Mutations in the TGF- \hat{I}^2 repressor SKI cause Shprintzer aneurysm

Nature Genetics 44, 1249-1254 DOI: 10.1038/ng.2421

Citation Report

#	Article	IF	CITATIONS
1	Connective Tissue Disorders. , 0, , 537-546.		0
2	The Cardiac Society of Australia and New Zealand. Circulation Journal, 2012, 76, 1051-1053.	0.7	1
3	The association between body shape and nontuberculous mycobacterial lung disease. Expert Review of Respiratory Medicine, 2013, 7, 201-204.	1.0	11
4	Impact of the next-generation sequencing data depth on various biological result inferences. Science China Life Sciences, 2013, 56, 104-109.	2.3	11
5	TGF-β and Cardiovascular Disorders. , 2013, , 297-322.		1
6	Molecular mechanisms of thoracic aortic dissection. Journal of Surgical Research, 2013, 184, 907-924.	0.8	182
7	Severe congenital lipodystrophy and a progeroid appearance: Mutation in the penultimate exon of <i>FBN1</i> causing a recognizable phenotype. American Journal of Medical Genetics, Part A, 2013, 161, 3057-3062.	0.7	56
8	Fine Mapping of the 1p36 Deletion Syndrome Identifies Mutation of PRDM16 as a Cause of Cardiomyopathy. American Journal of Human Genetics, 2013, 93, 67-77.	2.6	164
9	Genetic biomarkers in aortopathy. Biomarkers in Medicine, 2013, 7, 547-563.	0.6	6
10	576kb deletion in 1p36.33–p36.32 containing SKI is associated with limb malformation, congenital heart disease and epilepsy. Gene, 2013, 528, 352-355.	1.0	27
11	Aptamers and Their Potential to Selectively Target Aspects of EGF, Wnt/β-Catenin and TGFβ–Smad Family Signaling. International Journal of Molecular Sciences, 2013, 14, 6690-6719.	1.8	28
12	Elastic fibres in health and disease. Expert Reviews in Molecular Medicine, 2013, 15, e8.	1.6	228
13	Genetics of Thoracic Aortic Aneurysm. Circulation Research, 2013, 113, 327-340.	2.0	151
14	New Insights Into Aortic Diseases. Aorta, 2013, 1, 23-39.	0.1	7
15	Genes in Thoracic Aortic Aneurysms and Dissections - Do they Matter?: Translation and Integration of Research and Modern Genetic Techniques into Daily Clinical Practice. Aorta, 2013, 1, 135-145.	0.1	3
16	Etiology and Pathogenesis of Aortic Aneurysm. , 2013, , .		1
17	Vascular Aneurysms and Dissections. , 2014, , 2986-2994.		0
18	Identification of Critical Regions and Candidate Genes for Cardiovascular Malformations and Cardiomyopathy Associated with Deletions of Chromosome 1p36. PLoS ONE, 2014, 9, e85600.	1.1	51

TATION REDO

ARTICLE IF CITATIONS Bone marrow mesenchymal stem cells and TGF-12 signaling in bone remodeling. Journal of Clinical 3.9 338 19 Investigation, 2014, 124, 466-472. Tgfbr2 disruption in postnatal smooth muscle impairs aortic wall homeostasis. Journal of Clinical Investigation, 2014, 124, 755-767. Angiotensin Ilâ \in dependent TGF.² signaling contributes to Loeys-Dietz syndrome vascular pathogenesis. 21 3.9 214 Journal of Clinical Investigation, 2014, 124, 448-460. Review of Molecular and Mechanical Interactions in the Aortic Valve and Aorta: Implications for the Shared Pathogenesis of Aortic Valve Disease and Aortopathy. Journal of Cardiovascular Translational Research, 2014, 7, 823-846. Transforming Growth Factor Beta and Bone., 2014, , 211-216. 23 0 Arterial tortuosity in patients with <i>Filamin A</i>―associated vascular aneurysms. American Journal of Medical Genetics, Part A, 2014, 164, 2961-2963. Periostin Induces Intracellular Cross-talk between Kinases and Hyaluronan in Atrioventricular 25 1.6 50 Valvulogenesis. Journal of Biological Chemistry, 2014, 289, 8545-8561. Clinical and biochemical profiles suggest fibromuscular dysplasia is a systemic disease with altered 0.2 26 68 TGFâ€Î² expression and connective tissue features. FASEÉ Journal, 2014, 28, 3313-3324. Regional changes in elastic fiber organization and transforming growth factor 1² signaling in aortas 27 1.5 4 from a mouse model of marfan syndrome. Cell and Tissue Research, 2014, 358, 807-819. Genetic Diseases of the Aorta (Including Aneurysms)., 2014, , 239-255. Loeys-Dietz Syndrome. Advances in Experimental Medicine and Biology, 2014, 802, 95-105. 29 106 0.8 The Endothelium. Circulation, 2014, 129, 2629-2632. 30 1.6 Transforming Growth Factor-Î² and Inflammation in Vascular (Type IV) Ehlers–Danlos Syndrome. $\mathbf{31}$ 5.1 45 Circulation: Cardiovascular Genetics, 2014, 7, 80-88. Genetic variants of <i>Adam17</i> differentially regulate TGFÎ² signaling to modify vascular pathology in mice and humans. Proceedings of the National Academy of Sciences of the United States of America, 3.3 44 2014, 111, 7723-7728. Targeting TGFÎ² signaling in subchondral bone and articular cartilage homeostasis. Trends in 33 4.0 168 Pharmacological Sciences, 2014, 35, 227-236. Transforming growth factor-Î² (TGF-Î²) pathway abnormalities in tenascin-X deficiency associated with CAH-X syndrome. European Journal of Medical Genetics, 2014, 57, 95-102. The Genetic Basis of Aortic Aneurysm. Cold Spring Harbor Perspectives in Medicine, 2014, 4, 35 2.9 61 a015909-a015909. De novo exon 1 missense mutations of <i>SKI</i> and Shprintzenâ€Coldberg syndrome: Two new cases and a clinical review. American Journal of Medical Genetics, Part A, 2014, 164, 676-684.

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
37	Monosomy 1p36 – A multifaceted and still enigmatic syndrome: Four clinically diverse cases with shared white matter abnormalities. European Journal of Paediatric Neurology, 2014, 18, 338-346.	0.7	8
38	Wide mutation spectrum and frequent variant Ala27Thr of FBN1 identified in a large cohort of Chinese patients with sporadic TAAD. Scientific Reports, 2015, 5, 13115.	1.6	15
39	Congenital Thoracic Aortic Aneurysm. , 0, , 226-235.		0
40	The Development of the Calvarial Bones and Sutures and the Pathophysiology of Craniosynostosis. Current Topics in Developmental Biology, 2015, 115, 131-156.	1.0	90
41	<i>SMAD2</i> Mutations Are Associated with Arterial Aneurysms and Dissections. Human Mutation, 2015, 36, 1145-1149.	1.1	74
42	Performant Mutation Identification Using Targeted Next-Generation Sequencing of 14 Thoracic Aortic Aneurysm Genes. Human Mutation, 2015, 36, 808-814.	1.1	97
43	Increased Infiltration of Extra-Cardiac Cells in Myxomatous Valve Disease. Journal of Cardiovascular Development and Disease, 2015, 2, 200-213.	0.8	25
44	1p36 deletion syndrome: an update. The Application of Clinical Genetics, 2015, 8, 189.	1.4	104
45	Current Controversies in Diagnosis and Management of Cleft Palate and Velopharyngeal Insufficiency. BioMed Research International, 2015, 2015, 1-11.	0.9	18
46	Protective Effect of Triptolide against Glomerular Mesangial Cell Proliferation and Glomerular Fibrosis in Rats Involves the TGF- <i>β</i> 1/Smad Signaling Pathway. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-10.	0.5	21
47	Zebrafish Craniofacial Development. Current Topics in Developmental Biology, 2015, 115, 235-269.	1.0	137
48	Potential Phenotype–Genotype Correlation in Marfan Syndrome. Circulation: Cardiovascular Genetics, 2015, 8, 256-260.	5.1	20
49	TGF-Î ² signalopathies as a paradigm for translational medicine. European Journal of Medical Genetics, 2015, 58, 695-703.	0.7	39
50	Novel Regulation of Ski Protein Stability and Endosomal Sorting by Actin Cytoskeleton Dynamics in Hepatocytes. Journal of Biological Chemistry, 2015, 290, 4487-4499.	1.6	12
51	Mutations in a TGF-β Ligand, TGFB3, CauseÂSyndromic Aortic Aneurysms andÂDissections. Journal of the American College of Cardiology, 2015, 65, 1324-1336.	1.2	238
52	Reply to Liu et al.: Loss of TGF-Î ² signaling in CARASIL pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1694-E1694.	3.3	0
53	Marfan Syndrome and Related Heritable Thoracic Aortic Aneurysms and Dissections. , 2015, , 267-284.		0
54	The fibrillin microfibril scaffold: A niche for growth factors and mechanosensation?. Matrix Biology, 2015, 47, 3-12.	1.5	107

#	Article	IF	Citations
55	Clinical utility of a next generation sequencing panel assay for Marfan and Marfanâ€like syndromes	0.7	52
	featuring aortopathy. American Journal of Medical Genetics, Part A, 2015, 167, 1747-1757.		
56	Arterial Disorders. , 2015, , .		2
57	Molecular pathogenesis of Marfan syndrome. International Journal of Cardiology, 2015, 187, 585-591.	0.8	55
58	Chondrodysplasias and TGF \hat{I}^2 signaling. BoneKEy Reports, 2015, 4, 642.	2.7	6
59	Broadening the Spectrum of Ehlers Danlos Syndrome in Patients With Congenital Adrenal Hyperplasia. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E1143-E1152.	1.8	51
60	Postnatal Deletion of the Type II Transforming Growth Factor-Î ² Receptor in Smooth Muscle Cells Causes Severe Aortopathy in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2647-2656.	1.1	79
61	Abnormal mechanosensing and cofilin activation promote the progression of ascending aortic aneurysms in mice. Science Signaling, 2015, 8, ra105.	1.6	43
62	The genetic architecture of non-syndromic thoracic aortic aneurysm. Heart, 2015, 101, 1678-1684.	1.2	23
63	A Genetic-Pathophysiological Framework for Craniosynostosis. American Journal of Human Genetics, 2015, 97, 359-377.	2.6	213
64	The SMAD-binding domain of SKI: a hotspot for de novo mutations causing Shprintzen–Goldberg syndrome. European Journal of Human Genetics, 2015, 23, 224-228.	1.4	48
65	Cardiovascular manifestations in Marfan syndrome and related diseases; multiple genes causing similar phenotypes. Clinical Genetics, 2015, 87, 11-20.	1.0	54
66	Molecular Genetics and Biology of Craniofacial Craniosynostoses. , 2015, , 499-520.		1
67	<i>Dullard</i> / <i>Ctdnep1</i> Regulates Endochondral Ossification via Suppression of TGF-β Signaling. Journal of Bone and Mineral Research, 2015, 30, 318-329.	3.1	18
68	Shprintzen-Goldberg syndrome: a rare disorder. Pan African Medical Journal, 2016, 23, 227.	0.3	8
69	Marfan Syndrome and Related Disorders: 25 Years of Gene Discovery. Human Mutation, 2016, 37, 524-531.	1.1	125
70	Genetic testing of 248 Chinese aortopathy patients using a panel assay. Scientific Reports, 2016, 6, 33002.	1.6	25
71	Smooth muscle <scp>FGF</scp> / <scp>TGF</scp> β cross talk regulates atherosclerosis progression. EMBO Molecular Medicine, 2016, 8, 712-728.	3.3	61
72	Pathophysiology of aortic aneurysm: insights from human genetics and mouse models. Pharmacogenomics, 2016, 17, 2071-2080.	0.6	11

#	Article	IF	CITATIONS
73	TGF-β Superfamily Signaling. , 2016, , 37-50.		12
74	Genetic testing of the FBN1 gene in Chinese patients with Marfan/Marfan-like syndrome. Clinica Chimica Acta, 2016, 459, 30-35.	0.5	9
75	The Genetic Basis of Hydrocephalus. Annual Review of Neuroscience, 2016, 39, 409-435.	5.0	93
76	TGF-β and the TGF-β Family: Context-Dependent Roles in Cell and Tissue Physiology. Cold Spring Harbor Perspectives in Biology, 2016, 8, a021873.	2.3	876
78	Signalling pathways in trophic skeletal development and morphogenesis: Insights from studies on teleost fish. Developmental Biology, 2016, 420, 11-31.	0.9	41
79	Navigating the Phenotype Frontier: The Monarch Initiative. Genetics, 2016, 203, 1491-1495.	1.2	65
80	Smooth muscle cell-specific Tgfbr1 deficiency promotes aortic aneurysm formation by stimulating multiple signaling events. Scientific Reports, 2016, 6, 35444.	1.6	55
81	MiR-1908 promotes scar formation post-burn wound healing by suppressing Ski-mediated inflammation and fibroblast proliferation. Cell and Tissue Research, 2016, 366, 371-380.	1.5	18
82	Hereditary Influence in Thoracic Aortic Aneurysm and Dissection. Circulation, 2016, 133, 2516-2528.	1.6	181
83	A Decade of Discovery in the Genetic Understanding of Thoracic Aortic Disease. Canadian Journal of Cardiology, 2016, 32, 13-25.	0.8	55
84	The Expanding Clinical Spectrum of Extracardiovascular and Cardiovascular Manifestations of Heritable Thoracic Aortic Aneurysm and Dissection. Canadian Journal of Cardiology, 2016, 32, 86-99.	0.8	61
85	Genetics of hereditary large vessel diseases. Journal of Human Genetics, 2016, 61, 21-26.	1.1	24
87	Aetiology and management of hereditary aortopathy. Nature Reviews Cardiology, 2017, 14, 197-208.	6.1	75
88	Update on the Diagnosis and Management of Inherited Aortopathies, Including Marfan Syndrome. Heart Lung and Circulation, 2017, 26, 536-544.	0.2	9
89	Genome-wide methylation analysis identifies novel CpG loci for perimembranous ventricular septal defects in human. Epigenomics, 2017, 9, 241-251.	1.0	10
90	Pregnancy and Congenital Heart Disease. Congenital Heart Disease in Adolescents and Adults, 2017, , .	0.2	3
91	TGF-β Family Signaling in Connective Tissue and Skeletal Diseases. Cold Spring Harbor Perspectives in Biology, 2017, 9, a022269.	2.3	86
92	Genetic advances in craniosynostosis. American Journal of Medical Genetics, Part A, 2017, 173, 1406-1429	0.7	84

#	Article	IF	CITATIONS
93	Chromosome microarray analysis in the investigation of children with congenital heart disease. BMC Pediatrics, 2017, 17, 117.	0.7	34
95	The Pathogenic Transforming Growth Factor-β Overdrive Hypothesis in Aortic Aneurysms and Dissections. Circulation Research, 2017, 120, 1718-1720.	2.0	40
96	Reversing SKI–SMAD4-mediated suppression is essential for TH17 cell differentiation. Nature, 2017, 551, 105-109.	13.7	88
97	Shprintzen–Goldberg syndrome associated with first cervical vertebra defects. Pediatrics International, 2017, 59, 1098-1100.	0.2	4
98	Craniosynostosis, Scheuermann's disease, and intellectual disability resembling Shprintzen–Goldberg syndrome. Medicine (United States), 2017, 96, e6199.	0.4	3
99	Functional validation reveals the novel missense V419L variant in <i>TGFBR2</i> associated with Loeys–Dietz syndrome (LDS) impairs canonical TGF-β signaling. Journal of Physical Education and Sports Management, 2017, 3, a001727.	0.5	7
100	An iPSC-derived vascular model of Marfan syndrome identifies key mediators of smooth muscle cell death. Nature Genetics, 2017, 49, 97-109.	9.4	149
101	Candidate Gene Resequencing in a Large Bicuspid Aortic Valve-Associated Thoracic Aortic Aneurysm Cohort: SMAD6 as an Important Contributor. Frontiers in Physiology, 2017, 8, 400.	1.3	85
102	Genes Associated with Thoracic Aortic Aneurysm and Dissection. Aorta, 2017, 05, 11-20.	0.1	85
103	Pathophysiology of Keratoconus: What Do We Know Today. Open Ophthalmology Journal, 2017, 11, 252-261.	0.1	35
104	An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nature Communications, 2018, 9, 1009.	5.8	105
105	Thoraco-abdominal aortic aneurysm rupture in a patient with Shprintzen–Goldberg syndrome. Interactive Cardiovascular and Thoracic Surgery, 2018, 26, 1039-1040.	0.5	3
107	Genetics of the extracellular matrix in aortic aneurysmal diseases. Matrix Biology, 2018, 71-72, 128-143.	1.5	17
108	Transforming growth factor-l ² in stem cells and tissue homeostasis. Bone Research, 2018, 6, 2.	5.4	262
109	From genetics to response to injury: vascular smooth muscle cells in aneurysms and dissections of the ascending aorta. Cardiovascular Research, 2018, 114, 578-589.	1.8	114
110	Genetic Basis of Aortic Disease. , 2018, , 91-100.		1
111	Cardiovascular Manifestations and Complications of Loeys-Dietz Syndrome: CT and MR Imaging Findings. Radiographics, 2018, 38, 275-286.	1.4	36
112	Identification of a New Candidate Locus for Ebstein Anomaly in 1p36.2. Molecular Syndromology, 2018, 9, 164-169.	0.3	5

#	Article	IF	CITATIONS
113	The role of genetic testing in the prevention of acute aortic dissection. European Journal of Preventive Cardiology, 2018, 25, 15-23.	0.8	8
114	Targeted genetic analysis in a large cohort of familial and sporadic cases of aneurysm or dissection of the thoracic aorta. Genetics in Medicine, 2018, 20, 1414-1422.	1.1	48
115	Hydrophobic patches on SMAD2 and SMAD3 determine selective binding to cofactors. Science Signaling, 2018, 11, .	1.6	23
116	Characterization of micro-RNA Profile in the Blood of Patients with Marfan's Syndrome. Thoracic and Cardiovascular Surgeon, 2018, 66, 116-124.	0.4	13
117	Betaglycan (TGFBR3) up-regulation correlates with increased TGF-β signaling in Marfan patient fibroblasts in vitro. Cardiovascular Pathology, 2018, 32, 44-49.	0.7	11
118	Genetic Disorders of the Vasculature. , 2018, , 327-367.		1
119	Myocardial Cell Signaling During the Transition to Heart Failure. , 2018, 9, 75-125.		12
120	OBSOLETE: Genetic Disorders of the Vasculature. , 2018, , .		0
121	Vascular Genetics: Presentations, Testing, and Prognostics. Current Treatment Options in Cardiovascular Medicine, 2018, 20, 103.	0.4	6
123	Parental-reported neurodevelopmental issues in Loeys-Dietz syndrome. Research in Developmental Disabilities, 2018, 83, 153-159.	1.2	3
124	Modulation of Immune-Inflammatory Responses in Abdominal Aortic Aneurysm: Emerging Molecular Targets. Journal of Immunology Research, 2018, 2018, 1-15.	0.9	81
125	Genes Associated with Thoracic Aortic Aneurysm and Dissection: 2018 Update and Clinical Implications. Aorta, 2018, 06, 013-020.	0.1	106
126	TGF-β Signaling-Related Genes and Thoracic Aortic Aneurysms and Dissections. International Journal of Molecular Sciences, 2018, 19, 2125.	1.8	94
127	Transcriptional cofactors Ski and SnoN are major regulators of the TGF-β/Smad signaling pathway in health and disease. Signal Transduction and Targeted Therapy, 2018, 3, 15.	7.1	72
128	Further delineation of Malan syndrome. Human Mutation, 2018, 39, 1226-1237.	1.1	42
129	Structural Genome Variations Related to Craniosynostosis. Molecular Syndromology, 2019, 10, 24-39.	0.3	18
130	Mouse Models of Syndromic Craniosynostosis. Molecular Syndromology, 2019, 10, 58-73.	0.3	20
131	Cyclophilin A contributes to aortopathy induced by postnatal loss of smooth muscle TGFBR1. FASEB Journal, 2019, 33, 11396-11410.	0.2	6

#	Article	IF	CITATIONS
132	Marfan Syndrome. , 2019, , .		0
133	Clinical Aspects of Heritable Connective Tissue Disorders. , 2019, , 523-530.		Ο
134	A de novo mutation in DHD domain of SKI causing spina bifida with no craniofacial malformation or intellectual disability. American Journal of Medical Genetics, Part A, 2019, 179, 936-939.	0.7	3
135	Inflammation in thoracic aortic aneurysms. Herz, 2019, 44, 138-146.	0.4	15
136	Upregulation of miRâ€146aâ€5p is associated with increased proliferation and migration of vascular smooth muscle cells in aortic dissection. Journal of Clinical Laboratory Analysis, 2019, 33, e22843.	0.9	16
137	Craniofacial Syndromes and Conditions. , 2019, , 53-60.		Ο
139	Genetics of syndromic and nonsyndromic aortopathies. Current Opinion in Pediatrics, 2019, 31, 694-701.	1.0	8
140	Genes Associated with Thoracic Aortic Aneurysm and Dissection: 2019 Update and Clinical Implications. Aorta, 2019, 07, 099-107.	0.1	50
141	Cellular signaling in pseudoxanthoma elasticum: an update. Cellular Signalling, 2019, 55, 119-129.	1.7	22
142	Genes responsible for proliferation, differentiation, and junction adhesion are significantly up-regulated in human ovarian granulosa cells during a long-term primary in vitro culture. Histochemistry and Cell Biology, 2019, 151, 125-143.	0.8	20
143	Human aortic aneurysm genomic dictionary: is it possible?. Indian Journal of Thoracic and Cardiovascular Surgery, 2019, 35, 57-66.	0.2	6
144	Transforming growth factor- \hat{l}^2 and skeletal homeostasis. , 2020, , 1153-1187.		1
145	Impact of copy number variation on human neurocognitive deficits and congenital heart defects: A systematic review. Neuroscience and Biobehavioral Reviews, 2020, 108, 83-93.	2.9	8
146	Building on a genetic framework: Can we personalize the timing of surgical repair for patients with heritable thoracic aortic disease?. Journal of Thoracic and Cardiovascular Surgery, 2020, 160, 901-905.	0.4	6
147	Fibroblast mechanosensing, SKI and Hippo signaling and the cardiac fibroblast phenotype: Looking beyond TGF-β. Cellular Signalling, 2020, 76, 109802.	1.7	10
148	Orthopaedic Conditions Associated with Aneurysms. JBJS Reviews, 2020, 8, e0122-e0122.	0.8	3
149	Thoracic aortic aneurysm gene dictionary. Asian Cardiovascular and Thoracic Annals, 2021, 29, 682-696.	0.2	6
150	Structural basis for transcriptional coactivator recognition by SMAD2 in TGF-Î ² signaling. Science Signaling, 2020, 13, .	1.6	6

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
151	Scoliosis in Shprintzen–Goldberg Syndrome. Case Reports in Orthopedics, 2020, 2020, 1-5.	0.1	1
152	Eye Manifestations of Shprintzen–Goldberg Craniosynostosis Syndrome: A Case Report and Systematic Review. Case Reports in Genetics, 2020, 2020, 1-5.	0.1	2
153	Transforming Growth Factor-Î ² and the Renin-Angiotensin System in Syndromic Thoracic Aortic Aneurysms: Implications for Treatment. Cardiovascular Drugs and Therapy, 2021, 35, 1233-1252.	1.3	22
154	Identification of a Pathogenic TGFBR2 Variant in a Patient With Loeys–Dietz Syndrome. Frontiers in Genetics, 2020, 11, 479.	1.1	6
155	The genetics of aortopathies: Hereditary thoracic aortic aneurysms and dissections. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2020, 184, 136-148.	0.7	17
156	A new mutational hotspot in the SKI gene in the context of MFS/TAA molecular diagnosis. Human Genetics, 2020, 139, 461-472.	1.8	8
157	Excess of de novo variants in genes involved in chromatin remodelling in patients with marfanoid habitus and intellectual disability. Journal of Medical Genetics, 2020, 57, 466-474.	1.5	7
158	Extracellular Matrix in Vascular Disease, Part 2/4. Journal of the American College of Cardiology, 2020, 75, 2189-2203.	1.2	43
159	Potential Molecular Pathways Related to Pulmonary Artery Aneurysm Development: Lessons to Learn from the Aorta. International Journal of Molecular Sciences, 2020, 21, 2509.	1.8	7
160	SÃndrome de Shprintzen-Goldberg y dilatación aórtica: a propósito de dos nuevos casos. Revista Espanola De Cardiologia, 2021, 74, 551-553.	0.6	0
161	Insights on the Pathogenesis of Aneurysm through the Study of Hereditary Aortopathies. Genes, 2021, 12, 183.	1.0	31
162	Mutations in SKI in Shprintzen–Goldberg syndrome lead to attenuated TGF-β responses through SKI stabilization. ELife, 2021, 10, .	2.8	22
163	Deciphering the Pathogenic Nature of Two de novo Sequence Variations in a Patient with Shprintzen-Goldberg Syndrome. Molecular Syndromology, 2021, 12, 141-147.	0.3	1
164	Identification of Copy Number Variation Among Nonsyndromic Cleft Lip and or Without Cleft Palate With Hypodontia: A Genome-Wide Association Study. Frontiers in Physiology, 2021, 12, 637306.	1.3	4
165	Whole genomeÂmapping and identification of single nucleotide polymorphismsÂofÂfour BangladeshiÂindividualsÄand their functional significance. BMC Research Notes, 2021, 14, 105.	0.6	1
166	Association between pectus excavatum and congenital genetic disorders: A systematic review and practical guide for the treating physician. Journal of Pediatric Surgery, 2021, 56, 2239-2252.	0.8	7
167	Signaling Pathways in Bone Development and Their Related Skeletal Dysplasia. International Journal of Molecular Sciences, 2021, 22, 4321.	1.8	25
168	Identification of differentially expressed proteins between fused and open sutures in sagittal nonsyndromic craniosynostosis during suture development by quantitative proteomic analysis. Proteomics - Clinical Applications, 2021, 15, 2000031.	0.8	1

#	Article	IF	CITATIONS
169	Genome of the butterfly hillstream loach provides insights into adaptations to torrential mountain stream life. Molecular Ecology Resources, 2021, 21, 1922-1935.	2.2	1
170	Bi-allelic variants in IPO8 cause a connective tissue disorder associated with cardiovascular defects, skeletal abnormalities, and immune dysregulation. American Journal of Human Genetics, 2021, 108, 1126-1137.	2.6	14
171	A human importin-β-related disorder: Syndromic thoracic aortic aneurysm caused by bi-allelic loss-of-function variants in IPO8. American Journal of Human Genetics, 2021, 108, 1115-1125.	2.6	10
172	Shprintzen-Goldberg syndrome and aortic dilatation: apropos of 2 new cases. Revista Espanola De Cardiologia (English Ed), 2021, 74, 551-553.	0.4	0
173	An Early Diagnostic Clue for COL18A1- and LAMA1-Associated Diseases: High Myopia With Alopecia Areata in the Cranial Midline. Frontiers in Cell and Developmental Biology, 2021, 9, 644947.	1.8	1
174	Novel factors that activate and deactivate cardiac fibroblasts: A new perspective for treatment of cardiac fibrosis. Wound Repair and Regeneration, 2021, 29, 667-677.	1.5	14
175	Toward precision medicine in vascular connective tissue disorders. American Journal of Medical Genetics, Part A, 2021, 185, 3340-3349.	0.7	2
177	Mechanics of ascending aortas from TGFβ-1, -2, -3 haploinsufficient mice and elastase-induced aortopathy. Journal of Biomechanics, 2021, 125, 110543.	0.9	2
178	Zebrafish Models for Human Skeletal Disorders. Frontiers in Genetics, 2021, 12, 675331.	1.1	18
179	Mouse Model of Loeys–Dietz Syndrome Shows Elevated Susceptibility to Periodontitis via Alterations in Transforming Growth Factor-Beta Signaling. Frontiers in Physiology, 2021, 12, 715687.	1.3	1
181	Intraoperative absent bilateral medial recti in syndromic craniosynostosis. BMJ Case Reports, 2021, 14, e233557.	0.2	0
182	Clinically relevant variants in a large cohort of Indian patients with Marfan syndrome and related disorders identified by next-generation sequencing. Scientific Reports, 2021, 11, 764.	1.6	7
184	Heritable Thoracic Aortic Disorders. , 2016, , 263-294.		3
186	Lineage-specific events underlie aortic root aneurysm pathogenesis in Loeys-Dietz syndrome. Journal of Clinical Investigation, 2019, 129, 659-675.	3.9	81
187	A healthy tension in translational research. Journal of Clinical Investigation, 2014, 124, 1425-1429.	3.9	8
188	Complications of Insufficient Dura and Blood Loss During Surgical Intervention in Shprintzen-Goldberg Syndrome: A Case Report. American Journal of Case Reports, 2019, 20, 1159-1169.	0.3	3
189	Adaptive introgression from distant Caribbean islands contributed to the diversification of a microendemic adaptive radiation of trophic specialist pupfishes. PLoS Genetics, 2017, 13, e1006919.	1.5	81
190	Identification of Two Novel Mutations in the PHEX Gene in Chinese Patients with Hypophosphatemic Rickets/Osteomalacia. PLoS ONE, 2014, 9, e97830.	1.1	17

#	Article	IF	CITATIONS
191	New insights into the molecular diagnosis and management of heritable thoracic aortic aneurysms and dissections. Polish Archives of Internal Medicine, 2013, 123, 693-700.	0.3	5
192	Marfan Syndrome and Related Heritable Thoracic Aortic Aneurysms and Dissections. Current Pharmaceutical Design, 2015, 21, 4061-4075.	0.9	13
193	Two locus inheritance of non-syndromic midline craniosynostosis via rare SMAD6 and common BMP2 alleles. ELife, 2016, 5, .	2.8	168
194	A transcription factor DAF-5 functions in Haemonchus contortus development. Parasites and Vectors, 2021, 14, 529.	1.0	3
195	Shprintzen-Goldberg Syndrome. , 2008, , 1805-1805.		4
196	Genetics of Marfan Syndrome, Related Disorders, and Bicuspid Aortic Valve. , 2017, , 59-72.		0
197	Cardiovascular Manifestations in Inherited Connective Tissue Disorders. , 2018, , 617-646.		0
198	Genetic testing for large-caliber vessel aneurysms. The EuroBiotech Journal, 2018, 2, 74-77.	0.5	0
199	Genetics of Marfan Syndrome and Loeys-Dietz Syndrome. , 2019, , 561-566.		0
200	Heritable Thoracic Aortic Diseases: Syndromal and Isolated (F)TAAD. , 2020, , 309-343.		3
201	Shprintzen–Goldberg syndrome with a novel missense mutation of SKI in a 6-month-old boy. Journal of Genetic Medicine, 2020, 17, 43-46.	0.1	0
202	Pathophysiology and Principles of Management of Hereditary Aneurysmal Aortopathies. , 2020, , 293-316.		0
203	Bone Remodeling and Homeostasis. , 2020, , 152-161.		0
204	Gene Therapy for Cardiovascular Disease: Basic Research and Clinical Prospects. Frontiers in Cardiovascular Medicine, 2021, 8, 760140.	1.1	14
207	Insight into the molecular genetics of myopia. Molecular Vision, 2017, 23, 1048-1080.	1.1	37
208	1p36 Deletion Syndrome and the Aorta: A Report of Three New Patients and a Literature Review. Journal of Cardiovascular Development and Disease, 2021, 8, 159.	0.8	2
209	Loeys-Dietz Syndrome. Advances in Experimental Medicine and Biology, 2021, 1348, 251-264.	0.8	16
210	Latent TGFÎ ² -binding proteins 1 and 3 protect the larval zebrafish outflow tract from aneurysmal dilatation. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	10

#	Article	IF	CITATIONS
211	Incidence of Non-Syndromic and Syndromic Craniosynostosis in Sweden. Journal of Craniofacial Surgery, 2022, 33, 1517-1520.	0.3	12
212	Inhibition of IL11 Signaling Reduces Aortic Pathology in Murine Marfan Syndrome. Circulation Research, 2022, 130, 728-740.	2.0	22
213	Genetics of Heritable Thoracic Aortic Disease. Neurology International, 2022, 12, 63-79.	0.2	4
214	Loeys-Dietz and Shprintzen-Goldberg syndromes: analysis of TGF-β-opathies with craniofacial manifestations using an innovative multimodality method. Journal of Medical Genetics, 2022, 59, 938-946.	1.5	6
215	Update on the molecular landscape of thoracic aortic aneurysmal disease. Current Opinion in Cardiology, 2022, Publish Ahead of Print, .	0.8	3
216	Integrative analysis of key microRNA-mRNA complexes and pathways in aortic aneurysm. Annals of Translational Medicine, 2022, 10, 358-358.	0.7	1
217	Mechanism of Disease: Recessive ADAMTSL4 Mutations and Craniosynostosis with Ectopia Lentis. Case Reports in Genetics, 2022, 2022, 1-8.	0.1	3
220	Dissecting the Heterogeneity of Human Thoracic Aortic Aneurysms Using Single-Cell Transcriptomics. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 919-930.	1.1	12
221	TGF-Î ² Family Signaling. , 2022, , .		0
222	The Genetics and Typical Traits of Thoracic Aortic Aneurysm and Dissection. Annual Review of Genomics and Human Genetics, 2022, 23, 223-253.	2.5	17
223	The genetic basis of thoracic aortic disease: The future of aneurysm classification?. Hellenic Journal of Cardiology, 2023, 69, 41-50.	0.4	4
224	Congenital mandibular coronoid process hyperplasia and associated diseases. Oral Diseases, 2023, 29, 2438-2448.	1.5	2
225	1p36 deletion syndrome: Review and mapping with further characterization of the phenotype, a new cohort of 86 patients. American Journal of Medical Genetics, Part A, 2023, 191, 445-458.	0.7	6
226	SMAD6-deficiency in human genetic disorders. Npj Genomic Medicine, 2022, 7, .	1.7	4
227	Dysregulation of the immune response in TGF- \hat{l}^2 signalopathies. Frontiers in Immunology, 0, 13, .	2.2	4
229	Regional Anesthesia in a Patient With Shprintzen-Goldberg Syndrome: A Case Report. A&A Practice, 2023, 17, e01667.	0.2	0
233	Nucleotide substitutions at the p.Gly117 and p.Thr180 mutational hot-spots of SKI alter molecular dynamics and may affect cell cycle. Journal of Human Genetics, 0, , .	1.1	0
234	Aortic aneurysms: current pathogenesis and therapeutic targets. Experimental and Molecular Medicine, 2023, 55, 2519-2530.	3.2	1

#	Article	IF	CITATIONS
236	The roles and regulatory mechanisms of TGF-Î ² and BMP signaling in bone and cartilage development, homeostasis and disease. Cell Research, 2024, 34, 101-123.	5.7	0