exosome Release. Molecular and Cellular Oncology, 2018, 5, e1039191.	0.3	13
355	Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246. Nature Communications, 2018, 9, 771.	5.8	356
356	Biogenesis and function of extracellular vesicles in cancer. , 2018, 188, 1-11.		549
357	Rab35-dependent extracellular nanovesicles are required for induction of tumour supporting stroma. Nanoscale, 2018, 10, 8547-8559.	2.8	20
358	Molecular mechanism to recruit galectin-3 into multivesicular bodies for polarized exosomal secretion. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4396-E4405.	3.3	98
359	Role of Exosomes in Human Retroviral Mediated Disorders. Journal of NeuroImmune Pharmacology, 2018, 13, 279-291.	2.1	12
360	Heparan sulfate 3- O -sulfotransferase 2 (HS3ST2) displays an unexpected subcellular localization in the plasma membrane. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1644-1655.	1.1	12
361	Bacterial Respiratory and Invasive Pneumococcal Infections and HIV., 2018,, 153-163.		0
362	Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinsonâ \in^{M} s disease treatment. Nature Communications, 2018, 9, 1305.	5.8	451
363	Extracellular vesicles and their immunomodulatory functions in pregnancy. Seminars in Immunopathology, 2018, 40, 425-437.	2.8	82
364	Suppression of tau propagation using an inhibitor that targets the DK-switch of nSMase2. Biochemical and Biophysical Research Communications, 2018, 499, 751-757.	1.0	28
365	Subpopulations of extracellular vesicles and their therapeutic potential. Molecular Aspects of Medicine, 2018, 60, 1-14.	2.7	139
366	Syndecan-1 Controls Lung Tumorigenesis by Regulating miRNAs Packaged in Exosomes. American Journal of Pathology, 2018, 188, 1094-1103.	1.9	38
367	Emerging roles of extracellular vesicles in cellular senescence and aging. Aging Cell, 2018, 17, e12734.	3.0	150
368	Proteomic Profiling Reveals the Transglutaminase-2 Externalization Pathway in Kidneys after Unilateral Ureteric Obstruction. Journal of the American Society of Nephrology: JASN, 2018, 29, 880-905.	3.0	40

#	Article	IF	CITATIONS
369	Antigen Presentation by Extracellular Vesicles from Professional Antigen-Presenting Cells. Annual Review of Immunology, 2018, 36, 435-459.	9.5	254
370	The extracellular vesiclesâ€derived from mesenchymal stromal cells: A new therapeutic option in regenerative medicine. Journal of Cellular Biochemistry, 2018, 119, 8048-8073.	1.2	87
371	Shedding light on the cell biology of extracellular vesicles. Nature Reviews Molecular Cell Biology, 2018, 19, 213-228.	16.1	5,024
372	The interactome of EBV LMP1 evaluated by proximity-based BioID approach. Virology, 2018, 516, 55-70.	1.1	33
373	Exosomal cargo-loading and synthetic exosome-mimics as potential therapeutic tools. Acta Pharmacologica Sinica, 2018, 39, 542-551.	2.8	269
374	Impairment in extinction of cued fear memory in syntenin-1 knockout mice. Neurobiology of Learning and Memory, 2018, 149, 58-67.	1.0	9
375	Retinoic acid synthesis by NG2 expressing cells promotes a permissive environment for axonal outgrowth. Neurobiology of Disease, 2018, 111, 70-79.	2.1	25
376	Proteomic Profiling of Secreted Proteins, Exosomes, and Microvesicles in Cell Culture Conditioned Media. Methods in Molecular Biology, 2018, 1722, 91-102.	0.4	18
377	Protein Profiling and Sizing of Extracellular Vesicles from Colorectal Cancer Patients <i>via</i> Flow Cytometry. ACS Nano, 2018, 12, 671-680.	7.3	333
378	Glycosylation of extracellular vesicles: current knowledge, tools and clinical perspectives. Journal of Extracellular Vesicles, 2018, 7, 1442985.	5.5	173
379	The MDA-9/Syntenin/IGF1R/STAT3 Axis Directs Prostate Cancer Invasion. Cancer Research, 2018, 78, 2852-2863.	0.4	37
380	The Small GTPase Ral orchestrates MVB biogenesis and exosome secretion. Small GTPases, 2018, 9, 445-451.	0.7	43
381	Exosomes and their Application in Biomedical Field: Difficulties and Advantages. Molecular Neurobiology, 2018, 55, 3372-3393.	1.9	91
382	New insights into the function of Rab GTPases in the context of exosomal secretion. Small GTPases, 2018, 9, 95-106.	0.7	228
383	Current knowledge on exosome biogenesis and release. Cellular and Molecular Life Sciences, 2018, 75, 193-208.	2.4	1,689
384	Pathways of production and delivery of hepatocyte exosomes. Journal of Cell Communication and Signaling, 2018, 12, 343-357.	1.8	57
385	Plant exosomes: using an unconventional exit to prevent pathogen entry?. Journal of Experimental Botany, 2018, 69, 59-68.	2.4	83
386	Post-translational add-ons mark the path in exosomal protein sorting. Cellular and Molecular Life Sciences, 2018, 75, 1-19.	2.4	97

#	Article	IF	CITATIONS
387	Insights into the key roles of epigenetics in matrix macromolecules-associated wound healing. Advanced Drug Delivery Reviews, 2018, 129, 16-36.	6.6	47
388	The emerging role of exosome-derived non-coding RNAs in cancer biology. Cancer Letters, 2018, 414, 107-115.	3.2	195
389	Syndecans in chronic inflammatory and autoimmune diseases: Pathological insights and therapeutic opportunities. Journal of Cellular Physiology, 2018, 233, 6346-6358.	2.0	27
390	Placental exosomes: A proxy to understand pregnancy complications. American Journal of Reproductive Immunology, 2018, 79, e12788.	1.2	79
391	Emerging role of extracellular vesicles as a senescence-associated secretory phenotype: Insights into the pathophysiology of lung diseases. Molecular Aspects of Medicine, 2018, 60, 92-103.	2.7	126
392	Opposing Functions of Heparanase-1 and Heparanase-2 in Cancer Progression. Trends in Biochemical Sciences, 2018, 43, 18-31.	3.7	117
393	Cytosolic aminoacyl-tRNA synthetases: Unanticipated relocations for unexpected functions. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 387-400.	0.9	15
394	Why the need and how to approach the functional diversity of extracellular vesicles. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20160479.	1.8	261
395	Wnt and Hedgehog: Secretion of Lipid-Modified Morphogens. Trends in Cell Biology, 2018, 28, 157-170.	3.6	58
396	Biogenesis and function of ESCRT-dependent extracellular vesicles. Seminars in Cell and Developmental Biology, 2018, 74, 66-77.	2.3	292
397	Exosomes in cancer: Use them or target them?. Seminars in Cell and Developmental Biology, 2018, 78, 13-21.	2.3	109
398	Adiponectin/T-cadherin system enhances exosome biogenesis and decreases cellular ceramides by exosomal release. JCI Insight, 2018, 3, .	2.3	122
399	Advances, challenges, and opportunities in extracellular RNA biology: insights from the NIH exRNA Strategic Workshop. JCI Insight, 2018, 3, .	2.3	41
400	Exosome Biogenesis and Biological Function in Response to Viral Infections. The Open Virology Journal, 2018, 12, 134-148.	1.8	77
401	Heparan Sulfate Mimetics in Cancer Therapy: The Challenge to Define Structural Determinants and the Relevance of Targets for Optimal Activity. Molecules, 2018, 23, 2915.	1.7	46
402	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	5.5	6,961
403	Centrifugation affects the purity of liquid biopsyâ€based tumor biomarkers. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2018, 93, 1207-1212.	1.1	37
404	New Insights in Bladder Cancer Diagnosis: Urinary miRNAs and Proteins. Medical Sciences (Basel,) Tj ETQq $1\ 1\ 0.7$	'84314 rgl	BT/Overlock

#	Article	IF	CITATIONS
405	Exosomesâ€"the enigmatic regulators of bone homeostasis. Bone Research, 2018, 6, 36.	5.4	77
406	Heparanase: A Multitasking Protein Involved in Extracellular Matrix (ECM) Remodeling and Intracellular Events. Cells, 2018, 7, 236.	1.8	67
407	Rapid and accurate analysis of stem cell-derived extracellular vesicles with super resolution microscopy and live imaging. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 1891-1900.	1.9	72
409	Sensitive and rapid quantification of exosomes by fusing luciferase to exosome marker proteins. Scientific Reports, 2018, 8, 14035.	1.6	69
410	Exosomes, Their Biogenesis and Role in Inter-Cellular Communication, Tumor Microenvironment and Cancer Immunotherapy. Vaccines, 2018, 6, 69.	2.1	96
411	Palmitoylation is a post-translational modification of Alix regulating the membrane organization of exosome-like small extracellular vesicles. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2879-2887.	1.1	42
412	Effect of exosomal miRNA on cancer biology and clinical applications. Molecular Cancer, 2018, 17, 147.	7.9	531
413	Promoting axonal regeneration through exosomes: An update of recent findings on exosomal PTEN and mTOR modifiers. Brain Research Bulletin, 2018, 143, 123-131.	1.4	15
414	Exosomes in cancer: small vesicular transporters for cancer progression and metastasis, biomarkers in cancer therapeutics. PeerJ, 2018, 6, e4763.	0.9	58
415	Understanding extracellular vesicle diversity – current status. Expert Review of Proteomics, 2018, 15, 887-910.	1.3	118
416	Extracellular Vesicles: How Drug and Pathology Interfere With Their Biogenesis and Function. Frontiers in Physiology, 2018, 9, 1394.	1.3	28
417	NANOmetric BIO-Banked MSC-Derived Exosome (NANOBIOME) as a Novel Approach to Regenerative Medicine. Journal of Clinical Medicine, 2018, 7, 357.	1.0	54
418	Properties of Heparinoids Premixed with Tumor-Derived Extracellular Vesicles. Bioconjugate Chemistry, 2018, 29, 3757-3767.	1.8	5
419	The roles of tumor-derived exosomes in non-small cell lung cancer and their clinical implications. Journal of Experimental and Clinical Cancer Research, 2018, 37, 226.	3.5	107
420	Role of Extracellular Vesicles in Amyotrophic Lateral Sclerosis. Frontiers in Neuroscience, 2018, 12, 574.	1.4	47
421	Failure to detect functional transfer of active K-Ras protein from extracellular vesicles into recipient cells in culture. PLoS ONE, 2018, 13, e0203290.	1.1	7
422	SNX3-retromer requires an evolutionary conserved MON2:DOPEY2:ATP9A complex to mediate Wntless sorting and Wnt secretion. Nature Communications, 2018, 9, 3737.	5.8	51
423	Proteoglycan Chemical Diversity Drives Multifunctional Cell Regulation and Therapeutics. Chemical Reviews, 2018, 118, 9152-9232.	23.0	253

#	Article	IF	CITATIONS
424	Extracellular vesicles from pluripotent stem cell-derived mesenchymal stem cells acquire a stromal modulatory proteomic pattern during differentiation. Experimental and Molecular Medicine, 2018, 50, 1-12.	3.2	52
425	Tumor Suppressor Gene 101., 2018, , 317-351.		2
426	Exosomes: Cellular capsules for drug delivery in Parkinson's disease. , 2018, , 91-151.		3
427	Role of T cell-derived exosomes in immunoregulation. Immunologic Research, 2018, 66, 313-322.	1.3	53
428	Dendritic cells and routing cargo into exosomes. Immunology and Cell Biology, 2018, 96, 683-693.	1.0	55
429	Extracellular vesicles in cancer â€" implications for future improvements in cancer care. Nature Reviews Clinical Oncology, 2018, 15, 617-638.	12.5	1,020
430	Preliminary investigation of extracellular vesicles in mammary cancer of dogs and cats: Identification and characterization. Veterinary and Comparative Oncology, 2018, 16, 489-496.	0.8	15
431	Emergence of exosomal DNA in molecular neuropathology. Laboratoriums Medizin, 2018, 42, 9-22.	0.1	3
432	Phospholipase D and phosphatidic acid in the biogenesis and cargo loading of extracellular vesicles. Journal of Lipid Research, 2018, 59, 1554-1560.	2.0	65
433	Extracellular Vesicle Biogenesis in Cancer. , 2018, , 11-26.		3
434	Lysosomal N-acetyltransferase interacts with ALIX and is detected in extracellular vesicles. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 1451-1464.	1.9	5
435	Stimulation of exosome release by extracellular <scp>DNA</scp> is conserved across multiple cell types. FEBS Journal, 2018, 285, 3114-3133.	2.2	45
436	A Ca2+-stimulated exosome release pathway in cancer cells is regulated by Munc13-4. Journal of Cell Biology, 2018, 217, 2877-2890.	2.3	159
437	To be or not to be secreted as exosomes, a balance finely tuned by the mechanisms of biogenesis. Essays in Biochemistry, 2018, 62, 177-191.	2.1	65
438	Regulation and mechanisms of extracellular vesicle biogenesis and secretion. Essays in Biochemistry, 2018, 62, 125-133.	2.1	78
439	Diabetic sera disrupted the normal exosome signaling pathway in human mesenchymal stem cells in vitro. Cell and Tissue Research, 2018, 374, 555-565.	1.5	35
440	Pathological Proteins Are Transported by Extracellular Vesicles of Sporadic Amyotrophic Lateral Sclerosis Patients. Frontiers in Neuroscience, 2018, 12, 487.	1.4	95
441	Infection of Epstein–Barr Virus in Type III Latency Modulates Biogenesis of Exosomes and the Expression Profile of Exosomal miRNAs in the Burkitt Lymphoma Mutu Cell Lines. Cancers, 2018, 10, 237.	1.7	23

#	ARTICLE	IF	CITATIONS
442	GeneXX: an online tool for the exploration of transcript changes in skeletal muscle associated with exercise. Physiological Genomics, 2018, 50, 376-384.	1.0	10
443	Cannabidiol (CBD) Is a Novel Inhibitor for Exosome and Microvesicle (EMV) Release in Cancer. Frontiers in Pharmacology, 2018, 9, 889.	1.6	115
444	Exosomes and extracellular vesicles: the path forward. Essays in Biochemistry, 2018, 62, 119-124.	2.1	82
445	Emerging Role for Exosomes in the Progress of Stem Cell Research. American Journal of the Medical Sciences, 2018, 356, 481-486.	0.4	5
446	The ESCRT-III Protein CHMP1A Mediates Secretion of Sonic Hedgehog on a Distinctive Subtype of Extracellular Vesicles. Cell Reports, 2018, 24, 973-986.e8.	2.9	79
447	The Mingle-Mangle of Wnt Signaling and Extracellular Vesicles: Functional Implications for Heart Research. Frontiers in Cardiovascular Medicine, 2018, 5, 10.	1.1	21
448	Tetraspanin Assemblies in Virus Infection. Frontiers in Immunology, 2018, 9, 1140.	2.2	91
449	The Origin and Functions of Exosomes in Cancer. Frontiers in Oncology, 2018, 8, 66.	1.3	200
450	Modifying exosome release in cancer therapy: How can it help?. Pharmacological Research, 2018, 134, 246-256.	3.1	25
451	Extracellular Vesicles and the Application of System Biology and Computational Modeling in Cardiac Repair. Circulation Research, 2018, 123, 188-204.	2.0	57
452	Profiling extracellular vesicle release by the filarial nematode Brugia malayi reveals sex-specific differences in cargo and a sensitivity to ivermectin. PLoS Neglected Tropical Diseases, 2018, 12, e0006438.	1.3	89
453	Migration/Invasion of Malignant Gliomas and Implications for Therapeutic Treatment. International Journal of Molecular Sciences, 2018, 19, 1115.	1.8	72
454	Exosomes in cancer development and clinical applications. Cancer Science, 2018, 109, 2364-2374.	1.7	271
455	Transcriptome reprogramming by cancer exosomes: identification of novel molecular targets in matrix and immune modulation. Molecular Cancer, 2018, 17, 97.	7.9	75
456	Syndecan-1 induction in lung microenvironment supports the establishment of breast tumor metastases. Breast Cancer Research, 2018, 20, 66.	2.2	35
457	ALIX Regulates Tumor-Mediated Immunosuppression by Controlling EGFR Activity and PD-L1 Presentation. Cell Reports, 2018, 24, 630-641.	2.9	103
458	Secretion and fusion of biogeochemically active archaeal membrane vesicles. Geobiology, 2018, 16, 659-673.	1.1	5
459	Exosomes: Basic Biology and Technological Advancements Suggesting Their Potential as Ischemic Heart Disease Therapeutics. Frontiers in Physiology, 2018, 9, 1159.	1.3	41

#	Article	IF	CITATIONS
460	The potential theragnostic (diagnostic+therapeutic) application of exosomes in diverse biomedical fields. Korean Journal of Physiology and Pharmacology, 2018, 22, 113.	0.6	35
461	ESCRT and Membrane Protein Ubiquitination. Progress in Molecular and Subcellular Biology, 2018, 57, 107-135.	0.9	30
462	DNA methylation regulates transcriptional homeostasis of algal endosymbiosis in the coral model Aiptasia. Science Advances, 2018, 4, eaat2142.	4.7	77
463	Possibility of Exosome-Based Therapeutics and Challenges in Production of Exosomes Eligible for Therapeutic Application. Biological and Pharmaceutical Bulletin, 2018, 41, 835-842.	0.6	206
464	Anchor peptide captures, targets, and loads exosomes of diverse origins for diagnostics and therapy. Science Translational Medicine, 2018, 10, .	5.8	248
465	Composition, Physicochemical and Biological Properties of Exosomes Secreted From Cancer Cells. , 2018, , 27-57.		6
466	Transglutaminase type 2 in the regulation of proteostasis. Biological Chemistry, 2019, 400, 125-140.	1.2	23
467	Soluble syndecans: biomarkers for diseases and therapeutic options. British Journal of Pharmacology, 2019, 176, 67-81.	2.7	51
468	Tumor-derived exosomes in cancer metastasis risk diagnosis and metastasis therapy. Clinical and Translational Oncology, 2019, 21, 152-159.	1.2	13
469	Exosomes and their implications in central nervous system tumor biology. Progress in Neurobiology, 2019, 172, 71-83.	2.8	26
470	The emerging role of exosomes in multiple myeloma. Blood Reviews, 2019, 38, 100595.	2.8	50
471	Extracellular Vesicles: Catching the Light in Zebrafish. Trends in Cell Biology, 2019, 29, 770-776.	3.6	38
472	From squamous intraepithelial lesions to cervical cancer: Circulating microRNAs as potential biomarkers in cervical carcinogenesis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1872, 188306.	3.3	27
473	Involvement of the P2X7 receptor in the migration and metastasis of tamoxifen-resistant breast cancer: effects on small extracellular vesicles production. Scientific Reports, 2019, 9, 11587.	1.6	37
474	Exosomes: Revisiting their role as "garbage bags― Traffic, 2019, 20, 815-828.	1.3	96
475	An Update on Novel Therapeutic Warfronts of Extracellular Vesicles (EVs) in Cancer Treatment: Where We Are Standing Right Now and Where to Go in the Future. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-21.	1.9	17
476	Exosomes as carriers transporting long non†coding RNAs: Molecular characteristics and their function in cancer (Review). Molecular Medicine Reports, 2019, 20, 851-862.	1.1	18
477	Roles of exosomes in metastatic colorectal cancer. American Journal of Physiology - Cell Physiology, 2019, 317, C869-C880.	2.1	28

#	Article	IF	Citations
478	Extracellular Vesicles and Their Potential Use in Monitoring Cancer Progression and Therapy: The Contribution of Proteomics. Journal of Oncology, 2019, 2019, 1-19.	0.6	64
479	Insight into the Role of Extracellular Vesicles in Lysosomal Storage Disorders. Genes, 2019, 10, 510.	1.0	35
480	Vps28 Is Involved in the Intracellular Trafficking of Awd, the Drosophila Homolog of NME1/2. Frontiers in Physiology, 2019, 10, 983.	1.3	4
481	The biological functions and clinical applications of exosomes in lung cancer. Cellular and Molecular Life Sciences, 2019, 76, 4613-4633.	2.4	90
482	Post-translational modification and protein sorting to small extracellular vesicles including exosomes by ubiquitin and UBLs. Cellular and Molecular Life Sciences, 2019, 76, 4829-4848.	2.4	40
483	Enhanced generation of intraluminal vesicles in neuronal late endosomes in the brain of a Down syndrome mouse model with endosomal dysfunction. Developmental Neurobiology, 2019, 79, 656-663.	1.5	22
484	Exosomes in intercellular communication and implications for osteoarthritis. Rheumatology, 2020, 59, 57-68.	0.9	40
485	Centralspindlin Recruits ALIX to the Midbody during Cytokinetic Abscission in Drosophila via a Mechanism Analogous to Virus Budding. Current Biology, 2019, 29, 3538-3548.e7.	1.8	29
486	Gasdermin D Drives the Nonexosomal Secretion of Galectin-3, an Insulin Signal Antagonist. Journal of Immunology, 2019, 203, 2712-2723.	0.4	15
487	The role of exosomes and MYC in therapy resistance of acute myeloid leukemia: Challenges and opportunities. Molecular Aspects of Medicine, 2019, 70, 21-32.	2.7	22
488	Promise of extracellular vesicles for diagnosis and treatment of epilepsy. Epilepsy and Behavior, 2021, 121, 106499.	0.9	30
489	Extracellular Vesicles in Cancer Immune Microenvironment and Cancer Immunotherapy. Advanced Science, 2019, 6, 1901779.	5.6	179
490	UNC93B1 recruits syntenin-1 to dampen TLR7 signalling and prevent autoimmunity. Nature, 2019, 575, 366-370.	13.7	78
491	The opportunistic effect of exosomes on Non-Hodgkin Lymphoma microenvironment modulation. Critical Reviews in Oncology/Hematology, 2019, 144, 102825.	2.0	9
492	Exosomes: Biogenesis, Composition, Functions, and Their Role in Pre-metastatic Niche Formation. Biotechnology and Bioprocess Engineering, 2019, 24, 689-701.	1.4	50
493	NEDD4 family ubiquitin ligases associate with LCMV Z's PPXY domain and are required for virus budding, but not via direct ubiquitination of Z. PLoS Pathogens, 2019, 15, e1008100.	2.1	14
494	Simvastatin mediates inhibition of exosome synthesis, localization and secretion via multicomponent interventions. Scientific Reports, 2019, 9, 16373.	1.6	44
495	Phosphoproteomics of Acute Cell Stressors Targeting Exercise Signaling Networks Reveal Drug Interactions Regulating Protein Secretion. Cell Reports, 2019, 29, 1524-1538.e6.	2.9	30

#	Article	IF	Citations
496	Modulation of RAB7A Protein Expression Determines Resistance to Cisplatin through Late Endocytic Pathway Impairment and Extracellular Vesicular Secretion. Cancers, 2019, 11, 52.	1.7	43
497	CLIC4 regulates late endosomal trafficking and matrix degradation activity of MMP14 at focal adhesions in RPE cells. Scientific Reports, 2019, 9, 12247.	1.6	16
498	Extracellular vesicles-based drug delivery system for cancer treatment. Cogent Medicine, 2019, 6, 1635806.	0.7	43
499	Proteomic profiling of extracellular vesicles allows for human breast cancer subtyping. Communications Biology, 2019, 2, 325.	2.0	138
500	Syntenin: PDZ Protein Regulating Signaling Pathways and Cellular Functions. International Journal of Molecular Sciences, 2019, 20, 4171.	1.8	26
501	Genomic tagging of endogenous human ESCRT-I complex preserves ESCRT-mediated membrane-remodeling functions. Journal of Biological Chemistry, 2019, 294, 16266-16281.	1.6	16
502	Systematic characterization of extracellular vesicle sorting domains and quantification at the single molecule – single vesicle level by fluorescence correlation spectroscopy and single particle imaging. Journal of Extracellular Vesicles, 2019, 8, 1663043.	5.5	96
503	Inhibition of nSMase2 Reduces the Transfer of Oligomeric α-Synuclein Irrespective of Hypoxia. Frontiers in Molecular Neuroscience, 2019, 12, 200.	1.4	44
504	Copper-64 Labeled PEGylated Exosomes for In Vivo Positron Emission Tomography and Enhanced Tumor Retention. Bioconjugate Chemistry, 2019, 30, 2675-2683.	1.8	66
505	Generation of the heterogeneity of extracellular vesicles by membrane organization and sorting machineries. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 681-691.	1.1	20
506	Extracellular Vesicle-Mediated Communication Within Host-Parasite Interactions. Frontiers in Immunology, 2018, 9, 3066.	2.2	116
507	Biology, Pathophysiological Role, and Clinical Implications of Exosomes: A Critical Appraisal. Cells, 2019, 8, 99.	1.8	71
508	Ultrasensitive Immunoprofiling of Plasma Extracellular Vesicles Identifies Syndecan-1 as a Potential Tool for Minimally Invasive Diagnosis of Glioma. Clinical Cancer Research, 2019, 25, 3115-3127.	3.2	72
509	Extracellular Vesicle-Mediated Cell–Cell Communication in the Nervous System: Focus on Neurological Diseases. International Journal of Molecular Sciences, 2019, 20, 434.	1.8	112
510	The ESCRT-machinery: closing holes and expanding roles. Current Opinion in Cell Biology, 2019, 59, 121-132.	2.6	108
511	Exosomes. Annual Review of Biochemistry, 2019, 88, 487-514.	5.0	1,570
512	Different isolation approaches lead to diverse glycosylated extracellular vesicle populations. Journal of Extracellular Vesicles, 2019, 8, 1621131.	5.5	78
513	Salivary Extracellular Vesicle-Associated exRNA as Cancer Biomarker. Cancers, 2019, 11, 891.	1.7	37

#	Article	IF	CITATIONS
514	Systematic review of targeted extracellular vesicles for drug delivery – Considerations on methodological and biological heterogeneity. Journal of Controlled Release, 2019, 306, 108-120.	4.8	95
515	Exosomes from humanâ€boneâ€marrowâ€derived mesenchymal stem cells protect against renal ischemia/reperfusion injury via transferring miRâ€199aâ€3p. Journal of Cellular Physiology, 2019, 234, 23736-23749.	2.0	102
516	Flotillin-mediated endocytosis and ALIX–syntenin-1–mediated exocytosis protect the cell membrane from damage caused by necroptosis. Science Signaling, 2019, 12, .	1.6	76
517	Exosomes as Emerging Pro-Tumorigenic Mediators of the Senescence-Associated Secretory Phenotype. International Journal of Molecular Sciences, 2019, 20, 2547.	1.8	51
518	Emerging Function and Clinical Values of Exosomal MicroRNAs in Cancer. Molecular Therapy - Nucleic Acids, 2019, 16, 791-804.	2.3	138
519	The Therapeutic Potential of Mesenchymal Stem Cell–Derived Exosomes in Treatment of Neurodegenerative Diseases. Molecular Neurobiology, 2019, 56, 8157-8167.	1.9	89
520	Emerging role of extracellular vesicles in the regulation of skeletal muscle adaptation. Journal of Applied Physiology, 2019, 127, 645-653.	1.2	15
521	Platelets, endothelial cells and leukocytes contribute to the exerciseâ€triggered release of extracellular vesicles into the circulation. Journal of Extracellular Vesicles, 2019, 8, 1615820.	5.5	163
522	Lipids in Exosome Biology. Handbook of Experimental Pharmacology, 2019, 259, 309-336.	0.9	20
523	Extracellular Vesicles and Ebola Virus: A New Mechanism of Immune Evasion. Viruses, 2019, 11, 410.	1.5	27
524	Mesenchymal stem cell–derived extracellular vesicles: a new impetus of promoting angiogenesis in tissue regeneration. Cytotherapy, 2019, 21, 497-508.	0.3	38
525	Exosomal Induction of Tumor Innervation. Cancer Research, 2019, 79, 3529-3535.	0.4	31
526	Role of extracellular vesicles in stem cell biology. American Journal of Physiology - Cell Physiology, 2019, 317, C303-C313.	2.1	44
527	<i>En bloc</i> release of MVB″ike small extracellular vesicle clusters by colorectal carcinoma cells. Journal of Extracellular Vesicles, 2019, 8, 1596668.	5.5	29
528	Vps4A mediates the localization and exosome release of \hat{l}^2 -catenin to inhibit epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Letters, 2019, 457, 47-59.	3.2	41
529	Proteasome 19S RP and translation preinitiation complexes are secreted within exosomes upon serum starvation. Traffic, 2019, 20, 516-536.	1.3	18
530	Exosomes in cancer development, metastasis, and immunity. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1871, 455-468.	3.3	532
531	Modulation of Host-Pathogen Communication by Extracellular Vesicles (EVs) of the Protozoan Parasite Leishmania. Frontiers in Cellular and Infection Microbiology, 2019, 9, 100.	1.8	45

#	ARTICLE	IF	CITATIONS
532	MDA-9/Syntenin: An emerging global molecular target regulating cancer invasion and metastasis. Advances in Cancer Research, 2019, 144, 137-191.	1.9	17
533	miRNA profiling of urinary exosomes to assess the progression of acute kidney injury. Scientific Reports, 2019, 9, 4692.	1.6	63
534	Syntenin regulates hepatitis C virus sensitivity to neutralizing antibody by promoting E2 secretion through exosomes. Journal of Hepatology, 2019, 71, 52-61.	1.8	33
535	Message in a vesicle – trans-kingdom intercommunication at the vector–host interface. Journal of Cell Science, 2019, 132, .	1.2	27
536	Increased expression and phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoforms in urinary exosomes in pre-eclampsia. Journal of Translational Medicine, 2019, 17, 60.	1.8	18
537	The emerging clinical potential of circulating extracellular vesicles for non-invasive glioma diagnosis and disease monitoring. Brain Tumor Pathology, 2019, 36, 29-39.	1.1	26
538	Extracellular vesicles in onco-nephrology. Experimental and Molecular Medicine, 2019, 51, 1-8.	3.2	19
539	Extracellular Vesicles: Exosomes and Microvesicles, Integrators of Homeostasis. Physiology, 2019, 34, 169-177.	1.6	250
540	AQP1-Containing Exosomes in Peritoneal Dialysis Effluent As Biomarker of Dialysis Efficiency. Cells, 2019, 8, 330.	1.8	23
541	The cardiac syndecan-4 interactome reveals a role for syndecan-4 in nuclear translocation of muscle LIM protein (MLP). Journal of Biological Chemistry, 2019, 294, 8717-8731.	1.6	22
542	Identification of a Rat Mammary Tumor Risk Locus That Is Syntenic with the Commonly Amplified 8q12.1 and 8q22.1 Regions in Human Breast Cancer Patients. G3: Genes, Genomes, Genetics, 2019, 9, 1739-1743.	0.8	5
543	Mechanisms associated with biogenesis of exosomes in cancer. Molecular Cancer, 2019, 18, 52.	7.9	251
544	Emerging roles and therapeutic value of exosomes in cancer metastasis. Molecular Cancer, 2019, 18, 53.	7.9	98
545	Crosstalk between tumor cells and lymphocytes modulates heparanase expression. Journal of Translational Medicine, 2019, 17, 103.	1.8	13
546	Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Molecular Cancer, 2019, 18, 75.	7.9	853
547	ALIX increases protein content and protective function of iPSC-derived exosomes. Journal of Molecular Medicine, 2019, 97, 829-844.	1.7	23
549	Tumorâ€derived exosomes: Implication in angiogenesis and antiangiogenesis cancer therapy. Journal of Cellular Physiology, 2019, 234, 16885-16903.	2.0	92
550	Live Tracking of Inter-organ Communication by Endogenous Exosomes InÂVivo. Developmental Cell, 2019, 48, 573-589.e4.	3.1	231

#	ARTICLE	IF	CITATIONS
551	Studying the Fate of Tumor Extracellular Vesicles at High Spatiotemporal Resolution Using the Zebrafish Embryo. Developmental Cell, 2019, 48, 554-572.e7.	3.1	160
552	Mitochondrial Dysfunction and Aging: Insights from the Analysis of Extracellular Vesicles. International Journal of Molecular Sciences, 2019, 20, 805.	1.8	125
553	A PDZ Protein MDA-9/Syntenin: As a Target for Cancer Therapy. Computational and Structural Biotechnology Journal, 2019, 17, 136-141.	1.9	11
554	Exosomes, new biomarkers in early cancer detection. Analytical Biochemistry, 2019, 571, 1-13.	1.1	103
555	DENN domain-containing protein FAM45A regulates the homeostasis of late/multivesicular endosomes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 916-929.	1.9	18
556	The Relationship between Exosomes and Cancer: Implications for Diagnostics and Therapeutics. BioDrugs, 2019, 33, 137-158.	2.2	18
557	Ticket to a bubble ride: Cargo sorting into exosomes and extracellular vesicles. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 140203.	1.1	179
558	Exosome in Cardiovascular Diseases: A Complex World Full of Hope. Cells, 2019, 8, 166.	1.8	103
559	Stimulated release of intraluminal vesicles from Weibel-Palade bodies. Blood, 2019, 133, 2707-2717.	0.6	29
560	Extracellular Vesicles: Living Prototypal Communication System. , 2019, , .		0
561	Interorgan communication by exosomes, adipose tissue, and adiponectin in metabolic syndrome. Journal of Clinical Investigation, 2019, 129, 4041-4049.	3.9	164
562	The Contrasting Role of Extracellular Vesicles in Vascular Inflammation and Tissue Repair. Frontiers in Pharmacology, 2019, 10, 1479.	1.6	68
563	Distinct role of Sirtuin 1 (SIRT1) and Sirtuin 2 (SIRT2) in inhibiting cargo-loading and release of extracellular vesicles. Scientific Reports, 2019, 9, 20049.	1.6	32
564	A Paradigm in Immunochemistry, Revealed by Monoclonal Antibodies to Spatially Distinct Epitopes on Syntenin-1. International Journal of Molecular Sciences, 2019, 20, 6035.	1.8	5
565	Genetic Deletion of Syndecan-4 Alters Body Composition, Metabolic Phenotypes, and the Function of Metabolic Tissues in Female Mice Fed A High-Fat Diet (Running Title: Sdc4 Deficiency Affects Metabolic) Tj ETQq0	OLO rgBT	/Owerlock 10
566	Dendritic cell extracellular vesicles. International Review of Cell and Molecular Biology, 2019, 349, 213-249.	1.6	43
567	Engineered Extracellular Vesicles as a Reliable Tool in Cancer Nanomedicine. Cancers, 2019, 11, 1979.	1.7	67
568	Extracellular Vesicles for Research on Psychiatric Disorders. Schizophrenia Bulletin, 2019, 45, 7-16.	2.3	12

#	Article	IF	CITATIONS
569	Exosome-Mediated Signaling in Epithelial to Mesenchymal Transition and Tumor Progression. Journal of Clinical Medicine, 2019, 8, 26.	1.0	55
570	Oncogenic Regulation of Extracellular Vesicle Proteome and Heterogeneity. Proteomics, 2019, 19, e1800169.	1.3	27
571	Apolipoprotein E4 genotype compromises brain exosome production. Brain, 2019, 142, 163-175.	3.7	86
572	RAB27A promotes melanoma cell invasion and metastasis <i>via</i> regulation of proâ€invasive exosomes. International Journal of Cancer, 2019, 144, 3070-3085.	2.3	72
573	Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nature Cell Biology, 2019, 21, 9-17.	4.6	2,408
574	Role of tumor-derived exosomes in cancer metastasis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1871, 12-19.	3.3	82
575	Heparan sulfate proteoglycan (HSPG) can take part in cell division: inside and outside. Cellular and Molecular Life Sciences, 2019, 76, 865-871.	2.4	6
576	Enhanced extracellular vesicle production and ethanol-mediated vascularization bioactivity via a 3D-printed scaffold-perfusion bioreactor system. Acta Biomaterialia, 2019, 95, 236-244.	4.1	91
577	Post-translational and transcriptional dynamics – regulating Âextracellular vesicle biology. Expert Review of Proteomics, 2019, 16, 17-31.	1.3	16
578	The potential diagnostic and prognostic role of extracellular vesicles in glioma: current status and future perspectives. Acta OncolA³gica, 2019, 58, 353-362.	0.8	11
579	Exosomes in hepatocellular carcinoma: a new horizon. Cell Communication and Signaling, 2019, 17, 1.	2.7	115
580	Spotlight on the Transglutaminase 2-Heparan Sulfate Interaction. Medical Sciences (Basel,) Tj ETQq1 1 0.784314	rgBT/Ove	erlock 10 Tf
581	Biogenesis of Extracellular Vesicles during Herpes Simplex Virus 1 Infection: Role of the CD63 Tetraspanin. Journal of Virology, 2019, 93, .	1.5	37
582	Interaction between mesenchymal stromal cellâ€derived extracellular vesicles and immune cells by distinct protein content. Journal of Cellular Physiology, 2019, 234, 8249-8258.	2.0	112
583	Exosomes in perspective: a potential surrogate for stem cell therapy. Odontology / the Society of the Nippon Dental University, 2019, 107, 271-284.	0.9	52
584	Exosomes as a novel cellâ€free therapeutic approach in gastrointestinal diseases. Journal of Cellular Physiology, 2019, 234, 9910-9926.	2.0	42
585	Exosomes and their importance in metastasis, diagnosis, and therapy of colorectal cancer. Journal of Cellular Biochemistry, 2019, 120, 2671-2686.	1.2	52
586	Proteases and glycosidases on the surface of exosomes: Newly discovered mechanisms for extracellular remodeling. Matrix Biology, 2019, 75-76, 160-169.	1.5	123

#	Article	IF	Citations
587	Extracellular Vesicles: Mechanisms in Human Health and Disease. Antioxidants and Redox Signaling, 2019, 30, 813-856.	2.5	92
588	Mesenchymal Stem Cell (MSC)â€Derived Extracellular Vesicles: Potential Therapeutics as MSC Trophic Mediators in Regenerative Medicine. Anatomical Record, 2020, 303, 1735-1742.	0.8	23
589	Engineered extracellular vesicles and their mimetics for clinical translation. Methods, 2020, 177, 80-94.	1.9	26
590	The interplay between agingâ€associated loss of protein homeostasis and extracellular vesicles in neurodegeneration. Journal of Neuroscience Research, 2020, 98, 262-283.	1.3	21
591	Exosome basic mechanisms. , 2020, , 1-21.		6
592	Exosomes, microvesicles, and their friends in solid tumors. , 2020, , 39-80.		3
593	Tumor Liquid Biopsies. Recent Results in Cancer Research, 2020, , .	1.8	11
594	The pleiotropic role of proteoglycans in extracellular vesicle mediated communication in the tumor microenvironment. Seminars in Cancer Biology, 2020, 62, 99-107.	4.3	39
595	Tumorâ€derived exosomes (TDEs): How to avoid the sting in the tail. Medicinal Research Reviews, 2020, 40, 385-412.	5.0	35
596	Biological characteristics of exosomes and genetically engineered exosomes for the targeted delivery of therapeutic agents. Journal of Drug Targeting, 2020, 28, 129-141.	2.1	52
597	Role of heparanase in tumor progression: Molecular aspects and therapeutic options. Seminars in Cancer Biology, 2020, 62, 86-98.	4.3	64
598	Urinary extracellular vesicles: Origin, role as intercellular messengers and biomarkers; efficient sorting and potential treatment options. Acta Physiologica, 2020, 228, e13346.	1.8	62
599	The many functions of ESCRTs. Nature Reviews Molecular Cell Biology, 2020, 21, 25-42.	16.1	565
600	Life in the lumen: The multivesicular endosome. Traffic, 2020, 21, 76-93.	1.3	132
601	Targets, pitfalls and reference materials for liquid biopsy tests in cancer diagnostics. Molecular Aspects of Medicine, 2020, 72, 100828.	2.7	104
602	Infarct Zone: a Novel Platform for Exosome Trade in Cardiac Tissue Regeneration. Journal of Cardiovascular Translational Research, 2020, 13, 686-701.	1.1	19
603	Extracellular Vesicles and Metastasis. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a037275.	2.9	31
604	The ins and outs of lipid rafts: functions in intracellular cholesterol homeostasis, microparticles, and cell membranes. Journal of Lipid Research, 2020, 61, 676-686.	2.0	79

#	Article	IF	CITATIONS
605	Inhibiting extracellular vesicles formation and release: a review of EV inhibitors. Journal of Extracellular Vesicles, 2020, 9, 1703244.	5.5	375
606	Syndecan-4 tunes cell mechanics by activating the kindlin-integrin-RhoA pathway. Nature Materials, 2020, 19, 669-678.	13.3	66
607	Galectin-3 Coordinates a Cellular System for Lysosomal Repair and Removal. Developmental Cell, 2020, 52, 69-87.e8.	3.1	198
608	Extracellular Vesicles in Non-Small-Cell Lung Cancer: Functional Role and Involvement in Resistance to Targeted Treatment and Immunotherapy. Cancers, 2020, 12, 40.	1.7	20
609	Correlation of Micro-Computed Tomography Assessment of Valvular Mineralisation with Histopathological and Immunohistochemical Features of Calcific Aortic Valve Disease. Journal of Clinical Medicine, 2020, 9, 29.	1.0	5
610	Extracellular Vesicles as an Efficient and Versatile System for Drug Delivery. Cells, 2020, 9, 2191.	1.8	66
611	Recent Progress on the Isolation and Detection Methods of Exosomes. Chemistry - an Asian Journal, 2020, 15, 3973-3982.	1.7	44
612	Exosomes: The protagonists in the tale of colorectal cancer?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188426.	3.3	26
613	Abrogating ALIX Interactions Results in Stuttering of the ESCRT Machinery. Viruses, 2020, 12, 1032.	1.5	8
614	Proteomics of Extracellular Vesicles: Update on Their Composition, Biological Roles and Potential Use as Diagnostic Tools in Atherosclerotic Cardiovascular Diseases. Diagnostics, 2020, 10, 843.	1.3	22
615	Mechanistic Actions of microRNAs in Diabetic Wound Healing. Cells, 2020, 9, 2228.	1.8	38
616	The Biological Function and Therapeutic Potential of Exosomes in Cancer: Exosomes as Efficient Nanocommunicators for Cancer Therapy. International Journal of Molecular Sciences, 2020, 21, 7363.	1.8	17
617	Extracellular Vesicles: Recent Developments in Aging and Reproductive Diseases. Frontiers in Cell and Developmental Biology, 2020, 8, 577084.	1.8	8
618	Exosomes and GPI-anchored proteins: Judicious pairs for investigating biomarkers from body fluids. Advanced Drug Delivery Reviews, 2020, 161-162, 110-123.	6.6	23
619	Through the back door: Unconventional protein secretion. Cell Surface, 2020, 6, 100045.	1.5	49
620	Inhibition of $\hat{l}\pm v\hat{l}^2$ 3 integrin impairs adhesion and uptake of tumor-derived small extracellular vesicles. Cell Communication and Signaling, 2020, 18, 158.	2.7	38
621	High frequency acoustic cell stimulation promotes exosome generation regulated by a calcium-dependent mechanism. Communications Biology, 2020, 3, 553.	2.0	65
622	Exosomal MicroRNAs and Organotropism in Breast Cancer Metastasis. Cancers, 2020, 12, 1827.	1.7	36

#	Article	IF	Citations
623	Adiponectin Stimulates Exosome Release to Enhance Mesenchymal Stem-Cell-Driven Therapy of Heart Failure in Mice. Molecular Therapy, 2020, 28, 2203-2219.	3.7	86
624	Emerging Function and Clinical Significance of Exosomal circRNAs in Cancer. Molecular Therapy - Nucleic Acids, 2020, 21, 367-383.	2.3	58
625	Exosome: a significant nano-scale drug delivery carrier. Journal of Materials Chemistry B, 2020, 8, 7591-7608.	2.9	108
626	Intercellular transmission of Seneca Valley virus mediated by exosomes. Veterinary Research, 2020, 51, 91.	1.1	7
627	Dexosomes as a cell-free vaccine for cancer immunotherapy. Journal of Experimental and Clinical Cancer Research, 2020, 39, 258.	3.5	79
628	Mechanisms of Action of EGFR Tyrosine Kinase Receptor Incorporated in Extracellular Vesicles. Cells, 2020, 9, 2505.	1.8	18
629	The Dichotomous Role of Extracellular Vesicles in the Central Nervous System. IScience, 2020, 23, 101456.	1.9	22
630	Extracellular Vesicles in Viral Infections: Two Sides of the Same Coin?. Frontiers in Cellular and Infection Microbiology, 2020, 10, 593170.	1.8	50
631	Phosphorylation of Ykt6 SNARE Domain Regulates Its Membrane Recruitment and Activity. Biomolecules, 2020, 10, 1560.	1.8	6
632	Extracellular Vesicle Membrane-Associated Proteins: Emerging Roles in Tumor Angiogenesis and Anti-Angiogenesis Therapy Resistance. International Journal of Molecular Sciences, 2020, 21, 5418.	1.8	28
633	Exosomes: Multifaceted Messengers in Atherosclerosis. Current Atherosclerosis Reports, 2020, 22, 57.	2.0	33
634	Exosomal cargos modulate autophagy in recipient cells via different signaling pathways. Cell and Bioscience, 2020, 10, 92.	2.1	54
635	Transmissible Endosomal Intoxication: A Balance between Exosomes and Lysosomes at the Basis of Intercellular Amyloid Propagation. Biomedicines, 2020, 8, 272.	1.4	18
636	The Biology of Exosomes in Breast Cancer Progression: Dissemination, Immune Evasion and Metastatic Colonization. Cancers, 2020, 12, 2179.	1.7	43
637	Regulatory Role of Immune Cell-Derived Extracellular Vesicles in Cancer: The Message Is in the Envelope. Frontiers in Immunology, 2020, 11, 1525.	2.2	19
638	Proteome of Glioblastoma-Derived Exosomes as a Source of Biomarkers. Biomedicines, 2020, 8, 216.	1.4	37
639	Exosomes: Emerging biomarkers and targets in folliculogenesis and endometriosis. Journal of Reproductive Immunology, 2020, 142, 103181.	0.8	22
640	The miRâ€1908/SRM regulatory axis contributes to extracellular vesicle secretion in prostate cancer. Cancer Science, 2020, 111, 3258-3267.	1.7	11

#	Article	IF	CITATIONS
641	Alix and Syntenin-1 direct amyloid precursor protein trafficking into extracellular vesicles. BMC Molecular and Cell Biology, 2020, 21, 58.	1.0	20
642	Exosome: A New Player in Translational Nanomedicine. Journal of Clinical Medicine, 2020, 9, 2380.	1.0	47
643	Microdomains form on the luminal face of neuronal extracellular vesicle membranes. Scientific Reports, 2020, 10, 11953.	1.6	14
644	The Convergence of Extracellular Vesicle and GPCR Biology. Trends in Pharmacological Sciences, 2020, 41, 627-640.	4.0	21
645	Exosomes as therapeutic solutions for pancreatic cancer. Drug Discovery Today, 2020, 25, 2245-2256.	3.2	8
646	ALIX- and ESCRT-III–dependent sorting of tetraspanins to exosomes. Journal of Cell Biology, 2020, 219, .	2.3	215
647	Galectins in Intra- and Extracellular Vesicles. Biomolecules, 2020, 10, 1232.	1.8	33
648	The evolving translational potential of small extracellular vesicles in cancer. Nature Reviews Cancer, 2020, 20, 697-709.	12.8	295
649	The Role of Proteoglycans in Cancer Metastasis and Circulating Tumor Cell Analysis. Frontiers in Cell and Developmental Biology, 2020, 8, 749.	1.8	49
650	Extracellular Vesicles in the Development of Cancer Therapeutics. International Journal of Molecular Sciences, 2020, 21, 6097.	1.8	40
651	Polarized human cholangiocytes release distinct populations of apical and basolateral small extracellular vesicles. Molecular Biology of the Cell, 2020, 31, 2463-2474.	0.9	11
652	Biosynthesized Multivalent Lacritin Peptides Stimulate Exosome Production in Human Corneal Epithelium. International Journal of Molecular Sciences, 2020, 21, 6157.	1.8	6
653	Role of exosomes in malignant glioma: microRNAs and proteins in pathogenesis and diagnosis. Cell Communication and Signaling, 2020, 18, 120.	2.7	64
654	Mesenchymal Stem Cell-Derived Extracellular Vesicles and Their Therapeutic Potential. Stem Cells International, 2020, 2020, 1-10.	1.2	56
655	Exosomes as a new pain biomarker opportunity. Molecular Pain, 2020, 16, 174480692095780.	1.0	28
656	<p>Extracellular Vesicle-Related Thrombosis in Viral Infection</p> . International Journal of General Medicine, 2020, Volume 13, 559-568.	0.8	10
657	The crosstalk: exosomes and lipid metabolism. Cell Communication and Signaling, 2020, 18, 119.	2.7	93
658	Uptake and Fate of Extracellular Membrane Vesicles: Nucleoplasmic Reticulum-Associated Late Endosomes as a New Gate to Intercellular Communication. Cells, 2020, 9, 1931.	1.8	38

#	ARTICLE	IF	Citations
659	Stem Cell-Derived Exosomes as Therapeutic Approach for Neurodegenerative Disorders: From Biology to Biotechnology. Cells, 2020, 9, 2663.	1.8	26
660	Extracellular Vesicles: Messengers of p53 in Tumor–Stroma Communication and Cancer Metastasis. International Journal of Molecular Sciences, 2020, 21, 9648.	1.8	23
661	Molecular Pathways Modulated by Mesenchymal Stromal Cells and Their Extracellular Vesicles in Experimental Models of Liver Fibrosis. Frontiers in Cell and Developmental Biology, 2020, 8, 594794.	1.8	17
662	Pharmacological inhibition of syntenin PDZ2 domain impairs breast cancer cell activities and exosome loading with syndecan and EpCAM cargo. Journal of Extracellular Vesicles, 2020, 10, e12039.	5.5	27
663	Extracellular Vesicles and Damage-Associated Molecular Patterns: A Pandora's Box in Health and Disease. Frontiers in Immunology, 2020, 11, 601740.	2.2	32
664	Cooperation and Interplay between EGFR Signalling and Extracellular Vesicle Biogenesis in Cancer. Cells, 2020, 9, 2639.	1.8	13
665	Size-Exclusion Chromatography as a Technique for the Investigation of Novel Extracellular Vesicles in Cancers, 2020, 12, 3156.	1.7	23
666	The Evolving Role of Caveolin-1: A Critical Regulator of Extracellular Vesicles. Medical Sciences (Basel, Switzerland), 2020, 8, 46.	1.3	25
667	A Structural View on ESCRT-Mediated Abscission. Frontiers in Cell and Developmental Biology, 2020, 8, 586880.	1.8	10
668	Exosomal PD-L1: New Insights Into Tumor Immune Escape Mechanisms and Therapeutic Strategies. Frontiers in Cell and Developmental Biology, 2020, 8, 569219.	1.8	59
669	Biology of extracellular vesicles secreted from senescent cells as senescenceâ€associated secretory phenotype factors. Geriatrics and Gerontology International, 2020, 20, 539-546.	0.7	37
670	Synergies in exosomes and autophagy pathways for cellular homeostasis and metastasis of tumor cells. Cell and Bioscience, 2020, 10, 64.	2.1	92
671	Proteomic Profiling of Small Extracellular Vesicles Secreted by Human Pancreatic Cancer Cells Implicated in Cellular Transformation. Scientific Reports, 2020, 10, 7713.	1.6	19
672	Impact of Increased FUT8 Expression on the Extracellular Vesicle Proteome in Prostate Cancer Cells. Journal of Proteome Research, 2020, 19, 2195-2205.	1.8	28
673	Role of ncRNAs in modulation of liver fibrosis by extracellular vesicles. ExRNA, 2020, 2, .	1.0	5
674	DNA Damage Regulates Senescence-Associated Extracellular Vesicle Release via the Ceramide Pathway to Prevent Excessive Inflammatory Responses. International Journal of Molecular Sciences, 2020, 21, 3720.	1.8	45
675	Structural Similarity with Cholesterol Reveals Crucial Insights into Mechanisms Sustaining the Immunomodulatory Activity of the Mycotoxin Alternariol. Cells, 2020, 9, 847.	1.8	20
676	Extracellular Vesicle- and Extracellular Vesicle Mimetics-Based Drug Delivery Systems: New Perspectives, Challenges, and Clinical Developments. Pharmaceutics, 2020, 12, 442.	2.0	77

#	Article	IF	Citations
677	MDA-9/Syntenin/SDCBP: new insights into a unique multifunctional scaffold protein. Cancer and Metastasis Reviews, 2020, 39, 769-781.	2.7	23
678	Mechanisms for biogenesis and release of neuronal extracellular vesicles. Current Opinion in Neurobiology, 2020, 63, 104-110.	2.0	20
679	Homotrimer cavin1 interacts with caveolin1 to facilitate tumor growth and activate microglia through extracellular vesicles in glioma. Theranostics, 2020, 10, 6674-6694.	4.6	11
680	Pathogen-host interaction mediated by vesicle-based secretion in schistosomes. Protoplasma, 2020, 257, 1277-1287.	1.0	7
681	Exosomes in hypoxia-induced remodeling of the tumor microenvironment. Cancer Letters, 2020, 488, 1-8.	3.2	55
682	Tissue engineering to better understand senescence: Organotypics come of age. Mechanisms of Ageing and Development, 2020, 190, 111261.	2.2	5
683	Exploring Extracellular Vesicles Biogenesis in Hypothalamic Cells through a Heavy Isotope Pulse/Trace Proteomic Approach. Cells, 2020, 9, 1320.	1.8	11
684	SDCBP/MDA-9/syntenin phosphorylation by AURKA promotes esophageal squamous cell carcinoma progression through the EGFR-PI3K-Akt signaling pathway. Oncogene, 2020, 39, 5405-5419.	2.6	22
685	Effects of oocyteâ€derived paracrine factors on release of extracellular vesicles by murine mural granulosa cells in vitro. Animal Science Journal, 2020, 91, e13385.	0.6	4
686	CASK, the Soluble Glomerular Permeability Factor, Is Secreted by Macrophages in Patients With Recurrent Focal and Segmental Glomeruloâ€"Sclerosis. Frontiers in Immunology, 2020, 11, 875.	2.2	3
687	Comprehensive landscape of extracellular vesicle-derived RNAs in cancer initiation, progression, metastasis and cancer immunology. Molecular Cancer, 2020, 19, 102.	7.9	129
688	Extracellular Vesicles: A Therapeutic Option for Liver Fibrosis. International Journal of Molecular Sciences, 2020, 21, 4255.	1.8	34
689	Epstein-Barr Virus LMP1 Promotes Syntenin-1- and Hrs-Induced Extracellular Vesicle Formation for Its Own Secretion To Increase Cell Proliferation and Migration. MBio, 2020, 11, .	1.8	43
690	Mesenchymal stem cell-derived extracellular vesicle-based therapies protect against coupled degeneration of the central nervous and vascular systems in stroke. Ageing Research Reviews, 2020, 62, 101106.	5.0	62
691	The function and clinical application of extracellular vesicles in innate immune regulation. Cellular and Molecular Immunology, 2020, 17, 323-334.	4.8	171
692	Potential Roles of Exosomes in Parkinson's Disease: From Pathogenesis, Diagnosis, and Treatment to Prognosis. Frontiers in Cell and Developmental Biology, 2020, 8, 86.	1.8	84
693	Exosomal noncoding RNAs in Glioma: biological functions and potential clinical applications. Molecular Cancer, 2020, 19, 66.	7.9	218
694	EV-Ident: Identifying Tumor-Specific Extracellular Vesicles by Size Fractionation and Single-Vesicle Analysis. Analytical Chemistry, 2020, 92, 6010-6018.	3.2	22

#	Article	IF	CITATIONS
695	Utilization of Human Induced Pluripotent Stem Cells for Cardiac Repair. Frontiers in Cell and Developmental Biology, 2020, 8, 36.	1.8	20
696	Biogenesis, Biologic Function and Clinical Potential of Exosomes in Different Diseases. Applied Sciences (Switzerland), 2020, 10, 4428.	1.3	12
697	Helminth genome analysis reveals conservation of extracellular vesicle biogenesis pathways but divergence of RNA loading machinery between phyla. International Journal for Parasitology, 2020, 50, 655-661.	1.3	12
698	Galectin-3 Released by Pancreatic Ductal Adenocarcinoma Suppresses $\hat{I}^3\hat{I}$ T Cell Proliferation but Not Their Cytotoxicity. Frontiers in Immunology, 2020, 11 , 1328 .	2.2	16
699	Ykt6-dependent endosomal recycling is required for Wnt secretion in the <i>Drosophila</i> wing epithelium. Development (Cambridge), 2020, 147, .	1.2	18
700	Extracellular Vesicles as Delivery Vehicles of Specific Cellular Cargo. Cells, 2020, 9, 1601.	1.8	66
701	Tetraspanin-6 negatively regulates exosome production. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5913-5922.	3.3	52
702	Fibroblast Growth Factor 2â€Mediated Regulation of Neuronal Exosome Release Depends on VAMP3/Cellubrevin in Hippocampal Neurons. Advanced Science, 2020, 7, 1902372.	5.6	33
703	Electron Microscopy-Based Comparison and Investigation of the Morphology of Exosomes Derived from Hepatocellular Carcinoma Cells Isolated at Different Centrifugal Speeds. Microscopy and Microanalysis, 2020, 26, 310-318.	0.2	6
704	MDA-9/Syntenin (SDCBP): Novel gene and therapeutic target for cancer metastasis. Pharmacological Research, 2020, 155, 104695.	3.1	29
705	Inside(sight) of tiny communicator: exosome biogenesis, secretion, and uptake. Molecular and Cellular Biochemistry, 2020, 467, 77-94.	1.4	146
706	Lipid Rafts in Exosome Biogenesis. Biochemistry (Moscow), 2020, 85, 177-191.	0.7	56
707	Non-Exosomal and Exosomal Circulatory MicroRNAs: Which Are More Valid as Biomarkers?. Frontiers in Pharmacology, 2019, 10, 1500.	1.6	129
708	Inclusion Biogenesis, Methods of Isolation and Clinical Application of Human Cellular Exosomes. Journal of Clinical Medicine, 2020, 9, 436.	1.0	115
709	Inside-out: from endosomes to extracellular vesicles in fungal RNA transport. Fungal Biology Reviews, 2020, 34, 89-99.	1.9	18
710	Epsteinâ€Barr virusâ€encoded latent membrane protein 1 promotes extracellular vesicle secretion through syndecanâ€2 and synaptotagminâ€kkeâ€4 in nasopharyngeal carcinoma cells. Cancer Science, 2020, 111, 857-868.	1.7	22
711	Where does the cargo go?: Solutions to provide experimental support for the "extracellular vesicle cargo transfer hypothesis― Journal of Cell Communication and Signaling, 2020, 14, 135-146.	1.8	40
712	Exosomes in Bone Sarcomas: Key Players in Metastasis. Cells, 2020, 9, 241.	1.8	27

#	Article	IF	CITATIONS
713	Unraveling the mechanisms that specify molecules for secretion in extracellular vesicles. Methods, 2020, 177, 15-26.	1.9	50
714	Current Knowledge and Future Perspectives on Mesenchymal Stem Cell-Derived Exosomes as a New Therapeutic Agent. International Journal of Molecular Sciences, 2020, 21, 727.	1.8	175
715	Communication in tiny packages: Exosomes as means of tumor-stroma communication. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1873, 188340.	3.3	51
716	A live cell reporter of exosome secretion and uptake reveals pathfinding behavior of migrating cells. Nature Communications, 2020, 11, 2092.	5.8	162
717	miR-26a regulates extracellular vesicle secretion from prostate cancer cells via targeting SHC4, PFDN4, and CHORDC1. Science Advances, 2020, 6, eaay3051.	4.7	39
718	Dual Neutral Sphingomyelinase-2/Acetylcholinesterase Inhibitors for the Treatment of Alzheimer's Disease. ACS Chemical Biology, 2020, 15, 1671-1684.	1.6	17
720	The Biogenesis, Biology, and Clinical Significance of Exosomal PD-L1 in Cancer. Frontiers in Immunology, 2020, 11, 604.	2.2	51
721	Alphaherpesvirus gB Homologs Are Targeted to Extracellular Vesicles, but They Differentially Affect MHC Class II Molecules. Viruses, 2020, 12, 429.	1.5	12
722	The Flemmingsome reveals an ESCRT-to-membrane coupling via ALIX/syntenin/syndecan-4 required for completion of cytokinesis. Nature Communications, 2020, 11, 1941.	5.8	61
723	Tumor microenvironment complexity and therapeutic implications at a glance. Cell Communication and Signaling, 2020, 18, 59.	2.7	909
724	Targeting and Crossing the Blood-Brain Barrier with Extracellular Vesicles. Cells, 2020, 9, 851.	1.8	270
725	Release of extracellular vesicle miR-494-3p by ARPE-19 cells with impaired mitochondria. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129598.	1.1	22
726	Dancing with Trojan horses: an interplay between the extracellular vesicles and viruses. Journal of Biomolecular Structure and Dynamics, 2021, 39, 3034-3060.	2.0	27
727	Role of bacterial infections in extracellular vesicles release and impact on immune response. Biomedical Journal, 2021, 44, 157-164.	1.4	23
728	The role of extracellular vesicles in skeletal muscle and systematic adaptation to exercise. Journal of Physiology, 2021, 599, 845-861.	1.3	76
729	The novel target:exosoms derived from M2 macrophage. International Reviews of Immunology, 2021, 40, 183-196.	1.5	9
730	An exosome pathway without an ESCRT. Cell Research, 2021, 31, 105-106.	5.7	42
731	Stimulation of exosome biogenesis by adiponectin, a circulating factor secreted from adipocytes. Journal of Biochemistry, 2021, 169, 173-179.	0.9	21

#	Article	IF	CITATIONS
732	Exosomes: A new horizon in modern medicine. Life Sciences, 2021, 264, 118623.	2.0	39
733	Engineered extracellular vesicle decoy receptor-mediated modulation of the IL6 trans-signalling pathway in muscle. Biomaterials, 2021, 266, 120435.	5.7	26
734	Therapeutic Potential of Extracellular Vesicles in Hypertension-Associated Kidney Disease. Hypertension, 2021, 77, 28-38.	1.3	18
735	Biological role and clinical relevance of extracellular vesicles as key mediators of cell communication in cancer. Advances in Biomembranes and Lipid Self-Assembly, 2021, 33, 37-117.	0.3	4
736	Shedding Light on Extracellular Vesicle Biogenesis and Bioengineering. Advanced Science, 2021, 8, 2003505.	5.6	192
737	Glutaminase in microglia: A novel regulator of neuroinflammation. Brain, Behavior, and Immunity, 2021, 92, 139-156.	2.0	30
738	Reviewing the role of cardiac exosomes in myocardial repair at a glance. Cell Biology International, 2021, 45, 1352-1363.	1.4	6
739	Engineering approaches for effective therapeutic applications based on extracellular vesicles. Journal of Controlled Release, 2021, 330, 15-30.	4.8	45
740	Role of Exosomes in Biological Communication Systems. , 2021, , .		10
741	Slac2-b Coordinates Extracellular Vesicle Secretion to Regulate Keratinocyte Adhesion and Migration. Journal of Investigative Dermatology, 2021, 141, 523-532.e2.	0.3	8
742	Small extracellular vesicles (sEVs): discovery, functions, applications, detection methods and various engineered forms. Expert Opinion on Biological Therapy, 2021, 21, 371-394.	1.4	20
743	Trophoblastic extracellular vesicles and viruses: Friends or foes?. American Journal of Reproductive Immunology, 2021, 85, e13345.	1.2	4
744	RAB31 marks and controls an ESCRT-independent exosome pathway. Cell Research, 2021, 31, 157-177.	5.7	212
745	Stomatin is highly expressed in exosomes of different origin and is a promising candidate as an exosomal marker. Journal of Cellular Biochemistry, 2021, 122, 100-115.	1.2	16
746	Extracellular Vesicles in Inflammatory Bowel Disease: Small Particles, Big Players. Journal of Crohn's and Colitis, 2021, 15, 499-510.	0.6	29
747	Extracellular vesicles derived from inflamed murine colorectal tissue induce fibroblast proliferation via epidermal growth factor receptor. FEBS Journal, 2021, 288, 1906-1917.	2.2	11
748	Exosome-mediated bioinspired drug delivery. , 2021, , 219-240.		0
749	Mesenchymal stem cell-derived extracellular vesicles ameliorate Alzheimer's disease-like phenotypes in a preclinical mouse model. Theranostics, 2021, 11, 8129-8142.	4.6	88

#	Article	IF	Citations
750	Exosomes from adiposeâ€derived stem cells and application to skin wound healing. Cell Proliferation, 2021, 54, e12993.	2.4	190
751	Exosomes in Parkinson disease. Journal of Neurochemistry, 2021, 157, 413-428.	2.1	62
752	Syndecan-3: A Signaling Conductor in the Musculoskeletal System. Biology of Extracellular Matrix, 2021, , 153-177.	0.3	2
753	Introduction to the Community of Extracellular Vesicles. Sub-Cellular Biochemistry, 2021, 97, 3-18.	1.0	18
754	Virus Budding. , 2021, , 519-528.		17
755	Microglial recruitment and mechanisms involved in the disruption of afferent synaptic terminals on spinal cord motor neurons after acute peripheral nerve injury. Glia, 2021, 69, 1216-1240.	2.5	22
756	Socially Distanced Intercellular Communication: Mechanisms for Extracellular Vesicle Cargo Delivery. Sub-Cellular Biochemistry, 2021, 97, 179-209.	1.0	5
757	Exosomes in atherosclerosis: performers, bystanders, biomarkers, and therapeutic targets. Theranostics, 2021, 11, 3996-4010.	4.6	70
758	Targeted delivery of extracellular vesicles in heart injury. Theranostics, 2021, 11, 2263-2277.	4.6	50
7 59	Extracellular vesicles: Roles and applications in drug-induced liver injury. Advances in Clinical Chemistry, 2021, 102, 63-125.	1.8	9
760	Function of exosomes in neurological disorders and brain tumors., 2021, 2, 55-79.		8
761	A High-Affinity Peptide Ligand Targeting Syntenin Inhibits Glioblastoma. Journal of Medicinal Chemistry, 2021, 64, 1423-1434.	2.9	10
762	Extracellular Vesicle Transportation and Uptake by Recipient Cells: A Critical Process to Regulate Human Diseases. Processes, 2021, 9, 273.	1.3	53
763	Progress on pivotal role and application of exosome in lung cancer carcinogenesis, diagnosis, therapy and prognosis. Molecular Cancer, 2021, 20, 22.	7.9	103
765	Regulation of Antitumor Immune Responses by Exosomes Derived from Tumor and Immune Cells. Cancers, 2021, 13, 847.	1.7	14
766	Exosomes and Cell Communication: From Tumour-Derived Exosomes and Their Role in Tumour Progression to the Use of Exosomal Cargo for Cancer Treatment. Cancers, 2021, 13, 822.	1.7	40
767	Treatment for Hepatocellular Carcinoma Is Enhanced When Norcantharidin Is Encapsulated in Exosomes Derived from Bone Marrow Mesenchymal Stem Cells. Molecular Pharmaceutics, 2021, 18, 1003-1013.	2.3	42
768	Syntenin-knock out reduces exosome turnover and viral transduction. Scientific Reports, 2021, 11, 4083.	1.6	19

#	Article	IF	CITATIONS
769	A potent and selective small molecule inhibitor of myoferlin attenuates colorectal cancer progression. Clinical and Translational Medicine, 2021, 11, e289.	1.7	14
770	Syndecan receptors: pericellular regulators in development and inflammatory disease. Open Biology, 2021, 11, 200377.	1.5	29
771	Cardiac Exosomes in Ischemic Heart Diseaseâ€"A Narrative Review. Diagnostics, 2021, 11, 269.	1.3	11
772	A Comprehensive Review on Factors Influences Biogenesis, Functions, Therapeutic and Clinical Implications of Exosomes. International Journal of Nanomedicine, 2021, Volume 16, 1281-1312.	3.3	141
773	The Interplay between ESCRT and Viral Factors in the Enveloped Virus Life Cycle. Viruses, 2021, 13, 324.	1.5	21
774	Why Cells and Viruses Cannot Survive without an ESCRT. Cells, 2021, 10, 483.	1.8	16
775	Exosome-Derived Mediators as Potential Biomarkers for Cardiovascular Diseases: A Network Approach. Proteomes, 2021, 9, 8.	1.7	21
776	Autophagy and Extracellular Vesicles in Colorectal Cancer: Interactions and Common Actors?. Cancers, 2021, 13, 1039.	1.7	8
777	The ins and outs of microvesicles. FASEB BioAdvances, 2021, 3, 399-406.	1.3	60
778	Oncolytic Virus Therapy Alters the Secretome of Targeted Glioblastoma Cells. Cancers, 2021, 13, 1287.	1.7	8
779	Phosphatase Shp2 regulates biogenesis of small extracellular vesicles by dephosphorylating Syntenin. Journal of Extracellular Vesicles, 2021, 10, e12078.	5 . 5	18
780	Matrix Vesicles: Role in Bone Mineralization and Potential Use as Therapeutics. Pharmaceuticals, 2021, 14, 289.	1.7	44
781	Emerging roles of extracellular vesicles in mediating RNA virus infection. Fundamental Research, 2021, 1, 179-185.	1.6	3
782	Expedition into Exosome Biology: A Perspective of Progress from Discovery to Therapeutic Development. Cancers, 2021, 13, 1157.	1.7	23
783	ALIX and ceramide differentially control polarized small extracellular vesicle release from epithelial cells. EMBO Reports, 2021, 22, e51475.	2.0	57
784	Small Extracellular Vesicles: A Novel Avenue for Cancer Management. Frontiers in Oncology, 2021, 11, 638357.	1.3	34
785	An Insight on the Role of Altered Function and Expression of Exosomes and MicroRNAs in Female Reproductive Diseases. Reproductive Sciences, 2022, 29, 1395-1407.	1.1	16
786	Exosomal Non-coding RNAs-Mediated Crosstalk in the Tumor Microenvironment. Frontiers in Cell and Developmental Biology, 2021, 9, 646864.	1.8	26

#	Article	IF	CITATIONS
787	The Role of Exosomes in Lysosomal Storage Disorders. Biomolecules, 2021, 11, 576.	1.8	13
788	Exosomal therapyâ€"a new frontier in regenerative medicine. Stem Cell Investigation, 2021, 8, 7-7.	1.3	55
789	Insights Into Extracellular Vesicle/Exosome and miRNA Mediated Bi-Directional Communication During Porcine Pregnancy. Frontiers in Veterinary Science, 2021, 8, 654064.	0.9	12
790	Extracellular Vesicles during TriTryps infection: Complexity and future challenges. Molecular Immunology, 2021, 132, 172-183.	1.0	13
791	Exosomal microRNAs in colorectal cancer: Overcoming barriers of the metastatic cascade (Review). International Journal of Molecular Medicine, 2021, 47, .	1.8	16
792	Optimized culture methods for isolating small extracellular vesicles derived from human induced pluripotent stem cells. Journal of Extracellular Vesicles, 2021, 10, e12065.	5.5	13
793	Pharmacological inhibition of nSMase2 reduces brain exosome release and α-synuclein pathology in a Parkinson's disease model. Molecular Brain, 2021, 14, 70.	1.3	15
794	Insights Into Exosomal Non-Coding RNAs Sorting Mechanism and Clinical Application. Frontiers in Oncology, 2021, 11, 664904.	1.3	24
795	The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Communication and Signaling, 2021, 19, 47.	2.7	606
796	Extracellular Vesicles as Promising Carriers in Drug Delivery: Considerations from a Cell Biologist's Perspective. Biology, 2021, 10, 376.	1.3	19
797	Temporal multiomic modeling reveals a B-cell receptor proliferative program in chronic lymphocytic leukemia. Leukemia, 2021, 35, 1463-1474.	3.3	6
799	Biology of the Heparanase–Heparan Sulfate Axis and Its Role in Disease Pathogenesis. Seminars in Thrombosis and Hemostasis, 2021, 47, 240-253.	1.5	16
800	New therapeutic approaches of mesenchymal stem cells-derived exosomes. Journal of Biomedical Science, 2021, 28, 39.	2.6	56
801	Umbilical mesenchymal stem cell-derived extracellular vesicles as enzyme delivery vehicle to treat Morquio A fibroblasts. Stem Cell Research and Therapy, 2021, 12, 276.	2.4	5
802	Proteomic Profile of Saliva in Parkinson's Disease Patients: A Proof of Concept Study. Brain Sciences, 2021, 11, 661.	1.1	14
803	Melanoma-derived extracellular vesicles skew neutrophils into a pro-tumor phenotype. Journal of Leukocyte Biology, 2022, 111, 585-596.	1.5	21
804	Advances in Biological Function and Clinical Application of Small Extracellular Vesicle Membrane Proteins. Frontiers in Oncology, 2021, 11, 675940.	1.3	19
805	From Exosome Glycobiology to Exosome Glycotechnology, the Role of Natural Occurring Polysaccharides. Polysaccharides, 2021, 2, 311-338.	2.1	3

#	Article	IF	CITATIONS
806	Extracellular vesicle-derived miRNA as a novel regulatory system for bi-directional communication in gut-brain-microbiota axis. Journal of Translational Medicine, 2021, 19, 202.	1.8	24
807	Opposing functions for retromer and Rab11 in extracellular vesicle traffic at presynaptic terminals. Journal of Cell Biology, 2021, 220, .	2.3	25
808	Transcriptional profiles of genes potentially involved in extracellular vesicle biogenesis in Schistosoma japonicum. Acta Tropica, 2021, 217, 105851.	0.9	8
809	The Role of Viral Proteins in the Regulation of Exosomes Biogenesis. Frontiers in Cellular and Infection Microbiology, 2021, 11, 671625.	1.8	11
810	Potential Use of Exosomes as Diagnostic Biomarkers and in Targeted Drug Delivery: Progress in Clinical and Preclinical Applications. ACS Biomaterials Science and Engineering, 2021, 7, 2106-2149.	2.6	95
811	Effect of caveolin-1 knockdown on the protein composition of extracellular vesicles secreted by non-small cell lung cancer cells. Uspehi Molekularnoj Onkologii, 2021, 8, 41-46.	0.1	0
812	Microglial Exosomes in Neurodegenerative Disease. Frontiers in Molecular Neuroscience, 2021, 14, 630808.	1.4	41
813	Microglial Extracellular Vesicles as Vehicles for Neurodegeneration Spreading. Biomolecules, 2021, 11, 770.	1.8	31
814	Biogenesis, Membrane Trafficking, Functions, and Next Generation Nanotherapeutics Medicine of Extracellular Vesicles. International Journal of Nanomedicine, 2021, Volume 16, 3357-3383.	3.3	54
815	Binding Features and Functions of ATG3. Frontiers in Cell and Developmental Biology, 2021, 9, 685625.	1.8	28
816	Cell-Secreted Vesicles: Novel Opportunities in Cancer Diagnosis, Monitoring and Treatment. Diagnostics, 2021, 11, 1118.	1.3	5
817	Astrocyte-derived extracellular vesicles: A double-edged sword in central nervous system disorders. Neuroscience and Biobehavioral Reviews, 2021, 125, 148-159.	2.9	45
818	Bacteria- and host-derived extracellular vesicles $\hat{a} \in \text{``two sides of the same coin?. Journal of Cell Science, 2021, 134, .}$	1.2	11
819	Quantitative proteomics identifies the core proteome of exosomes with syntenin-1 as the highest abundant protein and a putative universal biomarker. Nature Cell Biology, 2021, 23, 631-641.	4.6	213
820	EV Cargo Sorting in Therapeutic Development for Cardiovascular Disease. Cells, 2021, 10, 1500.	1.8	16
821	Nociception and Pain: New Roles for Exosomes. Neuroscientist, 2022, 28, 349-363.	2.6	10
822	Exosomal miR-183-5p Shuttled by M2 Polarized Tumor-Associated Macrophage Promotes the Development of Colon Cancer via Targeting THEM4 Mediated PI3K/AKT and NF-κB Pathways. Frontiers in Oncology, 2021, 11, 672684.	1.3	23
823	A Quantitative Pharmacology Model of Exosome-Mediated Drug Efflux and Perturbation-Induced Synergy. Pharmaceutics, 2021, 13, 997.	2.0	5

#	ARTICLE	IF	Citations
824	Bro1 stimulates Vps4 to promote intralumenal vesicle formation during multivesicular body biogenesis. Journal of Cell Biology, 2021, 220, .	2.3	10
825	Improved Small Extracellular Vesicle Secretion of Rat Adiposeâ€Derived Stem Cells by Microgrooved Substrates through Upregulation of the ESCRTâ€Ilâ€Associated ProteinÂAlix. Advanced Healthcare Materials, 2021, 10, e2100492.	3.9	12
826	Extracellular Vesicles – the next frontier in endocrinology. Endocrinology, 2021, 162, .	1.4	14
827	Nanomedicine at the crossroads – A quick guide for IVIVC. Advanced Drug Delivery Reviews, 2021, 179, 113829.	6.6	29
828	Exploring interactions between extracellular vesicles and cells for innovative drug delivery system design. Advanced Drug Delivery Reviews, 2021, 173, 252-278.	6.6	55
829	Exosomes in HIV infection. Current Opinion in HIV and AIDS, 2021, 16, 262-270.	1.5	24
830	Hydrogen peroxide induces progranulin expression to control neurite outgrowth in HT22 cells. Bioscience, Biotechnology and Biochemistry, 2021, 85, 2103-2112.	0.6	2
831	Extracellular Vesicle Nanoarchitectonics for Novel Drug Delivery Applications. Small, 2021, 17, e2102220.	5.2	48
832	The emerging role of exosomes in Alzheimer's disease. Ageing Research Reviews, 2021, 68, 101321.	5.0	68
833	A New Infectious Unit: Extracellular Vesicles Carrying Virus Populations. Annual Review of Cell and Developmental Biology, 2021, 37, 171-197.	4.0	38
834	Extracellular vesicles in cancer diagnostics and therapeutics. , 2021, 223, 107806.		42
835	Extracellular vesicles: Regenerative medicine prospect in hematological malignancies. Cell Biology International, 2021, 45, 2031-2044.	1.4	3
837	Oncogene-regulated release of extracellular vesicles. Developmental Cell, 2021, 56, 1989-2006.e6.	3.1	37
839	Exosomal noncoding RNAs: key players in glioblastoma drug resistance. Molecular and Cellular Biochemistry, 2021, 476, 4081-4092.	1.4	30
840	Emerging Role of Extracellular Vesicles in Biomarking the Gastrointestinal Diseases. Expert Review of Molecular Diagnostics, 2021, 21, 939-962.	1.5	16
842	Single-Cell Cloning of Breast Cancer Cells Secreting Specific Subsets of Extracellular Vesicles. Cancers, 2021, 13, 4397.	1.7	19
843	Syndecan Family Gene and Protein Expression and Their Prognostic Values for Prostate Cancer. International Journal of Molecular Sciences, 2021, 22, 8669.	1.8	15
844	Exosomal tau with seeding activity is released from Alzheimer's disease synapses, and seeding potential is associated with amyloid beta. Laboratory Investigation, 2021, 101, 1605-1617.	1.7	31

#	Article	IF	CITATIONS
845	Nanoplasmonic Sensor Approaches for Sensitive Detection of Disease-Associated Exosomes. ACS Applied Bio Materials, 2021, 4, 6589-6603.	2.3	5
846	Exosomes as cell-derivative carriers in the diagnosis and treatment of central nervous system diseases. Drug Delivery and Translational Research, 2022, 12, 1047-1079.	3.0	27
847	Extracellular Vesicles in Skin Wound Healing. Pharmaceuticals, 2021, 14, 811.	1.7	48
848	Mesenchymal Stem Cell-Derived Exosomes as an Emerging Paradigm for Regenerative Therapy and Nano-Medicine: A Comprehensive Review. Life, 2021, 11, 784.	1.1	17
849	Small Extracellular Vesicles and Metastasis—Blame the Messenger. Cancers, 2021, 13, 4380.	1.7	11
850	Exosomes and Micro-RNAs in Aging Process. Biomedicines, 2021, 9, 968.	1.4	12
851	The role of extracellular vesicles in regulating local and systemic inflammation in cardiovascular disease. Pharmacological Research, 2021, 170, 105692.	3.1	17
852	Exosomes: Small vesicles with big roles in cancer, vaccine development, and therapeutics. Bioactive Materials, 2022, 10, 281-294.	8.6	117
853	Mesenchymal stromal cellâ€derived syndecanâ€2 regulates the immune response during sepsis to foster bacterial clearance and resolution of inflammation. FEBS Journal, 2022, 289, 417-435.	2.2	8
854	In vivo imaging of EVs in zebrafish: New perspectives from "the waterside― FASEB BioAdvances, 2021, 3, 918-929.	1.3	7
855	Galectin-8 Senses Phagosomal Damage and Recruits Selective Autophagy Adapter TAX1BP1 To Control <i>Mycobacterium tuberculosis</i> Infection in Macrophages. MBio, 2021, 12, e0187120.	1.8	42
856	Trends in the biological functions and medical applications of extracellular vesicles and analogues. Acta Pharmaceutica Sinica B, 2021, 11, 2114-2135.	5.7	30
857	Stem Cell-Derived Exosomes Potential Therapeutic Roles in Cardiovascular Diseases. Frontiers in Cardiovascular Medicine, 2021, 8, 723236.	1.1	17
858	Mini Review: Current Trends and Understanding of Exosome Therapeutic Potential in Corneal Diseases. Frontiers in Pharmacology, 2021, 12, 684712.	1.6	9
859	Extracellular Vesicles in Lung Cancer: Prospects for Diagnostic and Therapeutic Applications. Cancers, 2021, 13, 4604.	1.7	10
860	A Comprehensive Insight into the Role of Exosomes in Viral Infection: Dual Faces Bearing Different Functions. Pharmaceutics, 2021, 13, 1405.	2.0	35
861	Molecular insights and clinical impacts of extracellular vesicles in cancer. Oncology Reviews, 2021, 2, 542.	0.8	0
862	Extracellular vesicles: Major actors of heterogeneity in tau spreading among human tauopathies. Molecular Therapy, 2022, 30, 782-797.	3.7	17

#	Article	IF	Citations
863	The biology, function, and applications of exosomes in cancer. Acta Pharmaceutica Sinica B, 2021, 11, 2783-2797.	5.7	209
864	Bardet-Biedl syndrome proteins modulate the release of bioactive extracellular vesicles. Nature Communications, 2021, 12, 5671.	5.8	23
865	Heparan sulfate analogues regulate tumor-derived exosome formation that attenuates exosome functions in tumor processes. International Journal of Biological Macromolecules, 2021, 187, 481-491.	3.6	8
866	Harnessing EV communication to restore antitumor immunity. Advanced Drug Delivery Reviews, 2021, 176, 113838.	6.6	7
867	Exosomes as natural delivery carriers for programmable therapeutic nucleic acid nanoparticles (NANPs). Advanced Drug Delivery Reviews, 2021, 176, 113835.	6.6	50
868	Extracellular Vesicles in Reprogramming of the Ewing Sarcoma Tumor Microenvironment. Frontiers in Cell and Developmental Biology, 2021, 9, 726205.	1.8	7
869	Interactions of ubiquitin and CHMP5 with the V domain of HD-PTP reveals role for regulation of Vps4 ATPase. Molecular Biology of the Cell, 2021, 32, ar42.	0.9	8
870	Column-based Technology for CD9-HPLC Immunoaffinity Isolation of Serum Extracellular Vesicles. Journal of Proteome Research, 2021, 20, 4901-4911.	1.8	20
871	Small extracellular vesicle non-coding RNAs in pancreatic cancer: molecular mechanisms and clinical implications. Journal of Hematology and Oncology, 2021, 14, 141.	6.9	36
872	Application of Extracellular Vesicles in Aquatic Animals: A Review of the Latest Decade. Reviews in Fisheries Science and Aquaculture, 2022, 30, 447-466.	5.1	4
873	Extracellular matrix-based cancer targeting. Trends in Molecular Medicine, 2021, 27, 1000-1013.	3.5	66
874	CD151 enrichment in exosomes of luminal androgen receptor breast cancer cell line contributes to cell invasion. Biochimie, 2021, 189, 65-75.	1.3	4
875	Small extracellular vesicles in cancer. Bioactive Materials, 2021, 6, 3705-3743.	8.6	61
876	New insights into exosome mediated tumor-immune escape: Clinical perspectives and therapeutic strategies. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188624.	3.3	29
877	Biogenesis of Extracellular Vesicles. Sub-Cellular Biochemistry, 2021, 97, 19-43.	1.0	39
878	Heparan Sulfate Glycosaminoglycans: (Un)Expected Allies in Cancer Clinical Management. Biomolecules, 2021, 11, 136.	1.8	20
879	Regulation of exosome production and cargo sorting. International Journal of Biological Sciences, 2021, 17, 163-177.	2.6	179
880	Trends in Research on Exosomes in Cancer Progression and Anticancer Therapy. Cancers, 2021, 13, 326.	1.7	68

#	Article	IF	Citations
881	Epithelial IL-33 appropriates exosome trafficking for secretion in chronic airway disease. JCI Insight, $2021, 6, .$	2.3	12
882	In vivo Roles of Rab27 and Its Effectors in Exocytosis. Cell Structure and Function, 2021, 46, 79-94.	0.5	12
883	Extracellular Vesicles: Recent Developments in Technology and Perspectives for Cancer Liquid Biopsy. Recent Results in Cancer Research, 2020, 215, 319-344.	1.8	20
884	Heparanase Involvement in Exosome Formation. Advances in Experimental Medicine and Biology, 2020, 1221, 285-307.	0.8	14
885	Heparanase in Cancer Metastasis– Heparin as a Potential Inhibitor of Cell Adhesion Molecules. Advances in Experimental Medicine and Biology, 2020, 1221, 309-329.	0.8	8
886	Involvement of Syndecan-1 and Heparanase in Cancer and Inflammation. Advances in Experimental Medicine and Biology, 2020, 1221, 97-135.	0.8	30
887	Heparanase-The Message Comes in Different Flavors. Advances in Experimental Medicine and Biology, 2020, 1221, 253-283.	0.8	19
888	Phosphoinositides and PDZ Domain Scaffolds. Advances in Experimental Medicine and Biology, 2013, 991, 41-57.	0.8	15
889	Characterization and Fine Structure of Exosomes. , 2021, , 27-75.		2
890	The bright and dark side of extracellular vesicles in the senescence-associated secretory phenotype. Mechanisms of Ageing and Development, 2020, 189, 111263.	2.2	49
891	The RNA binding protein FMR1 controls selective exosomal miRNA cargo loading during inflammation. Journal of Cell Biology, 2020, 219, .	2.3	87
892	Nanoelectrical characterization of individual exosomes secreted by AÎ ² 42-ingested cells using electrostatic force microscopy. Nanotechnology, 2021, 32, 025705.	1.3	7
893	ADAPT identifies an ESCRT complex composition that discriminates VCaP from LNCaP prostate cancer cell exosomes. Nucleic Acids Research, 2020, 48, 4013-4027.	6.5	15
905	Syndecan-1 promotes lung fibrosis by regulating epithelial reprogramming through extracellular vesicles. JCI Insight, 2019, 4, .	2.3	50
906	Light- Scattering Methods to Characterize Extracellular Vesicles. , 2014, , 253-278.		2
907	Membrane manipulations by the ESCRT machinery. F1000Research, 2015, 4, 516.	0.8	9
908	Application of a Persistent Heparin Treatment Inhibits the Malignant Potential of Oral Squamous Carcinoma Cells Induced by Tumor Cell-Derived Exosomes. PLoS ONE, 2016, 11, e0148454.	1.1	72
909	The Race against Protease Activation Defines the Role of ESCRTs in HIV Budding. PLoS Pathogens, 2016, 12, e1005657.	2.1	36

#	ARTICLE	IF	CITATIONS
910	Might proton pump or sodiumâ€hydrogen exchanger inhibitors be of value to ameliorate SARsâ€CoVâ€2 pathophysiology?. Physiological Reports, 2021, 8, e14649.	0.7	9
911	Glutamine deprivation alters the origin and function of cancer cell exosomes. EMBO Journal, 2020, 39, e103009.	3.5	64
912	LncRNA PVT1 promotes exosome secretion through YKT6, RAB7, and VAMP3 in pancreatic cancer. Aging, 2020, 12, 10427-10440.	1.4	48
913	Knockout of MDA-9/Syntenin (SDCBP) expression in the microenvironment dampens tumor-supporting inflammation and inhibits melanoma metastasis. Oncotarget, 2016, 7, 46848-46861.	0.8	28
914	Nuclear transport of cancer extracellular vesicle-derived biomaterials through nuclear envelope invagination-associated late endosomes. Oncotarget, 2017, 8, 14443-14461.	0.8	48
915	Syntenin promotes VEGF-induced VEGFR2 endocytosis and angiogenesis by increasing ephrin-B2 function in endothelial cells. Oncotarget, 2017, 8, 38886-38901.	0.8	19
916	Syndecan-1 knockdown inhibits glioma cell proliferation and invasion by deregulating a c-src/FAK-associated signaling pathway. Oncotarget, 2017, 8, 40922-40934.	0.8	28
917	Exosomes of invasive urothelial carcinoma cells are characterized by a specific miRNA expression signature. Oncotarget, 2017, 8, 58278-58291.	0.8	35
918	Chondroitin sulfate proteoglycan serglycin influences protein cargo loading and functions of tumor-derived exosomes. Oncotarget, 2017, 8, 73723-73732.	0.8	20
919	B-cell precursor acute lymphoblastic leukemia and stromal cells communicate through Galectin-3. Oncotarget, 2015, 6, 11378-11394.	0.8	82
920	Extracellular vesicle-mediated transfer of CLIC1 protein is a novel mechanism for the regulation of glioblastoma growth. Oncotarget, 2015, 6, 31413-31427.	0.8	87
921	MDA-9/Syntenin-Slug transcriptional complex promote epithelial-mesenchymal transition and invasion/metastasis in lung adenocarcinoma. Oncotarget, 2016, 7, 386-401.	0.8	20
922	Roles of Exosomes in Ocular Diseases. International Journal of Nanomedicine, 2020, Volume 15, 10519-10538.	3.3	53
923	Exosomes and Lung Cancer: Roles in Pathophysiology, Diagnosis and Therapeutic Applications. Current Medicinal Chemistry, 2020, 28, 308-328.	1.2	48
924	Methods for the Determination of the Purity of Exosomes. Current Pharmaceutical Design, 2020, 25, 4464-4485.	0.9	15
925	Exosomes: Structure, Biogenesis, Types and Application in Diagnosis and Gene and Drug Delivery. Current Gene Therapy, 2020, 20, 195-206.	0.9	22
926	Exosomes: Their Role in Pathogenesis, Diagnosis and Treatment of Diseases. Cancers, 2021, 13, 84.	1.7	36
927	Extracellular Vesicles from Red Blood Cells and Their Evolving Roles in Health, Coagulopathy and Therapy. International Journal of Molecular Sciences, 2021, 22, 153.	1.8	77

#	Article	IF	CITATIONS
928	Pancreatic cancer stem cell markers and exosomes - the incentive push. World Journal of Gastroenterology, 2016, 22, 5971.	1.4	71
929	Bladder cancer cellâ€'secreted exosomal miRâ€'21 activates the PI3K/AKT pathway in macrophages to promote cancer progression. International Journal of Oncology, 2020, 56, 151-164.	1.4	52
930	Detecting circulating tumor material and digital pathology imaging during pancreatic cancer progression. World Journal of Gastrointestinal Oncology, 2017, 9, 235.	0.8	19
931	The regulation of exosome function in the CNS: implications for neurodegeneration. Swiss Medical Weekly, 2015, 145, w14204.	0.8	36
932	Extracellular vesicles: the next generation of biomarkers for liquid biopsy-based prostate cancer diagnosis. Theranostics, 2020, 10, 2309-2326.	4.6	124
933	Exosomes and their role in the micro-/macro-environment: a comprehensive review. Journal of Biomedical Research, 2017, 31, 386.	0.7	93
934	The Emerging Role of Exosomes as Cancer Theranostics. Nanotechnology in the Life Sciences, 2021, , 297-315.	0.4	1
935	Amelioration of systemic inflammation via the display of two different decoy protein receptors on extracellular vesicles. Nature Biomedical Engineering, 2021, 5, 1084-1098.	11.6	41
936	Exosomes: Emerging implementation of nanotechnology for detecting and managing novel corona virus- SARS-CoV-2. Asian Journal of Pharmaceutical Sciences, 2022, 17, 20-34.	4.3	10
937	Crosstalk between autophagy inhibitors and endosome-related secretory pathways: a challenge for autophagy-based treatment of solid cancers. Molecular Cancer, 2021, 20, 140.	7.9	36
938	Impact of native and external factors on exosome release: understanding reactive exosome secretion and its biogenesis. Molecular Biology Reports, 2021, 48, 7559-7573.	1.0	9
939	Converting extracellular vesicles into nanomedicine: loading and unloading of cargo. Materials Today Nano, 2021, 16, 100148.	2.3	19
940	Exosomes: Emerging Cell-Free Based Therapeutics in Dermatologic Diseases. Frontiers in Cell and Developmental Biology, 2021, 9, 736022.	1.8	12
941	MSC-Derived Extracellular Vesicles in Tumors and Therapy. Cancers, 2021, 13, 5212.	1.7	35
942	Application of extracellular vesicles in the diagnosis and treatment of prostate cancer: implications for clinical practice. Critical Reviews in Oncology/Hematology, 2021, 167, 103495.	2.0	11
943	Extracellular vesicles in cardiovascular disease: Biological functions and therapeutic implications. , 2022, 233, 108025.		50
944	Peptide Targeting of PDZ-Dependent Interactions as Pharmacological Intervention in Immune-Related Diseases. Molecules, 2021, 26, 6367.	1.7	3
945	Budding., 2013,, 1-11.		O

#	Article	IF	CITATIONS
946	Role of Extracellular Vesicles in Tissue/Organ Regeneration. Pancreatic Islet Biology, 2014, , 231-244.	0.1	1
948	Necrobiology of Liver Cancer: Other Forms of Cell Death Related or not Related to Apoptosis. , 2016, , 1-18.		0
949	Syndecan Heparan Sulfate Proteoglycans: Regulation, Signaling and Impact on Tumor Biology. Trends in Glycoscience and Glycotechnology, 2016, 28, J77-J88.	0.0	0
950	Necrobiology of Liver Cancer: Other Forms of Cell Death Related or Not Related to Apoptosis. , 2017, , 3245-3261.		0
951	Exosomes: Navigating a New Route in Pancreatic Cancer. Journal of Biomolecular Research $\&$ Therapeutics, 2017, 06, .	0.2	0
952	Budding., 2018,, 199-209.		0
957	Chaperone protein HSC70 regulates intercellular transfer of Y chromosome antigen DBY. Journal of Clinical Investigation, 2019, 129, 2952-2963.	3.9	0
962	Extracellular Vesicles and Their Roles in Cancer Progression. Methods in Molecular Biology, 2021, 2174, 143-170.	0.4	82
965	Roles of Exosomes in Cardiac Fibroblast Activation and Fibrosis. Cells, 2021, 10, 2933.	1.8	9
966	Latest Trend of Milk Derived Exosomes: Cargos, Functions, and Applications. Frontiers in Nutrition, 2021, 8, 747294.	1.6	32
967	Exosomes in Ageing and Motor Neurone Disease: Biogenesis, Uptake Mechanisms, Modifications in Disease and Uses in the Development of Biomarkers and Therapeutics. Cells, 2021, 10, 2930.	1.8	21
968	Deliver on Time or Pay the Fine: Scheduling in Membrane Trafficking. International Journal of Molecular Sciences, 2021, 22, 11773.	1.8	5
969	Promotion or inhibition of extracellular vesicle release: Emerging therapeutic opportunities. Journal of Controlled Release, 2021, 340, 136-148.	4.8	45
970	Advances in extracellular vesicles analysis. Advances in Clinical Chemistry, 2020, 97, 73-116.	1.8	7
972	Extracellular WNTs: Trafficking, Exosomes, and Ligand–Receptor Interaction. Handbook of Experimental Pharmacology, 2021, 269, 29-43.	0.9	4
973	The Good and Bad Sides of Heparanase-1 and Heparanase-2. Advances in Experimental Medicine and Biology, 2020, 1221, 821-845.	0.8	9
974	Biological Roles and Clinical Significance of Exosome-Derived Noncoding RNAs in Bladder Cancer. Frontiers in Oncology, 2021, 11, 704703.	1.3	10
975	Formation, contents, functions of exosomes and their potential in lung cancer diagnostics and therapeutics. Thoracic Cancer, 2021, 12, 3088-3100.	0.8	9

#	Article	IF	Citations
976	miR-4454 Promotes Hepatic Carcinoma Progression by Targeting Vps4A and Rab27A. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-24.	1.9	16
977	Molecular characteristics of anaplastic astrocytomas and isolation of molecular subgroups of their IDH1 mutant forms using in silico analysis. Bulletin of Siberian Medicine, 2020, 19, 177-187.	0.1	0
979	Exosomes: The Crucial Element in Prostate Cancer. , 2021, , 311-319.		0
980	Therapeutic Potential of Mesenchymal Stem/Stromal Cell–Derived Exosomes. , 2021, , 165-181.		O
981	Crossroads of the endosomal machinery: Multivesicular bodies, small extracellular vesicles and autophagy. Trillium Extracellular Vesicles, 2020, 2, 48-53.	0.1	2
982	Therapeutic Potential of Modulating microRNAs in Atherosclerotic Vascular Disease. Current Vascular Pharmacology, 2013, , .	0.8	2
983	Chronic Exposure of Human Endothelial Progenitor Cells to Diabetic Condition Abolished the Regulated Kinetics Activity of Exosomes. Iranian Journal of Pharmaceutical Research, 2018, 17, 1068-1080.	0.3	16
984	Focus on exosomes: novel pathogenic components of leukemia. American Journal of Cancer Research, 2019, 9, 1815-1829.	1.4	17
985	MicroRNAs and exosomes: Cardiac stem cells in heart diseases. Pathology Research and Practice, 2022, 229, 153701.	1.0	10
986	Treatment Failure in Acute Myeloid Leukemia: Focus on the Role of Extracellular Vesicles. Leukemia Research, 2022, 112, 106751.	0.4	8
987	State-of-the-Art: Exosomes in Colorectal Cancer. Current Cancer Drug Targets, 2022, 22, 2-17.	0.8	4
988	Elucidating the Role of Extracellular Vesicles in Pancreatic Cancer. Cancers, 2021, 13, 5669.	1.7	7
989	Tumorâ€derived exosomal PD‣1 in progression of cancer and immunotherapy. Journal of Cellular Physiology, 2022, 237, 1648-1660.	2.0	10
990	Impact of the Main Cardiovascular Risk Factors on Plasma Extracellular Vesicles and Their Influence on the Heart's Vulnerability to Ischemia-Reperfusion Injury. Cells, 2021, 10, 3331.	1.8	6
991	Extra-nuclear histones: origin, significance and perspectives. Molecular and Cellular Biochemistry, 2022, 477, 507-524.	1.4	12
992	Mechanisms of Extracellular Vesicle Biogenesis, Cargo Loading, and Release. Physiology, 0, , .	4.0	2
993	Mesenchymal Stem Cell-Derived Exosomes: The New Frontier for the Treatment of Intervertebral Disc Degeneration. Applied Sciences (Switzerland), 2021, 11, 11222.	1.3	4
994	Selective sorting of microRNAs into exosomes by phase-separated YBX1 condensates. ELife, 2021, 10, .	2.8	70

#	Article	IF	CITATIONS
995	Extracellular vesicles: General features and usefulness in diagnosis and therapeutic management of colorectal cancer. World Journal of Gastrointestinal Oncology, 2021, 13, 1561-1598.	0.8	7
996	Extracellular Vesicles in Lung Cancer Metastasis and Their Clinical Applications. Cancers, 2021, 13, 5633.	1.7	14
997	Enhancing the Therapeutic Potential of Extracellular Vesicles Using Peptide Technology. Methods in Molecular Biology, 2022, 2383, 119-141.	0.4	5
998	Small Extracellular Vesicles and COVID19—Using the "Trojan Horse―to Tackle the Giant. Cells, 2021, 10, 3383.	1.8	12
999	Extracellular Vesicles and Glycosylation. Advances in Experimental Medicine and Biology, 2021, 1325, 137-149.	0.8	6
1000	Tumor-Derived Extracellular Vesicles Regulate Cancer Progression in the Tumor Microenvironment. Frontiers in Molecular Biosciences, 2021, 8, 796385.	1.6	23
1001	Exosome: A novel neurotransmission modulator or non-canonical neurotransmitter?. Ageing Research Reviews, 2022, 74, 101558.	5.0	36
1002	Composition of EVs markers under normoxic and hypoxic conditions depends on the expression level of adaptor protein Ruk/CIN85 in mouse renal carcinoma Renca cells. Biopolymers and Cell, 2021, 37, 325-334.	0.1	0
1003	Exosomes in Parkinson: Revisiting Their Pathologic Role and Potential Applications. Pharmaceuticals, 2022, 15, 76.	1.7	12
1004	Extracellular vesicles in vascular remodeling. Acta Pharmacologica Sinica, 2022, 43, 2191-2201.	2.8	17
1005	Osteosarcoma from the unknown to the use of exosomes as a versatile and dynamic therapeutic approach. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 170, 91-111.	2.0	6
1006	Neutral sphingomyelinase 2 controls exosome secretion by counteracting V-ATPase-mediated endosome acidification. Journal of Cell Science, 2022, 135, .	1.2	31
1007	The Importance of Small Extracellular Vesicles in the Cerebral Metastatic Process. International Journal of Molecular Sciences, 2022, 23, 1449.	1.8	8
1008	Review on Strategies and Technologies for Exosome Isolation and Purification. Frontiers in Bioengineering and Biotechnology, 2021, 9, 811971.	2.0	180
1009	Exosomes and COVID-19: challenges and opportunities. Comparative Clinical Pathology, 2022, 31, 347-354.	0.3	12
1010	Extracellular vesicles derived from endothelial cells in hypoxia contribute to pulmonary artery smooth muscle cell proliferation inâ€vitro and pulmonary hypertension in mice. Pulmonary Circulation, 2022, 12, e12014.	0.8	7
1011	Potential Role of Exosomes in Ischemic Stroke Treatment. Biomolecules, 2022, 12, 115.	1.8	16
1012	Differential release of extracellular vesicle tRNA from oxidative stressed renal cells and ischemic kidneys. Scientific Reports, 2022, 12, 1646.	1.6	3

#	Article	IF	Citations
1013	The role of exosomes in intercellular and interâ€organ communication of the peripheral nervous system. FEBS Letters, 2022, 596, 655-664.	1.3	21
1014	Integrative biology of extracellular vesicles in diabetes mellitus and diabetic complications. Theranostics, 2022, 12, 1342-1372.	4.6	22
1015	Exosomal microRNAs: potential targets for the prevention and treatment of diabetic cardiomyopathy. Journal of Cardiology, 2022, 80, 423-431.	0.8	3
1016	Alcohol Promotes Exosome Biogenesis and Release via Modulating Rabs and miR-192 Expression in Human Hepatocytes. Frontiers in Cell and Developmental Biology, 2021, 9, 787356.	1.8	14
1017	Therapeutic potential of induced pluripotent stem cell–derived extracellular vesicles. , 2022, , 393-449.		0
1018	Secretory Autophagy Forges a Therapy Resistant Microenvironment in Melanoma. Cancers, 2022, 14, 234.	1.7	6
1019	Autophagy and Exosomes: Cross-Regulated Pathways Playing Major Roles in Hepatic Stellate Cells Activation and Liver Fibrosis. Frontiers in Physiology, 2021, 12, 801340.	1.3	12
1020	Installation of O-glycan sulfation capacities in human HEK293Âcells for display of sulfated mucins. Journal of Biological Chemistry, 2022, 298, 101382.	1.6	6
1021	Construction of an exosome-functionalized graphene oxide based composite bionic smart drug delivery system and its anticancer activity. Nanotechnology, 2022, 33, 175101.	1.3	10
1022	Syntenin-1-mediated small extracellular vesicles promotes cell growth, migration, and angiogenesis by increasing onco-miRNAs secretion in lung cancer cells. Cell Death and Disease, 2022, 13, 122.	2.7	18
1023	Exosomes as Natural Nanocarriers for RNA-Based Therapy and Prophylaxis. Nanomaterials, 2022, 12, 524.	1.9	17
1024	Therapy-induced modulation of extracellular vesicles in hepatocellular carcinoma. Seminars in Cancer Biology, 2022, 86, 1088-1101.	4.3	3
1026	Exosomal RNAs: Novel Potential Biomarkers for Diseasesâ€"A Review. International Journal of Molecular Sciences, 2022, 23, 2461.	1.8	32
1028	Liquid biopsy: Exosomal microRNAs as novel diagnostic and prognostic biomarkers in cancer. Molecular Cancer, 2022, 21, 54.	7.9	60
1029	Chloroquine treatment induces secretion of autophagy-related proteins and inclusion of Atg8-family proteins in distinct extracellular vesicle populations. Autophagy, 2022, 18, 2547-2560.	4.3	18
1030	The Therapeutic Potential of Exosomes in Soft Tissue Repair and Regeneration. International Journal of Molecular Sciences, 2022, 23, 3869.	1.8	17
1031	Extracellular Vesicles: Interplay with the Extracellular Matrix and Modulated Cell Responses. International Journal of Molecular Sciences, 2022, 23, 3389.	1.8	34
1032	Exosomes and the cardiovascular system: role in cardiovascular health and disease. Journal of Physiology, 2023, 601, 4923-4936.	1.3	12

#	Article	IF	Citations
1033	Improper Proteostasis: Can It Serve as Biomarkers for Neurodegenerative Diseases?. Molecular Neurobiology, 2022, , 1.	1.9	0
1034	Coreceptor functions of cell surface heparan sulfate proteoglycans. American Journal of Physiology - Cell Physiology, 2022, 322, C896-C912.	2.1	20
1035	LAMP2A regulates the loading of proteins into exosomes. Science Advances, 2022, 8, eabm1140.	4.7	69
1036	Bionanoparticles in cancer imaging, diagnosis, and treatment. View, 2022, 3, .	2.7	40
1037	Challenges and directions in studying cell–cell communication by extracellular vesicles. Nature Reviews Molecular Cell Biology, 2022, 23, 369-382.	16.1	365
1038	Emerging function and clinical significance of extracellular vesicle noncoding RNAs in lung cancer. Molecular Therapy - Oncolytics, 2022, 24, 814-833.	2.0	10
1039	CD9 and folate receptor overexpression are not sufficient for VSV-G-independent lentiviral transduction. PLoS ONE, 2022, 17, e0264642.	1.1	0
1040	Extracellular Vesicles in the Pathogenesis, Treatment, and Diagnosis of Spinal Cord Injury: A Mini-Review. Current Stem Cell Research and Therapy, 2022, 17, 317-327.	0.6	4
1041	New advances in exosome-based targeted drug delivery systems. Critical Reviews in Oncology/Hematology, 2022, 172, 103628.	2.0	47
1042	Pharmacological Inhibition of Exosome Machinery: An Emerging Prospect in Cancer Therapeutics. Current Cancer Drug Targets, 2022, 22, 560-576.	0.8	3
1043	The role of exosome heterogeneity in epithelial ovarian cancer. Advances in Cancer Biology Metastasis, 2022, 4, 100040.	1.1	5
1044	GAPDH controls extracellular vesicle biogenesis and enhances the therapeutic potential of EV mediated siRNA delivery to the brain. Nature Communications, 2021, 12, 6666.	5. 8	42
1045	Extracellular Vesicles: Potential Role in Remote Signaling and Inflammation in Trypanosoma cruzi-Triggered Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 798054.	1.8	10
1046	Regulating the production and biological function of small extracellular vesicles: current strategies, applications and prospects. Journal of Nanobiotechnology, 2021, 19, 422.	4.2	13
1048	A comprehensive study to delineate the role of an extracellular vesicleâ€associated microRNAâ€⊋9a in chronic methamphetamine use disorder. Journal of Extracellular Vesicles, 2021, 10, e12177.	5 . 5	22
1049	The Role of Exosomes in Cancer Progression. International Journal of Molecular Sciences, 2022, 23, 8.	1.8	23
1050	Emerging roles for extracellular vesicles in Schistosoma infection. Acta Tropica, 2022, 232, 106467.	0.9	5
1051	VAP-A and its binding partner CERT drive biogenesis of RNA-containing extracellular vesicles at ER membrane contact sites. Developmental Cell, 2022, 57, 974-994.e8.	3.1	49

#	Article	IF	Citations
1052	Pathogenic Extracellular Vesicle (EV) Signaling in Amyotrophic Lateral Sclerosis (ALS). Neurotherapeutics, 2022, 19, 1119-1132.	2.1	12
1053	Platelet-Derived Exosomes and Atherothrombosis. Frontiers in Cardiovascular Medicine, 2022, 9, 886132.	1.1	8
1054	Message in a Bottle: Endothelial Cell Regulation by Extracellular Vesicles. Cancers, 2022, 14, 1969.	1.7	11
1055	The implications of exosomes in pregnancy: emerging as new diagnostic markers and therapeutics targets. Cell Communication and Signaling, 2022, 20, 51.	2.7	35
1056	Irradiated Cell-Derived Exosomes Transmit Essential Molecules Inducing Radiation Therapy Resistance. International Journal of Radiation Oncology Biology Physics, 2022, 113, 192-202.	0.4	5
1073	Vesicular Ganglioside GM1 From Breast Tumor Cells Stimulated Epithelial-to-Mesenchymal Transition of Recipient MCF-10A Cells. Frontiers in Oncology, 2022, 12, 837930.	1.3	2
1074	Extracellular Vesicles in the Progression and Therapeutic Resistance of Nasopharyngeal Carcinoma. Cancers, 2022, 14, 2289.	1.7	8
1075	Current Knowledge on Exosome Biogenesis, Cargo-Sorting Mechanism and Therapeutic Implications. Membranes, 2022, 12, 498.	1.4	62
1076	Unpacking the Role of Extracellular Vesicles in Ischemic and Hemorrhagic Stroke: Pathophysiology and Therapeutic Implications. Translational Stroke Research, 2023, 14, 146-159.	2.3	5
1077	Functional genome-wide short hairpin RNA library screening identifies key molecules for extracellular vesicle secretion from microglia. Cell Reports, 2022, 39, 110791.	2.9	4
1078	An Emerging Frontier in Intercellular Communication: Extracellular Vesicles in Regeneration. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	12
1079	Tetraspanins interweave EV secretion, endosomal network dynamics and cellular metabolism. European Journal of Cell Biology, 2022, 101, 151229.	1.6	11
1080	Targeting syndecan-1: new opportunities in cancer therapy. American Journal of Physiology - Cell Physiology, 2022, 323, C29-C45.	2.1	11
1081	Extracellular Vesicles as Novel Drug-Delivery Systems through Intracellular Communications. Membranes, 2022, 12, 550.	1.4	10
1082	A Journey on Extracellular Vesicles for Matrix Metalloproteinases: A Mechanistic Perspective. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	5
1083	Advances in engineered exosomes towards cancer diagnosis and therapeutics. Progress in Biomedical Engineering, 2022, 4, 032002.	2.8	3
1084	Parkinson's Disease Derived Exosomes Aggravate Neuropathology in <pre><scp><i>SNCA</i></scp>*<scp>A53T</scp></pre> Mice. Annals of Neurology, 2022, 92, 230-245.	2.8	19
1085	An Updated View of the Importance of Vesicular Trafficking and Transport and Their Role in Immune-Mediated Diseases: Potential Therapeutic Interventions. Membranes, 2022, 12, 552.	1.4	8

#	Article	IF	Citations
1086	Extracellular Vesicles in Corneal Fibrosis/Scarring. International Journal of Molecular Sciences, 2022, 23, 5921.	1.8	13
1087	Exosomal Composition, Biogenesis and Profiling Using Point-of-Care Diagnosticsâ€"Implications for Cardiovascular Disease. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	18
1088	Research status and future prospects of extracellular vesicles in primary Sjögren's syndrome. Stem Cell Research and Therapy, 2022, 13, .	2.4	15
1089	Injectable Supramolecular Hybrid Hydrogel Delivers Interleukin-1β-Engineered Exosomes to Target Neuroinflammation in Cerebral Ischemia–Reperfusion Injury. SSRN Electronic Journal, 0, , .	0.4	0
1090	Extracellular Vesicles in Pathogenesis and Treatment of Metabolic Associated Fatty Liver Disease. Frontiers in Physiology, 0, 13, .	1.3	1
1091	Ascorbate peroxidaseâ€mediated in situ labelling of proteins in secreted exosomes. Journal of Extracellular Vesicles, 2022, 11, .	5 . 5	6
1092	Size Separation of Exosomes and Microvesicles Using Flow Field-Flow Fractionation/Multiangle Light Scattering and Lipidomic Comparison. Analytical Chemistry, 2022, 94, 8958-8965.	3.2	20
1093	The Therapeutic Potential of Milk Extracellular Vesicles on Colorectal Cancer. International Journal of Molecular Sciences, 2022, 23, 6812.	1.8	20
1094	Proteoglycans., 2022,,.		0
1096	Bro1 family proteins harmonize cargo sorting with vesicle formation. BioEssays, 0, , 2100276.	1.2	2
1097	The Role of Platelet-Derived Extracellular Vesicles in Immune-Mediated Thrombosis. International Journal of Molecular Sciences, 2022, 23, 7837.	1.8	9
1098			
	Circulating Exosome Cargoes Contain Functionally Diverse Cancer Biomarkers: From Biogenesis and Function to Purification and Potential Translational Utility. Cancers, 2022, 14, 3350.	1.7	13
1099	Circulating Exosome Cargoes Contain Functionally Diverse Cancer Biomarkers: From Biogenesis and Function to Purification and Potential Translational Utility. Cancers, 2022, 14, 3350. Profiling of extracellular vesicles of metastatic urothelial cancer patients to discover protein signatures related to treatment outcome. Molecular Oncology, 2022, 16, 3620-3641.	2.1	13
1099	Function to Purification and Potential Translational Utility. Cancers, 2022, 14, 3350. Profiling of extracellular vesicles of metastatic urothelial cancer patients to discover protein		
	Function to Purification and Potential Translational Utility. Cancers, 2022, 14, 3350. Profiling of extracellular vesicles of metastatic urothelial cancer patients to discover protein signatures related to treatment outcome. Molecular Oncology, 2022, 16, 3620-3641. Extracellular vesicles containing the lâ€BAR protein IRSp53 are released from the cell plasma membrane	2.1	4
1100	Function to Purification and Potential Translational Utility. Cancers, 2022, 14, 3350. Profiling of extracellular vesicles of metastatic urothelial cancer patients to discover protein signatures related to treatment outcome. Molecular Oncology, 2022, 16, 3620-3641. Extracellular vesicles containing the lâ€BAR protein IRSp53 are released from the cell plasma membrane in an Arp2/3 dependent manner. Biology of the Cell, 2022, 114, 259-275. Extracellular vesicles in β cell biology: Role of lipids in vesicle biogenesis, cargo, and intercellular	2.1	4
1100	Function to Purification and Potential Translational Utility. Cancers, 2022, 14, 3350. Profiling of extracellular vesicles of metastatic urothelial cancer patients to discover protein signatures related to treatment outcome. Molecular Oncology, 2022, 16, 3620-3641. Extracellular vesicles containing the lâ€BAR protein IRSp53 are released from the cell plasma membrane in an Arp2/3 dependent manner. Biology of the Cell, 2022, 114, 259-275. Extracellular vesicles in β cell biology: Role of lipids in vesicle biogenesis, cargo, and intercellular signaling. Molecular Metabolism, 2022, 63, 101545. Scale-out production of extracellular vesicles derived from natural killer cells via mechanical	2.1 0.7 3.0	4 4 7

#	Article	IF	Citations
1106	Probable role of exosomes in the extension of fibrotic alterations from affected to normal cells in systemic sclerosis. Rheumatology, 2023, 62, 999-1008.	0.9	3
1107	Exosomes as mediators of tumor immune escape and immunotherapy in hepatocellular carcinoma. Liver Research, 2022, , .	0.5	1
1108	JAG1 enhances angiogenesis in triple-negative breast cancer through promoting the secretion of exosomal IncRNA MALAT1. Genes and Diseases, 2023, 10, 2167-2178.	1.5	4
1109	The exosome: a review of current therapeutic roles and capabilities in human reproduction. Drug Delivery and Translational Research, 2023, 13, 473-502.	3.0	15
1110	Male-female communication enhances release of extracellular vesicles leading to high fertility in Drosophila. Communications Biology, 2022, 5, .	2.0	4
1111	Delineating the role of extracellular vesicles in cancer metastasis: A comprehensive review. Frontiers in Immunology, $0,13,.$	2.2	8
1112	Extracellular Vesicles in Myeloid Neoplasms. International Journal of Molecular Sciences, 2022, 23, 8827.	1.8	2
1113	The role of extracellular vesicles in cellular senescence. FEBS Journal, 2023, 290, 1203-1211.	2.2	8
1115	Insights on prospects of nano-siRNA based approaches in treatment of Cancer. Frontiers in Pharmacology, 0, 13, .	1.6	4
1116	Exosomes rewire the cartilage microenvironment in osteoarthritis: from intercellular communication to therapeutic strategies. International Journal of Oral Science, 2022, 14, .	3.6	28
1117	Exosomes: Biogenesis, targeting, characterization and their potential as "Plug & Day" vaccine platforms. Biotechnology Journal, 2022, 17, .	1.8	8
1118	Recent advances in conventional and unconventional vesicular secretion pathways in the tumor microenvironment. Journal of Biomedical Science, 2022, 29, .	2.6	17
1119	mTORC1 controls Golgi architecture and vesicle secretion by phosphorylation of SCYL1. Nature Communications, 2022, 13, .	5 . 8	5
1121	Emerging Role of Neuron-Glia in Neurological Disorders: At a Glance. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-27.	1.9	13
1122	Landscape of Clinically Relevant Exosomal tRNA-Derived Non-coding RNAs. Molecular Biotechnology, 2023, 65, 300-310.	1.3	3
1123	Exosome in Crosstalk between Inflammation and Angiogenesis: A Potential Therapeutic Strategy for Stroke. Mediators of Inflammation, 2022, 2022, 1-13.	1.4	10
1124	A shared, stochastic pathway mediates exosome protein budding along plasma and endosome membranes. Journal of Biological Chemistry, 2022, 298, 102394.	1.6	36
1125	Overcoming the blood-brain barrier: Exosomes as theranostic nanocarriers for precision neuroimaging. Journal of Controlled Release, 2022, 349, 902-916.	4.8	18

#	Article	IF	CITATIONS
1126	Targeted inhibition of tumor-derived exosomes as a novel therapeutic option for cancer. Experimental and Molecular Medicine, 2022, 54, 1379-1389.	3.2	20
1127	Exosomal B7–H4 from irradiated glioblastoma cells contributes to increase FoxP3 expression of differentiating Th1 cells and promotes tumor growth. Redox Biology, 2022, 56, 102454.	3.9	12
1128	Enrichment of bovine milk-derived extracellular vesicles using surface-functionalized cellulose nanofibers. Carbohydrate Polymers, 2022, 297, 120069.	5.1	2
1129	Role of extracellular vesicles in osteosarcoma. International Journal of Medical Sciences, 2022, 19, 1216-1226.	1.1	11
1130	Intercellular Communication: What Syndecan-Syntenin May Teach us About the Molecular Mechanisms That Support Vesicular Exchanges. , 2022, , .		0
1131	ESCRTing Around the Cell. , 2022, , .		0
1132	The extracellular vesicles. , 2023, , 177-191.		0
1133	Impact of mesenchymal stromal cell–derived vesicular cargo on B-cell acute lymphoblastic leukemia progression. Blood Advances, 2023, 7, 1190-1203.	2.5	3
1134	Radiation induces ESCRT pathway dependent CD44v3+ extracellular vesicle production stimulating pro-tumor fibroblast activity in breast cancer. Frontiers in Oncology, 0, 12, .	1.3	2
1135	Key role of exportin 6 in exosome-mediated viral transmission from insect vectors to plants. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	7
1136	Exosomes Released by Corneal Stromal Cells Show Molecular Alterations in Keratoconus Patients and Induce Different Cellular Behavior. Biomedicines, 2022, 10, 2348.	1.4	5
1137	Microscopic and biochemical monitoring of endosomal trafficking and extracellular vesicle secretion in an endogenous in vivo model. Journal of Extracellular Vesicles, 2022, 11 , .	5.5	2
1138	The roles of small extracellular vesicles in cancer and immune regulation and translational potential in cancer therapy. Journal of Experimental and Clinical Cancer Research, 2022, 41, .	3.5	24
1139	ER membrane contact sites support endosomal small GTPase conversion for exosome secretion. Journal of Cell Biology, 2022, 221, .	2.3	21
1140	Late domain dependent E-cadherin recruitment into extracellular vesicles. Frontiers in Cell and Developmental Biology, 0, 10 , .	1.8	0
1141	Exosomes and cancer - Diagnostic and prognostic biomarkers and therapeutic vehicle. Oncogenesis, 2022, 11, .	2.1	59
1142	Multiple roles of neuronal extracellular vesicles in neurological disorders. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	1
1143	The role and application of small extracellular vesicles in breast cancer. Frontiers in Oncology, 0, 12,	1.3	5

#	Article	IF	CITATIONS
1144	Metabolic cross-talk within the bone marrow milieu: focus on multiple myeloma. Experimental Hematology and Oncology, 2022, 11 , .	2.0	8
1145	Extracellular vesicles and particles impact the systemic landscape of cancer. EMBO Journal, 2022, 41, .	3.5	32
1146	Hepatitis Viruses Control Host Immune Responses by Modifying the Exosomal Biogenesis Pathway and Cargo. International Journal of Molecular Sciences, 2022, 23, 10862.	1.8	1
1147	Effect of adiposeâ€derived exosome and exosomal miRNA on glycolipid metabolism. Clinical and Translational Discovery, 2022, 2, .	0.2	0
1148	Presence of Intact Hepatitis B Virions in Exosomes. Cellular and Molecular Gastroenterology and Hepatology, 2023, 15, 237-259.	2.3	18
1149	Direct conversion of human umbilical cord mesenchymal stem cells into retinal pigment epithelial cells for treatment of retinal degeneration. Cell Death and Disease, 2022, 13, .	2.7	2
1150	Extracellular vesicles as central regulators of blood vessel function in cancer. Science Signaling, 2022, 15, .	1.6	6
1151	Nucleoporins are degraded via upregulation of ESCRT-III/Vps4 complex in Drosophila models of C9-ALS/FTD. Cell Reports, 2022, 40, 111379.	2.9	10
1152	The roles of small extracellular vesicles as prognostic biomarkers and treatment approaches in triple-negative breast cancer. Frontiers in Oncology, 0, 12, .	1.3	2
1153	Distinct functions of dimeric and monomeric scaffold protein Alix in regulating F-actin assembly and loading of exosomal cargo. Journal of Biological Chemistry, 2022, 298, 102425.	1.6	4
1154	Tumor-Derived Extracellular Vesicles: Multifunctional Entities in the Tumor Microenvironment. Annual Review of Pathology: Mechanisms of Disease, 2023, 18, 205-229.	9.6	22
1155	Quantitative proteomics and biological activity of extracellular vesicles engineered to express SARSâ€CoVâ€2 spike protein. , 2022, 1, .		2
1156	A Syntenin Inhibitor Blocks Endosomal Entry of SARS-CoV-2 and a Panel of RNA Viruses. Viruses, 2022, 14, 2202.	1.5	0
1157	Metabolic labeling of cardiomyocyteâ€derived small extracellularâ€vesicle (sEV) miRNAs identifies miRâ€208a in cardiac regulation of lung gene expression. Journal of Extracellular Vesicles, 2022, 11, .	5.5	4
1158	The Interplay between GSK3 \hat{I}^2 and Tau Ser262 Phosphorylation during the Progression of Tau Pathology. International Journal of Molecular Sciences, 2022, 23, 11610.	1.8	3
1159	An optimized exosome production strategy for enhanced yield while without sacrificing cargo loading efficiency. Journal of Nanobiotechnology, 2022, 20, .	4.2	6
1160	Intercellular transfer of activated STING triggered by RAB22A-mediated non-canonical autophagy promotes antitumor immunity. Cell Research, 2022, 32, 1086-1104.	5.7	31
1161	Strategies to overcome the main challenges of the use of exosomes as drug carrier for cancer therapy. Cancer Cell International, 2022, 22, .	1.8	29

#	Article	IF	CITATIONS
1162	Exosomal MicroRNAs as Novel Cell-Free Therapeutics in Tissue Engineering and Regenerative Medicine. Biomedicines, 2022, 10, 2485.	1.4	8
1163	Exosome-encapsulated ncRNAs: Emerging yin and yang of tumor hallmarks. Frontiers in Genetics, 0, 13, .	1.1	3
1164	Extracellular Vesicles Secreted by Mouse Decidual Cells Carry Critical Information for the Establishment of Pregnancy. Endocrinology, 2022, 163 , .	1.4	5
1165	The transmission and toxicity of polymer-bound doxorubicin-containing exosomes derived from human adenocarcinoma cells. Nanomedicine, 0, , .	1.7	0
1166	Advances of engineered extracellular vesicles-based therapeutics strategy. Science and Technology of Advanced Materials, 2022, 23, 655-681.	2.8	11
1168	Glycocalyx Acts as a Central Player in the Development of Tumor Microenvironment by Extracellular Vesicles for Angiogenesis and Metastasis. Cancers, 2022, 14, 5415.	1.7	5
1169	Mechanisms of function and clinical potential of exosomes in esophageal squamous cell carcinoma. Cancer Letters, 2023, 553, 215993.	3.2	6
1170	Exosome biogenesis: machinery, regulation, and therapeutic implications in cancer. Molecular Cancer, 2022, 21, .	7.9	109
1171	A comparative Proteomics Analysis Identified Differentially Expressed Proteins in Pancreatic Cancer–Associated Stellate Cell Small Extracellular Vesicles. Molecular and Cellular Proteomics, 2022, 21, 100438.	2.5	4
1172	The Tumor Microenvironment. Environmental Chemistry for A Sustainable World, 2022, , 1-49.	0.3	O
1173	Exosomes─Nature's Lipid Nanoparticles, a Rising Star in Drug Delivery and Diagnostics. ACS Nano, 2022, 16, 17802-17846.	7.3	117
1174	From Promise to Reality: Bioengineering Strategies to Enhance the Therapeutic Potential of Extracellular Vesicles. Bioengineering, 2022, 9, 675.	1.6	3
1175	Crosstalk between exosomes and autophagy in spinal cord injury: fresh positive target for therapeutic application. Cell and Tissue Research, 2023, 391, 1-17.	1.5	5
1177	CSF proteome profiling across the Alzheimer's disease spectrum reflects the multifactorial nature of the disease and identifies specific biomarker panels. Nature Aging, 2022, 2, 1040-1053.	5.3	21
1178	Extracellular Vesicles as an Endocrine Mechanism Connecting Distant Cells. Molecules and Cells, 2022, 45, 771-780.	1.0	5
1179	Enterovirus 71-induced autophagosome fusion with multivesicular bodies facilitates viral RNA packaging into exosomes. Microbial Pathogenesis, 2022, 173, 105875.	1.3	0
1181	Importance and implications of exosomes in nephrology and urology. Pflugers Archiv European Journal of Physiology, 0, , .	1.3	1
1182	The potential of sertoli cells (SCs) derived exosomes and its therapeutic efficacy in male reproductive disorders. Life Sciences, 2023, 312, 121251.	2.0	4

#	Article	IF	CITATIONS
1183	Ultra-thin membrane filter with a uniformly arrayed nanopore structure for nanoscale separation of extracellular vesicles without cake formation. Nanoscale Advances, 0, , .	2.2	0
1184	N-acetylglucosaminyltransferase-V (GnT-V)-enriched small extracellular vesicles mediate N-glycan remodeling in recipient cells. IScience, 2023, 26, 105747.	1.9	4
1185	Gene co-expression analyses of health(span) across multiple species. NAR Genomics and Bioinformatics, 2022, 4, .	1.5	0
1186	Extracellular Vesicles from Bothrops jararaca Venom Are Diverse in Structure and Protein Composition and Interact with Mammalian Cells. Toxins, 2022, 14, 806.	1.5	1
1187	Extracellular signals regulate the biogenesis of extracellular vesicles. Biological Research, 2022, 55, .	1.5	22
1188	Dissecting exosome inhibitors: therapeutic insights into small-molecule chemicals against cancer. Experimental and Molecular Medicine, 2022, 54, 1833-1843.	3.2	17
1189	Tumor-Derived Small Extracellular Vesicles Involved in Breast Cancer Progression and Drug Resistance. International Journal of Molecular Sciences, 2022, 23, 15236.	1.8	2
1190	Extracellular vesicles, from the pathogenesis to the therapy of neurodegenerative diseases. Translational Neurodegeneration, 2022, 11 , .	3.6	24
1191	The Obligate Intracellular Bacterial Pathogen Anaplasma phagocytophilum Exploits Host Cell Multivesicular Body Biogenesis for Proliferation and Dissemination. MBio, 2022, 13, .	1.8	10
1192	Exosomes in Cerebral Ischemia-Reperfusion Injury: Current Perspectives and Future Challenges. Brain Sciences, 2022, 12, 1657.	1.1	4
1193	The endosome as an effector target to mediate plant immunity?. Journal of Experimental Botany, 2023, 74, 12-15.	2.4	0
1194	Inflammatory Cytokines Stimulate Exosomal MicroRNA and Protein Expressions in Osteoblast-like Saos2 Cells. International Journal of Oral-Medical Sciences, 2022, 21, 1-7.	0.2	0
1195	Role of Ceramides and Lysosomes in Extracellular Vesicle Biogenesis, Cargo Sorting and Release. International Journal of Molecular Sciences, 2022, 23, 15317.	1.8	15
1196	HRS Regulates Small Extracellular Vesicle PD-L1 Secretion and Is Associated with Anti–PD-1 Treatment Efficacy. Cancer Immunology Research, 2023, 11, 228-240.	1.6	5
1197	Preeclampsia and syncytiotrophoblast membrane extracellular vesicles (STB-EVs). Clinical Science, 2022, 136, 1793-1807.	1.8	8
1198	Exosomal long non-coding RNAs: novel molecules in gastrointestinal cancers' progression and diagnosis. Frontiers in Oncology, 0, 12, .	1.3	10
1199	Exosomes mediate Coxsackievirus B3 transmission and expand the viral tropism. PLoS Pathogens, 2023, 19, e1011090.	2.1	10
1200	The Machinery of Exosomes: Biogenesis, Release, and Uptake. International Journal of Molecular Sciences, 2023, 24, 1337.	1.8	56

#	ARTICLE	IF	CITATIONS
1201	Extracellular Vesicles for Dental Pulp and Periodontal Regeneration. Pharmaceutics, 2023, 15, 282.	2.0	7
1202	Exosomes as smart drug delivery vehicles for cancer immunotherapy. Frontiers in Immunology, 0, 13 , .	2.2	19
1203	Extracellular Vesicles and Viruses: Two Intertwined Entities. International Journal of Molecular Sciences, 2023, 24, 1036.	1.8	11
1204	Syntenin-1-mediated arthritogenicity is advanced by reprogramming RA metabolic macrophages and Th1 cells. Annals of the Rheumatic Diseases, 2023, 82, 483-495.	0.5	5
1205	PDE6D Mediates Trafficking of Prenylated Proteins NIM1K and UBL3 to Primary Cilia. Cells, 2023, 12, 312.	1.8	3
1206	Role of Extracellular Vesicles in Cancer Pathogenesis. , 2023, , 1-29.		0
1207	Calmodulin as a Key Regulator of Exosomal Signal Peptides. Cells, 2023, 12, 158.	1.8	2
1208	Low-intensity pulsed ultrasound (LIPUS) enhances the anti-inflammatory effects of bone marrow mesenchymal stem cells (BMSCs)-derived extracellular vesicles. Cellular and Molecular Biology Letters, 2023, 28, .	2.7	16
1209	Analysis of Extracellular Vesicle-Associated Proteoglycans. Methods in Molecular Biology, 2023, , 125-139.	0.4	0
1210	Exosomal transmission of viruses, a two-edged biological sword. Cell Communication and Signaling, 2023, 21, .	2.7	12
1211	Injectable Supramolecular Hybrid Hydrogel Delivers IL- $1\hat{1}^2$ -Stimulated Exosomes to Target Neuroinflammation. ACS Applied Materials & Samp; Interfaces, 2023, 15, 6486-6498.	4.0	10
1212	Multi-omics profiling of cholangiocytes reveals sex-specific chromatin state dynamics during hepatic cystogenesis in polycystic liver disease. Journal of Hepatology, 2023, 78, 754-769.	1.8	1
1214	Extracellular vesicles and nanoparticles: emerging complexities. Trends in Cell Biology, 2023, 33, 667-681.	3.6	94
1215	Therapeutic potentials of stem cell–derived exosomes in cardiovascular diseases. Experimental Biology and Medicine, 2023, 248, 434-444.	1.1	3
1216	Neural stem/progenitor cellâ€derived extracellular vesicles: A novel therapy for neurological diseases and beyond. MedComm, 2023, 4, .	3.1	1
1217	Cellular communication through extracellular vesicles and lipid droplets. , 2023, 2, .		7
1218	Multiplexed analysis of EV reveals specific biomarker composition with diagnostic impact. Nature Communications, 2023, 14, .	5.8	22
1219	Nanosized extracellular vesicles released by Neurospora crassa hyphae. Fungal Genetics and Biology, 2023, 165, 103778.	0.9	1

#	Article	IF	CITATIONS
1220	Extracellular vesicles: A dive into their role in the tumor microenvironment and cancer progression. Frontiers in Cell and Developmental Biology, 0, 11 , .	1.8	5
1221	The Role of Exosomes in Epithelial–to-Mesenchymal Transition and Cell Functional Properties in Head and Neck Cancer. Cancers, 2023, 15, 2156.	1.7	4
1222	Extracellular vesicles as next generation immunotherapeutics. Seminars in Cancer Biology, 2023, 90, 73-100.	4.3	16
1223	PDZ interaction of the GABA transporter GAT1 with the syntenin-1 in Neuro-2a cells. Neurochemistry International, 2023, 165, 105522.	1.9	0
1224	Cancer stem cell-derived exosome-induced metastatic cancer: An orchestra within the tumor microenvironment. Biochimie, 2023, 212, 1-11.	1.3	5
1225	Alzheimer's disease-associated mutant ubiquitin (UBB+1) is secreted through an autophagosome-like vesicle-mediated unconventional pathway. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2023, 1866, 194936.	0.9	1
1226	Circulating exosomeâ€like vesicle and skeletal muscle microRNAs are altered with age and resistance training. Journal of Physiology, 2023, 601, 5051-5073.	1.3	11
1228	Hypoxia promotes EV secretion by impairing lysosomal homeostasis in HNSCC through negative regulation of ATP6V1A by HIFâ€1i±. Journal of Extracellular Vesicles, 2023, 12, .	5.5	7
1229	Inhibitors against Two PDZ Domains of MDA-9 Suppressed Migration of Breast Cancer Cells. International Journal of Molecular Sciences, 2023, 24, 3431.	1.8	0
1230	Context-specific regulation of extracellular vesicle biogenesis and cargo selection. Nature Reviews Molecular Cell Biology, 2023, 24, 454-476.	16.1	112
1232	GPR143 controls ESCRT-dependent exosome biogenesis and promotes cancer metastasis. Developmental Cell, 2023, 58, 320-334.e8.	3.1	20
1233	Exploiting the biogenesis of extracellular vesicles for bioengineering and therapeutic cargo loading. Molecular Therapy, 2023, 31, 1231-1250.	3.7	32
1234	Extracellular Vesicles in Liquid Biopsies as Biomarkers for Solid Tumors. Cancers, 2023, 15, 1307.	1.7	18
1236	The biological applications of exosomal-based materials in bone/cartilage tissue engineering. Frontiers in Materials, 0, 10 , .	1.2	0
1237	Ceramide-dependent trafficking of Epstein-Barr virus LMP1 to small extracellular vesicles. Virology, 2023, 581, 128-138.	1,1	0
1238	Extracellular Vesicles as Drug Delivery Systems in Organ Transplantation: The Next Frontier. Pharmaceutics, 2023, 15, 891.	2.0	4
1239	Small Extracellular Vesicles (sEVs) Biogenesis Molecular Players Are Associated with Clinical Outcome of Colorectal Cancer Patients. Cancers, 2023, 15, 1685.	1.7	0
1240	Revisiting the Syndecans: Master Signaling Regulators with Prognostic and Targetable Therapeutic Values in Breast Carcinoma. Cancers, 2023, 15, 1794.	1.7	4

#	Article	IF	CITATIONS
1241	Identifying signatures of EV secretion in metastatic breast cancer through functional single-cell profiling. IScience, 2023, 26, 106482.	1.9	4
1242	Immunomodulatory effects of targeted radionuclide therapy. International Review of Cell and Molecular Biology, 2023, , .	1.6	0
1243	Role of adipocyteâ€derived extracellular vesicles during the progression of liver inflammation to hepatocellular carcinoma. Journal of Cellular Physiology, 0, , .	2.0	0
1244	From Exosome Biogenesis to Absorption: Key Takeaways for Cancer Research. Cancers, 2023, 15, 1992.	1.7	8
1245	Biological Role and Aberrant Overexpression of Syntenin-1 in Cancer: Potential Role as a Biomarker and Therapeutic Target. Biomedicines, 2023, 11, 1034.	1.4	1
1246	Non-Classical Intercellular Communications: Basic Mechanisms and Roles in Biology and Medicine. International Journal of Molecular Sciences, 2023, 24, 6455.	1.8	3
1247	An updateÂin the applications of exosomes in cancer theranostics: from research to clinical trials. Journal of Cancer Research and Clinical Oncology, 2023, 149, 8087-8116.	1.2	6
1248	Exosomal lipid PI4P regulates small extracellular vesicle secretion by modulating intraluminal vesicle formation. Journal of Extracellular Vesicles, 2023, 12, .	5. 5	5
1249	Neuronal Exosomes as a New Signaling System. Biochemistry (Moscow), 2023, 88, 457-465.	0.7	0
1250	Extracellular Vesicles in Breast Cancer: From Biology and Function to Clinical Diagnosis and Therapeutic Management. International Journal of Molecular Sciences, 2023, 24, 7208.	1.8	8
1251	Exosomes: The Surreptitious Intercellular Messengers in the Body. Physiology, 0, , .	4.0	0
1252	Chronic hyperadiponectinemia induced by transgenic overexpression increases plasma exosomes without significantly improving glucose and lipid metabolism. Endocrine Journal, 2023, , .	0.7	0
1253	Potential for Therapeutic-Loaded Exosomes to Ameliorate the Pathogenic Effects of α-Synuclein in Parkinson's Disease. Biomedicines, 2023, 11, 1187.	1.4	5
1254	The landscape of exosomal non-coding RNAs in breast cancer drug resistance, focusing on underlying molecular mechanisms. Frontiers in Pharmacology, $0,14,.$	1.6	11
1255	Exploring Purification Methods of Exosomes from Different Biological Samples. BioMed Research International, 2023, 2023, 1-9.	0.9	5
1269	Mechanisms of axonal support by oligodendrocyte-derived extracellular vesicles. Nature Reviews Neuroscience, 2023, 24, 474-486.	4.9	8
1279	Challenges for Studying and Isolating Extracellular Vesicles from Cell-Conditioned Media. Methods in Molecular Biology, 2023, , 299-315.	0.4	0
1281	The Role of Small Extracellular Vesicles Derived from Mesenchymal Stromal Cells on Myocardial Protection: a Review of Current Advances and Future Perspectives. Cardiovascular Drugs and Therapy, 0, , .	1.3	O

#	Article	IF	CITATIONS
1311	Exploiting Exosomes for Cancer Diagnosis and Treatment. Current Cancer Research, 2023, , 43-59.	0.2	0
1316	Stem Cells Vs Exosomes: Promising Therapeutic Approach and Biomarkers Agent against Neurodegenerative Disorders. , 2023, , 169-191.		0
1349	Biotechnological Importance of Exosomes. Recent Advances in Biotechnology, 2023, , 117-165.	0.1	0
1351	Extracellular vesicle glycosylation in transport, signaling, and function. , 2024, , 203-218.		O
1362	Structural Determinants of Small Extracellular Vesicles (Exosomes) and Their Role in Biological Functions. Neurochemical Journal, 2023, 17, 547-559.	0.2	0
1363	State-of-the-Art: The Use of Extracellular Vesicles and Preparations Based on Them for Neuroprotection and Stimulation of Brain Tissue Regeneration after Injury. Neurochemical Journal, 2023, 17, 560-570.	0.2	0
1373	Extracellular vesicles in alcohol and tobacco-induced NeuroAIDS. , 2024, , 439-457.		0
1385	Stem Cell-Derived Extracellular Vesicles and Their Potential Role in Medical Applications. , 2024, , .		O