In vivo photodynamic therapy using upconversion nannanotransducers

Nature Medicine 18, 1580-1585

DOI: 10.1038/nm.2933

Citation Report

#	Article	IF	CITATIONS
3	The Effect of Surface Coating on Energy Migration-Mediated Upconversion. Journal of the American Chemical Society, 2012, 134, 20849-20857.	6.6	405
4	Recent Advances in Design and Fabrication of Upconversion Nanoparticles and Their Safe Theranostic Applications. Advanced Materials, 2013, 25, 3758-3779.	11.1	437
5	Nd ³⁺ -Sensitized Upconversion Nanophosphors: Efficient <i>In Vivo</i> Bioimaging Probes with Minimized Heating Effect. ACS Nano, 2013, 7, 7200-7206.	7.3	786
6	Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4:Er3+ in fluoropolymer matrix for photovoltaic devices. Journal of Applied Physics, 2013, 114, .	1.1	85
7	Upconversion Nanoparticles for Photodynamic Therapy and Other Cancer Therapeutics. Theranostics, 2013, 3, 317-330.	4.6	369
8	High efficiency amplified spontaneous emission from a fluorescent anticancer drug–dye complex. Organic Electronics, 2013, 14, 1225-1230.	1.4	14
9	Influence of Protein Corona on the Transport of Molecules into Cells by Mesoporous Silica Nanoparticles. ACS Applied Materials & Interfaces, 2013, 5, 8387-8393.	4.0	57
10	Multicolor and bright white upconversion luminescence from rice-shaped lanthanide doped BiPO4 submicron particles. Dalton Transactions, 2013, 42, 12101.	1.6	47
11	Enhanced upconversion luminescence in NaGdF4:Yb,Er nanocrystals by Fe3+ doping and their application in bioimaging. Nanoscale, 2013, 5, 8711.	2.8	215
12	Deep tissue optical imaging of upconverting nanoparticles enabled by exploiting higher intrinsic quantum yield through use of millisecond single pulse excitation with high peak power. Nanoscale, 2013, 5, 10034.	2.8	59
13	Multifunctional Up onverting Nanocomposites with Smart Polymer Brushes Gated Mesopores for Cell Imaging and Thermo/pH Dualâ€Responsive Drug Controlled Release. Advanced Functional Materials, 2013, 23, 4067-4078.	7.8	209
14	A Core/Satellite Multifunctional Nanotheranostic for in Vivo Imaging and Tumor Eradication by Radiation/Photothermal Synergistic Therapy. Journal of the American Chemical Society, 2013, 135, 13041-13048.	6.6	510
15	Mechanistic Investigation of Photon Upconversion in Nd ³⁺ -Sensitized Core–Shell Nanoparticles. Journal of the American Chemical Society, 2013, 135, 12608-12611.	6.6	682
16	Low Power Upconverted Nearâ€IR Light for Efficient Polymeric Nanoparticle Degradation and Cargo Release. Advanced Materials, 2013, 25, 3733-3738.	11.1	107
17	Synthesis and in Vitro Photodynamic Activity of Oligomeric Ethylene Glycol–Quinoline Substituted Zinc(II) Phthalocyanine Derivatives. Journal of Medicinal Chemistry, 2013, 56, 5797-5805.	2.9	80
18	Ultimately simple one-pot single-step synthesis of rare earth doped spherical mesoporous metal oxide nanospheres with upconversion emission ability in supercritical methanol. Journal of Supercritical Fluids, 2013, 80, 71-77.	1.6	10
19	Recent advances in the optimization and functionalization of upconversion nanomaterials for in vivo bioapplications. NPG Asia Materials, 2013, 5, e75-e75.	3.8	75
20	Strategies for triggered drug release from tumor targeted liposomes. Expert Opinion on Drug	2.4	69

#	Article	IF	CITATIONS
21	The effect of ligand composition on the inÂvivo fate of multidentate poly(ethylene glycol) modified gold nanoparticles. Biomaterials, 2013, 34, 8370-8381.	5.7	33
22	Upconversionâ€Nanophosphorâ€Based Functional Nanocomposites. Advanced Materials, 2013, 25, 5287-5303.	11.1	202
23	Photochemistry of Singlet Oxygen Sensor Green. Journal of Physical Chemistry B, 2013, 117, 13985-13992.	1.2	178
24	Photodynamic therapy in treatment of cutaneous and choroidal melanoma. Photodiagnosis and Photodynamic Therapy, 2013, 10, 503-509.	1.3	46
25	ZnO:Er,Yb,Gd Particles Designed for Magnetic-Fluorescent Imaging and Near-Infrared Light Triggered Photodynamic Therapy. Journal of Physical Chemistry C, 2013, 117, 23716-23729.	1.5	33
26	Engineering a Hollow Nanocontainer Platform with Multifunctional Molecular Machines for Tumor-Targeted Therapy <i>in Vitro</i> and <i>in Vivo</i> . ACS Nano, 2013, 7, 10271-10284.	7.3	212
27	A new near infrared photosensitizing nanoplatform containing blue-emitting up-conversion nanoparticles and hypocrellin A for photodynamic therapy of cancer cells. Nanoscale, 2013, 5, 11910.	2.8	85
28	Highly efficient lanthanide upconverting nanomaterials: Progresses and challenges. Nano Today, 2013, 8, 643-676.	6.2	177
29	Separately doped upconversion-C ₆₀ nanoplatform for NIR imaging-guided photodynamic therapy of cancer cells. Chemical Communications, 2013, 49, 3224-3226.	2.2	78
30	In Vivo Multimodality Imaging and Cancer Therapy by Near-Infrared Light-Triggered <i>trans</i> -Platinum Pro-Drug-Conjugated Upconverison Nanoparticles. Journal of the American Chemical Society, 2013, 135, 18920-18929.	6.6	508
31	Cell-Specific and pH-Activatable Rubyrin-Loaded Nanoparticles for Highly Selective Near-Infrared Photodynamic Therapy against Cancer. Journal of the American Chemical Society, 2013, 135, 18850-18858.	6.6	385
32	Multilayer Dual-Polymer-Coated Upconversion Nanoparticles for Multimodal Imaging and Serum-Enhanced Gene Delivery. ACS Applied Materials & Interfaces, 2013, 5, 10381-10388.	4.0	67
33	Near-infrared photothermal activation of microgels incorporating polypyrrole nanotransducers through droplet microfluidics. Chemical Communications, 2013, 49, 7887.	2.2	32
34	Near-Infrared Light Photocontrolled Targeting, Bioimaging, and Chemotherapy with Caged Upconversion Nanoparticles <i>in Vitro</i> and <i>in Vivo</i> . ACS Nano, 2013, 7, 8516-8528.	7.3	201
35	Rattle-Structured Multifunctional Nanotheranostics for Synergetic Chemo-/Radiotherapy and Simultaneous Magnetic/Luminescent Dual-Mode Imaging. Journal of the American Chemical Society, 2013, 135, 6494-6503.	6.6	318
36	Upconversion luminescence imaging of cells and small animals. Nature Protocols, 2013, 8, 2033-2044.	5.5	253
37	Turning into the blue: materials for enhancing TiO2 photocatalysis by up-conversion photonics. RSC Advances, 2013, 3, 23028.	1.7	24
38	Multifunctional photosensitizer-conjugated core–shell Fe3O4@NaYF4:Yb/Er nanocomplexes and their applications in T2-weighted magnetic resonance/upconversion luminescence imaging and photodynamic therapy of cancer cells RSC Advances 2013 3 13915	1.7	54

.

ARTICLE IF CITATIONS # One-step self-assembly of ZnPc/NaGdF4:Yb,Er nanoclusters for simultaneous fluorescence imaging and 39 2.9 28 photodynamic effects on cancer cells. Journal of Materials Chemistry B, 2013, 1, 4637. Intriguing aspects of lanthanide luminescence. Chemical Science, 2013, 4, 1939. 579 <i>In Vivo</i> Targeted Deep-Tissue Photodynamic Therapy Based on Near-Infrared Light Triggered 41 7.3 461 Upconversion Nanoconstruct. ACS Nano, 2013, 7, 676-688. Photodynamic nanomedicine in the treatment of solid tumors: Perspectives and challenges. Journal of 4.8 328 Controlled Release, 2013, 168, 88-102. Surface-functionalized nanoparticles for biosensing and imaging-guided therapeutics. Nanoscale, 43 2.8 198 2013, 5, 3127. Multiphoton upconversion in rare earth doped nanocrystals for sub-diffractive microscopy. Applied 1.5 Physics Letters, 2013, 102, . Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer 45 2.8 325 therapy. Nanoscale, 2013, 5, 23-37. Targeted photothermal ablation of pathogenic bacterium, Staphylococcus aureus, with nanoscale 2.9 46 reduced graphene oxide. Journal of Materials Chemistry B, 2013, 1, 2496. Imagingâ€Guided pHâ€Sensitive Photodynamic Therapy Using Charge Reversible Upconversion 47 7.8 318 Nanoparticles under Nearâ€Infrared Light. Advanced Functional Materials, 2013, 23, 3077-3086. Hyaluronic acid-conjugated graphene oxide/photosensitizer nanohybrids for cancer targeted photodynamic therapy. Journal of Materials Chemistry B, 2013, 1, 1678. Nano-functionalization of metal complexes for molecular imaging and anticancer therapy. 49 9.5 75 Coordination Chemistry Reviews, 2013, 257, 2668-2688. Targeting CCL21–folic acid–upconversion nanoparticles conjugates to folate receptor-α expressing 5.7 tumor cells in an endothelial-tumor cell bilayer model. Biomaterials, 2013, 34, 4860-4871. Upconversion photoluminescence enhancement and modulation of NaYF4:Yb, Er through using 51 1.5 26 different ligands. Journal of Luminescence, 2013, 143, 492-497. Enhanced Retention and Cellular Uptake of Nanoparticles in Tumors by Controlling Their Aggregation Behavior. ACS Nano, 2013, 7, 6244-6257. 309 Upconverting Organic Dye Doped Core-Shell Nano-Composites for Dual-Modality NIR Imaging and 53 101 4.6 Photo-Thermal Therapy. Theranostics, 2013, 3, 267-274. Surface Facet of Palladium Nanocrystals: A Key Parameter to the Activation of Molecular Oxygen for 54 321 Organic Catalysis and Cancer Treatment. Journal of the American Chemical Society, 2013, 135, 3200-3207. Multifunctional Nanoparticles for Drug Delivery and Molecular Imaging. Annual Review of 55 5.7437 Biomedical Engineering, 2013, 15, 253-282. Polyphosphoric acid capping radioactive/upconverting NaLuF4:Yb,Tm,153Sm nanoparticles for blood 99 pool imaging inÂvivo. Biomaterials, 2013, 34, 9535-9544.

#	Article	IF	CITATIONS
57	Synthesis of Au Nanorod@Amine-Modified Silica@Rare-Earth Fluoride Nanodisk Core–Shell–Shell Heteronanostructures. Journal of Physical Chemistry C, 2013, 117, 15253-15259.	1.5	31
58	A Mechanistic Paradigm for Broad-Spectrum Antivirals that Target Virus-Cell Fusion. PLoS Pathogens, 2013, 9, e1003297.	2.1	88
59	Label-Free Luminescent Mesoporous Silica Nanoparticles for Imaging and Drug Delivery. Theranostics, 2013, 3, 650-657.	4.6	85
60	spectroscopic research of upconversion nanomaterials based on complex oxide compounds doped with rare-earth ion pairs: Benefit for cancer diagnostics by upconversion fluorescence and radio sensitive methods/Spektroskopische Untersuchung von mit Ionenpaaren Seltener Erden dotierten Upconversion-Nanokompositen: Nutzen fÃl¼r die Krebsdiagnostik durch Upconversion-Fluoreszenz und	0.3	26
61	Optimization of Optical Excitation of Upconversion Nanoparticles for Rapid Microscopy and Deeper Tissue Imaging with Higher Quantum Yield. Theranostics, 2013, 3, 306-316.	4.6	67
62	Upconverting Nearâ€Infrared Light through Energy Management in Core–Shell–Shell Nanoparticles. Angewandte Chemie - International Edition, 2013, 52, 13419-13423.	7.2	315
64	Temperature-dependent Upconversion Luminescence of NaYF4:Yb3+,Er3+ Nanoparticles. Chemistry Letters, 2013, 42, 310-312.	0.7	10
65	Applications of nanotechnology for melanoma treatment, diagnosis, and theranostics. International Journal of Nanomedicine, 2013, 8, 2677.	3.3	83
66	Luminescent Silica Nanoparticles for Cancer Diagnosis. Current Medicinal Chemistry, 2013, 20, 2195-2211.	1.2	70
67	Functional Inorganic Nanohybrids for Biomedical Diagnosis. , 2013, , .		0
68	Light Harvesting and Photoemission by Nanoparticles for Photodynamic Therapy. Particle and Particle Systems Characterization, 2014, 31, 46-75.	1.2	24
69	Controlled Synthesis of Water-Soluble NaYF _{4} :Yb ³⁺ , Er ³⁺ Nanoparticles with Surfactant Dependent Properties. Journal of Nanomaterials, 2014, 2014, 1-7.	1.5	0
70	Platinum Anticancer Drugs and Photochemotherapeutic Agents: Recent Advances and Future Developments. Science Progress, 2014, 97, 20-40.	1.0	68
71	Opposite size dependences of the red/green upconversion intensity ratio in sub-20 nm Yb 3+ ,Er 3+ -doped β -NaGdF 4 nanophosphors. Europhysics Letters, 2014, 106, 48001.	0.7	7
72	Encapsulation of Photosensitizers and Upconversion Nanocrystals in Lipid Micelles for Photodynamic Therapy. Particle and Particle Systems Characterization, 2014, 31, 228-235.	1.2	37
73	Designing Multiâ€Branched Gold Nanoechinus for NIR Light Activated Dual Modal Photodynamic and Photothermal Therapy in the Second Biological Window. Advanced Materials, 2014, 26, 6689-6695.	11.1	341
74	A resonance energy transfer approach for the selective detection of aromatic amino acids. Journal of Materials Chemistry C, 2014, 2, 10157-10163.	2.7	29
75	Anomalous NIR Luminescence in Mn ²⁺ â€Doped Fluoride Perovskite Nanocrystals. Advanced Optical Materials, 2014, 2, 670-678.	3.6	80

#	Article	IF	CITATIONS
77	In vivo selective cancer-tracking gadolinium eradicator as new-generation photodynamic therapy agent. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5492-7.	3.3	70
78	Multifunctional upconversion nanoprobe for tumor fluorescence imaging and near-infrared thermal therapy. , 2014, , .		0
79	Upconverting crystal/dextran-g-DOPE with high fluorescence stability for simultaneous photodynamic therapy and cell imaging. Nanotechnology, 2014, 25, 155103.	1.3	11
80	Tailoring the interplay between electromagnetic fields and nanomaterials toward applications in life sciences: a review. Journal of Biomedical Optics, 2014, 19, 101507.	1.4	15
81	Magnetic-luminescent YbPO4:Er,Dy microspheres designed for tumor theranostics with synergistic effect of photodynamic therapy and chemotherapy. International Journal of Nanomedicine, 2014, 9, 4879.	3.3	12
82	Engineering of Mesoporous Silica Nanoparticles for In Vivo Cancer Imaging and Therapy. , 2014, , 611-640.		4
83	Engineering Nanomaterials for Biosensors and Therapeutics. , 2014, , 513-534.		1
84	Near-infrared upconversion nanoparticles for bio-applications. Materials Science and Engineering C, 2014, 45, 635-643.	3.8	60
85	Engineered design of theranostic upconversion nanoparticles for tri-modal upconversion luminescence/magnetic resonance/X-ray computed tomography imaging and targeted delivery of combined anticancer drugs. Journal of Materials Chemistry B, 2014, 2, 1379.	2.9	75
86	Recent progress in metal–organic complexes for optoelectronic applications. Chemical Society Reviews, 2014, 43, 3259-3302.	18.7	996
87	Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: A review. Analytica Chimica Acta, 2014, 832, 1-33.	2.6	341
88	QM/MM modeling of Harmane cation fluorescence spectrum in water solution and interacting with DNA. Computational and Theoretical Chemistry, 2014, 1040-1041, 367-372.	1.1	20
89	Bioluminescence Imaging of Cancer Therapy. , 2014, , 69-93.		3
90	Photoacoustic Imaging for Cancer Diagnosis and Therapy Guidance. , 2014, , 139-158.		7
91	Photodynamic therapy by in situ nonlinear photon conversion. Nature Photonics, 2014, 8, 455-461.	15.6	192
92	Dual-Targeting Upconversion Nanoprobes across the Blood–Brain Barrier for Magnetic Resonance/Fluorescence Imaging of Intracranial Glioblastoma. ACS Nano, 2014, 8, 1231-1242.	7.3	279
93	Near-infrared light-responsive nanomaterials in cancer therapeutics. Chemical Society Reviews, 2014, 43, 6254-6287.	18.7	746
94	Realâ€Time In Vivo Quantitative Monitoring of Drug Release by Dualâ€Mode Magnetic Resonance and Upconverted Luminescence Imaging. Angewandte Chemie - International Edition, <u>2014, 53, 4551-4555.</u>	7.2	174

#	Article	IF	CITATIONS
95	Upconversion nanophosphors for use in bioimaging, therapy, drug delivery and bioassays. Mikrochimica Acta, 2014, 181, 263-294.	2.5	85
96	Recent Progress in Rare Earth Micro/Nanocrystals: Soft Chemical Synthesis, Luminescent Properties, and Biomedical Applications. Chemical Reviews, 2014, 114, 2343-2389.	23.0	1,259
97	The Rigid Amphipathic Fusion Inhibitor dUY11 Acts through Photosensitization of Viruses. Journal of Virology, 2014, 88, 1849-1853.	1.5	61
98	Deep UV generation and direct DNA photo-interaction by harmonic nanoparticles in labelled samples. Nanoscale, 2014, 6, 2929-2936.	2.8	12
99	Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Advanced Drug Delivery Reviews, 2014, 66, 2-25.	6.6	2,275
100	Design of multifunctional alkali ion doped CaF2 upconversion nanoparticles for simultaneous bioimaging and therapy. Dalton Transactions, 2014, 43, 3861.	1.6	36
101	Facile Preparation of Well-Defined Hydrophilic Core–Shell Upconversion Nanoparticles for Selective Cell Membrane Glycan Labeling and Cancer Cell Imaging. Analytical Chemistry, 2014, 86, 482-489.	3.2	41
102	Polymer Micro―and Nanocapsules as Biological Carriers with Multifunctional Properties. Macromolecular Bioscience, 2014, 14, 458-477.	2.1	117
103	An Upconversion Nanoparticle with Orthogonal Emissions Using Dual NIR Excitations for Controlled Twoâ€Way Photoswitching. Angewandte Chemie - International Edition, 2014, 53, 14419-14423.	7.2	137
104	Plasmon-Enhanced Upconversion. Journal of Physical Chemistry Letters, 2014, 5, 4020-4031.	2.1	248
105	Simultaneous Realization of Phase/Size Manipulation, Upconversion Luminescence Enhancement, and Blood Vessel Imaging in Multifunctional Nanoprobes Through Transition Metal Mn ²⁺ Doping. Advanced Functional Materials, 2014, 24, 4051-4059.	7.8	213
106	Aptamer-conjugated upconversion nanoprobes assisted by magnetic separation for effective isolation and sensitive detection of circulating tumor cells. Nano Research, 2014, 7, 1327-1336.	5.8	64
107	Elimination of Photon Quenching by a Transition Layer to Fabricate a Quenchingâ€Shield Sandwich Structure for 800 nm Excited Upconversion Luminescence of Nd ³⁺ â€Sensitized Nanoparticles. Advanced Materials, 2014, 26, 2831-2837.	11.1	405
108	Near-infrared light triggered photodynamic therapy in combination with gene therapy using upconversion nanoparticles for effective cancer cell killing. Nanoscale, 2014, 6, 9198.	2.8	132
109	Growth of hexagonal phase sodium rare earth tetrafluorides induced by heterogeneous cubic phase core. RSC Advances, 2014, 4, 13490.	1.7	11
110	Tuning the size and upconversion emission of NaYF ₄ :Yb ³⁺ /Pr ³⁺ nanoparticles through Yb ³⁺ doping. RSC Advances, 2014, 4, 56302-56306.	1.7	38
111	Luminescent LaF ₃ :Yb ³⁺ /Er ³⁺ crystals with self-assembling microstructures by a facile ionothermal process. CrystEngComm, 2014, 16, 1056-1063.	1.3	12
112	Multi-functional NaErF ₄ :Yb nanorods: enhanced red upconversion emission, in vitro cell, in vivo X-ray, and T ₂ -weighted magnetic resonance imaging. Nanoscale, 2014, 6, 2855-2860.	2.8	47

#	Article	IF	CITATIONS
113	In Vivo Studies of Nanostructureâ€Based Photosensitizers for Photodynamic Cancer Therapy. Small, 2014, 10, 4993-5013.	5.2	95
114	Controllable multicolor output, white luminescence and cathodoluminescence properties of high quality NaCeF4:Ln3+ (Ln3+ = Eu3+, Dy3+, Tb3+) nanorods. RSC Advances, 2014, 4, 49916-49923.	1.7	13
115	Controlled synthesis of ultrasmall hexagonal NaTm0.02Lu0.98â^'xYbxF4 nanocrystals with enhanced upconversion luminescence. Journal of Materials Chemistry C, 2014, 2, 2037.	2.7	43
116	Pure and intense orange upconversion luminescence of Eu3+ from the sensitization of Yb3+–Mn2+ dimer in NaY(Lu)F4 nanocrystals. Journal of Materials Chemistry C, 2014, 2, 9004-9011.	2.7	38
117	Upconversion Nanoparticles: From Hydrophobic to Hydrophilic Surfaces. Accounts of Chemical Research, 2014, 47, 3481-3493.	7.6	225
118	Amphiphilic copolymer coated upconversion nanoparticles for near-infrared light-triggered dual anticancer treatment. Nanoscale, 2014, 6, 14903-14910.	2.8	48
119	Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy. Nanoscale, 2014, 6, 8274.	2.8	133
120	On-demand generation of singlet oxygen from a smart graphene complex for the photodynamic treatment of cancer cells. Biomaterials Science, 2014, 2, 1412-1418.	2.6	26
121	Er ³⁺ -doped YbPO ₄ up-conversion porous nanospheres for UCL/CT bimodal imaging in vivo and chemotherapy. Journal of Materials Chemistry B, 2014, 2, 6508-6516.	2.9	11
122	One-pot synthesis of PEG modified BaLuF ₅ :Gd/Yb/Er nanoprobes for dual-modal in vivo upconversion luminescence and X-ray bioimaging. Dalton Transactions, 2014, 43, 13343-13348.	1.6	20
123	Folic acid-functionalized up-conversion nanoparticles: toxicity studies in vivo and in vitro and tand tangeted imaging applications. Nanoscale, 2014, 6, 8878-8883.	2.8	40
124	Rare earth nanoprobes for functional biomolecular imaging and theranostics. Journal of Materials Chemistry B, 2014, 2, 2958-2973.	2.9	68
125	Spectroscopic study of ordered hybrid complexes formation between dye aggregates and ReVO4:Eu3+ (Re=Y, Gd, La) nanoparticles. Journal of Molecular Liquids, 2014, 199, 244-250.	2.3	14
126	PEGylated NaLuF4: Yb/Er upconversion nanophosphors for inÂvivo synergistic fluorescence/X-ray bioimaging and long-lasting, real-time tracking. Biomaterials, 2014, 35, 9689-9697.	5.7	55
127	MC540 and Upconverting Nanocrystal Coloaded Polymeric Liposome for Near-Infrared Light-Triggered Photodynamic Therapy and Cell Fluorescent Imaging. ACS Applied Materials & Interfaces, 2014, 6, 3219-3225.	4.0	56
128	pH-Sensitive Nanoformulated Triptolide as a Targeted Therapeutic Strategy for Hepatocellular Carcinoma. ACS Nano, 2014, 8, 8027-8039.	7.3	113
129	Amplifying the Red-Emission of Upconverting Nanoparticles for Biocompatible Clinically Used Prodrug-Induced Photodynamic Therapy. ACS Nano, 2014, 8, 10621-10630.	7.3	263
130	NIR excitation of upconversion nanohybrids containing a surface grafted Bodipy induces oxygen-mediated cancer cell death. Journal of Materials Chemistry B, 2014, 2, 4554-4563.	2.9	40

#	Article	IF	CITATIONS
131	Multicomponent nanoarchitectures for the design of optical sensing and diagnostic tools. RSC Advances, 2014, 4, 916-942.	1.7	25
132	Engineering lanthanide-based materials for nanomedicine. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 20, 71-96.	5.6	85
133	A smart and versatile theranostic nanomedicine platform based on nanoporphyrin. Nature Communications, 2014, 5, 4712.	5.8	345
134	Near-Infrared-Light-Based Nano-Platform Boosts Endosomal Escape and Controls Gene Knockdown <i>in Vivo</i> . ACS Nano, 2014, 8, 4848-4858.	7.3	80
135	Versatile Synthetic Strategy for Coating Upconverting Nanoparticles with Polymer Shells through Localized Photopolymerization by Using the Particles as Internal Light Sources. Angewandte Chemie - International Edition, 2014, 53, 8919-8923.	7.2	113
136	Structural and photoluminescence properties of Tb-doped CaMoO4 nanoparticles with sequential surface coatings. Materials Chemistry and Physics, 2014, 147, 715-721.	2.0	49
137	A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nature Communications, 2014, 5, 4596.	5.8	1,141
138	Tuning the energy migration and new insights into the mechanism of upconversion. Nanoscale, 2014, 6, 8439.	2.8	10
139	A smart upconversion-based mesoporous silica nanotheranostic system for synergetic chemo-/radio-/photodynamic therapy and simultaneous MR/UCL imaging. Biomaterials, 2014, 35, 8992-9002.	5.7	234
140	Functional Nanomaterials for Phototherapies of Cancer. Chemical Reviews, 2014, 114, 10869-10939.	23.0	2,120
141	Aptamer-Functionalized Gold Nanoparticles As Photoresponsive Nanoplatform for Co-Drug Delivery. ACS Applied Materials & Interfaces, 2014, 6, 21832-21841.	4.0	102
142	X-ray-induced nanoparticle-based photodynamic therapy of cancer. Nanomedicine, 2014, 9, 2339-2351.	1.7	156
143	Upconversion Nanoparticles as a Contrast Agent for Photoacoustic Imaging in Live Mice. Advanced Materials, 2014, 26, 5633-5638.	11.1	158
144	Direct formation of mesoporous upconverting core-shell nanoparticles for bioimaging of living cells. Mikrochimica Acta, 2014, 181, 775-781.	2.5	21
145	An upconversion nanoparticle – Zinc phthalocyanine based nanophotosensitizer for photodynamic therapy. Biomaterials, 2014, 35, 4146-4156.	5.7	198
146	Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy. Biomaterials, 2014, 35, 2915-2923.	5.7	297
147	Intracellular redox-activated anticancer drug delivery by functionalized hollow mesoporous silica nanoreservoirs with tumor specificity. Biomaterials, 2014, 35, 7951-7962.	5.7	134
148	First Demonstration of Gold Nanorodsâ€Mediated Photodynamic Therapeutic Destruction of Tumors via Near Infraâ€Red Light Activation. Small, 2014, 10, 1612-1622.	5.2	200

		CITATION REPORT		
#	Article		IF	Citations
149	Mesoporous silica-based nanodevices for biological applications. RSC Advances, 2014,	4, 18961.	1.7	83
150	Intense ultraviolet upconversion emission from water-dispersed colloidal YF ₃ :Yb ³⁺ /Tm ³⁺ rhombic nanodisks. Nanoscale,	2014, 6, 753-757.	2.8	52
151	NIR photoregulated chemo- and photodynamic cancer therapy based on conjugated polyelectrolyte–drug conjugate encapsulated upconversion nanoparticles. Nanoscal 11259-11272.	e, 2014, 6,	2.8	83
152	Cross Relaxation Induced Pure Red Upconversion in Activator- and Sensitizer-Rich Lant Nanoparticles. Chemistry of Materials, 2014, 26, 5183-5186.	hanide	3.2	195
153	Pharmacological potential of bioactive engineered nanomaterials. Biochemical Pharma 92, 112-130.	cology, 2014,	2.0	103
154	Sub-10 nm BaLaF5:Mn/Yb/Er nanoprobes for dual-modal synergistic in vivo upconversion and X-ray bioimaging. Journal of Materials Chemistry B, 2014, 2, 6527-6533.	on luminescence	2.9	23
155	Nearâ€Infrared Lightâ€Mediated Photoactivation of a Platinum Antitumor Prodrug and Cellular Apoptosis Imaging by Upconversionâ€Luminescent Nanoparticles. Angewandt International Edition, 2014, 53, 1012-1016.	l Simultaneous e Chemie -	7.2	274
156	Tunable multicolor upconversion luminescence and paramagnetic property of the lant fluorescent/magnetic bi-function NaYbF4 microtubes. Journal of Alloys and Compound 502-506.	nanide doped s, 2014, 589,	2.8	20
157	Dual-modal upconversion fluorescent/X-ray imaging using ligand-free hexagonal phase NaLuF4:Gd/Yb/Er nanorods for blood vessel visualization. Biomaterials, 2014, 35, 2934	2941.	5.7	128
158	Lipid coated upconverting nanoparticles as NIR remote controlled transducer for simul photodynamic therapy and cell imaging. International Journal of Pharmaceutics, 2014,	taneous 466, 307-313.	2.6	27
159	Paradigms and Challenges for Bioapplication of Rare Earth Upconversion Luminescent Small Size and Tunable Emission/Excitation Spectra. Accounts of Chemical Research, 2	Nanoparticles: 014, 47, 1001-1009.	7.6	324
160	Purification of NaYF ₄ -Based Upconversion Phosphors. Chemistry of Mate 2015-2020.	rials, 2014, 26,	3.2	18
161	Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics Reviews, 2014, 114, 5161-5214.	. Chemical	23.0	2,163
162	Peptide p160 oated Silica Nanoparticles Applied in Photodynamic Therapy. Chemis 2014, 9, 2126-2131.	try - an Asian Journal,	1.7	9
163	Topography-driven bionano-interactions on colloidal silica nanoparticles. ACS Applied N & Interfaces, 2014, 6, 3437-3447.	Materials	4.0	27
164	Targeted Iron-Oxide Nanoparticle for Photodynamic Therapy and Imaging of Head and Nano, 2014, 8, 6620-6632.	Neck Cancer. ACS	7.3	120
166	Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ior upconversion-based probes. Nature Protocols, 2014, 9, 1634-1644.	is to be used as	5.5	501
167	Recent Advance of Biological Molecular Imaging Based on Lanthanide-Doped Upconversion-Luminescent Nanomaterials. Nanomaterials, 2014, 4, 129-154.		1.9	100

#	Article	IF	CITATIONS
168	Biocompatible PEGylated Fe3O4 Nanoparticles as Photothermal Agents for Near-Infrared Light Modulated Cancer Therapy. International Journal of Molecular Sciences, 2014, 15, 18776-18788.	1.8	48
169	Perspectives on the application of nanotechnology in photodynamic therapy for the treatment of melanoma. Nano Reviews, 2014, 5, 24381.	3.7	62
173	Tailored Nearâ€Infrared Photoemission in Fluoride Perovskites through Activator Aggregation and Superâ€Exchange between Divalent Manganese Ions. Advanced Science, 2015, 2, 1500089.	5.6	86
174	Nonlinear optical microscopy: Endogenous signals and exogenous probes. Annalen Der Physik, 2015, 527, 471-489.	0.9	12
175	The modified upconversion nanomaterials (UCNMs) for multimodal imaging and therapies. Biomedical Spectroscopy and Imaging, 2015, 4, 391-412.	1.2	5
176	BODIPY-doped silica nanoparticles with reduced dye leakage and enhanced singlet oxygen generation. Scientific Reports, 2015, 5, 12602.	1.6	49
177	Preferential coupling of an incident wave to reflection eigenchannels of disordered media. Scientific Reports, 2015, 5, 11393.	1.6	13
178	Tuning the Upconversion Luminescence Lifetimes of KYb ₂ F ₇ :Ho ³⁺ Nanocrystals for Optical Multiplexing. ChemPhysChem, 2015, 16, 3784-3789.	1.0	19
179	Intelligent MnO ₂ Nanosheets Anchored with Upconversion Nanoprobes for Concurrent pHâ€{H ₂ O ₂ â€Responsive UCL Imaging and Oxygenâ€Elevated Synergetic Therapy. Advanced Materials, 2015, 27, 4155-4161.	11.1	599
180	A New Cubic Phase for a NaYF ₄ Host Matrix Offering High Upconversion Luminescence Efficiency. Advanced Materials, 2015, 27, 5528-5533.	11.1	94
181	Xâ€ray Radiationâ€Controlled NOâ€Release for Onâ€Demand Depthâ€Independent Hypoxic Radiosensitization. Angewandte Chemie - International Edition, 2015, 54, 14026-14030.	7.2	241
182	Establishing the Structural Integrity of Core–Shell Nanoparticles against Elemental Migration using Luminescent Lanthanide Probes. Angewandte Chemie - International Edition, 2015, 54, 12788-12790.	7.2	61
183	Waterâ€Soluble, Monodisperse, Lanthanideâ€Doped Y(Gd)VO ₄ Nanocrystals as Promising Multimodal Bioprobe. European Journal of Inorganic Chemistry, 2015, 2015, 3108-3115.	1.0	15
184	Hypoxia Induced by Upconversionâ€Based Photodynamic Therapy: Towards Highly Effective Synergistic Bioreductive Therapy in Tumors. Angewandte Chemie, 2015, 127, 8223-8227.	1.6	77
185	Multifunctional Nanoâ€Bioprobes Based on Rattleâ€Structured Upconverting Luminescent Nanoparticles. Angewandte Chemie, 2015, 127, 8026-8030.	1.6	14
187	Multifunctional Nanoâ€Bioprobes Based on Rattleâ€Structured Upconverting Luminescent Nanoparticles. Angewandte Chemie - International Edition, 2015, 54, 7915-7919.	7.2	145
188	Recent Advances in Upconversion Nanoparticlesâ€Based Multifunctional Nanocomposites for Combined Cancer Therapy. Advanced Materials, 2015, 27, 7692-7712.	11.1	243
189	Hypoxia Induced by Upconversionâ€Based Photodynamic Therapy: Towards Highly Effective Synergistic Bioreductive Therapy in Tumors. Angewandte Chemie - International Edition, 2015, 54, 8105-8109.	7.2	374

#	Article	IF	CITATIONS
190	Optical Imaging, Photodynamic Therapy and Optically Triggered Combination Treatments. Cancer Journal (Sudbury, Mass), 2015, 21, 194-205.	1.0	43
191	Zinc-Dithizone Complex Engineered Upconverting Nanosensors for the Detection of Hypochlorite in Living Cells. Small, 2015, 11, 4568-4575.	5.2	39
192	A New Single 808 nm NIR Lightâ€Induced Imagingâ€Guided Multifunctional Cancer Therapy Platform. Advanced Functional Materials, 2015, 25, 3966-3976.	7.8	178
193	Remarkable NIR Enhancement of Multifunctional Nanoprobes for In Vivo Trimodal Bioimaging and Upconversion Optical/T ₂ â€Weighted MRIâ€Guided Small Tumor Diagnosis. Advanced Functional Materials, 2015, 25, 7119-7129.	7.8	115
194	Light or Heat? The Origin of Cargo Release from Nanoimpeller Particles Containing Upconversion Nanocrystals under IR Irradiation. Small, 2015, 11, 4165-4172.	5.2	43
195	Modular Integration of Upconverting Nanocrystal–Dendrimer Composites for Folate Receptor‧pecific NIR Imaging and Lightâ€Triggered Drug Release. Small, 2015, 11, 6078-6090.	5.2	61
196	Energy Migration Engineering of Bright Rareâ€Earth Upconversion Nanoparticles for Excitation by Lightâ€Emitting Diodes. Advanced Materials, 2015, 27, 6418-6422.	11.1	89
197	Photon Upconversion Through Tb ³⁺ â€Mediated Interfacial Energy Transfer. Advanced Materials, 2015, 27, 6208-6212.	11.1	89
199	Nanocompositeâ€Based Photodynamic Therapy Strategies for Deep Tumor Treatment. Small, 2015, 11, 5860-5887.	5.2	229
200	Photodynamic Therapy Based on Arrabidaea chica (Crajiru) Extract Nanoemulsion: In vitro Activity against Monolayers and Spheroids of Human Mammary Adenocarcinoma MCF-7 Cells. Journal of Nanomedicine & Nanotechnology, 2015, 06, .	1.1	12
201	An Anion-Induced Hydrothermal Oriented-Explosive Strategy for the Synthesis of Porous Upconversion Nanocrystals. Theranostics, 2015, 5, 456-468.	4.6	13
202	Upconverting NIR Photons for Bioimaging. Nanomaterials, 2015, 5, 2148-2168.	1.9	60
203	Effective near-infrared photodynamic therapy assisted by upconversion nanoparticles conjugated with photosensitizers. International Journal of Nanomedicine, 2015, 10, 419.	3.3	50
204	Near-infrared Light Responsive Upconversion Nanoparticles for Imaging, Drug Delivery and Therapy of Cancers. Current Nanoscience, 2015, 12, 18-32.	0.7	15
205	Carbon nanotube-assisted optical activation of TGF-β signalling by near-infrared light. Nature Nanotechnology, 2015, 10, 465-471.	15.6	57
206	A UCN@mSiO ₂ @cross-linked lipid with high steric stability as a NIR remote controlled-release nanocarrier for photodynamic therapy. Journal of Materials Chemistry B, 2015, 3, 3531-3540.	2.9	25
207	Enzyme responsive drug delivery system based on mesoporous silica nanoparticles for tumor therapy <i>in vivo</i> . Nanotechnology, 2015, 26, 145102.	1.3	86
208	Advances and perspectives in nanoprobes for noninvasive lymph node mapping. Nanomedicine, 2015, 10, 1019-1036.	1.7	26

ARTICLE IF CITATIONS A porphyrin photosensitized metal–organic framework for cancer cell apoptosis and caspase 209 2.2 125 responsive theranostics. Chemical Communications, 2015, 51, 10831-10834. Silica Coated Upconversion Nanoparticles: A Versatile Platform for the Development of Efficient Theranostics. Accounts of Chemical Research, 2015, 48, 1797-1805. The Quest for Global Competitiveness: Promotion of Innovation and Entrepreneurial Universities in 211 1.3 19 Singapore. Higher Education Policy, 2015, 28, 91-106. Complete destruction of deep-tissue buried tumors via combination of gene silencing and gold nanoechinus-mediated photodynamic therapy. Biomaterials, 2015, 62, 13-23. Distance-Dependent Plasmon-Enhanced Fluorescence of Upconversion Nanoparticles using 213 171 1.6 Polyelectrolyte Multilayers as Tunable Spacers. Scientific Reports, 2015, 5, 7779. Preparation and up-conversion luminescence of YVO4:Yb3+, Ln3+ (LnÂ=ÂEr, Tm, Ho) microrods. Journal of Materials Science: Materials in Electronics, 2015, 26, 6178-6181. 1.1 Upconversion Nanoparticles for Light-Activated Therapy. Nanostructure Science and Technology, 215 0.1 2 2015, 285-341. Heterogeneous core/shell fluoride nanocrystals with enhanced upconversion photoluminescence 2.8 for in vivo bioimaging. Nanoscale, 2015, Ź, 10775-10780. Luminescent lanthanide nanomaterials: an emerging tool for theranostic applications. Nanomedicine, 217 1.7 33 2015, 10, 1477-1491. A Chlorin-Based Nanoscale Metal–Organic Framework for Photodynamic Therapy of Colon Cancers. 6.6 Journal of the American Chemical Society, 2015, 137, 7600-7603. Effects of surface chemistry on the optical properties and cellular interaction of lanthanide-based 219 0 0.8 nanoparticles. Proceedings of SPIE, 2015, ,. Near-IR Triggered Photon Upconversion. Fundamental Theories of Physics, 2015, 47, 273-347. 0.1 Sequential growth of sandwiched NaYF4:Yb/Er@NaYF4:Yb@NaNdF4:Yb coreâ€"shellâ€"shell nanoparticles 221 3.1 26 for photodynamic therapy. Applied Surface Science, 2015, 357, 2408-2414. An endoscope with integrated transparent bioelectronics and theranostic nanoparticles for colon 5.8 159 cancer treatment. Nature Communications, 2015, 6, 10059. Yb³⁺/Er³⁺-Codoped Bi₂O₃ Nanospheres: Probe for Upconversion Luminescence Imaging and Binary Contrast Agent for Computed Tomography Imaging. 223 4.0 78 ACS Applied Materials & amp; Interfaces, 2015, 7, 26346-26354. Harmonization of upconverting nanocrystals and photosensitizer for antimicrobial application. RSC Advances, 2015, 5, 102416-102423. 224 Active-targeted pH-responsive albumin–photosensitizer conjugate nanoparticles as theranostic 225 2.9 40 agents. Journal of Materials Chemistry B, 2015, 3, 9349-9359. Synthesis of ultra-small BaLuF₅:Yb³⁺,Er³⁺@BaLuF₅:Yb³⁺ active-core–active-shell nanoparticles with enhanced up-conversion and down-conversion luminescence by a laver-by-laver strategy. Journal of Materials Chemistry C. 2015. 3. 2045-2053

# 227	ARTICLE Er3+–Yb3+ doped vanadate nanocrystals: A highly sensitive thermographic phosphor and its optical nanoheater behavior. Sensors and Actuators B: Chemical, 2015, 209, 775-780.	IF 4.0	CITATIONS
228	Core – shell upconversion nanoparticle – semiconductor heterostructures for photodynamic therapy. Scientific Reports, 2015, 5, 8252.	1.6	65
229	Radiation-/hypoxia-induced solid tumor metastasis and regrowth inhibited by hypoxia-specific upconversion nanoradiosensitizer. Biomaterials, 2015, 49, 1-8.	5.7	131
230	Strain-Induced Modification of Optical Selection Rules in Lanthanide-Based Upconverting Nanoparticles. Nano Letters, 2015, 15, 1891-1897.	4.5	121
231	Multifunctional Anticancer Platform for Multimodal Imaging and Visible Light Driven Photodynamic/Photothermal Therapy. Chemistry of Materials, 2015, 27, 1751-1763.	3.2	109
232	Surface charge effect on the cellular interaction and cytotoxicity of NaYF ₄ :Yb ³⁺ , Er ³⁺ @SiO ₂ nanoparticles. RSC Advances, 2015, 5, 7773-7780.	1.7	23
233	An overview of nanoparticles commonly used in fluorescent bioimaging. Chemical Society Reviews, 2015, 44, 4743-4768.	18.7	1,316
234	Tunable Chemical Release from Polyester Thin Film by Photocatalytic Zinc Oxide and Doped LiYF ₄ Upconverting Nanoparticles. Biomacromolecules, 2015, 16, 364-373.	2.6	17
235	Nanoparticles in Photodynamic Therapy. Chemical Reviews, 2015, 115, 1990-2042.	23.0	2,342
236	Enhancement of single particle rare earth doped NaYF ₄ : Yb, Er emission with a gold shell. Nanotechnology, 2015, 26, 025101.	1.3	16
237	Melanoma Resistance to Photodynamic Therapy. Resistance To Targeted Anti-cancer Therapeutics, 2015, , 229-246.	0.1	5
238	Recent advances in targeted nanoparticles drug delivery to melanoma. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 769-794.	1.7	94
239	Targeted Treatment of Cancer with Nanotherapeutics Based on Mesoporous Silica Nanoparticles. ChemPlusChem, 2015, 80, 26-36.	1.3	53
240	Titania Coated Upconversion Nanoparticles for Near-Infrared Light Triggered Photodynamic Therapy. ACS Nano, 2015, 9, 191-205.	7.3	331
241	UV-Emitting Upconversion-Based TiO ₂ Photosensitizing Nanoplatform: Near-Infrared Light Mediated <i>in Vivo</i> Photodynamic Therapy <i>via</i> Mitochondria-Involved Apoptosis Pathway. ACS Nano, 2015, 9, 2584-2599.	7.3	494
242	Inorganic lanthanide nanoprobes for background-free luminescent bioassays. Science China Materials, 2015, 58, 156-177.	3.5	50
243	Upconverting nanoparticle-based multi-functional nanoplatform for enhanced photodynamic therapy: promises and perils. , 2015, , 377-391.		2
244	Nanoscintillator-Mediated X-ray Inducible Photodynamic Therapy for In Vivo Cancer Treatment. Nano Letters, 2015, 15, 2249-2256.	4.5	312

#	Article	IF	CITATIONS
245	Aptamer–Drug Conjugates. Bioconjugate Chemistry, 2015, 26, 2186-2197.	1.8	172
246	Broad-spectrum antivirals against viral fusion. Nature Reviews Microbiology, 2015, 13, 426-437.	13.6	189
247	Polymeric Nanostructures for Imaging and Therapy. Chemical Reviews, 2015, 115, 10967-11011.	23.0	420
248	Lanthanide Nanoparticles: From Design toward Bioimaging and Therapy. Chemical Reviews, 2015, 115, 10725-10815.	23.0	946
249	Photodynamic therapy of melanoma using new, synthetic porphyrins and phthalocyanines as photosensitisers - a comparative study. Medicine and Pharmacy Reports, 2015, 88, 175-180.	0.2	14
250	A pH-activatable and aniline-substituted photosensitizer for near-infrared cancer theranostics. Chemical Science, 2015, 6, 5969-5977.	3.7	173
251	Poly-(allylamine hydrochloride)-coated but not poly(acrylic acid)-coated upconversion nanoparticles induce autophagy and apoptosis in human blood cancer cells. Journal of Materials Chemistry B, 2015, 3, 5769-5776.	2.9	18
252	Highly water-soluble and tumor-targeted photosensitizers for photodynamic therapy. Organic and Biomolecular Chemistry, 2015, 13, 7681-7694.	1.5	56
253	Interplay between Static and Dynamic Energy Transfer in Biofunctional Upconversion Nanoplatforms. Journal of Physical Chemistry Letters, 2015, 6, 2518-2523.	2.1	39
254	Near infrared light-driven water oxidation in a molecule-based artificial photosynthetic device using an upconversion nano-photosensitizer. Chemical Communications, 2015, 51, 13008-13011.	2.2	7
255	Intracellular Adenosine Triphosphate Deprivation through Lanthanide-Doped Nanoparticles. Journal of the American Chemical Society, 2015, 137, 6550-6558.	6.6	88
256	Erythrocyte membrane-coated NIR-triggered biomimetic nanovectors with programmed delivery for photodynamic therapy of cancer. Nanoscale, 2015, 7, 9806-9815.	2.8	106
257	Aerosol droplet delivery of mesoporous silica nanoparticles: A strategy for respiratory-based therapeutics. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1377-1385.	1.7	30
258	A facile one-pot synthesis of colloidal stable, monodisperse, highly PEGylated CuS@mSiO ₂ nanocomposites for the combination of photothermal therapy and chemotherapy. Chemical Communications, 2015, 51, 9447-9450.	2.2	50
259	Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers. Nature Communications, 2015, 6, 6938.	5.8	269
260	Toxicological assessment of PEG functionalized f-block rare earth phosphate nanorods. Toxicology Research, 2015, 4, 966-975.	0.9	12
261	Characterizing low fluence thresholds for in vitro photodynamic therapy. Biomedical Optics Express, 2015, 6, 770.	1.5	32
262	Fluorescence Behaviour of an Aluminium Octacarboxy Phthalocyanine - NaYGdF4:Yb/Er Nanoparticle Conjugate, Journal of Fluorescence, 2015, 25, 489-501.	1.3	1

#	Article	IF	CITATIONS
263	Controllable Generation of Nitric Oxide by Nearâ€Infraredâ€6ensitized Upconversion Nanoparticles for Tumor Therapy. Advanced Functional Materials, 2015, 25, 3049-3056.	7.8	194
264	Gold nanoparticle/ZnO nanorod hybrids for enhanced reactive oxygen species generation and photodynamic therapy. Nano Research, 2015, 8, 2004-2014.	5.8	85
265	Phase transformation and morphology tuning of β -NaYF 4 :Yb 3+ ,Er 3+ nanocrystals through K + ions codoping. Chinese Physics B, 2015, 24, 037801.	0.7	15
266	Crystal cell oriented-rotation triggered phase transition of porous upconversion nanocrystals synthesis in hydrothermal system. Journal of Materials Chemistry B, 2015, 3, 3948-3958.	2.9	3
267	Rhodamine-6G can photosensitize folic acid decomposition through electron transfer. Chemical Physics Letters, 2015, 627, 26-29.	1.2	5
268	Near infrared light mediated release of doxorubicin using upconversion nanoparticles. Chemical Communications, 2015, 51, 8477-8479.	2.2	47
269	Chlorin e6 Conjugated Poly(dopamine) Nanospheres as PDT/PTT Dual-Modal Therapeutic Agents for Enhanced Cancer Therapy. ACS Applied Materials & Interfaces, 2015, 7, 8176-8187.	4.0	311
270	Experimental and theoretical photoluminescence studies in nucleic acid assembled gold-upconverting nanoparticle clusters. Nanoscale, 2015, 7, 17254-17260.	2.8	28
271	One-Step Protein Conjugation to Upconversion Nanoparticles. Analytical Chemistry, 2015, 87, 10406-10413.	3.2	54
272	Effective Two-Photon Excited Photodynamic Therapy of Xenograft Tumors Sensitized by Water-Soluble Bis(arylidene)cycloalkanone Photosensitizers. Journal of Medicinal Chemistry, 2015, 58, 7949-7958.	2.9	62
273	Nd ³⁺ -sensitized NaLuF ₄ luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation. Nanoscale, 2015, 7, 17861-17870.	2.8	74
274	Dual-functional semiconductor-decorated upconversion hollow spheres for high efficiency dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 23360-23367.	5.2	33
275	Self-Monitoring and Self-Delivery of Photosensitizer-Doped Nanoparticles for Highly Effective Combination Cancer Therapy <i>in Vitro</i> and <i>in Vivo</i> . ACS Nano, 2015, 9, 9741-9756.	7.3	149
276	Preparation of Self-Activated Fluorescence Mesoporous Silica Hollow Nanoellipsoids for Theranostics. Langmuir, 2015, 31, 11344-11352.	1.6	24
277	Controlling upconversion nanocrystals for emerging applications. Nature Nanotechnology, 2015, 10, 924-936.	15.6	1,221
278	Tailoring dye-sensitized upconversion nanoparticle excitation bands towards excitation wavelength selective imaging. Nanoscale, 2015, 7, 18424-18428.	2.8	95
279	Comment on "Intimate Coupling of Photocatalysis and Biodegradation for Degrading Phenol Using Different Light Types: Visible Light vs UV Light― Environmental Science & Technology, 2015, 49, 13075-13076.	4.6	7
280	In vivo 808 nm image-guided photodynamic therapy based on an upconversion theranostic nanoplatform. Nanoscale, 2015, 7, 14914-14923.	2.8	53

#	Article	IF	CITATIONS
281	Chlorin e6-Encapsulated Polyphosphoester Based Nanocarriers with Viscous Flow Core for Effective Treatment of Pancreatic Cancer. ACS Applied Materials & amp; Interfaces, 2015, 7, 18856-18865.	4.0	45
282	Intranuclear biophotonics by smart design of nuclear-targeting photo-/radio-sensitizers co-loaded upconversion nanoparticles. Biomaterials, 2015, 69, 89-98.	5.7	76
283	Near-infrared light activated delivery platform for cancer therapy. Advances in Colloid and Interface Science, 2015, 226, 123-137.	7.0	42
284	Photodynamic therapy of melanoma skin cancer using carbon dot – chlorin e6 – hyaluronate conjugate. Acta Biomaterialia, 2015, 26, 295-305.	4.1	110
285	Photosensitizer-Loaded Branched Polyethylenimine-PEGylated Ceria Nanoparticles for Imaging-Guided Synchronous Photochemotherapy. ACS Applied Materials & Interfaces, 2015, 7, 24218-24228.	4.0	39
286	A Near-Infrared Triggered Nanophotosensitizer Inducing Domino Effect on Mitochondrial Reactive Oxygen Species Burst for Cancer Therapy. ACS Nano, 2015, 9, 11064-11074.	7.3	274
287	Single-layer tungsten oxide as intelligent photo-responsive nanoagents for permanent male sterilization. Biomaterials, 2015, 69, 56-64.	5.7	39
288	Ultrathin Black Phosphorus Nanosheets for Efficient Singlet Oxygen Generation. Journal of the American Chemical Society, 2015, 137, 11376-11382.	6.6	891
289	Ratiometric Biosensor for Aggregation-Induced Emission-Guided Precise Photodynamic Therapy. ACS Nano, 2015, 9, 10268-10277.	7.3	207
290	Serum protein adsorption and excretion pathways of metal nanoparticles. Nanomedicine, 2015, 10, 2781-2794.	1.7	52
291	Stimuli responsive drug delivery application of polymer and silica in biomedicine. Journal of Materials Chemistry B, 2015, 3, 8599-8622.	2.9	88
292	Plasmon-induced hyperthermia: hybrid upconversion NaYF ₄ :Yb/Er and gold nanomaterials for oral cancer photothermal therapy. Journal of Materials Chemistry B, 2015, 3, 8293-8302.	2.9	65
293	Nanoscale theranostics for physical stimulus-responsive cancer therapies. Biomaterials, 2015, 73, 214-230.	5.7	189
294	Broad-spectrum chemiluminescence covering a 400–1400 nm spectral region and its use as a white-near infrared light source for imaging. RSC Advances, 2015, 5, 100736-100742.	1.7	10
295	A Single 808 nm Near-Infrared Light-Mediated Multiple Imaging and Photodynamic Therapy Based on Titania Coupled Upconversion Nanoparticles. Chemistry of Materials, 2015, 27, 7957-7968.	3.2	129
296	Resistance to Photodynamic Therapy in Cancer. Resistance To Targeted Anti-cancer Therapeutics, 2015, ,	0.1	8
297	Near infrared activation of an anticancer PtIV complex by Tm-doped upconversion nanoparticles. Chemical Communications, 2015, 51, 2091-2094.	2.2	60
298	Design of an intelligent sub-50 nm nuclear-targeting nanotheranostic system for imaging guided intranuclear radiosensitization. Chemical Science, 2015, 6, 1747-1753.	3.7	88

#	Article	IF	CITATIONS
299	Two in One: Luminescence Imaging and 730 nm Continuous Wave Laser Driven Photodynamic Therapy of Iridium Complexes. Organometallics, 2015, 34, 73-77.	1.1	43
300	Sub-10nm lanthanide doped BaLuF5 nanocrystals: Shape controllable synthesis, tunable multicolor emission and enhanced near-infrared upconversion luminescence. Materials Research Bulletin, 2015, 64, 27-32.	2.7	8
302	Photonic Crystalâ€Driven Spectral Concentration for Upconversion Photovoltaics. Advanced Optical Materials, 2015, 3, 568-574.	3.6	26
303	Marriage of Scintillator and Semiconductor for Synchronous Radiotherapy and Deep Photodynamic Therapy with Diminished Oxygen Dependence. Angewandte Chemie - International Edition, 2015, 54, 1770-1774.	7.2	420
304	1.3 μm emitting SrF2:Nd3+ nanoparticles for high contrast in vivo imaging in the second biological window. Nano Research, 2015, 8, 649-665.	5.8	185
305	Light upconverting core–shell nanostructures: nanophotonic control for emerging applications. Chemical Society Reviews, 2015, 44, 1680-1713.	18.7	483
306	808 nm driven Nd ³⁺ -sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging. Nanoscale, 2015, 7, 190-197.	2.8	161
307	High quality polyacrylic acid modified multifunction luminescent nanorods for tri-modality bioimaging, in vivo long-lasting tracking and biodistribution. Nanoscale, 2015, 7, 542-550.	2.8	36
308	Shifting the Light Activation of Metallodrugs to the Red and Near-Infrared Region in Anticancer Phototherapy. Comments on Inorganic Chemistry, 2015, 35, 179-213.	3.0	56
309	Synthesis of YF3: Yb, Er upconverting nanofluorophores using chitosan and their cytotoxicity in MCF-7 cells. International Journal of Biological Macromolecules, 2015, 72, 1308-1312.	3.6	16
310	Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection. Chemical Society Reviews, 2015, 44, 1379-1415.	18.7	748
311	Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging. Chemical Society Reviews, 2015, 44, 1302-1317.	18.7	504
312	Oxidative cleavage-based upconversional nanosensor for visual evaluation of antioxidant activity of drugs. Biosensors and Bioelectronics, 2015, 64, 88-93.	5.3	25
313	Current advances in lanthanide ion (Ln ³⁺)-based upconversion nanomaterials for drug delivery. Chemical Society Reviews, 2015, 44, 1416-1448.	18.7	676
314	Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications. Chemical Society Reviews, 2015, 44, 1449-1478.	18.7	331
315	Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure. Chemical Society Reviews, 2015, 44, 1346-1378.	18.7	532
316	Energy transfer in lanthanide upconversion studies for extended optical applications. Chemical Society Reviews, 2015, 44, 1608-1634.	18.7	859
317	Upconversion Nanoparticles: A Versatile Solution to Multiscale Biological Imaging. Bioconjugate Chemistry, 2015, 26, 166-175.	1.8	178

#	ARTICLE Magnetic and fluorescent	IF	CITATIONS
318	Gd ₂ O ₃ :Yb ³⁺ /Ln ³⁺ nanoparticles for simultaneous upconversion luminescence/MR dual modal imaging and NIR-induced photodynamic therapy. International Journal of Nanomedicine, 2017, Volume 12, 1-14.	3.3	40
319	Nanomedicine in the application of uveal melanoma. International Journal of Ophthalmology, 2016, 9, 1215-25.	0.5	13
320	Targeted Nanoparticles for Drug Delivery to Melanoma. , 2016, , 203-215.		3
321	Recent Progress in Light-Triggered Nanotheranostics for Cancer Treatment. Theranostics, 2016, 6, 948-968.	4.6	182
322	Recent Advances on Inorganic Nanoparticle-Based Cancer Therapeutic Agents. International Journal of Environmental Research and Public Health, 2016, 13, 1182.	1.2	91
323	X-Ray Induced Photodynamic Therapy: A Combination of Radiotherapy and Photodynamic Therapy. Theranostics, 2016, 6, 2295-2305.	4.6	171
324	Recent Advances of Light-Mediated Theranostics. Theranostics, 2016, 6, 2439-2457.	4.6	171
325	Titanium Dioxide/Upconversion Nanoparticles/Cadmium Sulfide Nanofibers Enable Enhanced Fullâ€Spectrum Absorption for Superior Solar Light Driven Photocatalysis. ChemSusChem, 2016, 9, 1449-1454.	3.6	67
326	Lightâ€Activated Hypoxiaâ€Responsive Nanocarriers for Enhanced Anticancer Therapy. Advanced Materials, 2016, 28, 3313-3320.	11.1	421
327	Synthesis of Iron Nanometallic Glasses and Their Application in Cancer Therapy by a Localized Fenton Reaction. Angewandte Chemie, 2016, 128, 2141-2146.	1.6	130
328	Quasiâ€Continuous Wave Nearâ€Infrared Excitation of Upconversion Nanoparticles for Optogenetic Manipulation of <i>C. elegans</i> . Small, 2016, 12, 1732-1743.	5.2	93
329	High-Performance Upconversion Nanoprobes for Multimodal MR Imaging of Acute Ischemic Stroke. Small, 2016, 12, 3591-3600.	5.2	30
330	What is the role of curvature on the properties of nanomaterials for biomedical applications?. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 334-354.	3.3	33
331	Upconversion nanocomposites for photo-based cancer theranostics. Journal of Materials Chemistry B, 2016, 4, 5331-5348.	2.9	25
332	Nearâ€Infrared Photocatalytic Upconversion Nanoparticles/TiO ₂ Nanofibers Assembled in Large Scale by Electrospinning. Particle and Particle Systems Characterization, 2016, 33, 248-253.	1.2	98
333	Roomâ€Temperature Wavelengthâ€Tunable Singleâ€Band Upconversion Luminescence from Yb ³⁺ /Mn ²⁺ Codoped Fluoride Perovskites ABF ₃ . Advanced Optical Materials, 2016, 4, 798-806.	3.6	55
334	An upconversion nanoplatform for simultaneous photodynamic therapy and Pt chemotherapy to combat cisplatin resistance. Dalton Transactions, 2016, 45, 13052-13060.	1.6	58
335	Highly Emissive Nd ³⁺ â€Sensitized Multilayered Upconversion Nanoparticles for Efficient 795 nm Operated Photodynamic Therapy. Advanced Functional Materials, 2016, 26, 4778-4785.	7.8	132

#	Article	IF	CITATIONS
336	Unique Upconversion Core–Shell Nanoparticles with Tunable Fluorescence Synthesized by a Sequential Growth Process. Advanced Materials Interfaces, 2016, 3, 1500649.	1.9	43
337	Photodynamic Therapy Mediated by Nontoxic Core–Shell Nanoparticles Synergizes with Immune Checkpoint Blockade To Elicit Antitumor Immunity and Antimetastatic Effect on Breast Cancer. Journal of the American Chemical Society, 2016, 138, 16686-16695.	6.6	384
338	Stem-Cell-Membrane Camouflaging on Near-Infrared Photoactivated Upconversion Nanoarchitectures for in Vivo Remote-Controlled Photodynamic Therapy. ACS Applied Materials & Interfaces, 2016, 8, 34252-34260.	4.0	132
339	A Protein–Polymer Bioconjugate-Coated Upconversion Nanosystem for Simultaneous Tumor Cell Imaging, Photodynamic Therapy, and Chemotherapy. ACS Applied Materials & Interfaces, 2016, 8, 32688-32698.	4.0	54
340	Improved luminescence in water-soluble hollow LaF3:Eu3+nanoparticles by introducing Li+ions. Materials Research Express, 2016, 3, 045010.	0.8	12
341	High-resolution fast ion microscopy of single whole biological cells. Applied Physics Reviews, 2016, 3, .	5.5	9
342	Upconversion nanoparticles and their hybrid assemblies for biomedical applications. Russian Chemical Reviews, 2016, 85, 1277-1296.	2.5	20
343	Organic Nanoparticle-Based Fluorescent Chemosensor for Selective Switching ON and OFF of Photodynamic Therapy (PDT). ChemistrySelect, 2016, 1, 6523-6531.	0.7	6
344	The application of mesoporous silica nanoparticle family in cancer theranostics. Coordination Chemistry Reviews, 2016, 319, 86-109.	9.5	132
345	In vitro upconverting/downshifting luminescent detection of tumor markers based on Eu ³⁺ -activated core–shell–shell lanthanide nanoprobes. Chemical Science, 2016, 7, 5013-5019.	3.7	68
346	Human amniotic fluid stem cells labeled with up-conversion nanoparticles for imaging-monitored repairing of acute lung injury. Biomaterials, 2016, 100, 91-100.	5.7	36
347	Scintillating Nanoparticles as Energy Mediators for Enhanced Photodynamic Therapy. ACS Nano, 2016, 10, 3918-3935.	7.3	296
348	Multimodal Upconversion Nanoplatform with a Mitochondria-Targeted Property for Improved Photodynamic Therapy of Cancer Cells. Inorganic Chemistry, 2016, 55, 3872-3880.	1.9	62
349	Delivery of a hydrophobic phthalocyanine photosensitizer using PEGylated gold nanoparticle conjugates for the in vivo photodynamic therapy of amelanotic melanoma. Photochemical and Photobiological Sciences, 2016, 15, 618-625.	1.6	48
350	Hydrothermal synthesis of superparamagnetic and red luminescent bifunctional Fe3O4@Mn2+-doped NaYF4:Yb/Er core@shell monodisperse nanoparticles and their subsequent ligand exchange in water. Applied Surface Science, 2016, 378, 174-180.	3.1	25
351	Facile Assembly of Functional Upconversion Nanoparticles for Targeted Cancer Imaging and Photodynamic Therapy. ACS Applied Materials & Interfaces, 2016, 8, 11945-11953.	4.0	86
352	Fabrication of freestanding silk fibroin films containing Ag nanowires/NaYF4:Yb,Er nanocomposites with metal-enhanced fluorescence behavior. Physical Chemistry Chemical Physics, 2016, 18, 15289-15294.	1.3	17
353	Multifunctional Liposome Nanocarriers Combining Upconverting Nanoparticles and Anticancer Drugs. Journal of Physical Chemistry B, 2016, 120, 4992-5001.	1.2	58

#	ARTICLE	IF	CITATIONS
354	Enhanced upconversion fluorescence and altered particle size of β-NaGdF_4:Yb^3+/Er^3+ nanocrystals by codoping with Mo^3+ ions. Optical Materials Express, 2016, 6, 3001.	1.6	12
355	Near infrared light-mediated photoactivation of cytotoxic Re(<scp>i</scp>) complexes by using lanthanide-doped upconversion nanoparticles. Dalton Transactions, 2016, 45, 14101-14108.	1.6	27
356	NIRâ€Activated Supersensitive Drug Release Using Nanoparticles with a Flow Core. Advanced Functional Materials, 2016, 26, 7516-7525.	7.8	72
357	Carbon Nitride Quantum Dots and Their Applications. , 2016, , 485-502.		7
358	Upconversion Nanoparticles for Bioimaging. , 2016, , 363-390.		2
359	g-C ₃ N ₄ Coated Upconversion Nanoparticles for 808 nm Near-Infrared Light Triggered Phototherapy and Multiple Imaging. Chemistry of Materials, 2016, 28, 7935-7946.	3.2	163
360	Near-Infrared Light-Mediated Photodynamic Therapy Nanoplatform by the Electrostatic Assembly of Upconversion Nanoparticles with Graphitic Carbon Nitride Quantum Dots. Inorganic Chemistry, 2016, 55, 10267-10277.	1.9	69
361	Overcoming the Achilles' heel of photodynamic therapy. Chemical Society Reviews, 2016, 45, 6488-6519.	18.7	1,251
362	The conjugates of carbon nanodots and chlorin e6 for enhancing cellular internalization and photodynamic therapy of cancers. Laser Physics Letters, 2016, 13, 095602.	0.6	3
363	Optimization of Bi ³⁺ in Upconversion Nanoparticles Induced Simultaneous Enhancement of Near-Infrared Optical and X-ray Computed Tomography Imaging Capability. ACS Applied Materials & Interfaces, 2016, 8, 27490-27497.	4.0	72
364	Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chemical Society Reviews, 2016, 45, 6597-6626.	18.7	1,483
365	9 Upconversion Nanoparticles for Phototherapy. Nanomaterials and Their Applications, 2016, , 255-290.	0.0	0
366	4 Functionalization Aspects of Water Dispersible Upconversion Nanoparticles. Nanomaterials and Their Applications, 2016, , 69-100.	0.0	2
367	5 Synergistic Effects in Organic-Coated Upconversion Nanoparticles. Nanomaterials and Their Applications, 2016, , 101-138.	0.0	5
368	6 Tuning Optical Properties of Lanthanide Upconversion Nanoparticles. Nanomaterials and Their Applications, 2016, , 139-162.	0.0	0
369	Enhanced up/down-conversion luminescence and heat: Simultaneously achieving in one single core-shell structure for multimodal imaging guided therapy. Biomaterials, 2016, 105, 77-88.	5.7	61
370	Recent Advances of Using Hybrid Nanocarriers in Remotely Controlled Therapeutic Delivery. Small, 2016, 12, 4782-4806.	5.2	226
371	Constructing Interfacial Energy Transfer for Photon Up―and Downâ€Conversion from Lanthanides in a Core–Shell Nanostructure. Angewandte Chemie, 2016, 128, 12544-12548.	1.6	15

#	Article	IF	CITATIONS
372	Dual-Modality Positron Emission Tomography/Optical Image-Guided Photodynamic Cancer Therapy with Chlorin e6-Containing Nanomicelles. ACS Nano, 2016, 10, 7721-7730.	7.3	88
373	Enhancing Quantum Yield via Local Symmetry Distortion in Lanthanide-Based Upconverting Nanoparticles. ACS Photonics, 2016, 3, 1523-1530.	3.2	72
374	Constructing Interfacial Energy Transfer for Photon Up―and Downâ€Conversion from Lanthanides in a Core–Shell Nanostructure. Angewandte Chemie - International Edition, 2016, 55, 12356-12360.	7.2	118
375	Chlorin-Based Nanoscale Metal–Organic Framework Systemically Rejects Colorectal Cancers via Synergistic Photodynamic Therapy and Checkpoint Blockade Immunotherapy. Journal of the American Chemical Society, 2016, 138, 12502-12510.	6.6	429
376	Monomer zinc phthalocyanine/upconversion nanoparticle coated with hyaluronic acid crosslinked gel as NIR light-activated drug for in vitro photodynamic therapy. Dalton Transactions, 2016, 45, 15170-15179.	1.6	25
377	Upconversion nano-photosensitizer targeting into mitochondria for cancer apoptosis induction and cyt c fluorescence monitoring. Nano Research, 2016, 9, 3257-3266.	5.8	45
378	Upconversion Phenomena inÂNanofluorides. , 2016, , 35-63.		4
379	A Reactive 1O2 - Responsive Combined Treatment System of Photodynamic and Chemotherapy for Cancer. Scientific Reports, 2016, 6, 29911.	1.6	33
380	Silane modified upconversion nanoparticles with multifunctions: imaging, therapy and hypoxia detection. Scientific Reports, 2016, 6, 22350.	1.6	20
381	Nanomaterials as Therapeutic/Imaging Agent Delivery Vehicles for Tumor Targeting Theranostics. , 2016, , 1-42.		0
382	Upconversion Nanomaterials for Tumor Targeting Theranostics. , 2016, , 299-326.		0
383	Near-infrared light-triggered release of small molecules for controlled differentiation and long-term tracking of stem cells inÂvivo using upconversion nanoparticles. Biomaterials, 2016, 110, 1-10.	5.7	77
384	Theranostic Upconversion Nanobeacons for Tumor mRNA Ratiometric Fluorescence Detection and Imaging-Monitored Drug Delivery. Small, 2016, 12, 5944-5953.	5.2	65
385	Glutathione Activatable Photosensitizerâ€Conjugated Pseudopolyrotaxane Nanocarriers for Photodynamic Theranostics. Small, 2016, 12, 6223-6232.	5.2	65
386	Nanoparticle delivery systems for siRNA-based therapeutics. Journal of Materials Chemistry B, 2016, 4, 6620-6639.	2.9	53
387	In-situ second harmonic generation by cancer cell targeting ZnO nanocrystals to effect photodynamic action in subcellular space. Biomaterials, 2016, 104, 78-86.	5.7	25
388	Supramolecular Selfâ€Assembly of Histidineâ€Cappedâ€Dialkoxyâ€Anthracene: A Visibleâ€Lightâ€Triggered Platf for Facile siRNA Delivery. Chemistry - A European Journal, 2016, 22, 13789-13793.	orm 1.7	12
389	Luminescent Ions in Advanced Composite Materials for Multifunctional Applications. Advanced Functional Materials, 2016, 26, 6330-6350.	7.8	198

#	Article	IF	CITATIONS
390	Plasmon-Enhanced Photodynamic Cancer Therapy by Upconversion Nanoparticles Conjugated with Au Nanorods. ACS Applied Materials & Interfaces, 2016, 8, 32108-32119.	4.0	86
391	NIR-driven graphitic-phase carbon nitride nanosheets for efficient bioimaging and photodynamic therapy. Journal of Materials Chemistry B, 2016, 4, 8000-8008.	2.9	50
392	Reversible Bending Behaviors of Photomechanical Soft Actuators Based on Graphene Nanocomposites. Scientific Reports, 2016, 6, 27366.	1.6	48
393	Mitochondria-targeted Triphenylamine Derivatives Activatable by Two-Photon Excitation for Triggering and Imaging Cell Apoptosis. Scientific Reports, 2016, 6, 21458.	1.6	48
394	Ultralow-Power Near Infrared Lamp Light Operable Targeted Organic Nanoparticle Photodynamic Therapy. Journal of the American Chemical Society, 2016, 138, 14586-14591.	6.6	275
395	Lanthanide-Doped Upconversion Nanoprobes. , 2016, , 237-287.		0
396	A water-dispersible dye-sensitized upconversion nanocomposite modified with phosphatidylcholine for lymphatic imaging. Chemical Communications, 2016, 52, 13389-13392.	2.2	67
397	Cooperative Treatment of Metastatic Breast Cancer Using Host-Guest Nanoplatform Coloaded with Docetaxel and siRNA. Small, 2016, 12, 488-498.	5.2	45
398	Silica–Polymer Hybrid with Selfâ€Assembled PEG Corona Excreted Rapidly via a Hepatobiliary Route. Advanced Functional Materials, 2016, 26, 3036-3047.	7.8	47
399	A Tripleâ€Collaborative Strategy for Highâ€Performance Tumor Therapy by Multifunctional Mesoporous Silicaâ€Coated Gold Nanorods. Advanced Functional Materials, 2016, 26, 4339-4350.	7.8	150
400	Hierarchical Plasmonic Nanorods and Upconversion Core–Satellite Nanoassemblies for Multimodal Imagingâ€Guided Combination Phototherapy. Advanced Materials, 2016, 28, 898-904.	11.1	240
401	On The Latest Three‣tage Development of Nanomedicines based on Upconversion Nanoparticles. Advanced Materials, 2016, 28, 3987-4011.	11.1	221
402	Upconversion nanoparticle as a theranostic agent for tumor imaging and therapy. Journal of Innovative Optical Health Sciences, 2016, 09, 1630006.	0.5	26
403	Decoration of upconversion nanoparticles@mSiO2 core–shell nanostructures with CdS nanocrystals for excellent infrared light triggered photocatalysis. RSC Advances, 2016, 6, 54241-54248.	1.7	16
404	Self-assembled gold nanostar–NaYF ₄ :Yb/Er clusters for multimodal imaging, photothermal and photodynamic therapy. Journal of Materials Chemistry B, 2016, 4, 4455-4461.	2.9	50
405	Integration of Upconversion Nanoparticles and Ultrathin Black Phosphorus for Efficient Photodynamic Theranostics under 808 nm Near-Infrared Light Irradiation. Chemistry of Materials, 2016, 28, 4724-4734.	3.2	193
406	Hydrothermal-assisted crystallization for the synthesis of upconversion nanoparticles/CdS/TiO ₂ composite nanofibers by electrospinning. CrystEngComm, 2016, 18, 6013-6018.	1.3	12
407	A dual-fluorescent nano-carrier for delivering photoactive ruthenium polypyridyl complexes. Journal of Materials Chemistry B, 2016, 4, 4746-4753.	2.9	28

#	Article	IF	CITATIONS
408	808Ânm-excited upconversion nanoprobes with low heating effect for targeted magnetic resonance imaging and high-efficacy photodynamic therapy in HER2-overexpressed breast cancer. Biomaterials, 2016, 103, 116-127.	5.7	83
409	808Ânm Light-triggered and hyaluronic acid-targeted dual-photosensitizers nanoplatform by fully utilizing Nd3+-sensitized upconversion emission with enhanced anti-tumor efficacy. Biomaterials, 2016, 101, 32-46.	5.7	177
410	Upconversion NaGdF4 nanoparticles for monitoring heat treatment and acid corrosion processes of hair. Journal of Rare Earths, 2016, 34, 475-482.	2.5	3
411	Development of a Highly Selective, Sensitive, and Fast Response Upconversion Luminescent Platform for Hydrogen Sulfide Detection. Advanced Functional Materials, 2016, 26, 191-199.	7.8	79
412	Cancer Cell Membrane oated Upconversion Nanoprobes for Highly Specific Tumor Imaging. Advanced Materials, 2016, 28, 3460-3466.	11.1	420
413	Synthesis of Iron Nanometallic Glasses and Their Application in Cancer Therapy by a Localized Fenton Reaction. Angewandte Chemie - International Edition, 2016, 55, 2101-2106.	7.2	930
414	794 nm excited core–shell upconversion nanoparticles for optical temperature sensing. RSC Advances, 2016, 6, 11795-11801.	1.7	35
415	Bioabsorbable polymer optical waveguides for deep-tissue photomedicine. Nature Communications, 2016, 7, 10374.	5.8	173
416	Double bond terminated Ln3+-doped LiYF4 nanocrystals with strong single band NIR emission: simple click chemistry route to make water dispersible nanocrystals with various functional groups. New Journal of Chemistry, 2016, 40, 3080-3085.	1.4	7
417	Engineering Upconversion Nanoparticles for Multimodal Biomedical Imaging-Guided Therapeutic Applications. Springer Series in Biomaterials Science and Engineering, 2016, , 165-195.	0.7	1
418	Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy. Chemical Reviews, 2016, 116, 2826-2885.	23.0	1,201
419	A Versatile Imaging and Therapeutic Platform Based on Dual-Band Luminescent Lanthanide Nanoparticles toward Tumor Metastasis Inhibition. ACS Nano, 2016, 10, 2766-2773.	7.3	131
420	In vivo covalent cross-linking of photon-converted rare-earth nanostructures for tumour localization and theranostics. Nature Communications, 2016, 7, 10432.	5.8	376
421	Optimization of upconversion luminescence of Nd3+-sensitized BaGdF5-based nanostructures and their application in dual-modality imaging and drug delivery. Dalton Transactions, 2016, 45, 1708-1716.	1.6	43
422	Lanthanideâ€Ðoped Upconversion Nanoparticles: Emerging Intelligent Lightâ€Activated Drug Delivery Systems. Advanced Science, 2016, 3, 1500437.	5.6	179
423	Nd ³⁺ sensitized dumbbell-like upconversion nanoparticles for photodynamic therapy application. Journal of Materials Chemistry B, 2016, 4, 2776-2784.	2.9	57
424	Near-Infrared Light Activation of Proteins Inside Living Cells Enabled by Carbon Nanotube-Mediated Intracellular Delivery. ACS Applied Materials & Interfaces, 2016, 8, 4500-4507.	4.0	25
425	Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nature Communications, 2016, 7, 10437.	5.8	750

#	Article	IF	CITATIONS
426	Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring. Nanotechnology, 2016, 27, 115102.	1.3	41
427	Redefining the functions of nanocapsule materials. Nanoscale Horizons, 2016, 1, 268-271.	4.1	10
428	Tin Tungstate Nanoparticles: A Photosensitizer for Photodynamic Tumor Therapy. ACS Nano, 2016, 10, 3149-3157.	7.3	74
429	A facile "ship-in-a-bottle―approach to construct nanorattles based on upconverting lanthanide-doped fluorides. Nano Research, 2016, 9, 187-197.	5.8	37
430	Design and Synthesis of Core–Shell–Shell Upconversion Nanoparticles for NIR-Induced Drug Release, Photodynamic Therapy, and Cell Imaging. ACS Applied Materials & Interfaces, 2016, 8, 4416-4423.	4.0	103
431	Functional nanomaterials for near-infrared-triggered cancer therapy. Biomaterials Science, 2016, 4, 890-909.	2.6	135
432	Balancing intermediate state decay rates for efficient Pr ³⁺ visible-to-UVC upconversion: the case of β-Y ₂ Si ₂ O ₇ :Pr ³⁺ . RSC Advances, 2016, 6, 22791-22796.	1.7	24
433	Near-infrared triggered generation of reactive oxygen species from upconverting nanoparticles decorated with an organoiridium complex. Journal of Materials Chemistry B, 2016, 4, 3113-3120.	2.9	16
434	Near-IR photoactivation using mesoporous silica–coated NaYF4:Yb,Er/Tm upconversion nanoparticles. Nature Protocols, 2016, 11, 688-713.	5.5	164
435	A nuclear targeted dual-photosensitizer for drug-resistant cancer therapy with NIR activated multiple ROS. Chemical Science, 2016, 7, 4237-4244.	3.7	155
436	Synthesis of Uniform NaLnF ₄ (Ln: Sm to Ho) Nanoparticles for Mass Cytometry. Journal of Physical Chemistry C, 2016, 120, 6269-6280.	1.5	39
438	Near-IR responsive nanostructures for nanobiophotonics: emerging impacts on nanomedicine. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 771-788.	1.7	45
439	Recent advances of semiconducting polymer nanoparticles in in vivo molecular imaging. Journal of Controlled Release, 2016, 240, 312-322.	4.8	182
440	Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals. Nature Communications, 2016, 7, 10254.	5.8	267
441	Multifunctional organic nanoparticles with aggregation-induced emission (AIE) characteristics for targeted photodynamic therapy and RNA interference therapy. Chemical Communications, 2016, 52, 2752-2755.	2.2	90
442	Recent advances in multifunctional silica-based hybrid nanocarriers for bioimaging and cancer therapy. Nanoscale, 2016, 8, 12510-12519.	2.8	75
443	Lanthanide doped Bi ₂ O ₃ upconversion luminescence nanospheres for temperature sensing and optical imaging. Dalton Transactions, 2016, 45, 2686-2693.	1.6	67
444	Nearâ€infrared lightâ€responsive nanomaterials for cancer theranostics. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 23-45.	3.3	115

#	Article	IF	CITATIONS
445	Photoactivated drug delivery and bioimaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1408.	3.3	59
446	Efficacy Dependence of Photodynamic Therapy Mediated by Upconversion Nanoparticles: Subcellular Positioning and Irradiation Productivity. Small, 2017, 13, 1602053.	5.2	61
447	Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy. Nature Nanotechnology, 2017, 12, 378-386.	15.6	345
448	Light in diagnosis, therapy and surgery. Nature Biomedical Engineering, 2017, 1, .	11.6	523
449	Role of Reactive Oxygen Species (ROS) in Therapeutics and Drug Resistance in Cancer and Bacteria. Journal of Medicinal Chemistry, 2017, 60, 3221-3240.	2.9	394
450	Enhanced high-order ultraviolet upconversion luminescence in sub-20 nm β-NaYbF ₄ :0.5% Tm nanoparticles via Fe ³⁺ doping. CrystEngComm, 2017, 19, 1304-1310.	1.3	43
451	Photo-Cross-Linkable Polymer Dots with Stable Sensitizer Loading and Amplified Singlet Oxygen Generation for Photodynamic Therapy. ACS Applied Materials & Interfaces, 2017, 9, 3419-3431.	4.0	56
452	Rattleâ€&tructured Upconversion Nanoparticles for Nearâ€ŀRâ€ŀnduced Suppression of Alzheimer's βâ€Amyloid Aggregation. Small, 2017, 13, 1603139.	5.2	64
453	Single Upconversion Nanoparticle–Bacterium Cotrapping for Singleâ€Bacterium Labeling and Analysis. Small, 2017, 13, 1603418.	5.2	53
454	Neuroendocrine Tumorâ€Targeted Upconversion Nanoparticleâ€Based Micelles for Simultaneous NIRâ€Controlled Combination Chemotherapy and Photodynamic Therapy, and Fluorescence Imaging. Advanced Functional Materials, 2017, 27, 1604671.	7.8	138
455	Near-Infrared-Activated Upconversion Nanoprobes for Sensitive Endogenous Zn ²⁺ Detection and Selective On-Demand Photodynamic Therapy. Analytical Chemistry, 2017, 89, 3492-3500.	3.2	43
456	Nanostructures for NIR light-controlled therapies. Nanoscale, 2017, 9, 3698-3718.	2.8	92
457	Influence of Cr3+ on upconversion luminescent and magnetic properties of NaLu0.86-xGd0.12F4:Crx3+/Er0.023+ (0â‰ ¤ â‰ 0 .24) material. Journal of Luminescence, 2017, 187, 40-45.	1.5	20
458	Size-dependent downconversion near-infrared emission of NaYF4:Yb3+,Er3+ nanoparticles. Journal of Materials Chemistry C, 2017, 5, 2451-2458.	2.7	31
459	Temperature sensing of adipose tissue heating with the luminescent upconversion nanoparticles as nanothermometer: in vitro study. , 2017, , .		3
460	Gold and Hairpin DNA Functionalization of Upconversion Nanocrystals for Imaging and In Vivo Drug Delivery. Advanced Materials, 2017, 29, 1700244.	11.1	186
461	Amphiphilic Silane Modified Multifunctional Nanoparticles for Magnetically Targeted Photodynamic Therapy. ACS Applied Materials & Interfaces, 2017, 9, 11451-11460.	4.0	29
462	Sequential Growth of NaYF ₄ :Yb/Er@NaGdF ₄ Nanodumbbells for Dual-Modality Fluorescence and Magnetic Resonance Imaging. ACS Applied Materials & Interfaces, 2017, 9, 9226-9232.	4.0	41

#	Article	IF	CITATIONS
463	Tumor-Penetrating Nanoparticles for Enhanced Anticancer Activity of Combined Photodynamic and Hypoxia-Activated Therapy. ACS Nano, 2017, 11, 2227-2238.	7.3	386
464	How persistent microbubbles shield nanoparticle productivity in laser synthesis of colloids – quantification of their volume, dwell dynamics, and gas composition. Physical Chemistry Chemical Physics, 2017, 19, 7112-7123.	1.3	85
465	Redox Sensitive Hyaluronic Acidâ€Decorated Graphene Oxide for Photothermally Controlled Tumor ytoplasm‧elective Rapid Drug Delivery. Advanced Functional Materials, 2017, 27, 1604620.	7.8	140
466	ACPI Conjugated Gold Nanorods as Nanoplatform for Dual Image Guided Activatable Photodynamic and Photothermal Combined Therapy In Vivo. Small, 2017, 13, 1603956.	5.2	57
467	Multifunctional Theranostics for Dual-Modal Photodynamic Synergistic Therapy via Stepwise Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 6829-6838.	4.0	72
468	Dual antibacterial activities of a chitosan-modified upconversion photodynamic therapy system against drug-resistant bacteria in deep tissue. Nanoscale, 2017, 9, 3912-3924.	2.8	107
469	Controlled co-release of doxorubicin and reactive oxygen species for synergistic therapy by NIR remote-triggered nanoimpellers. Materials Science and Engineering C, 2017, 74, 94-102.	3.8	19
470	Near-infrared light triggered photo-therapy, in combination with chemotherapy using magnetofluorescent carbon quantum dots for effective cancer treating. Carbon, 2017, 118, 752-764.	5.4	123
471	Blueâ€Emitting Electronâ€Donor/Acceptor Dyads for Nakedâ€Eye Fluorescence Detection of Singlet Oxygen. ChemPhotoChem, 2017, 1, 299-303.	1.5	6
472	Molecular Imaging in Nanotechnology and Theranostics. Molecular Imaging and Biology, 2017, 19, 363-372.	1.3	32
473	Manipulating energy transfer in lanthanide-doped single nanoparticles for highly enhanced upconverting luminescence. Chemical Science, 2017, 8, 5050-5056.	3.7	43
474	A facile strategy for the synthesis of a NaREF ₄ -gold nanocomposite as a dual-modal bioimaging agent. RSC Advances, 2017, 7, 21625-21629.	1.7	4
475	Plasma membrane activatable polymeric nanotheranostics with self-enhanced light-triggered photosensitizer cellular influx for photodynamic cancer therapy. Journal of Controlled Release, 2017, 255, 231-241.	4.8	77
476	Upconversion processes: versatile biological applications and biosafety. Nanoscale, 2017, 9, 12248-12282.	2.8	88
477	DNAâ€Assembled Coreâ€Satellite Upconvertingâ€Metal–Organic Framework Nanoparticle Superstructures for Efficient Photodynamic Therapy. Small, 2017, 13, 1700504.	5.2	114
478	Multicomponent nanocrystals with anti-Stokes luminescence as contrast agents for modern imaging techniques. Advances in Colloid and Interface Science, 2017, 245, 1-19.	7.0	59
479	Enhancement of Luminescence Intensity in Red Emitting NaYF ₄ :Yb/Ho/Mn Upconversion Nanophosphors by Variation of Reaction Parameters. Journal of Physical Chemistry C, 2017, 121, 11783-11793.	1.5	57
480	Depth-profiling of Yb ³⁺ sensitizer ions in NaYF ₄ upconversion nanoparticles. Nanoscale, 2017, 9, 7719-7726.	2.8	36

ARTICLE IF CITATIONS Rethinking cancer nanotheranostics. Nature Reviews Materials, 2017, 2, . 23.3 860 481 NIR-driven water splitting by layered bismuth oxyhalide sheets for effective photodynamic therapy. 482 Journal of Materials Chemistry B, 2017, 5, 4152-4161. A Hybrid Nanomaterial for the Controlled Generation of Free Radicals and Oxidative Destruction of 483 7.2 179 Hypoxic Cancer Cells. Angewandte Chemie - International Edition, 2017, 56, 8801-8804. A Hybrid Nanomaterial for the Controlled Generation of Free Radicals and Oxidative Destruction of 484 Hypoxic Cancer Cells. Angewandte Chemie, 2017, 129, 8927-8930. Site-specific sonocatalytic tumor suppression by chemically engineered single-crystalline mesoporous 485 2.9 68 titanium dioxide sonosensitizers. Journal of Materials Chemistry B, 2017, 5, 4579-4586. Acidity-Triggered Tumor Retention/Internalization of Chimeric Peptide for Enhanced Photodynamic Therapy and Real-Time Monitoring of Therapeutic Effects. ACS Applied Materials & amp; Interfaces, 2017, 9, 16043-16053. 4.0 A 980 nm laser-activated upconverted persistent probe for NIR-to-NIR rechargeable in vivo bioimaging. 487 2.8 72 Nanoscale, 2017, 9, 7276-7283. Material chemistry of graphene oxide-based nanocomposites for theranostic nanomedicine. Journal of 488 2.9 37 Materials Chemistry B, 2017, 5, 6451-6470. Nanophotosensitive drugs for light-based cancer therapy: what does the future hold?. Nanomedicine, 489 1.7 14 2017, 12, 1101-1105. Persistent luminescent nanoparticles as energy mediators for enhanced photodynamic therapy with fractionated irradiation. Journal of Materials Chemistry B, 2017, 5, 5793-5805. Effect of Temperature and Gold Nanoparticle Interaction on the Lifetime and Luminescence of 491 NaYF₄:Yb³⁺:Er³⁺ Upconverting Nanoparticles. ACS Photonics, 3.2 27 2017, 4, 1864-1869. A Simple Strategy for the Controlled Synthesis of Ultrasmall Hexagonalâ€Phase NaYF₄:Yb,Er 1.5 Upconversion Nanocrystals. ChemPhotoChem, 2017, 1, 369-375. A Core–Shellâ€Satellite Structured Fe₃O₄@g ₃N₄â€"UCNPsâ€"PEG for 493 3.9 53 <i>T</i>₁/<i>T</i>₂â€Weighted Dualâ€Modal MRIâ€Guided Photodynamic Therapy. Advanced Healthcare Materials, 2017, 6, 1700502. Two-dimensional black phosphorus nanosheets for theranostic nanomedicine. Materials Horizons, 494 6.4 2017, 4, 800-816. Fabrication of Zinc Oxide Composite Microfibers for Nearâ€Infraredâ€Lightâ€Mediated Photocatalysis. 495 17 1.8 ChemCatChem, 2017, 9, 3611-3617. Biofunctionalized upconverting CaF2:Yb,Tm nanoparticles for Candida albicans detection and imaging. 5.8 Nano Research, 2017, 10, 3333-3345. Nano Silver decorated Chitosan based Polyelectrolyte Microcapsules induced generation of excited 497 0.9 2 Oxygen in Curcumin. Materials Today: Proceedings, 2017, 4, 4366-4371. Enhanced Afterglow Performance of Persistent Luminescence Implants for Efficient Repeatable 498 Photodynamic Therapy. ACS Nano, 2017, 11, 5864-5872.

#	Article	IF	CITATIONS
499	In vivo high-efficiency targeted photodynamic therapy of ultra-small Fe3O4@polymer-NPO/PEG-Glc@Ce6 nanoprobes based on small size effect. NPG Asia Materials, 2017, 9, e383-e383.	3.8	22
500	Claudin 4-targeted nanographene phototherapy using a Clostridium perfringens enterotoxin peptide-photosensitizer conjugate. Acta Pharmacologica Sinica, 2017, 38, 954-962.	2.8	17
501	Water-soluble complex formation of fullerene and thermo-responsive diblock copolymer. Journal of Polymer Science Part A, 2017, 55, 2432-2439.	2.5	3
502	Precise Photodynamic Therapy of Cancer via Subcellular Dynamic Tracing of Dual-loaded Upconversion Nanophotosensitizers. Scientific Reports, 2017, 7, 45633.	1.6	26
503	Ultrafast Synthesis of Novel Hexagonal Phase NaBiF ₄ Upconversion Nanoparticles at Room Temperature. Advanced Materials, 2017, 29, 1700505.	11.1	131
504	A Versatile Near Infrared Light Triggered Dual-Photosensitizer for Synchronous Bioimaging and Photodynamic Therapy. ACS Applied Materials & Interfaces, 2017, 9, 12993-13008.	4.0	66
505	Selfâ€Assembled Carbon Dot Nanosphere: A Robust, Nearâ€Infrared Lightâ€Responsive, and Vein Injectable Photosensitizer. Advanced Healthcare Materials, 2017, 6, 1601419.	3.9	41
506	Versatile Polymer Nanoparticles as Twoâ€Photonâ€Triggered Photosensitizers for Simultaneous Cellular, Deepâ€Tissue Imaging, and Photodynamic Therapy. Advanced Healthcare Materials, 2017, 6, 1601431.	3.9	35
507	Luciferase–Rose Bengal conjugates for singlet oxygen generation by bioluminescence resonance energy transfer. Chemical Communications, 2017, 53, 4569-4572.	2.2	38
508	Realâ€Time Inâ€Vivo Hepatotoxicity Monitoring through Chromophoreâ€Conjugated Photonâ€Upconverting Nanoprobes. Angewandte Chemie, 2017, 129, 4229-4233.	1.6	19
509	Realâ€Time Inâ€Vivo Hepatotoxicity Monitoring through Chromophoreâ€Conjugated Photonâ€Upconverting Nanoprobes. Angewandte Chemie - International Edition, 2017, 56, 4165-4169.	7.2	178
510	Experimental demonstration of photon upconversion via cooperative energy pooling. Nature Communications, 2017, 8, 14808.	5.8	33
511	Highly Emissive Dye-Sensitized Upconversion Nanostructure for Dual-Photosensitizer Photodynamic Therapy and Bioimaging. ACS Nano, 2017, 11, 4133-4144.	7.3	342
512	Optical nanoprobes for biomedical applications: shining a light on upconverting and near-infrared emitting nanoparticles for imaging, thermal sensing, and photodynamic therapy. Journal of Materials Chemistry B, 2017, 5, 4365-4392.	2.9	181
513	Metalloporphyrin-Encapsulated Biodegradable Nanosystems for Highly Efficient Magnetic Resonance Imaging-Guided Sonodynamic Cancer Therapy. Journal of the American Chemical Society, 2017, 139, 1275-1284.	6.6	535
514	Singlet oxygen generation of photosensitizers effectively activated by Nd 3+ -doped upconversion nanoparticles of luminescence intensity enhancing with shell thickness decreasing. Applied Surface Science, 2017, 400, 81-89.	3.1	19
515	Nanomaterial-Based Drug Delivery Carriers for Cancer Therapy. SpringerBriefs in Applied Sciences and Technology, 2017, , .	0.2	1
516	The influence of energy migration on luminescence kinetics parameters in upconversion nanoparticles. Nanotechnology, 2017, 28, 035401.	1.3	19

#	Article	IF	CITATIONS
517	Deep-penetrating photodynamic therapy with KillerRed mediated by upconversion nanoparticles. Acta Biomaterialia, 2017, 51, 461-470.	4.1	77
518	A General Strategy for Ligand Exchange on Upconversion Nanoparticles. Inorganic Chemistry, 2017, 56, 872-877.	1.9	106
519	Markedly enhanced up-conversion luminescence by combining IR-808 dye sensitization and core–shell–shell structures. Dalton Transactions, 2017, 46, 1495-1501.	1.6	24
520	Facile Synthesis of Upconverting Nanoparticles/Zinc Oxide Core–Shell Nanostructures with Large Lattice Mismatch for Infrared Triggered Photocatalysis. Particle and Particle Systems Characterization, 2017, 34, 1600222.	1.2	24
521	Nanomaterial-Based Drug Delivery Carriers for Cancer Therapy. SpringerBriefs in Applied Sciences and Technology, 2017, , 15-54.	0.2	1
522	Ethylene glycol-mediated synthetic route for production of luminescent silicon nanorod as photodynamic therapy agent. Science China Materials, 2017, 60, 881-891.	3.5	10
523	Chemical antagonism between photodynamic agents and chemotherapeutics: mechanism and avoidance. Chemical Communications, 2017, 53, 12438-12441.	2.2	8
524	Advanced sensing, imaging, and therapy nanoplatforms based on Nd ³⁺ -doped nanoparticle composites exhibiting upconversion induced by 808 nm near-infrared light. Nanoscale, 2017, 9, 18153-18168.	2.8	37
525	Au Nanoclusters Sensitized Black TiO _{2â^} <i>_x</i> Nanotubes for Enhanced Photodynamic Therapy Driven by Nearâ€Infrared Light. Small, 2017, 13, 1703007.	5.2	62
526	Photosensitizers for Twoâ€Photon Excited Photodynamic Therapy. Advanced Functional Materials, 2017, 27, 1704079.	7.8	84
527	Photoâ€Induced Chargeâ€Variable Conjugated Polyelectrolyte Brushes Encapsulating Upconversion Nanoparticles for Promoted siRNA Release and Collaborative Photodynamic Therapy under NIR Light Irradiation. Advanced Functional Materials, 2017, 27, 1702592.	7.8	91
528	Photon upconversion towards applications in energy conversion and bioimaging. Progress in Surface Science, 2017, 92, 281-316.	3.8	41
529	Multilayered upconversion nanocomposites with dual photosensitizing functions for enhanced photodynamic therapy. Journal of Materials Chemistry B, 2017, 5, 8169-8177.	2.9	14
530	Eradication of Multidrugâ€Resistant <i>Staphylococcal</i> Infections by Lightâ€Activatable Micellar Nanocarriers in a Murine Model. Advanced Functional Materials, 2017, 27, 1701974.	7.8	111
531	Recent Progress in Near Infrared Light Triggered Photodynamic Therapy. Small, 2017, 13, 1702299.	5.2	247
532	Multifunctional UCNPs@MnSiO ₃ @g-C ₃ N ₄ nanoplatform: improved ROS generation and reduced glutathione levels for highly efficient photodynamic therapy. Biomaterials Science, 2017, 5, 2456-2467.	2.6	58
533	Nanotechnology for Multimodal Synergistic Cancer Therapy. Chemical Reviews, 2017, 117, 13566-13638.	23.0	1,392
534	Near-Infrared Light Triggered Upconversion Optogenetic Nanosystem for Cancer Therapy. ACS Nano, 2017, 11, 11898-11907.	7.3	90

#	Article	IF	CITATIONS
535	Construction of Hierarchical Polymer Brushes on Upconversion Nanoparticles via NIR-Light-Initiated RAFT Polymerization. ACS Applied Materials & amp; Interfaces, 2017, 9, 30414-30425.	4.0	41
536	Nanoscale Metal–Organic Layers for Deeply Penetrating Xâ€rayâ€Induced Photodynamic Therapy. Angewandte Chemie, 2017, 129, 12270-12274.	1.6	59
537	Asymmetric Nanocrescent Antenna on Upconversion Nanocrystal. Nano Letters, 2017, 17, 6583-6590.	4.5	24
538	Two-Dimensional Graphene Augments Nanosonosensitized Sonocatalytic Tumor Eradication. ACS Nano, 2017, 11, 9467-9480.	7.3	248
539	Benefits of surfactant effects on quantum efficiency enhancement and temperature sensing behavior of NaBiF ₄ upconversion nanoparticles. Journal of Materials Chemistry C, 2017, 5, 9659-9665.	2.7	60
540	Ratiometric Afterglow Nanothermometer for Simultaneous <i>in Situ</i> Bioimaging and Local Tissue Temperature Sensing. Chemistry of Materials, 2017, 29, 8119-8131.	3.2	67
541	Lanthanide-doped bismuth oxobromide nanosheets for self-activated photodynamic therapy. Journal of Materials Chemistry B, 2017, 5, 7939-7948.	2.9	29
542	Rational engineering of semiconductor QDs enabling remarkable 1 O 2 production for tumor-targeted photodynamic therapy. Biomaterials, 2017, 148, 31-40.	5.7	62
543	Upconversion Nanoparticles/Hyaluronate–Rose Bengal Conjugate Complex for Noninvasive Photochemical Tissue Bonding. ACS Nano, 2017, 11, 9979-9988.	7.3	81
544	Heterodimers Made of Upconversion Nanoparticles and Metal–Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 13804-13810.	6.6	147
545	Enhancing Upconversion Fluorescence with a Natural Bio-microlens. ACS Nano, 2017, 11, 10672-10680.	7.3	86
546	Core–Shell–Shell Multifunctional Nanoplatform for Intracellular Tumor-Related mRNAs Imaging and Near-Infrared Light Triggered Photodynamic–Photothermal Synergistic Therapy. Analytical Chemistry, 2017, 89, 10321-10328.	3.2	63
547	A lysosome-targeted BODIPY as potential NIR photosensitizer for photodynamic therapy. Dyes and Pigments, 2017, 147, 99-105.	2.0	95
548	Integration of IRâ€808 Sensitized Upconversion Nanostructure and MoS ₂ Nanosheet for 808 nm NIR Light Triggered Phototherapy and Bioimaging. Small, 2017, 13, 1701841.	5.2	117
549	Fabrication of Mesoporousâ€Silicaâ€Coated Upconverting Nanoparticles with Ultrafast Photosensitizer Loading and 808â€nm NIRâ€Lightâ€Triggering Capability for Photodynamic Therapy. Chemistry - an Asian Journal, 2017, 12, 2197-2201.	1.7	27
550	Tetherless near-infrared control of brain activity in behaving animals using fully implantable upconversion microdevices. Biomaterials, 2017, 142, 136-148.	5.7	74
551	Targeted Delivery of a Mannose onjugated BODIPY Photosensitizer by Nanomicelles for Photodynamic Breast Cancer Therapy. Chemistry - A European Journal, 2017, 23, 14307-14315.	1.7	67
552	Transferrin-coated magnetic upconversion nanoparticles for efficient photodynamic therapy with near-infrared irradiation and luminescence bioimaging. Nanoscale, 2017, 9, 11214-11221.	2.8	47

#	Article	IF	CITATIONS
553	Improving 800 nm Triggered Upconversion Emission for Lanthanide-Doped CaF ₂ Nanoparticles through Sodium Ion Doping. Journal of Physical Chemistry C, 2017, 121, 18280-18287.	1.5	27
554	Core@shell Fe ₃ O ₄ @Mn ²⁺ -doped NaYF ₄ :Yb/Tm nanoparticles for triple-modality T ₁ /T ₂ -weighted MRI and NIR-to-NIR upconversion luminescence imaging agents. RSC Advances, 2017, 7, 37929-37937.	1.7	21
555	Tuning Plasmonic Enhancement of Single Nanocrystal Upconversion Luminescence by Varying Gold Nanorod Diameter. Small, 2017, 13, 1701155.	5.2	64
556	Multiplexed Optogenetic Stimulation of Neurons with Spectrumâ€Selective Upconversion Nanoparticles. Advanced Healthcare Materials, 2017, 6, 1700446.	3.9	58
557	Current status and future direction in the management of malignant melanoma. Melanoma Research, 2017, 27, 403-410.	0.6	50
558	Dual-Targeted Cascade-Responsive Prodrug Micelle System for Tumor Therapy <i>in Vivo</i> . Chemistry of Materials, 2017, 29, 6976-6992.	3.2	50
559	Nanoscale Metal–Organic Layers for Deeply Penetrating Xâ€rayâ€Induced Photodynamic Therapy. Angewandte Chemie - International Edition, 2017, 56, 12102-12106.	7.2	146
560	LiGa ₅ O ₈ :Cr-based theranostic nanoparticles for imaging-guided X-ray induced photodynamic therapy of deep-seated tumors. Materials Horizons, 2017, 4, 1092-1101.	6.4	128
561	Targeted Bifunctional Proteins and Hybrid Nanoconstructs for Cancer Diagnostics and Therapies. Molecular Biology, 2017, 51, 788-803.	0.4	13
562	TiO2 composite nanotubes embedded with CdS and upconversion nanoparticles for near infrared light driven photocatalysis. Chinese Journal of Catalysis, 2017, 38, 1851-1859.	6.9	13
563	Intracellular localization of nanoparticle dimers by chirality reversal. Nature Communications, 2017, 8, 1847.	5.8	93
564	Upconversion manipulation by local electromagnetic field. Nano Today, 2017, 17, 54-78.	6.2	103
565	Stable ICG-loaded upconversion nanoparticles: silica core/shell theranostic nanoplatform for dual-modal upconversion and photoacoustic imaging together with photothermal therapy. Scientific Reports, 2017, 7, 15753.	1.6	63
566	Controlled synthesis of upconverting nanoparticles/CuS yolk–shell nanoparticles for <i>in vitro</i> synergistic photothermal and photodynamic therapy of cancer cells. Journal of Materials Chemistry B, 2017, 5, 9487-9496.	2.9	44
567	Phthalocyanineâ€Conjugated Upconversion NaYF ₄ :Yb ³⁺ /Er ³⁺ @SiO ₂ Nanospheres for NIRâ€Triggered Photodynamic Therapy in a Tumor Mouse Model. ChemMedChem, 2017, 12, 2066-2073.	1.6	21
568	Huge enhancement of upconversion luminescence by dye/Nd ³⁺ sensitization of quenching-shield sandwich structured upconversion nanocrystals under 808 nm excitation. Dalton Transactions, 2017, 46, 16180-16189.	1.6	19
569	Near infrared-assisted Fenton reaction for tumor-specific and mitochondrial DNA-targeted photochemotherapy. Biomaterials, 2017, 141, 86-95.	5.7	220
570	NIR-triggered high-efficient photodynamic and chemo-cascade therapy using caspase-3 responsive functionalized upconversion nanoparticles. Biomaterials, 2017, 141, 40-49.	5.7	91

#	Article	IF	CITATIONS
571	Synthesis, characterization and in vitro and in vivo photodynamic activities of a gallium(<scp>iii</scp>) tris(ethoxycarbonyl)corrole. Dalton Transactions, 2017, 46, 9481-9490.	1.6	35
572	Insights into the unique functionality of inorganic micro/nanoparticles for versatile ultrasound theranostics. Biomaterials, 2017, 142, 13-30.	5.7	120
573	Highly efficient photosensitizers with aggregation-induced emission characteristics obtained through precise molecular design. Chemical Communications, 2017, 53, 8727-8730.	2.2	94
574	Cancer drug delivery in the nano era: An overview and perspectives. Oncology Reports, 2017, 38, 611-624.	1.2	310
575	Improvement of the luminescent intensity of Yb/Er: CaF2 nanocrystals by combining Na+-doping and active-core/active-shell structure. Journal of Luminescence, 2017, 190, 462-467.	1.5	8
576	Influence of silica surface coating on optical properties of Er 3+ -Yb 3+ :YMoO 4 upconverting nanoparticles. Chemical Engineering Journal, 2017, 327, 838-848.	6.6	61
577	Aptamer-Functionalized Hydrogel for Self-Programmed Protein Release via Sequential Photoreaction and Hybridization. Chemistry of Materials, 2017, 29, 5850-5857.	3.2	25
578	Hot-Carrier-Mediated Photon Upconversion in Metal-Decorated Quantum Wells. Nano Letters, 2017, 17, 4583-4587.	4.5	30
579	Revisiting the use of sPLA 2 -sensitive liposomes in cancer therapy. Journal of Controlled Release, 2017, 261, 163-173.	4.8	38
580	Ultraâ€Wideband Multiâ€Dyeâ€Sensitized Upconverting Nanoparticles for Information Security Application. Advanced Materials, 2017, 29, 1603169.	11.1	153
581	Tunable up-conversion luminescence from Er3+/Tm3+/Yb3+ tri-doped Sr2CeO4 phosphors. Journal of Luminescence, 2017, 182, 240-245.	1.5	11
582	Phageâ€Enabled Nanomedicine: From Probes to Therapeutics in Precision Medicine. Angewandte Chemie - International Edition, 2017, 56, 1964-1992.	7.2	131
583	Synthesis of upconversion nanoparticles conjugated with graphene oxide quantum dots and their use against cancer cell imaging and photodynamic therapy. Biosensors and Bioelectronics, 2017, 93, 267-273.	5.3	69
584	Phototriggered Drug Delivery Using Inorganic Nanomaterials. Bioconjugate Chemistry, 2017, 28, 98-104.	1.8	54
585	Nearâ€IRâ€Sensitive Upconverting Nanostructured Photonic Cellulose Films. Advanced Optical Materials, 2017, 5, 1600514.	3.6	36
586	Nanomedizin auf Phagenbasis: von Sonden zu Therapeutika für eine PrÃ⊠sionsmedizin. Angewandte Chemie, 2017, 129, 1992-2022.	1.6	10
587	Near-infrared light activated photodynamic therapy of THP-1 macrophages based on core-shell structured upconversion nanoparticles. Microporous and Mesoporous Materials, 2017, 239, 78-85.	2.2	21
588	Upconversion nanoparticles grafted molybdenum disulfide nanosheets platform for microcystin-LR sensing. Biosensors and Bioelectronics, 2017, 90, 203-209.	5.3	76

#	Article	IF	CITATIONS
589	Effective cancer targeting and imaging using macrophage membrane amouflaged upconversion nanoparticles. Journal of Biomedical Materials Research - Part A, 2017, 105, 521-530.	2.1	83
590	Nanomedicine for Cancer Therapy. SpringerBriefs in Applied Sciences and Technology, 2017, , 1-68.	0.2	0
591	Laser flow cytometry as a tool for the advancement of clinical medicine. Biomedicine and Pharmacotherapy, 2017, 85, 434-443.	2.5	22
592	Nanomedicine for Cancer Therapy. SpringerBriefs in Applied Sciences and Technology, 2017, , .	0.2	8
593	Colloids created by light: Laser-generated nanoparticles for applications in biology and medicine. Materials Today: Proceedings, 2017, 4, S93-S100.	0.9	12
594	Photosensitizers Imprinting Intracellular Signaling Pathways in Dermato-Oncology Therapy. , 2017, , .		0
595	Targeted Nanomaterials for Phototherapy. Nanotheranostics, 2017, 1, 38-58.	2.7	135
596	Graphene on meta-surface for super-resolution optical imaging with a sub-10 nm resolution. Optics Express, 2017, 25, 14494.	1.7	17
597	Synthesis and Luminescence Properties of Water Soluble α-NaGdF4/β-NaYF4:Yb,Er Core–Shell Nanoparticles. Nanoscale Research Letters, 2017, 12, 548.	3.1	17
598	Remotely Triggered Nano-Theranostics For Cancer Applications. Nanotheranostics, 2017, 1, 1-22.	2.7	90
599	Light-Activated Core–Shell Nanoparticles for Spatiotemporally Specific Treatment of Metastatic Triple-Negative Breast Cancer. ACS Nano, 2018, 12, 2789-2802.	7.3	64
600	Size/Charge Changeable Acidityâ€Responsive Micelleplex for Photodynamicâ€Improved PDâ€L1 Immunotherapy with Enhanced Tumor Penetration. Advanced Functional Materials, 2018, 28, 1707249.	7.8	147
601	Lowâ€Dose Xâ€ray Activation of W(VI)â€Doped Persistent Luminescence Nanoparticles for Deepâ€Tissue Photodynamic Therapy. Advanced Functional Materials, 2018, 28, 1707496.	7.8	167
602	Enhanced Cellular Ablation by Attenuating Hypoxia Status and Reprogramming Tumor-Associated Macrophages via NIR Light-Responsive Upconversion Nanocrystals. Bioconjugate Chemistry, 2018, 29, 928-938.	1.8	71
603	Magnetic Mesoporous Silica Nanoparticles Cloaked by Red Blood Cell Membranes: Applications in Cancer Therapy. Angewandte Chemie - International Edition, 2018, 57, 6049-6053.	7.2	241
604	Theranostic micelles based on upconversion nanoparticles for dual-modality imaging and photodynamic therapy in hepatocellular carcinoma. Nanoscale, 2018, 10, 6511-6523.	2.8	72
605	Whiteâ€lightâ€emitting NaYF ₄ Nanoplatform for NIR Upconversionâ€mediated Photodynamic Therapy and Bioimaging. ChemNanoMat, 2018, 4, 583-595.	1.5	20
606	Nanoenzyme-Augmented Cancer Sonodynamic Therapy by Catalytic Tumor Oxygenation. ACS Nano, 2018, 12, 3780-3795.	7.3	437

ARTICLE IF CITATIONS First principles calculations of the structural, electronic and optical properties of the mixed 607 2.0 1 fluorides SrxCd1â[^]xF2. Chinese Journal of Physics, 2018, 56, 1033-1044. ICGâ€Sensitized NaYF₄:Er Nanostructure for Theranostics. Advanced Optical Materials, 2018, 608 3.6 6, 1701142. Magnetic Mesoporous Silica Nanoparticles Cloaked by Red Blood Cell Membranes: Applications in 609 1.6 18 Cancer Therapy. Angewandte Chemie, 2018, 130, 6157-6161. Multifunctional Theranostic Nanoplatform Based on Fe-mTa₂O₅@CuS-ZnPc/PCM for Bimodal Imaging and Synergistically Enhanced Phototherapy. Inorganic Chemistry, 2018, 57, 4864-4876. New Strategies in the Design of Nanomedicines to Oppose Uptake by the Mononuclear Phagocyte 611 1.7 51 System and Enhance Cancer Therapeutic Efficacy. Chemistry - an Asian Journal, 2018, 13, 3333-3340. Upconversion in photodynamic therapy: plumbing the depths. Dalton Transactions, 2018, 47, 8571-8580. 1.6 99 Fast and Accurate Imaging of Lymph Node Metastasis with Multifunctional Nearâ€Infrared Polymer Dots. 613 7.8 29 Advanced Functional Materials, 2018, 28, 1707174. Repeatable Photodynamic Therapy with Triggered Signaling Pathways of Fibroblast Cell Proliferation 614 7.3 303 and Differentiation To Promote Bacteria-Accompanied Wound Healing. ACS Nano, 2018, 12, 1747-1759. Precisely Tailoring Upconversion Dynamics via Energy Migration in Coreâ€"Shell Nanostructures. 615 1.6 24 Angewandte Chemie, 2018, 130, 3108-3112. In vivo wireless photonic photodynamic therapy. Proceedings of the National Academy of Sciences of 3.3 152 the United States of America, 2018, 115, 1469-1474. Effective and Selective Antiâ€Cancer Protein Delivery via Allâ€Functionsâ€inâ€One Nanocarriers Coupled with Visible Lightâ€Responsive, Reversible Protein Engineering. Advanced Functional Materials, 2018, 28, 617 7.8 98 1706710. Recent progress in upconversion luminescence nanomaterials for biomedical applications. Journal of 192 Materials Chemistry B, 2018, 6, 192-209. Lanthanide-Doped Core–Shell–Shell Nanocomposite for Dual Photodynamic Therapy and Luminescence Imaging by a Single X-ray Excitation Source. ACS Applied Materials & Amp; Interfaces, 2018, 619 4.0 87 10, 7859-7870. Engineering functional inorganic–organic hybrid systems: advances in siRNA therapeutics. Chemical Society Reviews, 2018, 47, 1969-1995. 18.7 Confining excitation energy of Er³⁺-sensitized upconversion nanoparticles through 621 2.7 62 introducing various energy trapping centers. Journal of Materials Chemistry C, 2018, 6, 3869-3875. Precisely Tailoring Upconversion Dynamics via Energy Migration in Core–Shell Nanostructures. Angewandte Chemie - International Edition, 2018, 57, 3054-3058. Mechanistic Investigation of Upconversion Photoluminescence in All-Inorganic Perovskite 623 1.522 CsPbBrl₂ Nanocrystals. Journal of Physical Chemistry C, 2018, 122, 3152-3156. Intrinsic optical sectioning with upconverting nanoparticles. Chemical Communications, 2018, 54, 624 2.2 1861-1864.

#	Article	lF	CITATIONS
625	Core–Shell–Shell Upconversion Nanoparticles with Enhanced Emission for Wireless Optogenetic Inhibition. Nano Letters, 2018, 18, 948-956.	4.5	130
626	Upconversion Luminescence-Activated DNA Nanodevice for ATP Sensing in Living Cells. Journal of the American Chemical Society, 2018, 140, 578-581.	6.6	283
627	Selective cancer treatment <i>via</i> photodynamic sensitization of hypoxia-responsive drug delivery. Nanoscale, 2018, 10, 2856-2865.	2.8	81
628	Upconversion in Nanostructured Materials: From Optical Tuning to Biomedical Applications. Chemistry - an Asian Journal, 2018, 13, 373-385.	1.7	48
629	Enabling Photon Upconversion and Precise Control of Donor–Acceptor Interaction through Interfacial Energy Transfer. Advanced Science, 2018, 5, 1700667.	5.6	86
630	Therapeutic Considerations and Conjugated Polymerâ€Based Photosensitizers for Photodynamic Therapy. Macromolecular Rapid Communications, 2018, 39, 1700614.	2.0	67
631	Theranostics of Triple-Negative Breast Cancer Based on Conjugated Polymer Nanoparticles. ACS Applied Materials & Interfaces, 2018, 10, 10634-10646.	4.0	72
632	A novel upconversion luminescent material: Li + - or Mg 2+ -codoped Bi 3.84 W 0.16 O 6.24 :Tm 3+ , Yb 3+ phosphors and their temperature sensing properties. Dyes and Pigments, 2018, 151, 287-295.	2.0	39
633	An ultrasensitive aptasensor based on fluorescent resonant energy transfer and exonuclease-assisted target recycling for patulin detection. Food Chemistry, 2018, 249, 136-142.	4.2	75
634	Novel Metal Polyphenol Framework for MR Imaging-Guided Photothermal Therapy. ACS Applied Materials & Interfaces, 2018, 10, 3295-3304.	4.0	78
635	Spectroscopic Study of a Photoactive Antibacterial Agent: 2,3-Distyrylindole. Journal of Physical Chemistry A, 2018, 122, 937-945.	1.1	1
636	Aptamer-based multifunctional ligand-modified UCNPs for targeted PDT and bioimaging. Nanoscale, 2018, 10, 10986-10990.	2.8	36
637	Er ³⁺ Sensitized 1530â€nm to 1180â€nm Second Nearâ€Infrared Window Upconversion Nanocrystals for Inâ€Vivo Biosensing. Angewandte Chemie - International Edition, 2018, 57, 7518-7522.	7.2	271
638	Oxygen-Deficient Black Titania for Synergistic/Enhanced Sonodynamic and Photoinduced Cancer Therapy at Near Infrared-II Biowindow. ACS Nano, 2018, 12, 4545-4555.	7.3	361
639	Near-infrared light-controlled regulation of intracellular calcium to modulate macrophage polarization. Biomaterials, 2018, 178, 681-696.	5.7	71
640	Tunable multicolor and enhanced red emission of monodisperse CaF2:Yb3+/Ho3+ microspheres via Mn2+ doping. Optical Materials, 2018, 79, 403-407.	1.7	15
641	An immunoconjugated up-conversion nanocomplex for selective imaging and photodynamic therapy against HER2-positive breast cancer. Nanoscale, 2018, 10, 10154-10165.	2.8	35
642	Recent advances in functional nanomaterials for light–triggered cancer therapy. Nano Today, 2018, 19, 146-187	6.2	453

#	Article	IF	CITATIONS
643	Improving Quantum Yield of Upconverting Nanoparticles in Aqueous Media via Emission Sensitization. Nano Letters, 2018, 18, 2689-2695.	4.5	69
644	Axial modification inhibited H-aggregation of phthalocyanines in polymeric micelles for enhanced PDT efficacy. Chemical Communications, 2018, 54, 3985-3988.	2.2	36
645	Metal-organic frameworks join hands to create an anti-cancer nanoplatform based on 808â€⁻nm light driving up-conversion nanoparticles. Chemical Engineering Journal, 2018, 344, 363-374.	6.6	54
646	Shape-controllable synthesis of silica coated core/shell upconversion nanomaterials and rapid imaging of latent fingerprints. Sensors and Actuators B: Chemical, 2018, 266, 19-25.	4.0	21
647	Nearâ€Infraredâ€Lightâ€Activatable Nanomaterialâ€Mediated Phototheranostic Nanomedicines: An Emerging Paradigm for Cancer Treatment. Advanced Materials, 2018, 30, e1706320.	11.1	414
648	Carbonâ€Dotâ€Decorated TiO ₂ Nanotubes toward Photodynamic Therapy Based on Waterâ€Splitting Mechanism. Advanced Healthcare Materials, 2018, 7, e1800042.	3.9	49
649	Mitochondrial specific photodynamic therapy by rare-earth nanoparticles mediated near-infrared graphene quantum dots. Biomaterials, 2018, 153, 14-26.	5.7	197
650	Advanced smart-photosensitizers for more effective cancer treatment. Biomaterials Science, 2018, 6, 79-90.	2.6	82
651	Doxorubicin-loaded Fe3O4@MoS2-PEG-2DG nanocubes as a theranostic platform for magnetic resonance imaging-guided chemo-photothermal therapy of breast cancer. Nano Research, 2018, 11, 2470-2487.	5.8	50
652	Single red up-conversion emission of Er 3+ , Tm 3+ co-doped NaYF 4 nano-particles under 1510 nm excitation. Materials Research Bulletin, 2018, 97, 379-384.	2.7	6
653	Graphene oxide/poly (N-isopropylacrylamide) hybrid film-based near-infrared light-driven bilayer actuators with shape memory effect. Sensors and Actuators B: Chemical, 2018, 255, 2971-2978.	4.0	48
654	Mechanism of ultraviolet upconversion luminescence of Gd3+ ions sensitized by Yb3+-clusters in CaF2:Yb3+, Gd3+. Journal of Luminescence, 2018, 194, 72-74.	1.5	7
655	Green synthesis of highly dispersed ytterbium and thulium co-doped sodium yttrium fluoride microphosphors for in situ light upconversion from near-infrared to blue in animals. Journal of Colloid and Interface Science, 2018, 511, 243-250.	5.0	18
656	Ordering of fluorite-type phases in erbium-doped oxyfluoride glass ceramics. Journal of the European Ceramic Society, 2018, 38, 235-243.	2.8	19
657	Thermal effects of Er ³⁺ /Yb ³⁺ â€doped NaYF ₄ phosphor induced by 980/1510 nm laser diode irradiation. Journal of the American Ceramic Society, 2018, 101, 865-873.	1.9	14
658	Mesoporous silica-based nanoplatforms for the delivery of photodynamic therapy agents. Journal of Pharmaceutical Investigation, 2018, 48, 3-17.	2.7	54
659	Controlled synthesis of upconverting nanoparticles/ZnxCd1-xS yolk-shell nanoparticles for efficient photocatalysis driven by NIR light. Applied Catalysis B: Environmental, 2018, 224, 854-862.	10.8	105
660	Soft X-ray activated NaYF ₄ :Cd/Tb scintillating nanorods for <i>in vivo</i> dual-modal X-ray/X-ray-induced optical bioimaging. Nanoscale, 2018, 10, 342-350.	2.8	41

#	Article	IF	CITATIONS
661	Near-Infrared-to-Ultraviolet Light-Mediated Photoelectrochemical Aptasensing Platform for Cancer Biomarker Based on Core–Shell NaYF ₄ :Yb,Tm@TiO ₂ Upconversion Microrods. Analytical Chemistry, 2018, 90, 1021-1028.	3.2	321
662	Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications. Advanced Healthcare Materials, 2018, 7, 1700831.	3.9	415
663	Inner filter effect-based homogeneous immunoassay for rapid detection of imidacloprid residue in environmental and food samples. Ecotoxicology and Environmental Safety, 2018, 148, 862-868.	2.9	49
664	A protected excitation-energy reservoir for efficient upconversion luminescence. Nanoscale, 2018, 10, 250-259.	2.8	41
665	Photon Upconversion Kinetic Nanosystems and Their Optical Response. Laser and Photonics Reviews, 2018, 12, 1700144.	4.4	42
666	Theranostic 2D ultrathin MnO2 nanosheets with fast responsibility to endogenous tumor microenvironment and exogenous NIR irradiation. Biomaterials, 2018, 155, 54-63.	5.7	169
667	Gasâ€Generating Nanoplatforms: Material Chemistry, Multifunctionality, and Gas Therapy. Advanced Materials, 2018, 30, e1801964.	11.1	225
668	UCN–SiO ₂ –GO: a core shell and conjugate system for controlling delivery of doxorubicin by 980 nm NIR pulse. RSC Advances, 2018, 8, 37492-37502.	1.7	1
669	Recent advances in nanoparticle carriers for photodynamic therapy. Quantitative Imaging in Medicine and Surgery, 2018, 8, 433-443.	1.1	85
670	Acidity/Reducibility Dual-Responsive Hollow Mesoporous Organosilica Nanoplatforms for Tumor-Specific Self-Assembly and Synergistic Therapy. ACS Nano, 2018, 12, 12269-12283.	7.3	86
671	Biocompatible Protein (IgG) Modified Up-conversion Nanoparticles (NaGdF <inf>4</inf> :) Tj ETQq0 0 0 2018, , .	rgBT /Ove	rlock 10 Tf 5 0
672	Probing Energy Migration through Precise Control of Interfacial Energy Transfer in Nanostructure. Advanced Materials, 2019, 31, e1806308.	11.1	60
673	Precise nanomedicine for intelligent therapy of cancer. Science China Chemistry, 2018, 61, 1503-1552.	4.2	336
674	Nitric oxide as an all-rounder for enhanced photodynamic therapy: Hypoxia relief, glutathione depletion and reactive nitrogen species generation. Biomaterials, 2018, 187, 55-65.	5.7	191
675	Enhancing Type I Photochemistry in Photodynamic Therapy Under Near Infrared Light by Using Antennae–Fullerene Complexes. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2018, 93, 997-1003.	1.1	39
676	Gd ³⁺ -lon-induced carbon-dots self-assembly aggregates loaded with a photosensitizer for enhanced fluorescence/MRI dual imaging and antitumor therapy. Nanoscale, 2018, 10, 19052-19063.	2.8	53
677	ZnO-functionalized mesoporous inner-empty nanotheranostic platform: upconversion imaging guided chemotherapy with pH-triggered drug delivery. Nanotechnology, 2018, 29, 505101.	1.3	3
678	Largeâ€Pore Mesoporousâ€&ilicaâ€Coated Upconversion Nanoparticles as Multifunctional Immunoadjuvants with Ultrahigh Photosensitizer and Antigen Loading Efficiency for Improved Cancer Photodynamic Immunotherapy. Advanced Materials, 2018, 30, e1802479.	11.1	251

#	Article	IF	CITATIONS
679	Supramolecularly Engineered NIRâ€H and Upconversion Nanoparticles In Vivo Assembly and Disassembly to Improve Bioimaging. Advanced Materials, 2018, 30, e1804982.	11.1	146
680	AgInS ₂ -Coated Upconversion Nanoparticle as a Photocatalyst for Near-Infrared Light-Activated Photodynamic Therapy of Cancer Cells. ACS Applied Bio Materials, 2018, 1, 1628-1638.	2.3	15
681	Ultra-high FRET efficiency NaGdF4: Tb3+-Rose Bengal biocompatible nanocomposite for X-ray excited photodynamic therapy application. Biomaterials, 2018, 184, 31-40.	5.7	54
682	Multifunctional hyaluronic acid-derived carbon dots for self-targeted imaging-guided photodynamic therapy. Journal of Materials Chemistry B, 2018, 6, 6534-6543.	2.9	51
683	Process intensification for scalable synthesis of ytterbium and erbium co-doped sodium yttrium fluoride upconversion nanodispersions. Powder Technology, 2018, 340, 208-216.	2.1	22
684	Remote Control of Intracellular Calcium Using Upconversion Nanotransducers Regulates Stem Cell Differentiation In Vivo. Advanced Functional Materials, 2018, 28, 1802642.	7.8	58
685	Oxyhemoglobin-monitoring photodynamic theranostics with an 808†nm-excited upconversion optical nanoagent. Chemical Engineering Journal, 2018, 350, 108-119.	6.6	14
686	Light-Induced Hypoxia-Triggered Living Nanocarriers for Synergistic Cancer Therapy. ACS Applied Materials & Interfaces, 2018, 10, 19398-19407.	4.0	62
687	Aggregation/Self-Assembly-Induced Approach for Efficient AuAg Bimetallic Nanocluster-Based Photosensitizers. Journal of Physical Chemistry C, 2018, 122, 12494-12501.	1.5	41
688	Endoplasmic Reticulum–Targeted Fluorescent Nanodot with Large Stokes Shift for Vesicular Transport Monitoring and Longâ€∓erm Bioimaging. Small, 2018, 14, e1800223.	5.2	28
689	Leveraging Spectral Matching between Photosensitizers and Upconversion Nanoparticles for 808 nm-Activated Photodynamic Therapy. Chemistry of Materials, 2018, 30, 3991-4000.	3.2	46
690	Microscopic inspection and tracking of single upconversion nanoparticles in living cells. Light: Science and Applications, 2018, 7, 18007-18007.	7.7	141
691	Near-infrared light-activated red-emitting upconverting nanoplatform for T1-weighted magnetic resonance imaging and photodynamic therapy. Acta Biomaterialia, 2018, 74, 360-373.	4.1	32
692	Upconversion and Downconversion Processes for Photovoltaics. , 2018, , 279-298.		3
693	Recent advances in the use of photochromic dyes for photocontrol in biomedicine. Coordination Chemistry Reviews, 2018, 372, 66-84.	9.5	80
694	Ionic Strength-Responsive Binding between Nanoparticles and Proteins. Langmuir, 2018, 34, 8264-8273.	1.6	13
695	Mini Review of TiO ₂ â€Based Multifunctional Nanocomposites for Nearâ€Infrared Light–Responsive Phototherapy. Advanced Healthcare Materials, 2018, 7, e1800351.	3.9	50
696	Mesoporous silica nanoparticles as drug delivery systems against melanoma. , 2018, , 437-466.		4

#	Article	IF	CITATIONS
697	Single red up-conversion luminescence of Er sensitized layered Y2Ti2O7 phosphor. Solid State Sciences, 2018, 82, 65-69.	1.5	3
698	A novel strategy for markedly enhancing the red upconversion emission in Er ³⁺ /Tm ³⁺ cooperated nanoparticles. Journal of Materials Chemistry C, 2018, 6, 7533-7540.	2.7	33
699	Near Infrared Boron Dipyrromethene Nanoparticles for Optotheranostics. Small Methods, 2018, 2, 1700370.	4.6	45
700	Time-dependent luminescence loss for individual upconversion nanoparticles upon dilution in aqueous solution. Nanoscale, 2018, 10, 15904-15910.	2.8	48
701	Photosensitizers with Aggregationâ€Induced Emission: Materials and Biomedical Applications. Advanced Materials, 2018, 30, e1801350.	11.1	611
702	Personalized Cancer Immunotherapy via Transporting Endogenous Tumor Antigens to Lymph Nodes Mediated by Nano Fe ₃ O ₄ . Small, 2018, 14, e1801372.	5.2	30
703	Targeted Delivery of Functionalized Upconversion Nanoparticles for Externally Triggered Photothermal/Photodynamic Therapies of Brain Glioblastoma. Theranostics, 2018, 8, 1435-1448.	4.6	154
704	Gadoliniumâ€Encapsulated Graphene Carbon Nanotheranostics for Imagingâ€Guided Photodynamic Therapy. Advanced Materials, 2018, 30, e1802748.	11.1	135
705	Upconversion luminescence properties of different Fluoride matrix materials NaREF4 (RE: Gd, Lu, Y) doped with Er3+/Yb3+. Journal of Luminescence, 2018, 204, 333-340.	1.5	23
706	TiO ₂ -Capped Gold Nanorods for Plasmon-Enhanced Production of Reactive Oxygen Species and Photothermal Delivery of Chemotherapeutic Agents. ACS Applied Materials & Interfaces, 2018, 10, 27965-27971.	4.0	36
707	Nd ³⁺ sensitized core-shell-shell nanocomposites loaded with IR806 dye for photothermal therapy and up-conversion luminescence imaging by a single wavelength NIR light irradiation. Nanotheranostics, 2018, 2, 243-257.	2.7	33
708	Recent Progress in Upconversion Photodynamic Therapy. Nanomaterials, 2018, 8, 344.	1.9	106
709	Nano-photosensitizer based on layered double hydroxide and isophthalic acid for singlet oxygenation and photodynamic therapy. Nature Communications, 2018, 9, 2798.	5.8	231
710	Homing of ICG-loaded liposome inlaid with tumor cellular membrane to the homologous xenografts glioma eradicates the primary focus and prevents lung metastases through phototherapy. Biomaterials Science, 2018, 6, 2410-2425.	2.6	35
711	Photodynamic therapy in hypoxia: Near-infrared-sensitive, self-supported, oxygen generation nano-platform enabled by upconverting nanoparticles. Chemical Engineering Journal, 2018, 352, 818-827.	6.6	35
712	Responsive Assembly of Upconversion Nanoparticles for pHâ€Activated and Nearâ€Infraredâ€Triggered Photodynamic Therapy of Deep Tumors. Advanced Materials, 2018, 30, e1802808.	11.1	191
713	Recent Progress in Metal-Based Nanoparticles Mediated Photodynamic Therapy. Molecules, 2018, 23, 1704.	1.7	81
714	Nanoformulation of metal complexes: Intelligent stimuli-responsive platforms for precision therapeutics. Nano Research, 2018, 11, 5474-5498.	5.8	20

#	ARTICLE	IF	CITATIONS
715	Nanoparticles: Targeting and Photodynamic Therapy. ACS Applied Materials & amp; Interfaces, 2018, 10, 26947-26953.	4.0	62
716	Water-Dispersible Prussian Blue Hyaluronic Acid Nanocubes with Near-Infrared Photoinduced Singlet Oxygen Production and Photothermal Activities for Cancer Theranostics. ACS Applied Materials & Interfaces, 2018, 10, 18036-18049.	4.0	64
717	Facile assembly of upconversion nanoparticle-based micelles for active targeted dual-mode imaging in pancreatic cancer. Journal of Nanobiotechnology, 2018, 16, 7.	4.2	31
718	Er ³⁺ Sensitized 1530â€nm to 1180â€nm Second Nearâ€Infrared Window Upconversion Nanocrystals for Inâ€Vivo Biosensing. Angewandte Chemie, 2018, 130, 7640-7644.	1.6	41
719	Upconversion Nanomaterials for Biodetection and Multimodal Bioimaging Using Photoluminescence. , 2018, , 249-275.		0
720	Aptamer-based targeted therapy. Advanced Drug Delivery Reviews, 2018, 134, 65-78.	6.6	314
721	X-ray radiation-induced and targeted photodynamic therapy with folic acid-conjugated biodegradable nanoconstructs. International Journal of Nanomedicine, 2018, Volume 13, 3553-3570.	3.3	44
722	Theranostic nanomedicine by surface nanopore engineering. Science China Chemistry, 2018, 61, 1243-1260.	4.2	17
723	Colloidal photoemissive nanoparticles. ChemTexts, 2018, 4, 1.	1.0	1
724	Smart Peptide-Based Supramolecular Photodynamic Metallo-Nanodrugs Designed by Multicomponent Coordination Self-Assembly. Journal of the American Chemical Society, 2018, 140, 10794-10802.	6.6	377
725	Beyond Phototherapy: Recent Advances in Multifunctional Fluorescent Nanoparticles for Lightâ€īriggered Tumor Theranostics. Advanced Functional Materials, 2018, 28, 1803733.	7.8	54
726	Photodynamic therapy and nuclear imaging activities of SubPhthalocyanine integrated TiO2 nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 367, 45-55.	2.0	23
727	Rational Design of Conjugated Photosensitizers with Controllable Photoconversion for Dually Cooperative Phototherapy. Advanced Materials, 2018, 30, e1801216.	11.1	159
728	A Novel Histochemical Staining Approach for Rareâ€Earthâ€Based Nanoprobes. Advanced Therapeutics, 2018, 1, 1800005.	1.6	11
729	Security writing application of thermal decomposition assisted NaYF ₄ :Er ³⁺ /Yb ³⁺ upconversion phosphor. Laser Physics Letters, 2018, 15, 075901.	0.6	18
730	Probing heterogeneity of NIR induced secondary fluorescence from DNA-stabilized silver nanoclusters at the single molecule level. Physical Chemistry Chemical Physics, 2018, 20, 16316-16319.	1.3	15
731	Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6632-6637.	3.3	81
732	Selective Polarization Modification of Upconversion Luminescence of NaYF ₄ :Yb ³⁺ ,Er ³⁺ Nanoparticles by Plasmonic Nanoantenna Arrays. Journal of Physical Chemistry C, 2018, 122, 15666-15672.	1.5	18

#	Article	IF	CITATIONS
733	Lanthanide-doped materials as dual imaging and therapeutic agents. , 2018, , 381-410.		5
734	Continuous-wave upconverting nanoparticle microlasers. Nature Nanotechnology, 2018, 13, 572-577.	15.6	188
735	Photodynamic therapy-mediated remote control of chemotherapy toward synergistic anticancer treatment. Nanoscale, 2018, 10, 14554-14562.	2.8	26
736	Surface Plasmonic Enhanced Imaging-Guided Photothermal/Photodynamic Therapy Based on Lanthanide–Metal Nanocomposites under Single 808 nm Laser. ACS Biomaterials Science and Engineering, 2019, 5, 5051-5059.	2.6	17
737	Upconversion nanoparticles for sensing pH. Analyst, The, 2019, 144, 5547-5557.	1.7	33
738	Determining the role of redox-active materials during laser-induced water decomposition. Physical Chemistry Chemical Physics, 2019, 21, 18636-18651.	1.3	41
739	Fine-Tuning Ho-Based Red-Upconversion Luminescence by Altering NaHoF ₄ Core Size and NaYbF ₄ Shell Thickness. Chemistry of Materials, 2019, 31, 7898-7909.	3.2	36
740	Hyperspectral Multiplexed Biological Imaging of Nanoprobes Emitting in the Short-Wave Infrared Region. Nanoscale Research Letters, 2019, 14, 243.	3.1	18
741	Advances in nanomaterials for use in photothermal and photodynamic therapeutics (Review). Molecular Medicine Reports, 2019, 20, 5-15.	1.1	99
742	A Biocompatible Free Radical Nanogenerator with Realâ€Time Monitoring Capability for High Performance Sequential Hypoxic Tumor Therapy. Advanced Functional Materials, 2019, 29, 1903436.	7.8	83
743	MnFe ₂ O ₄ -decorated large-pore mesoporous silica-coated upconversion nanoparticles for near-infrared light-induced and O ₂ self-sufficient photodynamic therapy. Nanoscale, 2019, 11, 14654-14667.	2.8	41
744	Listening for the therapeutic window: Advances in drug delivery utilizing photoacoustic imaging. Advanced Drug Delivery Reviews, 2019, 144, 78-89.	6.6	33
745	Mesoporous semiconductors combined with up-conversion nanoparticles for enhanced photodynamic therapy under near infrared light. RSC Advances, 2019, 9, 17273-17280.	1.7	9
746	Nanoparticle-based diagnostic and therapeutic systems for brain tumors. Journal of Materials Chemistry B, 2019, 7, 4734-4750.	2.9	57
747	Small molecular target-based multifunctional upconversion nanocomposites for targeted and in-depth photodynamic and chemo-anticancer therapy. Materials Science and Engineering C, 2019, 104, 109849.	3.8	15
748	Fluorescence Detection and Dissociation of Amyloidâ€Î² Species for the Treatment of Alzheimer's Disease. Advanced Therapeutics, 2019, 2, 1900054.	1.6	19
749	Fabrication of H ₂ O ₂ -driven nanoreactors for innovative cancer treatments. Nanoscale, 2019, 11, 16164-16186.	2.8	46
750	Tumor Targeting Strategies of Smart Fluorescent Nanoparticles and Their Applications in Cancer Diagnosis and Treatment. Advanced Materials, 2019, 31, e1902409.	11.1	173

#	Article	IF	Citations
751	NIR-light-mediated spatially selective triggering of anti-tumor immunity via upconversion nanoparticle-based immunodevices. Nature Communications, 2019, 10, 2839.	5.8	114
752	Turning solid into gel for high-efficient persistent luminescence-sensitized photodynamic therapy. Biomaterials, 2019, 218, 119328.	5.7	38
753	Multifunctional co-loaded magnetic nanocapsules for enhancing targeted MR imaging and in vivo photodynamic therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 21, 102047.	1.7	10
754	Recent progress in nanoscale metal-organic frameworks for drug release and cancer therapy. Nanomedicine, 2019, 14, 1343-1365.	1.7	80
755	Universal Scaffold for an Activatable Photosensitizer with Completely Inhibited Photosensitivity. Angewandte Chemie - International Edition, 2019, 58, 16601-16609.	7.2	71
756	Local biomaterials-assisted cancer immunotherapy to trigger systemic antitumor responses. Chemical Society Reviews, 2019, 48, 5506-5526.	18.7	209
757	Upconversion superballs for programmable photoactivation of therapeutics. Nature Communications, 2019, 10, 4586.	5.8	100
758	The Dark Side: Photosensitizer Prodrugs. Pharmaceuticals, 2019, 12, 148.	1.7	18
759	Hyperthermia and Controllable Free Radical Coenhanced Synergistic Therapy in Hypoxia Enabled by Near-Infrared-II Light Irradiation. ACS Nano, 2019, 13, 13144-13160.	7.3	109
760	A concise review on cancer treatment methods and delivery systems. Journal of Drug Delivery Science and Technology, 2019, 54, 101350.	1.4	60
761	Recent advances in upconversion nanocrystals: Expanding the kaleidoscopic toolbox for emerging applications. Nano Today, 2019, 29, 100797.	6.2	141
762	Recent Progress of Rareâ€Earth Doped Upconversion Nanoparticles: Synthesis, Optimization, and Applications. Advanced Science, 2019, 6, 1901358.	5.6	228
763	Universal Scaffold for an Activatable Photosensitizer with Completely Inhibited Photosensitivity. Angewandte Chemie, 2019, 131, 16754-16762.	1.6	10
764	Activating Antitumor Immunity and Antimetastatic Effect Through Polydopamineâ€Encapsulated Core–Shell Upconversion Nanoparticles. Advanced Materials, 2019, 31, e1905825.	11.1	179
765	Rectifying characteristics and solar-blind photoresponse in β-Ga ₂ O ₃ /ZnO heterojunctions*. Chinese Physics B, 2019, 28, 088503.	0.7	7
766	Concentration-regulated photon upconversion and quenching in NaYF ₄ :Yb ³⁺ ,Er ³⁺ nanocrystals: nonexponentiality revisited. Nanoscale, 2019, 11, 18150-18158.	2.8	29
767	Control synthesis, subtle surface modification of rare-earth-doped upconversion nanoparticles and their applications in cancer diagnosis and treatment. Materials Science and Engineering C, 2019, 105, 110097.	3.8	50
768	Near-Infrared Excited Orthogonal Emissive Upconversion Nanoparticles for Imaging-Guided On-Demand Therapy. ACS Nano, 2019, 13, 10405-10418.	7.3	108

#	Article	IF	CITATIONS
769	Layered double hydroxide nanostructures and nanocomposites for biomedical applications. Journal of Materials Chemistry B, 2019, 7, 5583-5601.	2.9	108
771	Development of a novel anti-tumor theranostic platform: a near-infrared molecular upconversion sensitizer for deep-seated cancer photodynamic therapy. Chemical Science, 2019, 10, 10106-10112.	3.7	79
772	Photon management properties of Yb-doped SnO ₂ nanoparticles synthesized by the sol–gel technique. Physical Chemistry Chemical Physics, 2019, 21, 21407-21417.	1.3	17
773	<p>Breakthroughs in medicine and bioimaging with up-conversion nanoparticles</p> . International Journal of Nanomedicine, 2019, Volume 14, 7759-7780.	3.3	41
774	Near-Infrared II Phototherapy Induces Deep Tissue Immunogenic Cell Death and Potentiates Cancer Immunotherapy. ACS Nano, 2019, 13, 11967-11980.	7.3	251
775	Microfluidic-Based Immunomodulation of Immune Cells Using Upconversion Nanoparticles in Simulated Blood Vessel–Tumor System. ACS Applied Materials & Interfaces, 2019, 11, 37513-37523.	4.0	24
776	Upconversion enhancement by a dual-resonance all-dielectric metasurface. Nanoscale, 2019, 11, 1856-1862.	2.8	30
777	Optimierung photodynamischer Krebstherapien auf der Grundlage physikalischâ€chemischer Faktoren. Angewandte Chemie, 2019, 131, 14204-14219.	1.6	10
778	CT/MRIâ€Guided Synergistic Radiotherapy and Xâ€ray Inducible Photodynamic Therapy Using Tbâ€Doped Gdâ€Wâ€Nanoscintillators. Angewandte Chemie - International Edition, 2019, 58, 2017-2022.	7.2	82
779	Upconversion nanoparticles for <i>in vivo</i> applications: limitations and future perspectives. Methods and Applications in Fluorescence, 2019, 7, 022001.	1.1	63
780	The photocytotoxicity effect of cationic sulfonated corrole towards lung cancer cells: in vitro and in vivo study. Lasers in Medical Science, 2019, 34, 1353-1363.	1.0	6
781	CT/MRIâ€Guided Synergistic Radiotherapy and Xâ€ray Inducible Photodynamic Therapy Using Tbâ€Doped Gdâ€Wâ€Nanoscintillators. Angewandte Chemie, 2019, 131, 2039-2044.	1.6	12
782	Energy Transfer Networks within Upconverting Nanoparticles Are Complex Systems with Collective, Robust, and History-Dependent Dynamics. Journal of Physical Chemistry C, 2019, 123, 2678-2689.	1.5	57
783	Enhancement of Photodynamic Cancer Therapy by Physical and Chemical Factors. Angewandte Chemie - International Edition, 2019, 58, 14066-14080.	7.2	133
784	Strong Light-Field Driven Nanolasers. Nano Letters, 2019, 19, 3563-3568.	4.5	4
785	Cancer-Selective Bioreductive Chemotherapy Mediated by Dual Hypoxia-Responsive Nanomedicine upon Photodynamic Therapy-Induced Hypoxia Aggravation. Biomacromolecules, 2019, 20, 2649-2656.	2.6	57
786	Type I photodynamic therapy by organic–inorganic hybrid materials: From strategies to applications. Coordination Chemistry Reviews, 2019, 395, 46-62.	9.5	187
787	Preparation and application of solid-state upconversion materials based on sodium polyacrylate. RSC Advances, 2019, 9, 17691-17697.	1.7	5

#	Article	IF	CITATIONS
788	Enhancement of ultralow-intensity NIR light-triggered photodynamic therapy based on exo- and endogenous synergistic effects through combined glutathione-depletion chemotherapy. Nanoscale, 2019, 11, 13078-13088.	2.8	32
789	Epidermal Growth Factor Receptor-Targeted Delivery of a Singlet-Oxygen Sensitizer with Thermal Controlled Release for Efficient Anticancer Therapy. Molecular Pharmaceutics, 2019, 16, 3703-3710.	2.3	14
790	Sandwich-Structured Upconversion Nanoprobes Coated with a Thin Silica Layer for Mitochondria-Targeted Cooperative Photodynamic Therapy for Solid Malignant Tumors. Analytical Chemistry, 2019, 91, 8549-8557.	3.2	32
791	Upconversion nano-particles from synthesis to cancer treatment: A review. Advanced Powder Technology, 2019, 30, 1731-1753.	2.0	27
792	Morphology Control of Lanthanide Doped NaGdF ₄ Nanocrystals via One-Step Thermolysis. Chemistry of Materials, 2019, 31, 5160-5171.	3.2	31
793	Expanding the toolbox for lanthanide-doped upconversion nanocrystals. Journal Physics D: Applied Physics, 2019, 52, 383002.	1.3	27
794	Aggregation-induced heterogeneities in the emission of upconverting nanoparticles at the submicron scale unfolded by hyperspectral microscopy. Nanoscale Advances, 2019, 1, 2537-2545.	2.2	14
795	Bovine serum albumin-templated nanoplatform for magnetic resonance imaging-guided chemodynamic therapy. Journal of Nanobiotechnology, 2019, 17, 68.	4.2	41
796	Intelligent Hollow Pt-CuS Janus Architecture for Synergistic Catalysis-Enhanced Sonodynamic and Photothermal Cancer Therapy. Nano Letters, 2019, 19, 4134-4145.	4.5	339
797	lmaging-guided focused ultrasound-induced thermal and sonodynamic effects of nanosonosensitizers for synergistic enhancement of glioblastoma therapy. Biomaterials Science, 2019, 7, 3007-3015.	2.6	32
798	Searching for the Optimized Luminescent Lanthanide Phosphor Using Heuristic Algorithms. Inorganic Chemistry, 2019, 58, 6458-6466.	1.9	12
799	Comparative investigation of the optical spectroscopic and thermal effect in Nd ³⁺ -doped nanoparticles. Nanoscale, 2019, 11, 10220-10228.	2.8	25
800	Recent advances in photodynamic therapy for cancer and infectious diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1560.	3.3	113
801	Upconversion Nanomaterials for Near-infrared Light-Mediated Theranostics. , 2019, , 321-340.		0
802	Mesoporous Silicaâ€Based Materials with Bactericidal Properties. Small, 2019, 15, e1900669.	5.2	125
803	Sequential Intercellular Delivery Nanosystem for Enhancing ROS-Induced Antitumor Therapy. Nano Letters, 2019, 19, 3505-3518.	4.5	44
804	Strategies for Image-Guided Therapy, Surgery, and Drug Delivery Using Photoacoustic Imaging. Theranostics, 2019, 9, 1550-1571.	4.6	123
805	Cryodesiccation-driven crystallization preparation approach for zinc(II)-phthalocyanine nanodots in cancer photodynamic therapy and photoacoustic imaging. Mikrochimica Acta, 2019, 186, 237.	2.5	12

#	Article	IF	CITATIONS
806	Generic synthesis of small-sized hollow mesoporous organosilica nanoparticles for oxygen-independent X-ray-activated synergistic therapy. Nature Communications, 2019, 10, 1241.	5.8	112
807	Hierarchical tumor acidity-responsive self-assembled magnetic nanotheranostics for bimodal bioimaging and photodynamic therapy. Journal of Controlled Release, 2019, 301, 157-165.	4.8	46
808	Stimuli-responsive nanotheranostics based on lanthanide-doped upconversion nanoparticles for cancer imaging and therapy: current advances and future challenges. Nano Today, 2019, 25, 38-67.	6.2	100
809	Two-Dimensional and Three-Dimensional Single Particle Tracking of Upconverting Nanoparticles in Living Cells. International Journal of Molecular Sciences, 2019, 20, 1424.	1.8	23
810	Mass production of poly(ethylene glycol) monooleate-modified core-shell structured upconversion nanoparticles for bio-imaging and photodynamic therapy. Scientific Reports, 2019, 9, 5212.	1.6	20
811	Photodynamic therapy-triggered on-demand drug release from ROS-responsive core-cross-linked micelles toward synergistic anti-cancer treatment. Nano Research, 2019, 12, 999-1008.	5.8	41
812	NIRâ€Triggered Phototherapy and Immunotherapy via an Antigenâ€Capturing Nanoplatform for Metastatic Cancer Treatment. Advanced Science, 2019, 6, 1802157.	5.6	221
813	DNA-mediated coordinative assembly of upconversion hetero-nanostructures for targeted dual-modality imaging of cancer cells. Chinese Chemical Letters, 2019, 30, 899-902.	4.8	22
814	Reactive Oxygen Species (ROS)-Based Nanomedicine. Chemical Reviews, 2019, 119, 4881-4985.	23.0	1,519
815	Second near-infrared photodynamic therapy and chemotherapy of orthotopic malignant glioblastoma with ultra-small Cu _{2â°'x} Se nanoparticles. Nanoscale, 2019, 11, 7600-7608.	2.8	100
815 816	Second near-infrared photodynamic therapy and chemotherapy of orthotopic malignant glioblastoma with ultra-small Cu _{2â^{**}x} Se nanoparticles. Nanoscale, 2019, 11, 7600-7608. Perfluorocarbon regulates the intratumoural environment to enhance hypoxia-based agent efficacy. Nature Communications, 2019, 10, 1580.	2.8 5.8	100 85
815 816 817	Second near-infrared photodynamic therapy and chemotherapy of orthotopic malignant glioblastoma with ultra-small Cu _{2â"x} Se nanoparticles. Nanoscale, 2019, 11, 7600-7608. Perfluorocarbon regulates the intratumoural environment to enhance hypoxia-based agent efficacy. Nature Communications, 2019, 10, 1580. Functional Mesoporous Silica Nanocomposites: Biomedical applications and Biosafety International Journal of Molecular Sciences, 2019, 20, 929.	2.8 5.8 1.8	100 85 45
815 816 817 818	Second near-infrared photodynamic therapy and chemotherapy of orthotopic malignant glioblastoma with ultra-small Cu _{2â⁻¹x} Se nanoparticles. Nanoscale, 2019, 11, 7600-7608. Perfluorocarbon regulates the intratumoural environment to enhance hypoxia-based agent efficacy. Nature Communications, 2019, 10, 1580. Functional Mesoporous Silica Nanocomposites: Biomedical applications and Biosafety International Journal of Molecular Sciences, 2019, 20, 929. Lanthanideâ€Doped Photoluminescence Hollow Structures: Recent Advances and Applications. Small, 2019, 15, e1804510.	2.8 5.8 1.8 5.2	100 85 45 28
815 816 817 818 818	Second near-infrared photodynamic therapy and chemotherapy of orthotopic malignant glioblastoma with ultra-small Cu _{2â''x} Se nanoparticles. Nanoscale, 2019, 11, 7600-7608. Perfluorocarbon regulates the intratumoural environment to enhance hypoxia-based agent efficacy. Nature Communications, 2019, 10, 1580. Functional Mesoporous Silica Nanocomposites: Biomedical applications and Biosafety International Journal of Molecular Sciences, 2019, 20, 929. Lanthanideâ€Doped Photoluminescence Hollow Structures: Recent Advances and Applications. Small, 2019, 15, e1804510. A Nd ³⁺ sensitized upconversion nanosystem with dual photosensitizers for improving photodynamic therapy efficacy. Biomaterials Science, 2019, 7, 1686-1695.	2.8 5.8 1.8 5.2 2.6	100 85 45 28 28
 815 816 817 818 819 820 	Second near-infrared photodynamic therapy and chemotherapy of orthotopic malignant glioblastoma with ultra-small Cu _{2â°x} Se nanoparticles. Nanoscale, 2019, 11, 7600-7608. Perfluorocarbon regulates the intratumoural environment to enhance hypoxia-based agent efficacy. Nature Communications, 2019, 10, 1580. Functional Mesoporous Silica Nanocomposites: Biomedical applications and Biosafety International Journal of Molecular Sciences, 2019, 20, 929. Lanthanideâ€Doped Photoluminescence Hollow Structures: Recent Advances and Applications. Small, 2019, 15, e1804510. A Nd ³⁺ sensitized upconversion nanosystem with dual photosensitizers for improving photodynamic therapy efficacy. Biomaterials Science, 2019, 7, 1686-1695. Proteinâ€ ^{en} Polyelectrolyte Interaction: Thermodynamic Analysis Based on the Titration Method â€. Polymers, 2019, 11, 82.	 2.8 5.8 1.8 5.2 2.6 2.0 	100 85 45 28 28 28
 815 816 817 818 819 820 821 	Second near-infrared photodynamic therapy and chemotherapy of orthotopic malignant glioblastoma with ultra-small Cu _{2â"×} Se nanoparticles. Nanoscale, 2019, 11, 7600-7608. Perfluorocarbon regulates the intratumoural environment to enhance hypoxia-based agent efficacy. Nature Communications, 2019, 10, 1580. Functional Mesoporous Silica Nanocomposites: Biomedical applications and Biosafety International Journal of Molecular Sciences, 2019, 20, 929. Lanthanideâ€Doped Photoluminescence Hollow Structures: Recent Advances and Applications. Small, 2019, 15, e1804510. A Nd ³⁺ sensitized upconversion nanosystem with dual photosensitizers for improving photodynamic therapy efficacy. Biomaterials Science, 2019, 7, 1686-1695. Protein–Polyelectrolyte Interaction: Thermodynamic Analysis Based on the Titration Method â€. Polymers, 2019, 11, 82. Assembly of upconversion nanophotosensitizer in vivo to achieve scatheless real-time imaging and selective photodynamic therapy. Biomaterials, 2019, 201, 33-41.	2.8 5.8 1.8 5.2 2.6 2.0 5.7	100 85 45 28 28 28 25
 815 816 817 818 819 820 821 822 	Second near-infrared photodynamic therapy and chemotherapy of orthotopic malignant glioblastoma with ultra-small Cu _{28'x} Se nanoparticles. Nanoscale, 2019, 11, 7600-7608. Perfluorocarbon regulates the intratumoural environment to enhance hypoxia-based agent efficacy. Nature Communications, 2019, 10, 1580. Functional Mesoporous Silica Nanocomposites: Biomedical applications and Biosafety International Journal of Molecular Sciences, 2019, 20, 929. Lanthanideã€Doped Photoluminescence Hollow Structures: Recent Advances and Applications. Small, 2019, 15, e1804510. A Nd ³⁺ sensitized upconversion nanosystem with dual photosensitizers for improving photodynamic therapy efficacy. Biomaterials Science, 2019, 7, 1686-1695. Proteinã€"Polyelectrolyte Interaction: Thermodynamic Analysis Based on the Titration Method ã€. Polymers, 2019, 11, 82. Assembly of upconversion nanophotosensitizer in vivo to achieve scatheless real-time imaging and selective photodynamic therapy. Biomaterials, 2019, 201, 33.41. Upconversion Luminescence of Gd ₂ O ₃ :Ln ³⁺ Nanorods for White Emission and Cellular Imaging via Surface Charging and Crystallinity Control. ACS Applied Nano Materials, 2019, 2, 1421-1430.	2.8 5.8 1.8 5.2 2.6 2.0 5.7 2.4	 100 85 45 28 28 25 53 20

#	Article	IF	CITATIONS
824	Pick your precursor! Tailoring the size and crystal phase of microwave-synthesized sub-10 nm upconverting nanoparticles. Journal of Materials Chemistry C, 2019, 7, 15364-15374.	2.7	27
825	Glutathione Depletion in a Benign Manner by MoS ₂ â€Based Nanoflowers for Enhanced Hypoxiaâ€Irrelevant Freeâ€Radicalâ€Based Cancer Therapy. Small, 2019, 15, e1904870.	5.2	89
826	Bubble-Manipulated Local Drug Release from a Smart Thermosensitive Cerasome for Dual-Mode Imaging Guided Tumor Chemo-Photothermal Therapy. Theranostics, 2019, 9, 8138-8154.	4.6	26
827	Focusing light inside live tissue using reversibly switchable bacterial phytochrome as a genetically encoded photochromic guide star. Science Advances, 2019, 5, eaay1211.	4.7	26
828	Lanthanide-doped mesoporous MCM-41 nanoparticles as a novel optical–magnetic multifunctional nanobioprobe. RSC Advances, 2019, 9, 40835-40844.	1.7	6
829	A photochromic upconversion nanoarchitecture: towards activatable bioimaging and dual NIR light-programmed singlet oxygen generation. Chemical Science, 2019, 10, 10231-10239.	3.7	45
830	Self-quenching synthesis of coordination polymer pre-drug nanoparticles for selective photodynamic therapy. Journal of Materials Chemistry B, 2019, 7, 7776-7782.	2.9	16
831	Micromotors for drug delivery in vivo: The road ahead. Advanced Drug Delivery Reviews, 2019, 138, 41-55.	6.6	99
832	Near-infrared light-regulated cancer theranostic nanoplatform based on aggregation-induced emission luminogen encapsulated upconversion nanoparticles. Theranostics, 2019, 9, 246-264.	4.6	85
833	Precise Inâ€Vivo Inflammation Imaging Using Inâ€Situ Responsive Crossâ€linking of Glutathioneâ€Modified Ultraâ€Small NIRâ€II Lanthanide Nanoparticles. Angewandte Chemie - International Edition, 2019, 58, 2050-2054.	7.2	144
834	Precise Inâ€Vivo Inflammation Imaging Using Inâ€Situ Responsive Crossâ€linking of Glutathioneâ€Modified Ultraâ€&mall NIRâ€II Lanthanide Nanoparticles. Angewandte Chemie, 2019, 131, 2072-2076.	1.6	38
835	The photodynamic activity and toxicity evaluation of 5,10,15-tris(ethoxylcarbonyl)corrole phosphorus(V) in vivo and in vitro. European Journal of Medicinal Chemistry, 2019, 163, 779-786.	2.6	25
836	Amine-functionalized, porous silica-coated NaYF4:Yb/Er upconversion nanophosphors for efficient delivery of doxorubicin and curcumin. Materials Science and Engineering C, 2019, 96, 86-95.	3.8	32
837	Incorporation of gold nanoparticles into the bilayer of polydiacetylene unilamellar vesicles. Colloid and Polymer Science, 2019, 297, 85-93.	1.0	5
838	Nanotechnology-based photoimmunological therapies for cancer. Cancer Letters, 2019, 442, 429-438.	3.2	63
839	A self-illuminating nanoparticle for inflammation imaging and cancer therapy. Science Advances, 2019, 5, eaat2953.	4.7	153
840	Harnessing the Synergy between Upconverting Nanoparticles and Lanthanide Complexes in a Multiwavelength-Responsive Hybrid System. ACS Photonics, 2019, 6, 436-445.	3.2	14
841	Chlorophylls B formulated in nanostructured colloidal solutions: Interaction, spectroscopic, and photophysical studies. Journal of Molecular Liquids, 2019, 274, 393-401.	2.3	9

#	Article	IF	CITATIONS
842	Self-assembled zinc phthalocyanine nanoparticles as excellent photothermal/photodynamic synergistic agent for antitumor treatment. Chemical Engineering Journal, 2019, 361, 117-128.	6.6	83
843	Nano-Assemblies from J-Aggregated Dyes: A Stimuli-Responsive Tool Applicable To Living Systems. Journal of the American Chemical Society, 2019, 141, 402-413.	6.6	80
844	Lipid-Wrapped Upconversion Nanoconstruct/Photosensitizer Complex for Near-Infrared Light-Mediated Photodynamic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 84-95.	4.0	29
845	Advanced Nearâ€Infrared Lightâ€Responsive Nanomaterials as Therapeutic Platforms for Cancer Therapy. Advanced Therapeutics, 2019, 2, 1800090.	1.6	27
846	In Situ Synthesis of Dicarboxylic Acid Functionalized Upconversion Nanoparticles for Bioimaging Applications. ChemPhotoChem, 2019, 3, 145-150.	1.5	8
847	Discrimination of effects leading to gas formation during pulsed laser ablation in liquids. Applied Surface Science, 2019, 465, 1096-1102.	3.1	30
848	Upconversion-based photodynamic cancer therapy. Coordination Chemistry Reviews, 2019, 379, 82-98.	9.5	249
849	Photocontrolled SiRNA Delivery and Biomarker-Triggered Luminogens of Aggregation-Induced Emission by Up-Conversion NaYF ₄ :Yb ³⁺ Tm ³⁺ @SiO ₂ Nanoparticles for Inducing and Monitoring Stem-Cell Differentiation. ACS Applied Materials & Interfaces. 2019. 11. 22074-22084.	4.0	43
850	Combating Concentration Quenching in Upconversion Nanoparticles. Accounts of Chemical Research, 2020, 53, 358-367.	7.6	183
851	Insight into the efficiency of oxygen introduced photodynamic therapy (PDT) and deep PDT against cancers with various assembled nanocarriers. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1583.	3.3	51
852	Polyoxomolybdate (POM) nanoclusters with radiosensitizing and scintillating properties for low dose X-ray inducible radiation-radiodynamic therapy. Nanoscale Horizons, 2020, 5, 109-118.	4.1	29
853	Ultraschallaktivierte Sensibilisatoren. Angewandte Chemie, 2020, 132, 14316-14338.	1.6	11
854	New Designs for Phototherapeutic Transition Metal Complexes. Angewandte Chemie, 2020, 132, 61-73.	1.6	53
855	New Designs for Phototherapeutic Transition Metal Complexes. Angewandte Chemie - International Edition, 2020, 59, 61-73.	7.2	257
856	Ultrasoundâ€Activated Sensitizers and Applications. Angewandte Chemie - International Edition, 2020, 59, 14212-14233.	7.2	271
857	Recent advances of lanthanide-doped upconversion nanoparticles for biological applications. Nanotechnology, 2020, 31, 072001.	1.3	61
858	Optical and electrochemical-based nano-aptasensing approaches for the detection of circulating tumor cells (CTCs). Biosensors and Bioelectronics, 2020, 148, 111833.	5.3	62
859	Epitaxial KNbO3:Yb3+,Er3+ nanopattern for enhanced upconversion photoluminescence. Journal of Alloys and Compounds, 2020, 813, 152238.	2.8	3

#	ARTICLE	IF	CITATIONS
861	Flexible and fully implantable upconversion device for wireless optogenetic stimulation of the spinal cord in behaving animals. Nanoscale, 2020, 12, 2406-2414.	2.8	27
862	An aggregation-induced emission dye-powered afterglow luminogen for tumor imaging. Chemical Science, 2020, 11, 419-428.	3.7	42
863	Polarization of tumor-associated macrophage phenotype <i>via</i> porous hollow iron nanoparticles for tumor immunotherapy <i>in vivo</i> . Nanoscale, 2020, 12, 130-144.	2.8	83
864	Hypoxia-responsive nanoparticle based drug delivery systems in cancer therapy: An up-to-date review. Journal of Controlled Release, 2020, 319, 135-156.	4.8	160
865	Surface Charge Switchable Supramolecular Nanocarriers for Nitric Oxide Synergistic Photodynamic Eradication of Biofilms. ACS Nano, 2020, 14, 347-359.	7.3	321
866	Nd ³⁺ ‣ensitized Upconversion Metal–Organic Frameworks for Mitochondriaâ€Targeted Amplified Photodynamic Therapy. Angewandte Chemie, 2020, 132, 2656-2660.	1.6	10
867	Irradiation-free photodynamic therapy in vivo induced by enhanced deep red afterglow within NIR-I bio-window. Chemical Engineering Journal, 2020, 387, 124067.	6.6	29
868	Therapeutic Strategies for Regulating Mitochondrial Oxidative Stress. Biomolecules, 2020, 10, 83.	1.8	40
869	Charge-reversal nanocarriers: An emerging paradigm for smart cancer nanomedicine. Journal of Controlled Release, 2020, 319, 46-62.	4.8	84
870	Upconversion Nanoparticle-Assisted Payload Delivery from TiO ₂ under Near-Infrared Light Irradiation for Bacterial Inactivation. ACS Nano, 2020, 14, 337-346.	7.3	87
871	Efficient Near-Infrared Photosensitizer with Aggregation-Induced Emission for Imaging-Guided Photodynamic Therapy in Multiple Xenograft Tumor Models. ACS Nano, 2020, 14, 854-866.	7.3	161
872	Nd ³⁺ ‣ensitized Upconversion Metal–Organic Frameworks for Mitochondriaâ€Targeted Amplified Photodynamic Therapy. Angewandte Chemie - International Edition, 2020, 59, 2634-2638.	7.2	175
873	Optical imaging and pH-awakening therapy of deep tissue cancer based on specific upconversion nanophotosensitizers. Biomaterials, 2020, 230, 119637.	5.7	29
874	<p>Guiding Appropriate Timing of Laser Irradiation by Polymeric Micelles for Maximizing Chemo-Photodynamic Therapy</p> . International Journal of Nanomedicine, 2020, Volume 15, 6531-6543.	3.3	10
875	Green route synthesized upconverting (NaYF4: Yb3+, Tm3+)nanophosphors and its photophysical and magnetic Properties. Journal of Luminescence, 2020, 228, 117654.	1.5	3
876	Surface structure-dependent photocatalytic O ₂ activation for pollutant removal with bismuth oxyhalides. Chemical Communications, 2020, 56, 15282-15296.	2.2	35
877	Trastuzumab conjugated porphyrin-superparamagnetic iron oxide nanoparticle: A potential PTT-MRI bimodal agent for herceptin positive breast cancer. Photodiagnosis and Photodynamic Therapy, 2020, 31, 101896.	1.3	37
878	Manganese-Mediated Growth of ZnS Shell on KMnF ₃ :Yb,Er Cores toward Enhanced Up/Downconversion Luminescence. ACS Applied Materials & Interfaces, 2020, 12, 11934-11944.	4.0	18

	CITATION	Report	
# 879	ARTICLE NIR Photoregulated Theranostic System Based on Hexagonal-Phase Upconverting Nanoparticles for Tumor Tarreted Photodynamic Therapy and Elyorescence Imaging, Nanomaterials, 2020, 10, 2332	IF 1.9	CITATIONS
880	Stable Organic Photosensitizer Nanoparticles with Absorption Peak beyond 800 Nanometers and High Reactive Oxygen Species Yield for Multimodality Phototheranostics. ACS Nano, 2020, 14, 9917-9928.	7.3	101
881	Polythiophenes with Cationic Phosphonium Groups as Vectors for Imaging, siRNA Delivery, and Photodynamic Therapy. Nanomaterials, 2020, 10, 1432.	1.9	9
882	Photoactivation Strategies for Therapeutic Release in Nanodelivery Systems. Advanced Therapeutics, 2020, 3, 2000117.	1.6	12
883	Tin-Doped Near-Infrared Persistent Luminescence Nanoparticles with Considerable Improvement of Biological Window Activation for Deep Tumor Photodynamic Therapy. ACS Applied Bio Materials, 2020, 3, 5995-6004.	2.3	15
884	Highly Doped Upconversion Nanoparticles for <i>In Vivo</i> Applications Under Mild Excitation Power. Analytical Chemistry, 2020, 92, 10913-10919.	3.2	15
885	Remote Control of Neural Stem Cell Fate Using NIR-Responsive Photoswitching Upconversion Nanoparticle Constructs. ACS Applied Materials & amp; Interfaces, 2020, 12, 40031-40041.	4.0	16
886	Molecular Engineering to Boost AIEâ€Active Free Radical Photogenerators and Enable Highâ€Performance Photodynamic Therapy under Hypoxia. Advanced Functional Materials, 2020, 30, 2002057.	7.8	208
887	Intelligent Fe–Mn Layered Double Hydroxides Nanosheets Anchored with Upconversion Nanoparticles for Oxygenâ€Elevated Synergetic Therapy and Bioimaging. Small, 2020, 16, e2001343.	5.2	85
888	Nanoplatform-based cascade engineering for cancer therapy. Chemical Society Reviews, 2020, 49, 9057-9094.	18.7	109
889	Application of DNA nanostructures in cancer therapy. Applied Materials Today, 2020, 21, 100861.	2.3	7
890	Recent progress in the development of upconversion nanomaterials in bioimaging and disease treatment. Journal of Nanobiotechnology, 2020, 18, 154.	4.2	107
891	Farâ€Field Superresolution Imaging via Spatial Frequency Modulation. Laser and Photonics Reviews, 2020, 14, 1900011.	4.4	15
892	Facile-Controlled Epitaxial Growth Direction of Heterogeneous Core/Shell Structured NaLnF ₄ Nanocrystals through Traditional Methods. Journal of Nanomaterials, 2020, 2020, 1-7.	1.5	1
893	Excitation efficiency determines the upconversion luminescence intensity of β-NaYF ₄ :Er ³⁺ ,Yb ³⁺ nanoparticles in magnetic fields up to 70 T. Nanoscale, 2020, 12, 20300-20307.	2.8	15
894	Core-satellite metal-organic framework@upconversion nanoparticle superstructures via electrostatic self-assembly for efficient photodynamic theranostics. Nano Research, 2020, 13, 3377-3386.	5.8	38
895	Simple synthesis of multifunctional photosensitizers for mitochondrial and bacterial imaging and photodynamic anticancer and antibacterial therapy. Journal of Materials Chemistry B, 2020, 8, 9035-9042.	2.9	12
896	Light-Emitting Diode Excitation for Upconversion Microscopy: A Quantitative Assessment. Nano Letters, 2020, 20, 8487-8492.	4.5	11

	CITATION RE	PORT	
#	Article	IF	Citations
897	Light: A Magical Tool for Controlled Drug Delivery. Advanced Functional Materials, 2020, 30, 2005029.	7.8	134
898	Functional Nanohybrids Based on Dyes and Upconversion Nanoparticles. Structure and Bonding, 2020, , 371-396.	1.0	1
899	Assessing the Covalent Attachment and Energy Transfer Capabilities of Upconverting Phosphors With Cofactor Containing Bioactive Enzymes. Frontiers in Chemistry, 2020, 8, 613334.	1.8	1
900	Multifunctional layered black phosphorene-based nanoplatform for disease diagnosis and treatment: a review. Frontiers of Optoelectronics, 2020, 13, 327-351.	1.9	9
901	NIR II-responsive photon upconversion through energy migration in an ytterbium sublattice. Nature Photonics, 2020, 14, 760-766.	15.6	217
902	Fenton reaction-based nanomedicine in cancer chemodynamic and synergistic therapy. Applied Materials Today, 2020, 21, 100864.	2.3	71
903	Applications of Minimally Invasive Nanomedicine-Based Therapies in 3D in vitro Cancer Platforms. Synthesis Lectures on Materials and Optics, 2020, 1, 1-109.	0.2	0
904	Gadolinium–Rose Bengal Coordination Polymer Nanodots for MRâ€∤Fluorescenceâ€Imageâ€Guided Radiation and Photodynamic Therapy. Advanced Materials, 2020, 32, e2000377.	11.1	95
905	Inhibiting tumor oxygen metabolism and simultaneously generating oxygen by intelligent upconversion nanotherapeutics for enhanced photodynamic therapy. Biomaterials, 2020, 251, 120088.	5.7	58
906	Recent Advances in Luminescence Imaging of Biological Systems Using Lanthanide(III) Luminescent Complexes. Molecules, 2020, 25, 2089.	1.7	53
907	Recent advances in photodynamic therapy based on emerging two-dimensional layered nanomaterials. Nano Research, 2020, 13, 1485-1508.	5.8	36
908	Proteinâ€Based Artificial Nanosystems in Cancer Therapy. Small, 2020, 16, 1907256.	5.2	42
909	A Flexiâ€₽EGDA Upconversion Implant for Wireless Brain Photodynamic Therapy. Advanced Materials, 2020, 32, 2001459.	11.1	44
910	One-pot synthesis of theranostic nanocapsules with lanthanide doped nanoparticles. Chemical Science, 2020, 11, 6653-6661.	3.7	13
911	Near-infrared photocontrolled therapeutic release via upconversion nanocomposites. Journal of Controlled Release, 2020, 324, 104-123.	4.8	28
912	Emerging combination strategies with phototherapy in cancer nanomedicine. Chemical Society Reviews, 2020, 49, 8065-8087.	18.7	427
913	Deprotection of a benzyl unit induces a 22ï€ aromatic macrocycle of 3-oxypyripentaphyrin(0.1.1.1.0) with strong NIR absorption. Organic and Biomolecular Chemistry, 2020, 18, 5334-5338.	1.5	2
914	NIRâ€II Light Activated Photosensitizer with Aggregationâ€Induced Emission for Precise and Efficient Twoâ€Photon Photodynamic Cancer Cell Ablation. Advanced Functional Materials, 2020, 30, 2002546.	7.8	74

# 915	ARTICLE 808Ânm-activable core@multishell upconverting nanoparticles with enhanced stability for efficient photodynamic therapy. Journal of Nanobiotechnology, 2020, 18, 85.	lF 4.2	CITATIONS
916	An orthogonally regulatable DNA nanodevice for spatiotemporally controlled biorecognition and tumor treatment. Science Advances, 2020, 6, eaba9381.	4.7	105
917	Upconversion Nanoparticle-Based Organosilica–Micellar Hybrid Nanoplatforms for Redox-Responsive Chemotherapy and NIR-Mediated Photodynamic Therapy. ACS Applied Bio Materials, 2020, 3, 4655-4664.	2.3	7
918	Upconverting nanoparticles: potential for a new heat regulating materials. , 2020, , 265-283.		0
919	Stepwise-activatable hypoxia triggered nanocarrier-based photodynamic therapy for effective synergistic bioreductive chemotherapy. Biomaterials, 2020, 245, 119982.	5.7	44
920	Imaging and therapy with upconversion nanoparticles. , 2020, , 177-204.		1
922	Small-sized red-emitting core/shell/shell nanoparticles through an efficient energy back transfer process. Applied Surface Science, 2020, 514, 146074.	3.1	17
923	Designing Stimuliâ€Responsive Upconversion Nanoparticles that Exploit the Tumor Microenvironment. Advanced Materials, 2020, 32, e2000055.	11.1	143
924	Tumor microenvironment (TME)-activatable circular aptamer-PEG as an effective hierarchical-targeting molecular medicine for photodynamic therapy. Biomaterials, 2020, 246, 119971.	5.7	54
925	Upconversion nanocrystals for near-infrared-controlled drug delivery. , 2020, , 345-371.		0
926	MTH1 inhibitor amplifies the lethality of reactive oxygen species to tumor in photodynamic therapy. Science Advances, 2020, 6, eaaz0575.	4.7	59
927	Rationally designed ruthenium complexes for 1- and 2-photon photodynamic therapy. Nature Communications, 2020, 11, 3262.	5.8	173
928	AlEgen-coupled upconversion nanoparticles eradicate solid tumors through dual-mode ROS activation. Science Advances, 2020, 6, eabb2712.	4.7	100
929	DFT+U study of the structural, electronic and optical properties of M1-xPrxF2+x (M= Ca, Ba, x=0.25). Solid State Communications, 2020, 319, 113995.	0.9	0
930	Modularly Assembled Upconversion Nanoparticles for Orthogonally Controlled Cell Imaging and Drug Delivery. ACS Applied Materials & Interfaces, 2020, 12, 12549-12556.	4.0	40
931	Fluorescence resonance energy transfer-based drug delivery systems for enhanced photodynamic therapy. Journal of Materials Chemistry B, 2020, 8, 3772-3788.	2.9	41
932	Tumor microenvironment-activated NIR-II reagents for tumor imaging and therapy. Journal of Materials Chemistry B, 2020, 8, 4738-4747.	2.9	61
933	Emerging Frontiers of Upconversion Nanoparticles. Trends in Chemistry, 2020, 2, 427-439.	4.4	148

#	Article	IF	CITATIONS
934	Hybrid nanoparticle composites applied to photodynamic therapy: strategies and applications. Journal of Materials Chemistry B, 2020, 8, 4726-4737.	2.9	48
935	A Novel Pt–TiO ₂ Heterostructure with Oxygenâ€Deficient Layer as Bilaterally Enhanced Sonosensitizer for Synergistic Chemoâ€Sonodynamic Cancer Therapy. Advanced Functional Materials, 2020, 30, 1908598.	7.8	226
936	Controlling upconversion through interfacial energy transfer (IET): Fundamentals and applications. Journal of Rare Earths, 2020, 38, 474-482.	2.5	32
937	Emerging NIR light-responsive delivery systems based on lanthanide-doped upconverting nanoparticles. Archives of Pharmacal Research, 2020, 43, 134-152.	2.7	24
938	Advances in nanomaterials for photodynamic therapy applications: Status and challenges. Biomaterials, 2020, 237, 119827.	5.7	484
939	Proteaseâ€activated prodrugs: strategies, challenges, and future directions. FEBS Journal, 2020, 287, 1936-1969.	2.2	71
940	Selective Targeting of Cancer Stem Cells (CSCs) Based on Photodynamic Therapy (PDT) Penetration Depth Inhibits Colon Polyp Formation in Mice. Cancers, 2020, 12, 203.	1.7	6
941	Mitochondrialâ€DNAâ€Targeted Ir ^{III} â€Containing Metallohelices with Tunable Photodynamic Therapy Efficacy in Cancer Cells. Angewandte Chemie - International Edition, 2020, 59, 6420-6427.	7.2	54
942	Engineering of Upconverted Metal–Organic Frameworks for Near-Infrared Light-Triggered Combinational Photodynamic/Chemo-/Immunotherapy against Hypoxic Tumors. Journal of the American Chemical Society, 2020, 142, 3939-3946.	6.6	294
943	DNA Nanotechnology on Live Cell Membranes. Chemical Research in Chinese Universities, 2020, 36, 203-210.	1.3	5
944	Fabrication of core/shell/shell structure nanoparticle with anticancer drug and dual-photosensitizer co-loading for synergistic chemotherapy and photodynamic therapy. Microporous and Mesoporous Materials, 2020, 297, 110049.	2.2	16
945	Mitochondrialâ€DNAâ€Targeted Ir III â€Containing Metallohelices with Tunable Photodynamic Therapy Efficacy in Cancer Cells. Angewandte Chemie, 2020, 132, 6482-6489.	1.6	15
946	Near-Infrared Light-Triggered Photodynamic Therapy and Apoptosis Using Upconversion Nanoparticles With Dual Photosensitizers. Frontiers in Bioengineering and Biotechnology, 2020, 8, 275.	2.0	42
947	NIR Light-Driven Photocatalysis on Amphiphilic TiO ₂ Nanotubes for Controllable Drug Release. ACS Applied Materials & Interfaces, 2020, 12, 23606-23616.	4.0	45
948	A Porous Au@Rh Bimetallic Core–Shell Nanostructure as an H ₂ O ₂ â€Driven Oxygenerator to Alleviate Tumor Hypoxia for Simultaneous Bimodal Imaging and Enhanced Photodynamic Therapy. Advanced Materials, 2020, 32, e2001862.	11.1	163
949	Optimized Multimetal Sensitized Phosphor for Enhanced Red Up-Conversion Luminescence by Machine Learning. ACS Combinatorial Science, 2020, 22, 285-296.	3.8	11
950	Bioactive, luminescent erbium-doped hydroxyapatite nanocrystals for biomedical applications. Ceramics International, 2020, 46, 16020-16031.	2.3	21
951	Cyanine-modified near-infrared upconversion nanoprobe for ratiometric sensing of N2H4 in living cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 247, 119153.	2.0	3

#	Article	IF	CITATIONS
952	Solvent mixing generating air bubbles as a template for polydopamine nanobowl fabrication: Underlying mechanism, nanomotor assembly and application in cancer treatment. Chemical Engineering Journal, 2021, 404, 126443.	6.6	22
953	Radioiodinated Persistent Luminescence Nanoplatform for Radiationâ€Induced Photodynamic Therapy and Radiotherapy. Advanced Healthcare Materials, 2021, 10, e2000802.	3.9	33
954	Drug delivery systems based on CD44-targeted glycosaminoglycans for cancer therapy. Carbohydrate Polymers, 2021, 251, 117103.	5.1	69
955	Nanotechnology enabled reactive species regulation in biosystems for boosting cancer immunotherapy. Nano Today, 2021, 36, 101035.	6.2	28
956	Integration of IR-808 and thiol-capped Au–Bi bimetallic nanoparticles for NIR light mediated photothermal/photodynamic therapy and imaging. Journal of Materials Chemistry B, 2021, 9, 101-111.	2.9	18
957	Near-infrared-responsive functional nanomaterials: the first domino of combined tumor therapy. Nano Today, 2021, 36, 100963.	6.2	30
958	Tumor cell membrane-derived nano-Trojan horses encapsulating phototherapy and chemotherapy are accepted by homologous tumor cells. Materials Science and Engineering C, 2021, 120, 111670.	3.8	19
959	Upconversion nanoparticles coated organic photovoltaics for near infrared light controlled drug delivery systems. Nano Energy, 2021, 81, 105650.	8.2	18
960	Which is Better for Nanomedicines: Nanocatalysts or Singleâ€Atom Catalysts?. Advanced Healthcare Materials, 2021, 10, e2001897.	3.9	13
961	Rapid aqueous-phase synthesis of highly stable K _{0.3} Bi _{0.7} F _{2.4} upconversion nanocrystalline particles at low temperature. Inorganic Chemistry Frontiers, 2021, 8, 1039-1048.	3.0	8
963	Efficient upconversion emission and high-sensitivity thermometry of Baln ₂ O ₄ :Yb ³⁺ /Tm ³⁺ /RE ³⁺ (RE =) Tj ETQq0 0 0	rgBa /Ove	rl o ∉k 10 Tf 5
964	CRISPR-dCas9-Guided and Telomerase-Responsive Nanosystem for Precise Anti-Cancer Drug Delivery. ACS Applied Materials & Interfaces, 2021, 13, 7890-7896.	4.0	25
965	Overcoming barriers in photodynamic therapy harnessing nano-formulation strategies. Chemical Society Reviews, 2021, 50, 9152-9201.	18.7	254
966	Multispectral upconversion nanoparticles for near infrared encoding of wearable devices. RSC Advances, 2021, 11, 21897-21903.	1.7	4
967	A photosensitizer with conformational restriction for enhanced photodynamic therapy. Chemical Communications, 2021, 57, 9100-9103.	2.2	7
968	Encapsulation of glycosylated porphyrins in silica nanoparticles to enhance the efficacy of cancer photodynamic therapy. Materials Advances, 2021, 2, 1613-1620.	2.6	5
969	A 2-pyridone modified zinc phthalocyanine with three-in-one multiple functions for photodynamic therapy. Chemical Communications, 2021, 57, 3127-3130.	2.2	12
970	Near-infrared light excited photodynamic anticancer therapy based on UCNP@AlEgen nanocomposite. Nanoscale Advances, 2021, 3, 2325-2333.	2.2	9

#	Article	IF	CITATIONS
971	Recent advancement in photo nanotheranostics for cancer treatment. , 2021, , 163-176.		0
972	Cuttingâ€edge advancements of nanomaterials for mediâ€ŧranslatable noninvasive theranostic modalities. View, 2021, 2, 20200144.	2.7	8
973	NIR-excitable heterostructured upconversion perovskite nanodots with improved stability. Nature Communications, 2021, 12, 219.	5.8	57
974	Single molecular nanomedicine with NIR light-initiated superoxide radical, singlet oxygen and thermal generation for hypoxia-overcoming cancer therapy. Nanoscale, 2021, 13, 8012-8016.	2.8	7
975	Formulation and biological stability of nanomedicines in cancer treatment. , 2021, , 277-289.		5
976	CHAPTER 6. Applications of Colloidal Nanocrystals. RSC Nanoscience and Nanotechnology, 2021, , 209-257.	0.2	0
977	Recent near-infrared light-activated nanomedicine toward precision cancer therapy. Journal of Materials Chemistry B, 2021, 9, 7076-7099.	2.9	21
978	A lipid droplet targeted fluorescent probe for high-efficiency image-guided photodynamic therapy of renal cell carcinoma. Chemical Communications, 2021, 57, 1046-1049.	2.2	29
979	Orthogonal Emissive Upconversion Nanoparticles: Material Design and Applications. Small, 2021, 17, e2004552.	5.2	35
980	Au-siRNA@ aptamer nanocages as a high-efficiency drug and gene delivery system for targeted lung cancer therapy. Journal of Nanobiotechnology, 2021, 19, 54.	4.2	33
981	Beyond the Visible: Bioinspired Infrared Adaptive Materials. Advanced Materials, 2021, 33, e2004754.	11.1	201
982	Engineering tailorable TiO2 nanotubes for NIR-controlled drug delivery. Nano Research, 2021, 14, 4046.	5.8	20
983	808 nm NIR Laser-Excited Upconversion Nanoplatform for Combinatory Photodynamic and Chemotherapy with Deep Penetration and Acid Bursting Release Performance. ACS Applied Bio Materials, 2021, 4, 2639-2653.	2.3	5
984	Large volume spark discharge and plasma jet-technology for generating plasma-oxidized saline targeting colon cancer <i>in vitro</i> and <i>in vivo</i> . Journal of Applied Physics, 2021, 129, .	1.1	12
985	Alternative methods of photodynamic therapy and oxygen consumption measurements—A review. Biomedicine and Pharmacotherapy, 2021, 134, 111095.	2.5	12
986	Nanomaterials for Deep Tumor Treatment. Mini-Reviews in Medicinal Chemistry, 2021, 21, 677-688.	1.1	6
987	Discrimination of ablation, shielding, and interface layer effects on the steady-state formation of persistent bubbles under liquid flow conditions during laser synthesis of colloids. Journal of Flow Chemistry, 2021, 11, 773-792.	1.2	7
988	Fluorescent nanotechnology for in vivo imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1705.	3.3	10

	CITATION R	CITATION REPORT	
#	Article	IF	Citations
989	New GSH-responsive amphiphilic zinc(II) phthalocyanine micelles as efficient drug carriers for combinatorial cancer therapy. Journal of Porphyrins and Phthalocyanines, 2021, 25, 262-270.	0.4	2
990	Large-Scale Survey Data Analysis with Penalized Regression: A Monte Carlo Simulation on Missing Categorical Predictors. Multivariate Behavioral Research, 2022, 57, 642-657.	1.8	6
991	Metal-Free Nanoassemblies of Water-Soluble Photosensitizer and Adenosine Triphosphate for Efficient and Precise Photodynamic Cancer Therapy. ACS Nano, 2021, 15, 4979-4988.	7.3	52
992	New Approaches for Hydrogen Therapy of Various Diseases. Current Pharmaceutical Design, 2021, 27, 636-649.	0.9	16
993	Janus Nanoparticles: From Fabrication to (Bio)Applications. ACS Nano, 2021, 15, 6147-6191.	7.3	140
994	Protein-Based Nanomedicine for Therapeutic Benefits of Cancer. ACS Nano, 2021, 15, 8001-8038.	7.3	59
995	A Feasible Strategy of Fabricating Type I Photosensitizer for Photodynamic Therapy in Cancer Cells and Pathogens. ACS Nano, 2021, 15, 7735-7743.	7.3	95
996	Localized Delivery of Theranostic Nanoparticles and Highâ€Energy Photons using Microneedlesâ€onâ€Bioelectronics. Advanced Materials, 2021, 33, e2100425.	11.1	43
997	Synthesis of Multifunctional Nanoparticles for the Combination of Photodynamic Therapy and Immunotherapy. Pharmaceuticals, 2021, 14, 508.	1.7	7
998	Carbon quantum dots/Bi4O5Br2 photocatalyst with enhanced photodynamic therapy: killing of lung cancer (A549) cells in vitro. Rare Metals, 2022, 41, 132-143.	3.6	15
999	Artemisinin co-delivery system based on manganese oxide for precise diagnosis and treatment of breast cancer. Nanotechnology, 2021, 32, 325101.	1.3	4
1000	Nanomaterials for Enhanced Photodynamic Therapy. , 0, , .		4
1002	Broadband wavelength excitable Er3+, Ni2+ co-doped MgGa2O4 up-conversion phosphor. Ceramics International, 2021, 47, 13853-13858.	2.3	12
1003	Silica-based nanomaterials as drug delivery tools for skin cancer (melanoma) treatment. Emergent Materials, 2021, 4, 1067-1092.	3.2	14
1004	Protein-Gated Upconversion Nanoparticle-Embedded Mesoporous Silica Nanovehicles via Diselenide Linkages for Drug Release Tracking in Real Time and Tumor Chemotherapy. ACS Applied Materials & Interfaces, 2021, 13, 29070-29082.	4.0	20
1005	Single 808 nm nearâ€infrared â€triggered multifunctional upconverting phototheranostic nanocomposite for imagingâ€guided highâ€efficiency treatment of tumors. Journal of Biophotonics, 2021, 14, e202100134.	1.1	2
1006	X-ray-charged bright persistent luminescence in NaYF4:Ln3+@NaYF4 nanoparticles for multidimensional optical information storage. Light: Science and Applications, 2021, 10, 132.	7.7	154
1007	Discovery of novel photosensitized nanoparticles as a preservative for the storage of strawberries and their activity against Botrytis cinerea. LWT - Food Science and Technology, 2021, 145, 111359.	2.5	6

#	Article	IF	CITATIONS
1008	Recent trends in the developments of analytical probes based on lanthanide-doped upconversion nanoparticles. TrAC - Trends in Analytical Chemistry, 2021, 139, 116256.	5.8	50
1009	Metal-organic frameworks-derived bimetallic nanozyme platform enhances cytotoxic effect of photodynamic therapy in hypoxic cancer cells. Materials and Design, 2021, 204, 109646.	3.3	23
1010	A Photosensitive Polymeric Carrier with a Renewable Singlet Oxygen Reservoir Regulated by Two NIR Beams for Enhanced Antitumor Phototherapy. Small, 2021, 17, e2101180.	5.2	21
1011	Imageâ€Guided TMEâ€Improving Nanoâ€Platform for Ca ²⁺ Signal Disturbance and Enhanced Tumor PDT. Advanced Healthcare Materials, 2021, 10, e2100789.	3.9	19
1012	Photodynamic viral inactivation: Recent advances and potential applications. Applied Physics Reviews, 2021, 8, 021315.	5.5	21
1013	Recent Advances in Nanoparticle-Based Cancer Treatment: A Review. ACS Applied Nano Materials, 2021, 4, 6441-6470.	2.4	56
1014	Near-infrared photosensitization via direct triplet energy transfer from lanthanide nanoparticles. CheM, 2021, 7, 1615-1625.	5.8	47
1015	Oxygen Self-Supplying Nanotherapeutic for Mitigation of Tissue Hypoxia and Enhanced Photodynamic Therapy of Bacterial Keratitis. ACS Applied Materials & Interfaces, 2021, 13, 33790-33801.	4.0	40
1016	Multifunctional carbon dot/MXene heterojunctions for alleviation of tumor hypoxia and enhanced sonodynamic therapy. Carbon, 2021, 179, 493-504.	5.4	54
1017	Luminescent lanthanide(III) complexes of DTPA-bis(amido-phenyl-terpyridine) for bioimaging and phototherapeutic applications. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 256, 119709.	2.0	16
1018	Light Technology for Efficient and Effective Photodynamic Therapy: A Critical Review. Cancers, 2021, 13, 3484.	1.7	86
1019	Rose bengal and future directions in larynx tumor photodynamic therapy. Photochemistry and Photobiology, 2021, , .	1.3	2
1020	Emerging strategies in developing multifunctional nanomaterials for cancer nanotheranostics. Advanced Drug Delivery Reviews, 2021, 178, 113907.	6.6	46
1021	Time- and Excitation-Dependent Photon Emission from Double Quantum Dot Upconverting Nanostructures. Journal of Physical Chemistry C, 2021, 125, 17183-17193.	1.5	3
1022	New advances in pre-clinical diagnostic imaging perspectives of functionalized upconversion nanoparticle-based nanomedicine. Coordination Chemistry Reviews, 2021, 440, 213971.	9.5	60
1023	Persistent luminescence materials for deep photodynamic therapy. Nanophotonics, 2021, 10, 2999-3029.	2.9	19
1024	Rationally designed upconversion nanoparticles for NIR light-controlled lysosomal escape and nucleus-based photodynamic therapy. Mikrochimica Acta, 2021, 188, 349.	2.5	12
1025	Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chemical Reviews, 2021, 121, 13454-13619.	23.0	657

#	Article	IF	CITATIONS
1026	Recent progress of upconversion nanoparticles in the treatment and detection of various diseases. Chinese Journal of Analytical Chemistry, 2021, , .	0.9	3
1027	Recent Progress in Phthalocyanine-Polymeric Nanoparticle Delivery Systems for Cancer Photodynamic Therapy. Nanomaterials, 2021, 11, 2426.	1.9	11
1028	Highly colloidal luminescent Er3+, Yb3+-codoped KY3F10 nanoparticles for theranostic applications. Materials Today Communications, 2021, 28, 102553.	0.9	3
1029	Soft Xâ€Ray Stimulated Lanthanide@MOF Nanoprobe for Amplifying Deep Tissue Synergistic Photodynamic and Antitumor Immunotherapy. Advanced Healthcare Materials, 2021, 10, e2101174.	3.9	17
1030	Biocompatible Ruthenium Single-Atom Catalyst for Cascade Enzyme-Mimicking Therapy. ACS Applied Materials & Interfaces, 2021, 13, 45269-45278.	4.0	41
1031	A Biosynthesized Near-Infrared-Responsive Nanocomposite Biomaterial for Antimicrobial and Antibiofilm Treatment. ACS Applied Bio Materials, 2021, 4, 7542-7553.	2.3	3
1032	Inorganic Nanomaterials with Intrinsic Singlet Oxygen Generation for Photodynamic Therapy. Advanced Science, 2021, 8, e2102587.	5.6	66
1033	Ferroptosis-apoptosis combined anti-melanoma immunotherapy with a NIR-responsive upconverting mSiO2 photodynamic platform. Chemical Engineering Journal, 2021, 419, 129557.	6.6	20
1034	Multiple-therapy strategies via polysaccharides-based nano-systems in fighting cancer. Carbohydrate Polymers, 2021, 269, 118323.	5.1	19
1035	Enhanced Visible/NIR driven catalytic activity in presence of neodymium (Nd3+), for Yb3+ and Tm3+ doped NaYF4 nanoparticles. Journal of Environmental Chemical Engineering, 2021, 9, 105813.	3.3	11
1036	Advances and perspectives in organic sonosensitizers for sonodynamic therapy. Coordination Chemistry Reviews, 2021, 445, 214087.	9.5	128
1037	La2O2S:Er3+/Yb3+ nanoparticles synthesized by the optimized furnace combustion technique and their high-resolution temperature sensing. Optik, 2021, 245, 167690.	1.4	4
1038	Simultaneous ultrasensitive detection of two breast cancer microRNA biomarkers by using a dual nanoparticle/nanosheet fluorescence resonance energy transfer sensor. Materials Today Advances, 2021, 12, 100163.	2.5	8
1039	Hollow upconversion nanoparticles: Synthesis and luminescence in comparison with their solid counterparts. Chemical Engineering Journal, 2021, 426, 131376.	6.6	1
1040	Overcoming the obstacles of current photodynamic therapy in tumors using nanoparticles. Bioactive Materials, 2022, 8, 20-34.	8.6	73
1041	Surface-rare-earth-rich upconversion nanoparticles induced by heterovalent cation exchange with superior loading capacity. Journal of Materials Science and Technology, 2022, 97, 223-228.	5.6	6
1042	CD133 peptide-conjugated pyropheophorbide-a as a novel photosensitizer for targeted photodynamic therapy in colorectal cancer stem cells. Biomaterials Science, 2021, 9, 2020-2031.	2.6	15
1043	CHAPTER 5. Inorganic Nanocrystals and Biointerfaces. RSC Nanoscience and Nanotechnology, 2021, , 161-208.	0.2	0

#	Article	IF	CITATIONS
1044	A nanoprobe for fluorescent monitoring of microRNA and targeted delivery of drugs. RSC Advances, 2021, 11, 8871-8878.	1.7	15
1045	Upconversion Luminescence-Controlled DNA Computation for Spatiotemporally Resolved, Multiplexed Molecular Imaging. Analytical Chemistry, 2021, 93, 2500-2509.	3.2	42
1046	Prospects of an engineered tumor-targeted nanotheranostic platform based on NIR-responsive upconversion nanoparticles. Materials Advances, 2021, 2, 7101-7117.	2.6	4
1047	Enhancing Photodynamic Therapy through Resonance Energy Transfer Constructed Nearâ€Infrared Photosensitized Nanoparticles. Advanced Materials, 2017, 29, 1604789.	11.1	154
1048	Engineering Upconversion Nanoparticles for Biomedical Imaging and Therapy. , 2014, , 585-609.		1
1049	Surface Modification of Near Infrared-Emitting Nanoparticles for Biomedical Applications. , 2020, , 49-61.		3
1050	Ferrocene Functionalized Upconversion Nanoparticle Nanosystem with Efficient Near-Infrared-Light-Promoted Fenton-Like Reaction for Tumor Growth Suppression. Inorganic Chemistry, 2020, 59, 9177-9187.	1.9	23
1051	Zwitterionic Conjugated Polymer as the Single Component for Photoacoustic-Imaging-Guided Dual-Modal Near-Infrared Phototherapy. ACS Biomaterials Science and Engineering, 2020, 6, 4005-4011.	2.6	9
1052	Mie Resonance Engineering in Meta-Shell Supraparticles for Nanoscale Nonlinear Optics. ACS Nano, 2020, 14, 17203-17212.	7.3	19
1053	Balancing power density based quantum yield characterization of upconverting nanoparticles for arbitrary excitation intensities. Nanoscale, 2013, 5, 4770.	2.8	89
1054	Ultraviolet phototoxicity of upconversion nanoparticles illuminated with near-infrared light. Nanoscale, 2017, 9, 14921-14928.	2.8	28
1055	Core-mediated synthesis, growth mechanism and near-infrared luminescence enhancement of α-NaGdF ₄ @l²-NaLuF ₄ :Nd ³⁺ core–shell nanocrystals. CrystEngComm, 2020, 22, 1359-1367.	1.3	8
1056	Unmodified Rose Bengal photosensitizer conjugated with NaYF ₄ :Yb,Er upconverting nanoparticles for efficient photodynamic therapy. Nanotechnology, 2020, 31, 465101.	1.3	21
1057	Room-temperature visible upconversion luminescence of Ni ²⁺ sensitized by Yb ³⁺ in transparent glass ceramics. Optical Materials Express, 2018, 8, 3879.	1.6	5
1058	Recent Advances in Magnetic Upconversion Nanocomposites for Bioapplications. Current Pharmaceutical Design, 2019, 25, 2007-2015.	0.9	5
1059	Recent Findings on Nanotechnology-based Therapeutic Strategies Against Hepatocellular Carcinoma. Current Drug Metabolism, 2019, 20, 283-291.	0.7	4
1060	Drug Delivery Using Theranostics: An Overview of its Use, Advantages and Safety Assessment. Current Nanoscience, 2020, 16, 3-14.	0.7	11
1061	New Approaches to Photodynamic Therapy from Types I, II and III to Type IV Using One or More Photons. Anti-Cancer Agents in Medicinal Chemistry, 2017, 17, 171-189.	0.9	42

#	Article	IF	CITATIONS
1062	Upconversion Luminescence Behaviour of Er3+/Yb3+ Doped MY2O4 (M=Ba, Ca, Sr) Phosphors. Advances in Chemical and Materials Engineering Book Series, 0, , 117-148.	0.2	1
1065	A Regioselectively Oxidized 2D Bi/BiOx Lateral Nanoâ€Heterostructure for Hypoxic Photodynamic Therapy. Advanced Materials, 2021, 33, e2102562.	11.1	54
1066	High‧pecificity In Vivo Tumor Imaging Using Bioorthogonal NIRâ€IIb Nanoparticles. Advanced Materials, 2021, 33, e2102950.	11.1	46
1067	Nano-photosensitizers for enhanced photodynamic therapy. Photodiagnosis and Photodynamic Therapy, 2021, 36, 102597.	1.3	36
1068	Full shell coating or cation exchange enhances luminescence. Nature Communications, 2021, 12, 6178.	5.8	24
1069	Metal–organic frameworks for the generation of reactive oxygen species. Chemical Physics Reviews, 2021, 2, .	2.6	7
1070	Chapter 16. Recent Advances in The Engineering of Silica-Based Core@Shell Structured Hybrid Nanoparticles. , 2016, , 415-438.		0
1072	Upconversion Nanoparticles for Gastric Cancer Targeted Imaging and Therapy. Translational Medicine Research, 2017, , 239-270.	0.0	2
1073	Interaction of upconversion luminescent nanoparticles with tissues and organs. , 2018, , .		0
1074	Application of UCNPs in Bio-imaging and Treatment. , 2019, , 235-244.		0
1075	Upconversion Perovskite Nanocrystal Heterostructures with Enhanced Luminescence and Stability by Lattice Matching. ACS Applied Materials & Interfaces, 2021, 13, 51362-51372.	4.0	6
1076	NIR Light Induced Photodynamic Therapy. , 2021, , 191-201.		0
1077	Recent advances in functionalized upconversion nanoparticles for light-activated tumor therapy. RSC Advances, 2021, 11, 35472-35488.	1.7	12
1078	Water‣oluble Nanoparticles with Twisted Double [7]Carbohelicene for Lysosomeâ€₹argeted Cancer Photodynamic Therapy. Small, 2022, 18, e2105365.	5.2	15
1079	Near infrared light activated upconversion nanoparticles (UCNP) based photodynamic therapy of prostate cancers: An in vitro study. Photodiagnosis and Photodynamic Therapy, 2021, 36, 102616.	1.3	21
1080	Deciphering Nanoparticle Trafficking into Glioblastomas Uncovers an Augmented Antitumor Effect of Metronomic Chemotherapy. Advanced Materials, 2022, 34, e2106194.	11.1	17
1081	Phototherapy and optical waveguides for the treatment of infection. Advanced Drug Delivery Reviews, 2021, 179, 114036.	6.6	26
1082	Lipid Nanoparticles for the Controlled Generation of Free Radicals and Effective Treatment of Hypoxic Cancer. Chemistry Letters, 2020, 49, 817-819.	0.7	0

#	Article	IF	CITATIONS
1083	Photon Upconversion in Lanthanide-Activated Inorganic Luminescent Materials. Advances in Chemical and Materials Engineering Book Series, 0, , 86-116.	0.2	2
1084	A Wide Portray of Upconversion Nanoparticles: Surface Modification for Bio-applications. Gels Horizons: From Science To Smart Materials, 2021, , 335-369.	0.3	0
1085	Selective Targeted Drug Delivery Mechanism via Molecular Imprinted Polymers in Cancer Therapeutics. Current Topics in Medicinal Chemistry, 2020, 20, 1993-1998.	1.0	3
1087	The "" World in Photodynamic Therapy. Austin Journal of Nanomedicine & Nanotechnology, 2014, 2, .	0.0	1
1088	9,10-Phenanthrenequinone: A Promising Kernel to Develop Multifunctional Antitumor Systems for Efficient Type I Photodynamic and Photothermal Synergistic Therapy. ACS Nano, 2021, 15, 20042-20055.	7.3	61
1089	Dye Sensitization for Ultraviolet Upconversion Enhancement. Nanomaterials, 2021, 11, 3114.	1.9	8
1090	Nanotechnology: A Potential Weapon to Fight against COVIDâ€19. Particle and Particle Systems Characterization, 2022, 39, 2100159.	1.2	9
1091	Recent Progress in Utilizing Upconversion Nanoparticles with Switchable Emission for Programmed Therapy. Advanced Therapeutics, 2022, 5, 2100172.	1.6	3
1092	Light-Responsive Nanomaterials for Cancer Therapy. Engineering, 2022, 13, 18-30.	3.2	31
1093	Selfâ€Assembly of Upconversion Nanoparticles Based Materials and Their Emerging Applications. Small, 2022, 18, e2103241.	5.2	17
1094	Amphiphilic Fullereneâ€BODIPY Photosensitizers for Targeted Photodynamic Therapy. ChemMedChem, 2022, 17, .	1.6	21
1095	Microneedles Loaded with Glutathione-Scavenging Complex for Nitric Oxide Enhanced Photodynamic Therapy of Melanoma. SSRN Electronic Journal, 0, , .	0.4	Ο
1096	Spherical and rod shaped mesoporous silica nanoparticles for cancer-targeted and photosensitizer delivery in photodynamic therapy. Journal of Materials Chemistry B, 2022, 10, 3248-3259.	2.9	14
1097	Optical/electrochemical methods for detecting mitochondrial energy metabolism. Chemical Society Reviews, 2022, 51, 71-127.	18.7	45
1099	Mesoporous Silica-Coated Upconversion Nanoparticles Assisted Photodynamic Therapy Using 5-Aminolevulinic Acid: Mechanistic and <i>In Vivo</i> Studies. ACS Applied Bio Materials, 2022, 5, 583-597.	2.3	3
1100	Oxide-based upconversion nanophosphors: Synthesis, characterization, and applications. , 2022, , 147-168.		0
1101	Light-Decomposable Polymeric Micelles with Hypoxia-Enhanced Phototherapeutic Efficacy for Combating Metastatic Breast Cancer. Pharmaceutics, 2022, 14, 253.	2.0	6
1103	Recent advances in upconversion nanoparticle-based nanocomposites for gas therapy. Chemical Science, 2022, 13, 1883-1898.	3.7	35

ARTICLE IF CITATIONS Nanomaterials for Biophotonics., 2023,, 67-91. 0 1105 Towards translational optogenetics. Nature Biomedical Engineering, 2023, 7, 349-369. 11.6 54 N-doping of the TiO2/C nanostructure derived from metal-organic frameworks with high drug 1107 7 3.7 loading for efficient sonodynamic & amp; chemotherapy. Smart Materials in Medicine, 2022, 3, 168-178. A scintillating nanoplatform with upconversion function for the synergy of radiation and 1108 photodynamic therapies for deep tumors. Journal of Materials Chemistry C, 2022, 10, 688-695. Rare-Earth Doping in Nanostructured Inorganic Materials. Chemical Reviews, 2022, 122, 5519-5603. 1109 23.0 338 Controlled synthesis and upconversion luminescence properties of heterogeneous isomorphic Yb³⁺/Er³⁺ co-doped Na_{0.9}Ca_{0.9}Gd_{1.1}F₆ nanorods with multiple 1.3 luminescence centers. CrvstEngComm. 2022. 24. 251-259 1111 Upconversion-luminescent nanomaterials for biomedical applications., 2022, , 337-374. 0 Evaluation of relative beamâ€"profile-compensated quantum yield of upconverting nanoparticles over a 2.8 wide dynamic range of power densities. Nanoscale, 2022, 14, 2230-2237. 1113 What are upconversion nanophosphors: Basic concepts and mechanisms., 2022, , 19-48. 0 Managing GSH elevation and hypoxia to overcome resistance of cancer therapies using functionalized 1114 1.4 nanocarriers. Journal of Drug Delivery Science and Technology, 2022, 67, 103022. Nanomedicine in Clinical Photodynamic Therapy for the Treatment of Brain Tumors. Biomedicines, 1115 1.4 10 2022, 10, 96. Expanding the toolbox of photon upconversion for emerging frontier applications. Materials 6.4 Horizons, 2022, 9, 1167-1195. Engineering bioluminescent bacteria to boost photodynamic therapy and systemic anti-tumor immunity 1117 5.7 44 for synergistic cancer treatment. Biomaterials, 2022, 281, 121332. Photochromic materials as a photosensitizer in reversible reactive singlet oxygen generation. Dyes and Pigments, 2022, 199, 110104. 808-nm-light-excited high sensitivity ratiometric NIR nanothermometer via phonon assisted positive 1119 1.0 1 and negative thermal quenching effect. Optics Communications, 2022, 510, 127935. Biomedical overview of melanin. 2. Updating molecular modeling, synthesis mechanism, and 0.4 supramolecular properties regarding melanoma therapy. Biocell, 2022, 46, 1391-1415. Near-Infrared Light-Excited Reactive Oxygen Species Generation by Thulium Oxide Nanoparticles. 1121 6.6 25 Journal of the American Chemical Society, 2022, 144, 2455-2459. Core-shell structured nanoparticles for photodynamic therapy-based cancer treatment and related imaging. Coordination Chemistry Reviews, 2022, 458, 214427.

#	Article	IF	CITATIONS
1123	Antibacterial PDT nanoplatform capable of releasing therapeutic gas for synergistic and enhanced treatment against deep infections. Theranostics, 2022, 12, 2580-2597.	4.6	30
1125	The importance, status, and perspectives of hybrid lanthanide-doped upconversion nanothermometers for theranostics. Chemical Communications, 2022, 58, 4288-4307.	2.2	17
1126	Quantifying the Influence of Inert Shell Coating on Luminescence Brightness of Lanthanide Upconversion Nanoparticles. ACS Photonics, 2022, 9, 758-764.	3.2	13
1127	Molecularly imprinted upconversion nanoparticles for active tumor targeting and microinvasive photothermal therapy. Journal of Materials Science, 2022, 57, 5177-5197.	1.7	8
1128	Self-Illuminating Triggered Release of Therapeutics from Photocleavable Nanoprodrug for the Targeted Treatment of Breast Cancer. ACS Applied Materials & Interfaces, 2022, 14, 8766-8781.	4.0	6
1129	Engineered lanthanide-doped upconversion nanoparticles for biosensing and bioimaging application. Mikrochimica Acta, 2022, 189, 109.	2.5	26
1130	Intelligent Nanotransducer for Deep-Tumor Hypoxia Modulation and Enhanced Dual-Photosensitizer Photodynamic Therapy. ACS Applied Materials & Interfaces, 2022, 14, 14944-14952.	4.0	19
1131	Advances in Photodynamic Therapy Based on Nanotechnology and Its Application in Skin Cancer. Frontiers in Oncology, 2022, 12, 836397.	1.3	11
1132	Facile Synthesis of NaYF4:Yb Up-Conversion Nanoparticles Modified with Photosensitizer and Targeting Antibody for In Vitro Photodynamic Therapy of Hepatocellular Carcinoma. Journal of Healthcare Engineering, 2022, 2022, 1-12.	1.1	6
1133	Nearâ€Infrared Lightâ€Activatable Spherical Nucleic Acids for Conditional Control of Protein Activity. Angewandte Chemie - International Edition, 2022, 61, .	7.2	21
1134	Nearâ€Infrared Lightâ€Activatable Spherical Nucleic Acids for Conditional Control of Protein Activity. Angewandte Chemie, 2022, 134, .	1.6	4
1135	Conquering multidrug resistant lung cancer by upconversion <scp>nanoparticlesâ€mediated</scp> photodynamic therapy and gene silencing. Journal of the Chinese Chemical Society, 2022, 69, 1305-1317.	0.8	1
1136	NIR-Responsive Photodynamic Nanosystem Combined with Antitumor Immune Optogenetics Bacteria for Precise Synergetic Therapy. ACS Applied Materials & Interfaces, 2022, 14, 13094-13106.	4.0	12
1137	Aptamer-drug conjugates: New probes for imaging and targeted therapy. Biosensors and Bioelectronics: X, 2022, 10, 100126.	0.9	3
1138	Nanochemistry advancing photon conversion in rare-earth nanostructures for theranostics. Coordination Chemistry Reviews, 2022, 460, 214486.	9.5	39
1139	Recent advances in radiation therapy and photodynamic therapy. Applied Physics Reviews, 2021, 8, .	5.5	29
1140	Emitter-Active Shell in NaYF ₄ :Yb,Er/NaYF ₄ :Er Upconversion Nanoparticles for Enhanced Energy Transfer in Photodynamic Therapy. ACS Applied Nano Materials, 2022, 5, 559-568.	2.4	7
1141	3D Upconversion Barcodes for Combinatory Wireless Neuromodulation in Behaving Animals. Advanced Healthcare Materials, 2022, 11, e2200304.	3.9	5

Article	IF	CITATIONS
Spatially Selective Monitoring of Subcellular Enzyme Dynamics in Response to Mitochondriaâ€Targeted Photodynamic Therapy. Angewandte Chemie, 0, , .	1.6	2
Deep-Tissue Activation of Photonanomedicines: An Update and Clinical Perspectives. Cancers, 2022, 14, 2004.	1.7	6
Improved negative thermal quenching effect of Yb/Er codoped fluoride upconversion nanocrystals via engineering phonon energy. Journal of Luminescence, 2022, 247, 118905.	1.5	8
Spatially Selective Monitoring of Subcellular Enzyme Dynamics in Response to Mitochondriaâ€Targeted Photodynamic Therapy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	19
Recent advances in near infrared upconverting nanomaterials for targeted photodynamic therapy of cancer. Methods and Applications in Fluorescence, 2022, 10, 034003.	1.1	6
New Generation of Photosensitizers Based on Inorganic Nanomaterials. Methods in Molecular Biology, 2022, 2451, 213-244.	0.4	2
Formation of Water-Soluble Complexes from Fullerene with Biocompatible Block Copolymers Bearing Pendant Glucose and Phosphorylcholine. Langmuir, 2022, 38, 5744-5751.	1.6	2
Materials and device design for advanced phototherapy systems. Advanced Drug Delivery Reviews, 2022, 186, 114339.	6.6	24
Two-photon responsive porphyrinic metal-organic framework involving Fenton-like reaction for enhanced photodynamic and sonodynamic therapy. Journal of Nanobiotechnology, 2022, 20, 217.	4.2	20
An oxygen-economical nano-photosensitizer with a high photodynamic therapeutic outcome <i>via</i> simultaneous reduction of the cellular respiration and oxygen depletion of PDT. Journal of Materials Chemistry B, 2022, 10, 4623-4631.	2.9	7
Microneedles loaded with glutathioneâ€scavenging composites for nitric oxide enhanced photodynamic therapy of melanoma. Bioengineering and Translational Medicine, 2023, 8, .	3.9	4
Rare-earth based materials: an effective toolbox for brain imaging, therapy, monitoring and neuromodulation. Light: Science and Applications, 2022, 11, .	7.7	26
Intelligent design of polymersomes for antibacterial and anticancer applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, .	3.3	8
Rare-earth-activated phosphors for energy-efficient solar cell. , 2022, , 347-364.		1
Phosphorene. , 2022, , 121-148.		1
Persistent luminescent behavior of rare-earth-activated phosphors. , 2022, , 363-375.		Ο
Mitochondria-Targeting Type I AIE Photosensitizer Combined with H2S Therapy: Uninterrupted Hydroxyl Radical Generation for Enhancing Tumor Therapy. SSRN Electronic Journal, 0, , .	0.4	0
Upconversion nanomaterials and delivery systems for smart photonic medicines and healthcare devices. Advanced Drug Delivery Reviews, 2022, 188, 114419.	6.6	11
	Artricle Spatially Selective Monitoring of Subcellular Enzyme Dynamics in Response to Mitochondria&Fargeted Poep:Tissue Activation of Photonanomedicines: An Update and Clinical Perspectives. Cancers, 2022, 14, 2004. Improved negative thermal quenching effect of Yb[E codoped fluoride upconversion nanocrystals via engineering phonon energy. Journal of Luminescence, 2022, 247, 118905. Spatially Selective Monitoring of Subcellular Enzyme Dynamics in Response to Mitochondria&Grangeted Photodynamic Therapy. Angewandte Chemie - International Edition, 2022, 61, . Recent advances in near infrared upconverting nanomaterials for targeted photodynamic therapy of cancer. Methods and Applications in Fluorescence, 2022, 10, 034003. New Generation of Photosensitizers Based on Inorganic Nanomaterials. Methods in Molecular Biology, 2022, 2451, 213-244. Formation of Water-Soluble Complexes from Fullerene with Biocompatible Block Copolymers Bearing Pendard Uccose and Phosphorylcholine. Langmuir, 2022, 38, 5744-5751. Materials and device design for advanced phototherapy systems. Advanced Drug Delivery Reviews, 2022, 186, 114339. Two-photon responsive porphytinic metal-organic framework involving Fenton-like reaction for enlarced photodynamic therapy. Journal of Nanobiotechnology, 2022, 20, 217. An oxygen-economical nano photosensitizer with a high photodynamic therapy monitoring and marrowork involving Fenton-like reaction for enlarced photodynamic therapy of melanoma. Bioengineering and Translational Medicine, 2023, 8, . Rare-earth based materials: an effective toolbox for brain Imaging: therapy, mon	Article IP Spatially Selective Monitoring of Subcellular Enzyme Dynamics in Response to Mitochondria&GFargeted 1.6 Deep-Tissue Activation of Photonanomedicines: An Update and Clinical Perspectives. Cancers, 2022, 14, 2204. 1.7 Improved negative thermal quenching effect of Yb/Er codoped fluoride upconversion nanocrystals via engineering phonon energy. Journal of Luminescence, 2022, 247, 118905. 1.5 Spatially Selective Monitoring of Subcellular Enzyme Dynamics in Response to Mitochondria&CFargeted 7.2 Recent advances in near infrared upconverting nanomaterials for targeted photodynamic therapy of encer. Methods and Applications in Hourscence, 2022, 10, 034003. 1.1 New Concerction of Photosenatizers Based on Inorganic Nanomaterials. Methods in Molecular 0.4 Formation of Water-Soluble Complexes from Fullerene with Blocompatible Block Copolymers Bearing Pendant Clucose and Photosynamic framework Involving Fenton-like reaction for enabaneed photodynamic and evelce design for advanced phototherapy systems. Advanced Drug Delivery Reviews, 0.6 6.6 Two-photon responsive porphytinic metal-organic framework Involving Fenton-like reaction for Photosensitizers with a high photodynamic therapeutic outcome et by action of wearbals. 9.9 Microneedies loaded with glutathione@scavenging composites for nitric oxide enhanced photodynamic Herapy of melanoma. Bioengineering and Translational Medicine, 2023, 8, . 9.9 Microneedies loaded with glutathione@scavenging composites for nitric oxide enhanced photodynamic Herapy of m

#	Article	IF	CITATIONS
1168	Efficient spatially targeted gene editing using a near-infrared activatable protein-conjugated nanoparticle for brain applications. Nature Communications, 2022, 13, .	5.8	9
1169	Photoswitchable semiconducting polymer dots with photosensitizer molecule and photochromic molecule loading for photodynamic cancer therapy. Journal of Innovative Optical Health Sciences, 2022, 15, .	0.5	2
1170	Photosensitizerâ€Polypeptide Conjugate for Effective Elimination of <i>Candida albicans</i> Biofilm. Advanced Healthcare Materials, 2022, 11, .	3.9	7
1171	Engineered biomimetic nanoparticles achieve targeted delivery and efficient metabolism-based synergistic therapy against glioblastoma. Nature Communications, 2022, 13, .	5.8	59
1172	Excitation orthogonalized upconversion nanoprobe for instant visual detection of trinitrotoluene. Nano Research, 2023, 16, 1491-1499.	5.8	2
1173	Engineered metal and their complexes for nanomedicine-elicited cancer immunotherapy. Materials Today Advances, 2022, 15, 100276.	2.5	4
1174	NIR-Triggered Generation of Reactive Oxygen Species and Photodynamic Therapy Based on Mesoporous Silica-Coated LiYF4 Upconverting Nanoparticles. International Journal of Molecular Sciences, 2022, 23, 8757.	1.8	7
1175	Nanotechnology meets glioblastoma multiforme: Emerging therapeutic strategies. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	3.3	18
1176	Hyaluronate–Black Phosphorus–Upconversion Nanoparticle Complex for Non-invasive Theranosis of Skin Cancer. Biomacromolecules, 2022, 23, 3602-3611.	2.6	6
1177	Near-infrared light and redox dual-activatable nanosystems for synergistically cascaded cancer phototherapy with reduced skin photosensitization. Biomaterials, 2022, 288, 121700.	5.7	14
1178	Solar spectral management for natural photosynthesis: from photonics designs to potential applications. Nano Convergence, 2022, 9, .	6.3	8
1179	PDT-active upconversion nanoheaters for targeted imaging guided combinatorial cancer phototherapies with low-power single NIR excitation. , 2022, 141, 213117.		5
1180	Mitochondria-targeting Type I AIE photosensitizer combined with H2S therapy: Uninterrupted hydroxyl radical generation for enhancing tumor therapy. Nano Today, 2022, 46, 101620.	6.2	26
1181	A hybrid metal-organic framework nanomedicine-mediated photodynamic therapy and hypoxia-activated cancer chemotherapy. Journal of Colloid and Interface Science, 2023, 629, 379-390.	5.0	8
1182	An acceptor-shielding strategy of photosensitizers for enhancing the generation efficiency of type I reactive oxygen species and the related photodynamic immunotherapy. Nanoscale, 2022, 14, 14064-14072.	2.8	10
1183	X-ray triggered pea-shaped LuAG:Mn/Ca nano-scintillators and their applications for photodynamic therapy. Journal of Materials Chemistry B, 2022, 10, 6380-6391.	2.9	0
1184	Recent Advancements in Nanomaterials for Photodynamic Therapy of Cancers. , 2022, , 1261-1284.		0
1185	Ultra-Thin Plasmonic Optoelectronic Devices. Advances in Sustainability Science and Technology, 2022, , 219-271.	0.4	2

#	Article	IF	CITATIONS
1186	Dual-mode nanophotonic upconversion oxygen sensors. Nanoscale, 2022, 14, 13362-13372.	2.8	4
1187	Mitochondriaâ€Driven Dye Rearrangement That Enables Spatiotemporally Controlled Photomedicine. Advanced Healthcare Materials, 2022, 11, .	3.9	4
1188	An Approach to Developing Cyanines with Upconverted Photosensitive Efficiency Enhancement for Highly Efficient NIR Tumor Phototheranostics. Advanced Science, 2022, 9, .	5.6	7
1189	Photon Upconversion in Small Molecules. Molecules, 2022, 27, 5874.	1.7	2
1190	Rose Bengal-Modified Upconverting Nanoparticles: Synthesis, Characterization, and Biological Evaluation. Life, 2022, 12, 1383.	1.1	5
1191	Next generation lanthanide doped nanoscintillators and photon converters. ELight, 2022, 2, .	11.9	44
1192	Recent Development in Sensitizers for Lanthanide-Doped Upconversion Luminescence. Chemical Reviews, 2022, 122, 15998-16050.	23.0	56
1193	Controlled afterglow luminescent particles for photochemical tissue bonding. Light: Science and Applications, 2022, 11, .	7.7	10
1194	Tuning Nearâ€Infraredâ€toâ€Ultraviolet Upconversion in Lanthanideâ€Doped Nanoparticles for Biomedical Applications. Advanced Optical Materials, 2023, 11, .	3.6	8
1195	Advanced techniques for performing photodynamic therapy in deep-seated tissues. Biomaterials, 2022, 291, 121875.	5.7	35
1196	Responsive Accumulation of Nanohybrids to Boost NIRâ€Phototheranostics for Specific Tumor Imaging and Glutathione Depletionâ€Enhanced Synergistic Therapy. Advanced Science, 2023, 10, .	5.6	8
1197	Phosphorescent Metal Halide Nanoclusters for Tunable Photodynamic Therapy. Chemistry - A European Journal, 2023, 29, .	1.7	5
1198	W18O49@EP nanoparticles improve the anti-tumor effect of radiotherapy and photodynamic therapy by avoiding the limitation of hypoxia. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	2
1199	Interaction with Silver Nanowires Disrupts the Excitation Pathways in Upconverting Nanoparticles. Journal of Physical Chemistry C, 2022, 126, 19219-19228.	1.5	3
1200	Recent Progress and Trends in X-ray-Induced Photodynamic Therapy with Low Radiation Doses. ACS Nano, 2022, 16, 19691-19721.	7.3	27
1201	Frenkel Defect Responsive Upconversion Through Highâ€Energy Radiation. Advanced Optical Materials, 0, , 2202010.	3.6	0
1202	Light-driven upconversion fluorescence micromotors. Biosensors and Bioelectronics, 2023, 221, 114931.	5.3	5
1203	Nanoparticles-based phototherapy systems for cancer treatment: Current status and clinical potential. Bioactive Materials, 2023, 23, 471-507.	8.6	16

#	Article	IF	CITATIONS
1204	The Coming of Age of Neodymium: Redefining Its Role in Rare Earth Doped Nanoparticles. Chemical Reviews, 2023, 123, 515-554.	23.0	21
1205	Multi-color UCNPs/CsPb(Br _{1-x} 1 _x 3 for upconversion luminescence and dual-modal anticounterfeiting. Optics Express, 2023, 31, 2956.	1.7	5
1207	Application of nanomaterials in diagnosis and treatment of glioblastoma. Frontiers in Chemistry, 0, 10,	1.8	6
1209	Significant Enhancement of the Upconversion Emission in Highly Er ³⁺ â€Đoped Nanoparticles at Cryogenic Temperatures. Angewandte Chemie - International Edition, 2023, 62, .	7.2	13
1210	Significant Enhancement of the Upconversion Emission in Highly Er ³⁺ â€Đoped Nanoparticles at Cryogenic Temperatures. Angewandte Chemie, 2023, 135, .	1.6	1
1211	Bandgapâ€Engineered Germanene Nanosheets as an Efficient Photodynamic Agent for Cancer Therapy. Angewandte Chemie - International Edition, 2023, 62, .	7.2	17
1212	Efficient antibacterial AIEgens induced ROS for selective photodynamic treatment of bacterial keratitis. Frontiers in Chemistry, 0, 10, .	1.8	1
1213	Macrophage-targeted nanoparticles mediate synergistic photodynamic therapy and immunotherapy of tuberculosis. RSC Advances, 2023, 13, 1727-1737.	1.7	5
1214	Gold nanobipyramid@copper sulfide nanotheranostics for image-guided NIR-II photo/chemodynamic cancer therapy with enhanced immune response. Acta Biomaterialia, 2023, 158, 649-659.	4.1	13
1215	Bandgapâ€Engineered Germanene Nanosheets as an Efficient Photodynamic Agent for Cancer Therapy. Angewandte Chemie, 0, , .	1.6	0
1216	Nano-ROS-generating approaches to cancer dynamic therapy: Lessons from nanoparticles. Chemical Engineering Journal, 2023, 457, 141225.	6.6	16
1217	Recent Advances in Tetrakis (4 arboxyphenyl) Porphyrinâ€Based Nanocomposites for Tumor Therapy. Advanced NanoBiomed Research, 2023, 3, .	1.7	2
1218	Actively targeted nanoparticles in photodynamic therapy. , 2023, , 261-279.		0
1219	Fluorescent inorganic nanoparticles for bioimaging and therapeutic applications. , 2023, , 45-71.		0
1220	Nanospheres of Near-Infrared Aggregation-Induced Emission Probes to Target Mitochondria to Ablate Tumors with Reactive Oxygen Species Generation under Hypoxia. ACS Applied Nano Materials, 2023, 6, 1448-1458.	2.4	2
1221	Highly luminescent Gd2O2S:Er3+,Yb3+ upconversion microcrystals obtained by a time- and energy-saving microwave-assisted solid-state synthesis. Journal of Alloys and Compounds, 2023, 942, 169083.	2.8	1
1222	Multi-shell structured nanocarriers with enhanced multiphoton upconversion luminescence efficiency for NIR-mediated targeted photodynamic therapy. Applied Materials Today, 2023, 31, 101755.	2.3	2
1223	Review—Exploring Technological Innovations of Doped Rare Earth Materials. ECS Journal of Solid State Science and Technology, 2023, 12, 047006.	0.9	2

	C	CITATION REPORT		
# 1224	ARTICLE Bioelectronic devices for light-based diagnostics and therapies. Biophysics Reviews, 2023, 4, .	I	F L.O	CITATIONS 2
1225	Multifunctional amino functionalized graphene quantum dots wrapped upconversion nanoparticles for photodynamic therapy and X-ray CT imaging. Inorganic Chemistry Communication, 2023, 149, 1	10428. ¹	l.8	5
1226	Emerging nanosonosensitizers augment sonodynamic-mediated antimicrobial therapies. Materials Today Bio, 2023, 19, 100559.	2	2.6	13
1227	Phototheranostics: Combining Targeting, Imaging, Therapy. , 2023, , 649-691.			0
1228	Biomimetic nanotherapeutics for targeted drug delivery to glioblastoma multiforme. Bioengineering and Translational Medicine, 2023, 8, .	5	3.9	1
1229	Smart down/upconversion nanomachines integrated with "AND―logic computation and enzym amplification for NIR-II fluorescence-assisted precise and enhanced photodynamic therapy. Chemical Science, 2023, 14, 3070-3075.	e-free	3.7	8
1231	BODIPY–GO nanocomposites decorated with a biocompatible branched ethylene glycol moiety for targeted PDT. Dalton Transactions, 2023, 52, 5466-5477.	. 1	L.6	4
1232	All-natural-molecule, bioluminescent photodynamic therapy results in complete tumor regression and prevents metastasis. Biomaterials, 2023, 296, 122079.	Ę	5.7	7
1233	Paclitaxel-Loaded Lipid-Coated Magnetic Nanoparticles for Dual Chemo-Magnetic Hyperthermia Ther of Melanoma. Pharmaceutics, 2023, 15, 818.	apy ₂	2.0	6
1234	Light Conversion Nanomaterials for Wireless Phototherapy. Accounts of Chemical Research, 2023, 5 1143-1155.	6, 7	7.6	6
1235	Solid optical tissue phantom tools based on upconverting nanoparticles for biomedical applications. Journal of Biomedical Optics, 2023, 28, .	1	l.4	0
1236	Innovative nanomaterials for cancer diagnosis, imaging, and therapy: Drug delivery applications. Journal of Drug Delivery Science and Technology, 2023, 82, 104357.		L.4	16
1237	Wavelength-Dependent Metal-Enhanced Fluorescence Biosensors via Resonance Energy Transfer Modulation. Biosensors, 2023, 13, 376.	2	2.3	6
1238	A Remotely Controlled Nanosystem for Spatiotemporally Specific Gene Regulation and Combination Tumor Therapy. Angewandte Chemie, 0, , .	al 1	L.6	0
1239	A Remotely Controlled Nanosystem for Spatiotemporally Specific Gene Regulation and Combination Tumor Therapy. Angewandte Chemie - International Edition, 2023, 62, .	al 7	7.2	4
1240	Designing Covalent Organic Frameworkâ€Based Lightâ€Driven Microswimmers toward Therapeutic Applications. Advanced Materials, 2023, 35, .		11.1	16
1241	Generalised analytical model of the transition power densities of the upconversion luminescence and quantum yield. Nanoscale Advances, 2023, 5, 3279-3286.	1 2	2.2	2
1242	Activatable Photodynamic Photosensitizers for Cancer Treatment. , 2023, , 345-377.			0

#	Article	IF	CITATIONS
1243	Combination of Two Photosensitisers in Anticancer, Antimicrobial and Upconversion Photodynamic Therapy. Pharmaceuticals, 2023, 16, 613.	1.7	2
1246	Introduction to Nanomedicine. SpringerBriefs in Applied Sciences and Technology, 2023, , 1-15.	0.2	0
1247	Lanthanide molecular cluster-aggregates as the next generation of optical materials. Chemical Science, 2023, 14, 5827-5841.	3.7	16
1250	Stimuli-responsive nanocarrier delivery systems for Pt-based antitumor complexes: a review. RSC Advances, 2023, 13, 16488-16511.	1.7	7
1253	A review on reactive oxygen species (ROS)-inducing nanoparticles activated by uni- or multi-modal dynamic treatment for oncotherapy. Nanoscale, 2023, 15, 11813-11833.	2.8	6
1255	Fluorescent dyes based on rhodamine derivatives for bioimaging and therapeutics: recent progress, challenges, and prospects. Chemical Society Reviews, 2023, 52, 5607-5651.	18.7	35
1258	Design of Interfacial Energy Transfer Model in Upconversion Nanoparticles. Progress in Optical Science and Photonics, 2023, , 73-96.	0.3	0
1259	Upconversion Phenomenon and Its Implications in Core–Shell Architecture. Progress in Optical Science and Photonics, 2023, , 97-126.	0.3	0
1262	Lanthanides in bioimaging. , 2023, , 541-647.		0
1264	Mastering lanthanide energy states for next-gen photonic innovation. Science China Chemistry, 2023, 66, 2460-2479.	4.2	1
1265	X-ray excited luminescent nanoparticles for deep photodynamic therapy. RSC Advances, 2023, 13, 30133-30150.	1.7	1
1271	Multifunctional mesoporous silica nanoparticles for biomedical applications. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	7
1279	Upconverting Nanoparticles as Sources of Singlet Oxygen. , 2023, , 489-503.		0

Upconverting Nanoparticles as Sources of Singlet Oxygen. , 2023, , 489-503. 1279