A metagenome-wide association study of gut microbiot

Nature

490, 55-60

DOI: 10.1038/nature11450

Citation Report

#	Article	IF	CITATIONS
3	The Pervasive Effects of an Antibiotic on the Human Gut Microbiota, as Revealed by Deep 16S rRNA Sequencing. PLoS Biology, 2008, 6, e280.	2.6	2,013
4	Resident risks. Nature, 2012, 490, 44-46.	13.7	O
6	Associations go metagenome-wide. Nature Reviews Genetics, 2012, 13, 756-757.	7.7	3
7	Probiotics: a potential role in the prevention of gestational diabetes?. Acta Diabetologica, 2012, 49, 1-13.	1.2	33
9	Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice. Genome Biology, 2013, 14, R4.	13.9	381
10	Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances: Part II – contemporary contextual research. Gut Pathogens, 2013, 5, 3.	1.6	80
11	Colonization resistance and microbial ecophysiology: using gnotobiotic mouse models and single-cell technology to explore the intestinal jungle. FEMS Microbiology Reviews, 2013, 37, 793-829.	3.9	85
12	Dysbiosis Signature of Fecal Microbiota in Colorectal Cancer Patients. Microbial Ecology, 2013, 66, 462-470.	1.4	408
13	The Intestinal Microbiota in Chronic Liver Disease. Advances in Immunology, 2013, 117, 73-97.	1.1	48
14	Human intestinal metagenomics: state of the art and future. Current Opinion in Microbiology, 2013, 16, 232-239.	2.3	62
15	The gut microbiota and obesity: from correlation to causality. Nature Reviews Microbiology, 2013, 11, 639-647.	13.6	665
16	Non-alcoholic steatohepatitis: a microbiota-driven disease. Trends in Endocrinology and Metabolism, 2013, 24, 537-545.	3.1	143
17	Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nature Communications, 2013, 4, 2151.	5.8	606
18	What has high-throughput sequencing ever done for us?. Nature Reviews Microbiology, 2013, 11, 664-665.	13.6	16
19	Personal genomes, quantitative dynamic omics and personalized medicine. Quantitative Biology, 2013, 1, 71-90.	0.3	29
20	What Can We Learn From Inflammatory Bowel Disease in Developing Countries?. Current Gastroenterology Reports, 2013, 15, 313.	1.1	25
21	Omics approaches to study host–microbiota interactions. Current Opinion in Microbiology, 2013, 16, 270-277.	2.3	22
22	Functional profiling of the gut microbiome in disease-associated inflammation. Genome Medicine, 2013, 5, 65.	3.6	61

#	Article	IF	CITATIONS
23	Strict vegetarian diet improves the risk factors associated with metabolic diseases by modulating gut microbiota and reducing intestinal inflammation. Environmental Microbiology Reports, 2013, 5, 765-775.	1.0	171
24	Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships. Microbiome, 2013, 1, 17.	4.9	256
25	Richness of human gut microbiome correlates with metabolic markers. Nature, 2013, 500, 541-546.	13.7	3,641
26	Towards a predictive systems-level model of the human microbiome: progress, challenges, and opportunities. Current Opinion in Biotechnology, 2013, 24, 810-820.	3.3	58
27	The Microbiome as a Therapeutic Target for Metabolic Diseases. Drug Development Research, 2013, 74, 376-384.	1.4	1
28	Nutritional Targets for Modulation of the Microbiota in Obesity. Drug Development Research, 2013, 74, 393-402.	1.4	2
29	Bridging immunity and lipid metabolism by gut microbiota. Journal of Allergy and Clinical Immunology, 2013, 132, 253-262.	1.5	61
30	Is butyrate the link between diet, intestinal microbiota and obesityâ€related metabolic diseases?. Obesity Reviews, 2013, 14, 950-959.	3.1	206
31	From gut changes to type 2 diabetes remission after gastric bypass surgeries. Frontiers of Medicine, 2013, 7, 191-200.	1.5	3
32	The Genetics of Complex Cholestatic Disorders. Gastroenterology, 2013, 144, 1357-1374.	0.6	126
33	Beneficial Metabolic Effects of a Probiotic via Butyrate-induced GLP-1 Hormone Secretion. Journal of Biological Chemistry, 2013, 288, 25088-25097.	1.6	523
34	Le microbiote intestinal est l'avenir de la multirésistance bactérienne. Journal Des Anti-infectieux, 2013, 15, 166-177.	0.1	2
35	Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12804-12809.	3.3	335
36	Genome-wide association and sequencing studies on colorectal cancer. Seminars in Cancer Biology, 2013, 23, 502-511.	4.3	14
37	Metagenomic species profiling using universal phylogenetic marker genes. Nature Methods, 2013, 10, 1196-1199.	9.0	442
38	Metagenome and metabolism: the tissue microbiota hypothesis. Diabetes, Obesity and Metabolism, 2013, 15, 61-70.	2.2	112
39	Diet-Microbiota Interactions and Their Implications for Healthy Living. Nutrients, 2013, 5, 234-252.	1.7	174
40	Sequencing the human microbiome in health and disease. Human Molecular Genetics, 2013, 22, R88-R94.	1.4	123

#	Article	IF	Citations
41	Clinical Consequences of Diet-Induced Dysbiosis. Annals of Nutrition and Metabolism, 2013, 63, 28-40.	1.0	100
42	Polyphenols and type 2 diabetes: A prospective review. PharmaNutrition, 2013, 1, 105-114.	0.8	106
43	Role of the intestinal microbiome in liver disease. Journal of Autoimmunity, 2013, 46, 66-73.	3.0	172
44	Genomic Medicine: A Decade of Successes, Challenges, and Opportunities. Science Translational Medicine, 2013, 5, 189sr4.	5.8	197
45	Looking large, to make more, out of gut metagenomics. Current Opinion in Microbiology, 2013, 16, 630-635.	2.3	7
46	MetalD: A novel method for identification and quantification of metagenomic samples. BMC Genomics, 2013, 14, S4.	1.2	11
47	The Hologenome Concept: Human, Animal and Plant Microbiota. , 2013, , .		58
48	Gut microbiota and obesity: lessons from the microbiome. Briefings in Functional Genomics, 2013, 12, 381-387.	1.3	104
49	Advanced analytical methodologies to study the microbial metabolome of the human gut. TrAC - Trends in Analytical Chemistry, 2013, 52, 54-60.	5.8	10
50	Understanding the interactions between bacteria in the human gut through metabolic modeling. Scientific Reports, 2013, 3, 2532.	1.6	224
51	Genome resolved analysis of a premature infant gut microbial community reveals a Varibaculum cambriense genome and a shift towards fermentation-based metabolism during the third week of life. Microbiome, 2013, 1, 30.	4.9	50
52	Abnormal fecal microbiota community and functions in patients with hepatitis B liver cirrhosis as revealed by a metagenomic approach. BMC Gastroenterology, 2013, 13, 175.	0.8	122
53	HIV Infection is associated with compositional and functional shifts in the rectal mucosal microbiota. Microbiome, 2013, 1 , 26 .	4.9	184
54	Intestinal Microbiota Composition in Adults. World Review of Nutrition and Dietetics, 2013, , 17-24.	0.1	3
55	Metabolic Syndrome and Obesity in Adults. World Review of Nutrition and Dietetics, 2013, , 103-121.	0.1	1
56	Fecal transplant: A safe and sustainable clinical therapy for restoring intestinal microbial balance in human disease?. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2013, 27, 127-137.	1.0	89
57	Functional genomic analyses of the gut microbiota for CRC screening. Nature Reviews Gastroenterology and Hepatology, 2013, 10, 741-745.	8.2	103
58	Experimental Approaches for Defining Functional Roles of Microbes in the Human Gut. Annual Review of Microbiology, 2013, 67, 459-475.	2.9	39

#	ARTICLE	IF	Citations
59	Therapeutic Potential of the Human Gastrointestinal Microbiome. Drug Development Research, 2013, 74, 385-392.	1.4	4
60	Human gut microbiota community structures in urban and rural populations in Russia. Nature Communications, 2013, 4, 2469.	5.8	233
61	Gut microbiota, enteroendocrine functions and metabolism. Current Opinion in Pharmacology, 2013, 13, 935-940.	1.7	300
62	Assessing the Human Gut Microbiota in Metabolic Diseases. Diabetes, 2013, 62, 3341-3349.	0.3	384
63	Differential abundance analysis for microbial marker-gene surveys. Nature Methods, 2013, 10, 1200-1202.	9.0	1,921
64	The Inside Tract: What RDs Need to Know about theÂGut Microbiome. Journal of the Academy of Nutrition and Dietetics, 2013, 113, 1019-1023.	0.4	1
65	The Emerging Relevance of the Gut Microbiome in Cardiometabolic Health. Current Cardiovascular Risk Reports, 2013, 7, 425-426.	0.8	3
66	Metagenomics for pathogen detection in public health. Genome Medicine, 2013, 5, 81.	3.6	202
67	Nonmetric property of diabetes-related genes in human gut microbiome. , 2013, , .		2
68	Hunting for cancer in the microbial jungle. Genome Medicine, 2013, 5, 42.	3.6	1
69	Ketone body metabolism and cardiovascular disease. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H1060-H1076.	1.5	340
70	The gut microbiota, obesity and insulin resistance. Molecular Aspects of Medicine, 2013, 34, 39-58.	2.7	506
71	New food safety concerns associated with gut microbiota. Trends in Food Science and Technology, 2013, 34, 62-66.	7.8	8
72	Microbiota associated with type 2 diabetes and its related complications. Food Science and Human Wellness, 2013, 2, 167-172.	2.2	83
73	Structural changes of gut microbiota in a rat non-alcoholic fatty liver disease model treated with a Chinese herbal formula. Systematic and Applied Microbiology, 2013, 36, 188-196.	1.2	83
74	Blastocystis: getting to grips with our guileful guest. Trends in Parasitology, 2013, 29, 523-529.	1.5	115
75	Transient Flare of Ulcerative Colitis After Fecal Microbiota Transplantation for Recurrent Clostridium difficile Infection. Clinical Gastroenterology and Hepatology, 2013, 11, 1036-1038.	2.4	194
76	Holding a grudge. RNA Biology, 2013, 10, 900-906.	1.5	12

#	Article	IF	CITATIONS
77	Genetic Control of Obesity and Gut Microbiota Composition in Response to High-Fat, High-Sucrose Diet in Mice. Cell Metabolism, 2013, 17, 141-152.	7.2	464
78	The gut microbiota â€" masters of host development and physiology. Nature Reviews Microbiology, 2013, 11, 227-238.	13.6	2,711
79	Quantifying the metabolic activities of human-associated microbial communities across multiple ecological scales. FEMS Microbiology Reviews, 2013, 37, 830-848.	3.9	22
80	Metabolomics study of type 2 diabetes and therapeutic effects of Tianqijiangtang-capsule using ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry. Analytical Methods, 2013, 5, 2218.	1.3	13
81	Medicines from microbiota. Nature Biotechnology, 2013, 31, 309-315.	9.4	135
82	Genomeâ€scale modeling of human metabolism – a systems biology approach. Biotechnology Journal, 2013, 8, 985-996.	1.8	101
83	Human intestinal microbiota composition is associated with local and systemic inflammation in obesity. Obesity, 2013, 21, E607-15.	1.5	469
84	Meat-metabolizing bacteria in atherosclerosis. Nature Medicine, 2013, 19, 533-534.	15.2	48
85	A gut-heart connection in cardiometabolic regulation. Nature Medicine, 2013, 19, 534-536.	15.2	27
86	The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nature Reviews Microbiology, 2013, 11, 497-504.	13.6	1,240
87	Computational meta'omics for microbial community studies. Molecular Systems Biology, 2013, 9, 666.	3.2	253
88	Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature, 2013, 498, 99-103.	13.7	2,401
89	A gut prediction. Nature, 2013, 498, 48-49.	13.7	66
90	High-Resolution Quantitative Metabolome Analysis of Urine by Automated Flow Injection NMR. Analytical Chemistry, 2013, 85, 5801-5809.	3 . 2	36
92	Commensal bacteria at the interface of host metabolism and the immune system. Nature Immunology, 2013, 14, 676-684.	7.0	758
93	Quantitatively Different, yet Qualitatively Alike: A Meta-Analysis of the Mouse Core Gut Microbiome with a View towards the Human Gut Microbiome. PLoS ONE, 2013, 8, e62578.	1.1	182
94	Effector and memory T cell responses to commensal bacteria. Trends in Immunology, 2013, 34, 299-306.	2.9	61
95	Beyond phylotyping: understanding the impact of gut microbiota on host biology. Neurogastroenterology and Motility, 2013, 25, 358-372.	1.6	48

#	Article	IF	Citations
96	A Key to Understanding the Effects of Food Bioactives in Health, Gut Microbiota. Journal of Agricultural and Food Chemistry, 2013, 61, 9755-9757.	2.4	14
97	Soy isoflavones and their relationship with microflora: beneficial effects on human health in equol producers. Phytochemistry Reviews, 2013, 12, 979-1000.	3.1	47
98	A randomized controlled trial investigating the neurocognitive effects of Lacprodan® PL-20, a phospholipid-rich milk protein concentrate, in elderly participants with age-associated memory impairment: the Phospholipid Intervention for Cognitive Ageing Reversal (PLICAR): study protocol for a randomized controlled trial. Trials, 2013, 14, 404.	0.7	17
99	The intricate association between gut microbiota and development of Type 1, Type 2 and Type 3 diabetes. Expert Review of Clinical Immunology, 2013, 9, 1031-1041.	1.3	66
100	Opportunities and challenges for gut microbiome studies in the Indian population. Microbiome, 2013, 1, 24.	4.9	51
101	Cross-talk between <i>Akkermansia muciniphila</i> and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9066-9071.	3.3	3,474
102	Gut Microbiome Perturbations Induced by Bacterial Infection Affect Arsenic Biotransformation. Chemical Research in Toxicology, 2013, 26, 1893-1903.	1.7	73
103	Modulating the Human Gut Microbiome as an Emerging Therapeutic Paradigm. Science Progress, 2013, 96, 224-236.	1.0	17
104	Reconstructing the Genomic Content of Microbiome Taxa through Shotgun Metagenomic Deconvolution. PLoS Computational Biology, 2013, 9, e1003292.	1.5	41
105	Alteration of the intestinal barrier and GLP2 secretion in Berberine-treated type 2 diabetic rats. Journal of Endocrinology, 2013, 218, 255-262.	1.2	48
106	Dietary Fiber Future Directions: Integrating New Definitions and Findings to Inform Nutrition Research and Communication. Advances in Nutrition, 2013, 4, 8-15.	2.9	69
107	Random Sampling Process Leads to Overestimation of \hat{l}^2 -Diversity of Microbial Communities. MBio, 2013, 4, e00324-13.	1.8	96
108	Future for probiotic science in functional food and dietary supplement development. Current Opinion in Clinical Nutrition and Metabolic Care, 2013, 16, 679-687.	1.3	75
109	A pig model of the human gastrointestinal tract. Gut Microbes, 2013, 4, 193-200.	4.3	163
110	Sympatric chimpanzees and gorillas harbor convergent gut microbial communities. Genome Research, 2013, 23, 1715-1720.	2.4	151
111	A metagenomic approach to investigate the microbial causes of myalgic encephalomyelitis/chronic fatigue syndrome: moving beyond XMRV. Fatigue: Biomedicine, Health and Behavior, 2013, 1, 185-189.	1.2	3
112	Linking the microbiota and metabolic disease with lymphotoxin. International Immunology, 2013, 25, 397-403.	1.8	5
113	Species Identification and Profiling of Complex Microbial Communities Using Shotgun Illumina Sequencing of 16S rRNA Amplicon Sequences. PLoS ONE, 2013, 8, e60811.	1.1	93

#	Article	IF	Citations
114	Human Gut Microbiota Changes Reveal the Progression of Glucose Intolerance. PLoS ONE, 2013, 8, e71108.	1.1	652
115	Hot topics in gut microbiota. United European Gastroenterology Journal, 2013, 1, 311-318.	1.6	50
116	Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Therapeutic Advances in Gastroenterology, 2013, 6, 295-308.	1.4	642
117	Factors that drive variation among gut microbial communities. Gut Microbes, 2013, 4, 403-408.	4.3	24
118	Oatmeal Diet Days May Improve Insulin Resistance in Patients with Type 2 Diabetes Mellitus. Research in Complementary Medicine, 2013, 20, 465-468.	2.2	12
119	The gut microbiome: the role of a virtual organ in the endocrinology of the host. Journal of Endocrinology, 2013, 218, R37-R47.	1.2	205
120	NOD2 prevents emergence of disease-predisposing microbiota. Gut Microbes, 2013, 4, 353-356.	4.3	10
121	Prebiotics for obesity: a small light on the horizon?. Gut, 2013, 62, 1096-1097.	6.1	5
123	Human Gut Metagenomic Analysis toward Clinical Studies. Kagaku To Seibutsu, 2013, 51, 802-808.	0.0	0
126	Gut microbiota dysbiosis and bacterial community assembly associated with cholesterol gallstones in large-scale study. BMC Genomics, 2013, 14, 669.	1.2	168
127	Inter-individual differences in response to dietary intervention: integrating omics platforms towards personalised dietary recommendations. Proceedings of the Nutrition Society, 2013, 72, 207-218.	0.4	69
128	The Role of Gut Microbiota on Insulin Resistance. Nutrients, 2013, 5, 829-851.	1.7	184
129	Whole-genome sequencing in bacteriology: state of the art. Infection and Drug Resistance, 2013, 6, 115.	1.1	33
130	Upper gastrointestinal microbiota and digestive diseases. World Journal of Gastroenterology, 2013, 19, 1541.	1.4	79
131	Metagenomic Predictions: From Microbiome to Complex Health and Environmental Phenotypes in Humans and Cattle. PLoS ONE, 2013, 8, e73056.	1.1	103
132	Altered Antibody Profiles against Common Infectious Agents in Chronic Disease. PLoS ONE, 2013, 8, e81635.	1.1	10
133	Molecular Characterization of the Fecal Microbiota in Patients with Nonalcoholic Steatohepatitis – A Longitudinal Study. PLoS ONE, 2013, 8, e62885.	1.1	266
134	Causes, consequences, and perspectives in the variations of intestinal density of colonization of multidrug-resistant enterobacteria. Frontiers in Microbiology, 2013, 4, 129.	1.5	33

#	Article	IF	Citations
135	Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. ELife, 2013, 2, e01202.	2.8	1,507
136	Impact of the gut microbiota on rodent models of human disease. World Journal of Gastroenterology, 2014, 20, 17727-17736.	1.4	69
137	Aerosol Mycobacterium tuberculosis Infection Causes Rapid Loss of Diversity in Gut Microbiota. PLoS ONE, 2014, 9, e97048.	1.1	124
138	Gut Microbiota Signatures Predict Host and Microbiota Responses to Dietary Interventions in Obese Individuals. PLoS ONE, 2014, 9, e90702.	1.1	163
139	Metabolomic Analysis of Diet-Induced Type 2 Diabetes Using UPLC/MS Integrated with Pattern Recognition Approach. PLoS ONE, 2014, 9, e93384.	1.1	29
140	The Prevalence of Species and Strains in the Human Microbiome: A Resource for Experimental Efforts. PLoS ONE, 2014, 9, e97279.	1.1	93
141	Diagnosing Impaired Glucose Tolerance Using Direct Infusion Mass Spectrometry of Blood Plasma. PLoS ONE, 2014, 9, e105343.	1.1	27
142	Faecal Microbiota of Cats with Insulin-Treated Diabetes Mellitus. PLoS ONE, 2014, 9, e108729.	1.1	26
143	The Gut Microbiota Modulates Glycaemic Control and Serum Metabolite Profiles in Non-Obese Diabetic Mice. PLoS ONE, 2014, 9, e110359.	1.1	43
144	Detecting Epistatic Interactions in Metagenome-Wide Association Studies by metaBOOST. BioMed Research International, 2014, 2014, 1-12.	0.9	1
145	Bacterial microbiome of lungs in COPD. International Journal of COPD, 2014, 9, 229.	0.9	81
146	Understanding and Modulating the Toll Like Receptors (TLRs) and NOD Like Receptors (NLRs) Cross Talk in Type 2 Diabetes. Current Diabetes Reviews, 2014, 10, 190-200.	0.6	59
147	Risk Factors Contributing to Type 2 Diabetes and Recent Advances in the Treatment and Prevention. International Journal of Medical Sciences, 2014, 11, 1185-1200.	1.1	717
148	To be or not to be associated: power study of four statistical modeling approaches to identify parasite associations in cross-sectional studies. Frontiers in Cellular and Infection Microbiology, 2014, 4, 62.	1.8	23
149	Live probiotic cultures and the gastrointestinal tract: symbiotic preservation of tolerance whilst attenuating pathogenicity. Frontiers in Cellular and Infection Microbiology, 2014, 4, 143.	1.8	12
150	Seeing the forest for the genes: using metagenomics to infer the aggregated traits of microbial communities. Frontiers in Microbiology, 2014, 5, 614.	1.5	107
151	Microbiome Associations of Therapeutic Enteral Nutrition. Nutrients, 2014, 6, 5298-5311.	1.7	11
152	Metagenomics Health Claim: Are you Rich Enough in your Gut Micro biota?. Biology and Medicine (Aligarh), 2014, 07, .	0.3	0

#	Article	IF	CITATIONS
153	Two Randomized Cross-Over Trials Assessing the Impact of Dietary Gluten or Wholegrain on the Gut Microbiome and Host Metabolic Health. Journal of Clinical Trials, 2014, 04, .	0.1	15
155	MECHANISMS IN ENDOCRINOLOGY: Bile acid sequestrants in type 2 diabetes: potential effects on GLP1 secretion. European Journal of Endocrinology, 2014, 171, R47-R65.	1.9	62
156	Metabolic tinkering by the gut microbiome. Gut Microbes, 2014, 5, 369-380.	4.3	105
157	LA2SNE: A novel stochastic neighbor embedding approach for microbiome data visualization. , 2014, , .		O
158	Intestinal permeability – a new target for disease prevention and therapy. BMC Gastroenterology, 2014, 14, 189.	0.8	1,187
159	Constructing a Boolean implication network to study the interactions between environmental factors and OTUs. Quantitative Biology, 2015, 2, 127-141.	0.3	3
160	Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4268-4273.	3.3	264
161	The Integrative Human Microbiome Project: Dynamic Analysis of Microbiome-Host Omics Profiles during Periods of Human Health and Disease. Cell Host and Microbe, 2014, 16, 276-289.	5.1	415
162	The Microbiome and Disease: Reviewing the Links between the Oral Microbiome, Aging, and Alzheimer's Disease. Journal of Alzheimer's Disease, 2014, 43, 725-738.	1,2	175
163	The importance of study design for detecting differentially abundant features in high-throughput experiments. Genome Biology, 2014, 15, 527.	3.8	13
164	Effect of <i>Lactobacillus rhamnosus </i> CGMCC1.3724 supplementation on weight loss and maintenance in obese men and women. British Journal of Nutrition, 2014, 111, 1507-1519.	1.2	272
165	Emerging science of the human microbiome. Gut Microbes, 2014, 5, 446-457.	4.3	46
166	Diagnostic metagenomics: potential applications to bacterial, viral and parasitic infections. Parasitology, 2014, 141, 1856-1862.	0.7	102
167	Kinetic model of acetate metabolism in healthy and hyperinsulinaemic humans. European Journal of Clinical Nutrition, 2014, 68, 1067-1071.	1.3	18
168	Reprograming of gut microbiome energy metabolism by the <i>FUT2</i> Crohn's disease risk polymorphism. ISME Journal, 2014, 8, 2193-2206.	4.4	182
169	Compositional dynamics of the human intestinal microbiota with aging: Implications for health. Journal of Nutrition, Health and Aging, 2014, 18, 773-786.	1.5	64
170	Intestinal microbiota in metabolic diseases. Gut Microbes, 2014, 5, 544-551.	4.3	170
171	Potential of fecal microbiota for earlyâ€stage detection of colorectal cancer. Molecular Systems Biology, 2014, 10, 766.	3.2	991

#	Article	IF	CITATIONS
172	The Amordad database engine for metagenomics. Bioinformatics, 2014, 30, 2949-2955.	1.8	8
173	Revealing the Bacterial Butyrate Synthesis Pathways by Analyzing (Meta)genomic Data. MBio, 2014, 5, e00889.	1.8	829
174	Metagenomic Data Utilization and Analysis (MEDUSA) and Construction of a Global Gut Microbial Gene Catalogue. PLoS Computational Biology, 2014, 10, e1003706.	1.5	55
175	Arsenic Exposure Perturbs the Gut Microbiome and Its Metabolic Profile in Mice: An Integrated Metagenomics and Metabolomics Analysis. Environmental Health Perspectives, 2014, 122, 284-291.	2.8	435
176	Systematic Analysis of the Association between Gut Flora and Obesity through High-Throughput Sequencing and Bioinformatics Approaches. BioMed Research International, 2014, 2014, 1-10.	0.9	91
177	Gut Microbioma Population: An Indicator Really Sensible to Any Change in Age, Diet, Metabolic Syndrome, and Life-Style. Mediators of Inflammation, 2014, 2014, 1-11.	1.4	57
178	Emergent Biosynthetic Capacity in Simple Microbial Communities. PLoS Computational Biology, 2014, 10, e1003695.	1.5	86
179	Applications of Next-Generation Sequencing Technologies to the Study of the Human Microbiome. Comprehensive Analytical Chemistry, 2014, , 75-106.	0.7	0
180	Lectin-Like Bacteriocins from Pseudomonas spp. Utilise D-Rhamnose Containing Lipopolysaccharide as a Cellular Receptor. PLoS Pathogens, 2014, 10, e1003898.	2.1	56
181	Helminth Colonization Is Associated with Increased Diversity of the Gut Microbiota. PLoS Neglected Tropical Diseases, 2014, 8, e2880.	1.3	353
182	Evidence for the Gut Microbiota Short-Chain Fatty Acids as Key Pathophysiological Molecules Improving Diabetes. Mediators of Inflammation, 2014, 2014, 1-9.	1.4	232
183	Bacterial Bile Metabolising Gene Abundance in Crohn's, Ulcerative Colitis and Type 2 Diabetes Metagenomes. PLoS ONE, 2014, 9, e115175.	1.1	118
184	Modulation of Gut Microbiota in the Management of Metabolic Disorders: The Prospects and Challenges. International Journal of Molecular Sciences, 2014, 15, 4158-4188.	1.8	95
185	Gut Microbes and Host Physiology: What Happens When You Host Billions of Guests?. Frontiers in Endocrinology, 2014, 5, 91.	1.5	25
186	Metabolic Modeling of CommonEscherichia coliStrains in Human Gut Microbiome. BioMed Research International, 2014, 2014, 1-11.	0.9	20
187	Metagenome-Wide Association of Microbial Determinants of Host Phenotype in Drosophila melanogaster. MBio, 2014, 5, e01631-14.	1.8	112
188	Intestinal epithelial MyD88 is a sensor switching host metabolism towards obesity according to nutritional status. Nature Communications, 2014, 5, 5648.	5.8	197
189	Carrot Juice Fermented with <i>Lactobacillus plantarum</i> NCU116 Ameliorates Type 2 Diabetes in Rats. Journal of Agricultural and Food Chemistry, 2014, 62, 11884-11891.	2.4	106

#	Article	IF	CITATIONS
190	Lung Microbiome for Clinicians. New Discoveries about Bugs in Healthy and Diseased Lungs. Annals of the American Thoracic Society, 2014, 11, 108-116.	1.5	117
191	Rural and urban microbiota. Gut Microbes, 2014, 5, 351-356.	4.3	34
192	Understanding the Apothecaries Within: The Necessity of a Systematic Approach for Defining the Chemical Output of the Human Microbiome. Clinical and Translational Science, 2014, 7, 74-81.	1.5	12
193	Host–microorganism interactions in lung diseases. Nature Reviews Immunology, 2014, 14, 827-835.	10.6	275
194	Galacto-oligosaccharides attenuate renal injury with microbiota modification. Physiological Reports, 2014, 2, e12029.	0.7	46
195	Gut microbiota, nutrient sensing and energy balance. Diabetes, Obesity and Metabolism, 2014, 16, 68-76.	2.2	83
196	Metabolically healthy and unhealthy obese – the 2013 <scp>S</scp> tock <scp>C</scp> onference report. Obesity Reviews, 2014, 15, 697-708.	3.1	149
197	Toward a Road Map for Global -Omics: A Primer on -Omic Technologies. American Journal of Epidemiology, 2014, 180, 1188-1195.	1.6	56
198	Functional gene arrays-based analysis of fecal microbiomes in patients with liver cirrhosis. BMC Genomics, 2014, 15, 753.	1.2	36
199	Host genetics and diet, but not immunoglobulin A expression, converge to shape compositional features of the gut microbiome in an advanced intercross population of mice. Genome Biology, 2014, 15, 552.	3.8	134
200	The gut microbiota and the metabolic health of the host. Current Opinion in Gastroenterology, 2014, 30, 120-127.	1.0	117
201	Effect of diet on the intestinal microbiota and its activity. Current Opinion in Gastroenterology, 2014, 30, 189-195.	1.0	74
202	Smoking Cessation Alters Intestinal Microbiota. Inflammatory Bowel Diseases, 2014, 20, 1496-1501.	0.9	142
203	Gut Dysbiosis and Detection of "Live Gut Bacteria―in Blood of Japanese Patients With Type 2 Diabetes. Diabetes Care, 2014, 37, 2343-2350.	4.3	377
204	Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Frontiers in Microbiology, 2014, 5, 190.	1.5	250
205	Dysbiotic Events in Gut Microbiota: Impact on Human Health. Nutrients, 2014, 6, 5786-5805.	1.7	169
206	Mediterranean Diet and Health: Food Effects on Gut Microbiota and Disease Control. International Journal of Molecular Sciences, 2014, 15, 11678-11699.	1.8	162
207	Exploring the influence of the gut microbiota and probiotics on health: a symposium report. British Journal of Nutrition, 2014, 112, S1-S18.	1.2	81

#	Article	IF	CITATIONS
208	The Gut Microbiota and Effects on Metabolism. , 2014, , 508-526.		4
209	Gut microbiota and metabolic syndrome. World Journal of Gastroenterology, 2014, 20, 16079.	1.4	405
210	Intestinal microbiota and type 2 diabetes: From mechanism insights to therapeutic perspective. World Journal of Gastroenterology, 2014, 20, 17737-17745.	1.4	143
211	The Microbiome and Development: A Mother's Perspective. Seminars in Reproductive Medicine, 2014, 32, 014-022.	0.5	64
212	Intestinal Microbial Variation May Predict Early Acute Rejection after Liver Transplantation in Rats. Transplantation, 2014, 98, 844-852.	0.5	82
213	High-fat diet alters gut microbiota physiology in mice. ISME Journal, 2014, 8, 295-308.	4.4	583
214	Effects of Fish Oil with a High Content of n-3 Polyunsaturated Fatty Acids on Mouse Gut Microbiota. Archives of Medical Research, 2014, 45, 195-202.	1.5	138
216	The Microbiome in Inflammatory Bowel Disease: Current Status and the Future Ahead. Gastroenterology, 2014, 146, 1489-1499.	0.6	1,374
217	Genomic and systems approaches to translational biomarker discovery in immunological diseases. Drug Discovery Today, 2014, 19, 133-139.	3.2	3
218	Interactions in the microbiome: communities of organisms and communities of genes. FEMS Microbiology Reviews, 2014, 38, 90-118.	3.9	174
219	Use of Whole Genome Shotgun Metagenomics: A Practical Guide for the Microbiome-Minded Physician Scientist. Seminars in Reproductive Medicine, 2014, 32, 005-013.	0.5	19
220	Probiotics, gut microbiota and health. Médecine Et Maladies Infectieuses, 2014, 44, 1-8.	5.1	290
221	Role of the Microbiome in Energy Regulation and Metabolism. Gastroenterology, 2014, 146, 1525-1533.	0.6	354
222	Extracting data from the muck: deriving biological insight from complex microbial communities and non-model organisms with next generation sequencing. Current Opinion in Biotechnology, 2014, 28, 103-110.	3.3	31
223	Gut microbiota-based translational biomarkers to prevent metabolic syndrome via nutritional modulation. FEMS Microbiology Ecology, 2014, 87, 303-314.	1.3	44
224	Role of "Western Diet―in Inflammatory Autoimmune Diseases. Current Allergy and Asthma Reports, 2014, 14, 404.	2.4	341
225	Beneficial modulation of the gut microbiota. FEBS Letters, 2014, 588, 4120-4130.	1.3	204
226	B Lymphocytes in obesity-related adipose tissue inflammation and insulin resistance. Cellular and Molecular Life Sciences, 2014, 71, 1033-1043.	2.4	123

#	Article	IF	Citations
227	Intestinal microbiome and digoxin inactivation: meal plan for digoxin users?. World Journal of Microbiology and Biotechnology, 2014, 30, 791-799.	1.7	8
228	Increased circulatory levels of lipopolysaccharide (LPS) and zonulin signify novel biomarkers of proinflammation in patients with type 2 diabetes. Molecular and Cellular Biochemistry, 2014, 388, 203-210.	1.4	260
229	Rational identification of diet-derived postbiotics for improving intestinal microbiota function. Current Opinion in Biotechnology, 2014, 26, 85-90.	3.3	65
230	FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature, 2014, 509, 183-188.	13.7	810
231	Role of the Microbiota in Immunity and Inflammation. Cell, 2014, 157, 121-141.	13.5	3,494
232	Beyond genetics. Influence of dietary factors and gut microbiota on type 1 diabetes. FEBS Letters, 2014, 588, 4234-4243.	1.3	66
233	Glucose metabolism: Focus on gut microbiota, the endocannabinoid system and beyond. Diabetes and Metabolism, 2014, 40, 246-257.	1.4	104
234	Compositional and Functional Features of the Gastrointestinal Microbiome and Their Effects on Human Health. Gastroenterology, 2014, 146, 1449-1458.	0.6	386
235	Lactic Acid Bacteria., 2014,,.		29
236	Molecular mechanisms of ageing and related diseases. Clinical and Experimental Pharmacology and Physiology, 2014, 41, 445-458.	0.9	40
237	Influence of diet on gut microbiota, inflammation and type 2 diabetes mellitus. First experience with macrobiotic Maâ€Pi 2 diet. Diabetes/Metabolism Research and Reviews, 2014, 30, 48-54.	1.7	54
238	The Colon. Toxicologic Pathology, 2014, 42, 67-81.	0.9	30
239	Review article: fungal microbiota and digestive diseases. Alimentary Pharmacology and Therapeutics, 2014, 39, 751-766.	1.9	101
240	Metagenomic insights into the human gut resistome and the forces that shape it. BioEssays, 2014, 36, 316-329.	1.2	76
241	The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiology Reviews, 2014, 38, 996-1047.	3.9	923
242	The marriage of nutrigenomics with the microbiome: the case of infant-associated bifidobacteria and milk. American Journal of Clinical Nutrition, 2014, 99, 697S-703S.	2.2	36
243	Gut microbiota in older subjects: variation, health consequences and dietary intervention prospects. Proceedings of the Nutrition Society, 2014, 73, 441-451.	0.4	33
244	The microbiome: stress, health and disease. Mammalian Genome, 2014, 25, 49-74.	1.0	361

#	ARTICLE	IF	CITATIONS
245	Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet, The, 2014, 383, 1068-1083.	6.3	1,230
246	Systems genetics approaches to understand complex traits. Nature Reviews Genetics, 2014, 15, 34-48.	7.7	529
247	Gut microbiome and metabolic diseases. Seminars in Immunopathology, 2014, 36, 103-114.	2.8	121
248	The gut microbiome as novel cardio-metabolic target: the time has come!. European Heart Journal, 2014, 35, 883-887.	1.0	67
249	Arabinoxylans and human health. Food Hydrocolloids, 2014, 42, 239-243.	5.6	151
250	AmphoraNet: The webserver implementation of the AMPHORA2 metagenomic workflow suite. Gene, 2014, 533, 538-540.	1.0	98
251	Impact of Diet on Human Intestinal Microbiota and Health. Annual Review of Food Science and Technology, 2014, 5, 239-262.	5.1	173
252	Human Genetics Shape the Gut Microbiome. Cell, 2014, 159, 789-799.	13.5	2,523
253	Bile Acid Signaling in Metabolic Disease and Drug Therapy. Pharmacological Reviews, 2014, 66, 948-983.	7.1	680
254	High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model. Nature Communications, 2014, 5, 3889.	5.8	361
255	Intestinal microbiota and faecal transplantation as treatment modality for insulin resistance and type 2 diabetes mellitus. Clinical and Experimental Immunology, 2014, 177, 24-29.	1.1	85
256	Symposium Session Summaries. Pediatric Pulmonology, 2014, 49, S116-S215.	1.0	1
257	The Effects of Gastrointestinal Surgery on Gut Microbiota: Potential Contribution to Improved Insulin Sensitivity. Current Atherosclerosis Reports, 2014, 16, 454.	2.0	68
258	GeoChip 4: a functional geneâ€arrayâ€based highâ€throughput environmental technology for microbial community analysis. Molecular Ecology Resources, 2014, 14, 914-928.	2.2	183
259	Causes of type 2 diabetes in China. Lancet Diabetes and Endocrinology, the, 2014, 2, 980-991.	5 . 5	137
260	Classification and quantification of bacteriophage taxa in human gut metagenomes. ISME Journal, 2014, 8, 1391-1402.	4.4	127
261	Gut Microbiome and Liver Diseases. Journal of Clinical and Experimental Hepatology, 2014, 4, 267-268.	0.4	2
262	Combination of Metagenomics and Culture-Based Methods to Study the Interaction Between Ochratoxin A and Gut Microbiota. Toxicological Sciences, 2014, 141, 314-323.	1.4	80

#	Article	IF	CITATIONS
263	Self-organizing approach for meta-genomes. Computational Biology and Chemistry, 2014, 53, 118-124.	1.1	2
264	Dynamics of Gut Microbiota in Autoimmune Lupus. Applied and Environmental Microbiology, 2014, 80, 7551-7560.	1.4	250
265	Inhalable Microorganisms in Beijing's PM _{2.5} and PM ₁₀ Pollutants during a Severe Smog Event. Environmental Science & Environme	4.6	578
266	Compositional dynamics of the human intestinal microbiota with aging: Implications for health. Journal of Nutrition, Health and Aging, 0, , .	1.5	5
267	The Gut Microbiome, Kidney Disease, and Targeted Interventions. Journal of the American Society of Nephrology: JASN, 2014, 25, 657-670.	3.0	553
268	The weighty costs of non-caloric sweeteners. Nature, 2014, 514, 176-177.	13.7	17
269	Microbial Determinants of Biochemical Individuality and Their Impact on Toxicology and Pharmacology. Cell Metabolism, 2014, 20, 761-768.	7.2	53
270	Finding the Missing Links among Metabolites, Microbes, and the Host. Immunity, 2014, 40, 824-832.	6.6	256
271	The Sweet Tooth of Bacteria: Common Themes in Bacterial Glycoconjugates. Microbiology and Molecular Biology Reviews, 2014, 78, 372-417.	2.9	122
272	Effect of Metformin on Metabolic Improvement and Gut Microbiota. Applied and Environmental Microbiology, 2014, 80, 5935-5943.	1.4	322
273	Chemoprevention in Gastrointestinal Physiology and Disease. Natural products and microbiome. American Journal of Physiology - Renal Physiology, 2014, 307, G1-G15.	1.6	49
274	Inflammatory Bowel Disease as a Model for Translating the Microbiome. Immunity, 2014, 40, 843-854.	6.6	284
275	Microbial Modulation of Insulin Sensitivity. Cell Metabolism, 2014, 20, 753-760.	7.2	215
276	Alterations of the human gut microbiome in liver cirrhosis. Nature, 2014, 513, 59-64.	13.7	1,782
277	Gut microbiota and obesity: Role in aetiology and potential therapeutic target. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2014, 28, 585-597.	1.0	92
278	Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature, 2014, 514, 181-186.	13.7	1,529
279	Gut microbiota, the pharmabiotics they produce and host health. Proceedings of the Nutrition Society, 2014, 73, 477-489.	0.4	126
280	Foxp3+ T Cells Regulate Immunoglobulin A Selection and Facilitate Diversification of Bacterial Species Responsible for Immune Homeostasis. Immunity, 2014, 41, 152-165.	6.6	431

#	Article	IF	CITATIONS
281	Lipopolysaccharide binding protein, obesity status and incidence of metabolic syndrome: a prospective study among middle-aged and older Chinese. Diabetologia, 2014, 57, 1834-1841.	2.9	60
282	The effects of the microbiota on the host immune system. Autoimmunity, 2014, 47, 494-504.	1.2	43
283	Functional Metabolic Map of Faecalibacterium prausnitzii, a Beneficial Human Gut Microbe. Journal of Bacteriology, 2014, 196, 3289-3302.	1.0	173
284	The gut microbiome - a new target for understanding, diagnosing and treating disease. Archives of Public Health, $2014, 72, \dots$	1.0	2
285	Effects of selective digestive decontamination (SDD) on the gut resistome. Journal of Antimicrobial Chemotherapy, 2014, 69, 2215-2223.	1.3	90
286	Microbes, Microbiota, and Colon Cancer. Cell Host and Microbe, 2014, 15, 317-328.	5.1	659
287	The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology and Hepatology, 2014, 11, 506-514.	8.2	5,773
288	Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nature Biotechnology, 2014, 32, 822-828.	9.4	909
289	An integrated catalog of reference genes in the human gut microbiome. Nature Biotechnology, 2014, 32, 834-841.	9.4	1,664
290	An increase in the <i>Akkermansia </i> spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut, 2014, 63, 727-735.	6.1	1,288
292	On the potential of acarbose to reduce cardiovascular disease. Cardiovascular Diabetology, 2014, 13, 81.	2.7	42
293	Genome-scale metabolic reconstructions of Bifidobacterium adolescentis L2-32 and Faecalibacterium prausnitzii A2-165 and their interaction. BMC Systems Biology, 2014, 8, 41.	3.0	88
294	The antidiabetic gutsy role of metformin uncovered?. Gut, 2014, 63, 706-707.	6.1	21
295	Exploration and retrieval of whole-metagenome sequencing samples. Bioinformatics, 2014, 30, 2471-2479.	1.8	29
296	Synbiotic <i>Lactobacillus acidophilus</i> NCFM and cellobiose does not affect human gut bacterial diversity but increases abundance of lactobacilli, bifidobacteria and branched-chain fatty acids: a randomized, double-blinded cross-over trial. FEMS Microbiology Ecology, 2014, 90, 225-236.	1.3	40
297	Mapping the Inner Workings of the Microbiome: Genomic- and Metagenomic-Based Study of Metabolism and Metabolic Interactions in the Human Microbiome. Cell Metabolism, 2014, 20, 742-752.	7.2	76
298	Strain/species identification in metagenomes using genome-specific markers. Nucleic Acids Research, 2014, 42, e67-e67.	6.5	72
299	The human microbiome and bile acid metabolism: dysbiosis, dysmetabolism, disease and intervention. Expert Opinion on Biological Therapy, 2014, 14, 467-482.	1.4	116

#	Article	IF	CITATIONS
300	Biogeography and individuality shape function in the human skin metagenome. Nature, 2014, 514, 59-64.	13.7	869
301	The human gut microbiota: a dynamic interplay with the host from birth to senescence settled during childhood. Pediatric Research, 2014, 76, 2-10.	1.1	194
302	Predictive modeling of gingivitis severity and susceptibility via oral microbiota. ISME Journal, 2014, 8, 1768-1780.	4.4	118
303	Correlation between the human fecal microbiota and depression. Neurogastroenterology and Motility, 2014, 26, 1155-1162.	1.6	765
304	Microbiota and diabetes: an evolving relationship. Gut, 2014, 63, 1513-1521.	6.1	631
305	Metabolomics in diabetes. Clinica Chimica Acta, 2014, 429, 106-110.	0.5	74
306	Quinoa extract enriched in 20-hydroxyecdysone affects energy homeostasis and intestinal fat absorption in mice fed a high-fat diet. Physiology and Behavior, 2014, 128, 226-231.	1.0	48
308	Designing future prebiotic fiber to target metabolic syndrome. Nutrition, 2014, 30, 497-502.	1.1	46
309	Metaproteomics: Extracting and Mining Proteome Information to Characterize Metabolic Activities in Microbial Communities. Current Protocols in Bioinformatics, 2014, 46, 13.26.1-14.	25.8	18
310	Exercise and associated dietary extremes impact on gut microbial diversity. Gut, 2014, 63, 1913-1920.	6.1	987
311	Gut T _{FH} and IgA: key players for regulation of bacterial communities and immune homeostasis. Immunology and Cell Biology, 2014, 92, 49-56.	1.0	91
312	Rapidly expanding knowledge on the role of the gut microbiome in health and disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1981-1992.	1.8	141
314	Elucidating the interactions between the human gut microbiota and its host through metabolic modeling. Frontiers in Genetics, 2014, 5, 86.	1.1	72
315	Effect of probiotic administration on the intestinal microbiota, current knowledge and potential applications. World Journal of Gastroenterology, 2014, 20, 16518.	1.4	80
316	Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health. World Journal of Gastroenterology, 2014, 20, 16498.	1.4	89
317	Role of gut microbiota and Toll-like receptors in nonalcoholic fatty liver disease. World Journal of Gastroenterology, 2014, 20, 7381.	1.4	296
318	The Role of the gut Microbiome in the Pathogenesis and Treatment of Obesity. Global Advances in Health and Medicine, 2014, 3, 44-57.	0.7	43
319	A novel cobiotic containing a prebiotic and an antioxidant augments the glucose control and gastrointestinal tolerability of metformin: a case report. Beneficial Microbes, 2014, 5, 29-32.	1.0	33

#	Article	IF	CITATIONS
320	Intestinal Colonization by a <i>Lachnospiraceae</i> Bacterium Contributes to the Development of Diabetes in Obese Mice. Microbes and Environments, 2014, 29, 427-430.	0.7	322
322	Antimicrobial Peptides and Gut Microbiota in Homeostasis and Pathology. , 2014, , 171-218.		0
323	Infl uence of the Intestinal Microbiota on the Critically. , 2014, , 301-314.		1
325	Gene finding in metatranscriptomic sequences. BMC Bioinformatics, 2014, 15, S8.	1.2	27
326	Microbial abundance patterns of host obesity inferred by the structural incorporation of association measures into interpretable classifiers. , 2014 , , .		1
327	Dietary modulation of the gut microbiota – a randomised controlled trial in obese postmenopausal women. British Journal of Nutrition, 2015, 114, 406-417.	1.2	131
328	Metagenome-wide Association Studies Potentiate Precision Medicine for Rheumatoid Arthritis. Genomics, Proteomics and Bioinformatics, 2015, 13, 208-209.	3.0	1
329	Effect of the Gut Microbiota on Obesity and Its Underlying Mechanisms: an Update. Biomedical and Environmental Sciences, 2015, 28, 839-847.	0.2	8
330	Approaches and developments in studying the human microbiome network. Israel Journal of Ecology and Evolution, 2015, 61, 90-94.	0.2	1
331	The "Big Bang―in obese fat: Events initiating obesity―induced adipose tissue inflammation. European Journal of Immunology, 2015, 45, 2446-2456.	1.6	262
332	Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis). International Journal of Molecular Medicine, 2015, 36, 607-626.	1.8	18
333	The stool microbiota of insulin resistant women with recent gestational diabetes, a high risk group for type 2 diabetes. Scientific Reports, 2015, 5, 13212.	1.6	105
334	Influence of H7N9 virus infection and associated treatment on human gut microbiota. Scientific Reports, 2015, 5, 14771.	1.6	88
335	Intestinal Immunity and Gut Microbiota as Therapeutic Targets for Preventing Atherosclerotic Cardiovascular Diseases. Circulation Journal, 2015, 79, 1882-1890.	0.7	57
336	Sample storage conditions significantly influence faecal microbiome profiles. Scientific Reports, 2015, 5, 16350.	1.6	350
337	Production of butyrate from lysine and the Amadori product fructoselysine by a human gut commensal. Nature Communications, 2015, 6, 10062.	5.8	199
338	Microorganisms in Fermented Foods and Beverages. , 2015, , 16-125.		3
339	Differential responses of gut microbiota to the same prebiotic formula in oligotrophic and eutrophic batch fermentation systems. Scientific Reports, 2015, 5, 13469.	1.6	29

#	Article	IF	CITATIONS
340	Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats. Scientific Reports, 2015, 5, 14405.	1.6	499
341	Investigation of Probiotic Functionalities by Proteomics. , 2015, , 123-146.		0
342	Immunometabolism of obesity and diabetes: microbiota link compartmentalized immunity in the gut to metabolic tissue inflammation. Clinical Science, 2015, 129, 1083-1096.	1.8	75
343	Dysbiosis of the gut microbiota in disease. Microbial Ecology in Health and Disease, 2015, 26, 26191.	3.8	949
344	Gut microbe-derived extracellular vesicles induce insulin resistance, thereby impairing glucose metabolism in skeletal muscle. Scientific Reports, 2015, 5, 15878.	1.6	140
345	Effects of microcystin-LR on gut microflora in different gut regions of mice. Journal of Toxicological Sciences, 2015, 40, 485-494.	0.7	28
348	Gut Microbiota Alterations can predict Hospitalizations in Cirrhosis Independent of Diabetes Mellitus. Scientific Reports, 2015, 5, 18559.	1.6	74
349	The gut microbiota modulates host amino acid and glutathione metabolism in mice. Molecular Systems Biology, 2015, 11, 834.	3.2	291
351	Fecal microbiota transplantation broadening its application beyond intestinal disorders. World Journal of Gastroenterology, 2015, 21, 102.	1.4	190
353	Confusion about the species richness of human gut microbiota. Beneficial Microbes, 2015, 6, 657-659.	1.0	18
354	Reevaluating the hype: four bacterial metabolites under scrutiny. European Journal of Microbiology and Immunology, 2015, 5, 1-13.	1.5	6
355	The efficacy and safety of probiotics intervention in preventing conversion of impaired glucose tolerance to diabetes: study protocol for a randomized, double-blinded, placebo controlled trial of the Probiotics Prevention Diabetes Programme (PPDP). BMC Endocrine Disorders, 2015, 15, 74.	0.9	7
356	Phenotypic differentiation of gastrointestinal microbes is reflected in their encoded metabolic repertoires. Microbiome, 2015, 3, 55.	4.9	41
357	The players may change but the game remains: network analyses of ruminal microbiomes suggest taxonomic differences mask functional similarity. Nucleic Acids Research, 2015, 43, gkv973.	6.5	98
358	Interactions between the intestinal microbiota and bile acids in gallstones patients. Environmental Microbiology Reports, 2015, 7, 874-880.	1.0	142
359	DectICO: an alignment-free supervised metagenomic classification method based on feature extraction and dynamic selection. BMC Bioinformatics, 2015, 16, 323.	1.2	9
360	Alignment behaviors of short peptides provide a roadmap for functional profiling of metagenomic data. BMC Genomics, 2015, 16, 1080.	1.2	1
361	Gut microbiota and allogeneic transplantation. Journal of Translational Medicine, 2015, 13, 275.	1.8	71

#	Article	IF	Citations
362	Is there a value for probiotic supplements in gestational diabetes mellitus? A randomized clinical trial. Journal of Health, Population and Nutrition, 2015, 33, 25.	0.7	98
363	Dietary Microbial Metabolites, Short-chain Fatty Acids and Host Energy Regulation. Journal of Lipid Nutrition, 2015, 24, 33-40.	0.1	0
364	Gut metabolites and bacterial community networks during a pilot intervention study with flaxseeds in healthy adult men. Molecular Nutrition and Food Research, 2015, 59, 1614-1628.	1.5	95
365	Family history of type 2 diabetes increases the risk of both obesity and its complications: is type 2 diabetes a disease of inappropriate lipid storage?. Journal of Internal Medicine, 2015, 277, 540-551.	2.7	67
366	The role of polydextrose in body weight control and glucose regulation. Current Opinion in Clinical Nutrition and Metabolic Care, 2015, 18, 395-400.	1.3	28
367	Ecobiotherapy Rich in Firmicutes Decreases Susceptibility to Colitis in a Humanized Gnotobiotic Mouse Model. Inflammatory Bowel Diseases, 2015, 21, 1883-1893.	0.9	83
368	A survey on the developmental intestinal microbiota research in <scp>C</scp> hina: The history, funding, and frontiers of gut bacteria. Journal of Digestive Diseases, 2015, 16, 421-430.	0.7	3
369	SIVâ€infectionâ€driven changes of pattern recognition receptor expression in mesenteric lymph nodes and gut microbiota dysbiosis. Journal of Medical Primatology, 2015, 44, 241-252.	0.3	10
370	Targeting fatty acid metabolism to improve glucose metabolism. Obesity Reviews, 2015, 16, 715-757.	3.1	113
371	Influence of the human intestinal microbiome on obesity and metabolic dysfunction. Current Opinion in Pediatrics, 2015, 27, 496-501.	1.0	46
372	Gut microbiota and Ma-Pi 2 macrobiotic diet in the treatment of type 2 diabetes. World Journal of Diabetes, 2015, 6, 403.	1.3	18
373	Composition Diversity and Abundance of Gut Microbiome in Prediabetes and Type 2 Diabetes. Journal of Diabetes and Obesity, 2015, 2, 108-114.	0.2	159
374	Gut Microbiota as Potential Orchestrators of Irritable Bowel Syndrome. Gut and Liver, 2015, 9, 318-31.	1.4	114
375	Intrinsic association between diet and the gut microbiome: current evidence. Nutrition and Dietary Supplements, 2015, 7, 69.	0.7	11
376	The Gut Microflora and its Metabolites Regulate the Molecular Crosstalk between Diabetes and Neurodegeneration. Journal of Diabetes & Metabolism, 2015, 06, .	0.2	2
377	Microorganismos probi $ ilde{A}^3$ ticos y salud. Ars Pharmaceutica, 2015, 56, 45-59.	0.1	4
378	Impact of Cadmium Exposure on the Association between Lipopolysaccharide and Metabolic Syndrome. International Journal of Environmental Research and Public Health, 2015, 12, 11396-11409.	1.2	14
379	Metagenomics: A New Way to Illustrate the Crosstalk between Infectious Diseases and Host Microbiome. International Journal of Molecular Sciences, 2015, 16, 26263-26279.	1.8	28

#	Article	IF	Citations
380	Hydrogen Sulfide in Physiology and Diseases of the Digestive Tract. Microorganisms, 2015, 3, 866-889.	1.6	176
381	Metabolic and Microbial Modulation of the Large Intestine Ecosystem by Non-Absorbed Diet Phenolic Compounds: A Review. Molecules, 2015, 20, 17429-17468.	1.7	174
382	From next-generation sequencing to systematic modeling of the gut microbiome. Frontiers in Genetics, 2015, 6, 219.	1.1	99
383	Partial Least Squares Regression Can Aid in Detecting Differential Abundance of Multiple Features in Sets of Metagenomic Samples. Frontiers in Genetics, 2015, 6, 350.	1.1	3
384	iNKT and MAIT Cell Alterations in Diabetes. Frontiers in Immunology, 2015, 6, 341.	2.2	42
385	Metabolomic insights into the intricate gut microbial–host interaction in the development of obesity and type 2 diabetes. Frontiers in Microbiology, 2015, 6, 1151.	1.5	108
386	Assessment and Selection of Competing Models for Zero-Inflated Microbiome Data. PLoS ONE, 2015, 10, e0129606.	1.1	134
387	Inter-Individual Differences in the Oral Bacteriome Are Greater than Intra-Day Fluctuations in Individuals. PLoS ONE, 2015, 10, e0131607.	1.1	47
388	Bacterial Flora Changes in Conjunctiva of Rats with Streptozotocin-Induced Type I Diabetes. PLoS ONE, 2015, 10, e0133021.	1.1	18
389	The Influence of the Autoimmunity-Associated Ancestral HLA Haplotype AH8.1 on the Human Gut Microbiota: A Cross-Sectional Study. PLoS ONE, 2015, 10, e0133804.	1.1	24
390	Lactobacillus casei Shirota Supplementation Does Not Restore Gut Microbiota Composition and Gut Barrier in Metabolic Syndrome: A Randomized Pilot Study. PLoS ONE, 2015, 10, e0141399.	1.1	45
391	Effect of Antibiotics on Gut Microbiota, Gut Hormones and Glucose Metabolism. PLoS ONE, 2015, 10, e0142352.	1.1	85
392	Evaluating DNA Extraction Methods for Community Profiling of Pig Hindgut Microbial Community. PLoS ONE, 2015, 10, e0142720.	1.1	8
393	Selective Spectrum Antibiotic Modulation of the Gut Microbiome in Obesity and Diabetes Rodent Models. PLoS ONE, 2015, 10, e0145499.	1.1	39
394	The Dynamic Distribution of Porcine Microbiota across Different Ages and Gastrointestinal Tract Segments. PLoS ONE, 2015, 10, e0117441.	1.1	349
395	Xylooligosaccharide supplementation alters gut bacteria in both healthy and prediabetic adults: a pilot study. Frontiers in Physiology, 2015, 6, 216.	1.3	117
396	The Placental Microbiome Varies in Association with Low Birth Weight in Full-Term Neonates. Nutrients, 2015, 7, 6924-6937.	1.7	153
397	Gut Microbiota and Metabolic Disorders. Diabetes and Metabolism Journal, 2015, 39, 198.	1.8	182

#	Article	IF	CITATIONS
398	The Role of Intestinal Microbiota in Acute Graft-versus-Host Disease. Journal of Immunology Research, 2015, 2015, 1-9.	0.9	26
399	The unfolded protein response, inflammation, oscillators, and disease: a systems biology approach. Endoplasmic Reticulum Stress in Diseases, 2015, 2, .	0.2	3
400	The Multifaceted Role of Commensal Microbiota in Homeostasis and Gastrointestinal Diseases. Journal of Immunology Research, 2015, 2015, 1-14.	0.9	33
401	The Consumption of Bicarbonate-Rich Mineral Water Improves Glycemic Control. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-10.	0.5	42
402	Intestinal Microbiota as Modulators of the Immune System and Neuroimmune System: Impact on the Host Health and Homeostasis. Journal of Immunology Research, 2015, 2015, 1-14.	0.9	88
403	Effect of <i>Rhizoma coptidis </i> (Huang Lian) on Treating Diabetes Mellitus. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-10.	0.5	38
404	Beyond gut microbiota: understanding obesity and type 2 diabetes. Hormones, 2015, 14, 358-69.	0.9	25
405	Diversity in gut bacterial community of school-age children in Asia. Scientific Reports, 2015, 5, 8397.	1.6	221
406	Fermented Green Tea Extract Alleviates Obesity and Related Complications and Alters Gut Microbiota Composition in Diet-Induced Obese Mice. Journal of Medicinal Food, 2015, 18, 549-556.	0.8	113
407	A robust approach for identifying differentially abundant features in metagenomic samples. Bioinformatics, 2015, 31, 2269-2275.	1.8	50
408	Application of metagenomics in the human gut microbiome. World Journal of Gastroenterology, 2015, 21, 803.	1.4	292
409	Multiscale analysis of the murine intestine for modeling human diseases. Integrative Biology (United) Tj ${\sf ETQq1}$	1 0.784314	rgBT /Overl
410	Physiological mechanisms by which non-nutritive sweeteners may impact body weight and metabolism. Physiology and Behavior, 2015, 152, 381-388.	1.0	98
411	The Mucosal Microbiome., 2015,, 63-77.		2
412	The demographic determinants of human microbiome health. Trends in Microbiology, 2015, 23, 134-141.	3.5	17
413	Addition of a Gastrointestinal Microbiome Modulator to Metformin Improves Metformin Tolerance and Fasting Glucose Levels. Journal of Diabetes Science and Technology, 2015, 9, 808-814.	1.3	61
414	The effect of past antibiotic exposure on diabetes risk. European Journal of Endocrinology, 2015, 172, 639-648.	1.9	131
415	The human microbiome in hematopoiesis and hematologic disorders. Blood, 2015, 126, 311-318.	0.6	66

#	Article	IF	CITATIONS
416	New insight into the gut microbiome through metagenomics. Advances in Genomics and Genetics, 0 , , 77 .	0.8	10
417	Historical perspective: gut dysbiosis and hypertension. Physiological Genomics, 2015, 47, 443-446.	1.0	27
419	Fecal Bacterial Composition of the Endangered Yangtze Finless Porpoises Living Under Captive and Semi-natural Conditions. Current Microbiology, 2016, 72, 306-14.	1.0	21
420	Subtractive assembly for comparative metagenomics, and its application to type 2 diabetes metagenomes. Genome Biology, 2015, 16, 243.	3.8	11
421	In silico identification of bacteriocin gene clusters in the gastrointestinal tract, based on the Human Microbiome Project's reference genome database. BMC Microbiology, 2015, 15, 183.	1.3	112
422	A Molecular-Level Landscape of Diet-Gut Microbiome Interactions: Toward Dietary Interventions Targeting Bacterial Genes. MBio, 2015, 6, e01263-15.	1.8	33
423	Biochemical identification of the catalytic residues of a glycoside hydrolase family 120 βâ€xylosidase, involved in xylooligosaccharide metabolisation by gut bacteria. FEBS Letters, 2015, 589, 3098-3106.	1.3	4
424	Fecal Microbiota Characteristics of Patients with Colorectal Adenoma Detected by Screening: A Population-based Study. EBioMedicine, 2015, 2, 597-603.	2.7	59
425	Pathogenic Microorganisms and Pancreatic Cancer. Gastrointestinal Tumors, 2015, 2, 41-47.	0.3	31
426	The Role of Integrated Omics in Elucidating the Gut Microbiota Health Potentials. Microbiology Monographs, 2015, , 73-100.	0.3	2
428	High-Throughput Sequencing as a Tool for Exploring the Human Microbiome., 2015,, 55-66.		3
429	Computational Tools for Taxonomic Microbiome Profiling of Shotgun Metagenomes. , 2015, , 67-80.		5
430	Nutrients, Foods, and Colorectal Cancer Prevention. Gastroenterology, 2015, 148, 1244-1260.e16.	0.6	466
431	Bacteroides. , 2015, , 917-944.		6
432	A phylo-functional core of gut microbiota in healthy young Chinese cohorts across lifestyles, geography and ethnicities. ISME Journal, 2015, 9, 1979-1990.	4.4	339
433	Stability of Gut Enterotypes in Korean Monozygotic Twins and Their Association with Biomarkers and Diet. Scientific Reports, 2014, 4, 7348.	1.6	124
434	Dynamics of Infant Gut Microbiota Are Influenced by Delivery Mode and Gestational Duration and Are Associated with Subsequent Adiposity. MBio, 2015, 6, .	1.8	271
435	Impact of commensal microbiota on the host pathophysiology: focusing on immunity and inflammation. Seminars in Immunopathology, 2015, 37, 1-3.	2.8	14

#	Article	IF	CITATIONS
437	High-Throughput Metagenomic Technologies for Complex Microbial Community Analysis: Open and Closed Formats. MBio, 2015, 6, .	1.8	357
438	Extensive Strain-Level Copy-Number Variation across Human Gut Microbiome Species. Cell, 2015, 160, 583-594.	13.5	208
439	Disease-Specific Alterations in the Enteric Virome in Inflammatory Bowel Disease. Cell, 2015, 160, 447-460.	13.5	1,036
440	The role of gut microbiota in the development of type 1, type 2 diabetes mellitus and obesity. Reviews in Endocrine and Metabolic Disorders, 2015, 16, 55-65.	2.6	207
441	How informative is the mouse for human gut microbiota research?. DMM Disease Models and Mechanisms, 2015, 8, 1-16.	1.2	990
442	Structural modulation of gut microbiota during alleviation of type 2 diabetes with a Chinese herbal formula. ISME Journal, 2015, 9, 552-562.	4.4	362
443	Metabonomics and Gut Microbiota in Nutrition and Disease. Molecular and Integrative Toxicology, 2015, , .	0.5	5
444	Red Ginseng and Semen Coicis can improve the structure of gut microbiota and relieve the symptoms of ulcerative colitis. Journal of Ethnopharmacology, 2015, 162, 7-13.	2.0	90
445	An Apple a Day Keeps the Doctor Away – Inter-Relationship Between Apple Consumption, the Gut Microbiota and Cardiometabolic Disease Risk Reduction. , 2015, , 173-194.		9
446	Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS Microbiology Reviews, 2015, 39, 509-521.	3.9	439
447	Metabolic syndrome and nonalcoholic fatty liver disease: Is insulin resistance the link?. Molecular and Cellular Endocrinology, 2015, 418, 55-65.	1.6	244
448	Environmental genes and genomes: understanding the differences and challenges in the approaches and software for their analyses. Briefings in Bioinformatics, 2015, 16, 745-758.	3.2	66
449	Dietâ€induced obesity causes metabolic impairment independent of alterations in gut barrier integrity. Molecular Nutrition and Food Research, 2015, 59, 968-978.	1.5	31
450	Biogeography of the Intestinal Mucosal and Lumenal Microbiome in the Rhesus Macaque. Cell Host and Microbe, 2015, 17, 385-391.	5.1	273
451	A new era in palaeomicrobiology: prospects for ancient dental calculus as a long-term record of the human oral microbiome. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130376.	1.8	203
452	Host genetic determinants of microbiota-dependent nutrition revealed by genome-wide analysis of Drosophila melanogaster. Nature Communications, 2015, 6, 6312.	5.8	100
453	Insights from 20Âyears of bacterial genome sequencing. Functional and Integrative Genomics, 2015, 15, 141-161.	1.4	580
454	Side-to-Side Jejunoileal Bypass Induces Better Glucose-Lowering Effect than End-to-Side Jejunoileal Bypass on Nonobese Diabetic Rats. Obesity Surgery, 2015, 25, 1458-1467.	1.1	9

#	Article	IF	Citations
455	Gut microbiome development along the colorectal adenoma–carcinoma sequence. Nature Communications, 2015, 6, 6528.	5.8	1,062
456	Dietary effects on human gut microbiome diversity. British Journal of Nutrition, 2015, 113, S1-S5.	1.2	350
457	Intake of <i>Lactobacillus reuteri</i> Improves Incretin and Insulin Secretion in Glucose-Tolerant Humans: A Proof of Concept. Diabetes Care, 2015, 38, 1827-1834.	4.3	194
458	Specific gut microbiota features and metabolic markers in postmenopausal women with obesity. Nutrition and Diabetes, 2015, 5, e159-e159.	1.5	206
459	Antibiotic-induced imbalances in gut microbiota aggravates cholesterol accumulation and liver injuries in rats fed a high-cholesterol diet. Applied Microbiology and Biotechnology, 2015, 99, 9111-9122.	1.7	25
460	Significant differences in fecal microbiota are associated with various stages of glucose tolerance in African American male veterans. Translational Research, 2015, 166, 401-411.	2.2	59
461	Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples. Science, 2015, 349, 1101-1106.	6.0	382
462	Roux-en-Y Gastric Bypass and Vertical Banded Gastroplasty Induce Long-Term Changes on the Human Gut Microbiome Contributing to Fat Mass Regulation. Cell Metabolism, 2015, 22, 228-238.	7.2	638
463	Hydrogen gas production is associated with reduced interleukin- $1^{\hat{1}^2}$ mRNA in peripheral blood after a single dose of acarbose in Japanese type 2 diabetic patients. European Journal of Pharmacology, 2015, 762, 96-101.	1.7	15
464	Metagenomic Surveys of Gut Microbiota. Genomics, Proteomics and Bioinformatics, 2015, 13, 148-158.	3.0	76
465	Listening to Our Gut: Contribution of Gut Microbiota and Cardiovascular Risk in Diabetes Pathogenesis. Current Diabetes Reports, 2015, 15, 63.	1.7	23
466	The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nature Medicine, 2015, 21, 895-905.	15.2	1,306
467	Transmissible microbial and metabolomic remodeling by soluble dietary fiber improves metabolic homeostasis. Scientific Reports, 2015, 5, 10604.	1.6	77
468	Gut microorganisms as promising targets for the management of type 2 diabetes. Diabetologia, 2015, 58, 2206-2217.	2.9	220
469	Nutritional systems biology of type 2 diabetes. Genes and Nutrition, 2015, 10, 481.	1.2	26
470	The microbiome at the pulmonary alveolar niche and its role in Mycobacterium tuberculosis infection. Tuberculosis, 2015, 95, 651-658.	0.8	51
471	The dormant blood microbiome in chronic, inflammatory diseases. FEMS Microbiology Reviews, 2015, 39, 567-591.	3.9	362
472	Metabolome progression during early gut microbial colonization of gnotobiotic mice. Scientific Reports, 2015, 5, 11589.	1.6	29

#	Article	IF	CITATIONS
473	About the gut microbiome as a pharmacological target in atherosclerosis. European Journal of Pharmacology, 2015, 763, 75-78.	1.7	11
474	Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent. American Journal of Physiology - Renal Physiology, 2015, 308, G840-G851.	1.6	249
475	The New Science of Metagenomics and the Challenges of Its Use in Both Developed and Developing Countries., 2015,, 191-216.		6
476	Diabetes as a risk factor for hepatic encephalopathy in cirrhosis patients. Journal of Hepatology, 2015, 63, 1133-1138.	1.8	54
477	Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends in Biotechnology, 2015, 33, 496-503.	4.9	2,453
478	Propionic acid and butyric acid inhibit lipolysis and de novo lipogenesis and increase insulin-stimulated glucose uptake in primary rat adipocytes. Adipocyte, 2015, 4, 81-88.	1.3	76
480	Rumen Microbiology: From Evolution to Revolution., 2015,,.		60
481	Investigation of the Association Between the Fecal Microbiota and Breast Cancer in Postmenopausal Women: a Population-Based Case-Control Pilot Study. Journal of the National Cancer Institute, 2015, 107, .	3.0	257
482	Microbe-based approaches for the treatment of diabetes. Diabetes Management, 2015, 5, 139-142.	0.5	1
483	Role of Microbiota in Regulating Host Lipid Metabolism and Disease Risk. Molecular and Integrative Toxicology, 2015, , 235-260.	0.5	1
484	The relationship between phenolic compounds from diet and microbiota: impact on human health. Food and Function, 2015, 6, 2424-2439.	2.1	180
486	Metabolic and metagenomic outcomes from early-life pulsed antibiotic treatment. Nature Communications, 2015, 6, 7486.	5.8	317
487	Gut microbiome, gut function, and probiotics: Implications for health. Indian Journal of Gastroenterology, 2015, 34, 93-107.	0.7	30
488	The Role of Microbial Amino Acid Metabolism in Host Metabolism. Nutrients, 2015, 7, 2930-2946.	1.7	656
489	A day in the life of the meta-organism: diurnal rhythms of the intestinal microbiome and its host. Gut Microbes, 2015, 6, 137-142.	4.3	59
490	Metabolomics – the complementary field in systems biology: a review on obesity and type 2 diabetes. Molecular BioSystems, 2015, 11, 1742-1774.	2.9	103
491	Role of Intestinal Microbiome in Lipid and Glucose Metabolism in Diabetes Mellitus. Clinical Therapeutics, 2015, 37, 1172-1177.	1.1	46
492	The role of the gut microbiota in metabolic health. FASEB Journal, 2015, 29, 3111-3123.	0.2	167

#	Article	IF	CITATIONS
494	Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences. Frontiers in Microbiology, 2015, 6, 130.	1.5	152
495	A multispecies Lactobacillus- and Bifidobacterium-containing probiotic mixture attenuates body weight gain and insulin resistance after a short-term challenge with a high-fat diet in C57/BL6J mice. PharmaNutrition, 2015, 3, 101-107.	0.8	16
496	Microbiome, Metagenomics, and High-Dimensional Compositional Data Analysis. Annual Review of Statistics and Its Application, 2015, 2, 73-94.	4.1	226
497	Impact of antibiotic exposure on the risk of colorectal cancer. Pharmacoepidemiology and Drug Safety, 2015, 24, 534-542.	0.9	73
498	Bacterial rose garden for metagenomic SNP-based phylogeny visualization. BioData Mining, 2015, 8, 10.	2.2	1
499	MUSiCC: a marker genes based framework for metagenomic normalization and accurate profiling of gene abundances in the microbiome. Genome Biology, 2015, 16, 53.	3.8	90
500	Average genome size estimation improves comparative metagenomics and sheds light on the functional ecology of the human microbiome. Genome Biology, 2015, 16, 51.	3.8	241
501	The gut microbiome in cardio-metabolic health. Genome Medicine, 2015, 7, 33.	3.6	92
502	16S gut community of the Cameron County Hispanic Cohort. Microbiome, 2015, 3, 7.	4.9	46
503	Manipulation of the Quorum Sensing Signal Al-2 Affects the Antibiotic-Treated Gut Microbiota. Cell Reports, 2015, 10, 1861-1871.	2.9	313
504	Importance and Roles of Fiber in the Diet. , 2015, , 193-218.		2
505	Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host and Microbe, 2015, 17, 690-703.	5.1	2,276
506	Early-life risk factors for chronic nonrespiratory diseases. European Respiratory Journal, 2015, 45, 244-259.	3.1	13
507	Targeting gut microbiota as a possible therapy for diabetes. Nutrition Research, 2015, 35, 361-367.	1.3	106
508	Dysbiosis of Fungal Microbiota in the Intestinal Mucosa of Patients with Colorectal Adenomas. Scientific Reports, 2015, 5, 7980.	1.6	146
509	Nutri(meta)genetics and Cardiovascular Disease: Novel Concepts in the Interaction of Diet and Genomic Variation. Current Atherosclerosis Reports, 2015, 17, 505.	2.0	13
510	Gut Microbiota and Metabolic Diseases: From Pathogenesis to Therapeutic Perspective. Molecular and Integrative Toxicology, 2015, , 199-234.	0.5	7
511	Gut Dysbiosis Is Linked to Hypertension. Hypertension, 2015, 65, 1331-1340.	1.3	1,079

#	Article	IF	CITATIONS
512	Roles of Herbal Medicine in Modulating Gut Microbiota Associated with Health and Diseases. Molecular and Integrative Toxicology, 2015, , 185-197.	0.5	0
513	Non-caloric artificial sweeteners and the microbiome: findings and challenges. Gut Microbes, 2015, 6, 149-155.	4.3	152
514	Dietary Gut Microbial Metabolites, Short-chain Fatty Acids, and Host Metabolic Regulation. Nutrients, 2015, 7, 2839-2849.	1.7	674
515	The Perinatal Microbiome and Pregnancy: Moving Beyond the Vaginal Microbiome. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a023051-a023051.	2.9	101
516	Functional Impacts of the Intestinal Microbiome in the Pathogenesis of Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2015, 21, 139-153.	0.9	112
517	The immunity–diet–microbiota axis in the development of metabolic syndrome. Current Opinion in Lipidology, 2015, 26, 73-81.	1.2	41
518	Food sources of fat may clarify the inconsistent role of dietary fat intake for incidence of type 2 diabetes. American Journal of Clinical Nutrition, 2015, 101, 1065-1080.	2.2	139
520	Microbiota Regulation of the Mammalian Gut–Brain Axis. Advances in Applied Microbiology, 2015, 91, 1-62.	1.3	207
521	High Calorie Diet and the Human Brain. , 2015, , .		10
522	New mechanisms of metformin action: Focusing on mitochondria and the gut. Journal of Diabetes Investigation, 2015, 6, 600-609.	1.1	133
523	Gut Microbiome and Obesity: A Plausible Explanation for Obesity. Current Obesity Reports, 2015, 4, 250-261.	3.5	154
524	The human gut microbiome, a taxonomic conundrum. Systematic and Applied Microbiology, 2015, 38, 276-286.	1.2	113
525	Translational value of animal models of obesityâ€"Focus on dogs and cats. European Journal of Pharmacology, 2015, 759, 240-252.	1.7	36
526	Subchronic Exposure of Mice to Cadmium Perturbs Their Hepatic Energy Metabolism and Gut Microbiome. Chemical Research in Toxicology, 2015, 28, 2000-2009.	1.7	174
527	A catalog of the mouse gut metagenome. Nature Biotechnology, 2015, 33, 1103-1108.	9.4	422
528	Soluble Dextrin Fibers Alter the Intestinal Microbiota and Reduce Proinflammatory Cytokine Secretion in Male IL-10–Deficient Mice. Journal of Nutrition, 2015, 145, 2060-2066.	1.3	34
529	Agave Inulin Supplementation Affects the Fecal Microbiota of Healthy Adults Participating in a Randomized, Double-Blind, Placebo-Controlled, Crossover Trial1–3. Journal of Nutrition, 2015, 145, 2025-2032.	1.3	109
530	Materials Advances for Next-Generation Ingestible Electronic Medical Devices. Trends in Biotechnology, 2015, 33, 575-585.	4.9	94

#	Article	IF	CITATIONS
531	Host genetic variation impacts microbiome composition across human body sites. Genome Biology, 2015, 16, 191.	3.8	612
532	Improving healthspan via changes in gut microbiota and fermentation. Age, 2015, 37, 98.	3.0	33
533	Real-Time Assessment of Wellness and Disease in Daily Life. Big Data, 2015, 3, 203-208.	2.1	14
534	Engineering Microbiomes to Improve Plant and Animal Health. Trends in Microbiology, 2015, 23, 606-617.	3.5	486
536	Impact of Gut Microbiota on Obesity, Diabetes, and Cardiovascular Disease Risk. Current Cardiology Reports, 2015, 17, 120.	1.3	125
537	Resistance and tolerance to foreign elements by prokaryotic immune systems â€" curating the genome. Nature Reviews Immunology, 2015, 15, 717-724.	10.6	29
538	Linking Microbiota to Human Diseases: A Systems Biology Perspective. Trends in Endocrinology and Metabolism, 2015, 26, 758-770.	3.1	134
539	Community assembly of a euryhaline fish microbiome during salinity acclimation. Molecular Ecology, 2015, 24, 2537-2550.	2.0	219
540	Dietary Fatty Acids Directly Impact Central Nervous System Autoimmunity via the Small Intestine. Immunity, 2015, 43, 817-829.	6.6	637
542	Experimental Design and Bioinformatics Analysis for the Application of Metagenomics in Environmental Sciences and Biotechnology. Environmental Science & Environmental Science, 2015, 49, 12628-12640.	4.6	72
543	Contribution of Gut Bacteria to Lipid Levels. Circulation Research, 2015, 117, 750-754.	2.0	40
544	InteMAP: Integrated metagenomic assembly pipeline for NGS short reads. BMC Bioinformatics, 2015, 16, 244.	1.2	25
546	Role of the Gut Microbiome in Obesity and Diabetes Mellitus. Nutrition in Clinical Practice, 2015, 30, 787-797.	1.1	187
547	Dynamic Changes in the Subgingival Microbiome and Their Potential for Diagnosis and Prognosis of Periodontitis. MBio, 2015, 6, e01926-14.	1.8	139
548	Consumption of spicy foods and total and cause specific mortality: population based cohort study. BMJ, The, 2015, 351, h3942.	3.0	138
549	Oral and faecal microbiota in volunteers with hypertension in a double blind, randomised placebo controlled trial with probiotics and fermented bilberries. Journal of Functional Foods, 2015, 18, 275-288.	1.6	10
550	At the centre of things. Nature Reviews Endocrinology, 2015, 11, 636-638.	4.3	12
551	Functional metagenomic discovery of bacterial effectors in the human microbiome and isolation of commendamide, a GPCR G2A/132 agonist. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4825-34.	3.3	133

#	Article	IF	CITATIONS
552	Use of Antibiotics and Risk of Type 2 Diabetes: A Population-Based Case-Control Study. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 3633-3640.	1.8	118
553	Variability in the relative human DNA content during metagenomic analysis of gut microbiota. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2015, 9, 290-295.	0.2	0
554	Interactions between Gut Microbiota, Host Genetics and Diet Modulate the Predisposition to Obesity and Metabolic Syndrome. Cell Metabolism, 2015, 22, 516-530.	7.2	433
555	Microbiology Meets Big Data: The Case of Gut Microbiota–Derived Trimethylamine. Annual Review of Microbiology, 2015, 69, 305-321.	2.9	133
556	Prediction of Early Childhood Caries via Spatial-Temporal Variations of Oral Microbiota. Cell Host and Microbe, 2015, 18, 296-306.	5.1	204
557	Mucosa-Associated Faecalibacterium prausnitzii Phylotype Richness Is Reduced in Patients with Inflammatory Bowel Disease. Applied and Environmental Microbiology, 2015, 81, 7582-7592.	1.4	89
558	Fecal microbiota analysis: an overview of sample collection methods and sequencing strategies. Future Microbiology, 2015, 10, 1485-1504.	1.0	90
559	Gut Microbiota Dysbiosis in Obesity-Linked Metabolic Diseases and Prebiotic Potential of Polyphenol-Rich Extracts. Current Obesity Reports, 2015, 4, 389-400.	3.5	146
560	The human gut microbiota and virome: Potential therapeutic implications. Digestive and Liver Disease, 2015, 47, 1007-1012.	0.4	226
561	Investigation of Host–Gut Microbiota Modulation of Therapeutic Outcome. Drug Metabolism and Disposition, 2015, 43, 1619-1631.	1.7	38
562	Decompensated cirrhosis and microbiome interpretation. Nature, 2015, 525, E1-E2.	13.7	90
563	Qin et al. reply. Nature, 2015, 525, E2-E3.	13.7	3
564	Antibiotic Selection Pressure Determination through Sequence-Based Metagenomics. Antimicrobial Agents and Chemotherapy, 2015, 59, 7335-7345.	1.4	61
565	A Review of Applied Aspects of Dealing with Gut Microbiota Impact on Rodent Models. ILAR Journal, 2015, 56, 250-264.	1.8	28
566	Monosodium L-Glutamate and Dietary Fat Differently Modify the Composition of the Intestinal Microbiota in Growing Pigs. Obesity Facts, 2015, 8, 87-100.	1.6	48
567	Rumen Metagenomics., 2015,, 223-245.		5
568	The Gut Microbiome Contributes to a Substantial Proportion of the Variation in Blood Lipids. Circulation Research, 2015, 117, 817-824.	2.0	534
569	Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, 2015, 528, 262-266.	13.7	1,627

#	Article	IF	Citations
570	Emerging horizons for tick-borne pathogens: from the †one pathogen†one disease†vision to the pathobiome paradigm. Future Microbiology, 2015, 10, 2033-2043.	1.0	67
571	Dysbiosis of Gut Microbiota With Reduced Trimethylamineâ€Nâ€Oxide Level in Patients With Largeâ€Artery Atherosclerotic Stroke or Transient Ischemic Attack. Journal of the American Heart Association, 2015, 4, .	1.6	486
572	Production of 4-hydroxybutyrate from succinate semialdehyde in butyrate biosynthesis in Porphyromonas gingivalis. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 2582-2591.	1.1	11
573	Personalized Nutrition by Prediction of Glycemic Responses. Cell, 2015, 163, 1079-1094.	13.5	1,816
574	Siri, What Should I Eat?. Cell, 2015, 163, 1051-1052.	13.5	10
575	Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella. Cell Metabolism, 2015, 22, 971-982.	7.2	1,190
576	Genomic Analysis Through High-Throughput Sequencing. , 2015, , 297-311.		0
577	Insights Into the Role of the Microbiome in Obesity and Type 2 Diabetes. Diabetes Care, 2015, 38, 159-165.	4.3	519
578	Standardised animal models of host microbial mutualism. Mucosal Immunology, 2015, 8, 476-486.	2.7	112
579	Novel opportunities for next-generation probiotics targeting metabolic syndrome. Current Opinion in Biotechnology, 2015, 32, 21-27.	3.3	127
580	Oral pathobiont induces systemic inflammation and metabolic changes associated with alteration of gut microbiota. Scientific Reports, 2014, 4, 4828.	1.6	384
582	Fiber supplementation influences phylogenetic structure and functional capacity of the human intestinal microbiome: follow-up of a randomized controlled trial. American Journal of Clinical Nutrition, 2015, 101, 55-64.	2.2	130
583	MECHANISMS IN ENDOCRINOLOGY: Gut microbiota in patients with type 2 diabetes mellitus. European Journal of Endocrinology, 2015, 172, R167-R177.	1.9	183
584	Toward the comprehensive understanding of the gut ecosystem via metabolomics-based integrated omics approach. Seminars in Immunopathology, 2015, 37, 5-16.	2.8	46
585	Novel opportunities for the exploitation of host–microbiome interactions in the intestine. Current Opinion in Biotechnology, 2015, 32, 28-34.	3.3	14
586	Probiotics and Pregnancy. Current Diabetes Reports, 2015, 15, 567.	1.7	33
587	Visual Analysis of the Quantitative Composition of Metagenomic Communities: the AmphoraVizu Webserver. Microbial Ecology, 2015, 69, 695-697.	1.4	10
588	Molecular details of a starch utilization pathway in the human gut symbiont <scp><i>E</i></scp> <i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><i>Userp><io>Userp><io>Userp><io>Userp><io>Userp><io>Userp><io>Userp><io>Userp><io>Userp</io></io></io></io></io></io></io></io></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	1.2	104

#	Article	IF	CITATIONS
589	Lactobacillus casei reduces susceptibility to type 2 diabetes via microbiota-mediated body chloride ion influx. Scientific Reports, 2014, 4, 5654.	1.6	48
590	Changes of the human gut microbiome induced by a fermented milk product. Scientific Reports, 2014, 4, 6328.	1.6	217
591	Understanding the role of gut microbiome in metabolic disease risk. Pediatric Research, 2015, 77, 236-244.	1.1	123
592	Diet and host–microbial crosstalk in postnatal intestinal immune homeostasis. Nature Reviews Gastroenterology and Hepatology, 2015, 12, 14-25.	8.2	85
593	Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. ISME Journal, 2015, 9, 1-15.	4.4	703
594	Obesity-Associated Gut Microbiota. , 2015, , 149-171.		3
595	Molecular ecological tools to decipher the role of our microbial mass in obesity. Beneficial Microbes, 2015, 6, 61-81.	1.0	28
596	Gut microbiome in liver disease. Journal of Laboratory and Precision Medicine, 2016, 1, 5-5.	1.1	1
597	Germ-Free Animals. , 2016, , 109-140.		1
598	Phytochemical composition and antioxidant activity of extracts of some medicinal plants in Tunisia. International Journal of Pharmacology and Toxicology, 2016, 4, 159.	0.2	3
599	Bacteriocin production: a relatively unharnessed probiotic trait?. F1000Research, 2016, 5, 2587.	0.8	109
600	The Gut Impacts Diabetic Management Tomorrow: The Recent Messages from Intestine and Microbiota. Journal of Clinical Nutrition & Dietetics, 2016, 02, .	0.3	5
601	Correlating the Gut Microbiome to Health and Disease. , 2016, , 261-291.		5
602	Influence of Dietary Factors on Gut Microbiota. , 2016, , 147-154.		0
603	The Gut Microbiome Is Altered in a Letrozole-Induced Mouse Model of Polycystic Ovary Syndrome. PLoS ONE, 2016, 11, e0146509.	1.1	145
604	Probiotic: effectiveness nutrition in cancer treatment and prevention. Nutricion Hospitalaria, 2016, 33, 1430-1437.	0.2	20
605	Deciphering bacterial community changes in zucker diabetic fatty rats based on 16S rRNA gene sequences analysis. Oncotarget, 2016, 7, 48941-48952.	0.8	19
606	Diabetes Mellitus and Increased Tuberculosis Susceptibility: The Role of Short-Chain Fatty Acids. Journal of Diabetes Research, 2016, 2016, 1-15.	1.0	76

#	Article	IF	CITATIONS
607	"Inflammaging―as a Druggable Target: A Senescence-Associated Secretory Phenotype—Centered View of Type 2 Diabetes. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-10.	1.9	93
608	Microflora Disturbance during Progression of Glucose Intolerance and Effect of Sitagliptin: An Animal Study. Journal of Diabetes Research, 2016, 2016, 1-10.	1.0	85
609	Therapies for Prevention and Treatment of Alzheimer's Disease. BioMed Research International, 2016, 2016, 1-17.	0.9	172
610	Mesenchymal Stem Cells as Therapeutic Candidates for Halting the Progression of Diabetic Nephropathy. Stem Cells International, 2016, 2016, 1-16.	1.2	28
611	Qualitative Parameters of the Colonic Flora in Patients with HNF1A-MODY Are Different from Those Observed in Type 2 Diabetes Mellitus. Journal of Diabetes Research, 2016, 2016, 1-9.	1.0	10
612	Probiotics and blood pressure: current insights. Integrated Blood Pressure Control, 2016, 9, 33.	0.4	44
613	Mechanisms Whereby Whole Grain Cereals Modulate the Prevention of Type 2 Diabetes., 2016,, 87-103.		4
614	The Microbiome in Aging. , 2016, , 185-222.		1
615	Kuwanon G Preserves LPS-Induced Disruption of Gut Epithelial Barrier In Vitro. Molecules, 2016, 21, 1597.	1.7	33
616	Metformin and the Gut Microbiome in Diabetes. Clinical Chemistry, 2016, 62, 1554-1555.	1.5	4
617	Improved glucose metabolism following bariatric surgery is associated with increased circulating bile acid concentrations and remodeling of the gut microbiome. World Journal of Gastroenterology, 2016, 22, 8698.	1.4	84
618	Gut Microbiota of Obese, Type 2 Diabetic Individuals is Enriched in Faecalibacterium prausnitzii, Akkermansia muciniphila and Peptostreptococcus anaerobius after Weight Loss. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2016, 16, 99-106.	0.6	100
619	Human microbiome studies in Korea. Allergy Asthma & Respiratory Disease, 2016, 4, 311.	0.3	4
620	The New Era of Treatment for Obesity and Metabolic Disorders: Evidence and Expectations for Gut Microbiome Transplantation. Frontiers in Cellular and Infection Microbiology, 2016, 6, 15.	1.8	60
621	The Role of Gut Microflora and the Cholinergic Anti-inflammatory Neuroendocrine System in Diabetes Mellitus. Frontiers in Endocrinology, 2016, 7, 55.	1.5	20
622	Mucosal Interactions between Genetics, Diet, and Microbiome in Inflammatory Bowel Disease. Frontiers in Immunology, 2016, 7, 290.	2.2	93
623	Characterization of the Gut Microbiome Using 16S or Shotgun Metagenomics. Frontiers in Microbiology, 2016, 7, 459.	1.5	659
624	Current Knowledge and Future Research Directions on Fecal Bacterial Patterns and Their Association with Asthma. Frontiers in Microbiology, 2016, 7, 838.	1.5	5

#	Article	IF	CITATIONS
625	Three CoA Transferases Involved in the Production of Short Chain Fatty Acids in Porphyromonas gingivalis. Frontiers in Microbiology, 2016, 07, 1146.	1.5	21
626	Beyond 16S rRNA Community Profiling: Intra-Species Diversity in the Gut Microbiota. Frontiers in Microbiology, 2016, 7, 1475.	1.5	117
627	Biotic/Abiotic Stress-Driven Alzheimer's Disease. Frontiers in Cellular Neuroscience, 2016, 10, 269.	1.8	24
628	Gut Microbiota and Nonalcoholic Fatty Liver Disease: Insights on Mechanism and Application of Metabolomics. International Journal of Molecular Sciences, 2016, 17, 300.	1.8	65
629	Effects of Probiotics and Synbiotics on Obesity, Insulin Resistance Syndrome, Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease: A Review of Human Clinical Trials. International Journal of Molecular Sciences, 2016, 17, 928.	1.8	215
630	The Metabolic Role of Gut Microbiota in the Development of Nonalcoholic Fatty Liver Disease and Cardiovascular Disease. International Journal of Molecular Sciences, 2016, 17, 1225.	1.8	50
631	Metabolic Interaction of Helicobacter pylori Infection and Gut Microbiota. Microorganisms, 2016, 4, 15.	1.6	38
632	Gut Bacteria and Hydrogen Sulfide: The New Old Players in Circulatory System Homeostasis. Molecules, 2016, 21, 1558.	1.7	112
633	Probiotics and Prebiotics: Present Status and Future Perspectives on Metabolic Disorders. Nutrients, 2016, 8, 173.	1.7	216
634	Gut Microbiota and Coronary Artery Disease. International Heart Journal, 2016, 57, 663-671.	0.5	55
635	The Role of the Gut Microbiome on Chronic Kidney Disease. Advances in Applied Microbiology, 2016, 96, 65-94.	1.3	86
636	Triclosan Exposure Is Associated with Rapid Restructuring of the Microbiome in Adult Zebrafish. PLoS ONE, 2016, 11, e0154632.	1.1	126
637	Paneth cell α-defensins and enteric microbiota in health and disease. Bioscience of Microbiota, Food and Health, 2016, 35, 57-67.	0.8	79
638	Clostridium Butyricum CGMCC0313.1 Modulates Lipid Profile, Insulin Resistance and Colon Homeostasis in Obese Mice. PLoS ONE, 2016, 11, e0154373.	1.1	59
639	Machine Learning Meta-analysis of Large Metagenomic Datasets: Tools and Biological Insights. PLoS Computational Biology, 2016, 12, e1004977.	1.5	434
640	Disparate Metabolic Responses in Mice Fed a High-Fat Diet Supplemented with Maize-Derived Non-Digestible Feruloylated Oligo- and Polysaccharides Are Linked to Changes in the Gut Microbiota. PLoS ONE, 2016, 11, e0146144.	1.1	43
641	Colorectal Cancer and the Human Gut Microbiome: Reproducibility with Whole-Genome Shotgun Sequencing. PLoS ONE, 2016, 11, e0155362.	1.1	249
642	Tryptophan Predicts the Risk for Future Type 2 Diabetes. PLoS ONE, 2016, 11, e0162192.	1.1	74

#	Article	IF	CITATIONS
643	Type 2 Diabetes Mellitus Is Associated with More Serious Small Intestinal Mucosal Injuries. PLoS ONE, 2016, 11, e0162354.	1.1	20
644	MetaStorm: A Public Resource for Customizable Metagenomics Annotation. PLoS ONE, 2016, 11, e0162442.	1.1	59
645	Xenobiotic Metabolism and Gut Microbiomes. PLoS ONE, 2016, 11, e0163099.	1.1	53
646	Inulin Supplementation Lowered the Metabolic Defects of Prolonged Exposure to Chlorpyrifos from Gestation to Young Adult Stage in Offspring Rats. PLoS ONE, 2016, 11, e0164614.	1.1	41
647	Characterisation of Fecal Soap Fatty Acids, Calcium Contents, Bacterial Community and Short-Chain Fatty Acids in Sprague Dawley Rats Fed with Different sn-2 Palmitic Triacylglycerols Diets. PLoS ONE, 2016, 11, e0164894.	1.1	25
648	Key Microbiota Identification Using Functional Gene Analysis during Pepper (Piper nigrum L.) Peeling. PLoS ONE, 2016, 11, e0165206.	1.1	0
649	Gut Microbiota Modification: Another Piece in the Puzzle of the Benefits of Physical Exercise in Health?. Frontiers in Physiology, 2016, 7, 51.	1.3	156
650	Host-Microbiome Interaction and Cancer: Potential Application in Precision Medicine. Frontiers in Physiology, 2016, 7, 606.	1.3	40
652	Phage–bacteria interaction network in human oral microbiome. Environmental Microbiology, 2016, 18, 2143-2158.	1.8	87
653	Changes in the Functional Potential of the Gut Microbiome Following Probiotic Supplementation during <i>Helicobacter Pylori</i> Treatment. Helicobacter, 2016, 21, 493-503.	1.6	27
654	Type 2 diabetes: genetic data sharing to advance complex disease research. Nature Reviews Genetics, 2016, 17, 535-549.	7.7	128
655	Metagenome-wide association studies: fine-mining the microbiome. Nature Reviews Microbiology, 2016, 14, 508-522.	13.6	356
656	The Origin of New-Onset Diabetes After Liver Transplantation. Transplantation, 2016, 100, 808-813.	0.5	33
657	meta <scp>BIT</scp> , an integrative and automated metagenomic pipeline for analysing microbial profiles from highâ€throughput sequencing shotgun data. Molecular Ecology Resources, 2016, 16, 1415-1427.	2.2	35
658	Effect of antibiotics on gut microbiota, glucose metabolism and body weight regulation: a review of the literature. Diabetes, Obesity and Metabolism, 2016, 18, 444-453.	2.2	62
659	MicroRNAâ€199b expression level and coliform count in irritable bowel syndrome. IUBMB Life, 2016, 68, 335-342.	1.5	9
661	Metagenomic analysis of taxonomic and functional changes in gut microbiota of patients with the alcohol dependence syndrome. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2016, 10, 184-190.	0.2	0
662	Reconstructing single genomes from complex microbial communities. IT - Information Technology, 2016, 58, 133-139.	0.6	7

#	Article	IF	CITATIONS
663	Current Understanding of Dysbiosis in Disease in Human and Animal Models. Inflammatory Bowel Diseases, 2016, 22, 1137-1150.	0.9	555
664	Diet–microbiota interactions as moderators of human metabolism. Nature, 2016, 535, 56-64.	13.7	1,602
665	The microbiome in early life: implications for health outcomes. Nature Medicine, 2016, 22, 713-722.	15.2	838
666	Prelabor Cesarean Section and Risk of Childhood Type 1 Diabetes. Epidemiology, 2016, 27, 547-555.	1.2	37
667	Gut microbiome and lipid metabolism. Current Opinion in Lipidology, 2016, 27, 216-224.	1.2	72
668	Transition from infant―to adultâ€ike gut microbiota. Environmental Microbiology, 2016, 18, 2226-2236.	1.8	109
669	Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features. Genome Biology, 2016, 17, 163.	3.8	264
670	Galacto-Oligosaccharide has no Effect on Glucose Tolerance, inflammatory Markers or Intestinal Permeability in well-controlled Type 2 Diabetes. Proceedings of the Nutrition Society, 2016, 75, .	0.4	1
671	A scalable assembly-free variable selection algorithm for biomarker discovery from metagenomes. BMC Bioinformatics, 2016, 17, 311.	1.2	10
672	Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome Medicine, 2016, 8, 67.	3.6	260
673	Dysfunctional gut microbiota and relative co-abundance network in infantile eczema. Gut Pathogens, 2016, 8, 36.	1.6	34
674	CAMIL: Clustering and Assembly with Multiple Instance Learning for phenotype prediction. , 2016, , .		3
675	Urban Transit System Microbial Communities Differ by Surface Type and Interaction with Humans and the Environment. MSystems, 2016, 1 , .	1.7	107
676	The Gastrointestinal Microbiome. , 2016, , 126-137.		1
677	Gut microbiome and liver diseases. Gut, 2016, 65, 2035-2044.	6.1	443
678	Modulation of gut microbiota dysbioses in type 2 diabetic patients by macrobiotic Ma-Pi 2 diet. British Journal of Nutrition, 2016, 116, 80-93.	1.2	181
679	Measuring the diversity of the human microbiota with targeted next-generation sequencing. Briefings in Bioinformatics, 2018, 19, bbw119.	3.2	58
681	Shotgun Metagenomics of 250 Adult Twins Reveals Genetic and Environmental Impacts on the Gut Microbiome. Cell Systems, 2016, 3, 572-584.e3.	2.9	261

#	Article	IF	CITATIONS
682	The Human Intestinal Microbiome in Health and Disease. New England Journal of Medicine, 2016, 375, 2369-2379.	13.9	2,383
683	Microbes, Metabolites and Health. , 2016, , 13-48.		0
684	Oral supplementation of healthy adults with $2\hat{a}\in^2-\langle i\rangle O\langle i\rangle$ -fucosyllactose and lacto- $\langle i\rangle N\langle i\rangle$ -neotetraose is well tolerated and shifts the intestinal microbiota. British Journal of Nutrition, 2016, 116, 1356-1368.	1.2	148
685	COMPUTATIONAL APPROACHES TO STUDY MICROBES AND MICROBIOMES., 2016,,.		7
686	Human microbiome as therapeutic intervention target to reduce cardiovascular disease risk. Current Opinion in Lipidology, 2016, 27, 615-622.	1.2	36
687	Analysis and Interpretation of the Human Microbiome. Inflammatory Bowel Diseases, 2016, 22, 1713-1722.	0.9	12
688	Growing Trend of China's Contribution to Global Diabetes Research. Medicine (United States), 2016, 95, e3517.	0.4	5
689	Nitrogen fixation and nifH diversity in human gut microbiota. Scientific Reports, 2016, 6, 31942.	1.6	40
690	Antibiotics as deep modulators of gut microbiota: between good and evil. Gut, 2016, 65, 1906-1915.	6.1	463
691	MetaDP: a comprehensive web server for disease prediction of 16S rRNA metagenomic datasets. Biophysics Reports, 2016, 2, 106-115.	0.2	9
692	Spectral consensus strategy for accurate reconstruction of large biological networks. BMC Bioinformatics, 2016, 17, 493.	1.2	10
693	MetaMIS: a metagenomic microbial interaction simulator based on microbial community profiles. BMC Bioinformatics, 2016, 17, 488.	1.2	70
694	Trapping and isolation of single prokaryotic cells in a micro-chamber array using dielectrophoresis. RSC Advances, 2016, 6, 113000-113006.	1.7	6
695	Genome-Wide Studies of Type 2 Diabetes and Lipid Traits in Hispanics. Current Diabetes Reports, 2016, 16, 41.	1.7	10
696	Metabolic Model-Based Integration of Microbiome Taxonomic and Metabolomic Profiles Elucidates Mechanistic Links between Ecological and Metabolic Variation. MSystems, 2016, 1 , .	1.7	167
698	Metagenomic Profiling, Interaction of Genomics with Meta-genomics. Translational Bioinformatics, 2016, , 241-267.	0.0	0
699	Seleno-lentinan prevents chronic pancreatitis development and modulates gut microbiota in mice. Journal of Functional Foods, 2016, 22, 177-188.	1.6	40
700	Intestinal removal of free fatty acids from hosts by <i>Lactobacilli</i> for the treatment of obesity. FEBS Open Bio, 2016, 6, 64-76.	1.0	50

#	ARTICLE	IF	CITATIONS
701	Connections Between the Gut Microbiome and Metabolic Hormones in Early Pregnancy in Overweight and Obese Women. Diabetes, 2016, 65, 2214-2223.	0.3	223
702	EBI metagenomics in 2016 - an expanding and evolving resource for the analysis and archiving of metagenomic data. Nucleic Acids Research, 2016, 44, D595-D603.	6.5	97
703	A two-part mixed-effects model for analyzing longitudinal microbiome compositional data. Bioinformatics, 2016, 32, 2611-2617.	1.8	184
704	Different subtype strains of <i>Akkermansia muciniphila</i> abundantly colonize in southern China. Journal of Applied Microbiology, 2016, 120, 452-459.	1.4	47
705	International prospective study of distal intestinal obstruction syndrome in cystic fibrosis: Associated factors and outcome. Journal of Cystic Fibrosis, 2016, 15, 531-539.	0.3	51
706	The Microbiome in Obesity, Diabetes, and NAFLD: What is Your Gut Telling Us?. Current Hepatology Reports, 2016, 15, 96-102.	0.4	4
707	Acyl-CoA reductase PGN_0723 utilizes succinyl-CoA to generate succinate semialdehyde in a butyrate-producing pathway of Porphyromonas gingivalis. Archives of Biochemistry and Biophysics, 2016, 596, 138-148.	1.4	8
708	Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism. Molecular Psychiatry, 2016, 21, 786-796.	4.1	1,397
710	Pediatric Non-alcoholic Fatty Liver Disease. Current Gastroenterology Reports, 2016, 18, 24.	1.1	32
711	Triggering the adaptive immune system with commensal gut bacteria protects against insulin resistance and dysglycemia. Molecular Metabolism, 2016, 5, 392-403.	3.0	50
712	Major Increase in Microbiota-Dependent Proatherogenic Metabolite TMAO One Year After Bariatric Surgery. Metabolic Syndrome and Related Disorders, 2016, 14, 197-201.	0.5	61
713	Strain-level dissection of the contribution of the gut microbiome to human metabolic disease. Genome Medicine, 2016, 8, 41.	3.6	86
714	The Role of the Gut Microbiota in Childhood Obesity. Childhood Obesity, 2016, 12, 292-299.	0.8	35
715	The bacteriocin bactofencin A subtly modulates gut microbial populations. Anaerobe, 2016, 40, 41-49.	1.0	34
716	Analysis of the microbial diversity in faecal material of the endangered blue whale, Balaenoptera musculus. Antonie Van Leeuwenhoek, 2016, 109, 1063-1069.	0.7	13
717	Tissue Microbiome Profiling Identifies an Enrichment of Specific Enteric Bacteria in Opisthorchis viverrini Associated Cholangiocarcinoma. EBioMedicine, 2016, 8, 195-202.	2.7	94
718	Evidence for a distinct gut microbiome in kidney stone formers compared to non-stone formers. Urolithiasis, 2016, 44, 399-407.	1.2	122
719	Foodomics as part of the host-microbiota-exposome interplay. Journal of Proteomics, 2016, 147, 3-20.	1.2	46

#	Article	IF	CITATIONS
720	Population-level analysis of gut microbiome variation. Science, 2016, 352, 560-564.	6.0	1,716
721	Microbiome sequencing: challenges and opportunities for molecular medicine. Expert Review of Molecular Diagnostics, 2016, 16, 795-805.	1.5	33
722	The healthy human microbiome. Genome Medicine, 2016, 8, 51.	3.6	1,214
724	The Gut Microbiota in Type 2 Diabetes. , 2016, , 275-293.		O
725	Antibiotic-Induced Changes in the Intestinal Microbiota and Disease. Trends in Molecular Medicine, 2016, 22, 458-478.	3.5	630
726	The Human Gut Microbiota. Advances in Experimental Medicine and Biology, 2016, 902, 95-108.	0.8	72
727	Present and foreseeable future of metabolomics in forensic analysis. Analytica Chimica Acta, 2016, 925, 1-15.	2.6	54
728	Effects of sardine-enriched diet on metabolic control, inflammation and gut microbiota in drug-naÃve patients with type 2 diabetes: a pilot randomized trial. Lipids in Health and Disease, 2016, 15, 78.	1.2	103
729	Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials. Genome Medicine, 2016, 8, 52.	3.6	413
731	Biodiversity of Intestinal Lactic Acid Bacteria in the Healthy Population. Advances in Experimental Medicine and Biology, 2016, 932, 1-64.	0.8	16
732	Linking the Microbiota, Chronic Disease, and the Immune System. Trends in Endocrinology and Metabolism, 2016, 27, 831-843.	3.1	195
733	Microbiome Changes during Tuberculosis and Antituberculous Therapy. Clinical Microbiology Reviews, 2016, 29, 915-926.	5.7	71
734	The effects of maternal and post-weaning diet interaction on glucose metabolism and gut microbiota in male mice offspring. Bioscience Reports, 2016, 36, .	1.1	25
735	The Genetics Underlying Natural Variation in the Biotic Interactions of Arabidopsis thaliana. Current Topics in Developmental Biology, 2016, 119, 111-156.	1.0	39
736	Biomarkers in Search of Precision Medicine in IBD. American Journal of Gastroenterology, 2016, 111, 1682-1690.	0.2	45
737	Computational operon prediction in whole-genomes and metagenomes. Briefings in Functional Genomics, 2016, 16, elw034.	1.3	15
738	Comprehensive microbiome analysis of tonsillar crypts in IgA nephropathy. Nephrology Dialysis Transplantation, 2017, 32, gfw343.	0.4	40
739	Association of host genome with intestinal microbial composition in a large healthy cohort. Nature Genetics, 2016, 48, 1413-1417.	9.4	388

#	ARTICLE	IF	CITATIONS
740	Exposing the exposures responsible for type 2 diabetes and obesity. Science, 2016, 354, 69-73.	6.0	201
741	Reading the Underlying Information From Massive Metagenomic Sequencing Data. Proceedings of the IEEE, 2016, , 1-15.	16.4	12
742	Genetic and Transcriptional Analysis of Human Host Response to Healthy Gut Microbiota. MSystems, 2016, $1, \dots$	1.7	28
743	Bacteriophage Applications - Historical Perspective and Future Potential. SpringerBriefs in Biochemistry and Molecular Biology, 2016, , .	0.3	3
744	Hypogonadism alters cecal and fecal microbiota in male mice. Gut Microbes, 2016, 7, 533-539.	4.3	46
745	Does the buck stop with the bugs?: an overview of microbial dysbiosis in rheumatoid arthritis. International Journal of Rheumatic Diseases, 2016, 19, 8-20.	0.9	46
746	Prevalence and dissemination of antibiotic resistance genes and coselection of heavy metals in Chinese dairy farms. Journal of Hazardous Materials, 2016, 320, 10-17.	6.5	120
751	Causality of small and large intestinal microbiota in weight regulation and insulin resistance. Molecular Metabolism, 2016, 5, 759-770.	3.0	142
752	An overview of major metagenomic studies on human microbiomes in health and disease. Quantitative Biology, 2016, 4, 192-206.	0.3	10
7 53	Association of Intestinal Microbiota with Metabolic Markers and Dietary Habits in Patients with Type 2 Diabetes. Digestion, 2016, 94, 66-72.	1.2	84
754	Obesity, Type 2 Diabetes, and the Metabolic Syndrome. Surgical Clinics of North America, 2016, 96, 681-701.	0.5	31
755	Review: Microbiome in Inflammatory Arthritis and Human Rheumatic Diseases. Arthritis and Rheumatology, 2016, 68, 35-45.	2.9	187
756	The Microbiome and Musculoskeletal Conditions of Aging: A Review of Evidence for Impact and Potential Therapeutics. Journal of Bone and Mineral Research, 2016, 31, 261-269.	3.1	81
757	The gut microbiota and metabolic disease: current understanding and future perspectives. Journal of Internal Medicine, 2016, 280, 339-349.	2.7	212
758	Extrahepatic Diseases and NAFLD: The Triangular Relationship between NAFLD, Type 2-Diabetes and Dysbiosis. Digestive Diseases, 2016, 34, 11-18.	0.8	33
759	CAZyChip: dynamic assessment of exploration of glycoside hydrolases in microbial ecosystems. BMC Genomics, 2016, 17, 671.	1.2	39
760	Do worms protect against the metabolic syndrome? A systematic review and meta-analysis. Diabetes Research and Clinical Practice, 2016, 120, 209-220.	1.1	49
761	Interplay between gut microbiota, its metabolites and human metabolism: Dissecting cause from consequence. Trends in Food Science and Technology, 2016, 57, 233-243.	7.8	22

#	ARTICLE	IF	CITATIONS
762	Gut Microbiota: Modulation of Host Physiology in Obesity. Physiology, 2016, 31, 327-335.	1.6	48
763	The gut microbiota: A treasure for human health. Biotechnology Advances, 2016, 34, 1210-1224.	6.0	158
765	Diet and Gut Microbial Function in Metabolic and Cardiovascular Disease Risk. Current Diabetes Reports, 2016, 16, 93.	1.7	28
768	Alzheimer's disease and gut microbiota. Science China Life Sciences, 2016, 59, 1006-1023.	2.3	254
769	Gut Microbiome Associates With Lifetime Cardiovascular Disease Risk Profile Among Bogalusa Heart Study Participants. Circulation Research, 2016, 119, 956-964.	2.0	264
770	Antidiabetic (type 2) effects of Lactobacillus G15 and Q14 in rats through regulation of intestinal permeability and microbiota. Food and Function, 2016, 7, 3789-3797.	2.1	86
771	Female reproductive tract microbiome in gynecological health and problems. Journal of Reproductive Health and Medicine, 2016, 2, S48-S54.	0.3	7
772	Accelerated dysbiosis of gut microbiota during aggravation of DSS-induced colitis by a butyrate-producing bacterium. Scientific Reports, 2016, 6, 27572.	1.6	164
773	The structural alteration of gut microbiota in low-birth-weight mice undergoing accelerated postnatal growth. Scientific Reports, 2016, 6, 27780.	1.6	34
774	Hyperoxaluria leads to dysbiosis and drives selective enrichment of oxalate metabolizing bacterial species in recurrent kidney stone endures. Scientific Reports, 2016, 6, 34712.	1.6	84
775	Intestinal Microbiota Distinguish Gout Patients from Healthy Humans. Scientific Reports, 2016, 6, 20602.	1.6	238
776	Oligofructose as an adjunct in treatment of diabetes in NOD mice. Scientific Reports, 2016, 6, 37627.	1.6	19
777	Regression analysis for microbiome compositional data. Annals of Applied Statistics, 2016, 10, .	0.5	87
778	Metagenomics and Bioinformatics in Microbial Ecology: Current Status and Beyond. Microbes and Environments, 2016, 31, 204-212.	0.7	76
779	Serum metabolomics profile of type 2 diabetes mellitus in a Brazilian rural population. Metabolomics, $2016, 12, 1.$	1.4	7
780	Probiotics– the journey continues. International Journal of Dairy Technology, 2016, 69, 469-480.	1.3	39
781	Microbial diversity in individuals and their household contacts following typical antibiotic courses. Microbiome, 2016, 4, 39.	4.9	135
782	Extracellular microRNAs and endothelial hyperglycaemic memory: a therapeutic opportunity?. Diabetes, Obesity and Metabolism, 2016, 18, 855-867.	2.2	57

#	Article	IF	CITATIONS
783	Entropy-Based Network Representation of the Individual Metabolic Phenotype. Journal of Proteome Research, 2016, 15, 3298-3307.	1.8	23
784	Lactobacillus salivarius reverse diabetes-induced intestinal defense impairment in mice through non-defensin protein. Journal of Nutritional Biochemistry, 2016, 35, 48-57.	1.9	24
785	Human gut microbes impact host serum metabolome and insulin sensitivity. Nature, 2016, 535, 376-381.	13.7	1,506
786	Mobile genes in the human microbiome are structured from global to individual scales. Nature, 2016, 535, 435-439.	13.7	233
787	ISN Forefronts Symposium 2015: IgAÂNephropathy, the Gut Microbiota, andÂGutâ^'Kidney Crosstalk. Kidney International Reports, 2016, 1, 189-196.	0.4	7
789	Uncovering oral Neisseria tropism and persistence using metagenomic sequencing. Nature Microbiology, 2016, 1, 16070.	5.9	68
790	Integrated metabolomics and metagenomics analysis of plasma and urine identified microbial metabolites associated with coronary heart disease. Scientific Reports, 2016, 6, 22525.	1.6	143
791	Comparative genomics and physiology of the butyrateâ€producing bacterium <i>Intestinimonas butyriciproducens</i> . Environmental Microbiology Reports, 2016, 8, 1024-1037.	1.0	104
792	Gut Microbiota in Obesity and Undernutrition. Advances in Nutrition, 2016, 7, 1080-1089.	2.9	103
793	Diminution of the gut resistome after a gut microbiota-targeted dietary intervention in obese children. Scientific Reports, 2016, 6, 24030.	1.6	33
794	Effects of probiotic supplementation in patients with type 2 diabetes: systematic review and meta-analysis. Nutrition Reviews, 2016, 74, 774-784.	2.6	78
795	Metagenomic sequencing reveals the relationship between microbiota composition and quality of Chinese Rice Wine. Scientific Reports, 2016, 6, 26621.	1.6	140
796	Composition of gut microbiota in infants in China and global comparison. Scientific Reports, 2016, 6, 36666.	1.6	63
797	Analysis of the mouse gut microbiome using full-length 16S rRNA amplicon sequencing. Scientific Reports, 2016, 6, 29681.	1.6	178
798	Akkermansia muciniphila mediates negative effects of IFN \hat{I}^3 on glucose metabolism. Nature Communications, 2016, 7, 13329.	5.8	232
799	Gut microbiota and glucometabolic alterations in response to recurrent partial sleep deprivation in normal-weight young individuals. Molecular Metabolism, 2016, 5, 1175-1186.	3.0	216
800	Bamboo shoot fiber prevents obesity in mice by modulating the gut microbiota. Scientific Reports, 2016, 6, 32953.	1.6	104
801	Associations of Bowel Movement Frequency with Risk of Cardiovascular Disease and Mortality among US Women. Scientific Reports, 2016, 6, 33005.	1.6	19

#	Article	IF	CITATIONS
802	Computational pan-genomics: status, promises and challenges. Briefings in Bioinformatics, 2018, 19, bbw089.	3.2	207
803	Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Science Translational Medicine, 2016, 8, 343ra81.	5.8	763
804	Vascular microRNA-204 is remotely governed by the microbiome and impairs endothelium-dependent vasorelaxation by downregulating Sirtuin1. Nature Communications, 2016, 7, 12565.	5.8	93
805	The gut microbiota: a major player in the toxicity of environmental pollutants?. Npj Biofilms and Microbiomes, 2016, 2, 16003.	2.9	470
806	Effects of chronic noise on glucose metabolism and gut microbiota–host inflammatory homeostasis in rats. Scientific Reports, 2016, 6, 36693.	1.6	67
807	A comparative study of the antidiabetic effects exerted by live and dead multi-strain probiotics in the type 2 diabetes model of mice. Food and Function, 2016, 7, 4851-4860.	2.1	50
809	Uncovering the composition of microbial community structure and metagenomics among three gut locations in pigs with distinct fatness. Scientific Reports, 2016, 6, 27427.	1.6	168
810	Efficacy of species-specific protein antibiotics in a murine model of acute Pseudomonas aeruginosa lung infection. Scientific Reports, 2016, 6, 30201.	1.6	52
811	A robust ambient temperature collection and stabilization strategy: Enabling worldwide functional studies of the human microbiome. Scientific Reports, 2016, 6, 31731.	1.6	59
812	Genome and metagenome analyses reveal adaptive evolution of the host and interaction with the gut microbiota in the goose. Scientific Reports, 2016, 6, 32961.	1.6	36
813	Phage Probiotics. SpringerBriefs in Biochemistry and Molecular Biology, 2016, , 39-58.	0.3	0
814	Construction and Analysis of Functional Networks in the Gut Microbiome of Type 2 Diabetes Patients. Genomics, Proteomics and Bioinformatics, 2016, 14, 314-324.	3.0	16
815	Altered Fecal Microbiota Correlates with Liver Biochemistry in Nonobese Patients with Non-alcoholic Fatty Liver Disease. Scientific Reports, 2016, 6, 32002.	1.6	260
816	An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography. Genome Research, 2016, 26, 1612-1625.	2.4	405
817	IMNGS: A comprehensive open resource of processed 16S rRNA microbial profiles for ecology and diversity studies. Scientific Reports, 2016, 6, 33721.	1.6	330
818	Can the composition of the intestinal microbiota predict the development of urinary tract infections?. Future Microbiology, 2016, 11, 1395-1404.	1.0	4
819	Unique Features of Ethnic Mongolian Gut Microbiome revealed by metagenomic analysis. Scientific Reports, 2016, 6, 34826.	1.6	78
820	Soy and Gut Microbiota: Interaction and Implication for Human Health. Journal of Agricultural and Food Chemistry, 2016, 64, 8695-8709.	2.4	92

#	Article	IF	CITATIONS
822	The intestinal microbiota and its role in human health and disease. Journal of Medical Investigation, 2016, 63, 27-37.	0.2	115
823	Human gut microbiota and healthy aging: Recent developments and future prospective. Nutrition and Healthy Aging, 2016, 4, 3-16.	0.5	150
824	Gut microbiota associated with HIV infection is significantly enriched in bacteria tolerant to oxygen. BMJ Open Gastroenterology, 2016, 3, e000080.	1.1	66
825	Augmentation of histone deacetylase 3 (HDAC3) epigenetic signature at the interface of proinflammation and insulin resistance in patients with type 2 diabetes. Clinical Epigenetics, 2016, 8, 125.	1.8	69
826	Host genetics affect microbial ecosystems via host immunity. Current Opinion in Allergy and Clinical Immunology, 2016, 16, 413-420.	1.1	9
827	Influence of GABA and GABA-producing Lactobacillus brevis DPC 6108 on the development of diabetes in a streptozotocin rat model. Beneficial Microbes, 2016, 7, 409-420.	1.0	46
828	Akkermansia muciniphila: a novel functional microbe with probiotic properties. Beneficial Microbes, 2016, 7, 571-584.	1.0	104
829	The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology, 2016, 63, 764-775.	3.6	1,029
830	Human Microbiome and its Association With Health and Diseases. Journal of Cellular Physiology, 2016, 231, 1688-1694.	2.0	98
831	TCDD modulation of gut microbiome correlated with liver and immune toxicity in streptozotocin (STZ)-induced hyperglycemic mice. Toxicology and Applied Pharmacology, 2016, 304, 48-58.	1.3	60
832	What's bugging your teen?â€"The microbiota and adolescent mental health. Neuroscience and Biobehavioral Reviews, 2016, 70, 300-312.	2.9	44
833	Recovering complete and draft population genomes from metagenome datasets. Microbiome, 2016, 4, 8.	4.9	254
834	Arsenic Metabolism and Toxicity Influenced by Ferric Iron in Simulated Gastrointestinal Tract and the Roles of Gut Microbiota. Environmental Science &	4.6	80
835	Is Transforming Stem Cells to Pancreatic Beta Cells Still the Holy Grail for Type 2 Diabetes?. Current Diabetes Reports, 2016, 16, 70.	1.7	13
836	Colonic inflammation accompanies an increase of \hat{l}^2 -catenin signaling and Lachnospiraceae/Streptococcaceae bacteria in the hind gut of high-fat diet-fed mice. Journal of Nutritional Biochemistry, 2016, 35, 30-36.	1.9	136
837	Lactobacillus plantarum X1 with \hat{l} ±-glucosidase inhibitory activity ameliorates type 2 diabetes in mice. RSC Advances, 2016, 6, 63536-63547.	1.7	33
838	The role of Gut Microbiota in the development of obesity and Diabetes. Lipids in Health and Disease, 2016, 15, 108.	1.2	364
839	Reduced diversity and altered composition of the gut microbiome in individuals with myalgic encephalomyelitis/chronic fatigue syndrome. Microbiome, 2016, 4, 30.	4.9	263

#	Article	IF	CITATIONS
840	Treatment of insulin resistance: straight from the gut. Drug Discovery Today, 2016, 21, 1284-1290.	3.2	11
842	Effect of a long-term high-protein diet on survival, obesity development, and gut microbiota in mice. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E886-E899.	1.8	55
843	MetaFast: fast reference-free graph-based comparison of shotgun metagenomic data. Bioinformatics, 2016, 32, 2760-2767.	1.8	35
844	Statistical evaluation of methods for identification of differentially abundant genes in comparative metagenomics. BMC Genomics, 2016, 17, 78.	1.2	114
845	Caenorhabditis elegans susceptibility to gut Enterococcus faecalis infection is associated with fat metabolism and epithelial junction integrity. BMC Microbiology, 2016, 16, 6.	1.3	43
846	Computational prediction of CRISPR cassettes in gut metagenome samples from Chinese type-2 diabetic patients and healthy controls. BMC Systems Biology, 2016, 10, 5.	3.0	12
847	Responses of fecal bacterial communities to resistant starch intervention in diabetic rats. Starch/Staerke, 2016, 68, 1008-1015.	1.1	8
848	The 7th International Conference on Polyphenols and Health. Nutrition Bulletin, 2016, 41, 92-95.	0.8	2
849	Data mining and knowledge discovery tools for human microbiome big data. , 2016, , .		2
850	MetaPro-IQ: a universal metaproteomic approach to studying human and mouse gut microbiota. Microbiome, 2016, 4, 31.	4.9	154
851	Gut microbiota and immune crosstalk in metabolic disease. Molecular Metabolism, 2016, 5, 771-781.	3.0	141
852	Expanding role of gut microbiota in lipid metabolism. Current Opinion in Lipidology, 2016, 27, 141-147.	1.2	128
853	Dysbiosis of the fecal microbiota in the TNBS-induced Crohn's disease mouse model. Applied Microbiology and Biotechnology, 2016, 100, 4485-4494.	1.7	33
854	Nonalcoholic fatty liver disease as trigger of cardiovascular and metabolic complication in metabolic syndrome. Internal and Emergency Medicine, 2016, 11, 3-10.	1.0	9
855	Trans-Omics: How To Reconstruct Biochemical Networks Across Multiple â€ [~] Omicâ€ [™] Layers. Trends in Biotechnology, 2016, 34, 276-290.	4.9	221
856	Prescription drugs obscure microbiome analyses. Science, 2016, 351, 452-453.	6.0	32
857	Confounding Effects of Metformin on the Human Gut Microbiome in Type 2 Diabetes. Cell Metabolism, 2016, 23, 10-12.	7.2	67
858	Can We Prevent Obesity-Related Metabolic Diseases by Dietary Modulation of the Gut Microbiota?. Advances in Nutrition, 2016, 7, 90-101.	2.9	112

#	Article	IF	CITATIONS
859	Gut microbiota and diet in patients with different glucose tolerance. Endocrine Connections, 2016, 5, 1-9.	0.8	148
860	A strategy for the targeted metabolomics analysis of 11 gut microbiota-host co-metabolites in rat serum, urine and feces by ultra high performance liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 2016, 1429, 207-217.	1.8	33
861	metaModules identifies key functional subnetworks in microbiome-related disease. Bioinformatics, 2016, 32, 1678-1685.	1.8	21
862	Two Healthy Diets Modulate Gut Microbial Community Improving Insulin Sensitivity in a Human Obese Population. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 233-242.	1.8	223
863	Bile Acids, the Microbiome and Metabolic Disease-Implications for Surgery., 2016,, 81-90.		0
864	Resolving the Complexity of Human Skin Metagenomes Using Single-Molecule Sequencing. MBio, 2016, 7, e01948-15.	1.8	78
865	Tackling probiotic and gut microbiota functionality through proteomics. Journal of Proteomics, 2016, 147, 28-39.	1.2	40
866	Strain-level microbial epidemiology and population genomics from shotgun metagenomics. Nature Methods, 2016, 13, 435-438.	9.0	328
867	Analysis of factors contributing to variation in the C57BL/6J fecal microbiota across German animal facilities. International Journal of Medical Microbiology, 2016, 306, 343-355.	1.5	196
868	Intestinal Microbiota: First Barrier Against Gut-Affecting Pathogens. , 2016, , 281-314.		6
869	Dysbiosis in intestinal inflammation: Cause or consequence. International Journal of Medical Microbiology, 2016, 306, 302-309.	1.5	121
870	Trapping Methylglyoxal by Genistein and Its Metabolites in Mice. Chemical Research in Toxicology, 2016, 29, 406-414.	1.7	41
871	Dynamics and Diversity of Microbial Community Succession of Surimi During Fermentation with Nextâ€Generation Sequencing. Journal of Food Safety, 2016, 36, 308-316.	1.1	9
872	Highâ€throughput sequencing reveals the core gut microbiome of Barâ€headed goose (<i>Anser) Tj ETQq1 1 0.</i>	.784314 r _{	gBT ₃₈ Overloc
873	Dissemination of the mcr-1 colistin resistance gene. Lancet Infectious Diseases, The, 2016, 16, 290-291.	4.6	24
874	MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods, 2016, 102 , $3-11$.	1.9	1,174
875	Biliopancreatic limb plays an important role in metabolic improvement after duodenal–jejunal bypass in a rat model of diabetes. Surgery, 2016, 159, 1360-1371.	1.0	52
876	Sub-clinical detection of gut microbial biomarkers of obesity and type 2 diabetes. Genome Medicine, 2016, 8, 17.	3.6	219

#	ARTICLE	IF	CITATIONS
877	Prebiotics: Definition and protective mechanisms. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2016, 30, 27-37.	1.0	120
878	Stimulation of incretin secreting cells. Therapeutic Advances in Endocrinology and Metabolism, 2016, 7, 24-42.	1.4	76
879	Metformin and the gastrointestinal tract. Diabetologia, 2016, 59, 426-435.	2.9	472
880	Gut microbiota and the pathogenesis of necrotizing enterocolitis in preterm neonates. Future Microbiology, $2016,11,273-292.$	1.0	52
881	Metabolomics in diabetes, a review. Annals of Medicine, 2016, 48, 89-102.	1.5	93
882	Taking it Personally: Personalized Utilization of the Human Microbiome in Health and Disease. Cell Host and Microbe, 2016, 19, 12-20.	5.1	192
883	The Intestinal Immune System in Obesity and Insulin Resistance. Cell Metabolism, 2016, 23, 413-426.	7.2	355
884	Personalized nutrition through big data. Nature Biotechnology, 2016, 34, 152-154.	9.4	18
885	Gut Microbiome, Obesity, and Metabolic Syndrome. , 2016, , 447-459.		4
886	Metformin Joins Forces with Microbes. Cell Host and Microbe, 2016, 19, 1-3.	5.1	48
887	Assessment of k-mer spectrum applicability for metagenomic dissimilarity analysis. BMC Bioinformatics, 2016, 17, 38.	1.2	57
888	Triggering <i>Akkermansia </i> with dietary polyphenols: A new weapon to combat the metabolic syndrome?. Gut Microbes, 2016, 7, 146-153.	4.3	113
890	Gut Microbiota of Nonalcoholic Fatty Liver Disease. Digestive Diseases and Sciences, 2016, 61, 1268-1281.	1.1	46
891	Gut microbiota, obesity and diabetes. Postgraduate Medical Journal, 2016, 92, 286-300.	0.9	377
892	Exploring the Microbiome in Heart Failure. Current Heart Failure Reports, 2016, 13, 103-109.	1.3	67
893	Growing up in a Bubble: Using Germ-Free Animals to Assess the Influence of the Gut Microbiota on Brain and Behavior. International Journal of Neuropsychopharmacology, 2016, 19, pyw020.	1.0	419
894	Stochastic neutral modelling of the Gut Microbiota's relative species abundance from next generation sequencing data. BMC Bioinformatics, 2016, 17, 16.	1.2	19
895	Effects of neutrophils peptide-1 transgenic Chlorella ellipsoidea on the gut microbiota of male Sprague–Dawley rats, as revealed by high-throughput 16S rRNA sequencing. World Journal of Microbiology and Biotechnology, 2016, 32, 43.	1.7	5

#	Article	IF	CITATIONS
896	Changes in the Intestinal Microbiome and Alcoholic and Nonalcoholic Liver Diseases: Causes or Effects?. Gastroenterology, 2016, 150, 1745-1755.e3.	0.6	104
897	Network modules and hubs in plant-root fungal biomes. Journal of the Royal Society Interface, 2016, 13, 20151097.	1.5	100
898	Capturing the most wanted taxa through cross-sample correlations. ISME Journal, 2016, 10, 2459-2467.	4.4	9
899	The Symbiotic Self. Evolutionary Biology, 2016, 43, 596-603.	0.5	5
900	Nucleotide 9-mers characterize the type II diabetic gut metagenome. Genomics, 2016, 107, 120-123.	1.3	1
901	Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes, 2016, 7, 189-200.	4.3	2,214
902	The gut microbiome of healthy Japanese and its microbial and functional uniqueness. DNA Research, 2016, 23, 125-133.	1.5	387
903	Mechanisms Linking the Gut Microbiome and Glucose Metabolism. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 1445-1454.	1.8	163
904	Role of the microbiome in the normal and aberrant glycemic response. Clinical Nutrition Experimental, 2016, 6, 59-73.	2.0	29
905	Dissemination of the mcr-1 colistin resistance gene. Lancet Infectious Diseases, The, 2016, 16, 146-147.	4.6	155
906	Antibiotic-treated versus germ-free rodents for microbiota transplantation studies. Gut Microbes, 2016, 7, 68-74.	4.3	98
907	Host Genetic Control of the Microbiota Mediates the Drosophila Nutritional Phenotype. Applied and Environmental Microbiology, 2016, 82, 671-679.	1.4	127
908	Gut microbiome in health and disease: Linking the microbiome–gut–brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. , 2016, 158, 52-62.		394
909	The gut microbiome, diet, and links to cardiometabolic and chronic disorders. Nature Reviews Nephrology, 2016, 12, 169-181.	4.1	258
910	Duodenojejunal Bypass Leads to Altered Gut Microbiota and Strengthened Epithelial Barriers in Rats. Obesity Surgery, 2016, 26, 1576-1583.	1.1	23
911	Role of the Gut Microbiome in Uremia: A Potential Therapeutic Target. American Journal of Kidney Diseases, 2016, 67, 483-498.	2.1	271
912	Metabolomics and its application to the evaluation of the efficacy and toxicity of traditional Chinese herb medicines. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1026, 204-216.	1.2	83
914	Prebiotics and Probiotics in Infant Nutrition. , 2016, , 101-134.		3

#	Article	IF	CITATIONS
915	Safety of Probiotic Bacteria., 2016,, 227-243.		2
916	The gut microbiota and host health: a new clinical frontier. Gut, 2016, 65, 330-339.	6.1	1,719
917	Effects of high doses of vitamin D3 on mucosa-associated gut microbiome vary between regions of the human gastrointestinal tract. European Journal of Nutrition, 2016, 55, 1479-1489.	1.8	185
918	<i>Akkermansia muciniphila</i> i>and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut, 2016, 65, 426-436.	6.1	1,379
919	Regulation of body fat mass by the gut microbiota: Possible mediation by the brain. Peptides, 2016, 77, 54-59.	1.2	20
920	Microbiota-induced obesity requires farnesoid X receptor. Gut, 2017, 66, 429-437.	6.1	355
921	Clinical application of probiotics in type 2 diabetes mellitus: A randomized, double-blind, placebo-controlled study. Clinical Nutrition, 2017, 36, 85-92.	2.3	252
922	Akkermansia muciniphila and its role in regulating host functions. Microbial Pathogenesis, 2017, 106, 171-181.	1.3	775
923	An analysis of human microbe–disease associations. Briefings in Bioinformatics, 2017, 18, 85-97.	3.2	173
924	The gut microbial profile in patients with primary sclerosing cholangitis is distinct from patients with ulcerative colitis without biliary disease and healthy controls. Gut, 2017, 66, 611-619.	6.1	308
925	Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut, 2017, 66, 70-78.	6.1	865
926	Gut microbiota and probiotics: Focus on diabetes mellitus. Critical Reviews in Food Science and Nutrition, 2017, 57, 2296-2309.	5.4	101
927	The Role of the Microbial Metabolites Including Tryptophan Catabolites and Short Chain Fatty Acids in the Pathophysiology of Immune-Inflammatory and Neuroimmune Disease. Molecular Neurobiology, 2017, 54, 4432-4451.	1.9	191
928	Repertoire of human gut microbes. Microbial Pathogenesis, 2017, 106, 103-112.	1.3	70
929	Significant differences found in short nucleotide sequences of human intestinal metagenomes of Northern-European and Chinese Origin. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 3627-3631.	1.1	1
930	Gut microbiome in chronic kidney disease: challenges and opportunities. Translational Research, 2017, 179, 24-37.	2.2	186
931	Current views on hunterâ€gatherer nutrition and the evolution of the human diet. American Journal of Physical Anthropology, 2017, 162, 84-109.	2.1	115
932	Systematic Characterization and Analysis of the Taxonomic Drivers of Functional Shifts in the Human Microbiome. Cell Host and Microbe, 2017, 21, 254-267.	5.1	110

#	Article	IF	CITATIONS
933	Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nature Medicine, 2017, 23, 314-326.	15.2	751
934	Diet and the Microbiome. Gastroenterology Clinics of North America, 2017, 46, 49-60.	1.0	27
935	Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunology, 2017, 18, 2.	0.9	492
936	The role of early life nutrition in the establishment of gastrointestinal microbial composition and function. Gut Microbes, 2017, 8, 143-171.	4.3	129
937	Fermented green tea extract exhibits hypolipidaemic effects through the inhibition of pancreatic lipase and promotion of energy expenditure. British Journal of Nutrition, 2017, 117, 177-186.	1.2	37
938	<i>Roseburia</i> spp.: a marker of health?. Future Microbiology, 2017, 12, 157-170.	1.0	483
939	Personalized microbiomeâ€based approaches to metabolic syndrome management and prevention. Journal of Diabetes, 2017, 9, 226-236.	0.8	39
940	Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome, 2017, 5, 14.	4.9	1,086
941	Effects of Acarbose on the Gut Microbiota of Prediabetic Patients: A Randomized, Double-blind, Controlled Crossover Trial. Diabetes Therapy, 2017, 8, 293-307.	1.2	128
942	Gut microbiota interactions with the immunomodulatory role of vitamin D in normal individuals. Metabolism: Clinical and Experimental, 2017, 69, 76-86.	1.5	132
943	Gut microbial degradation of organophosphate insecticides-induces glucose intolerance via gluconeogenesis. Genome Biology, 2017, 18, 8.	3.8	88
944	Intake of total saponins and polysaccharides from Polygonatum kingianum affects the gut microbiota in diabetic rats. Phytomedicine, 2017, 26, 45-54.	2.3	163
945	The Genetic Architecture of Coronary Artery Disease: Current Knowledge and Future Opportunities. Current Atherosclerosis Reports, 2017, 19, 6.	2.0	38
946	Inference of Environmental Factor-Microbe and Microbe-Microbe Associations from Metagenomic Data Using a Hierarchical Bayesian Statistical Model. Cell Systems, 2017, 4, 129-137.e5.	2.9	37
947	Commensal bacteria at the crossroad between cholesterol homeostasis and chronic inflammation in atherosclerosis. Journal of Lipid Research, 2017, 58, 519-528.	2.0	96
948	The gut microbiome in human neurological disease: A review. Annals of Neurology, 2017, 81, 369-382.	2.8	388
949	Heart Involvement in Osteoarthritis. Handbook of Systemic Autoimmune Diseases, 2017, , 461-488.	0.1	0
951	Metaâ€analysis of the human gut microbiome from urbanized and preâ€agricultural populations. Environmental Microbiology, 2017, 19, 1379-1390.	1.8	153

#	Article	IF	Citations
952	The human gut microbiome as source of innovation for health: Which physiological and therapeutic outcomes could we expect?. Therapie, 2017, 72, 21-38.	0.6	28
953	Non-alcoholic fatty liver disease: an emerging driving force in chronic kidney disease. Nature Reviews Nephrology, 2017, 13, 297-310.	4.1	219
954	Intestinal Microbiota in Type 2 Diabetes and Chronic Kidney Disease. Current Diabetes Reports, 2017, 17, 16.	1.7	136
955	The gut microbiome and microbial translocation in multiple sclerosis. Clinical Immunology, 2017, 183, 213-224.	1.4	64
957	Efectos del suplemento de probi \tilde{A}^3 ticos en pacientes con diabetes mellitus tipo 2: metaan \tilde{A}_i lisis de ensayos aleatorizados. Medicina Cl \tilde{A} nica, 2017, 148, 362-370.	0.3	37
958	Gut metagenomes of type 2 diabetic patients have characteristic single-nucleotide polymorphism distribution in Bacteroides coprocola. Microbiome, 2017, 5, 15.	4.9	41
959	Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes, 2017, 8, 172-184.	4.3	1,027
960	Microbial strain-level population structure and genetic diversity from metagenomes. Genome Research, 2017, 27, 626-638.	2.4	540
961	Charting the Maternal and Infant Microbiome: What Is the Role of Diabetes and Obesity in Pregnancy?. Current Diabetes Reports, 2017, 17, 11.	1.7	26
962	Are probiotics useful for the average consumer?. Nutrition Bulletin, 2017, 42, 42-48.	0.8	2
963	Role of the Gut Microbiome in the Pathogenesis of Obesity and Obesity-Related Metabolic Dysfunction. Gastroenterology, 2017, 152, 1671-1678.	0.6	334
964	An integrative Bayesian Dirichlet-multinomial regression model for the analysis of taxonomic abundances in microbiome data. BMC Bioinformatics, 2017, 18, 94.	1.2	57
965	Parkinson's disease and Parkinson's disease medications have distinct signatures of the gut microbiome. Movement Disorders, 2017, 32, 739-749.	2.2	649
966	Host Genotype and Gut Microbiome Modulate Insulin Secretion and Diet-Induced Metabolic Phenotypes. Cell Reports, 2017, 18, 1739-1750.	2.9	143
967	Influence of diet on the gut microbiome and implications for human health. Journal of Translational Medicine, 2017, 15, 73.	1.8	1,714
968	Functional relevance of microbiome signatures: The correlation era requires tools for consolidation. Journal of Allergy and Clinical Immunology, 2017, 139, 1092-1098.	1.5	20
969	Chemical signaling between gut microbiota and host chromatin: What is your gut really saying?. Journal of Biological Chemistry, 2017, 292, 8582-8593.	1.6	41
970	High-fat feeding rather than obesity drives taxonomical and functional changes in the gut microbiota in mice. Microbiome, 2017, 5, 43.	4.9	132

#	Article	IF	CITATIONS
971	Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish Diabetes Prevention Study. Scientific Reports, 2017, 7, 46337.	1.6	228
972	A geographically-diverse collection of 418 human gut microbiome pathway genome databases. Scientific Data, 2017, 4, 170035.	2.4	8
973	The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities. Diabetologia, 2017, 60, 943-951.	2.9	266
974	Intestinal Microbiology and Ecology in Crohn's Disease and Ulcerative Colitis. , 2017, , 67-74.		1
975	Moutan Cortex and Paeoniae Radix Rubra reverse high-fat-diet-induced metabolic disorder and restore gut microbiota homeostasis. Chinese Journal of Natural Medicines, 2017, 15, 210-219.	0.7	9
976	Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. Genome Biology, 2017, 18, 70.	3.8	245
977	Structural modulation of gut microbiota in Bama minipigs in response to treatment with a "growth-promoting agentâ€, salbutamol. Applied Microbiology and Biotechnology, 2017, 101, 5809-5818.	1.7	7
978	Using genetics to inform new therapeutics for diabetes. Expert Review of Endocrinology and Metabolism, 2017, 12, 159-169.	1.2	0
979	A powerful microbiome-based association test and a microbial taxa discovery framework for comprehensive association mapping. Microbiome, 2017, 5, 45.	4.9	63
980	GHOSTX: A Fast Sequence Homology Search Tool for Functional Annotation of Metagenomic Data. Methods in Molecular Biology, 2017, 1611, 15-25.	0.4	8
981	Examining the gut bacteriome, virome, and mycobiome in glucose metabolism disorders: Are we on the right track?. Metabolism: Clinical and Experimental, 2017, 73, 52-66.	1.5	36
982	Ménage à trois in the human gut: interactions between host, bacteria and phages. Nature Reviews Microbiology, 2017, 15, 397-408.	13.6	277
983	Microbial community function in the bleaching disease of the marine macroalgae <i>Delisea pulchra</i> . Environmental Microbiology, 2017, 19, 3012-3024.	1.8	42
984	Interaction between the gut microbiome and mucosal immune system. Military Medical Research, 2017, 4, 14.	1.9	399
985	Impaired renal function and dysbiosis of gut microbiota contribute to increased trimethylamine-N-oxide in chronic kidney disease patients. Scientific Reports, 2017, 7, 1445.	1.6	201
987	Protein Function Prediction. Methods in Molecular Biology, 2017, , .	0.4	15
988	Microbiome: Its Impact Is Being Revealed!. Current Clinical Microbiology Reports, 2017, 4, 78-87.	1.8	1
989	The prenatal gut microbiome: are we colonized with bacteria <i>in utero</i> ?. Pediatric Obesity, 2017, 12, 3-17.	1.4	211

#	Article	IF	CITATIONS
990	Microbiome and metabolic disease: revisiting the bacterial phylum Bacteroidetes. Journal of Molecular Medicine, 2017, 95, 1-8.	1.7	267
991	The endocrine vitamin D system in the gut. Molecular and Cellular Endocrinology, 2017, 453, 79-87.	1.6	93
992	Variability in Metagenomic Count Data and Its Influence on the Identification of Differentially Abundant Genes. Journal of Computational Biology, 2017, 24, 311-326.	0.8	19
993	Understanding the Holobiont: How Microbial Metabolites Affect Human Health and Shape the Immune System. Cell Metabolism, 2017, 26, 110-130.	7.2	572
994	Gut microbiota changes and chronic hepatitis C virus infection. Expert Review of Gastroenterology and Hepatology, 2017, 11, 813-819.	1.4	83
995	Intestinal microbiota in primary sclerosing cholangitis. Current Opinion in Gastroenterology, 2017, 33, 85-92.	1.0	20
996	Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nature Medicine, 2017, 23, 859-868.	15.2	1,074
997	lonic liquid-based reagents improve the stability of midterm fecal sample storage. Journal of Microbiological Methods, 2017, 139, 68-73.	0.7	2
998	Diabetes-associated microbiota in fa/fa rats is modified by Roux-en-Y gastric bypass. ISME Journal, 2017, 11, 2035-2046.	4.4	52
999	A Reconfigurable Wireless NoC for Large Scale Microbiome Community Analysis. IEEE Transactions on Computers, 2017, 66, 1653-1666.	2.4	6
1000	Dysbiosis in chronic periodontitis: Key microbial players and interactions with the human host. Scientific Reports, 2017, 7, 3703.	1.6	174
1001	The gut microbiome and hypertension. Current Opinion in Nephrology and Hypertension, 2017, 26, 1-8.	1.0	80
1002	Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis. Nature Communications, 2017, 8, 15393.	5.8	216
1003	Prebiotics Reduce Body Fat and Alter Intestinal Microbiota in Children Who Are Overweight or With Obesity. Gastroenterology, 2017, 153, 711-722.	0.6	358
1004	The Microbiota-Obesity Connection, Part 2. Holistic Nursing Practice, 2017, 31, 204-209.	0.3	0
1005	Surgically Induced Changes in Gut Microbiome and Hedonic Eating as Related to Weight Loss: Preliminary Findings in Obese Women Undergoing Bariatric Surgery. Psychosomatic Medicine, 2017, 79, 880-887.	1.3	105
1006	Bread Affects Clinical Parameters and Induces Gut Microbiome-Associated Personal Glycemic Responses. Cell Metabolism, 2017, 25, 1243-1253.e5.	7.2	233
1007	Comparative pharmacokinetics of acteoside from total glycoside extracted from leaves of <i>Rehmannia</i> and Dihuangye total glycoside capsule in normal and diabetic nephropathy rats. Biomedical Chromatography, 2017, 31, e4013.	0.8	13

#	ARTICLE	IF	CITATIONS
1008	Microbiota in T-cell homeostasis and inflammatory diseases. Experimental and Molecular Medicine, 2017, 49, e340-e340.	3.2	143
1009	The immune response to <i>Prevotella</i> bacteria in chronic inflammatory disease. Immunology, 2017, 151, 363-374.	2.0	789
1010	Intestinal Epithelial Sirtuin 1 Regulates Intestinal Inflammation During Aging in Mice by Altering the Intestinal Microbiota. Gastroenterology, 2017, 153, 772-786.	0.6	123
1011	Gut Microbiota, Endocrine-Disrupting Chemicals, and the Diabetes Epidemic. Trends in Endocrinology and Metabolism, 2017, 28, 612-625.	3.1	118
1012	Gut Microbiota and the Gut-Brain Axis: New Insights in the Pathophysiology of Metabolic Syndrome. Psychosomatic Medicine, 2017, 79, 874-879.	1.3	44
1014	Gut microbiota and acute graft-versus-host disease. Pharmacological Research, 2017, 122, 90-95.	3.1	15
1015	Probiotic yogurt and acidified milk similarly reduce postprandial inflammation and both alter the gut microbiota of healthy, young men. British Journal of Nutrition, 2017, 117, 1312-1322.	1.2	81
1016	The Mycobiome: Impact on Health and Disease States. , 2017, 5, 845-854.		18
1017	Diet shifts provoke complex and variable changes in the metabolic networks of the ruminal microbiome. Microbiome, 2017, 5, 60.	4.9	38
1018	Targeted metabolomics analysis of aromatic amino acids and their gut microbiota–host cometabolites in rat serum and urine by liquid chromatography coupled with tandem mass spectrometry. Journal of Separation Science, 2017, 40, 3221-3230.	1.3	11
1019	Dectin-1 Activation Exacerbates Obesity and Insulin Resistance in the Absence of MyD88. Cell Reports, 2017, 19, 2272-2288.	2.9	36
1020	The intestinal microbiome and paediatric liver disease. The Lancet Gastroenterology and Hepatology, 2017, 2, 446-455.	3.7	24
1021	Factors Influencing the Gut Microbiota, Inflammation, and Type 2 Diabetes. Journal of Nutrition, 2017, 147, 1468S-1475S.	1.3	268
1022	Effects of α-Galactooligosaccharides from Chickpeas on High-Fat-Diet-Induced Metabolic Syndrome in Mice. Journal of Agricultural and Food Chemistry, 2017, 65, 3160-3166.	2.4	33
1023	Effects of probiotics supplement in patients with type 2 diabetes mellitus: A meta-analysis of randomized trials. Medicina ClĀnica (English Edition), 2017, 148, 362-370.	0.1	13
1024	Non-alcoholic fatty liver disease: An update with special focus on the role of gut microbiota. Metabolism: Clinical and Experimental, 2017, 71, 182-197.	1.5	96
1025	Large-scale 16S gene assembly using metagenomics shotgun sequences. Bioinformatics, 2017, 33, 1447-1456.	1.8	13
1026	ResistoMap—online visualization of human gut microbiota antibiotic resistome. Bioinformatics, 2017, 33, 2205-2206.	1.8	28

#	Article	IF	CITATIONS
1027	Microbial Biogeography and Core Microbiota of the Rat Digestive Tract. Scientific Reports, 2017, 7, 45840.	1.6	127
1028	The Gut Microbiota and Alzheimer's Disease. Journal of Alzheimer's Disease, 2017, 58, 1-15.	1.2	624
1029	The Dynamic Microbiota Profile During Pepper (Piper nigrum L.) Peeling by Solid-State Fermentation. Current Microbiology, 2017, 74, 739-746.	1.0	10
1030	Correlation between early-life regulation of the immune system by microbiota and allergy development. Journal of Allergy and Clinical Immunology, 2017, 139, 1084-1091.	1.5	100
1031	Proteobacteria explain significant functional variability in the human gut microbiome. Microbiome, 2017, 5, 36.	4.9	156
1032	Modulation of gut microbiota contributes to curcumin-mediated attenuation of hepatic steatosis in rats. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1801-1812.	1.1	105
1033	Superoxide dismutase SOD-1 modulates C. elegans pathogen avoidance behavior. Scientific Reports, 2017, 7, 45128.	1.6	22
1034	Developmental origins of type 2 diabetes: a perspective from China. European Journal of Clinical Nutrition, 2017, 71, 870-880.	1.3	18
1035	A Model for Paired-Multinomial Data and Its Application to Analysis of Data on a Taxonomic Tree. Biometrics, 2017, 73, 1266-1278.	0.8	17
1036	Microbiota regulate intestinal epithelial gene expression by suppressing the transcription factor Hepatocyte nuclear factor 4 alpha. Genome Research, 2017, 27, 1195-1206.	2.4	101
1037	Ligatureâ€associated bacterial profiles are linked to type 2 diabetes mellitus in a rat model and influenced by antibody treatment against TNFâ€i± or RAGE. Clinical and Experimental Dental Research, 2017, 3, 25-31.	0.8	6
1038	Modulation of Gut Microbiota in Pathological States. Engineering, 2017, 3, 83-89.	3.2	26
1039	Health and Disease Imprinted in the Time Variability of the Human Microbiome. MSystems, 2017, 2, .	1.7	43
1040	Immunopathology in Toxicology and Drug Development. Molecular and Integrative Toxicology, 2017, , .	0.5	1
1041	The Human Microbiota in Health and Disease. Engineering, 2017, 3, 71-82.	3.2	583
1042	Gut metagenomic analysis reveals prominent roles of Lactobacillus and cecal microbiota in chicken feed efficiency. Scientific Reports, 2017, 7, 45308.	1.6	193
1043	HIV-infected persons with type 2 diabetes show evidence of endothelial dysfunction and increased inflammation. BMC Infectious Diseases, 2017, 17, 234.	1.3	19
1044	Gut Microbiota in Cardiovascular Health and Disease. Circulation Research, 2017, 120, 1183-1196.	2.0	1,079

#	Article	IF	CITATIONS
1045	Ethnic and diet-related differences in the healthy infant microbiome. Genome Medicine, 2017, 9, 32.	3.6	93
1046	The Microbiome and Human Disease: A New Organ of Interest in Biliary Disease. , 2017, , 85-96.		0
1047	Nonalcoholic Fatty Liver Disease, the Gut Microbiome, and Diet. Advances in Nutrition, 2017, 8, 240-252.	2.9	125
1048	Systems Biology of Metabolism. Annual Review of Biochemistry, 2017, 86, 245-275.	5.0	173
1049	Resistant Starch but Not Enzymatically Modified Waxy Maize Delays Development of Diabetes in Zucker Diabetic Fatty Rats. Journal of Nutrition, 2017, 147, 825-834.	1.3	18
1050	De-Bruijn graph with MapReduce framework towards metagenomic data classification. International Journal of Information Technology (Singapore), 2017, 9, 59-75.	1.8	40
1051	Effects of Gliadin consumption on the Intestinal Microbiota and Metabolic Homeostasis in Mice Fed a High-fat Diet. Scientific Reports, 2017, 7, 44613.	1.6	24
1052	A Fast Small-Sample Kernel Independence Test for Microbiome Community-Level Association Analysis. Biometrics, 2017, 73, 1453-1463.	0.8	36
1053	Metabolic phenotyping for discovery of urinary biomarkers of diet, xenobiotics and blood pressure in the INTERMAP Study: an overview. Hypertension Research, 2017, 40, 336-345.	1.5	14
1054	A safflower oil based highâ€fat/highâ€sucrose diet modulates the gut microbiota and liver phospholipid profiles associated with early glucose intolerance in the absence of tissue inflammation. Molecular Nutrition and Food Research, 2017, 61, 1600528.	1.5	19
1055	A small-sample multivariate kernel machine test for microbiome association studies. Genetic Epidemiology, 2017, 41, 210-220.	0.6	37
1056	Emerging role of intestinal microbiota and microbial metabolites in metabolic control. Diabetologia, 2017, 60, 613-617.	2.9	35
1057	<i>Oscillospira</i> and related bacteria – From metagenomic species to metabolic features. Environmental Microbiology, 2017, 19, 835-841.	1.8	320
1058	Increased Trimethylamine N-Oxide Portends High Mortality Risk Independent of Glycemic Control in Patients with Type 2 Diabetes Mellitus. Clinical Chemistry, 2017, 63, 297-306.	1.5	181
1059	A story of metformin-butyrate synergism to control various pathological conditions as a consequence of gut microbiome modification: Genesis of a wonder drug?. Pharmacological Research, 2017, 117, 103-128.	3.1	55
1060	Duodenal endoluminal barrier sleeve alters gut microbiota of ZDF rats. International Journal of Obesity, 2017, 41, 381-389.	1.6	17
1061	B cells present skewed profile and lose the function of supporting T cell inflammation after Roux-en-Y gastric bypass. International Immunopharmacology, 2017, 43, 16-22.	1.7	16
1062	The intestinal microbiota in allogeneic hematopoietic cell transplant and graft-versus-host disease. Blood, 2017, 129, 927-933.	0.6	153

#	Article	IF	CITATIONS
1063	Understanding the Molecular Mechanisms of the Interplay Between Herbal Medicines and Gut Microbiota. Medicinal Research Reviews, 2017, 37, 1140-1185.	5.0	241
1064	Hidden potential: dietâ€driven changes in redox level shape the rumen microbiome. Environmental Microbiology, 2017, 19, 19-20.	1.8	4
1065	Microbiome and chronic inflammatory bowel diseases. Journal of Molecular Medicine, 2017, 95, 21-28.	1.7	14
1066	Enterosalivary nitrate metabolism and the microbiome: Intersection of microbial metabolism, nitric oxide and diet in cardiac and pulmonary vascular health. Free Radical Biology and Medicine, 2017, 105, 48-67.	1.3	123
1067	Multimorbidity: an endocrinologist looks at multiâ€level network disruption and at what gets diabetes?. Journal of Evaluation in Clinical Practice, 2017, 23, 225-229.	0.9	10
1068	Further analysis reveals new gut microbiome markers of type 2 diabetes mellitus. Antonie Van Leeuwenhoek, 2017, 110, 445-453.	0.7	26
1069	Brown fat thermogenesis: Stability of developmental programming and transient effects of temperature and gut microbiota in adults. Biochimie, 2017, 134, 93-98.	1.3	12
1070	Multi-Parametric Imaging of Hypoxia and Cell Cycle in Intestinal Organoid Culture. Advances in Experimental Medicine and Biology, 2017, 1035, 85-103.	0.8	16
1071	Multi-Parametric Live Cell Microscopy of 3D Tissue Models. Advances in Experimental Medicine and Biology, 2017, , .	0.8	12
1072	<i>Lactobacillus plantarum</i> HNU082-derived improvements in the intestinal microbiome prevent the development of hyperlipidaemia. Food and Function, 2017, 8, 4508-4516.	2.1	51
1073	Type 2 Diabetes and Bacteremia. Annals of Nutrition and Metabolism, 2017, 71, 17-22.	1.0	22
1074	Towards standards for human fecal sample processing in metagenomic studies. Nature Biotechnology, 2017, 35, 1069-1076.	9.4	581
1075	Galacto-oligosaccharides ameliorate dysbiotic Bifidobacteriaceae decline in Japanese patients with type 2 diabetes. Beneficial Microbes, 2017, 8, 705-716.	1.0	54
1076	Pig models on intestinal development and therapeutics. Amino Acids, 2017, 49, 2099-2106.	1.2	19
1077	Targeting gut microbiota: Lactobacillus alleviated type 2 diabetes via inhibiting LPS secretion and activating GPR43 pathway. Journal of Functional Foods, 2017, 38, 561-570.	1.6	44
1078	The gut microbiome in atherosclerotic cardiovascular disease. Nature Communications, 2017, 8, 845.	5.8	1,029
1079	Challenges in simulating the human gut for understanding the role of the microbiota in obesity. Beneficial Microbes, 2017, 8, 31-53.	1.0	19
1080	Identification of microbiota dynamics using robust parameter estimation methods. Mathematical Biosciences, 2017, 294, 71-84.	0.9	12

#	Article	IF	CITATIONS
1081	Action and function of Akkermansia muciniphila in microbiome ecology, health and disease. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2017, 31, 637-642.	1.0	191
1082	Assessing Species Diversity Using Metavirome Data: Methods and Challenges. Computational and Structural Biotechnology Journal, 2017, 15, 447-455.	1.9	10
1083	The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nature Communications, 2017, 8, 875.	5.8	572
1084	Impact of Dietary Resistant Starch on the Human Gut Microbiome, Metaproteome, and Metabolome. MBio, 2017, 8, .	1.8	219
1085	Probiotic strains and mechanistic insights for the treatment of type 2 diabetes. Endocrine, 2017, 58, 207-227.	1.1	33
1086	Holistic Lipidomics of the Human Gut Phenotype Using Validated Ultra-High-Performance Liquid Chromatography Coupled to Hybrid Orbitrap Mass Spectrometry. Analytical Chemistry, 2017, 89, 12502-12510.	3.2	44
1087	Safety assessment of transgenic canola RF3 with bar and barstar gene on Sprague-Dawley (SD) rats by 90-day feeding test. Regulatory Toxicology and Pharmacology, 2017, 91, 226-234.	1.3	5
1088	Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease. Microbiome, 2017, 5, 141.	4.9	296
1089	Host–microbiota interaction induces bi-phasic inflammation and glucose intolerance in mice. Molecular Metabolism, 2017, 6, 1371-1380.	3.0	30
1090	Large-scale comparative metagenomics of <i>Blastocystis</i> , a common member of the human gut microbiome. ISME Journal, 2017, 11, 2848-2863.	4.4	136
1091	The Microbiota and Energy Balanc. Endocrinology, 2017, , 1-18.	0.1	0
1092	Dysbiosis signature of mycobiota in colon polyp and colorectal cancer. European Journal of Clinical Microbiology and Infectious Diseases, 2017, 36, 2457-2468.	1.3	99
1093	Shared Dysregulation of Homeostatic Brain-Body Pathways in Depression and Type 2 Diabetes. Current Diabetes Reports, 2017, 17, 90.	1.7	23
1094	Interaction between diet composition and gut microbiota and its impact on gastrointestinal tract health. Food Science and Human Wellness, 2017, 6, 121-130.	2.2	116
1095	Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice. Journal of Nutritional Biochemistry, 2017, 50, 16-25.	1.9	193
1096	The hundred most-cited publications in microbiota of diabetes research. Medicine (United States), 2017, 96, e7338.	0.4	27
1097	Diabetes and the Small Intestine. Current Treatment Options in Gastroenterology, 2017, 15, 490-507.	0.3	28
1098	Fructooligosaccharide (FOS) and Galactooligosaccharide (GOS) Increase Bifidobacterium but Reduce Butyrate Producing Bacteria with Adverse Glycemic Metabolism in healthy young population. Scientific Reports, 2017, 7, 11789.	1.6	181

#	Article	IF	CITATIONS
1099	A review of the relationship between the gut microbiota and amino acid metabolism. Amino Acids, 2017, 49, 2083-2090.	1.2	227
1100	Health relevance of the modification of low grade inflammation in ageing (inflammageing) and the role of nutrition. Ageing Research Reviews, 2017, 40, 95-119.	5.0	337
1101	Shotgun metagenomics, from sampling to analysis. Nature Biotechnology, 2017, 35, 833-844.	9.4	1,196
1102	Predictive and Comparative Network Analysis of the Gut Microbiota in Type 2 Diabetes. , 2017, , .		2
1103	In vitro colonisation of the distal colon by Akkermansia muciniphila is largely mucin and pH dependent. Beneficial Microbes, 2017, 8, 81-96.	1.0	80
1104	LRLSHMDA: Laplacian Regularized Least Squares for Human Microbe–Disease Association prediction. Scientific Reports, 2017, 7, 7601.	1.6	112
1105	Impact of Immunosuppression on the Metagenomic Composition of the Intestinal Microbiome: a Systems Biology Approach to Post-Transplant Diabetes. Scientific Reports, 2017, 7, 10277.	1.6	49
1106	The potential of the microbiota to influence vaccine responses. Journal of Leukocyte Biology, 2018, 103, 225-231.	1.5	72
1107	Metabolic programming of the epigenome: host and gut microbial metabolite interactions with host chromatin. Translational Research, 2017, 189, 30-50.	2.2	34
1108	Lifestyle alters GUT-bacteria function: Linking immune response and host. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2017, 31, 625-635.	1.0	13
1109	Original behavior of L. rhamnosus GG encapsulated in freeze-dried alginate–silica microparticles revealed under simulated gastrointestinal conditions. Journal of Materials Chemistry B, 2017, 5, 7839-7847.	2.9	14
1110	MicroPattern: a web-based tool for microbe set enrichment analysis and disease similarity calculation based on a list of microbes. Scientific Reports, 2017, 7, 40200.	1.6	20
1111	Comparative pharmacokinetics of six major bioactive components in normal and type 2 diabetic rats after oral administration of Sanhuang Xiexin Decoction extracts by UPLC-TQ MS/MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1061-1062, 248-255.	1.2	24
1112	Black Raspberries and Their Anthocyanin and Fiber Fractions Alter the Composition and Diversity of Gut Microbiota in F-344 Rats. Nutrition and Cancer, 2017, 69, 943-951.	0.9	82
1113	The aerial parts of Salvia miltiorrhiza Bge. strengthen intestinal barrier and modulate gut microbiota imbalance in streptozocin-induced diabetic mice. Journal of Functional Foods, 2017, 36, 362-374.	1.6	32
1114	The association of type II diabetes with gut microbiota composition. Microbial Pathogenesis, 2017, 110, 630-636.	1.3	86
1115	Comparison of Fecal Microbial Composition and Antibiotic Resistance Genes from Swine, Farm Workers and the Surrounding Villagers. Scientific Reports, 2017, 7, 4965.	1.6	18
1116	Interindividual Variability in Biomarkers of Cardiometabolic Health after Consumption of Major Plant-Food Bioactive Compounds and the Determinants Involved. Advances in Nutrition, 2017, 8, 558-570.	2.9	79

#	Article	IF	CITATIONS
1117	The human microbiome. Advances in Medical Sciences, 2017, 62, 414-420.	0.9	140
1118	IL-17A-dependent gut microbiota is essential for regulating diet-induced disorders in mice. Science Bulletin, 2017, 62, 1052-1063.	4.3	16
1119	<i>Helicobacter pylori</i> and gut microbiota in multiple sclerosis versus Alzheimer's disease: 10 pitfalls of microbiome studies. Clinical and Experimental Neuroimmunology, 2017, 8, 215-232.	0.5	43
1121	Dysregulated microbiota-gut-brain axis. Nutrition and Food Science, 2017, 47, 648-658.	0.4	4
1122	Association Between Gut Microbiota and Bone Health: Potential Mechanisms and Prospective. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3635-3646.	1.8	103
1123	Alterations of microbiota structure in the larynx relevant to laryngeal carcinoma. Scientific Reports, 2017, 7, 5507.	1.6	39
1124	Anti-diabetic Effects of Clostridium butyricum CGMCC0313.1 through Promoting the Growth of Gut Butyrate-producing Bacteria in Type 2 Diabetic Mice. Scientific Reports, 2017, 7, 7046.	1.6	117
1125	Quantitative metagenomics reveals unique gut microbiome biomarkers in ankylosing spondylitis. Genome Biology, 2017, 18, 142.	3.8	268
1126	Connections between the human gut microbiome and gestational diabetes mellitus. GigaScience, 2017, 6, 1-12.	3.3	204
1127	Impact of dust exposure on mixed bacterial cultures and during eukaryotic cell co-culture infections. Applied Microbiology and Biotechnology, 2017, 101, 7027-7039.	1.7	7
1128	Gut microbiome and its role in cardiovascular diseases. Current Opinion in Cardiology, 2017, 32, 761-766.	0.8	139
1129	Letter: complex interplay between obesity and <i>Clostridium difficile</i> infection. Alimentary Pharmacology and Therapeutics, 2017, 46, 639-641.	1.9	1
1130	Bacteriocins and bacteriophage; a narrow-minded approach to food and gut microbiology. FEMS Microbiology Reviews, 2017, 41, S129-S153.	3.9	74
1131	The effects of metformin on gut microbiota and the immune system as research frontiers. Diabetologia, 2017, 60, 1662-1667.	2.9	79
1132	Neoagarotetraose-modulated gut microbiota and alleviated gut inflammation in antibiotic treatment mice. Food and Agricultural Immunology, 2017, 28, 1408-1423.	0.7	21
1133	Relationship between gut microbiota and type 2 diabetic erectile dysfunction in Sprague-Dawley rats. Journal of Huazhong University of Science and Technology [Medical Sciences], 2017, 37, 523-530.	1.0	35
1135	Gut Microbiota: A New Marker of Cardiovascular Disease. Current Pharmaceutical Design, 2017, 23, 3233-3238.	0.9	25
1136	Subspecies in the global human gut microbiome. Molecular Systems Biology, 2017, 13, 960.	3.2	115

#	Article	IF	CITATIONS
1137	Colonic Butyrate-Producing Communities in Humans: an Overview Using Omics Data. MSystems, 2017, 2,	1.7	328
1138	Exploring the microbiome in health and disease. Toxicology Research and Application, 2017, 1, 239784731774188.	0.7	36
1139	Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment. Nature Communications, 2017, 8, 1785.	5.8	312
1140	The Association Between Artificial Sweeteners and Obesity. Current Gastroenterology Reports, 2017, 19, 64.	1.1	121
1141	Analysis of the gut microbiome and plasma short-chain fatty acid profiles in a spontaneous mouse model of metabolic syndrome. Scientific Reports, 2017, 7, 15876.	1.6	86
1142	Mitochondrial gene polymorphism is associated with gut microbial communities in mice. Scientific Reports, 2017, 7, 15293.	1.6	49
1143	Clinical Parameters and Gut Microbiome Changes Before and After Surgery in Thoracic Aortic Dissection in Patients with Gastrointestinal Complications. Scientific Reports, 2017, 7, 15228.	1.6	29
1144	Factors modulating the inflammatory response in acute gouty arthritis. Current Opinion in Rheumatology, 2017, 29, 163-170.	2.0	42
1145	Microbial-Host Co-metabolites Are Prodromal Markers Predicting Phenotypic Heterogeneity in Behavior, Obesity, and Impaired Glucose Tolerance. Cell Reports, 2017, 20, 136-148.	2.9	78
1147	Unexplored diversity and strain-level structure of the skin microbiome associated with psoriasis. Npj Biofilms and Microbiomes, 2017, 3, 14.	2.9	159
1148	HirBin: high-resolution identification of differentially abundant functions in metagenomes. BMC Genomics, 2017, 18, 316.	1.2	12
1149	Revised computational metagenomic processing uncovers hidden and biologically meaningful functional variation in the human microbiome. Microbiome, 2017, 5, 19.	4.9	21
1150	The remedy within: will the microbiome fulfill its therapeutic promise?. Journal of Molecular Medicine, 2017, 95, 1021-1027.	1.7	30
1151	Host Genetics and Gut Microbiome: Challenges and Perspectives. Trends in Immunology, 2017, 38, 633-647.	2.9	219
1152	Two distinct metacommunities characterize the gut microbiota in Crohn's disease patients. GigaScience, 2017, 6, 1-11.	3.3	75
1153	Shaping functional gut microbiota using dietary bioactives to reduce colon cancer risk. Seminars in Cancer Biology, 2017, 46, 191-204.	4.3	45
1154	Rapid analysis of bile acids in different biological matrices using LC-ESI-MS/MS for the investigation of bile acid transformation by mammalian gut bacteria. Analytical and Bioanalytical Chemistry, 2017, 409, 1231-1245.	1.9	81
1155	Akkermansia muciniphila improves metabolic profiles by reducing inflammation in chow diet-fed mice. Journal of Molecular Endocrinology, 2017, 58, 1-14.	1.1	201

#	Article	IF	CITATIONS
1156	Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes. Nature Microbiology, 2017, 2, 16180.	5.9	233
1157	A future perspective on neurodegenerative diseases: nasopharyngeal and gut microbiota. Journal of Applied Microbiology, 2017, 122, 306-320.	1.4	17
1158	Metformin Is Associated With Higher Relative Abundance of Mucin-Degrading <i>Akkermansia muciniphila</i> and Several Short-Chain Fatty Acid–Producing Microbiota in the Gut. Diabetes Care, 2017, 40, 54-62.	4.3	521
1159	Survey of (Meta)genomic Approaches for Understanding Microbial Community Dynamics. Indian Journal of Microbiology, 2017, 57, 23-38.	1.5	21
1160	From obesity through immunity to type 2 diabetes mellitus. International Journal of Diabetes in Developing Countries, 2017, 37, 407-418.	0.3	5
1161	Evaluation of Buccal Cell Samples for Studies of Oral Microbiota. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 249-253.	1.1	27
1162	Antibiotic-mediated modification of the intestinal microbiome in allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplantation, 2017, 52, 183-190.	1.3	50
1163	High-resolution characterization of the human microbiome. Translational Research, 2017, 179, 7-23.	2.2	55
1164	Probiotics, gut microbiota, and their influence on host health and disease. Molecular Nutrition and Food Research, 2017, 61, 1600240.	1.5	678
1165	Communicating systems in the body: how microbiota and microglia cooperate. Immunology, 2017, 150, 7-15.	2.0	130
1166	The shift work and health research agenda: Considering changes in gut microbiota as a pathway linking shift work, sleep loss and circadian misalignment, and metabolic disease. Sleep Medicine Reviews, 2017, 34, 3-9.	3.8	107
1167	HuMiChip2 for strain level identification and functional profiling of human microbiomes. Applied Microbiology and Biotechnology, 2017, 101, 423-435.	1.7	16
1168	Differential Changes in Gut Microbiota After Gastric Bypass and Sleeve Gastrectomy Bariatric Surgery Vary According to Diabetes Remission. Obesity Surgery, 2017, 27, 917-925.	1.1	230
1169	Fecal Bacteria Act as Novel Biomarkers for Noninvasive Diagnosis of Colorectal Cancer. Clinical Cancer Research, 2017, 23, 2061-2070.	3.2	266
1170	Parasites, microbiota and metabolic disease. Parasite Immunology, 2017, 39, e12390.	0.7	13
1171	Gut microbiome and liver disease. Translational Research, 2017, 179, 49-59.	2.2	78
1172	Potential mediators linking gut bacteria to metabolic health: a critical view. Journal of Physiology, 2017, 595, 477-487.	1.3	60
1173	Molecular analysis of the gut microbiome of diabetic rats supplemented with prebiotic, probiotic, and synbiotic foods. International Journal of Diabetes in Developing Countries, 2017, 37, 419-425.	0.3	9

#	Article	IF	CITATIONS
1174	A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nature Medicine, 2017, 23, 107-113.	15.2	1,451
1175	Effect of inulin-type fructans on blood lipid profile and glucose level: a systematic review and meta-analysis of randomized controlled trials. European Journal of Clinical Nutrition, 2017, 71, 9-20.	1.3	114
1176	MetaMLST: multi-locus strain-level bacterial typing from metagenomic samples. Nucleic Acids Research, 2017, 45, e7-e7.	6.5	88
1177	The commensal microbiota exacerbate infectious colitis in stressor-exposed mice. Brain, Behavior, and Immunity, 2017, 60, 44-50.	2.0	42
1178	Visualization of non-metric relationships by adaptive learning multiple maps t-SNE regularization. , 2017, , .		4
1179	Gut Microbiota in Obesity and Metabolic Abnormalities: A Matter of Composition or Functionality?. Archives of Medical Research, 2017, 48, 735-753.	1.5	59
1180	Effect of Synbiotic-Assisted Modulation of Gastrointestinal Microbiota on Human Health., 2017,, 223-236.		1
1181	Systematically investigating the impact of medication on the gut microbiome. Current Opinion in Microbiology, 2017, 39, 128-135.	2.3	65
1182	Strain profiling and epidemiology of bacterial species from metagenomic sequencing. Nature Communications, 2017, 8, 2260.	5.8	98
1183	Interindividual variability in gut microbiota and host response to dietary interventions. Nutrition Reviews, 2017, 75, 1059-1080.	2.6	155
1184	Bioinformatics in Microbiome Analysis. Methods in Microbiology, 2017, 44, 1-18.	0.4	4
1185	Gut Microbiota Brings a Novel Way to Illuminate Mechanisms of Natural Products in vivo. Chinese Herbal Medicines, 2017, 9, 301-306.	1.2	12
1186	Analysis of microbial community composition and diversity in postoperative intracranial infection using high-throughput sequencing. Molecular Medicine Reports, 2017, 16, 3938-3946.	1.1	12
1187	Fusimonas intestini gen. nov., sp. nov., a novel intestinal bacterium of the family Lachnospiraceae associated with diabetes in mice. Scientific Reports, 2017, 7, 18087.	1.6	8
1188	Software Dedicated to Virus Sequence Analysis "Bioinformatics Goes Viral― Advances in Virus Research, 2017, 99, 233-257.	0.9	19
1189	Moderate Exercise Has Limited but Distinguishable Effects on the Mouse Microbiome. MSystems, 2017, 2, .	1.7	65
1190	The microbiome as a novel paradigm in studying stress and mental health American Psychologist, 2017, 72, 655-667.	3.8	59
1191	18. MicrObesity in pregnancy: the inside story. , 2017, , .		O

#	Article	IF	CITATIONS
1192	HIV-associated changes in the enteric microbial community: potential role in loss of homeostasis and development of systemic inflammation. Current Opinion in Infectious Diseases, 2017, 30, 31-43.	1.3	78
1193	The Mycobiome: Impact on Health and Disease States. , 2017, , 845-854.		3
1194	Genome sequencing of 39 Akkermansia muciniphila isolates reveals its population structure, genomic and functional diverisity, and global distribution in mammalian gut microbiotas. BMC Genomics, 2017, 18, 800.	1.2	111
1195	Network Pharmacology Studies on the Bioactive Compounds and Action Mechanisms of Natural Products for the Treatment of Diabetes Mellitus: A Review. Frontiers in Pharmacology, 2017, 08, 74.	1.6	85
1196	Significance of Microbiota in Obesity and Metabolic Diseases and the Modulatory Potential by Medicinal Plant and Food Ingredients. Frontiers in Pharmacology, 2017, 8, 387.	1.6	85
1197	Alterations of Urinary Microbiota in Type 2 Diabetes Mellitus with Hypertension and/or Hyperlipidemia. Frontiers in Physiology, 2017, 8, 126.	1.3	31
1198	The Placental Microbiota Is Altered among Subjects with Gestational Diabetes Mellitus: A Pilot Study. Frontiers in Physiology, 2017, 8, 675.	1.3	55
1199	Relationship Between Gut Microbiota, Energy Metabolism, and Obesity. , 2017, , 255-258.		3
1200	Alterations in Gut Microbiota and Immunity by Dietary Fat. Yonsei Medical Journal, 2017, 58, 1083.	0.9	44
1201	Gut microbiome as a biomarker of cardiometabolic disorders. Annals of Agricultural and Environmental Medicine, 2017, 24, 416-422.	0.5	39
1202	Gut Microbiota and Nonalcoholic Fatty Liver Disease: Insights on Mechanisms and Therapy. Nutrients, 2017, 9, 1124.	1.7	143
1203	Gut Microbiota-Dependent Trimethylamine-N-oxide and Serum Biomarkers in Patients with T2DM and Advanced CKD. Journal of Clinical Medicine, 2017, 6, 86.	1.0	129
1204	The Human Mucosal Mycobiome and Fungal Community Interactions. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT	Overlock 1.5	10 Tf 50 262
1205	Pharmabiotics as an Emerging Medication for Metabolic Syndrome and Its Related Diseases. Molecules, 2017, 22, 1795.	1.7	21
1206	An Examination of Diet for the Maintenance of Remission in Inflammatory Bowel Disease. Nutrients, 2017, 9, 259.	1.7	68
1207	Butyrate Reduces HFD-Induced Adipocyte Hypertrophy and Metabolic Risk Factors in Obese LDLr-/Leiden Mice. Nutrients, 2017, 9, 714.	1.7	27
1208	p-Cresyl Sulfate. Toxins, 2017, 9, 52.	1.5	262
1209	Taxonomic and Metagenomic Alterations of Microbiota in Bariatric Surgery. , 2017, , 259-265.		0

#	Article	IF	CITATIONS
1210	2017 update on the relationship between diabetes and colorectal cancer: epidemiology, potential molecular mechanisms and therapeutic implications. Oncotarget, 2017, 8, 18456-18485.	0.8	134
1211	A Microbiomic Analysis in African Americans with Colonic Lesions Reveals Streptococcus sp.VT162 as a Marker of Neoplastic Transformation. Genes, 2017, 8, 314.	1.0	16
1212	Sampling Strategies for Three-Dimensional Spatial Community Structures in IBD Microbiota Research. Frontiers in Cellular and Infection Microbiology, 2017, 7, 51.	1.8	23
1213	Alterations of the Gut Microbiome in Hypertension. Frontiers in Cellular and Infection Microbiology, 2017, 7, 381.	1.8	313
1214	Host–Microbiota Mutualism in Metabolic Diseases. Frontiers in Endocrinology, 2017, 8, 267.	1.5	20
1215	Detection of Increased Plasma Interleukin-6 Levels and Prevalence of Prevotella copri and Bacteroides vulgatus in the Feces of Type 2 Diabetes Patients. Frontiers in Immunology, 2017, 8, 1107.	2.2	113
1216	Effects of Food Additives on Immune Cells As Contributors to Body Weight Gain and Immune-Mediated Metabolic Dysregulation. Frontiers in Immunology, 2017, 8, 1478.	2.2	44
1217	Gut Microbial Diversity Assessment of Indian Type-2-Diabetics Reveals Alterations in Eubacteria, Archaea, and Eukaryotes. Frontiers in Microbiology, 2017, 8, 214.	1.5	81
1218	PBHMDA: Path-Based Human Microbe-Disease Association Prediction. Frontiers in Microbiology, 2017, 8, 233.	1.5	97
1219	Anti-obesity Effect of Capsaicin in Mice Fed with High-Fat Diet Is Associated with an Increase in Population of the Gut Bacterium Akkermansia muciniphila. Frontiers in Microbiology, 2017, 8, 272.	1.5	118
1220	Structure and Function of the Fecal Microbiota in Diarrheic Neonatal Piglets. Frontiers in Microbiology, 2017, 8, 502.	1.5	103
1221	Gut Dysbiosis and Adaptive Immune Response in Diet-induced Obesity vs. Systemic Inflammation. Frontiers in Microbiology, 2017, 8, 1157.	1.5	62
1222	Geography, Ethnicity or Subsistence-Specific Variations in Human Microbiome Composition and Diversity. Frontiers in Microbiology, 2017, 8, 1162.	1.5	695
1223	The Gut Microbiota of Healthy Chilean Subjects Reveals a High Abundance of the Phylum Verrucomicrobia. Frontiers in Microbiology, 2017, 8, 1221.	1.5	225
1224	Unraveling the Fecal Microbiota and Metagenomic Functional Capacity Associated with Feed Efficiency in Pigs. Frontiers in Microbiology, 2017, 8, 1555.	1.5	171
1225	Modulation of Gut Microbiome Composition and Function in Experimental Colitis Treated with Sulfasalazine. Frontiers in Microbiology, 2017, 8, 1703.	1.5	89
1226	Total rRNA-Seq Analysis Gives Insight into Bacterial, Fungal, Protozoal and Archaeal Communities in the Rumen Using an Optimized RNA Isolation Method. Frontiers in Microbiology, 2017, 8, 1814.	1.5	37
1227	Flos Lonicera Combined with Metformin Ameliorates Hepatosteatosis and Glucose Intolerance in Association with Gut Microbiota Modulation. Frontiers in Microbiology, 2017, 8, 2271.	1.5	40

#	Article	IF	CITATIONS
1228	Antibiotic-Induced Alterations in Gut Microbiota Are Associated with Changes in Glucose Metabolism in Healthy Mice. Frontiers in Microbiology, 2017, 8, 2306.	1.5	103
1229	The Impact of Microbiota-Gut-Brain Axis on Diabetic Cognition Impairment. Frontiers in Aging Neuroscience, 2017, 9, 106.	1.7	39
1230	16S rRNA Next Generation Sequencing Analysis Shows Bacteria in Alzheimer's Post-Mortem Brain. Frontiers in Aging Neuroscience, 2017, 9, 195.	1.7	234
1231	Bacterial Diversity of the Gastric Content of Preterm Infants during Their First Month of Life at the Hospital. Frontiers in Nutrition, 2017, 4, 12.	1.6	15
1232	The Role of Supplemental Complex Dietary Carbohydrates and Gut Microbiota in Promoting Cardiometabolic and Immunological Health in Obesity: Lessons from Healthy Non-Obese Individuals. Frontiers in Nutrition, 2017, 4, 34.	1.6	31
1233	Association Study of Gut Flora in Coronary Heart Disease through High-Throughput Sequencing. BioMed Research International, 2017, 2017, 1-10.	0.9	90
1234	Proteobacteria: A Common Factor in Human Diseases. BioMed Research International, 2017, 2017, 1-7.	0.9	673
1235	Role of the Gastrointestinal Tract Microbiome in the Pathophysiology of Diabetes Mellitus. Journal of Diabetes Research, 2017, 2017, 1-9.	1.0	66
1236	Evaluation of the Bacterial Diversity in the Human Tongue Coating Based on Genus-Specific Primers for 16S rRNA Sequencing. BioMed Research International, 2017, 2017, 1-12.	0.9	12
1237	Dietary Polyphenols, Mediterranean Diet, Prediabetes, and Type 2 Diabetes: A Narrative Review of the Evidence. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-16.	1.9	186
1238	New Insights into the Mechanisms of Chinese Herbal Products on Diabetes: A Focus on the "Bacteria-Mucosal Immunity-Inflammation-Diabetes―Axis. Journal of Immunology Research, 2017, 2017, 1-13.	0.9	37
1239	Bariatric Surgery and Precision Nutrition. Nutrients, 2017, 9, 974.	1.7	42
1240	Computational discovery and functional validation of novel fluoroquinolone resistance genes in public metagenomic data sets. BMC Genomics, 2017, 18, 682.	1.2	24
1241	The Life Course Implications of Ready to Use Therapeutic Food for Children in Low-Income Countries. International Journal of Environmental Research and Public Health, 2017, 14, 403.	1.2	22
1242	Trimethylamine N-oxide (TMAO) as a New Potential Therapeutic Target for Insulin Resistance and Cancer. Current Pharmaceutical Design, 2017, 23, 3699-3712.	0.9	87
1243	Gut dysbiosis is associated with metabolism and systemic inflammation in patients with ischemic stroke. PLoS ONE, 2017, 12, e0171521.	1.1	205
1244	The desert gerbil Psammomys obesus as a model for metformin-sensitive nutritional type 2 diabetes to protect hepatocellular metabolic damage: Impact of mitochondrial redox state. PLoS ONE, 2017, 12, e0172053.	1.1	14
1245	Impact of Glyphosate on the Rhizosphere Microbial Communities of An EPSPS-Transgenic Soybean Line ZUTS31 by Metagenome Sequencing. Current Genomics, 2017, 19, 36-49.	0.7	10

#	Article	IF	CITATIONS
1246	The Association of Hot Red Chili Pepper Consumption and Mortality: A Large Population-Based Cohort Study. PLoS ONE, 2017, 12, e0169876.	1.1	71
1247	Characterizations of oral microbiota in elderly nursing home residents with diabetes. Journal of Oral Science, 2017, 59, 549-555.	0.7	35
1248	16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiology, 2017, 17, 162.	1.3	77
1249	Faecal bacterial microbiota in patients with cirrhosis and the effect of lactulose administration. BMC Gastroenterology, 2017, 17, 125.	0.8	37
1250	MetaGen: reference-free learning with multiple metagenomic samples. Genome Biology, 2017, 18, 187.	3.8	12
1251	A human stool-derived Bilophila wadsworthia strain caused systemic inflammation in specific-pathogen-free mice. Gut Pathogens, 2017, 9, 59.	1.6	120
1252	Longitudinal profiling reveals a persistent intestinal dysbiosis triggered by conventional anti-tuberculosis therapy. Microbiome, 2017, 5, 71.	4.9	117
1253	Genome-resolved metaproteomic characterization of preterm infant gut microbiota development reveals species-specific metabolic shifts and variabilities during early life. Microbiome, 2017, 5, 72.	4.9	36
1254	Metagenomics of urban sewage identifies an extensively shared antibiotic resistome in China. Microbiome, 2017, 5, 84.	4.9	247
1255	Statin therapy causes gut dysbiosis in mice through a PXR-dependent mechanism. Microbiome, 2017, 5, 95.	4.9	124
1256	Perilipin-2 modulates dietary fat-induced microbial global gene expression profiles in the mouse intestine. Microbiome, 2017, 5, 117.	4.9	17
1257	Recent urbanization in China is correlated with a Westernized microbiome encoding increased virulence and antibiotic resistance genes. Microbiome, 2017, 5, 121.	4.9	70
1258	Identification of 76 novel B1 metallo- \hat{l}^2 -lactamases through large-scale screening of genomic and metagenomic data. Microbiome, 2017, 5, 134.	4.9	75
1259	Seasonal, spatial, and maternal effects on gut microbiome in wild red squirrels. Microbiome, 2017, 5, 163.	4.9	148
1260	Intestinal Immunity and Gut Microbiota in Atherogenesis. Journal of Atherosclerosis and Thrombosis, 2017, 24, 110-119.	0.9	39
1261	Are Short Chain Fatty Acids in Gut Microbiota Defensive Players for Inflammation and Atherosclerosis?. Journal of Atherosclerosis and Thrombosis, 2017, 24, 660-672.	0.9	366
1262	Gut microbial metabolite short-chain fatty acids and obesity. Bioscience of Microbiota, Food and Health, 2017, 36, 135-140.	0.8	81
1263	Prediction of functional profiles of gut microbiota from 16S rRNA metagenomic data provides a more robust evaluation of gut dysbiosis occurring in Japanese type 2 diabetic patients. Journal of Clinical Biochemistry and Nutrition, 2017, 61, 217-221.	0.6	89

#	Article	IF	CITATIONS
1264	The Application of Molecular Methods Towards an Understanding of the Role of the Vaginal Microbiome in Health and Disease. Methods in Microbiology, 2017, 44, 37-91.	0.4	7
1265	Human genome-microbiome interaction: metagenomics frontiers for the aetiopathology of autoimmune diseases. Microbial Genomics, 2017, 3, e000112.	1.0	11
1266	Gut Microbiota and Metabolic Disorders. Journal of Korean Diabetes, 2017, 18, 63.	0.1	0
1267	ZiBuPiYin recipe improves cognitive decline by regulating gut microbiota in Zucker diabetic fatty rats. Oncotarget, 2017, 8, 27693-27703.	0.8	24
1268	Liver inflammation and fibrosis. Journal of Clinical Investigation, 2017, 127, 55-64.	3.9	861
1269	The Influence of Fiber on Gut Microbiota: Butyrate as Molecular Player Involved in theÂBeneficial Interplay BetweenÂDietary Fiber and Cardiovascular Health. , 2017, , 61-71.		4
1270	The Influence of Microbiota on Mechanisms of Bariatric Surgery. , 2017, , 267-281.		3
1271	Does colorectal cancer significantly influence the assembly of gut microbial communities?. PeerJ, 2017, 5, e3383.	0.9	6
1272	Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier. World Journal of Gastroenterology, 2017, 23, 60.	1.4	288
1273	Correlation of placental microbiota with fetal macrosomia and clinical characteristics in mothers and newborns. Oncotarget, 2017, 8, 82314-82325.	0.8	57
1274	Rethinking the bile acid/gut microbiome axis in cancer. Oncotarget, 2017, 8, 115736-115747.	0.8	34
1275	Fiber-Rich Dietary Patterns and Colonic Microbiota in Aging and Disease. , 2018, , 119-144.		1
1276	Lactobacillus gasseri in the Upper Small Intestine Impacts an ACSL3-Dependent Fatty Acid-Sensing Pathway Regulating Whole-Body Glucose Homeostasis. Cell Metabolism, 2018, 27, 572-587.e6.	7.2	54
1277	Relationships Between Perinatal Interventions, Maternal-Infant Microbiomes, and Neonatal Outcomes. Clinics in Perinatology, 2018, 45, 339-355.	0.8	29
1278	Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science, 2018, 359, 1151-1156.	6.0	1,521
1279	Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Experimental and Molecular Medicine, 2018, 50, e450-e450.	3.2	455
1280	Splenda in the Milk. Journal of Pediatric Gastroenterology and Nutrition, 2018, 66, 371-372.	0.9	0
1281	¹ H NMR-Based Identification of Intestinally Absorbed Metabolites by Ussing Chamber Analysis of the Rat Cecum. Analytical Chemistry, 2018, 90, 4196-4202.	3.2	7

#	Article	IF	Citations
1282	Dysbiosis of gut microbiota in promoting the development of colorectal cancer. Gastroenterology Report, 2018, 6, 1-12.	0.6	192
1283	Featured article: Structure moderation of gut microbiota in liraglutide-treated diabetic male rats. Experimental Biology and Medicine, 2018, 243, 34-44.	1.1	56
1284	Gut microbiota and its implications in small bowel transplantation. Frontiers of Medicine, 2018, 12, 239-248.	1.5	11
1285	Influence of diet and dietary nanoparticles on gut dysbiosis. Microbial Pathogenesis, 2018, 118, 61-65.	1.3	13
1286	Xiexin Tang improves the symptom of type 2 diabetic rats by modulation of the gut microbiota. Scientific Reports, 2018, 8, 3685.	1.6	173
1287	Can Helicobacter pylori Eradication Treatment Modify the Metabolic Response to Bariatric Surgery?. Obesity Surgery, 2018, 28, 2386-2395.	1.1	18
1288	Antidiabetic Mechanism of Dietary Polysaccharides Based on Their Gastrointestinal Functions. Journal of Agricultural and Food Chemistry, 2018, 66, 4781-4786.	2.4	75
1289	Akkermansia muciniphila can reduce the damage of gluco/lipotoxicity, oxidative stress and inflammation, and normalize intestine microbiota in streptozotocin-induced diabetic rats. Pathogens and Disease, 2018, 76, .	0.8	86
1290	Systems biology in hepatology: approaches and applications. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 365-377.	8.2	117
1291	Effects of shenling baizhu powder herbal formula on intestinal microbiota in high-fat diet-induced NAFLD rats. Biomedicine and Pharmacotherapy, 2018, 102, 1025-1036.	2.5	86
1292	Prevention and Treatment of Type 2 Diabetes: A Pathophysiological-Based Approach. Trends in Endocrinology and Metabolism, 2018, 29, 370-379.	3.1	26
1293	Nonmicrobicidal Small Molecule Inhibition of Polysaccharide Metabolism in Human Gut Microbes: A Potential Therapeutic Avenue. ACS Chemical Biology, 2018, 13, 1165-1172.	1.6	26
1294	The human gut microbiota: Metabolism and perspective in obesity. Gut Microbes, 2018, 9, 1-18.	4.3	304
1295	Microbiota potential for the treatment of sexual dysfunction. Medical Hypotheses, 2018, 115, 46-49.	0.8	12
1296	Beneficial psychological effects of novel psychobiotics in diabetic rats: the interaction among the gut, blood and amygdala. Journal of Nutritional Biochemistry, 2018, 57, 145-152.	1.9	40
1297	Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction. Microbiome, 2018, 6, 66.	4.9	185
1298	Pathogenesis of Type 2 Diabetes Mellitus. Endocrinology, 2018, , 1-74.	0.1	0
1299	Altered fecal microbiota composition in all male aggressorâ€exposed rodent model simulating features of postâ€traumatic stress disorder. Journal of Neuroscience Research, 2018, 96, 1311-1323.	1.3	54

#	Article	IF	CITATIONS
1300	Hospitalized Premature Infants Are Colonized by Related Bacterial Strains with Distinct Proteomic Profiles. MBio, $2018,9,.$	1.8	34
1301	Dietary Interventions to Modulate the Gut Microbiomeâ€"How Far Away Are We From Precision Medicine. Inflammatory Bowel Diseases, 2018, 24, 2142-2154.	0.9	61
1302	Hologenomic adaptations underlying the evolution of sanguivory in the common vampire bat. Nature Ecology and Evolution, 2018, 2, 659-668.	3.4	124
1303	Tissue macrophages as mediators of a healthy relationship with gut commensal microbiota. Cellular Immunology, 2018, 330, 16-26.	1.4	35
1304	Effects of Qijian mixture on type 2 diabetes assessed by metabonomics, gut microbiota and network pharmacology. Pharmacological Research, 2018, 130, 93-109.	3.1	83
1305	The family Coriobacteriaceae is a potential contributor to the beneficial effects of Roux-en-Y gastric bypass on type 2 diabetes. Surgery for Obesity and Related Diseases, 2018, 14, 584-593.	1.0	71
1306	Applied Hologenomics: Feasibility and Potential in Aquaculture. Trends in Biotechnology, 2018, 36, 252-264.	4.9	51
1307	Long-term treatment with green tea polyphenols modifies the gut microbiome of female sprague-dawley rats. Journal of Nutritional Biochemistry, 2018, 56, 55-64.	1.9	64
1308	Gut microbiota and probiotics intervention: A potential therapeutic target for management of cardiometabolic disorders and chronic kidney disease?. Pharmacological Research, 2018, 130, 152-163.	3.1	66
1309	The microbiome in chronic kidney disease patients undergoing hemodialysis and peritoneal dialysis. Pharmacological Research, 2018, 130, 143-151.	3.1	43
1310	Gut Microbial Diversity in Women With Polycystic Ovary Syndrome Correlates With Hyperandrogenism. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 1502-1511.	1.8	224
1311	Metabonomic strategy for the detection of metabolic effects of probiotics combined with prebiotic supplementation in weaned rats. RSC Advances, 2018, 8, 5042-5057.	1.7	16
1312	Assessment of the cPAS-based BGISEQ-500 platform for metagenomic sequencing. GigaScience, 2018, 7, 1-8.	3.3	168
1313	Precision medicine in diabetes: an opportunity for clinical translation. Annals of the New York Academy of Sciences, 2018, 1411, 140-152.	1.8	32
1314	Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia, 2018, 61, 810-820.	2.9	313
1315	Adaptation of commensal proliferating <i>Escherichia coli</i> to the intestinal tract of young children with cystic fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1605-1610.	3.3	41
1316	Effects of a galacto-oligosaccharide-rich diet on fecal microbiota and metabolite profiles in mice. Food and Function, 2018, 9, 1612-1620.	2.1	70
1317	Association of polymorphisms in LEPR with type 2 diabetes and related metabolic traits in a Chinese population. Lipids in Health and Disease, 2018, 17, 2.	1.2	14

#	Article	IF	CITATIONS
1318	Clinical Relevance of Gastrointestinal Microbiota During Pregnancy: A Primer for Nurses. Biological Research for Nursing, 2018, 20, 84-102.	1.0	9
1319	Evaluating Causality of Gut Microbiota in Obesity and Diabetes in Humans. Endocrine Reviews, 2018, 39, 133-153.	8.9	207
1320	Stachyose Improves Inflammation through Modulating Gut Microbiota of Highâ€Fat Diet/Streptozotocinâ€Induced Type 2 Diabetes in Rats. Molecular Nutrition and Food Research, 2018, 62, e1700954.	1.5	84
1321	Causal effects of the microbiota on immune-mediated diseases. Science Immunology, 2018, 3, .	5.6	103
1322	Precision nutrition for prevention and management of type 2 diabetes. Lancet Diabetes and Endocrinology, the, 2018, 6, 416-426.	5.5	159
1323	Green Tea Polyphenols Modulate Colonic Microbiota Diversity and Lipid Metabolism in Highâ€Fat Diet Treated HFA Mice. Journal of Food Science, 2018, 83, 864-873.	1.5	95
1324	Evaluation of a faecal dysbiosis test for irritable bowel syndrome in subjects with and without obesity. Scandinavian Journal of Clinical and Laboratory Investigation, 2018, 78, 109-113.	0.6	11
1325	Dysbiosis Signatures of Gut Microbiota Along the Sequence from Healthy, Young Patients to Those with Overweight and Obesity. Obesity, 2018, 26, 351-361.	1.5	155
1326	Comparative Metagenomics. Methods in Molecular Biology, 2018, 1704, 243-260.	0.4	2
1327	Structural characterization and in vitro fermentation of a novel polysaccharide from Sargassum thunbergii and its impact on gut microbiota. Carbohydrate Polymers, 2018, 183, 230-239.	5.1	145
1328	Conditional quantile correlation screening procedure for ultrahigh-dimensional varying coefficient models. Journal of Statistical Planning and Inference, 2018, 197, 69-92.	0.4	2
1329	Is metformin poised for a second career as an antimicrobial?. Diabetes/Metabolism Research and Reviews, 2018, 34, e2975.	1.7	66
1330	Nonalcoholic fatty liver disease and chronic vascular complications of diabetes mellitus. Nature Reviews Endocrinology, 2018, 14, 99-114.	4.3	284
1331	Enterotypes in the landscape of gut microbial community composition. Nature Microbiology, 2018, 3, 8-16.	5.9	717
1332	Plasma microbiome-modulated indole- and phenyl-derived metabolites associate with advanced atherosclerosis and postoperative outcomes. Journal of Vascular Surgery, 2018, 68, 1552-1562.e7.	0.6	105
1333	A potential impact of Helicobacter pylori -related galectin-3 in neurodegeneration. Neurochemistry International, 2018, 113, 137-151.	1.9	21
1334	Effects of polysaccharides from purple sweet potatoes on immune response and gut microbiota composition in normal and cyclophosphamide treated mice. Food and Function, 2018, 9, 937-950.	2.1	143
1335	Gut microbiome contributes to impairment of immunity in pulmonary tuberculosis patients by alteration of butyrate and propionate producers. Environmental Microbiology, 2018, 20, 402-419.	1.8	120

#	Article	IF	Citations
1336	MAGNAMWAR: an R package for genome-wide association studies of bacterial orthologs. Bioinformatics, 2018, 34, 1951-1952.	1.8	13
1337	Characterizing the bacterial microbiota in different gastrointestinal tract segments of the Bactrian camel. Scientific Reports, 2018, 8, 654.	1.6	69
1338	Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Scientific Reports, 2018, 8, 635.	1.6	218
1339	Maternal metabolic, immune, and microbial systems in late pregnancy vary with malnutrition in miceâ€. Biology of Reproduction, 2018, 98, 579-592.	1.2	26
1340	Arachidonic acid in health and disease with focus on hypertension and diabetes mellitus: A review. Journal of Advanced Research, 2018, 11, 43-55.	4.4	84
1341	Comparison of DNA extraction methods for human gut microbial community profiling. Systematic and Applied Microbiology, 2018, 41, 151-157.	1.2	133
1342	<i>Lactobacillus plantarum</i> CCFM10 alleviating oxidative stress and restoring the gut microbiota in <scp>d</scp> -galactose-induced aging mice. Food and Function, 2018, 9, 917-924.	2.1	69
1343	Metabolic Syndrome and Associated Diseases: From the Bench to the Clinic. Toxicological Sciences, 2018, 162, 36-42.	1.4	147
1344	MVP: a microbe–phage interaction database. Nucleic Acids Research, 2018, 46, D700-D707.	6.5	82
1345	Changes in Gut Microbiota–Related Metabolites and Long-term Successful Weight Loss in Response to Weight-Loss Diets: The POUNDS Lost Trial. Diabetes Care, 2018, 41, 413-419.	4.3	61
1346	Dark matter in host-microbiome metabolomics: Tackling the unknowns–A review. Analytica Chimica Acta, 2018, 1037, 13-27.	2.6	108
1347	Colonic Mucosal Bacteria Are Associated with Inter-Individual Variability in Serum Carotenoid Concentrations. Journal of the Academy of Nutrition and Dietetics, 2018, 118, 606-616.e3.	0.4	27
1348	The Role of Microbiota in Retinal Disease. Advances in Experimental Medicine and Biology, 2018, 1074, 429-435.	0.8	54
1349	Obese Subjects With Specific Gustatory Papillae Microbiota and Salivary Cues Display an Impairment to Sense Lipids. Scientific Reports, 2018, 8, 6742.	1.6	32
1350	Modulations in the offspring gut microbiome are refractory to postnatal synbiotic supplementation among juvenile primates. BMC Microbiology, 2018, 18, 28.	1.3	19
1351	KDiamend: a package for detecting key drivers in a molecular ecological network of disease. BMC Systems Biology, 2018, 12, 5.	3.0	5
1352	Exposure to concentrated ambient PM2.5 alters the composition of gut microbiota in a murine model. Particle and Fibre Toxicology, 2018, 15, 17.	2.8	112
1353	A novel affordable reagent for room temperature storage and transport of fecal samples for metagenomic analyses. Microbiome, 2018, 6, 43.	4.9	53

#	Article	IF	CITATIONS
1354	The hologenome concept of evolution after 10Âyears. Microbiome, 2018, 6, 78.	4.9	326
1355	Neuroimmune Mechanisms of Depression in Adults with Heart Failure. Methods in Molecular Biology, 2018, 1781, 145-169.	0.4	1
1356	Comparison of normalization methods for the analysis of metagenomic gene abundance data. BMC Genomics, 2018, 19, 274.	1.2	125
1357	Walnut Consumption Alters the Gastrointestinal Microbiota, Microbially Derived Secondary Bile Acids, and Health Markers in Healthy Adults: A Randomized Controlled Trial. Journal of Nutrition, 2018, 148, 861-867.	1.3	118
1358	Prebiotic Mannan-Oligosaccharides Augment the Hypoglycemic Effects of Metformin in Correlation with Modulating Gut Microbiota. Journal of Agricultural and Food Chemistry, 2018, 66, 5821-5831.	2.4	84
1359	Detection of Gut Dysbiosis due to Reduced Clostridium Subcluster XIVa Using the Fecal or Serum Bile Acid Profile. Inflammatory Bowel Diseases, 2018, 24, 1035-1044.	0.9	40
1360	Pumpkin polysaccharide modifies the gut microbiota during alleviation of type 2 diabetes in rats. International Journal of Biological Macromolecules, 2018, 115, 711-717.	3.6	114
1361	Butyrate ameliorated-NLRC3 protects the intestinal barrier in a GPR43-dependent manner. Experimental Cell Research, 2018, 368, 101-110.	1.2	38
1362	Alterations in Enteric Virome Are Associated With Colorectal Cancer and Survival Outcomes. Gastroenterology, 2018, 155, 529-541.e5.	0.6	271
1363	Efficacy and safety of faecal microbiota transplantation in patients with psoriatic arthritis: protocol for a 6-month, double-blind, randomised, placebo-controlled trial. BMJ Open, 2018, 8, e019231.	0.8	51
1364	Integrative metabolic and microbial profiling on patients with Spleen-yang-deficiency syndrome. Scientific Reports, 2018, 8, 6619.	1.6	73
1365	Coffee consumption and reduced risk of developing type 2 diabetes: a systematic review with meta-analysis. Nutrition Reviews, 2018, 76, 395-417.	2.6	144
1366	Elucidation of bacterial species during childhood diarrhea through 16S rRNA Illumina Miseq approach. Meta Gene, 2018, 16, 234-240.	0.3	3
1367	Differential bacterial capture and transport preferences facilitate co-growth on dietary xylan in the human gut. Nature Microbiology, 2018, 3, 570-580.	5.9	121
1368	Mechanisms of utilisation of arabinoxylans by a porcine faecal inoculum: competition and co-operation. Scientific Reports, 2018, 8, 4546.	1.6	25
1369	How Should Biobanks Prioritize and Diversify Biosample Collections? A 40-Year Scientific Publication Trend Analysis by the Type of Biosample. OMICS A Journal of Integrative Biology, 2018, 22, 255-263.	1.0	6
1370	The Human Gut Microbiome in Health and Disease. , 2018, , 197-213.		24
1371	Can Diet Influence Our Health by Altering Intestinal Microbiota-Derived Fecal Metabolites?. MSystems, 2018, 3, .	1.7	10

#	Article	IF	CITATIONS
1372	Metagenomic insight into methanogenic reactors promoting direct interspecies electron transfer via granular activated carbon. Bioresource Technology, 2018, 259, 414-422.	4.8	108
1373	Highlighting Clinical Metagenomics for Enhanced Diagnostic Decision-making: A Step Towards Wider Implementation. Computational and Structural Biotechnology Journal, 2018, 16, 108-120.	1.9	79
1374	A mathematical model of multiple delayed feedback control system of the gut microbiota—Antibiotics injection controlled by measured metagenomic data. Nonlinear Analysis: Real World Applications, 2018, 43, 1-17.	0.9	11
1375	Extensive impact of non-antibiotic drugs on human gut bacteria. Nature, 2018, 555, 623-628.	13.7	1,339
1376	Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies. Nature Microbiology, 2018, 3, 514-522.	5.9	196
1378	Improvement in glucose tolerance and insulin sensitivity by probiotic strains of Indian gut origin in high-fat diet-fed C57BL/6J mice. European Journal of Nutrition, 2018, 57, 279-295.	1.8	131
1379	Probiotic supplementation for management of cardiovascular risk factors in adults with type II diabetes: A systematic review and meta-analysis. Clinical Nutrition, 2018, 37, 532-541.	2.3	87
1380	Understanding the role of the gut ecosystem in diabetes mellitus. Journal of Diabetes Investigation, 2018, 9, 5-12.	1.1	110
1381	Gut: A key player in the pathogenesis of type 2 diabetes?. Critical Reviews in Food Science and Nutrition, 2018, 58, 1294-1309.	5.4	26
1382	Role of oral and gut microbiome in nitric oxide-mediated colon motility. Nitric Oxide - Biology and Chemistry, 2018, 73, 81-88.	1.2	53
1383	Intestinal microbiota in patients with chronic hepatitis C with and without cirrhosis compared with healthy controls. Liver International, 2018, 38, 50-58.	1.9	72
1384	Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders?. Microbiology Spectrum, 2017, 5, .	1.2	28
1385	Lung Microbiota and Its Impact on the Mucosal Immune Phenotype. Microbiology Spectrum, 2017, 5, .	1.2	34
1386	Immunoglobulin A and liver diseases. Journal of Gastroenterology, 2018, 53, 691-700.	2.3	38
1387	Functional Genomics of Host–Microbiome Interactions in Humans. Trends in Genetics, 2018, 34, 30-40.	2.9	73
1388	Gut microbiome in gestational diabetes: a crossâ€sectional study of mothers and offspring 5Âyears postpartum. Acta Obstetricia Et Gynecologica Scandinavica, 2018, 97, 38-46.	1.3	51
1389	Gut microbiota and obesity: Concepts relevant to clinical care. European Journal of Internal Medicine, 2018, 48, 18-24.	1.0	95
1390	Inflammageing and metaflammation: The yin and yang of type 2 diabetes. Ageing Research Reviews, 2018, 41, 1-17.	5.0	182

#	Article	IF	CITATIONS
1391	Probiotics, prebiotics, synbiotics and insulin sensitivity. Nutrition Research Reviews, 2018, 31, 35-51.	2.1	212
1392	Reduced obesity, diabetes, and steatosis upon cinnamon and grape pomace are associated with changes in gut microbiota and markers of gut barrier. American Journal of Physiology - Endocrinology and Metabolism, 2018, 314, E334-E352.	1.8	119
1393	Maternal obesity is associated with gut microbial metabolic potential in offspring during infancy. Journal of Physiology and Biochemistry, 2018, 74, 159-169.	1.3	29
1394	Food restriction followed by refeeding with a casein- or whey-based diet differentially affects the gut microbiota of pre-pubertal male rats. Journal of Nutritional Biochemistry, 2018, 51, 27-39.	1.9	13
1395	Gut microbiota fermentation of marine polysaccharides and its effects on intestinal ecology: An overview. Carbohydrate Polymers, 2018, 179, 173-185.	5.1	165
1396	Gut microbiome composition in lean patients with NASH is associated with liver damage independent of caloric intake: AÂprospective pilot study. Nutrition, Metabolism and Cardiovascular Diseases, 2018, 28, 369-384.	1.1	96
1397	The gut microbiome, symptoms, and targeted interventions in children with cancer: a systematic review. Supportive Care in Cancer, 2018, 26, 427-439.	1.0	37
1398	Exercise has the guts: How physical activity may positively modulate gut microbiota in chronic and immune-based diseases. Digestive and Liver Disease, 2018, 50, 331-341.	0.4	114
1399	Dietary Fiber in Health and Disease. , 2018, , .		6
1400	Modeling metabolism of the human gut microbiome. Current Opinion in Biotechnology, 2018, 51, 90-96.	3.3	122
			· · · · · · · · · · · · · · · · · · ·
1401	Road MAPs to engineer host microbiomes. Current Opinion in Microbiology, 2018, 43, 46-54.	2.3	60
1401	Road MAPs to engineer host microbiomes. Current Opinion in Microbiology, 2018, 43, 46-54. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature Reviews Endocrinology, 2018, 14, 88-98.	2.3	3,156
	Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature Reviews		
1402	Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature Reviews Endocrinology, 2018, 14, 88-98. Anthropometric and metabolic improvements in human type 2 diabetes after introduction of an Okinawan-based Nordic diet are not associated with changes in microbial diversity or SCFA	4.3	3,156
1402	Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature Reviews Endocrinology, 2018, 14, 88-98. Anthropometric and metabolic improvements in human type 2 diabetes after introduction of an Okinawan-based Nordic diet are not associated with changes in microbial diversity or SCFA concentrations. International Journal of Food Sciences and Nutrition, 2018, 69, 729-740. Gut Microbiota Interacts with Markers of Adipose Tissue Browning, Insulin Action and Plasma Acetate	4.3 1.3	3,156 27
1402 1403 1404	Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature Reviews Endocrinology, 2018, 14, 88-98. Anthropometric and metabolic improvements in human type 2 diabetes after introduction of an Okinawan-based Nordic diet are not associated with changes in microbial diversity or SCFA concentrations. International Journal of Food Sciences and Nutrition, 2018, 69, 729-740. Gut Microbiota Interacts with Markers of Adipose Tissue Browning, Insulin Action and Plasma Acetate in Morbid Obesity. Molecular Nutrition and Food Research, 2018, 62, 1700721. Association Between Small Intestinal Bacterial Overgrowth by Glucose Breath Test and Coronary	4.3 1.3 1.5	3,156 27 73
1402 1403 1404 1405	Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature Reviews Endocrinology, 2018, 14, 88-98. Anthropometric and metabolic improvements in human type 2 diabetes after introduction of an Okinawan-based Nordic diet are not associated with changes in microbial diversity or SCFA concentrations. International Journal of Food Sciences and Nutrition, 2018, 69, 729-740. Gut Microbiota Interacts with Markers of Adipose Tissue Browning, Insulin Action and Plasma Acetate in Morbid Obesity. Molecular Nutrition and Food Research, 2018, 62, 1700721. Association Between Small Intestinal Bacterial Overgrowth by Glucose Breath Test and Coronary Artery Disease. Digestive Diseases and Sciences, 2018, 63, 412-421.	4.3 1.3 1.5	3,156 27 73

#	Article	IF	CITATIONS
1409	Fiber in Type 2 Diabetes Prevention and Management. , 2018, , 227-249.		0
1410	Novel carbohydrate binding modules in the surface anchored αâ€amylase of ⟨i⟩Eubacterium rectale⟨/i⟩ provide a molecular rationale for the range of starches used by this organism in the human gut. Molecular Microbiology, 2018, 107, 249-264.	1.2	51
1411	Low dietary fiber intake increases <i>Collinsella</i> abundance in the gut microbiota of overweight and obese pregnant women. Gut Microbes, 2018, 9, 189-201.	4.3	233
1412	Reciprocal interactions between bile acids and gut microbiota in human liver diseases. Hepatology Research, 2018, 48, 15-27.	1.8	37
1413	Modulation of the gut microbiota by metformin improves metabolic profiles in aged obese mice. Gut Microbes, 2018, 9, 155-165.	4.3	142
1414	Antimicrobial Emulsifier–Glycerol Monolaurate Induces Metabolic Syndrome, Gut Microbiota Dysbiosis, and Systemic Lowâ€Grade Inflammation in Lowâ€Fat Diet Fed Mice. Molecular Nutrition and Food Research, 2018, 62, 1700547.	1.5	99
1415	A metagenomic approach to dissect the genetic composition of enterotypes in Han Chinese and two Muslim groups. Systematic and Applied Microbiology, 2018, 41, 1-12.	1.2	24
1416	Evaluating in Vitro Culture Medium of Gut Microbiome with Orthogonal Experimental Design and a Metaproteomics Approach. Journal of Proteome Research, 2018, 17, 154-163.	1.8	41
1417	Association study of gut flora in Wilson's disease through high-throughput sequencing. Medicine (United States), 2018, 97, e11743.	0.4	26
1418	The Phylogenetic Tree based Deep Forest for Metagenomic Data Classification. , 2018, , .		8
1419	Functional Food: Probiotic as Health Booster. Journal of Food Nutrition and Population Health, 2018, 02, .	0.2	8
1420	Omics Approaches, Technologies And Applications. , 2018, , .		6
1421	Microbiome. , 2018, , 99-128.		0
1422	Influence of Altered Gut Microbiota Composition on Aging and Aging-Related Diseases. Journal of Lifestyle Medicine, 2018, 8, 1-7.	0.3	28
1423	Gut-microbiota-on-a-chip: an enabling field for physiological research. Microphysiological Systems, 2018, 1, 1-1.	2.0	17
1424	Sex Modulates Lactobacillus johnsonii N6.2 and Phytophenol Effectiveness in Reducing High Fat Diet Induced mTOR Activation in Sprague-Dawley Rats. Frontiers in Microbiology, 2018, 9, 2649.	1.5	8
1425	Similarities and differences in gut microbiome composition correlate with dietary patterns of Indian and Chinese adults. AMB Express, 2018, 8, 104.	1.4	55
1426	An Ensemble Feature Selection Method Based on Deep Forest for Microbiome-Wide Association Studies. , $2018, \ldots$		8

#	Article	IF	CITATIONS
1427	GLYCATION INHIBITORS AND PROBIOTICS CAN AMELIORATE THE CHANGES CAUSED BY HIGH FRUCTOSE FEED. International Journal of Pharmacy and Pharmaceutical Sciences, 2018, 10, 28.	0.3	3
1428	Benefits of procyanidins on gut microbiota in Bama minipigs and implications in replacing antibiotics. Journal of Veterinary Science, 2018, 19, 798.	0.5	4
1429	The Microbiome and the Epigenetics of Diabetes Mellitus. , 0 , , .		4
1430	<i>Lactobacillus helveticus / i> KLDS1.8701 alleviates <scp>d < /scp>-galactose-induced aging by regulating Nrf-2 and gut microbiota in mice. Food and Function, 2018, 9, 6586-6598.</scp></i>	2.1	66
1431	Protective effects of SKLB023 on a mouse model of unilateral ureteral obstruction by the modulation of gut microbiota. RSC Advances, 2018, 8, 40232-40242.	1.7	0
1432	An adaptive microbiome α-diversity-based association analysis method. Scientific Reports, 2018, 8, 18026.	1.6	34
1433	SPARTA: super-fast permutation approach to approximate extremely low p-values. International Journal of Data Mining and Bioinformatics, 2018, 21, 352.	0.1	0
1434	Correlation-based network analysis for biomarkers in obesity. , 2018, , .		0
1435	Human microbiome brings new insights to traditional Chinese medicine. Journal of Bio-X Research, 2018, 1, 41-44.	0.3	2
1436	Long term but not short term exposure to obesity related microbiota promotes host insulin resistance. Nature Communications, 2018, 9, 4681.	5.8	54
1437	The effect of drinking water pH on the human gut microbiota and glucose regulation: results of a randomized controlled cross-over intervention. Scientific Reports, 2018, 8, 16626.	1.6	26
1438	Dietary Exposure to the Environmental Chemical, PFOS on the Diversity of Gut Microbiota, Associated With the Development of Metabolic Syndrome. Frontiers in Microbiology, 2018, 9, 2552.	1.5	63
1439	Quantitative Approach in Clinical Microbiology: A Paradigm Shift Toward Culture-Free Methods., 2018,, 599-615.		1
1440	Taxonomic classification for microbiome analysis, which correlates well with the metabolite milieu of the gut. BMC Microbiology, 2018, 18, 188.	1.3	38
1441	The Carcinogenic Potential of Microbial Infections of the Prostate and the Role of Contaminations. Translational Biomedicine, 2018, 09, .	0.1	0
1442	Causal Relationship between Diet-Induced Gut Microbiota Changes and Diabetes: A Novel Strategy to Transplant Faecalibacterium prausnitzii in Preventing Diabetes. International Journal of Molecular Sciences, 2018, 19, 3720.	1.8	138
1443	A Content-Based Retrieval Framework for Whole Metagenome Sequencing Samples. Journal of Integrative Bioinformatics, 2018, 15, .	1.0	1
1444	Mining the Microbiome for Drug Targets. Methods in Enzymology, 2018, 610, 59-72.	0.4	0

#	Article	IF	CITATIONS
1445	Antidiabetic Effects of <i>Lactobacillus casei</i> Fermented Yogurt through Reshaping Gut Microbiota Structure in Type 2 Diabetic Rats. Journal of Agricultural and Food Chemistry, 2018, 66, 12696-12705.	2.4	77
1446	Genetic diversity of Escherichia coli in gut microbiota of patients with Crohn's disease discovered using metagenomic and genomic analyses. BMC Genomics, 2018, 19, 968.	1.2	26
1447	Abnormal Gut Microbiota Metabolism Specific for Liver Cirrhosis. Frontiers in Microbiology, 2018, 9, 3051.	1.5	12
1448	Disorganized Gut Microbiome Contributed to Liver Cirrhosis Progression: A Meta-Omics-Based Study. Frontiers in Microbiology, 2018, 9, 3166.	1.5	57
1449	Dietary Proteins, Brown Fat, and Adiposity. Frontiers in Physiology, 2018, 9, 1792.	1.3	11
1450	Weaning Stress Perturbs Gut Microbiome and Its Metabolic Profile in Piglets. Scientific Reports, 2018, 8, 18068.	1.6	112
1451	Comparative analysis of Faecalibacterium prausnitzii genomes shows a high level of genome plasticity and warrants separation into new species-level taxa. BMC Genomics, 2018, 19, 931.	1.2	78
1452	Modulation of Gut Microbiota by Lonicera caerulea L. Berry Polyphenols in a Mouse Model of Fatty Liver Induced by High Fat Diet. Molecules, 2018, 23, 3213.	1.7	76
1453	A Phylogeny-Regularized Sparse Regression Model for Predictive Modeling of Microbial Community Data. Frontiers in Microbiology, 2018, 9, 3112.	1.5	20
1454	Novel perspectives on fermented milks and cardiometabolic health with a focus on type 2 diabetes. Nutrition Reviews, 2018, 76, 16-28.	2.6	43
1455	Intestinal Microbiota Modulation in Obesity-Related Non-alcoholic Fatty Liver Disease. Frontiers in Physiology, 2018, 9, 1813.	1.3	68
1456	A Metabologenomic Approach Reveals Changes in the Intestinal Environment of Mice Fed on American Diet. International Journal of Molecular Sciences, 2018, 19, 4079.	1.8	41
1457	Machine Learning Analysis of Inflammatory Bowel Disease-Associated Metagenomics Dataset., 2018,,.		8
1458	Effects of Rich-Polyphenols Extract of Dendrobium loddigesii on Anti-Diabetic, Anti-Inflammatory, Anti-Oxidant, and Gut Microbiota Modulation in db/db Mice. Molecules, 2018, 23, 3245.	1.7	70
1460	Effects of shortâ€ŧerm endurance exercise on gut microbiota in elderly men. Physiological Reports, 2018, 6, e13935.	0.7	89
1461	A comparative study of the gut microbiota in immune-mediated inflammatory diseases—does a common dysbiosis exist?. Microbiome, 2018, 6, 221.	4.9	303
1462	Antibiotics may increase triazine herbicide exposure risk via disturbing gut microbiota. Microbiome, 2018, 6, 224.	4.9	43
1463	GUT MICROBIOTA AND DIABETES MELLITUS - AN INTERLINKAGE. Asian Journal of Pharmaceutical and Clinical Research, 2018, 11, 13.	0.3	2

#	Article	IF	CITATIONS
1464	The Human Gut Virome in Hypertension. Frontiers in Microbiology, 2018, 9, 3150.	1.5	40
1465	Comparison of Microbiota Variation in Korean Healthy Adolescents with Adults Suggests Notable Maturity Differences. OMICS A Journal of Integrative Biology, 2018, 22, 770-778.	1.0	3
1466	Intermittent administration of a fasting-mimicking diet intervenes in diabetes progression, restores \hat{l}^2 cells and reconstructs gut microbiota in mice. Nutrition and Metabolism, 2018, 15, 80.	1.3	79
1467	The chicken gut metagenome and the modulatory effects of plant-derived benzylisoquinoline alkaloids. Microbiome, 2018, 6, 211.	4.9	204
1468	Gut microbiota diversity across ethnicities in the United States. PLoS Biology, 2018, 16, e2006842.	2.6	216
1469	Differences in Anxiety Levels of Various Murine Models in Relation to the Gut Microbiota Composition. Biomedicines, 2018, 6, 113.	1.4	6
1470	Recent Advancements in Intestinal Microbiota Analyses: A Review for Non-Microbiologists. Current Medical Science, 2018, 38, 949-961.	0.7	8
1471	Detection of Viral Pathogens With Multiplex Nanopore MinION Sequencing: Be Careful With Cross-Talk. Frontiers in Microbiology, 2018, 9, 2225.	1.5	75
1472	Pathogenic functions of host microbiota. Microbiome, 2018, 6, 174.	4.9	70
1473	Monosodium glutamate induces limited modulation in gut microbiota. Journal of Functional Foods, 2018, 49, 493-500.	1.6	18
1474	Proteomics, metabolomics and metagenomics for type 2 diabetes and its complications. Life Sciences, 2018, 212, 194-202.	2.0	51
1475	Exploring Effects of Chitosan Oligosaccharides on Mice Gut Microbiota in in vitro Fermentation and Animal Model. Frontiers in Microbiology, 2018, 9, 2388.	1.5	42
1476	Recent Advances in the Analysis of Gut Microbiota and their Relationship with Disease., 2018,,.		0
1477	Huang-Lian-Jie-Du-Decoction Ameliorates Hyperglycemia and Insulin Resistant in Association With Gut Microbiota Modulation. Frontiers in Microbiology, 2018, 9, 2380.	1.5	88
1478	The gut microbiota: cause and cure of gut diseases. Medical Journal of Australia, 2018, 209, 312-317.	0.8	10
1479	A Metabolomic-Based Evaluation of the Role of Commensal Microbiota throughout the Gastrointestinal Tract in Mice. Microorganisms, 2018, 6, 101.	1.6	24
1480	Obesity in Type 1 Diabetes: Pathophysiology, Clinical Impact, and Mechanisms. Endocrine Reviews, 2018, 39, 629-663.	8.9	154
1481	Individual variations in cardiovascular-disease-related protein levels are driven by genetics and gut microbiome. Nature Genetics, 2018, 50, 1524-1532.	9.4	97

#	Article	IF	CITATIONS
1482	Linking gut microbiota, metabolic syndrome and economic status based on a population-level analysis. Microbiome, 2018, 6, 172.	4.9	131
1483	Association Between Type 2 Diabetes Mellitus, HbA1c and the Risk for Spontaneous Bacterial Peritonitis in Patients with Decompensated Liver Cirrhosis and Ascites. Clinical and Translational Gastroenterology, 2018, 9, e189.	1.3	23
1484	Intermittent administration of a leucine-deprived diet is able to intervene in type 2 diabetes in db/db mice. Heliyon, 2018, 4, e00830.	1.4	24
1485	Trimethylamine N-Oxide and Risk of Cardiovascular Disease and Mortality. Current Nutrition Reports, 2018, 7, 207-213.	2.1	65
1486	Gut microbiota and plasma metabolites associated with diabetes in women with, or at high risk for, HIV infection. EBioMedicine, 2018, 37, 392-400.	2.7	61
1487	Metagenome sequencing to analyze the impacts of thiamine supplementation on ruminal fungi in dairy cows fed high-concentrate diets. AMB Express, 2018, 8, 159.	1.4	18
1488	Effect of coffee or coffee components on gut microbiome and short-chain fatty acids in a mouse model of metabolic syndrome. Scientific Reports, 2018, 8, 16173.	1.6	57
1489	Composition and Genetic Diversity of the Nicotiana tabacum Microbiome in Different Topographic Areas and Growth Periods. International Journal of Molecular Sciences, 2018, 19, 3421.	1.8	15
1490	Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nature Microbiology, 2018, 3, 1461-1471.	5.9	310
1491	Diversity of macaque microbiota compared to the human counterparts. Scientific Reports, 2018, 8, 15573.	1.6	50
1492	Probiotics in human health and disease: from nutribiotics to pharmabiotics. Journal of Microbiology, 2018, 56, 773-782.	1.3	90
1493	Microbially Produced Imidazole Propionate Impairs Insulin Signaling through mTORC1. Cell, 2018, 175, 947-961.e17.	13.5	517
1494	Pathogenesis of Type 2 Diabetes Mellitus. Endocrinology, 2018, , 181-253.	0.1	7
1495	Protective role of the vulture facial skin and gut microbiomes aid adaptation to scavenging. Acta Veterinaria Scandinavica, 2018, 60, 61.	0.5	40
1496	Metagenomics: Focusing on the Haystack. , 2018, , 97-113.		0
1497	Microbiome and diabetes: Where are we now?. Diabetes Research and Clinical Practice, 2018, 146, 111-118.	1.1	93
1498	Alterations of Gut Microbiome in the Patients With Severe Fever With Thrombocytopenia Syndrome. Frontiers in Microbiology, 2018, 9, 2315.	1.5	8
1499	Gut Microbiome in Obesity, Metabolic Syndrome, and Diabetes. Current Diabetes Reports, 2018, 18, 129.	1.7	106

#	Article	IF	CITATIONS
1500	Pleiotropic effects of metformin: Shaping the microbiome to manage type 2 diabetes and postpone ageing. Ageing Research Reviews, 2018, 48, 87-98.	5.0	80
1501	Perilla Oil Supplementation Improves Hypertriglyceridemia and Gut Dysbiosis in Diabetic KKAy Mice. Molecular Nutrition and Food Research, 2018, 62, e1800299.	1.5	31
1502	RegMIL., 2018,,.		9
1503	Role of Gut Microbiota in the Pathogenesis of Cardiovascular Diseases and Metabolic Syndrome. Rational Pharmacotherapy in Cardiology, 2018, 14, 567-574.	0.3	14
1504	A computational framework to integrate high-throughput â€~-omics' datasets for the identification of potential mechanistic links. Nature Protocols, 2018, 13, 2781-2800.	5.5	82
1505	The Impact of Intratumoral and Gastrointestinal Microbiota on Systemic Cancer Therapy. Trends in Immunology, 2018, 39, 900-920.	2.9	56
1506	Diversified gut microbiota in newborns of mothers with gestational diabetes mellitus. PLoS ONE, 2018, 13, e0205695.	1.1	62
1507	The microbiome of Crohn's disease aphthous ulcers. Gut Pathogens, 2018, 10, 44.	1.6	8
1508	Recovery of gut microbiota of healthy adults following antibiotic exposure. Nature Microbiology, 2018, 3, 1255-1265.	5.9	483
1509	Role of wnt5a in Metabolic Inflammation in Humans. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 4253-4264.	1.8	29
1510	Altered Gut Microbiota in Type 2 Diabetes: Just a Coincidence?. Current Diabetes Reports, 2018, 18, 98.	1.7	138
1511	GePMI: A statistical model for personal intestinal microbiome identification. Npj Biofilms and Microbiomes, 2018, 4, 20.	2.9	7
1512	Dietary Patterns Affect the Gut Microbiomeâ€"The Link to Risk of Cardiometabolic Diseases. Journal of Nutrition, 2018, 148, 1402-1407.	1.3	34
1513	Opisthorchiasis and the Microbiome. Advances in Parasitology, 2018, 102, 1-23.	1.4	25
1514	Metabolic Abnormalities in Diabetes and Kidney Disease: Role of Uremic Toxins. Current Diabetes Reports, 2018, 18, 97.	1.7	43
1515	A smallâ€sample kernel association test for correlated data with application to microbiome association studies. Genetic Epidemiology, 2018, 42, 772-782.	0.6	30
1516	Analysis of gut microbiota profiles and microbe-disease associations in children with autism spectrum disorders in China. Scientific Reports, 2018, 8, 13981.	1.6	128
1517	Comparison of Healthy and Dandruff Scalp Microbiome Reveals the Role of Commensals in Scalp Health. Frontiers in Cellular and Infection Microbiology, 2018, 8, 346.	1.8	63

#	Article	IF	CITATIONS
1518	Obesity in Inflammatory Bowel Disease: Gains in Adiposity despite High Prevalence of Myopenia and Osteopenia. Nutrients, 2018, 10, 1192.	1.7	53
1519	Detection of Colorectal Carcinoma Based on Microbiota Analysis using Generalized Regression Neural Networks and Nonlinear Feature Selection. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 17, 1-1.	1.9	6
1520	Early Disruption of the Microbiome Leading to Decreased Antioxidant Capacity and Epigenetic Changes: Implications for the Rise in Autism. Frontiers in Cellular Neuroscience, 2018, 12, 256.	1.8	43
1521	The Intricate Relationship between Diabetes, Diet and the Gut Microbiota., 2018,,.		0
1522	Mechanistic and therapeutic advances in non-alcoholic fatty liver disease by targeting the gut microbiota. Frontiers of Medicine, 2018, 12, 645-657.	1.5	28
1523	Consequences of colonialism: A microbial perspective to contemporary Indigenous health. American Journal of Physical Anthropology, 2018, 167, 423-437.	2.1	12
1524	Lung Microbiota and Its Impact on the Mucosal Immune Phenotype. , 2018, , 161-186.		0
1525	Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders?., 2018, , 131-148.		O
1526	Pharmacology in the age of the holobiont. Current Opinion in Systems Biology, 2018, 10, 34-42.	1.3	6
1527	Gut Microbiota Composition Before and After Use of Proton Pump Inhibitors. Digestive Diseases and Sciences, 2018, 63, 2940-2949.	1.1	70
1528	Gut microbiota-mediated inflammation in obesity: a link with gastrointestinal cancer. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 671-682.	8.2	257
1529	Calcium Oxalate Urolithiasis: A Case of Missing Microbes?. Journal of Endourology, 2018, 32, 995-1005.	1.1	33
1530	A gene catalogue of the Sprague-Dawley rat gut metagenome. GigaScience, 2018, 7, .	3.3	57
1531	Structural Alteration of Gut Microbiota during the Amelioration of Human Type 2 Diabetes with Hyperlipidemia by Metformin and a Traditional Chinese Herbal Formula: a Multicenter, Randomized, Open Label Clinical Trial. MBio, 2018, 9, .	1.8	258
1532	Fecal <i>Enterobacteriales</i> enrichment is associated with increased inÂvivo intestinal permeability in humans. Physiological Reports, 2018, 6, e13649.	0.7	37
1533	Milk fat globule membrane supplementation modulates the gut microbiota and attenuates metabolic endotoxemia in high-fat diet-fed mice. Journal of Functional Foods, 2018, 47, 56-65.	1.6	51
1534	Gut Microbiota in Health and Disease. , 2018, , 57-90.		0
1535	Comparisons of Effects on Intestinal Short-Chain Fatty Acid Concentration after Exposure of Two Glycosidase Inhibitors in Mice. Biological and Pharmaceutical Bulletin, 2018, 41, 1024-1033.	0.6	28

#	Article	IF	CITATIONS
1536	Ischemia/Reperfusion Damage in Diabetic Stroke. Springer Series in Translational Stroke Research, 2018, , 171-192.	0.1	0
1537	Gut Dysbiosis and Muscle Aging: Searching for Novel Targets against Sarcopenia. Mediators of Inflammation, 2018, 2018, 1-15.	1.4	104
1538	Sodium butyrate supplementation ameliorates diabetic inflammation in db/db mice. Journal of Endocrinology, 2018, 238, 231-244.	1.2	107
1539	An Overview of the Roles of the Gut Microbiome in Obesity and Diabetes. , 2018, , 65-91.		4
1540	Metagenomics Biomarkers Selected for Prediction of Three Different Diseases in Chinese Population. BioMed Research International, 2018, 2018, 1-7.	0.9	22
1541	A zeroâ€inflated betaâ€binomial model for microbiome data analysis. Stat, 2018, 7, e185.	0.3	27
1542	Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nature Medicine, 2018, 24, 1070-1080.	15.2	465
1543	Cerebral Ischemic Reperfusion Injuries (CIRI). Springer Series in Translational Stroke Research, 2018, , .	0.1	0
1544	Intestinal Immunomodulatory Cells (T Lymphocytes): A Bridge between Gut Microbiota and Diabetes. Mediators of Inflammation, 2018, 2018, 1-8.	1.4	18
1545	Microbial Quantity Impacts Drosophila Nutrition, Development, and Lifespan. IScience, 2018, 4, 247-259.	1.9	90
1546	The Relationship between Frequently Used Glucose-Lowering Agents and Gut Microbiota in Type 2 Diabetes Mellitus. Journal of Diabetes Research, 2018, 2018, 1-7.	1.0	18
1547	The Gut Microbiome as a Target for the Treatment of Type 2 Diabetes. Current Diabetes Reports, 2018, 18, 55.	1.7	85
1548	Human gut microbiome: hopes, threats and promises. Gut, 2018, 67, 1716-1725.	6.1	957
1549	The Potential Effect of Chinese Herbal Formula Hongqijiangzhi Fang in Improving NAFLD: Focusing on NLRP3 Inflammasome and Gut Microbiota. Evidence-based Complementary and Alternative Medicine, 2018, 2018, 1-12.	0.5	11
1550	The delayed effects of antibiotics in type 2 diabetes, friend or foe?. Journal of Endocrinology, 2018, 238, 137-149.	1.2	15
1551	A multifaceted approach to harness probiotics as antagonists on plant based foods, for enhanced benefits to be reaped at a global level. Journal of the Science of Food and Agriculture, 2018, 98, 5189-5196.	1.7	2
1552	Inflammation and Metabolic Complications in HIV. Current HIV/AIDS Reports, 2018, 15, 371-381.	1.1	39
1553	Addition of dairy lipids and probiotic Lactobacillus fermentum in infant formula programs gut microbiota and entero-insular axis in adult minipigs. Scientific Reports, 2018, 8, 11656.	1.6	33

#	Article	IF	Citations
1554	Reply to "Challenges in modeling the human gut microbiome". Nature Biotechnology, 2018, 36, 686-691.	9.4	12
1555	Challenges in modeling the human gut microbiome. Nature Biotechnology, 2018, 36, 682-686.	9.4	25
1556	Breast cancer in postmenopausal women is associated with an altered gut metagenome. Microbiome, 2018, 6, 136.	4.9	170
1557	A metagenomic study of the gut microbiome in Behcet's disease. Microbiome, 2018, 6, 135.	4.9	173
1558	Commensal Homeostasis of Gut Microbiota-Host for the Impact of Obesity. Frontiers in Physiology, 2017, 8, 1122.	1.3	29
1559	TRIM31 Deficiency Is Associated with Impaired Glucose Metabolism and Disrupted Gut Microbiota in Mice. Frontiers in Physiology, 2018, 9, 24.	1.3	16
1560	Intestinal Metagenomes and Metabolomes in Healthy Young Males: Inactivity and Hypoxia Generated Negative Physiological Symptoms Precede Microbial Dysbiosis. Frontiers in Physiology, 2018, 9, 198.	1.3	25
1561	Understanding the Representative Gut Microbiota Dysbiosis in Metformin-Treated Type 2 Diabetes Patients Using Genome-Scale Metabolic Modeling. Frontiers in Physiology, 2018, 9, 775.	1.3	58
1562	Intestinal dysbiosis activates renal renin-angiotensin system contributing to incipient diabetic nephropathy. International Journal of Medical Sciences, 2018, 15, 816-822.	1.1	38
1563	Diabetes-associated alterations in the cecal microbiome and metabolome are independent of diet or environment in the UC Davis Type 2 Diabetes Mellitus Rat model. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E961-E972.	1.8	18
1564	The Human Gut Microbiome – A Potential Controller of Wellness and Disease. Frontiers in Microbiology, 2018, 9, 1835.	1.5	681
1565	Metagenomic analysis of gut microbial communities from a Central Asian population. BMJ Open, 2018, 8, e021682.	0.8	31
1566	Microbiome and Diseases: Metabolic Disorders. , 2018, , 251-277.		3
1567	Microbiome and Early Life. , 2018, , 31-47.		1
1568	Microbiome and Diet., 2018,, 79-88.		1
1569	Deep learning models for bacteria taxonomic classification of metagenomic data. BMC Bioinformatics, 2018, 19, 198.	1.2	82
1570	Association Between Gut Microbiota and CD4 Recovery in HIV-1 Infected Patients. Frontiers in Microbiology, 2018, 9, 1451.	1.5	90
1571	Alterations and structural resilience of the gut microbiota under dietary fat perturbations. Journal of Nutritional Biochemistry, 2018, 61, 91-100.	1.9	26

#	Article	IF	CITATIONS
1572	Coreopsis Tinctoria Modulates Lipid Metabolism by Decreasing Low-Density Lipoprotein and Improving Gut Microbiota. Cellular Physiology and Biochemistry, 2018, 48, 1060-1074.	1.1	9
1573	Akkermansia muciniphila in the Human Gastrointestinal Tract: When, Where, and How?. Microorganisms, 2018, 6, 75.	1.6	286
1574	A Polysaccharide Isolated from Dictyophora indusiata Promotes Recovery from Antibiotic-Driven Intestinal Dysbiosis and Improves Gut Epithelial Barrier Function in a Mouse Model. Nutrients, 2018, 10, 1003.	1.7	77
1575	What Has Bariatric Surgery Taught Us About the Role of the Upper Gastrointestinal Tract in the Regulation of Postprandial Glucose Metabolism?. Frontiers in Endocrinology, 2018, 9, 324.	1.5	10
1576	Impact of a 3-Months Vegetarian Diet on the Gut Microbiota and Immune Repertoire. Frontiers in Immunology, 2018, 9, 908.	2.2	56
1577	Prebiotic Wheat Bran Fractions Induce Specific Microbiota Changes. Frontiers in Microbiology, 2018, 9, 31.	1.5	45
1578	Gut Microbiome Associates With Lipid-Lowering Effect of Rosuvastatin in Vivo. Frontiers in Microbiology, 2018, 9, 530.	1.5	86
1579	Gut Microbiota Profiling and Gut–Brain Crosstalk in Children Affected by Pediatric Acute-Onset Neuropsychiatric Syndrome and Pediatric Autoimmune Neuropsychiatric Disorders Associated With Streptococcal Infections. Frontiers in Microbiology, 2018, 9, 675.	1.5	88
1580	Identifying Group-Specific Sequences for Microbial Communities Using Long k-mer Sequence Signatures. Frontiers in Microbiology, 2018, 9, 872.	1.5	17
1581	Different Sex-Based Responses of Gut Microbiota During the Development of Hepatocellular Carcinoma in Liver-Specific Tsc1-Knockout Mice. Frontiers in Microbiology, 2018, 9, 1008.	1.5	52
1582	Exposure to Arsenic Alters the Microbiome of Larval Zebrafish. Frontiers in Microbiology, 2018, 9, 1323.	1.5	42
1583	Metformin Alters Gut Microbiota of Healthy Mice: Implication for Its Potential Role in Gut Microbiota Homeostasis. Frontiers in Microbiology, 2018, 9, 1336.	1.5	57
1584	Predictive Modeling of Microbiome Data Using a Phylogeny-Regularized Generalized Linear Mixed Model. Frontiers in Microbiology, 2018, 9, 1391.	1.5	35
1585	Cholecystectomy Damages Aging-Associated Intestinal Microbiota Construction. Frontiers in Microbiology, 2018, 9, 1402.	1.5	47
1586	Gut Microbiome Composition in Non-human Primates Consuming a Western or Mediterranean Diet. Frontiers in Nutrition, 2018, 5, 28.	1.6	125
1587	Effects of the Artificial Sweetener Neotame on the Gut Microbiome and Fecal Metabolites in Mice. Molecules, 2018, 23, 367.	1.7	75
1588	Gut Microbiota Play an Essential Role in the Antidiabetic Effects of Rhein. Evidence-based Complementary and Alternative Medicine, 2018, 2018, 1-8.	0.5	17
1589	Meta-analysis of human genome-microbiome association studies: the MiBioGen consortium initiative. Microbiome, 2018, 6, 101.	4.9	109

#	Article	IF	CITATIONS
1590	Microbial Regulation of Glucose Metabolism and Insulin Resistance. Genes, 2018, 9, 10.	1.0	38
1591	Exposure to Formaldehyde Perturbs the Mouse Gut Microbiome. Genes, 2018, 9, 192.	1.0	11
1592	Identification of Major Rhizobacterial Taxa Affected by a Glyphosate-Tolerant Soybean Line via Shotgun Metagenomic Approach. Genes, 2018, 9, 214.	1.0	9
1593	Design, synthesis and screening of 1, 2, 4-triazinone derivatives as potential antitumor agents with apoptosis inducing activity on MCF-7 breast cancer cell line. European Journal of Medicinal Chemistry, $2018, 156, 563-579$.	2.6	46
1594	Nanocomposite of Half-Fin Anchovy Hydrolysates/Zinc Oxide Nanoparticles Exhibits Actual Non-Toxicity and Regulates Intestinal Microbiota, Short-Chain Fatty Acids Production and Oxidative Status in Mice. Marine Drugs, 2018, 16, 23.	2.2	24
1595	The Role of Gut Microbiota in Obesity and Type 2 and Type 1 Diabetes Mellitus: New Insights into "Old― Diseases. Medical Sciences (Basel, Switzerland), 2018, 6, 32.	1.3	103
1596	Almond Consumption and Processing Affects the Composition of the Gastrointestinal Microbiota of Healthy Adult Men and Women: A Randomized Controlled Trial. Nutrients, 2018, 10, 126.	1.7	86
1597	Gastrointestinal Transit Time, Glucose Homeostasis and Metabolic Health: Modulation by Dietary Fibers. Nutrients, 2018, 10, 275.	1.7	188
1598	The Western Diet–Microbiome-Host Interaction and Its Role in Metabolic Disease. Nutrients, 2018, 10, 365.	1.7	452
1599	Dietary Flavonoids in the Prevention of T2D: An Overview. Nutrients, 2018, 10, 438.	1.7	73
1600	Pharmabiotic Manipulation of the Microbiota in Gastrointestinal Disorders: A Clinical Perspective. Journal of Neurogastroenterology and Motility, 2018, 24, 355-366.	0.8	13
1601	Meanings, measurements, and musings on the significance of patterns in human microbiome variation. Current Opinion in Genetics and Development, 2018, 53, 43-52.	1.5	5
1602	SunGold Kiwifruit Supplementation of Individuals with Prediabetes Alters Gut Microbiota and Improves Vitamin C Status, Anthropometric and Clinical Markers. Nutrients, 2018, 10, 895.	1.7	32
1603	Higher Whole-Grain Intake Is Associated with Lower Risk of Type 2 Diabetes among Middle-Aged Men and Women: The Danish Diet, Cancer, and Health Cohort. Journal of Nutrition, 2018, 148, 1434-1444.	1.3	56
1605	Gestational diabetes is associated with change in the gut microbiota composition in third trimester of pregnancy and postpartum. Microbiome, 2018, 6, 89.	4.9	286
1606	Robust Microbial Markers for Non-Invasive Inflammatory Bowel Disease Identification. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 16, 1-1.	1.9	7
1607	Measuring metagenome diversity and similarity with Hill numbers. Molecular Ecology Resources, 2018, 18, 1339-1355.	2.2	42
1608	Mother-to-Infant Microbial Transmission from Different Body Sites Shapes the Developing Infant Gut Microbiome. Cell Host and Microbe, 2018, 24, 133-145.e5.	5.1	822

#	Article	IF	CITATIONS
1609	Modulation of gut microbiota by mulberry fruit polysaccharide treatment of obese diabetic <i>db</i> /i>/ds/i> mice. Food and Function, 2018, 9, 3732-3742.	2.1	116
1610	Stevia rebaudiana Bertoni and Its Effects in Human Disease: Emphasizing Its Role in Inflammation, Atherosclerosis and Metabolic Syndrome. Current Nutrition Reports, 2018, 7, 161-170.	2.1	21
1611	Ingestion of an Inulinâ€Enriched Pork Sausage Product Positively Modulates the Gut Microbiome and Metabolome of Healthy Rats. Molecular Nutrition and Food Research, 2018, 62, e1800608.	1.5	36
1612	Characteristics of gut microbiota and its response to a Chinese Herbal Formula in elder patients with metabolic syndrome. Drug Discoveries and Therapeutics, 2018, 12, 161-169.	0.6	27
1613	Microbiota–Host Crosstalk: A Bridge Between Cardiovascular Risk Factors, Diet, and Cardiovascular Disease. American Journal of Hypertension, 2018, 31, 941-944.	1.0	10
1614	Antibiotic-induced microbiome depletion alters metabolic homeostasis by affecting gut signaling and colonic metabolism. Nature Communications, 2018, 9, 2872.	5.8	343
1615	Dioxin-like PCB 126 increases intestinal inflammation and disrupts gut microbiota and metabolic homeostasis. Environmental Pollution, 2018, 242, 1022-1032.	3.7	101
1616	Linking the Gut Microbiome to Metabolism Through Endocrine Hormones. Endocrinology, 2018, 159, 2978-2979.	1.4	9
1617	Identification of the alpha-enolase P46 in the extracellular membrane vesicles of Bacteroides fragilis. Memorias Do Instituto Oswaldo Cruz, 2018, 113, 178-184.	0.8	3
1618	Systematic review assessing the effectiveness of dietary intervention on gut microbiota in adults with type 2 diabetes. Diabetologia, 2018, 61, 1700-1711.	2.9	74
1619	From Network Analysis to Functional Metabolic Modeling of the Human Gut Microbiota. MSystems, 2018, 3, .	1.7	77
1620	Glycaemic status affects the subgingival microbiome of diabetic patients. Journal of Clinical Periodontology, 2018, 45, 932-940.	2.3	33
1621	The antihyperlipidemic effects of fullerenol nanoparticles via adjusting the gut microbiota in vivo. Particle and Fibre Toxicology, 2018, 15, 5.	2.8	43
1622	Involvement of gut microbiome in human health and disease: brief overview, knowledge gaps and research opportunities. Gut Pathogens, 2018, 10, 3.	1.6	153
1623	Alfalfa-containing diets alter luminal microbiota structure and short chain fatty acid sensing in the caecal mucosa of pigs. Journal of Animal Science and Biotechnology, 2018, 9, 11.	2.1	45
1624	A human gut phage catalog correlates the gut phageome with type 2 diabetes. Microbiome, 2018, 6, 24.	4.9	146
1625	Dietary αâ€cyclodextrin modifies gut microbiota and reduces fat accumulation in highâ€fatâ€dietâ€fed obese mice. BioFactors, 2018, 44, 336-347.	2.6	44
1626	The crosstalk of gut microbiota and chronic kidney disease: role of inflammation, proteinuria, hypertension, and diabetes mellitus. International Urology and Nephrology, 2018, 50, 1453-1466.	0.6	105

#	Article	IF	CITATIONS
1627	Profiling microbial strains in urban environments using metagenomic sequencing data. Biology Direct, 2018, 13, 9.	1.9	29
1628	Analysis of changes in intestinal flora and intravascular inflammation and coronary heart disease in obese patients. Experimental and Therapeutic Medicine, 2018, 15, 4538-4542.	0.8	9
1629	Changes in the gut microbiota composition during pregnancy in patients with gestational diabetes mellitus (GDM). Scientific Reports, 2018, 8, 12216.	1.6	162
1630	Mechanisms regulating intestinal barrier integrity and its pathological implications. Experimental and Molecular Medicine, 2018, 50, 1-9.	3.2	844
1631	The genome of the golden apple snail Pomacea canaliculata provides insight into stress tolerance and invasive adaptation. GigaScience, 2018, 7, .	3.3	68
1632	Beneficial Effect of Intestinal Fermentation of Natural Polysaccharides. Nutrients, 2018, 10, 1055.	1.7	115
1633	The journey of gut microbiome – An introduction and its influence on metabolic disorders. Frontiers in Biology, 2018, 13, 327-341.	0.7	4
1634	Gut microbiome: Microflora association with obesity and obesity-related comorbidities. Microbial Pathogenesis, 2018, 124, 266-271.	1.3	22
1635	Metagenomic Approaches for Understanding New Concepts in Microbial Science. International Journal of Genomics, 2018, 2018, 1-15.	0.8	100
1636	Polysaccharide from fermented Momordica charantia L. with Lactobacillus plantarum NCU116 ameliorates type 2 diabetes in rats. Carbohydrate Polymers, 2018, 201, 624-633.	5.1	104
1637	Depicting the composition of gut microbiota in a population with varied ethnic origins but shared geography. Nature Medicine, 2018, 24, 1526-1531.	15.2	436
1638	Implication of gut microbiota metabolites in cardiovascular and metabolic diseases. Cellular and Molecular Life Sciences, 2018, 75, 3977-3990.	2.4	127
1639	Unhealthy gut, unhealthy brain: The role of the intestinal microbiota in neurodegenerative diseases. Neurochemistry International, 2018, 120, 149-163.	1.9	192
1640	Neonatal selection by Toll-like receptor 5 influences long-term gut microbiota composition. Nature, 2018, 560, 489-493.	13.7	153
1641	Microbiome: Focus on Causation and Mechanism. Cell, 2018, 174, 785-790.	13.5	188
1642	The effects of gut microbiota on metabolic outcomes in pregnant women and their offspring. Food and Function, 2018, 9, 4537-4547.	2.1	21
1643	Phylogeny-corrected identification of microbial gene families relevant to human gut colonization. PLoS Computational Biology, 2018, 14, e1006242.	1.5	39
1644	Evidence for complete nitrification in enrichment culture of tidal sediments and diversity analysis of clade a comammox Nitrospira in natural environments. Applied Microbiology and Biotechnology, 2018, 102, 9363-9377.	1.7	57

#	ARTICLE	IF	Citations
1645	Establishment of a Macaca fascicularis gut microbiome gene catalog and comparison with the human, pig, and mouse gut microbiomes. GigaScience, 2018, 7, .	3.3	53
1646	The bacteriome at the onset of type 1 diabetes: A study from four geographically distant African and Asian countries. Diabetes Research and Clinical Practice, 2018, 144, 51-62.	1.1	35
1647	Relevance of gutmicrobiota in cognition, behaviour and Alzheimer's disease. Pharmacological Research, 2018, 136, 29-34.	3.1	103
1648	Oil tea improves glucose and lipid levels and alters gut microbiota in type 2 diabetic mice. Nutrition Research, 2018, 57, 67-77.	1.3	31
1649	Probiotics for the airways: Potential to improve epithelial and immune homeostasis. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 1954-1963.	2.7	64
1650	The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host and Microbe, 2018, 23, 705-715.	5.1	1,441
1651	Host genetics and microbiome associations through the lens of genome wide association studies. Current Opinion in Microbiology, 2018, 44, 9-19.	2.3	33
1653	In vitro co-cultures of human gut bacterial species as predicted from co-occurrence network analysis. PLoS ONE, 2018, 13, e0195161.	1.1	41
1654	Neuron-specific regulation of superoxide dismutase amid pathogen-induced gut dysbiosis. Redox Biology, 2018, 17, 377-385.	3.9	12
1655	Bifidobacteria attenuate the development of metabolic disorders, with inter- and intra-species differences. Food and Function, 2018, 9, 3509-3522.	2.1	42
1656	Interactions between species introduce spurious associations in microbiome studies. PLoS Computational Biology, 2018, 14, e1005939.	1.5	28
1657	Le microbiote, après une décennie d'étude dans le domaine du diabète : qu'a-t-on appris, quelles pis thérapeutiques ?. Medecine Des Maladies Metaboliques, 2018, 12, 156-159.	stes 0.1	0
1658	An Overview of the Human Microbiome. , 2018, , 1-16.		0
1659	Dysbiosis of the Microbiota: Therapeutic Strategies Utilizing Dietary Modification, Pro- and Prebiotics and Fecal Transplant Therapies in Promoting Normal Balance and Local CI Functions., 2018,, 381-419.		3
1660	Intestinal Dysbiosis in Obesity, Metabolic Syndrome and Related Metabolic Diseases: Therapeutic Strategies Utilizing Dietary Modification, Pro- and Prebiotics, and Fecal Microbial Transplant (FMT) Therapy., 2018,, 463-515.		0
1661	Mechanism of antidiabetic and synergistic effects of ginseng polysaccharide and ginsenoside Rb1 on diabetic rat model. Journal of Pharmaceutical and Biomedical Analysis, 2018, 158, 451-460.	1.4	52
1662	Prior antibiotic exposure and risk of type 2 diabetes among Veterans. Primary Care Diabetes, 2019, 13, 49-56.	0.9	11
1663	Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut, 2019, 68, 1014-1023.	6.1	498

#	Article	IF	CITATIONS
1664	Clinical applications of gut microbiota in cancer biology. Seminars in Cancer Biology, 2019, 55, 28-36.	4.3	75
1665	Dietary fat and gut microbiota: mechanisms involved in obesity control. Critical Reviews in Food Science and Nutrition, 2019, 59, 3045-3053.	5.4	59
1666	Gut microbiota metabolites, amino acid metabolites and improvements in insulin sensitivity and glucose metabolism: the POUNDS Lost trial. Gut, 2019, 68, 263-270.	6.1	123
1667	Zero-inflated generalized Dirichlet multinomial regression model for microbiome compositional data analysis. Biostatistics, 2019, 20, 698-713.	0.9	49
1668	Diagnostics and therapeutic implications of gut microbiota alterations in cardiometabolic diseases. Trends in Cardiovascular Medicine, 2019, 29, 141-147.	2.3	36
1669	Altered gut microbiota and microbial biomarkers associated with chronic kidney disease. MicrobiologyOpen, 2019, 8, e00678.	1.2	105
1670	Profiling the Gut Microbiome: Practice and Potential. , 2019, , 200-217.		0
1671	Outside the liver box: The gut microbiota as pivotal modulator of liver diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 912-919.	1.8	22
1672	The Role of Microbiota in Cardiovascular Risk: Focus on Trimethylamine Oxide. Current Problems in Cardiology, 2019, 44, 182-196.	1.1	22
1673	MIMOSA: Algorithms for Microbial Profiling. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 1-1.	1.9	1
1674	Linggui Zhugan Formula Improves Glucose and Lipid Levels and Alters Gut Microbiota in High-Fat Diet-Induced Diabetic Mice. Frontiers in Physiology, 2019, 10, 918.	1.3	38
1675	Microbiota: Novel Gateway Towards Personalised Medicine. Europeanization and Globalization, 2019, , $107-120$.	0.1	0
1676	MicroPro: using metagenomic unmapped reads to provide insights into human microbiota and disease associations. Genome Biology, 2019, 20, 154.	3.8	29
1677	Shifts in the Human Gut Microbiota Structure Caused by Quadruple Helicobacter pylori Eradication Therapy. Frontiers in Microbiology, 2019, 10, 1902.	1.5	39
1678	Identification of Dietary Patterns Associated with Incidence of Hyperglycemia in Middle-Aged and Older Korean Adults. Nutrients, 2019, 11, 1801.	1.7	16
1679	Gut Microbiota Pattern of Centenarians. , 2019, , 149-160.		1
1680	The association between gut microbiota composition and BMI in Chinese male college students, as analysed by next-generation sequencing. British Journal of Nutrition, 2019, 122, 986-995.	1.2	46
1681	Impact of traditional Chinese medicine treatment on chronic unpredictable mild stress-induced depression-like behaviors: intestinal microbiota and gut microbiome function. Food and Function, 2019, 10, 5886-5897.	2.1	57

#	Article	IF	CITATIONS
1682	A Novel Human Microbe-Disease Association Prediction Method Based on the Bidirectional Weighted Network. Frontiers in Microbiology, 2019, 10, 676.	1.5	23
1683	The Landscape of Genetic Content in the Gut and Oral Human Microbiome. Cell Host and Microbe, 2019, 26, 283-295.e8.	5.1	207
1684	Oral vancomycin treatment does not alter markers of postprandial inflammation in lean and obese subjects. Physiological Reports, 2019, 7, e14199.	0.7	10
1685	Alterations of Gut Microbiota and Blood Lipidome in Gestational Diabetes Mellitus With Hyperlipidemia. Frontiers in Physiology, 2019, 10, 1015.	1.3	66
1686	Ketonuria Is Associated with Changes to the Abundance of Roseburia in the Gut Microbiota of Overweight and Obese Women at 16 Weeks Gestation: A Cross-Sectional Observational Study. Nutrients, 2019, 11, 1836.	1.7	14
1687	Response of gut microbiota in type 2 diabetes to hypoglycemic agents. Endocrine, 2019, 66, 485-493.	1.1	59
1688	<i>Lactobacillus acidophilus</i> alleviates type 2 diabetes by regulating hepatic glucose, lipid metabolism and gut microbiota in mice. Food and Function, 2019, 10, 5804-5815.	2.1	139
1689	Mode and Structure of the Bacterial Community on Human Scalp Hair. Microbes and Environments, 2019, 34, 252-259.	0.7	17
1690	Comparative Analyses of Fecal Microbiota in European Mouflon (Ovis orientalis musimon) and Blue Sheep (Pseudois nayaur) Living at Low or High Altitudes. Frontiers in Microbiology, 2019, 10, 1735.	1.5	27
1691	Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nature Reviews Endocrinology, 2019, 15, 569-589.	4.3	391
1692	Role of microbes, metabolites and effector compounds inÂhost–microbiota interaction: a pharmacological outlook. Environmental Chemistry Letters, 2019, 17, 1801-1820.	8.3	14
1693	Mapping Interactions of Microbial Metabolites with Human G-Protein-Coupled Receptors. Cell Host and Microbe, 2019, 26, 273-282.e7.	5.1	113
1694	Applications of the Soil, Plant and Rumen Microbiomes in Pastoral Agriculture. Frontiers in Nutrition, 2019, 6, 107.	1.6	30
1695	An integrated respiratory microbial gene catalogue to better understand the microbial aetiology of Mycoplasma pneumoniae pneumonia. GigaScience, 2019, 8, .	3.3	16
1696	Maternal nutrition, epigenetic programming and metabolic syndrome., 2019, , 153-166.		0
1697	Extreme spicy food cravers displayed increased brain activity in response to pictures of foods containing chili peppers: an fMRI study. Appetite, 2019, 142, 104379.	1.8	19
1698	Lactobacillus reuteri V3401 Reduces Inflammatory Biomarkers and Modifies the Gastrointestinal Microbiome in Adults with Metabolic Syndrome: The PROSIR Study. Nutrients, 2019, 11, 1761.	1.7	53
1700	Functional role of gut microbiota and PCSK9 in the pathogenesis of diabetes mellitus and cardiovascular disease. Atherosclerosis, 2019, 289, 176-178.	0.4	20

#	Article	IF	CITATIONS
1701	Nutrition, Immunity, and Autoimmune Diseases., 2019, , 415-436.		2
1702	Obese Individuals with and without Type 2 Diabetes Show Different Gut Microbial Functional Capacity and Composition. Cell Host and Microbe, 2019, 26, 252-264.e10.	5.1	274
1703	Ameliorative Effects of Probiotic <i>Lactobacillus paracasei</i> NL41 on Insulin Sensitivity, Oxidative Stress, and Betaâ€Cell Function in a Type 2 Diabetes Mellitus Rat Model. Molecular Nutrition and Food Research, 2019, 63, e1900457.	1.5	72
1704	Different duck products protein on rat physiology and gut microbiota. Journal of Proteomics, 2019, 206, 103436.	1.2	14
1705	Microbiome and Cognitive Impairment: Can Any Diets Influence Learning Processes in a Positive Way?. Frontiers in Aging Neuroscience, 2019, 11, 170.	1.7	46
1706	Gut Microbiome: Profound Implications for Diet and Disease. Nutrients, 2019, 11, 1613.	1.7	615
1707	Storage and handling of human faecal samples affect the gut microbiome composition: A feasibility study. Journal of Microbiological Methods, 2019, 164, 105668.	0.7	14
1708	A structured weight loss program increases gut microbiota phylogenetic diversity and reduces levels of Collinsella in obese type 2 diabetics: A pilot study. PLoS ONE, 2019, 14, e0219489.	1.1	82
1709	Basal Diet Determined Long-Term Composition of the Gut Microbiome and Mouse Phenotype to a Greater Extent than Fecal Microbiome Transfer from Lean or Obese Human Donors. Nutrients, 2019, 11, 1630.	1.7	23
1710	Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 605-616.	8.2	951
1711	Universal membrane-labeling combined with expression of Katushka far-red fluorescent protein enables non-invasive dynamic and longitudinal quantitative 3D dual-color fluorescent imaging of multiple bacterial strains in mouse intestine. BMC Microbiology, 2019, 19, 167.	1.3	5
1712	A Purified Anthraquinone-Glycoside Preparation From Rhubarb Ameliorates Type 2 Diabetes Mellitus by Modulating the Gut Microbiota and Reducing Inflammation. Frontiers in Microbiology, 2019, 10, 1423.	1.5	59
1713	Early-Onset Preeclampsia Is Associated With Gut Microbial Alterations in Antepartum and Postpartum Women. Frontiers in Cellular and Infection Microbiology, 2019, 9, 224.	1.8	94
1714	Longitudinal changes of microbiome composition and microbial metabolomics after surgical weight loss in individuals with obesity. Surgery for Obesity and Related Diseases, 2019, 15, 1367-1373.	1.0	64
1715	The Microbiota and Pancreatic Cancer. Gastroenterology Clinics of North America, 2019, 48, 447-464.	1.0	30
1716	Bacteroides in colonic mucosa-associated microbiota affects the development of minimal hepatic encephalopathy in patients with cirrhosis. Hepatology International, 2019, 13, 482-489.	1.9	13
1718	Discovery and characterization of the evolution, variation and functions of diversity-generating retroelements using thousands of genomes and metagenomes. BMC Genomics, 2019, 20, 595.	1.2	14
1719	Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nature Medicine, 2019, 25, 1234-1242.	15.2	352

#	Article	IF	CITATIONS
1720	Rhizoma coptidis as a Potential Treatment Agent for Type 2 Diabetes Mellitus and the Underlying Mechanisms: A Review. Frontiers in Pharmacology, 2019, 10, 805.	1.6	27
1721	Human Virome and Disease: High-Throughput Sequencing for Virus Discovery, Identification of Phage-Bacteria Dysbiosis and Development of Therapeutic Approaches with Emphasis on the Human Gut. Viruses, 2019, 11, 656.	1.5	111
1722	Gut Microbiomes and Their Impact on Human Health. , 2019, , 355-385.		0
1723	Fecal metabolite of a gnotobiotic mouse transplanted with gut microbiota from a patient with Alzheimer's disease. Bioscience, Biotechnology and Biochemistry, 2019, 83, 2144-2152.	0.6	87
1724	Potential roles of chromium on inflammatory biomarkers in diabetes: A Systematic. Clinical and Experimental Pharmacology and Physiology, 2019, 46, 975-983.	0.9	23
1725	The infantile cutaneous microbiome: A review. Pediatric Dermatology, 2019, 36, 574-580.	0.5	39
1726	Deciphering the Composition and Functional Profile of the Microbial Communities in Chinese Moutai Liquor Starters. Frontiers in Microbiology, 2019, 10, 1540.	1.5	98
1727	Marine Metagenomics., 2019,,.		1
1728	<i>Eurotium cristatum</i> , a potential probiotic fungus from Fuzhuan brick tea, alleviated obesity in mice by modulating gut microbiota. Food and Function, 2019, 10, 5032-5045.	2.1	61
1730	Immune control of the microbiota prevents obesity. Science, 2019, 365, 316-317.	6.0	18
1731	Detection of Microbial 16S rRNA Gene in the Serum of Patients With Gastric Cancer. Frontiers in Oncology, 2019, 9, 608.	1.3	48
1732	High Mobility Group Box 1 Mediates TMAO-Induced Endothelial Dysfunction. International Journal of Molecular Sciences, 2019, 20, 3570.	1.8	51
1733	T cell–mediated regulation of the microbiota protects against obesity. Science, 2019, 365, .	6.0	236
1734	Short Chain Fatty Acids, pancreatic dysfunction and type 2 diabetes. Pancreatology, 2019, 19, 617-622.	0.5	13
1735	Shotgun Metagenome Analyses: Seasonality Monitoring in Sendai Bay and Search for Red Tide Marker Sequences. , 2019, , 149-159.		0
1736	Microbiota-Immune Interaction in the Pathogenesis of Gut-Derived Infection. Frontiers in Immunology, 2019, 10, 1873.	2.2	91
1737	Modeling the temporal dynamics of the gut microbial community in adults and infants. PLoS Computational Biology, 2019, 15, e1006960.	1.5	42
1738	Antibiotic Pollution in the Environment: From Microbial Ecology to Public Policy. Microorganisms, 2019, 7, 180.	1.6	579

#	Article	IF	CITATIONS
1739	Mixed Spices at Culinary Doses Have Prebiotic Effects in Healthy Adults: A Pilot Study. Nutrients, 2019, 11, 1425.	1.7	25
1740	Alterations in the human gut microbiome associated with <i>HelicobacterÂpylori</i> infection. FEBS Open Bio, 2019, 9, 1552-1560.	1.0	30
1741	Fecal Microbiota Transplantation: a Future Therapeutic Option for Obesity/Diabetes?. Current Diabetes Reports, 2019, 19, 51.	1.7	91
1742	Cultivation Renaissance in the Post-Metagenomics Era: Combining the New and Old. Microbes and Environments, 2019, 34, 117-120.	0.7	8
1743	Precision Nutrition and the Microbiome Part II: Potential Opportunities and Pathways to Commercialisation. Nutrients, 2019, 11, 1468.	1.7	50
1744	Persistence of Gut Microbiota Dysbiosis and Chronic Systemic Inflammation After Cerebral Infarction in Cynomolgus Monkeys. Frontiers in Neurology, 2019, 10, 661.	1.1	58
1745	Dietary Fiber and Metabolism. , 2019, , 59-77.		6
1746	The Gut Microbial Metabolite Trimethylamine N-Oxide and Hypertension Risk: A Systematic Review and Dose–Response Meta-analysis. Advances in Nutrition, 2020, 11, 66-76.	2.9	110
1747	Probiotic Ingestion, Obesity, and Metabolic-Related Disorders: Results from NHANES, 1999–2014. Nutrients, 2019, 11, 1482.	1.7	35
1748	Diet Consisting of Balanced Yogurt, Fruit, and Vegetables Modifies the Gut Microbiota and Protects Mice against Nonalcoholic Fatty Liver Disease. Molecular Nutrition and Food Research, 2019, 63, e1900249.	1.5	19
1749	<i>Akkermansia muciniphila</i> abundance is lower in severe obesity, but its increased level after bariatric surgery is not associated with metabolic health improvement. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E446-E459.	1.8	67
1750	Compositional and functional features of the female premenopausal and postmenopausal gut microbiota. FEBS Letters, 2019, 593, 2655-2664.	1.3	60
1751	Effect of polysaccharides from adlay seed on anti-diabetic and gut microbiota. Food and Function, 2019, 10, 4372-4380.	2.1	40
1752	The Chinese Herbal Formula Shenzhu Tiaopi Granule Results in Metabolic Improvement in Type 2 Diabetic Rats by Modulating the Gut Microbiota. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-14.	0.5	22
1753	Subgingival Microbiota and Longitudinal Glucose Change: The Oral Infections, Glucose Intolerance and Insulin Resistance Study (ORIGINS). Journal of Dental Research, 2019, 98, 1488-1496.	2.5	21
1754	Diabetes and hepatic encephalopathy in cirrhotics: Fact or fiction. Advances in Digestive Medicine, 2019, 6, 89-90.	0.1	0
1755	Shifting Climates, Foods, and Diseases: The Human Microbiome through Evolution. BioEssays, 2019, 41, e1900034.	1.2	21
1756	Mannan Oligosaccharide Suppresses Lipid Accumulation and Appetite in Westernâ€Dietâ€Induced Obese Mice Via Reshaping Gut Microbiome and Enhancing Shortâ€Chain Fatty Acids Production. Molecular Nutrition and Food Research, 2019, 63, e1900521.	1.5	48

#	Article	IF	Citations
1757	Counting Oceanians of Non-European, Non-Asian Descent (ONENA) in the South Pacific to Make Them Count in Global Health Tropical Medicine and Infectious Disease, 2019, 4, 114.	0.9	7
1758	Trimethylamine N-Oxide Metabolites in Early Pregnancy and Risk of Gestational Diabetes: A Nested Case-Control Study. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 5529-5539.	1.8	40
1759	Changes in Gut Microbiome Structure and Function of Rats with Isoproterenol-Induced Heart Failure. International Heart Journal, 2019, 60, 1176-1183.	0.5	11
1760	Influence of Maternal Inulin-Type Prebiotic Intervention on Glucose Metabolism and Gut Microbiota in the Offspring of C57BL Mice. Frontiers in Endocrinology, 2019, 10, 675.	1.5	16
1761	Comprehensive relationships between gut microbiome and faecal metabolome in individuals with type 2 diabetes and its complications. Endocrine, 2019, 66, 526-537.	1.1	135
1762	The Prevotella copri Complex Comprises Four Distinct Clades Underrepresented in Westernized Populations. Cell Host and Microbe, 2019, 26, 666-679.e7.	5.1	274
1763	Microbiota and mucosal defense in IBD: an update. Expert Review of Gastroenterology and Hepatology, 2019, 13, 963-976.	1.4	98
1764	Emerging Frontiers in Microbiome Engineering. Trends in Immunology, 2019, 40, 952-973.	2.9	47
1765	Elevated serum ceramides are linked with obesity-associated gut dysbiosis and impaired glucose metabolism. Metabolomics, 2019, 15, 140.	1.4	26
1766	A Fermented Food Product Containing Lactic Acid Bacteria Protects ZDF Rats from the Development of Type 2 Diabetes. Nutrients, 2019, 11, 2530.	1.7	33
1769	An examination of data from the American Gut Project reveals that the dominance of the genus <i>Bifidobacterium</i> is associated with the diversity and robustness of the gut microbiota. MicrobiologyOpen, 2019, 8, e939.	1.2	27
1770	Human gut bacteria contain acquired interbacterial defence systems. Nature, 2019, 575, 224-228.	13.7	99
1771	Aging progression of human gut microbiota. BMC Microbiology, 2019, 19, 236.	1.3	151
1772	Studying the gut virome in the metagenomic era: challenges and perspectives. BMC Biology, 2019, 17, 84.	1.7	113
1773	The Expanded Endocannabinoid System/Endocannabinoidome as a Potential Target for Treating Diabetes Mellitus. Current Diabetes Reports, 2019, 19, 117.	1.7	56
1774	Human Nasal Microbiome as Characterized by Metagenomics Differs Markedly Between Rural and Industrial Communities in Egypt. OMICS A Journal of Integrative Biology, 2019, 23, 573-582.	1.0	11
1775	Nutrigenomics and personalized nutrition for the prevention of hyperglycemia and type 2 diabetes mellitus., 2019,, 339-352.		1
1776	Cross-Regional View of Functional and Taxonomic Microbiota Composition in Obesity and Post-obesity Treatment Shows Country Specific Microbial Contribution. Frontiers in Microbiology, 2019, 10, 2346.	1.5	17

#	Article	IF	CITATIONS
1777	Relationship between gut microbiota, probiotics, and type 2 diabetes mellitus. Applied Microbiology and Biotechnology, 2019, 103, 9229-9238.	1.7	84
1778	Effect of probiotics supplementation on glucose and oxidative stress in type 2 diabetes mellitus: a meta-analysis of randomized trials. DARU, Journal of Pharmaceutical Sciences, 2019, 27, 827-837.	0.9	77
1779	Polysaccharide from tuberous roots of Ophiopogon japonicus regulates gut microbiota and its metabolites during alleviation of high-fat diet-induced type-2 diabetes in mice. Journal of Functional Foods, 2019, 63, 103593.	1.6	26
1780	The emerging role of gut microbial metabolism on cardiovascular disease. Current Opinion in Microbiology, 2019, 50, 64-70.	2.3	36
1781	The effect of antibiotics on the composition of the intestinal microbiota - a systematic review. Journal of Infection, 2019, 79, 471-489.	1.7	203
1782	Immunodeficiency Promotes Adaptive Alterations of Host Gut Microbiome: An Observational Metagenomic Study in Mice. Frontiers in Microbiology, 2019, 10, 2415.	1.5	54
1783	The gut microbiota to the brain axis in the metabolic control. Reviews in Endocrine and Metabolic Disorders, 2019, 20, 427-438.	2.6	33
1784	Butyrolactoneâ€l, an efficient αâ€glucosidase inhibitor, improves type 2 diabetes with potent TNFâ€Î±â€"lowering properties through modulating gut microbiota in db/db mice. FASEB Journal, 2019, 33, 12616-12629.	20.2	20
1785	B cell superantigens in the human intestinal microbiota. Science Translational Medicine, 2019, 11, .	5.8	70
1786	Long-read metagenomic exploration of extrachromosomal mobile genetic elements in the human gut. Microbiome, 2019, 7, 119.	4.9	65
1788	Enteric dysbiosis is associated with sepsis in patients. FASEB Journal, 2019, 33, 12299-12310.	0.2	67
1789	Highly Reproducible 16S Sequencing Facilitates Measurement of Host Genetic Influences on the Stickleback Gut Microbiome. MSystems, 2019, 4, .	1.7	8
1790	Pancreas–Microbiota Cross Talk in Health and Disease. Annual Review of Nutrition, 2019, 39, 249-266.	4.3	28
1791	mHMDA: Human Microbe-Disease Association Prediction by Matrix Completion and Multi-Source Information. IEEE Access, 2019, 7, 106687-106693.	2.6	6
1792	Antibiotic resistance and metabolic profiles as functional biomarkers that accurately predict the geographic origin of city metagenomics samples. Biology Direct, 2019, 14, 15.	1.9	17
1793	Regulatory Function of Buckwheatâ€Resistant Starch Supplementation on Lipid Profile and Gut Microbiota in Mice Fed with a Highâ€Fat Diet. Journal of Food Science, 2019, 84, 2674-2681.	1.5	54
1794	Are There Potential Applications of Fecal Microbiota Transplantation beyond Intestinal Disorders?. BioMed Research International, 2019, 2019, 1-11.	0.9	21
1795	Viral Hormones: Expanding Dimensions in Endocrinology. Endocrinology, 2019, 160, 2165-2179.	1.4	28

#	Article	IF	Citations
1796	Pathogen-targeting glycovesicles as a therapy for salmonellosis. Nature Communications, 2019, 10, 4039.	5.8	22
1797	Effects of Regular Kefir Consumption on Gut Microbiota in Patients with Metabolic Syndrome: A Parallel-Group, Randomized, Controlled Study. Nutrients, 2019, 11, 2089.	1.7	77
1798	Impact of botanical fermented foods on metabolic biomarkers and gut microbiota in adults with metabolic syndrome and type 2 diabetes: a systematic review protocol. BMJ Open, 2019, 9, e029242.	0.8	7
1799	Phage Therapy with a focus on the Human Microbiota. Antibiotics, 2019, 8, 131.	1.5	83
1800	Circulating but not faecal short-chain fatty acids are related to insulin sensitivity, lipolysis and GLP-1 concentrations in humans. Scientific Reports, 2019, 9, 12515.	1.6	200
1801	CRISPR-Cas System of a Prevalent Human Gut Bacterium Reveals Hyper-targeting against Phages in a Human Virome Catalog. Cell Host and Microbe, 2019, 26, 325-335.e5.	5.1	53
1802	Effect of potato fiber on survival of Lactobacillus species at simulated gastric conditions and composition of the gut microbiota in vitro. Food Research International, 2019, 125, 108644.	2.9	25
1803	Distinct gut metagenomics and metaproteomics signatures in prediabetics and treatment-naÃ-ve type 2 diabetics. EBioMedicine, 2019, 47, 373-383.	2.7	101
1804	MAIT cells in metabolic diseases. Molecular Metabolism, 2019, 27, S114-S121.	3.0	25
1805	Gut Dysfunction and Non-alcoholic Fatty Liver Disease. Frontiers in Endocrinology, 2019, 10, 611.	1.5	69
1806	Resveratrol-mediated glycemic regulation is blunted by curcumin and is associated to modulation of gut microbiota. Journal of Nutritional Biochemistry, 2019, 72, 108218.	1,9	28
1807	An Adaptive Multivariate Two-Sample Test With Application to Microbiome Differential Abundance Analysis. Frontiers in Genetics, 2019, 10, 350.	1.1	10
1808	Plant-Based Fat, Dietary Patterns Rich in Vegetable Fat and Gut Microbiota Modulation. Frontiers in Nutrition, 2019, 6, 157.	1.6	38
1809	Homeostasis and dysbiosis of the gut microbiome in health and disease. Journal of Biosciences, 2019, 44, 1.	0.5	107
1810	Antibacterial mechanism of Tetrastigma hemsleyanum Diels et Gilg's polysaccharides by metabolomics based on HPLC/MS. International Journal of Biological Macromolecules, 2019, 140, 206-215.	3.6	40
1811	Propolis modulates the gut microbiota and improves the intestinal mucosal barrier function in diabetic rats. Biomedicine and Pharmacotherapy, 2019, 118, 109393.	2.5	37
1812	Discrepant gut microbiota markers for the classification of obesity-related metabolic abnormalities. Scientific Reports, 2019, 9, 13424.	1.6	235
1813	Dietary polyphenols to combat the metabolic diseases via altering gut microbiota. Trends in Food Science and Technology, 2019, 93, 81-93.	7.8	166

#	Article	IF	CITATIONS
1814	Effects of theabrownin on serum metabolites and gut microbiome in rats with a high-sugar diet. Food and Function, 2019, 10, 7063-7080.	2.1	75
1815	Influence of hydroxyl-terminated polybutadiene liquid on rheology of fumed silica filled cis-polybutadiene rubber. Polymer, 2019, 180, 121709.	1.8	11
1816	Loss of Diurnal Oscillatory Rhythms in Gut Microbiota Correlates with Changes in Circulating Metabolites in Type 2 Diabetic db/db Mice. Nutrients, 2019, 11, 2310.	1.7	42
1817	A metagenomic strategy for harnessing the chemical repertoire of the human microbiome. Science, 2019, 366, .	6.0	101
1818	Perspectives of personalized weight loss interventions based on exercise genomics, nutrigenetic, epigenetic, and metagenomic data in fitness and sport., 2019,, 487-508.		1
1819	Effects of berberine and metformin on intestinal inflammation and gut microbiome composition in db/db mice. Biomedicine and Pharmacotherapy, 2019, 118, 109131.	2.5	155
1820	Interaction between gut microbiota and ethnomedicine constituents. Natural Product Reports, 2019, 36, 788-809.	5.2	67
1821	Fermentation Products of Paenibacillus bovis sp. nov. BD3526 Alleviates the Symptoms of Type 2 Diabetes Mellitus in GK Rats. Frontiers in Microbiology, 2019, 9, 3292.	1.5	14
1822	Alterations in Gut Glutamate Metabolism Associated with Changes in Gut Microbiota Composition in Children with Autism Spectrum Disorder. MSystems, 2019, 4, .	1.7	113
1823	Quantitative proteomics reveals systematic dysregulations of liver protein metabolism in sucralose-treated mice. Journal of Proteomics, 2019, 196, 1-10.	1.2	22
1824	Loss of function dysbiosis associated with antibiotics and high fat, high sugar diet. ISME Journal, 2019, 13, 1379-1390.	4.4	29
1825	The unique composition of Indian gut microbiome, gene catalogue, and associated fecal metabolome deciphered using multi-omics approaches. GigaScience, 2019, 8, .	3.3	143
1826	The occurrence of potato common scab correlates with the community composition and function of the geocaulosphere soil microbiome. Microbiome, 2019, 7, 14.	4.9	149
1827	Interactions between Host PPARs and Gut Microbiota in Health and Disease. International Journal of Molecular Sciences, 2019, 20, 387.	1.8	46
1828	Green Tea Polyphenols Modify the Gut Microbiome in ⟨i⟩db/db⟨/i⟩ Mice as Coâ€Abundance Groups Correlating with the Blood Glucose Lowering Effect. Molecular Nutrition and Food Research, 2019, 63, e1801064.	1.5	69
1829	Proteinâ€Bound βâ€glucan from Coriolus Versicolor has Potential for Use Against Obesity. Molecular Nutrition and Food Research, 2019, 63, e1801231.	1.5	18
1830	Obesity genetics and cardiometabolic health: Potential for risk prediction. Diabetes, Obesity and Metabolism, 2019, 21, 1088-1100.	2.2	24
1831	Exploring the Fecal Microbial Composition and Metagenomic Functional Capacities Associated With Feed Efficiency in Commercial DLY Pigs. Frontiers in Microbiology, 2019, 10, 52.	1.5	77

#	Article	IF	CITATIONS
1832	Evolutionary dynamics of bacteria in the gut microbiome within and across hosts. PLoS Biology, 2019, 17, e3000102.	2.6	257
1833	Metabolomics and Microbiomes as Potential Tools to Evaluate the Effects of the Mediterranean Diet. Nutrients, 2019, 11, 207.	1.7	62
1834	Administration of N-Acyl-Phosphatidylethanolamine Expressing Bacteria to Low Density Lipoprotein Receptorâ^'/â^' Mice Improves Indices of Cardiometabolic Disease. Scientific Reports, 2019, 9, 420.	1.6	28
1835	Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome. Microbiome, 2019, 7, 9.	4.9	261
1836	The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD). Cellular and Molecular Life Sciences, 2019, 76, 1541-1558.	2.4	333
1837	Screening and identification of gut anaerobes (Bacteroidetes) from human diabetic stool samples with and without retinopathy in comparison to control subjects. Microbial Pathogenesis, 2019, 129, 88-92.	1.3	23
1838	Metformin and gut microbiota: their interactions and their impact on diabetes. Hormones, 2019, 18, 141-144.	0.9	83
1839	Persistent changes in liver methylation and microbiome composition following reversal of diet-induced non-alcoholic-fatty liver disease. Cellular and Molecular Life Sciences, 2019, 76, 4341-4354.	2.4	32
1840	Mechanism analysis of improved glucose homeostasis and cholesterol metabolism in high-fat-induced obese mice treated with <i>La</i> -SJLH001 <i>via</i> transcriptomics and culturomics. Food and Function, 2019, 10, 3556-3566.	2.1	8
1841	Gut microbiota partially mediates the effects of fine particulate matter on type 2 diabetes: Evidence from a population-based epidemiological study. Environment International, 2019, 130, 104882.	4.8	89
1842	The Intervention Effect of Traditional Chinese Medicine on the Intestinal Flora and Its Metabolites in Glycolipid Metabolic Disorders. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-13.	0.5	23
1843	Baicalin improves intestinal microecology and abnormal metabolism induced by high-fat diet. European Journal of Pharmacology, 2019, 857, 172457.	1.7	50
1844	Fecal Microbial Transplantation and Its Potential Application in Cardiometabolic Syndrome. Frontiers in Immunology, 2019, 10, 1341.	2.2	63
1845	The Role of the Microbiota in the Diabetic Peripheral Artery Disease. Mediators of Inflammation, 2019, 2019, 1-16.	1.4	15
1846	High-Fat Diet Alters the Intestinal Microbiota in Streptozotocin-Induced Type 2 Diabetic Mice. Microorganisms, 2019, 7, 176.	1.6	43
1847	Understanding Bile Acid Signaling in Diabetes: From Pathophysiology to Therapeutic Targets. Diabetes and Metabolism Journal, 2019, 43, 257.	1.8	76
1848	Hyaluronic acid behavior in oral administration and perspectives for nanotechnology-based formulations: A review. Carbohydrate Polymers, 2019, 222, 115001.	5.1	34
1849	Deciphering extracellular antibiotic resistance genes (eARGs) in activated sludge by metagenome. Water Research, 2019, 161, 610-620.	5.3	97

#	Article	IF	CITATIONS
1850	Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nature Medicine, 2019, 25, 1104-1109.	15.2	477
1851	PPR-Meta: a tool for identifying phages and plasmids from metagenomic fragments using deep learning. GigaScience, 2019, 8, .	3.3	119
1852	Pathophysiology and management of diabetic gastroenteropathy. Therapeutic Advances in Gastroenterology, 2019, 12, 175628481985204.	1.4	26
1853	Research progress in the relationship between type 2 diabetes mellitus and intestinal flora. Biomedicine and Pharmacotherapy, 2019, 117, 109138.	2.5	205
1854	Sodium Butyrate Improves Liver Glycogen Metabolism in Type 2 Diabetes Mellitus. Journal of Agricultural and Food Chemistry, 2019, 67, 7694-7705.	2.4	70
1855	Microbial genes and pathways inÂinflammatory bowel disease. Nature Reviews Microbiology, 2019, 17, 497-511.	13.6	447
1856	Understanding the Role of the Gut Microbiome and Microbial Metabolites in Obesity and Obesity-Associated Metabolic Disorders: Current Evidence and Perspectives. Current Obesity Reports, 2019, 8, 317-332.	3.5	182
1857	Redox regulation of metabolic syndrome: recent developments in skeletal muscle insulin resistance and non-alcoholic fatty liver disease (NAFLD). Current Opinion in Physiology, 2019, 9, 79-86.	0.9	8
1858	The influence of lifestyle factors on fecal volatile organic compound composition as measured by an electronic nose. Journal of Breath Research, 2019, 13, 046001.	1.5	17
1860	FEAST: fast expectation-maximization for microbial source tracking. Nature Methods, 2019, 16, 627-632.	9.0	275
1861	Surveying Gut Microbiome Research in Africans: Toward Improved Diversity and Representation. Trends in Microbiology, 2019, 27, 824-835.	3.5	51
1862	Other Precipitating Factors for AECHB. , 2019, , 315-369.		1
1863	Bariatric/Metabolic Surgery Induces Noticeable Changes of Microbiota and Their Secreting Extracellular Vesicle Composition in the Gut. Obesity Surgery, 2019, 29, 2470-2484.	1.1	10
1864	Longitudinal multi-omics of host–microbe dynamics in prediabetes. Nature, 2019, 569, 663-671.	13.7	391
1865	The Integrative Human Microbiome Project. Nature, 2019, 569, 641-648.	13.7	816
1866	Age-stratified comparative analysis of the differences of gut microbiota associated with blood glucose level. BMC Microbiology, 2019, 19, 111.	1.3	4
1867	Metaâ€Omics―and Metabolic Modelingâ€Assisted Deciphering of Human Microbiota Metabolism. Biotechnology Journal, 2019, 14, 1800445.	1.8	7
1868	Gut microbiota imbalances in Tunisian participants with type 1 and type 2 diabetes mellitus. Bioscience Reports, $2019,39,.$	1.1	38

#	Article	IF	CITATIONS
1869	Daphnetin ameliorates experimental colitis by modulating microbiota composition and T _{reg} /T _h 17 balance. FASEB Journal, 2019, 33, 9308-9322.	0.2	45
1870	Gut microbiota disorders cause type 2 diabetes mellitus and homeostatic disturbances in gut-related metabolism in Japanese subjects. Journal of Clinical Biochemistry and Nutrition, 2019, 64, 231-238.	0.6	44
1871	Protective effects of α-galacto-oligosaccharides against a high-fat/western-style diet-induced metabolic abnormalities in mice. Food and Function, 2019, 10, 3660-3670.	2.1	20
1872	Slowing Down Ageing: The Role of Nutrients and Microbiota in Modulation of the Epigenome. Nutrients, 2019, 11, 1251.	1.7	35
1873	Disordered gut microbiota and alterations in metabolic patterns are associated with atrial fibrillation. GigaScience, 2019, 8, .	3.3	123
1874	Review article: emerging role of the gut microbiome in the progression of nonalcoholic fatty liver disease and potential therapeutic implications. Alimentary Pharmacology and Therapeutics, 2019, 50, 144-158.	1.9	50
1875	Simultaneous determination of five isoflavones in rat plasma by LCâ€MS/MS: comparative pharmacokinetic characteristics of Puerariae lobatae radix in normal and type 2 diabetic rats. Journal of Separation Science, 2019, 42, 2592-2601.	1.3	21
1876	Gut Microbiota and Colonization Resistance against Bacterial Enteric Infection. Microbiology and Molecular Biology Reviews, 2019, 83, .	2.9	272
1877	A Review and Tutorial of Machine Learning Methods for Microbiome Host Trait Prediction. Frontiers in Genetics, 2019, 10, 579.	1.1	129
1878	Red yeast rice ameliorates high-fat diet-induced atherosclerosis in <i>Apoe</i> ^{â^'\â^'} mice in association with improved inflammation and altered gut microbiota composition. Food and Function, 2019, 10, 3880-3889.	2.1	40
1879	Gut Microbiota Dysbiosis in Human Obesity: Impact of Bariatric Surgery. Current Obesity Reports, 2019, 8, 229-242.	3.5	85
1880	Gut microbiota: a new angle for traditional herbal medicine research. RSC Advances, 2019, 9, 17457-17472.	1.7	31
1881	The Impact of DNA Extraction Methods on Stool Bacterial and Fungal Microbiota Community Recovery. Frontiers in Microbiology, 2019, 10, 821.	1.5	80
1882	The development and ecology of the Japanese macaque gut microbiome from weaning to early adolescence in association with diet. American Journal of Primatology, 2019, 81, e22980.	0.8	14
1883	A Metagenomic Meta-analysis Reveals Functional Signatures of Health and Disease in the Human Gut Microbiome. MSystems, 2019, 4, .	1.7	112
1884	The Healthy Human Blood Microbiome: Fact or Fiction?. Frontiers in Cellular and Infection Microbiology, 2019, 9, 148.	1.8	221
1886	A Distance-Based Kernel Association Test Based on the Generalized Linear Mixed Model for Correlated Microbiome Studies. Frontiers in Genetics, 2019, 10, 458.	1.1	31
1887	â€~Beauty and the beast' in infection: How immune–endocrine interactions regulate systemic metabolism in the context of infection. European Journal of Immunology, 2019, 49, 982-995.	1.6	26

#	Article	IF	CITATIONS
1888	Antibiotics-mediated intestinal microbiome perturbation aggravates tacrolimus-induced glucose disorders in mice. Frontiers of Medicine, 2019, 13, 471-481.	1.5	8
1889	Extract of ice plant (Mesembryanthemum crystallinum) ameliorates hyperglycemia and modulates the gut microbiota composition in type 2 diabetic Goto-Kakizaki rats. Food and Function, 2019, 10, 3252-3261.	2.1	26
1890	What does sodiumâ€glucose coâ€transporter 1 inhibition add: Prospects for dual inhibition. Diabetes, Obesity and Metabolism, 2019, 21, 43-52.	2.2	69
1891	Antibiotic-Induced Disruption of Gut Microbiota Alters Local Metabolomes and Immune Responses. Frontiers in Cellular and Infection Microbiology, 2019, 9, 99.	1.8	109
1892	Gut Microbiota Changes in Patients with Bipolar Depression. Advanced Science, 2019, 6, 1900752.	5.6	98
1893	A Natural mtDNA Polymorphism in Complex III Is a Modifier of Healthspan in Mice. International Journal of Molecular Sciences, 2019, 20, 2359.	1.8	12
1894	A metagenomic analysis of the relationship between microorganisms and flavor development in Shaoxing mechanized huangjiu fermentation mashes. International Journal of Food Microbiology, 2019, 303, 9-18.	2.1	116
1896	Synthetic gutomics: Deciphering the microbial code for futuristic diagnosis and personalized medicine. Methods in Microbiology, 2019, 46, 197-225.	0.4	9
1897	Impact of Gut Microbiota Composition on Onset and Progression of Chronic Non-Communicable Diseases. Nutrients, 2019, 11, 1073.	1.7	90
1898	Role of Bile Acids in Bariatric Surgery. Frontiers in Physiology, 2019, 10, 374.	1.3	49
1899	Adaptive Evolution within Gut Microbiomes of Healthy People. Cell Host and Microbe, 2019, 25, 656-667.e8.	5.1	289
1900	Intestinal Microbiota in Cardiovascular Health and Disease. Journal of the American College of Cardiology, 2019, 73, 2089-2105.	1.2	301
1901	Perspective and Guidelines for Metaproteomics in Microbiome Studies. Journal of Proteome Research, 2019, 18, 2370-2380.	1.8	63
1902	Gut microbiome-derived phenyl sulfate contributes to albuminuria in diabetic kidney disease. Nature Communications, 2019, 10, 1835.	5.8	173
1903	<i>Akkermansia muciniphila</i> is a promising probiotic. Microbial Biotechnology, 2019, 12, 1109-1125.	2.0	447
1904	Probiotic <i>Bifidobacterium lactis</i> V9 Regulates the Secretion of Sex Hormones in Polycystic Ovary Syndrome Patients through the Gut-Brain Axis. MSystems, 2019, 4, .	1.7	157
1905	Impact of bariatric surgery on type 2 diabetes: contribution of inflammation and gut microbiome?. Seminars in Immunopathology, 2019, 41, 461-475.	2.8	27
1906	H. pylori Eradication Treatment Alters Gut Microbiota and GLP-1 Secretion in Humans. Journal of Clinical Medicine, 2019, 8, 451.	1.0	52

#	Article	IF	CITATIONS
1907	The interplay between microbiotaâ€dependent metabolite trimethylamine <i>N</i> à€oxide, Transforming growth factor <i>β</i> /SMAD signaling and inflammasome activation in chronic kidney disease patients: A new mechanistic perspective. Journal of Cellular Biochemistry, 2019, 120, 14476-14485.	1.2	34
1908	Microbial osteoporosis: The interplay between the gut microbiota and bones via host metabolism and immunity. MicrobiologyOpen, 2019, 8, e00810.	1.2	60
1909	Effects of food additives on gut microbiota: friend or foe?. Nutrition and Food Science, 2019, 49, 955-964.	0.4	9
1910	Effects of Codonopis bulleynana forest ex diels on Deferribacteres in constipation predominant intestine tumor: Differential analysis. Saudi Journal of Biological Sciences, 2019, 26, 395-401.	1.8	31
1911	Mucosal tolerance therapy in humans: Past and future. Clinical and Experimental Neuroimmunology, 2019, 10, 20-31.	0.5	7
1912	Structural modulation of gut microbiota reveals Coix seed contributes to weight loss in mice. Applied Microbiology and Biotechnology, 2019, 103, 5311-5321.	1.7	27
1913	A Data Integration Multi-Omics Approach to Study Calorie Restriction-Induced Changes in Insulin Sensitivity. Frontiers in Physiology, 2018, 9, 1958.	1.3	39
1914	Gut microbiome interventions in human health and diseases. Medicinal Research Reviews, 2019, 39, 2286-2313.	5.0	52
1915	Estimating the total genome length of a metagenomic sample using k-mers. BMC Genomics, 2019, 20, 183.	1.2	2
1916	Exposure to a Healthy Gut Microbiome Protects Against Reproductive and Metabolic Dysregulation in a PCOS Mouse Model. Endocrinology, 2019, 160, 1193-1204.	1.4	70
1917	From NASH to HCC: current concepts and future challenges. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 411-428.	8.2	872
1918	GPA: A Microbial Genetic Polymorphisms Assignments Tool in Metagenomic Analysis by Bayesian Estimation. Genomics, Proteomics and Bioinformatics, 2019, 17, 106-117.	3.0	6
1919	Effects of single and combined toxic exposures on the gut microbiome: Current knowledge and future directions. Toxicology Letters, 2019, 312, 72-97.	0.4	106
1920	Association of the oral microbiome with the progression of impaired fasting glucose in a Chinese elderly population. Journal of Oral Microbiology, 2019, 11, 1605789.	1.2	25
1921	Gut Microbiota in Alzheimer's Disease, Depression, and Type 2 Diabetes Mellitus: The Role of Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-10.	1.9	78
1922	Precision Nutrition and the Microbiome, Part I: Current State of the Science. Nutrients, 2019, 11, 923.	1.7	220
1923	Obesity and Fat Metabolism in Human Immunodeficiency Virus–Infected Individuals: Immunopathogenic Mechanisms and Clinical Implications. Journal of Infectious Diseases, 2019, 220, 420-431.	1.9	64
1924	The Gut Microbiome Signatures Discriminate Healthy From Pulmonary Tuberculosis Patients. Frontiers in Cellular and Infection Microbiology, 2019, 9, 90.	1.8	89

#	Article	IF	CITATIONS
1925	Crosstalk between gut microbiota and antidiabetic drug action. World Journal of Diabetes, 2019, 10, 154-168.	1.3	61
1926	Plant-Derived Supplementary Carbohydrates, Polysaccharides and Oligosaccharides in Management of Diabetes Mellitus: A Comprehensive Review. Food Reviews International, 2019, 35, 563-586.	4.3	19
1927	Metagenomic analysis of composition, function and cycling processes of microbial community in water, sediment and effluent of Litopenaeus vannamei farming environments under different culture modes. Aquaculture, 2019, 506, 280-293.	1.7	56
1928	Gut Microbiota Composition and Blood Pressure. Hypertension, 2019, 73, 998-1006.	1.3	175
1929	Letrozole treatment of adult female mice results in a similar reproductive phenotype but distinct changes in metabolism and the gut microbiome compared to pubertal mice. BMC Microbiology, 2019, 19, 57.	1.3	31
1930	Microbiome diurnal rhythmicity and its impact on host physiology and disease risk. EMBO Reports, 2019, 20, .	2.0	66
1931	Understanding the gut–kidney axis among biopsy-proven diabetic nephropathy, type 2 diabetes mellitus and healthy controls: an analysis of the gut microbiota composition. Acta Diabetologica, 2019, 56, 581-592.	1.2	110
1932	Diabetic cats have decreased gut microbial diversity and a lack of butyrate producing bacteria. Scientific Reports, 2019, 9, 4822.	1.6	40
1933	Metagenomic exploration of the interactions between N and P cycling and SOM turnover in an apple orchard with a cover crop fertilized for 9Âyears. Biology and Fertility of Soils, 2019, 55, 365-381.	2.3	37
1934	Microbial abundance, activity and population genomic profiling with mOTUs2. Nature Communications, 2019, 10, 1014.	5.8	298
1935	Heavy metal exposure causes changes in the metabolic health-associated gut microbiome and metabolites. Environment International, 2019, 126, 454-467.	4.8	125
1936	<i>In vitro</i> and <i>in vivo</i> evaluation of an exopolysaccharide produced by <i>Lactobacillus helveticus</i> KLDS1.8701 for the alleviative effect on oxidative stress. Food and Function, 2019, 10, 1707-1717.	2.1	34
1937	Gastrointestinal Barrier Breakdown and Adipose Tissue Inflammation. Current Obesity Reports, 2019, 8, 165-174.	3.5	34
1938	Oral iron supplementation is not associated with shortâ€ŧerm risk of infections: results from the Danish Blood Donor Study. Transfusion, 2019, 59, 2030-2038.	0.8	7
1939	Dietary fibers as emerging nutritional factors against diabetes: focus on the involvement of gut microbiota. Critical Reviews in Biotechnology, 2019, 39, 524-540.	5.1	36
1940	Comparison of the gut microbiota composition between the wild and captive Tibetan wild ass () Tj ETQq $1\ 1\ 0.78$	4314 rgB1 1.4	「/Qyerlock 1
1941	Hypoglycemic activity and gut microbiota regulation of a novel polysaccharide from Grifola frondosa in type 2 diabetic mice. Food and Chemical Toxicology, 2019, 126, 295-302.	1.8	108
1942	MetaMarker: a pipeline for <i>de novo</i> discovery of novel metagenomic biomarkers. Bioinformatics, 2019, 35, 3812-3814.	1.8	10

#	Article	IF	CITATIONS
1943	Metformin-induced changes of the gut microbiota in healthy young men: results of a non-blinded, one-armed intervention study. Diabetologia, 2019, 62, 1024-1035.	2.9	135
1944	Structural variation in the gut microbiome associates with host health. Nature, 2019, 568, 43-48.	13.7	244
1945	Precarious Symbiosis Between Host and Microbiome in Cardiovascular Health. Hypertension, 2019, 73, 926-935.	1.3	10
1946	Major Traditional Probiotics: Comparative Genomic Analyses and Roles in Gut Microbiome of Eight Cohorts. Frontiers in Microbiology, 2019, 10, 712.	1.5	13
1947	Improvement of Colonic Immune Function with Soy Isoflavones in High-Fat Diet-Induced Obese Rats. Molecules, 2019, 24, 1139.	1.7	58
1948	The Perturbation of Infant Gut Microbiota Caused by Cesarean Delivery Is Partially Restored by Exclusive Breastfeeding. Frontiers in Microbiology, 2019, 10, 598.	1.5	65
1949	Amino acid based <i>de Bruijn </i> graph algorithm for identifying complete coding genes from metagenomic and metatranscriptomic short reads. Nucleic Acids Research, 2019, 47, e30-e30.	6.5	7
1950	Examination of the temporal and spatial dynamics of the gut microbiome in newborn piglets reveals distinct microbial communities in six intestinal segments. Scientific Reports, 2019, 9, 3453.	1.6	59
1951	Gut microbe–generated metabolite trimethylamine <i>N</i> à€oxide and the risk of diabetes: A systematic review and doseâ€response metaâ€analysis. Obesity Reviews, 2019, 20, 883-894.	3.1	124
1952	Gut Microbiota Composition and Structure of the Ob/Ob and Db/Db Mice. International Journal of Endocrinology, 2019, 2019, 1-9.	0.6	15
1953	Metagenomic analysis of microbe-mediated vitamin metabolism in the human gut microbiome. BMC Genomics, 2019, 20, 208.	1.2	81
1954	Dietary Nutrients Involved in One-Carbon Metabolism and Colonic Mucosa-Associated Gut Microbiome in Individuals with an Endoscopically Normal Colon. Nutrients, 2019, 11, 613.	1.7	48
1955	Disordered intestinal microbes are associated with the activity of Systemic Lupus Erythematosus. Clinical Science, 2019, 133, 821-838.	1.8	119
1956	Fecal and blood microbiota profiles and presence of nonalcoholic fatty liver disease in obese versus lean subjects. PLoS ONE, 2019, 14, e0213692.	1.1	70
1957	Potential Functions of the Gastrointestinal Microbiome Inhabiting the Length of the Rat Digest Tract. International Journal of Molecular Sciences, 2019, 20, 1232.	1.8	4
1958	Current Understanding of the Gut Microflora in Subjects with Nutrition-Associated Metabolic Disorder Such as Obesity and/or Diabetes: Is There Any Relevance with Oral Microflora?. Current Oral Health Reports, 2019, 6, 100-109.	0.5	О
1959	Gut Microbial Associations to Plasma Metabolites Linked to Cardiovascular Phenotypes and Risk. Circulation Research, 2019, 124, 1808-1820.	2.0	137
1960	Relationship Between MiRKAT and Coefficient of Determination in Similarity Matrix Regression. Processes, 2019, 7, 79.	1.3	5

#	Article	IF	CITATIONS
1961	New insights from uncultivated genomes of the global human gut microbiome. Nature, 2019, 568, 505-510.	13.7	505
1962	Characterizing the Personalized Microbiota Dynamics for Disease Classification by Individual-Specific Edge-Network Analysis. Frontiers in Genetics, 2019, 10, 283.	1.1	13
1963	Early life stress induces type 2 diabetes-like features in ageing mice. Brain, Behavior, and Immunity, 2019, 80, 452-463.	2.0	16
1964	Impact of bacterial probiotics on obesity, diabetes and non-alcoholic fatty liver disease related variables: a systematic review and meta-analysis of randomised controlled trials. BMJ Open, 2019, 9, e017995.	0.8	183
1965	Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nature Medicine, 2019, 25, 667-678.	15.2	602
1966	Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nature Medicine, 2019, 25, 679-689.	15.2	734
1967	Pharmacologic and Nonpharmacologic Therapies for the Gut Microbiota in Type 2 Diabetes. Canadian Journal of Diabetes, 2019, 43, 224-231.	0.4	43
1968	Identification and reconstruction of novel antibiotic resistance genes from metagenomes. Microbiome, 2019, 7, 52.	4.9	84
1969	MetaPheno: A critical evaluation of deep learning and machine learning in metagenome-based disease prediction. Methods, 2019, 166, 74-82.	1.9	86
1970	Positive stool culture could predict the clinical outcomes of haploidentical hematopoietic stem cell transplantation. Frontiers of Medicine, 2019, 13, 492-503.	1.5	5
1971	Gut microbiome and microbial metabolites: a new system affecting metabolic disorders. Journal of Endocrinological Investigation, 2019, 42, 1011-1018.	1.8	31
1972	Bacterial viability in faecal transplants: Which bacteria survive?. EBioMedicine, 2019, 41, 509-516.	2.7	84
1973	A â€~culture' shift: Application of molecular techniques for diagnosing polymicrobial infections. Biotechnology Advances, 2019, 37, 476-490.	6.0	24
1974	The Altered Mucosal Barrier Function in the Duodenum Plays a Role in the Pathogenesis of Functional Dyspepsia. Digestive Diseases and Sciences, 2019, 64, 3228-3239.	1.1	44
1975	Regulation of microbiota–GLP1 axis by sennoside A in diet-induced obese mice. Acta Pharmaceutica Sinica B, 2019, 9, 758-768.	5.7	41
1976	Role of gut microbiota in the development of non-alcoholic fatty liver disease. Liver Research, 2019, 3, 25-30.	0.5	10
1977	Gut microbiota, a new frontier to understand traditional Chinese medicines. Pharmacological Research, 2019, 142, 176-191.	3.1	244
1978	Clostridium ramosum regulates enterochromaffin cell development and serotonin release. Scientific Reports, 2019, 9, 1177.	1.6	85

#	Article	IF	CITATIONS
1979	Altered gut microbiome after bariatric surgery and its association with metabolic benefits: A systematic review. Surgery for Obesity and Related Diseases, 2019, 15, 656-665.	1.0	58
1980	Association of gut dysbiosis with intestinal metabolites in response to antibiotic treatment. Human Microbiome Journal, 2019, 11, 100054.	3.8	14
1981	Gut microbiota community characteristics and disease-related microorganism pattern in a population of healthy Chinese people. Scientific Reports, 2019, 9, 1594.	1.6	33
1982	JinQi Jiangtang Tablet Regulates Gut Microbiota and Improve Insulin Sensitivity in Type 2 Diabetes Mice. Journal of Diabetes Research, 2019, 2019, 1-12.	1.0	38
1983	Higher Risk of Stroke Is Correlated With Increased Opportunistic Pathogen Load and Reduced Levels of Butyrate-Producing Bacteria in the Gut. Frontiers in Cellular and Infection Microbiology, 2019, 9, 4.	1.8	134
1984	Gut Microbiota, Host Organism, and Diet Trialogue in Diabetes and Obesity. Frontiers in Nutrition, 2019, 6, 21.	1.6	139
1985	The Gut Microbiome After Bariatric Surgery. , 2019, , 235-242.		2
1986	Taxonomic Distribution of FosB in Human-Microbiota and Activity Comparison of Fosfomycin Resistance. Frontiers in Microbiology, 2019, 10, 200.	1.5	7
1988	Microbes, Their Metabolites, and Effector Molecules: A Pharmacological Perspective for Host-Microbiota Interaction. Environmental Chemistry for A Sustainable World, 2019, , 155-206.	0.3	4
1989	Impact of Preservation Method and 16S rRNA Hypervariable Region on Gut Microbiota Profiling. MSystems, 2019, 4, .	1.7	107
1990	Dualâ€Stimuliâ€Responsive Gut Microbiotaâ€Targeting Berberineâ€CS/PTâ€NPs Improved Metabolic Status in Obese Hamsters. Advanced Functional Materials, 2019, 29, 1808197.	7.8	37
1991	CRISPRs for Strain Tracking and Their Application to Microbiota Transplantation Data Analysis. CRISPR Journal, 2019, 2, 41-50.	1.4	8
1992	pldist: ecological dissimilarities for paired and longitudinal microbiome association analysis. Bioinformatics, 2019, 35, 3567-3575.	1.8	21
1993	Gut Microbiota, a Potential New Target for Chinese Herbal Medicines in Treating Diabetes Mellitus. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-11.	0.5	31
1994	Dynamic Development of Fecal Microbiome During the Progression of Diabetes Mellitus in Zucker Diabetic Fatty Rats. Frontiers in Microbiology, 2019, 10, 232.	1.5	73
1995	Childhood Obesity and Diabetes: Role of Probiotics and Prebiotics. , 2019, , 363-376.		4
1996	Intestinal microbes direct CX ₃ CR1 ⁺ cells to balance intestinal immunity. Gut Microbes, 2019, 10, 540-546.	4.3	4
1997	Using herbal medicine to target the "microbiota-metabolism-immunity―axis as possible therapy for cardiovascular disease. Pharmacological Research, 2019, 142, 205-222.	3.1	27

#	Article	IF	CITATIONS
1998	Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial. Gut, 2019, 68, 1417-1429.	6.1	422
1999	The Battle Within: Interactions of Bacteriophages and Bacteria in the Gastrointestinal Tract. Cell Host and Microbe, 2019, 25, 210-218.	5.1	101
2000	Association between blood omega-3 polyunsaturated fatty acids and the gut microbiota among breast cancer survivors. Beneficial Microbes, 2019, 10, 751-758.	1.0	28
2001	Multiclass Disease Classification from Microbial Whole-Community Metagenomes. , 2019, , .		7
2003	Additional Effect of Dietary Fiber in Patients with Type 2 Diabetes Mellitus Using Metformin and Sulfonylurea: An Open-Label, Pilot Trial. Diabetes and Metabolism Journal, 2019, 43, 422.	1.8	10
2004	Impaired glucose metabolism and altered gut microbiome despite calorie restriction of ob/ob mice. Animal Microbiome, 2019, 1, 11.	1.5	15
2005	Role of Gut Microbiota in Type 2 Diabetes Mellitus and Its Complications: Novel Insights and Potential Intervention Strategies. Korean journal of gastroenterology = Taehan Sohwagi Hakhoe chi, The, 2019, 74, 314.	0.2	40
2006	Environmental Chemical Diethylhexyl Phthalate Alters Intestinal Microbiota Community Structure and Metabolite Profile in Mice. MSystems, 2019, 4, .	1.7	41
2007	Prospective multicentre cohort trial on acute appendicitis and microbiota, aetiology and effects of antimicrobial treatment: study protocol for the MAPPAC (Microbiology APPendicitis ACuta) trial. BMJ Open, 2019, 9, e031137.	0.8	18
2008	Effects of metformin, acarbose, and sitagliptin monotherapy on gut microbiota in Zucker diabetic fatty rats. BMJ Open Diabetes Research and Care, 2019, 7, e000717.	1.2	64
2009	The gut microbiome in psoriasis and psoriatic arthritis. Best Practice and Research in Clinical Rheumatology, 2019, 33, 101494.	1.4	75
2010	Invariant NKT Cells Functionally Link Microbiota-Induced Butyrate Production and Joint Inflammation. Journal of Immunology, 2019, 203, 3199-3208.	0.4	18
2012	Omics-based biomarkers in the diagnosis of diabetes. Journal of Basic and Clinical Physiology and Pharmacology, 2020, 31, .	0.7	23
2013	Reproducibility, stability, and accuracy of microbial profiles by fecal sample collection method in three distinct populations. PLoS ONE, 2019, 14, e0224757.	1.1	19
2014	Analysis of free radical production capacity in mouse faeces and its possible application in evaluating the intestinal environment: a pilot study. Scientific Reports, 2019, 9, 19533.	1.6	4
2016	Microbiota impacts on chronic inflammation and metabolic syndrome - related cognitive dysfunction. Reviews in Endocrine and Metabolic Disorders, 2019, 20, 473-480.	2.6	45
2017	Duration of Persistent Atrial Fibrillation Is Associated with Alterations in Human Gut Microbiota and Metabolic Phenotypes. MSystems, 2019, 4, .	1.7	35
2018	Butyrate attenuated fat gain through gut microbiota modulation in db/db mice following dapagliflozin treatment. Scientific Reports, 2019, 9, 20300.	1.6	27

#	Article	IF	CITATIONS
2019	Analysis of gut microbiota of obese individuals with type 2 diabetes and healthy individuals. PLoS ONE, 2019, 14, e0226372.	1.1	104
2020	Reads Binning Improves Alignment-Free Metagenome Comparison. Frontiers in Genetics, 2019, 10, 1156.	1.1	17
2021	Intestinal Bacteroides sp. Imbalance Associated With the Occurrence of Childhood Undernutrition in China. Frontiers in Microbiology, 2019, 10, 2635.	1.5	9
2022	Non-Caloric Artificial Sweeteners Modulate the Expression of Key Metabolic Genes in the Omnipresent Gut Microbe <i>Escherichia coli</i> . Journal of Molecular Microbiology and Biotechnology, 2019, 29, 43-56.	1.0	11
2023	Type-2 Diabetics Reduces Spatial Variation of Microbiome Based on Extracellular Vesicles from Gut Microbes across Human Body. Scientific Reports, 2019, 9, 20136.	1.6	20
2024	The Gut Microbiota in Women Suffering from Gestational Diabetes Mellitus with the Failure of Glycemic Control by Lifestyle Modification. Journal of Diabetes Research, 2019, 2019, 1-12.	1.0	49
2025	The gut-brain axis: microglia in the spotlight. Neuroforum, 2019, 25, 205-212.	0.2	5
2026	The Play of Genes and Non-genetic Factors on Type 2 Diabetes. Frontiers in Public Health, 2019, 7, 349.	1.3	52
2027	Microbiota, type 2 diabetes and non-alcoholic fatty liver disease: protocol of an observational study. Journal of Translational Medicine, 2019, 17, 408.	1.8	7
2028	Oral Administration of miR-30d from Feces of MS Patients Suppresses MS-like Symptoms in Mice by Expanding Akkermansia muciniphila. Cell Host and Microbe, 2019, 26, 779-794.e8.	5.1	118
2029	Fingerprinting cities: differentiating subway microbiome functionality. Biology Direct, 2019, 14, 19.	1.9	11
2030	Diet in Parkinson's Disease: Critical Role for the Microbiome. Frontiers in Neurology, 2019, 10, 1245.	1.1	83
2031	The Role of the Gut Microbiota in Lipid and Lipoprotein Metabolism. Journal of Clinical Medicine, 2019, 8, 2227.	1.0	82
2032	Metagenomic Insights into the Effects of Seasonal Temperature Variation on the Activities of Activated Sludge. Microorganisms, 2019, 7, 713.	1.6	14
2033	Evidence for a multi-level trophic organization of the human gut microbiome. PLoS Computational Biology, 2019, 15, e1007524.	1.5	42
2034	Monitoring type 2 diabetes from volatile faecal metabolome in Cushing's syndrome and single Afmid mouse models via a longitudinal study. Scientific Reports, 2019, 9, 18779.	1.6	15
2035	Unaccounted risk of cardiovascular disease: the role of the microbiome in lipid metabolism. Current Opinion in Lipidology, 2019, 30, 125-133.	1.2	2
2036	A correlation-based network for biomarker discovery in obesity with metabolic syndrome. BMC Bioinformatics, 2019, 20, 477.	1.2	14

#	Article	IF	Citations
2037	Advancing functional and translational microbiome research using meta-omics approaches. Microbiome, 2019, 7, 154.	4.9	177
2038	Rice Endosperm Protein Administration to Juvenile Mice Regulates Gut Microbiota and Suppresses the Development of High-Fat Diet-Induced Obesity and Related Disorders in Adulthood. Nutrients, 2019, 11, 2919.	1.7	19
2039	The Initial Oral Microbiota of Neonates Among Subjects With Gestational Diabetes Mellitus. Frontiers in Pediatrics, 2019, 7, 513.	0.9	14
2040	Whole Body Vibration Triggers a Change in the Mutual Shaping State of Intestinal Microbiota and Body's Immunity. Frontiers in Bioengineering and Biotechnology, 2019, 7, 377.	2.0	6
2041	Akkermansia muciniphila: a promising target for the therapy of metabolic syndrome and related diseases. Chinese Journal of Natural Medicines, 2019, 17, 835-841.	0.7	31
2042	Deciphering the metabolic capabilities of Bifidobacteria using genome-scale metabolic models. Scientific Reports, 2019, 9, 18222.	1.6	56
2043	Impact of the Gut Microbiome on Immune Checkpoint Inhibitor Efficacy—A Systematic Review. Current Oncology, 2019, 26, 395-403.	0.9	44
2044	Proteomics and the microbiome: pitfalls and potential. Expert Review of Proteomics, 2019, 16, 501-511.	1.3	24
2045	French and Mediterranean-style diets: Contradictions, misconceptions and scientific facts-A review. Food Research International, 2019, 116, 840-858.	2.9	24
2046	Antibiotic Use in Pregnancy, Abnormal Fetal Growth, and Development of Gestational Diabetes Mellitus. American Journal of Perinatology, 2019, 36, 243-251.	0.6	8
2047	Butyrate suppresses abnormal proliferation in colonic epithelial cells under diabetic state by targeting HMGB1. Journal of Pharmacological Sciences, 2019, 139, 266-274.	1.1	12
2048	Lactobacillus plantarum helps to suppress body weight gain, improve serum lipid profile and ameliorate low-grade inflammation in mice administered with glycerol monolaurate. Journal of Functional Foods, 2019, 53, 54-61.	1.6	21
2049	Potential Influences of Gut Microbiota on the Formation of Intracranial Aneurysm. Hypertension, 2019, 73, 491-496.	1.3	84
2050	Enhancing Clinical Efficacy through the Gut Microbiota: A New Field of Traditional Chinese Medicine. Engineering, 2019, 5, 40-49.	3.2	21
2051	Kiwifruit seed oil prevents obesity by regulating inflammation, thermogenesis, and gut microbiota in high-fat diet-induced obese C57BL/6 mice. Food and Chemical Toxicology, 2019, 125, 85-94.	1.8	59
2052	Dietary fat, the gut microbiota, and metabolic health – A systematic review conducted within the MyNewGut project. Clinical Nutrition, 2019, 38, 2504-2520.	2.3	175
2053	Dietary compounds and traditional Chinese medicine ameliorate type 2 diabetes by modulating gut microbiota. Critical Reviews in Food Science and Nutrition, 2019, 59, 848-863.	5.4	132
2054	Antidiabetic Potential of Green Seaweed <i>Enteromorpha prolifera</i> Signaling Pathway and Gut Microbiota in Type 2 Diabetic Mice. Journal of Food Science, 2019, 84, 165-173.	1.5	105

#	Article	IF	CITATIONS
2055	Uddanam Kidney Nephropathy Under the Light of Metagenomics Perspective. SN Comprehensive Clinical Medicine, 2019, 1, 23-25.	0.3	1
2056	Dietary metabolism, the gut microbiome, and heart failure. Nature Reviews Cardiology, 2019, 16, 137-154.	6.1	449
2057	Modelling of zero-inflation improves inference of metagenomic gene count data. Statistical Methods in Medical Research, 2019, 28, 3712-3728.	0.7	10
2058	Tongue coating microbiome as a potential biomarker for gastritis including precancerous cascade. Protein and Cell, 2019, 10, 496-509.	4.8	71
2059	Hypoglycemic effect of Hypericum attenuatum Choisy extracts on type 2 diabetes by regulating glucolipid metabolism and modulating gut microbiota. Journal of Functional Foods, 2019, 52, 479-491.	1.6	33
2060	Enzymes in the Design of Functional Foods or Their Constituents. Energy, Environment, and Sustainability, 2019, , 383-412.	0.6	0
2061	Gut microbiota: a potential manipulator for host adipose tissue and energy metabolism. Journal of Nutritional Biochemistry, 2019, 64, 206-217.	1.9	46
2062	Understanding the growing epidemic of type 2 diabetes in the Hispanic population living in the United States. Diabetes/Metabolism Research and Reviews, 2019, 35, e3097.	1.7	115
2063	In-vitro digestion by simulated gastrointestinal juices of Lactobacillus rhamnosus cultured with mulberry oligosaccharides and subsequent fermentation with human fecal inocula. LWT - Food Science and Technology, 2019, 101, 61-68.	2.5	20
2064	The microbiome and ophthalmic disease. Experimental Biology and Medicine, 2019, 244, 419-429.	1.1	62
2065	Virome biogeography in the lower gastrointestinal tract of rhesus macaques with chronic diarrhea. Virology, 2019, 527, 77-88.	1.1	29
2067	Impact of Gut Microbiota on Host Glycemic Control. Frontiers in Endocrinology, 2019, 10, 29.	1.5	133
2068	Probiotics, prebiotics and amelioration of diseases. Journal of Biomedical Science, 2019, 26, 3.	2.6	242
2069	The Microbiota and Energy Balance. Endocrinology, 2019, , 109-126.	0.1	2
2070	Serum Metabolomics Reveals That Gut Microbiome Perturbation Mediates Metabolic Disruption Induced by Arsenic Exposure in Mice. Journal of Proteome Research, 2019, 18, 1006-1018.	1.8	19
2071	Alcohol, liver disease and the gut microbiota. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 235-246.	8.2	421
2072	Daily Consumption of Orange Juice from <i>Citrus sinensis</i> L. Osbeck cv. Cara Cara and cv. Bahia Differently Affects Gut Microbiota Profiling as Unveiled by an Integrated Meta-Omics Approach. Journal of Agricultural and Food Chemistry, 2019, 67, 1381-1391.	2.4	39
2073	The Ocular Microbiome: Molecular Characterisation of a Unique and Low Microbial Environment. Current Eye Research, 2019, 44, 685-694.	0.7	93

#	ARTICLE	IF	CITATIONS
2074	The Australian Research Council Longevity Intervention (ARCLI) study protocol (ANZCTR12611000487910) addendum: neuroimaging and gut microbiota protocol. Nutrition Journal, 2019, 18, 1.	1.5	49
2075	What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms, 2019, 7, 14.	1.6	1,796
2076	Leaky gut biomarkers in depression and suicidal behavior. Acta Psychiatrica Scandinavica, 2019, 139, 185-193.	2.2	115
2077	The gut microbiome of Mexican children affected by obesity. Anaerobe, 2019, 55, 11-23.	1.0	71
2078	An overview of energy and metabolic regulation. Science China Life Sciences, 2019, 62, 771-790.	2.3	29
2079	Alteration of gut microbiota-associated epitopes in children with autism spectrum disorders. Brain, Behavior, and Immunity, 2019, 75, 192-199.	2.0	54
2080	Legacy of land use history determines reprogramming of plant physiology by soil microbiome. ISME Journal, 2019, 13, 738-751.	4.4	166
2081	New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biology, 2019, 20, 247-260.	3.9	397
2082	Predicting the associations between microbes and diseases by integrating multiple data sources and path-based HeteSim scores. Neurocomputing, 2019, 323, 76-85.	3.5	32
2083	Obesity, diabetes, and the gut microbiome: an updated review. Expert Review of Gastroenterology and Hepatology, 2019, 13, 3-15.	1.4	139
2084	The gut microbiome: Relationships with disease and opportunities for therapy. Journal of Experimental Medicine, 2019, 216, 20-40.	4.2	547
2085	MetaSMC: a coalescent-based shotgun sequence simulator for evolving microbial populations. Bioinformatics, 2019, 35, 1677-1685.	1.8	1
2086	In silico screening of a novel scaffold for fructose-1,6-bisphosatase (FBPase) inhibitors. Journal of Molecular Graphics and Modelling, 2019, 86, 142-148.	1.3	5
2087	The role of gut microbiome and its interaction with arsenic exposure in carotid intima-media thickness in a Bangladesh population. Environment International, 2019, 123, 104-113.	4.8	30
2088	The Impact of Bioinformatics Tools in the Development of Antimicrobial Drugs and Other Agents. , 2019, , 335-347.		2
2089	Effects of Panax ginseng polysaccharides on the gut microbiota in mice with antibiotic-associated diarrhea. International Journal of Biological Macromolecules, 2019, 124, 931-937.	3.6	94
2090	Headspace Gas Monitoring of Gut Microbiota Using Targeted and Globally Optimized Targeted Secondary Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2019, 91, 854-863.	3.2	20
2091	Regulation of glucose metabolism by bioactive phytochemicals for the management of type 2 diabetes mellitus. Critical Reviews in Food Science and Nutrition, 2019, 59, 830-847.	5.4	123

#	Article	IF	CITATIONS
2092	Sex, Microbes, and Polycystic Ovary Syndrome. Trends in Endocrinology and Metabolism, 2019, 30, 54-65.	3.1	121
2093	Faecal freezing preservation period influences colonization ability for faecal microbiota transplantation. Journal of Applied Microbiology, 2019, 126, 973-984.	1.4	19
2094	Microbial impact on cholesterol and bile acid metabolism: current status and future prospects. Journal of Lipid Research, 2019, 60, 323-332.	2.0	149
2095	Gut microbial dysbiosis associates hepatocellular carcinoma via the gut-liver axis. Hepatobiliary and Pancreatic Diseases International, 2019, 18, 19-27.	0.6	52
2096	Effects of the 1975 Japanese diet on the gut microbiota in younger adults. Journal of Nutritional Biochemistry, 2019, 64, 121-127.	1.9	27
2097	The alteration of gut microbiota in newly diagnosed type 2 diabetic patients. Nutrition, 2019, 63-64, 51-56.	1.1	41
2098	Genes controlling the activation of natural killer lymphocytes are epigenetically remodeled in intestinal cells from germâ€free mice. FASEB Journal, 2019, 33, 2719-2731.	0.2	12
2099	Mapping the Environmental Microbiome. , 2019, , 17-28.		1
2100	Gut microbiota composition in patients with newly diagnosed bipolar disorder and their unaffected first-degree relatives. Brain, Behavior, and Immunity, 2019, 75, 112-118.	2.0	103
2101	Gut Microbiota Imbalance Can Be Associated with Non-malabsorptive Small Bowel Shortening Regardless of Blind Loop. Obesity Surgery, 2019, 29, 369-375.	1.1	5
2102	Exploring Human Bacterial Diversity Toward Prevention of Infectious Disease and Health Promotion. , 2019, , 519-533.		4
2103	Diabetic gut microbiota dysbiosis as an inflammaging and immunosenescence condition that fosters progression of retinopathy and nephropathy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1876-1897.	1.8	102
2104	MSPminer: abundance-based reconstitution of microbial pan-genomes from shotgun metagenomic data. Bioinformatics, 2019, 35, 1544-1552.	1.8	82
2105	A thorough analysis of diabetes research in China from 1995 to 2015: current scenario and future scope. Science China Life Sciences, 2019, 62, 46-62.	2.3	15
2106	A dietary intervention with functional foods reduces metabolic endotoxaemia and attenuates biochemical abnormalities by modifying faecal microbiota in people with type 2 diabetes. Diabetes and Metabolism, 2019, 45, 122-131.	1.4	121
2107	Metabolome analysis for investigating host-gut microbiota interactions. Journal of the Formosan Medical Association, 2019, 118, S10-S22.	0.8	121
2108	Formation of silver nanoparticles by human gut microbiota. Science of the Total Environment, 2019, 651, 1489-1494.	3.9	19
2109	NetShift': a methodology for understanding  driver microbes' from healthy and disease microbiome datasets. ISME Journal, 2019, 13, 442-454.	4.4	114

#	Article	IF	CITATIONS
2110	Metabolomics toward personalized medicine. Mass Spectrometry Reviews, 2019, 38, 221-238.	2.8	229
2111	Fecal Microbiota Differences According to the Risk of Advanced Colorectal Neoplasms. Journal of Clinical Gastroenterology, 2019, 53, 197-203.	1.1	7
2112	Gut Microbiota Alteration After Long-Term Consumption of Probiotics in the Elderly. Probiotics and Antimicrobial Proteins, 2019, 11, 655-666.	1.9	26
2113	The Effects of Synbiotic Supplementation on Body Mass Index, Metabolic and Inflammatory Biomarkers, and Appetite in Patients with Metabolic Syndrome: A Triple-Blind Randomized Controlled Trial. Journal of Dietary Supplements, 2019, 16, 294-306.	1.4	40
2114	Resources and tools for the high-throughput, multi-omic study of intestinal microbiota. Briefings in Bioinformatics, 2019, 20, 1032-1056.	3.2	10
2115	Polysaccharide from Plantago asiatica L. attenuates hyperglycemia, hyperlipidemia and affects colon microbiota in type 2 diabetic rats. Food Hydrocolloids, 2019, 86, 34-42.	5.6	137
2116	Phenotype Prediction from Metagenomic Data Using Clustering and Assembly with Multiple Instance Learning (CAMIL). IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17, 828-840.	1.9	5
2117	Fecal Akkermansia muciniphila Is Associated with Body Composition and Microbiota Diversity in Overweight and Obese Women with Breast Cancer Participating in a Presurgical Weight Loss Trial. Journal of the Academy of Nutrition and Dietetics, 2020, 120, 650-659.	0.4	62
2118	Microbiome profiling reveals gut dysbiosis in a transgenic mouse model of Huntington's disease. Neurobiology of Disease, 2020, 135, 104268.	2.1	118
2119	Gut microbiota and obesity: Impact of antibiotics and prebiotics and potential for musculoskeletal health. Journal of Sport and Health Science, 2020, 9, 110-118.	3.3	20
2120	Gut microbiome and its role in obesity and insulin resistance. Annals of the New York Academy of Sciences, 2020, 1461, 37-52.	1.8	186
2121	Robust biomarker discovery for microbiome-wide association studies. Methods, 2020, 173, 44-51.	1.9	11
2122	Variants in genes of innate immunity, appetite control and energy metabolism are associated with host cardiometabolic health and gut microbiota composition. Gut Microbes, 2020, 11, 556-568.	4.3	7
2123	Donor metabolic characteristics drive effects of faecal microbiota transplantation on recipient insulin sensitivity, energy expenditure and intestinal transit time. Gut, 2020, 69, 502-512.	6.1	188
2124	Identifying psychiatric disorder-associated gut microbiota using microbiota-related gene set enrichment analysis. Briefings in Bioinformatics, 2020, 21, 1016-1022.	3.2	63
2125	Assessment of metagenomic assemblers based on hybrid reads of real and simulated metagenomic sequences. Briefings in Bioinformatics, 2020, 21, 777-790.	3.2	18
2126	Arabinoxylan oligosaccharides and polyunsaturated fatty acid effects on gut microbiota and metabolic markers in overweight individuals with signs of metabolic syndrome: A randomized cross-over trial. Clinical Nutrition, 2020, 39, 67-79.	2.3	68
2127	Caenorhabditis elegans: a model to understand host–microbe interactions. Cellular and Molecular Life Sciences, 2020, 77, 1229-1249.	2.4	56

#	Article	IF	CITATIONS
2128	A sea cucumber (Holothuria leucospilota) polysaccharide improves the gut microbiome to alleviate the symptoms of type 2 diabetes mellitus in Goto-Kakizaki rats. Food and Chemical Toxicology, 2020, 135, 110886.	1.8	65
2129	The gut-liver axis in liver disease: Pathophysiological basis for therapy. Journal of Hepatology, 2020, 72, 558-577.	1.8	935
2130	The effect of inulin and resistant maltodextrin on weight loss during energy restriction: a randomised, placebo-controlled, double-blinded intervention. European Journal of Nutrition, 2020, 59, 2507-2524.	1.8	36
2131	The intestinal microbiota fuelling metabolic inflammation. Nature Reviews Immunology, 2020, 20, 40-54.	10.6	573
2132	The Role of the Microbiome in Drug Response. Annual Review of Pharmacology and Toxicology, 2020, 60, 417-435.	4.2	37
2133	Changes in Intestinal Microbiota of Type 2 Diabetes in Mice in Response to Dietary Supplementation With Instant Tea or Matcha. Canadian Journal of Diabetes, 2020, 44, 44-52.	0.4	51
2134	Transplantation of microbiota from drug-free patients with schizophrenia causes schizophrenia-like abnormal behaviors and dysregulated kynurenine metabolism in mice. Molecular Psychiatry, 2020, 25, 2905-2918.	4.1	202
2135	Changes in Cold and Hot Syndrome and Gastrointestinal Bacterial Community Structure in Mice by Intervention with Food of Different Nature. Chinese Journal of Integrative Medicine, 2020, 26, 448-454.	0.7	4
2136	Pelargonidin-3- <i>O</i> -glucoside Derived from Wild Raspberry Exerts Antihyperglycemic Effect by Inducing Autophagy and Modulating Gut Microbiota. Journal of Agricultural and Food Chemistry, 2020, 68, 13025-13037.	2.4	63
2137	Altered gut microbiota and mucosal immunity in patients with schizophrenia. Brain, Behavior, and Immunity, 2020, 85, 120-127.	2.0	137
2138	The hologenome concept of evolution: do mothers matter most?. BJOG: an International Journal of Obstetrics and Gynaecology, 2020, 127, 129-137.	1.1	10
2139	Bayesian Graphical Compositional Regression for Microbiome Data. Journal of the American Statistical Association, 2020, 115, 610-624.	1.8	11
2140	GMrepo: a database of curated and consistently annotated human gut metagenomes. Nucleic Acids Research, 2020, 48, D545-D553.	6.5	96
2141	Problems with the concept of gut microbiota dysbiosis. Microbial Biotechnology, 2020, 13, 423-434.	2.0	132
2142	Free Fatty Acid Receptors in Health and Disease. Physiological Reviews, 2020, 100, 171-210.	13.1	502
2143	The gut microbiome in tuberculosis susceptibility and treatment response: guilty or not guilty?. Cellular and Molecular Life Sciences, 2020, 77, 1497-1509.	2.4	48
2144	Effects of a multispecies synbiotic on glucose metabolism, lipid marker, gut microbiome composition, gut permeability, and quality of life in diabesity: a randomized, double-blind, placebo-controlled pilot study. European Journal of Nutrition, 2020, 59, 2969-2983.	1.8	47
2145	Nonalcoholic fatty liver disease as a risk factor for Clostridium difficile-associated diarrhea. QJM - Monthly Journal of the Association of Physicians, 2020, 113, 320-323.	0.2	9

#	Article	IF	CITATIONS
2146	Molecular insight into a new lowâ€affinity xylan binding module from the xylanolytic gut symbiont RoseburiaÂintestinalis. FEBS Journal, 2020, 287, 2105-2117.	2.2	8
2147	<i>Faecalibacterium prausnitzii</i> >â€derived microbial antiâ€inflammatory molecule regulates intestinal integrity in diabetes mellitus mice via modulating tight junction protein expression. Journal of Diabetes, 2020, 12, 224-236.	0.8	107
2148	Resveratrol treatment improves the altered metabolism and related dysbiosis of gut programed by prenatal high-fat diet and postnatal high-fat diet exposure. Journal of Nutritional Biochemistry, 2020, 75, 108260.	1.9	25
2149	Adaptation of the Gut Microbiota to Modern Dietary Sugars and Sweeteners. Advances in Nutrition, 2020, 11, 616-629.	2.9	70
2150	Research progress on Traditional Chinese Medicine syndromes of diabetes mellitus. Biomedicine and Pharmacotherapy, 2020, 121, 109565.	2.5	66
2151	Association between increased breath hydrogen methane concentration and prevalence of glucose intolerance in acute pancreatitis. Journal of Breath Research, 2020, 14, 026006.	1.5	4
2152	Effect of soil microbial feeding on gut microbiome and cadmium toxicity in Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 2020, 187, 109777.	2.9	11
2153	The gut microbiota and diabetic cardiomyopathy in humans. Diabetes and Metabolism, 2020, 46, 197-202.	1.4	22
2154	Does the gut microbiota contribute to the oligodendrocyte progenitor niche?. Neuroscience Letters, 2020, 715, 134574.	1.0	6
2155	Mechanism of glucoseâ€lowering by metformin in type 2 diabetes: Role of bile acids. Diabetes, Obesity and Metabolism, 2020, 22, 141-148.	2.2	60
2156	Probiotics for the treatment of type 2 diabetes: A review of randomized controlled trials. Diabetes/Metabolism Research and Reviews, 2020, 36, e3213.	1.7	54
2157	Hydroxycinnamic acids and human health: recent advances. Journal of the Science of Food and Agriculture, 2020, 100, 483-499.	1.7	96
2158	Acute oral methylmercury exposure perturbs the gut microbiome and alters gut-brain axis related metabolites in rats. Ecotoxicology and Environmental Safety, 2020, 190, 110130.	2.9	51
2159	Altered gut microbiome composition in patients with Vogt-Koyanagi-Harada disease. Gut Microbes, 2020, 11, 539-555.	4.3	52
2160	Oligosaccharides from <i>Gracilaria lemaneiformis</i> better attenuated high fat diet-induced metabolic syndrome by promoting the Bacteroidales proliferation. Food and Function, 2020, 11, 1049-1062.	2.1	18
2161	The effect of bound polyphenols on the fermentation and antioxidant properties of carrot dietary fiber <i>in vivo</i> and <i>in vitro</i> Food and Function, 2020, 11, 748-758.	2.1	30
2162	Gut microbiota composition alterations are associated with the onset of diabetes in kidney transplant recipients. PLoS ONE, 2020, 15, e0227373.	1.1	18
2163	Gutted! Unraveling the Role of the Microbiome in Major Depressive Disorder. Harvard Review of Psychiatry, 2020, 28, 26-39.	0.9	94

#	Article	IF	CITATIONS
2164	Composition and functional diversity of fecal bacterial community of wild boar, commercial pig and domestic native pig as revealed by 16S rRNA gene sequencing. Archives of Microbiology, 2020, 202, 843-857.	1.0	19
2165	Differential intestinal and oral microbiota features associated with gestational diabetes and maternal inflammation. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E247-E253.	1.8	44
2166	Epithelial cells: liaisons of immunity. Current Opinion in Immunology, 2020, 62, 45-53.	2.4	72
2167	Ethanol extract of propolis prevents high-fat diet-induced insulin resistance and obesity in association with modulation of gut microbiota in mice. Food Research International, 2020, 130, 108939.	2.9	79
2168	Green tea polyphenols decrease weight gain, ameliorate alteration of gut microbiota, and mitigate intestinal inflammation in canines with high-fat-diet-induced obesity. Journal of Nutritional Biochemistry, 2020, 78, 108324.	1.9	82
2169	Rotundic Acid Protects against Metabolic Disturbance and Improves Gut Microbiota in Type 2 Diabetes Rats. Nutrients, 2020, 12, 67.	1.7	19
2170	Duration and Life-Stage of Antibiotic Use and Risks of All-Cause and Cause-Specific Mortality. Circulation Research, 2020, 126, 364-373.	2.0	28
2171	A Health-Conscious Food Pattern Is Associated with Prediabetes and Gut Microbiota in the Malmö Offspring Study. Journal of Nutrition, 2020, 150, 861-872.	1.3	21
2172	Biochar drives microbially-mediated rice production by increasing soil carbon. Journal of Hazardous Materials, 2020, 387, 121680.	6. 5	49
2173	Lactobacillus plantarum improves the efficiency of sheep manure composting and the quality of the final product. Bioresource Technology, 2020, 297, 122456.	4.8	37
2174	The Mouse Gut Microbial Biobank expands the coverage of cultured bacteria. Nature Communications, 2020, 11, 79.	5.8	55
2175	Cereal-derived arabinoxylans: Structural features and structure–activity correlations. Trends in Food Science and Technology, 2020, 96, 157-165.	7.8	71
2176	Raman–deuterium isotope probing to study metabolic activities of single bacterial cells in human intestinal microbiota. Microbial Biotechnology, 2020, 13, 572-583.	2.0	48
2177	A Review of the Role of the Gut Microbiome in Personalized Sports Nutrition. Frontiers in Nutrition, 2019, 6, 191.	1.6	76
2178	Gut microbiome associated with APC gene mutation in patients with intestinal adenomatous polyps. International Journal of Biological Sciences, 2020, 16, 135-146.	2.6	42
2179	The Role of Gut Microbiota in Host Lipid Metabolism: An Eye on Causation and Connection. Small Methods, 2020, 4, 1900604.	4.6	3
2180	Microbiome and hypertension: where are we now?. Journal of Cardiovascular Medicine, 2020, 21, 83-88.	0.6	35
2181	Metagenomic analysis reveals gestational diabetes mellitus-related microbial regulators of glucose tolerance. Acta Diabetologica, 2020, 57, 569-581.	1.2	37

#	Article	IF	CITATIONS
2182	The connection between microbiome and schizophrenia. Neuroscience and Biobehavioral Reviews, 2020, 108, 712-731.	2.9	50
2183	Pathophysiological connections between gallstone disease, insulin resistance, and obesity. Obesity Reviews, 2020, 21, e12983.	3.1	32
2184	Whole metagenome sequencing of cecum microbiomes in Ethiopian indigenous chickens from two different altitudes reveals antibiotic resistance genes. Genomics, 2020, 112, 1988-1999.	1.3	23
2185	Scutellariae radix and coptidis rhizoma ameliorate glycolipid metabolism of type 2 diabetic rats by modulating gut microbiota and its metabolites. Applied Microbiology and Biotechnology, 2020, 104, 303-317.	1.7	112
2186	Prevention and treatment of chronic heart failure through traditional Chinese medicine: Role of the gut microbiota. Pharmacological Research, 2020, 151, 104552.	3.1	62
2187	Impact of oral amoxicillin and amoxicillin/clavulanic acid treatment on bacterial diversity and \hat{l}^2 -lactam resistance in the canine faecal microbiota. Journal of Antimicrobial Chemotherapy, 2020, 75, 351-361.	1.3	20
2188	Understanding immune–microbiota interactions in the intestine. Immunology, 2020, 159, 4-14.	2.0	62
2189	Combined effects of <i>Scutellaria baicalensis</i> with metformin on glucose tolerance of patients with type 2 diabetes via gut microbiota modulation. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E52-E61.	1.8	28
2190	Diet and the microbiome in precision medicine. , 2020, , 445-452.		0
2191	Screening for Potential Novel Probiotics With Dipeptidyl Peptidase IV-Inhibiting Activity for Type 2 Diabetes Attenuation in vitro and in vivo. Frontiers in Microbiology, 2019, 10, 2855.	1.5	41
2192	<i>Phellinus linteus</i> polysaccharide extract improves insulin resistance by regulating gut microbiota composition. FASEB Journal, 2020, 34, 1065-1078.	0.2	74
2193	Metagenomic profiling of the pro-inflammatory gut microbiota in ankylosing spondylitis. Journal of Autoimmunity, 2020, 107, 102360.	3.0	102
2194	Gut Microbiome Fermentation Determines the Efficacy of Exercise for Diabetes Prevention. Cell Metabolism, 2020, 31, 77-91.e5.	7.2	223
2195	Sex specific effects of capsaicin on longevity regulation. Experimental Gerontology, 2020, 130, 110788.	1.2	9
2196	Altered diversity and composition of gut microbiota in Chinese patients with chronic pancreatitis. Pancreatology, 2020, 20, 16-24.	0.5	46
2197	Population Genetics in the Human Microbiome. Trends in Genetics, 2020, 36, 53-67.	2.9	97
2198	Role of cytochrome P450-derived, polyunsaturated fatty acid mediators in diabetes and the metabolic syndrome. Prostaglandins and Other Lipid Mediators, 2020, 148, 106407.	1.0	27
2199	The new microbiology: cultivating the future of microbiome-directed medicine. American Journal of Physiology - Renal Physiology, 2020, 319, G639-G645.	1.6	5

#	Article	IF	CITATIONS
2200	Effects of Non-insulin Anti-hyperglycemic Agents on Gut Microbiota: A Systematic Review on Human and Animal Studies. Frontiers in Endocrinology, 2020, 11, 573891.	1.5	21
2201	The Potential Mediation of the Effects of Physical Activity on Cognitive Function by the Gut Microbiome. Geriatrics (Switzerland), 2020, 5, 63.	0.6	3
2202	Metabolic Defects Caused by High-Fat Diet Modify Disease Risk through Inflammatory and Amyloidogenic Pathways in a Mouse Model of Alzheimer's Disease. Nutrients, 2020, 12, 2977.	1.7	18
2203	Gut Microbiota in Hypertension and Atherosclerosis: A Review. Nutrients, 2020, 12, 2982.	1.7	183
2204	Changes in the Gut Microbiota are Associated with Hypertension, Hyperlipidemia, and Type 2 Diabetes Mellitus in Japanese Subjects. Nutrients, 2020, 12, 2996.	1.7	42
2205	Nutritional Targeting of the Microbiome as Potential Therapy for Malnutrition and Chronic Inflammation. Nutrients, 2020, 12, 3032.	1.7	10
2206	Toxic effects of the food additives titanium dioxide and silica on the murine intestinal tract: Mechanisms related to intestinal barrier dysfunction involved by gut microbiota. Environmental Toxicology and Pharmacology, 2020, 80, 103485.	2.0	44
2207	A Dietâ€Dependent Microbiota Profile Associated with Incident Type 2 Diabetes: From the CORDIOPREV Study. Molecular Nutrition and Food Research, 2020, 64, 2000730.	1.5	7
2208	The Role of the Gut Microbiota in Coronary Heart Disease. Current Atherosclerosis Reports, 2020, 22, 77.	2.0	40
2209	Longitudinal analysis of fecal microbiome and metabolome during renal fibrotic progression in a unilateral ureteral obstruction animal model. European Journal of Pharmacology, 2020, 886, 173555.	1.7	12
2210	The human microbiome in the 21st century. Nature Communications, 2020, 11, 5256.	5.8	48
2211	Pathway-Based Integrative Analysis of Metabolome and Microbiome Data from Hepatocellular Carcinoma and Liver Cirrhosis Patients. Cancers, 2020, 12, 2705.	1.7	7
2212	Berberine alleviates type 2 diabetic symptoms by altering gut microbiota and reducing aromatic amino acids. Biomedicine and Pharmacotherapy, 2020, 131, 110669.	2.5	42
2213	The Gut Virome Database Reveals Age-Dependent Patterns of Virome Diversity in the Human Gut. Cell Host and Microbe, 2020, 28, 724-740.e8.	5.1	352
2214	A metagenome-wide association study of gut microbiome and visceral fat accumulation. Computational and Structural Biotechnology Journal, 2020, 18, 2596-2609.	1.9	36
2215	Dysregulation of metabolic pathways by carnitine palmitoyl-transferase 1 plays a key role in central nervous system disorders: experimental evidence based on animal models. Scientific Reports, 2020, 10, 15583.	1.6	12
2216	Gut microbiota and old age: Modulating factors and interventions for healthy longevity. Experimental Gerontology, 2020, 141, 111095.	1.2	61
2217	Infusion of donor feces affects the gut–brain axis in humans with metabolic syndrome. Molecular Metabolism, 2020, 42, 101076.	3.0	50

#	Article	IF	Citations
2218	Enterococcus hirae WEHI01 isolated from a healthy Chinese infant ameliorates the symptoms of type 2 diabetes by elevating the abundance of Lactobacillales in rats. Journal of Dairy Science, 2020, 103, 2969-2981.	1.4	10
2219	Diet, Microbiota and Brain Health: Unraveling the Network Intersecting Metabolism and Neurodegeneration. International Journal of Molecular Sciences, 2020, 21, 7471.	1.8	32
2220	Effects of phycocyanin on pulmonary and gut microbiota in a radiation-induced pulmonary fibrosis model. Biomedicine and Pharmacotherapy, 2020, 132, 110826.	2.5	32
2221	Mitigation mechanisms of Hizikia fusifarme polysaccharide consumption on type 2 diabetes in rats. International Journal of Biological Macromolecules, 2020, 164, 2659-2670.	3.6	24
2222	The Gut Microbiota and Inflammation: An Overview. International Journal of Environmental Research and Public Health, 2020, 17, 7618.	1.2	296
2223	Gut Microbiota and Immune System Interactions. Microorganisms, 2020, 8, 1587.	1.6	309
2224	MetaLAFFA: a flexible, end-to-end, distributed computing-compatible metagenomic functional annotation pipeline. BMC Bioinformatics, 2020, 21, 471.	1.2	12
2225	Gut bacteria Akkermansia is associated with reduced risk of obesity: evidence from the American Gut Project. Nutrition and Metabolism, 2020, 17, 90.	1.3	72
2226	What Was First, Obesity or Inflammatory Bowel Disease? What Does the Gut Microbiota Have to Do with It?. Nutrients, 2020, 12, 3073.	1.7	15
2227	Gut microbiota from coronary artery disease patients contributes to vascular dysfunction in mice by regulating bile acid metabolism and immune activation. Journal of Translational Medicine, 2020, 18, 382.	1.8	32
2228	Alterations of Gut Microbiota in Type 2 Diabetes Individuals and the Confounding Effect of Antidiabetic Agents. Journal of Diabetes Research, 2020, 2020, 1-14.	1.0	23
2229	RBUD: A New Functional Potential Analysis Approach for Whole Microbial Genome Shotgun Sequencing. Microorganisms, 2020, 8, 1563.	1.6	1
2230	The Core and Distinction of the Gut Microbiota in Chinese Populations across Geography and Ethnicity. Microorganisms, 2020, 8, 1579.	1.6	18
2232	Colchicine increases intestinal permeability, suppresses inflammatory responses, and alters gut microbiota in mice. Toxicology Letters, 2020, 334, 66-77.	0.4	30
2233	Gut microbiome-related effects of berberine and probiotics on type 2 diabetes (the PREMOTE study). Nature Communications, 2020, 11, 5015.	5.8	184
2234	Distinct signatures of gut microbiome and metabolites associated with significant fibrosis in non-obese NAFLD. Nature Communications, 2020, 11 , 4982.	5.8	189
2235	Deep longitudinal multiomics profiling reveals two biological seasonal patterns in California. Nature Communications, 2020, 11, 4933.	5.8	36
2236	From obesity through gut microbiota to cardiovascular diseases: a dangerous journey. International Journal of Obesity Supplements, 2020, 10, 35-49.	12.5	40

#	Article	IF	CITATIONS
2237	Rationale, design and baseline characteristics of the Microbiome and Insulin Longitudinal Evaluation Study (<scp>MILES</scp>). Diabetes, Obesity and Metabolism, 2020, 22, 1976-1984.	2.2	9
2238	Pharmacological and metagenomics evidence of polysaccharide from Polygonum multiflorum in the alleviation of insulin resistance. International Journal of Biological Macromolecules, 2020, 164, 1070-1079.	3.6	12
2239	Multicenter assessment of microbial community profiling using 16S rRNA gene sequencing and shotgun metagenomic sequencing. Journal of Advanced Research, 2020, 26, 111-121.	4.4	38
2240	A comprehensive survey of integron-associated genes present in metagenomes. BMC Genomics, 2020, 21, 495.	1,2	25
2241	The Surviving Sepsis Campaign: Basic/Translational Science Research Priorities*. Critical Care Medicine, 2020, 48, 1217-1232.	0.4	18
2242	Assessment of fecal DNA extraction protocols for metagenomic studies. GigaScience, 2020, 9, .	3.3	35
2243	Effect of banana pulp dietary fibers on metabolic syndrome and gut microbiota diversity in highâ€fat diet mice. Journal of Food Biochemistry, 2020, 44, e13362.	1.2	8
2244	Exploiting the gut microbiota's fermentation capabilities towards disease prevention. Journal of Pharmaceutical and Biomedical Analysis, 2020, 189, 113469.	1.4	3
2245	Macrofungi: A review of cultivation strategies, bioactivity, and application of mushrooms. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 2333-2356.	5.9	86
2246	Interactions Between Gut Microbiota, Host, and Herbal Medicines: A Review of New Insights Into the Pathogenesis and Treatment of Type 2 Diabetes. Frontiers in Cellular and Infection Microbiology, 2020, 10, 360.	1.8	25
2247	IDMIL: an alignment-free Interpretable Deep Multiple Instance Learning (MIL) for predicting disease from whole-metagenomic data. Bioinformatics, 2020, 36, i39-i47.	1.8	7
2248	Identification of an oral microbiota signature associated with an impaired orosensory perception of lipids in insulin-resistant patients. Acta Diabetologica, 2020, 57, 1445-1451.	1.2	13
2249	Gut microbiome: Current development, challenges, and perspectives. , 2020, , 227-241.		1
2250	Gut Microbiota and Dietary Intake of Normal-Weight and Overweight Filipino Children. Microorganisms, 2020, 8, 1015.	1.6	19
2251	Can You Trust Your Gut? Implicating a Disrupted Intestinal Microbiome in the Progression of NAFLD/NASH. Frontiers in Endocrinology, 2020, 11, 592157.	1.5	28
2252	Microbiota Transplant in the Treatment of Obesity and Diabetes: Current and Future Perspectives. Frontiers in Microbiology, 2020, 11, 590370.	1.5	40
2253	Analysis of the vaginal microbiome of giant pandas using metagenomics sequencing. MicrobiologyOpen, 2020, 9, e1131.	1.2	8
2254	Imidazole propionate is increased in diabetes and associated with dietary patterns and altered microbial ecology. Nature Communications, 2020, 11, 5881.	5.8	122

#	Article	IF	CITATIONS
2255	The Herbal Medicine Scutellaria-Coptis Alleviates Intestinal Mucosal Barrier Damage in Diabetic Rats by Inhibiting Inflammation and Modulating the Gut Microbiota. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-17.	0.5	21
2256	Associations between Pro- and Anti-Inflammatory Gastro-Intestinal Microbiota, Diet, and Cognitive Functioning in Dutch Healthy Older Adults: The NU-AGE Study. Nutrients, 2020, 12, 3471.	1.7	42
2257	Shotgun sequencing of the vaginal microbiome reveals both a species and functional potential signature of preterm birth. Npj Biofilms and Microbiomes, 2020, 6, 50.	2.9	49
2258	The role of yoghurt consumption in the management of type II diabetes. Food and Function, 2020, 11, 10306-10316.	2.1	9
2259	Altered gut bacterial and metabolic signatures and their interaction in gestational diabetes mellitus. Gut Microbes, 2020, 12, 1840765.	4.3	61
2260	Characterization of gut microbiota associated with clinical parameters in intrahepatic cholestasis of pregnancy. BMC Gastroenterology, 2020, 20, 395.	0.8	13
2261	High Fat-High Fructose Diet-Induced Changes in the Gut Microbiota Associated with Dyslipidemia in Syrian Hamsters. Nutrients, 2020, 12, 3557.	1.7	32
2262	Functional Deficits in Gut Microbiome of Young and Middle-Aged Adults with Prediabetes Apparent in Metabolizing Bioactive (Poly)phenols. Nutrients, 2020, 12, 3595.	1.7	25
2263	Does geographical variation confound the relationship between host factors and the human gut microbiota: a population-based study in China. BMJ Open, 2020, 10, e038163.	0.8	20
2264	Gestational Diabetes Is Uniquely Associated With Altered Early Seeding of the Infant Gut Microbiota. Frontiers in Endocrinology, 2020, 11, 603021.	1.5	41
2265	Dietary Ginsenoside T19 Supplementation Regulates Glucose and Lipid Metabolism via AMPK and PI3K Pathways and Its Effect on Intestinal Microbiota. Journal of Agricultural and Food Chemistry, 2020, 68, 14452-14462.	2.4	26
2266	Alterations of the gut bacterial microbiota in rhesus macaques with SIV infection and on short- or long-term antiretroviral therapy. Scientific Reports, 2020, 10, 19056.	1.6	18
2267	Gut Microbiota in Dholes During Estrus. Frontiers in Microbiology, 2020, 11, 575731.	1.5	9
2268	Microbiota and Obesity: Where Are We Now?. Biology, 2020, 9, 415.	1.3	45
2269	Dietary fruit and vegetable intake, gut microbiota, and type 2 diabetes: results from two large human cohort studies. BMC Medicine, 2020, 18, 371.	2.3	74
2270	Study of the fetal and maternal microbiota in pregnant women with intrauterine growth restriction and its relationship with inflammatory biomarkers. Medicine (United States), 2020, 99, e22722.	0.4	5
2271	Data science and precision health care. Nutrition Reviews, 2020, 78, 53-57.	2.6	3
2272	Prevalence and Subtype Distribution of Blastocystis Infection in Patients with Diabetes Mellitus in Thailand. International Journal of Environmental Research and Public Health, 2020, 17, 8877.	1.2	7

#	Article	IF	Citations
2273	Alterations in the diversity and composition of gut microbiota in weaned piglets infected with Balantioides coli. Veterinary Parasitology, 2020, 288, 109298.	0.7	20
2274	Regulation of intestinal lipid metabolism by fusion-induced fatty liver based on graphene oxide nanopore DNA. Materials Express, 2020, 10, 802-811.	0.2	O
2275	Health Impact and Therapeutic Manipulation of the Gut Microbiome. High-Throughput, 2020, 9, 17.	4.4	14
2276	Plasma Metabolites Related to Peripheral and Hepatic Insulin Sensitivity Are Not Directly Linked to Gut Microbiota Composition. Nutrients, 2020, 12, 2308.	1.7	6
2277	Snow microbiome functional analyses reveal novel aspects of microbial metabolism of complex organic compounds. MicrobiologyOpen, 2020, 9, e1100.	1,2	8
2278	Mitigating methane emission via annual biochar amendment pyrolyzed with rice straw from the same paddy field. Science of the Total Environment, 2020, 746, 141351.	3.9	42
2279	Effects of synbiotic supplementation on the components of metabolic syndrome in military personnel: a double-blind randomised controlled trial. BMJ Military Health, 2022, 168, 362-367.	0.4	9
2280	Reduction of gut microbial diversity and short chain fatty acids in BALB/c mice exposure to microcystin-LR. Ecotoxicology, 2020, 29, 1347-1357.	1.1	14
2281	Bayesian compositional regression with structured priors for microbiome feature selection. Biometrics, 2021, 77, 824-838.	0.8	7
2282	Association Between the Gut Microbiota and Blood Pressure in a Population Cohort of 6953 Individuals. Journal of the American Heart Association, 2020, 9, e016641.	1.6	67
2283	Current Evidence on the Ocular Surface Microbiota and Related Diseases. Microorganisms, 2020, 8, 1033.	1.6	75
2284	Polycystic Ovary Syndrome (PCOS)., 2020,, 1694-1706.e7.		3
2285	Human microbiome is a diagnostic biomarker in hepatocellular carcinoma. Hepatobiliary and Pancreatic Diseases International, 2020, 19, 109-115.	0.6	25
2286	Erythrocyte n-6 Polyunsaturated Fatty Acids, Gut Microbiota, and Incident Type 2 Diabetes: A Prospective Cohort Study. Diabetes Care, 2020, 43, 2435-2443.	4.3	32
2287	A Distinct Contractile Injection System Gene Cluster Found in a Majority of Healthy Adult Human Microbiomes. MSystems, 2020, 5, .	1.7	8
2288	Prevention of Severe Coronavirus Disease 2019 Outcomes by Reducing Low-Grade Inflammation in High-Risk Categories. Frontiers in Immunology, 2020, 11, 1762.	2.2	11
2289	Mediterranean Diet Effects on Type 2 Diabetes Prevention, Disease Progression, and Related Mechanisms. A Review. Nutrients, 2020, 12, 2236.	1.7	133
2290	Sodium Butyrate-Modulated Mitochondrial Function in High-Insulin Induced HepG2 Cell Dysfunction. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-16.	1.9	19

#	Article	IF	Citations
2291	Gut microbiota-associated metabolite trimethylamine N-Oxide and the risk of stroke: a systematic review and dose–response meta-analysis. Nutrition Journal, 2020, 19, 76.	1.5	44
2292	Roux-en-Y gastric bypass surgery changes fungal and bacterial microbiota in morbidly obese patients—A pilot study. PLoS ONE, 2020, 15, e0236936.	1.1	23
2293	Free-Flow Isoelectric Focusing for Comprehensive Separation and Analysis of Human Salivary Microbiome for Lung Cancer. Analytical Chemistry, 2020, 92, 12017-12025.	3.2	14
2294	A possible beneficial effect of Bacteroides on faecal lipopolysaccharide activity and cardiovascular diseases. Scientific Reports, 2020, 10, 13009.	1.6	38
2295	Holo-Omics: Integrated Host-Microbiota Multi-omics for Basic and Applied Biological Research. IScience, 2020, 23, 101414.	1.9	80
2296	Altered Metabolome of Lipids and Amino Acids Species: A Source of Early Signature Biomarkers of T2DM. Journal of Clinical Medicine, 2020, 9, 2257.	1.0	32
2297	Andrographolide Exerts Antihyperglycemic Effect through Strengthening Intestinal Barrier Function and Increasing Microbial Composition of <i>Akkermansia muciniphila</i> Cellular Longevity, 2020, 2020, 1-20.	1.9	27
2298	Gut Microbiota Associations with Metabolic Health and Obesity Status in Older Adults. Nutrients, 2020, 12, 2364.	1.7	34
2299	NLR and Intestinal Dysbiosis-Associated Inflammatory Illness: Drivers or Dampers?. Frontiers in Immunology, 2020, 11, 1810.	2.2	33
2300	How the AHR Became Important in Intestinal Homeostasisâ€"A Diurnal FICZ/AHR/CYP1A1 Feedback Controls Both Immunity and Immunopathology. International Journal of Molecular Sciences, 2020, 21, 5681.	1.8	39
2301	Associations between Diet, the Gut Microbiome, and Short-Chain Fatty Acid Production among Older Caribbean Latino Adults. Journal of the Academy of Nutrition and Dietetics, 2020, 120, 2047-2060.e6.	0.4	28
2303	The impact of intestinal microbiota on weight loss in Parkinson's disease patients: a pilot study. Future Microbiology, 2020, 15, 1393-1404.	1.0	4
2304	Gut microbiota and artificial intelligence approaches: A scoping review. Health and Technology, 2020, 10, 1343-1358.	2.1	16
2305	Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek, 2020, 113, 2019-2040.	0.7	473
2306	MiRKAT: kernel machine regression-based global association tests for the microbiome. Bioinformatics, 2021, 37, 1595-1597.	1.8	18
2307	Functional diversity of microbial ecologies estimated from ancient human coprolites and dental calculus. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190586.	1.8	14
2308	Gut Microbiota as a Trigger for Metabolic Inflammation in Obesity and Type 2 Diabetes. Frontiers in Immunology, 2020, 11, 571731.	2.2	281
2309	Host Factors of Favorable Intestinal Microbial Colonization. Frontiers in Immunology, 2020, 11, 584288.	2.2	13

#	Article	IF	CITATIONS
2310	Co-cultivation of microbial sub-communities in microfluidic droplets facilitates high-resolution genomic dissection of microbial â€~dark matter'. Integrative Biology (United Kingdom), 2020, 12, 263-274.	0.6	16
2311	Gut Microbiota: Its Potential Roles in Pancreatic Cancer. Frontiers in Cellular and Infection Microbiology, 2020, 10, 572492.	1.8	39
2312	Differential glucose bioaccessibility from native and modified taro-starches in the absence or presence of beet juice. CYTA - Journal of Food, 2020, 18, 670-674.	0.9	4
2313	Cell free bacterial DNAs in human plasma provide fingerprints for immune-related diseases. Medicine in Microecology, 2020, 5, 100022.	0.7	3
2314	The gut microbiome in differential diagnosis of diabetic kidney disease and membranous nephropathy. Renal Failure, 2020, 42, 1100-1110.	0.8	24
2315	Relationship between intestinal microbiota, diet and biological systems: an integrated view. Critical Reviews in Food Science and Nutrition, 2022, 62, 1166-1186.	5.4	16
2316	Dietary simple sugars alter microbial ecology in the gut and promote colitis in mice. Science Translational Medicine, 2020, 12, .	5.8	163
2317	Exopolysaccharides From Lactobacillus paracasei Isolated From Kefir as Potential Bioactive Compounds for Microbiota Modulation. Frontiers in Microbiology, 2020, 11, 583254.	1.5	25
2318	1-Kestose supplementation mitigates the progressive deterioration of glucose metabolism in type 2 diabetes OLETF rats. Scientific Reports, 2020, 10, 15674.	1.6	8
2319	Diabetes Type 2 as a Risk Factor of Neurodegeneration Development and Cognitive Impairment in db/db Mice. , 2020, , .		0
2320	A High-Fat Diet Increases Gut Microbiota Biodiversity and Energy Expenditure Due to Nutrient Difference. Nutrients, 2020, 12, 3197.	1.7	155
2321	Helminth Mediated Attenuation of Systemic Inflammation and Microbial Translocation in Helminth-Diabetes Comorbidity. Frontiers in Cellular and Infection Microbiology, 2020, 10, 431.	1.8	5
2322	Gut microbiota profile and selected plasma metabolites in type 1 diabetes without and with stratification by albuminuria. Diabetologia, 2020, 63, 2713-2724.	2.9	27
2323	Alterations of the Human Gut Microbiome in Chronic Kidney Disease. Advanced Science, 2020, 7, 2001936.	5.6	82
2324	Intestinal microbial metabolites in human metabolism and type 2 diabetes. Diabetologia, 2020, 63, 2533-2547.	2.9	56
2325	Metformin decreases bacterial trimethylamine production and trimethylamine N-oxide levels in db/db mice. Scientific Reports, 2020, 10, 14555.	1.6	22
2326	Impact of Gut Microbiome on Hypertensive Patients With Low-Salt Intake: Shika Study Results. Frontiers in Medicine, 2020, 7, 475.	1,2	8
2327	Similar hypoglycemic effects of glucomannan and its enzyme degraded products from Amorphophallus albus on type 2 diabetes mellitus in mice and potential mechanisms. Food and Function, 2020, 11, 9740-9751.	2.1	6

#	Article	IF	CITATIONS
2328	16S rRNA Sequencing and Metagenomics Study of Gut Microbiota: Implications of BDB on Type 2 Diabetes Mellitus. Marine Drugs, 2020, 18, 469.	2.2	7
2329	Phytochemicals as modifiers of gut microbial communities. Food and Function, 2020, 11, 8444-8471.	2.1	85
2330	Effect of functional food ingredients on gut microbiota in a rodent diabetes model. Nutrition and Metabolism, 2020, 17, 77.	1.3	9
2331	Probiotic-fermented blueberry juice prevents obesity and hyperglycemia in high fat diet-fed mice in association with modulating the gut microbiota. Food and Function, 2020, 11, 9192-9207.	2.1	56
2332	The intestinal microbiome is a co-determinant of the postprandial plasma glucose response. PLoS ONE, 2020, 15, e0238648.	1.1	9
2333	Berry chemoprevention: Do berries decrease the window of opportunity for tumorigenesis. Food Frontiers, 2020, 1, 260-275.	3.7	17
2334	In Vitro Characterization of Gut Microbiota-Derived Commensal Strains: Selection of Parabacteroides distasonis Strains Alleviating TNBS-Induced Colitis in Mice. Cells, 2020, 9, 2104.	1.8	43
2335	Liver Steatosis, Gut-Liver Axis, Microbiome and Environmental Factors. A Never-Ending Bidirectional Cross-Talk. Journal of Clinical Medicine, 2020, 9, 2648.	1.0	93
2336	Modulation of Gut Microbiota in Korean Navy Trainees following a Healthy Lifestyle Change. Microorganisms, 2020, 8, 1265.	1.6	11
2337	Gut microbiota: a perspective of precision medicine in endocrine disorders. Journal of Diabetes and Metabolic Disorders, 2020, 19, 1827-1834.	0.8	11
2338	Gut metagenomics-derived genes as potential biomarkers of Parkinson's disease. Brain, 2020, 143, 2474-2489.	3.7	72
2339	Gut microbes from the phylogenetically diverse genus <i>Eubacterium</i> and their various contributions to gut health. Gut Microbes, 2020, 12, 1802866.	4.3	238
2340	Human Microbe-Disease Association Prediction by a Novel Double-Ended Random Walk with Restart. BioMed Research International, 2020, 2020, 1-8.	0.9	1
2341	Enterotypes of the Gut Microbial Community and Their Response to Plant Secondary Compounds in Plateau Pikas. Microorganisms, 2020, 8, 1311.	1.6	11
2343	A predictive index for health status using species-level gut microbiome profiling. Nature Communications, 2020, 11, 4635.	5.8	129
2344	Systematic analysis of gut microbiota in pregnant women and its correlations with individual heterogeneity. Npj Biofilms and Microbiomes, 2020, 6, 32.	2.9	61
2345	Auto-reactivity against gut bacterial peptides in patients with late-onset diabetes. Autoimmunity, 2020, 53, 385-393.	1.2	1
2346	Modulation of Gut Microbiota Profile and Short-Chain Fatty Acids of Rats Fed with Taro Flour or Taro Starch. International Journal of Microbiology, 2020, 2020, 1-15.	0.9	2

#	Article	IF	CITATIONS
2347	The Role of Nutrition in the Prevention and Intervention of Type 2 Diabetes. Frontiers in Bioengineering and Biotechnology, 2020, 8, 575442.	2.0	24
2348	Potential for Novel Biomarkers in Diabetes-Associated Chronic Kidney Disease: Epigenome, Metabolome, and Gut Microbiome. Biomedicines, 2020, 8, 341.	1.4	5
2349	Structural Change of Gut Microbiota in Patients with Post-Stroke Comorbid Cognitive Impairment and Depression and Its Correlation with Clinical Features. Journal of Alzheimer's Disease, 2020, 77, 1595-1608.	1.2	33
2350	Environmental Endocrine-Disrupting Chemical Exposure: Role in Non-Communicable Diseases. Frontiers in Public Health, 2020, 8, 553850.	1.3	158
2351	Microbiota-Mitochondria Inter-Talk: A Potential Therapeutic Strategy in Obesity and Type 2 Diabetes. Antioxidants, 2020, 9, 848.	2.2	27
2352	Metagenomic analysis of the gut microbiome in atherosclerosis patients identify crossâ€cohort microbial signatures and potential therapeutic target. FASEB Journal, 2020, 34, 14166-14181.	0.2	44
2353	The Effects of Metformin on the Gut Microbiota of Patients with Type 2 Diabetes: A Two-Center, Quasi-Experimental Study. Life, 2020, 10, 195.	1.1	20
2354	Intestinal Microbiota Composition in Iranian Diabetic, Pre-diabetic and Healthy Individuals. Journal of Diabetes and Metabolic Disorders, 2020, 19, 1199-1203.	0.8	14
2355	Long-term use of antibiotics and risk of type 2 diabetes in women: a prospective cohort study. International Journal of Epidemiology, 2020, 49, 1572-1581.	0.9	22
2356	Gut Microbial Changes in Diabetic db/db Mice and Recovery of Microbial Diversity upon Pirfenidone Treatment. Microorganisms, 2020, 8, 1347.	1.6	18
2357	Of men in mice: the development and application of a humanized gnotobiotic mouse model for microbiome therapeutics. Experimental and Molecular Medicine, 2020, 52, 1383-1396.	3.2	87
2358	Arsenic Accumulation of Realgar Altered by Disruption of Gut Microbiota in Mice. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-7.	0.5	3
2359	Alteration of Intestinal Microbiota in 3-Deoxyglucosone-Induced Prediabetic Rats. BioMed Research International, 2020, 2020, 1-11.	0.9	21
2360	A comparative study of the gut microbiome in Egyptian patients with Type I and Type II diabetes. PLoS ONE, 2020, 15, e0238764.	1.1	27
2361	Non-surgical Periodontal Treatment Restored the Gut Microbiota and Intestinal Barrier in Apolipoprotein Eâ^'/â^' Mice With Periodontitis. Frontiers in Cellular and Infection Microbiology, 2020, 10, 498.	1.8	15
2362	Gut Microbiota and Intestinal Trans-Epithelial Permeability. International Journal of Molecular Sciences, 2020, 21, 6402.	1.8	149
2363	Abundant Taxa and Favorable Pathways in the Microbiome of Soda-Saline Lakes in Inner Mongolia. Frontiers in Microbiology, 2020, 11, 1740.	1.5	27
2364	Gut Dysbiosis in Chagas Disease. A Possible Link to the Pathogenesis. Frontiers in Cellular and Infection Microbiology, 2020, 10, 402.	1.8	11

#	Article	IF	CITATIONS
2365	Effects of Gut Microbiome and Short-Chain Fatty Acids (SCFAs) on Finishing Weight of Meat Rabbits. Frontiers in Microbiology, 2020, 11, 1835.	1.5	26
2366	<p>Effects of Metformin on the Gut Microbiota in Obesity and Type 2 Diabetes Mellitus</p> . Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2020, Volume 13, 5003-5014.	1.1	99
2367	Astragalus mongholicus Bunge and Panax Notoginseng Formula (A&P) Combined With Bifidobacterium Contribute a Renoprotective Effect in Chronic Kidney Disease Through Inhibiting Macrophage Inflammatory Response in Kidney and Intestine. Frontiers in Physiology, 2020, 11, 583668.	1.3	8
2368	Biomarkers of cardiometabolic complications in survivors of childhood acute lymphoblastic leukemia. Scientific Reports, 2020, 10, 21507.	1.6	15
2369	Aspartame, acesulfame K and sucralose- influence on the metabolism of Escherichia coli. Metabolism Open, 2020, 8, 100072.	1.4	12
2370	Microbiome-based interventions: therapeutic strategies in cancer immunotherapy. Immuno-Oncology Technology, 2020, 8, 12-20.	0.2	9
2371	Bacterial O-GlcNAcase genes abundance decreases in ulcerative colitis patients and its administration ameliorates colitis in mice. Gut, 2021, 70, 1872-1883.	6.1	19
2372	Microbiome Analysis from Paired Mucosal and Fecal Samples of a Colorectal Cancer Biobank. Cancers, 2020, 12, 3702.	1.7	15
2373	Intestinal Population in Host with Metabolic Syndrome during Administration of Chitosan and Its Derivatives. Molecules, 2020, 25, 5857.	1.7	13
2374	Diet, Microbioma, and Diabetes in Aging. Current Geriatrics Reports, 2020, 9, 261-274.	1.1	0
2375	GraphKKE: graph Kernel Koopman embedding for human microbiome analysis. Applied Network Science, 2020, 5, .	0.8	3
2376	Cow, Goat, and Mare Milk Diets Differentially Modulated the Immune System and Gut Microbiota of Mice Colonized by Healthy Infant Feces. Journal of Agricultural and Food Chemistry, 2020, 68, 15345-15357.	2.4	15
2377	Protective Role of Probiotic Supplements in Hepatic Steatosis: A Rat Model Study. BioMed Research International, 2020, 2020, 1-15.	0.9	31
2378	A t-SNE Based Classification Approach to Compositional Microbiome Data. Frontiers in Genetics, 2020, 11, 620143.	1.1	23
2379	Host variables confound gut microbiota studies of human disease. Nature, 2020, 587, 448-454.	13.7	324
2380	Interactions Between Therapeutics for Metabolic Disease, Cardiovascular Risk Factors, and Gut Microbiota. Frontiers in Cellular and Infection Microbiology, 2020, 10, 530160.	1.8	10
2381	Impact of the Post-Transplant Period and Lifestyle Diseases on Human Gut Microbiota in Kidney Graft Recipients. Microorganisms, 2020, 8, 1724.	1.6	16
2382	Comparison of the gut microbiota of short-term and long-term medical workers and non-medical controls: a cross-sectional analysis. Clinical Microbiology and Infection, 2021, 27, 1285-1292.	2.8	6

#	Article	IF	CITATIONS
2383	Gut microbiota and metabolic health among overweight and obese individuals. Scientific Reports, 2020, 10, 19417.	1.6	75
2384	Gut microbiome profiling of a rural and urban South African cohort reveals biomarkers of a population in lifestyle transition. BMC Microbiology, 2020, 20, 330.	1.3	24
2385	Nutrition and Diabetes in the Context of Inflammaging. Current Geriatrics Reports, 2020, 9, 251-260.	1.1	1
2386	Ingestion of Helianthus tuberosus at Breakfast Rather Than at Dinner is More Effective for Suppressing Glucose Levels and Improving the Intestinal Microbiota in Older Adults. Nutrients, 2020, 12, 3035.	1.7	9
2387	Effect of stevia on the gut microbiota and glucose tolerance in a murine model of diet-induced obesity. FEMS Microbiology Ecology, 2020, 96, .	1.3	22
2388	Chemically or surgically induced thyroid dysfunction altered gut microbiota in rat models. FASEB Journal, 2020, 34, 8686-8701.	0.2	14
2389	Exploring the effect of plant substrates on bacterial community structure in termite fungus-combs. PLoS ONE, 2020, 15, e0232329.	1.1	12
2390	Nanomaterials with active targeting as advanced antimicrobials. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1636.	3.3	29
2391	Lipid and energy metabolism in Wilson disease. Liver Research, 2020, 4, 5-14.	0.5	17
2392	Bioavailability Based on the Gut Microbiota: a New Perspective. Microbiology and Molecular Biology Reviews, 2020, 84, .	2.9	32
2393	Potential Pathogenic Bacteria in Seminal Microbiota of Patients with Different Types of Dysspermatism. Scientific Reports, 2020, 10, 6876.	1.6	32
2394	Defining the oral microbiome by whole-genome sequencing and resistome analysis: the complexity of the healthy picture. BMC Microbiology, 2020, 20, 120.	1.3	152
2395	Acute Effects of Butyrate on Induced Hyperpermeability and Tight Junction Protein Expression in Human Colonic Tissues. Biomolecules, 2020, 10, 766.	1.8	13
2396	Assessing and Interpreting the Metagenome Heterogeneity With Power Law. Frontiers in Microbiology, 2020, 11, 648.	1.5	5
2397	Longitudinal Analysis of Serum Cytokine Levels and Gut Microbial Abundance Links IL-17/IL-22 With <i>Clostridia</i> and Insulin Sensitivity in Humans. Diabetes, 2020, 69, 1833-1842.	0.3	10
2398	Integrative metagenomic and metabolomic analyses reveal severity-specific signatures of gut microbiota in chronic kidney disease. Theranostics, 2020, 10, 5398-5411.	4.6	77
2399	Gut microbiota in early pregnancy among women with Hyperglycaemia vs. Normal blood glucose. BMC Pregnancy and Childbirth, 2020, 20, 284.	0.9	19
2400	A systematic machine learning and data type comparison yields metagenomic predictors of infant age, sex, breastfeeding, antibiotic usage, country of origin, and delivery type. PLoS Computational Biology, 2020, 16, e1007895.	1.5	21

#	Article	IF	CITATIONS
2401	A Role for Gut Microbiome Fermentative Pathways in Fatty Liver Disease Progression. Journal of Clinical Medicine, 2020, 9, 1369.	1.0	22
2402	Whole egg consumption increases plasma choline and betaine without affecting TMAO levels or gut microbiome in overweight postmenopausal women. Nutrition Research, 2020, 78, 36-41.	1.3	36
2403	Fecal Viral Community Responses to High-Fat Diet in Mice. MSphere, 2020, 5, .	1.3	33
2404	<scp> </scp> â€Glutamate stimulates cholecystokinin secretion via the <scp>T1R1</scp> <scp>T1R3</scp> mediated <scp>PLC</scp> <scp>TRPM5</scp> transduction pathway. Journal of the Science of Food and Agriculture, 2020, 100, 4818-4825.	1.7	3
2405	Traditional rice beer depletes butyric acid-producing gut bacteria Faecalibacterium and Roseburia along with fecal butyrate levels in the ethnic groups of Northeast India. 3 Biotech, 2020, 10, 283.	1.1	9
2406	Biosynthesis, Mechanism of Action, and Inhibition of the Enterotoxin Tilimycin Produced by the Opportunistic Pathogen <i>Klebsiella oxytoca</i>). ACS Infectious Diseases, 2020, 6, 1976-1997.	1.8	18
2407	Dissecting genome-wide studies for microbiome-related metabolic diseases. Human Molecular Genetics, 2020, 29, R73-R80.	1.4	1
2408	New Insights into Molecular Links Between Microbiota and Gastrointestinal Cancers: A Literature Review. International Journal of Molecular Sciences, 2020, 21, 3212.	1.8	23
2409	Individual and cohort-specific gut microbiota patterns associated with tissue-specific insulin sensitivity in overweight and obese males. Scientific Reports, 2020, 10, 7523.	1.6	21
2410	A dysregulated bile acid-gut microbiota axis contributes to obesity susceptibility. EBioMedicine, 2020, 55, 102766.	2.7	128
2411	Intake of sucrose affects gut dysbiosis in patients with typeÂ2 diabetes. Journal of Diabetes Investigation, 2020, 11, 1623-1634.	1.1	35
2412	Gut Microbiota and Gestational Diabetes Mellitus: A Review of Host-Gut Microbiota Interactions and Their Therapeutic Potential. Frontiers in Cellular and Infection Microbiology, 2020, 10, 188.	1.8	113
2413	Cooperation and Conflict Within the Microbiota and Their Effects On Animal Hosts. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	26
2414	Molecular Biochemical Aspects of Cancer. , 2020, , .		3
2415	A catalog of microbial genes from the bovine rumen unveils a specialized and diverse biomass-degrading environment. GigaScience, 2020, 9, .	3.3	35
2416	Anti-atherosclerotic effects of Lactobacillus plantarum ATCC 14917 in ApoEâ^'/â^' mice through modulation of proinflammatory cytokines and oxidative stress. Applied Microbiology and Biotechnology, 2020, 104, 6337-6350.	1.7	32
2417	Human Gut Microbiome Response to Short-Term Bifidobacterium-Based Probiotic Treatment. Indian Journal of Microbiology, 2020, 60, 451-457.	1.5	13
2418	Tetrahydrocurcumin ameliorates diabetes profiles of db/db mice by altering the composition of gut microbiota and up-regulating the expression of GLP-1 in the pancreas. Fìtoterapìâ, 2020, 146, 104665.	1.1	24

#	Article	IF	CITATIONS
2419	Feruloylated oligosaccharides and ferulic acid alter gut microbiome to alleviate diabetic syndrome. Food Research International, 2020, 137, 109410.	2.9	71
2420	Health beneficial effects of resistant starch on diabetes and obesity <i>via</i> regulation of gut microbiota: a review. Food and Function, 2020, 11, 5749-5767.	2.1	45
2421	Correlation and association analyses in microbiome study integrating multiomics in health and disease. Progress in Molecular Biology and Translational Science, 2020, 171, 309-491.	0.9	103
2422	Codium fragile Ameliorates High-Fat Diet-Induced Metabolism by Modulating the Gut Microbiota in Mice. Nutrients, 2020, 12, 1848.	1.7	27
2423	The pharmaco-toxicological conundrum of oleander: Potential role of gut microbiome. Biomedicine and Pharmacotherapy, 2020, 129, 110422.	2.5	20
2424	Serum metabolites reflecting gut microbiome alpha diversity predict type 2 diabetes. Gut Microbes, 2020, 11, 1632-1642.	4.3	65
2425	Alterations in Vaginal Microbiota and Associated Metabolome in Women with Recurrent Implantation Failure. MBio, 2020, 11 , .	1.8	68
2426	The influence of probiotics on bile acids in diseases and aging. Biomedicine and Pharmacotherapy, 2020, 128, 110310.	2.5	36
2427	A specific gut microbiota and metabolomic profiles shifts related to antidiabetic action: The similar and complementary antidiabetic properties of type 3 resistant starch from Canna edulis and metformin. Pharmacological Research, 2020, 159, 104985.	3.1	33
2428	Integration of metagenomicsâ€metabolomics reveals specific signatures and functions of airway microbiota in miteâ€sensitized childhood asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2846-2857.	2.7	28
2429	Gut microbes effects on host metabolic alterations in health and disease. Gut Microbes, 2020, 11, 249-252.	4.3	5
2430	HIV and antiretroviral therapy-related fat alterations. Nature Reviews Disease Primers, 2020, 6, 48.	18.1	104
2431	Revealing links between gut microbiome and its fungal community in Type 2 Diabetes Mellitus among Emirati subjects: A pilot study. Scientific Reports, 2020, 10, 9624.	1.6	31
2432	The Therapeutic Effects of Magnolia Officinalis Extraction on an Antibiotics-Induced Intestinal Dysbacteriosis in Mice. Current Microbiology, 2020, 77, 2413-2421.	1.0	4
2433	An Insight into the Changing Scenario of Gut Microbiome during Type 2 Diabetes. , 0, , .		0
2434	Effects of Auricularia auricula and its polysaccharide on diet-induced hyperlipidemia rats by modulating gut microbiota. Journal of Functional Foods, 2020, 72, 104038.	1.6	44
2435	How gut microbiota relate to the oral antidiabetic treatment of type 2 diabetes. Medicine in Microecology, 2020, 3, 100007.	0.7	5
2436	Suppression of High-Fat Diet–Induced Obesity by Platycodon Grandiflorus in Mice Is Linked to Changes in the Gut Microbiota. Journal of Nutrition, 2020, 150, 2364-2374.	1.3	17

#	Article	IF	Citations
2437	A comparison between whole mung bean and decorticated mung bean: beneficial effects on the regulation of serum glucose and lipid disorders and the gut microbiota in high-fat diet and streptozotocin-induced prediabetic mice. Food and Function, 2020, 11, 5525-5537.	2.1	16
2438	Gut microbiota and hepatocellular carcinoma. Hepatobiliary Surgery and Nutrition, 2020, 9, 345-347.	0.7	4
2439	Personalized Mapping of Drug Metabolism by the Human Gut Microbiome. Cell, 2020, 181, 1661-1679.e22.	13.5	239
2440	Intestinal fermentation <i>in vitro</i> models to study food-induced gut microbiota shift: an updated review. FEMS Microbiology Letters, 2020, 367, .	0.7	43
2441	Does an Apple a Day Also Keep the Microbes Away? The Interplay Between Diet, Microbiota, and Host Defense Peptides at the Intestinal Mucosal Barrier. Frontiers in Immunology, 2020, 11, 1164.	2.2	20
2442	The critical role of Faecalibacterium prausnitzii in human health: An overview. Microbial Pathogenesis, 2020, 149, 104344.	1.3	102
2443	Sex-specific effects of PM2.5 maternal exposure on offspring's serum lipoproteins and gut microbiota. Science of the Total Environment, 2020, 739, 139982.	3.9	9
2444	Characterizing dysbiosis of gut microbiome in PD: evidence for overabundance of opportunistic pathogens. Npj Parkinson's Disease, 2020, 6, 11.	2.5	140
2445	Automatic extraction, prioritization and analysis of gut microbial metabolites from biomedical literature. Scientific Reports, 2020, 10, 9996.	1.6	2
2446	Phenolics and Carbohydrates in Buckwheat Honey Regulate the Human Intestinal Microbiota. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-11.	0.5	26
2447	Gut microbiome transfer—Finding the perfect fit. Clinical Endocrinology, 2020, 93, 3-10.	1.2	6
2448	16S rRNA Gene-Based Analysis Reveals the Effects of Gestational Diabetes on the Gut Microbiota of Mice During Pregnancy. Indian Journal of Microbiology, 2020, 60, 239-245.	1.5	8
2449	Gut microbiota dysbiosis-induced activation of the intrarenal renin–angiotensin system is involved in kidney injuries in rat diabetic nephropathy. Acta Pharmacologica Sinica, 2020, 41, 1111-1118.	2.8	50
2450	Environmental remodeling of human gut microbiota and antibiotic resistome in livestock farms. Nature Communications, 2020, 11 , 1427 .	5.8	133
2451	Subgingival Host-Microbial Interactions in Hyperglycemic Individuals. Journal of Dental Research, 2020, 99, 650-657.	2.5	17
2452	Serum Immunoglobulin G Is Associated With Decreased Risk of Pancreatic Cancer in the Swedish AMORIS Study. Frontiers in Oncology, 2020, 10, 263.	1.3	7
2453	There is No Distinctive Gut Microbiota Signature in the Metabolic Syndrome: Contribution of Cardiovascular Disease Risk Factors and Associated Medication. Microorganisms, 2020, 8, 416.	1.6	18
2454	Fecal microbiota transplantation for the improvement of metabolism in obesity: The FMT-TRIM double-blind placebo-controlled pilot trial. PLoS Medicine, 2020, 17, e1003051.	3.9	177

#	Article	IF	CITATIONS
2455	Two Bariatric Surgical Procedures Differentially Alter the Intestinal Microbiota in Obesity Patients. Obesity Surgery, 2020, 30, 2345-2361.	1.1	19
2456	The mycobiota of the human body: a spark can start a prairie fire. Gut Microbes, 2020, 11, 655-679.	4.3	23
2457	Interpretable and accurate prediction models for metagenomics data. GigaScience, 2020, 9, .	3.3	34
2458	Composition of fecal microbiota in low-set rectal cancer patients treated with FOLFOX. Therapeutic Advances in Chronic Disease, 2020, 11, 204062232090429.	1.1	12
2459	Metformin effect on gut microbiota: insights for HIV-related inflammation. AIDS Research and Therapy, 2020, 17, 10.	0.7	43
2460	Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Frontiers in Cardiovascular Medicine, 2020, 7, 22.	1.1	614
2461	Probiotic Mixture of Lactobacillus plantarum Strains Improves Lipid Metabolism and Gut Microbiota Structure in High Fat Diet-Fed Mice. Frontiers in Microbiology, 2020, 11, 512.	1.5	95
2462	Metabolites Linking the Gut Microbiome with Risk for Type 2 Diabetes. Current Nutrition Reports, 2020, 9, 83-93.	2.1	48
2463	Role of interspecies bacterial communication in the virulence of pathogenic bacteria. Critical Reviews in Microbiology, 2020, 46, 136-146.	2.7	15
2464	Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 279-297.	8.2	539
2465	Bifidobacterium animalis subsp. lactis GCL2505 modulates host energy metabolism via the short-chain fatty acid receptor GPR43. Scientific Reports, 2020, 10, 4158.	1.6	57
2466	Isolation and hypoglycemic effects of water extracts from mulberry leaves in Northeast China. Food and Function, 2020, 11, 3112-3125.	2.1	36
2467	Rapid and Accurate Simultaneous Determination of Seven Short-Chain Fatty Acids in Feces by Gas Chromatography $\hat{a}\in Mass$ Spectrometry (GC-MS): Application in Type 2 Diabetic Rats and Drug Therapy. Analytical Letters, 2020, 53, 2320-2336.	1.0	5
2468	Preventive Role of Salsalate in Diabetes Is Associated With Reducing Intestinal Inflammation Through Improvement of Gut Dysbiosis in ZDF Rats. Frontiers in Pharmacology, 2020, 11, 300.	1.6	8
2469	Dietary SCFAs Immunotherapy: Reshaping the Gut Microbiota in Diabetes. Advances in Experimental Medicine and Biology, 2020, 1307, 499-519.	0.8	12
2470	Dysbiosis of intestinal microbiota mediates tubulointerstitial injury in diabetic nephropathy via the disruption of cholesterol homeostasis. Theranostics, 2020, 10, 2803-2816.	4.6	49
2471	Bound Phenolics Ensure the Antihyperglycemic Effect of Rice Bran Dietary Fiber in <i>db</i> /i>/di>db Mice via Activating the Insulin Signaling Pathway in Skeletal Muscle and Altering Gut Microbiota. Journal of Agricultural and Food Chemistry, 2020, 68, 4387-4398.	2.4	39
2472	Autoimmune responses and inflammation in type 2 diabetes. Journal of Leukocyte Biology, 2020, 107, 739-748.	1.5	41

#	Article	IF	CITATIONS
2473	Probiotic-directed modulation of gut microbiota is basal microbiome dependent. Gut Microbes, 2020, 12, 1736974.	4.3	69
2474	Type 2 diabetes induced microbiome dysbiosis is associated with therapy resistance in pancreatic adenocarcinoma. Microbial Cell Factories, 2020, 19, 75.	1.9	24
2475	Association of colitis with gut-microbiota dysbiosis in clathrin adapter AP-1B knockout mice. PLoS ONE, 2020, 15, e0228358.	1.1	17
2476	Gut Microbiota Dysbiosis in Patients with Biopsy-Proven Nonalcoholic Fatty Liver Disease: A Cross-Sectional Study in Taiwan. Nutrients, 2020, 12, 820.	1.7	62
2477	Dietary polyphenols as antidiabetic agents: Advances and opportunities. Food Frontiers, 2020, 1, 18-44.	3.7	182
2478	Fecal Microbiota Transplantation in Neurological Disorders. Frontiers in Cellular and Infection Microbiology, 2020, 10, 98.	1.8	221
2479	Implication of the gut microbiome composition of type 2 diabetic patients from northern China. Scientific Reports, 2020, 10, 5450.	1.6	113
2480	Metagenome-wide association of gut microbiomeÂfeatures for schizophrenia. Nature Communications, 2020, 11, 1612.	5.8	204
2481	Nonalcoholic fatty liver disease, insulin resistance, and sweeteners: a literature review. Expert Review of Endocrinology and Metabolism, 2020, 15, 83-93.	1.2	15
2482	Serum total bile acids associate with risk of incident type 2 diabetes and longitudinal changes in glucoseâ€related metabolic traits. Journal of Diabetes, 2020, 12, 616-625.	0.8	11
2483	Gut Microbiome Profiles Are Associated With Type 2 Diabetes in Urban Africans. Frontiers in Cellular and Infection Microbiology, 2020, 10, 63.	1.8	95
2484	An Integrated Multi-Disciplinary Perspective for Addressing Challenges of the Human Gut Microbiome. Metabolites, 2020, 10, 94.	1.3	13
2485	Gut dysbiosis and heart failure: navigating the universe within. European Journal of Heart Failure, 2020, 22, 629-637.	2.9	32
2486	Seven facts and five initiatives for gut microbiome research. Protein and Cell, 2020, 11, 391-400.	4.8	21
2487	The gut microbiome in Parkinson's disease: A culprit or a bystander?. Progress in Brain Research, 2020, 252, 357-450.	0.9	70
2488	The role of gut microbiota in bone homeostasis. Bone, 2020, 135, 115317.	1.4	78
2489	Role of diet in regulating the gut microbiota and multiple sclerosis. Clinical Immunology, 2022, 235, 108379.	1.4	19
2490	Highâ€fat diet–induced alterations to gut microbiota and gutâ€derived lipoteichoic acid contributes to the development of enteric neuropathy. Neurogastroenterology and Motility, 2020, 32, e13838.	1.6	19

#	Article	IF	CITATIONS
2491	Fecal microbiota characteristics of Chinese patients with primary IgA nephropathy: a cross-sectional study. BMC Nephrology, 2020, 21, 97.	0.8	42
2492	Gut microbiota and cardiovascular disease: opportunities and challenges. Microbiome, 2020, 8, 36.	4.9	213
2493	Effect of Berberine on Atherosclerosis and Gut Microbiota Modulation and Their Correlation in High-Fat Diet-Fed ApoEâ^'/â^' Mice. Frontiers in Pharmacology, 2020, 11, 223.	1.6	129
2494	Effects of a synbiotic yogurt using monk fruit extract as sweetener on glucose regulation and gut microbiota in rats with type 2 diabetes mellitus. Journal of Dairy Science, 2020, 103, 2956-2968.	1.4	30
2495	The Computational Diet: A Review of Computational Methods Across Diet, Microbiome, and Health. Frontiers in Microbiology, 2020, 11, 393.	1.5	32
2496	Effect of Caloric Restriction on BMI, Gut Microbiota, and Blood Amino Acid Levels in Non-Obese Adults. Nutrients, 2020, 12, 631.	1.7	36
2497	Air pollution exposure is associated with the gut microbiome as revealed by shotgun metagenomic sequencing. Environment International, 2020, 138, 105604.	4.8	97
2498	Bifidobacterium bifidum Suppresses Gut Inflammation Caused by Repeated Antibiotic Disturbance Without Recovering Gut Microbiome Diversity in Mice. Frontiers in Microbiology, 2020, 11, 1349.	1.5	23
2499	From bag-of-genes to bag-of-genomes: metabolic modelling of communities in the era of metagenome-assembled genomes. Computational and Structural Biotechnology Journal, 2020, 18, 1722-1734.	1.9	52
2500	Diverse effects of different Akkermansia muciniphila genotypes on Brown adipose tissue inflammation and whitening in a high-fat-diet murine model. Microbial Pathogenesis, 2020, 147, 104353.	1.3	35
2501	Analysis of the diversity of intestinal microbiome and its potential value as a biomarker in patients with schizophrenia: A cohort study. Psychiatry Research, 2020, 291, 113260.	1.7	35
2502	Insights into the gut microbiota of Nigerian elderly with type 2 diabetes and non-diabetic elderly persons. Heliyon, 2020, 6, e03971.	1.4	15
2503	Green Tea Encourages Growth of <i>Akkermansia muciniphila</i> . Journal of Medicinal Food, 2020, 23, 841-851.	0.8	16
2504	Association between diabetes mellitus and hepatic encephalopathy in patients with cirrhosis. Alimentary Pharmacology and Therapeutics, 2020, 52, 527-536.	1.9	29
2505	The Echo of Pulmonary Tuberculosis: Mechanisms of Clinical Symptoms and Other Disease-Induced Systemic Complications. Clinical Microbiology Reviews, 2020, 33, .	5.7	31
2506	What Is Metagenomics Teaching Us, and What Is Missed?. Annual Review of Microbiology, 2020, 74, 117-135.	2.9	54
2507	Pathogenic and Non-Pathogenic Fungal Communities in Wheat Grain as Influenced by Recycled Phosphorus Fertilizers: A Case Study. Agriculture (Switzerland), 2020, 10, 239.	1.4	8
2508	Arrhythmic Gut Microbiome Signatures Predict Risk of Type 2 Diabetes. Cell Host and Microbe, 2020, 28, 258-272.e6.	5.1	160

#	Article	IF	Citations
2509	<p>Metformin and Micronutrient Status in Type 2 Diabetes: Does Polypharmacy Involving Acid-Suppressing Medications Affect Vitamin B12 Levels?</p> . Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2020, Volume 13, 2093-2108.	1.1	22
2511	Integrated metabolomics and gut microbiome to the effects and mechanisms of naoxintong capsule on type 2 diabetes in rats. Scientific Reports, 2020, 10, 10829.	1.6	26
2512	Fast computation of genome-metagenome interaction effects. Algorithms for Molecular Biology, 2020, 15, 13.	0.3	2
2513	The Gut Microbiota in Prediabetes and Diabetes: A Population-Based Cross-Sectional Study. Cell Metabolism, 2020, 32, 379-390.e3.	7.2	233
2514	Relationship between hyperlipidemia and the gut microbiome of rats, characterized using high-throughput sequencing. Journal of Traditional Chinese Medical Sciences, 2020, 7, 154-161.	0.1	12
2515	Alterations of gut microbiota contribute to the progression of unruptured intracranial aneurysms. Nature Communications, 2020, 11, 3218.	5.8	56
2516	Targeting the Intestinal Microbiota to Prevent Type 2 Diabetes and Enhance the Effect of Metformin on Glycaemia: A Randomised Controlled Pilot Study. Nutrients, 2020, 12, 2041.	1.7	65
2517	Probiotics and COVID-19 – Authors' reply. The Lancet Gastroenterology and Hepatology, 2020, 5, 722-723.	3.7	6
2518	The Gut–Eye Axis: Lessons Learned from Murine Models. Ophthalmology and Therapy, 2020, 9, 499-513.	1.0	61
2519	Cyclocarya paliurus polysaccharides alleviate type 2 diabetic symptoms by modulating gut microbiota and short-chain fatty acids. Phytomedicine, 2020, 77, 153268.	2.3	114
2520	Effects of a readyâ€toâ€eat cereal formula powder on glucose metabolism, inflammation, and gut microbiota in diabetic db/db mice. Food Science and Nutrition, 2020, 8, 4523-4533.	1.5	4
2521	Gut microbiota differs a decade after bariatric surgery relative to a nonsurgical comparison group. Surgery for Obesity and Related Diseases, 2020, 16, 1304-1311.	1.0	8
2522	mAML: an automated machine learning pipeline with a microbiome repository for human disease classification. Database: the Journal of Biological Databases and Curation, 2020, 2020, .	1.4	20
2523	Butyrate producing colonic Clostridiales metabolise human milk oligosaccharides and cross feed on mucin via conserved pathways. Nature Communications, 2020, 11, 3285.	5.8	102
2524	The gut microbiome during acute lifestyle transition. Nature Medicine, 2020, 26, 1013-1015.	15.2	5
2525	Changes in microbiome and metabolomic profiles of fecal samples stored with stabilizing solution at room temperature: a pilot study. Scientific Reports, 2020, 10, 1789.	1.6	22
2526	Role of gut microbiota in sex- and diet-dependent metabolic disorders that lead to early mortality of androgen receptor-deficient male mice. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E525-E537.	1.8	9
2527	Controversial Roles of Gut Microbiota-Derived Short-Chain Fatty Acids (SCFAs) on Pancreatic β-Cell Growth and Insulin Secretion. International Journal of Molecular Sciences, 2020, 21, 910.	1.8	42

#	Article	IF	Citations
2528	Main gut bacterial composition differs between patients with type 1 and type 2 diabetes and non-diabetic adults. Journal of Diabetes and Metabolic Disorders, 2020, 19, 265-271.	0.8	28
2529	Composite probiotics alleviate type 2 diabetes by regulating intestinal microbiota and inducing GLP-1 secretion in db/db mice. Biomedicine and Pharmacotherapy, 2020, 125, 109914.	2.5	130
2530	Protective effects and mechanisms of Rehmannia glutinosa leaves total glycoside on early kidney injury in db/db mice. Biomedicine and Pharmacotherapy, 2020, 125, 109926.	2.5	19
2531	Gut microbiota differences between healthy older adults and individuals with Parkinson's disease: A systematic review. Neuroscience and Biobehavioral Reviews, 2020, 112, 227-241.	2.9	68
2532	Investigation on the influence of isolated environment on human psychological and physiological health. Science of the Total Environment, 2020, 716, 136972.	3.9	19
2533	Nonalcoholic Fatty Liver Disease: Modulating Gut Microbiota to Improve Severity?. Gastroenterology, 2020, 158, 1881-1898.	0.6	123
2534	Comparison of five assays for DNA extraction from bacterial cells in human faecal samples. Journal of Applied Microbiology, 2020, 129, 378-388.	1.4	14
2535	$\label{linear} Bifidobacterium\ longum\ R0175\ Protects\ Rats\ against\ d\ -Galactosamine-Induced\ Acute\ Liver\ Failure.\ MSphere,\ 2020,\ 5,\ .$	1.3	24
2536	Integrated 16S rRNA Sequencing, Metagenomics, and Metabolomics to Characterize Gut Microbial Composition, Function, and Fecal Metabolic Phenotype in Non-obese Type 2 Diabetic Goto-Kakizaki Rats. Frontiers in Microbiology, 2019, 10, 3141.	1.5	57
2537	Daily Intake of Paraprobiotic Lactobacillus amylovorus CP1563 Improves Pre-Obese Conditions and Affects the Gut Microbial Community in Healthy Pre-Obese Subjects: A Double-Blind, Randomized, Placebo-Controlled Study. Microorganisms, 2020, 8, 304.	1.6	14
2538	Anti-diabetic effects of Bifidobacterium animalis 01 through improving hepatic insulin sensitivity in type 2 diabetic rat model. Journal of Functional Foods, 2020, 67, 103843.	1.6	40
2539	Southern Chinese populations harbour non-nucleatum Fusobacteria possessing homologues of the colorectal cancer-associated FadA virulence factor. Gut, 2020, 69, 1998-2007.	6.1	42
2540	Gut microbiota generation of protein-bound uremic toxins and related metabolites is not altered at different stages of chronic kidney disease. Kidney International, 2020, 97, 1230-1242.	2.6	125
2541	Carnelian uncovers hidden functional patterns across diverse study populations from whole metagenome sequencing reads. Genome Biology, 2020, 21, 47.	3.8	14
2542	Metagenomic Insights Into the Cycling of Dimethylsulfoniopropionate and Related Molecules in the Eastern China Marginal Seas. Frontiers in Microbiology, 2020, 11, 157.	1.5	22
2543	Modulation of Glucose Metabolism by Leaf Tea Constituents: A Systematic Review of Recent Clinical and Pre-clinical Findings. Journal of Agricultural and Food Chemistry, 2020, 68, 2973-3005.	2.4	7
2544	Machine learning methods for microbiome studies. Journal of Microbiology, 2020, 58, 206-216.	1.3	66
2545	Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries. Gut, 2020, 69, 1218-1228.	6.1	465

#	Article	IF	Citations
2546	Enterotype <i>Bacteroides</i> Is Associated with a High Risk in Patients with Diabetes: A Pilot Study. Journal of Diabetes Research, 2020, 2020, 1-11.	1.0	61
2547	Precision medicine in perinatal depression in light of the human microbiome. Psychopharmacology, 2020, 237, 915-941.	1.5	18
2548	Gut microbiota: a promising target against cardiometabolic diseases. Expert Review of Endocrinology and Metabolism, 2020, 15 , 13 - 27 .	1.2	35
2549	The Natural Metabolite 4-Cresol Improves Glucose Homeostasis and Enhances β-Cell Function. Cell Reports, 2020, 30, 2306-2320.e5.	2.9	35
2550	Assessing the Relationship Between Gut Microbiota and Bone Mineral Density. Frontiers in Genetics, 2020, 11, 6.	1.1	33
2551	A Metabolic Pathway for Activation of Dietary Glucosinolates by a Human Gut Symbiont. Cell, 2020, 180, 717-728.e19.	13.5	84
2552	Bile acid sequestration reverses liver injury and prevents progression of nonalcoholic steatohepatitis in Western diet–fed mice. Journal of Biological Chemistry, 2020, 295, 4733-4747.	1.6	37
2553	Gut microbiota-derived metabolites in obesity: a systematic review. Bioscience of Microbiota, Food and Health, 2020, 39, 65-76.	0.8	43
2554	The potential role of bacteria in pancreatic cancer: a systematic review. Carcinogenesis, 2020, 41, 397-404.	1.3	17
2556	Food matrix and the microbiome: considerations for preclinical chronic disease studies. Nutrition Research, 2020, 78, 1-10.	1.3	13
2557	Impairment of spermatogenesis and sperm motility by the high-fat diet-induced dysbiosis of gut microbes. Gut, 2020, 69, 1608-1619.	6.1	142
2558	The Gut Microbiota and Its Implication in the Development of Atherosclerosis and Related Cardiovascular Diseases. Nutrients, 2020, 12, 605.	1.7	109
2559	Effect of probiotics on the intestinal microbiota of hemodialysis patients: a randomized trial. European Journal of Nutrition, 2020, 59, 3755-3766.	1.8	33
2560	Diets naturally rich in polyphenols and/or long-chain n-3 polyunsaturated fatty acids differently affect microbiota composition in high-cardiometabolic-risk individuals. Acta Diabetologica, 2020, 57, 853-860.	1.2	40
2561	From role of gut microbiota to microbial-based therapies in type 2-diabetes. Infection, Genetics and Evolution, 2020, 81, 104268.	1.0	53
2562	Glucose signaling in the brain and periphery to memory. Neuroscience and Biobehavioral Reviews, 2020, 110, 100-113.	2.9	15
2563	Enterotype identification and its influence on regulating the duodenum metabolism in chickens. Poultry Science, 2020, 99, 1515-1527.	1.5	22
2564	Gut Microbiota Plasticity Influences the Adaptability of Wild and Domestic Animals in Co-inhabited Areas. Frontiers in Microbiology, 2020, 11, 125.	1.5	23

#	Article	IF	CITATIONS
2565	Health Properties and Composition of Honeysuckle Berry Lonicera caerulea L. An Update on Recent Studies. Molecules, 2020, 25, 749.	1.7	48
2566	Australian consensus statements for the regulation, production and use of faecal microbiota transplantation in clinical practice. Gut, 2020, 69, 801-810.	6.1	52
2567	Gut microbiota dysbiosis might be responsible to different toxicity caused by Di-(2-ethylhexyl) phthalate exposure in murine rodents. Environmental Pollution, 2020, 261, 114164.	3.7	39
2568	Parasites modulate the gut-microbiome in insects: A proof-of-concept study. PLoS ONE, 2020, 15, e0227561.	1.1	44
2569	The role of the microbiota in sedentary lifestyle disorders and ageing: lessons from the animal kingdom. Journal of Internal Medicine, 2020, 287, 271-282.	2.7	44
2570	Biogeographic study of human gut-associated crAssphage suggests impacts from industrialization and recent expansion. PLoS ONE, 2020, 15, e0226930.	1.1	38
2571	Cationic conjugated polymers for enhancing beneficial bacteria adhesion and biofilm formation in gut microbiota. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110815.	2.5	11
2572	Complicated oscillations and non-resonant double Hopf bifurcation of multiple feedback delayed control system of the gut microbiota. Nonlinear Analysis: Real World Applications, 2020, 54, 103091.	0.9	9
2573	Effects of probiotics on type II diabetes mellitus: a meta-analysis. Journal of Translational Medicine, 2020, 18, 30.	1.8	75
2574	The Gut Microbiome and Type 2 Diabetes Mellitus: Discussing A Complex Relationship. Biomedicines, 2020, 8, 8.	1.4	106
2575	Investigation of gut microbiome changes in type 1 diabetic mellitus rats based on high-throughput sequencing. Biomedicine and Pharmacotherapy, 2020, 124, 109873.	2.5	109
2576	Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. American Journal of Physiology - Renal Physiology, 2020, 318, G554-G573.	1.6	175
2577	<i>Lactobacillus rhamnosus</i> Reduces Blood Glucose Level through Downregulation of Gluconeogenesis Gene Expression in Streptozotocin-Induced Diabetic Rats. International Journal of Food Science, 2020, 2020, 1-12.	0.9	25
2578	Le transfert de microbiote f©calÂ: quel potentiel thérapeutique dans le traitement des maladies métaboliquesÂ?. Nutrition Clinique Et Metabolisme, 2020, 34, 108-115.	0.2	1
2579	Dietary natural products as epigenetic modifiers in aging-associated inflammation and disease. Natural Product Reports, 2020, 37, 653-676.	5.2	43
2580	Peritoneal Microbiome in End-Stage Renal Disease Patients and the Impact of Peritoneal Dialysis Therapy. Microorganisms, 2020, 8, 173.	1.6	16
2581	Precision Microbiome Modulation with Discrete Dietary Fiber Structures Directs Short-Chain Fatty Acid Production. Cell Host and Microbe, 2020, 27, 389-404.e6.	5.1	298
2582	The progress of gut microbiome research related to brain disorders. Journal of Neuroinflammation, 2020, 17, 25.	3.1	252

#	Article	IF	CITATIONS
2583	Characterization of the Gut Microbiota of Individuals at Different T2D Stages Reveals a Complex Relationship with the Host. Microorganisms, 2020, 8, 94.	1.6	44
2584	Fecal microbiota transplantation improves metabolism and gut microbiome composition in db/db mice. Acta Pharmacologica Sinica, 2020, 41, 678-685.	2.8	61
2585	Effects of spaceflight on the composition and function of the human gut microbiota. Gut Microbes, 2020, 11, 807-819.	4.3	32
2586	The potential therapeutic effects of the gut microbiome manipulation by synbiotic containing-Lactobacillus plantarum on neuropsychological performance of diabetic rats. Journal of Translational Medicine, 2020, 18, 18.	1.8	47
2587	Study on the Effect of Capsaicin on the Intestinal Flora through High-Throughput Sequencing. ACS Omega, 2020, 5, 1246-1253.	1.6	29
2589	Considering gut microbiota in treatment of type 2 diabetes mellitus. Gut Microbes, 2020, 11, 253-264.	4.3	87
2590	Gut-host Crosstalk: Methodological and Computational Challenges. Digestive Diseases and Sciences, 2020, 65, 686-694.	1.1	2
2591	The Epigenetic Connection Between the Gut Microbiome in Obesity and Diabetes. Frontiers in Genetics, 2019, 10, 1329.	1.1	95
2592	Gut Microbiota as Diagnostic Tools for Mirroring Disease Progression and Circulating Nephrotoxin Levels in Chronic Kidney Disease: Discovery and Validation Study. International Journal of Biological Sciences, 2020, 16, 420-434.	2.6	64
2593	Therapeutic applications of lytic phages in human medicine. Microbial Pathogenesis, 2020, 142, 104048.	1.3	31
2594	The Nano–Intestine Interaction: Understanding the Locationâ€Oriented Effects of Engineered Nanomaterials in the Intestine. Small, 2020, 16, e1907665.	5. 2	44
2595	Beneficial effects of polysaccharide-rich extracts from Apocynum venetum leaves on hypoglycemic and gut microbiota in type 2 diabetic mice. Biomedicine and Pharmacotherapy, 2020, 127, 110182.	2.5	58
2596	Influenza infection elicits an expansion of gut population of endogenous Bifidobacterium animalis which protects mice against infection. Genome Biology, 2020, 21, 99.	3.8	73
2597	Exposure to air pollutants and the gut microbiota: a potential link between exposure, obesity, and type 2 diabetes. Gut Microbes, 2020, 11, 1188-1202.	4.3	66
2598	Effects of octylphenol exposure on the lipid metabolism and microbiome of the intestinal tract of Rana chensinensis tadpole by RNAseq and 16s amplicon sequencing. Ecotoxicology and Environmental Safety, 2020, 197, 110650.	2.9	11
2599	Disordered Gut Microbiota in Children Who Have Chronic Pancreatitis and Different Functional Gene Mutations. Clinical and Translational Gastroenterology, 2020, 11, e00150.	1.3	12
2600	Shifts in the gut microbiota of mice in response to dexamethasone administration. International Microbiology, 2020, 23, 565-573.	1.1	20
2601	Diet, nutrients and the microbiome. Progress in Molecular Biology and Translational Science, 2020, 171, 237-263.	0.9	75

#	Article	IF	CITATIONS
2602	Gut microbiota and metabolic syndrome. Chinese Medical Journal, 2020, 133, 808-816.	0.9	95
2603	Modulation of the Gut Microbiota during High-Dose Glycerol Monolaurate-Mediated Amelioration of Obesity in Mice Fed a High-Fat Diet. MBio, 2020, 11, .	1.8	59
2604	Cottonseed meal fermented by Candida tropical reduces the fat deposition in white-feather broilers through cecum bacteria-host metabolic cross-talk. Applied Microbiology and Biotechnology, 2020, 104, 4345-4357.	1.7	14
2605	The oral microbiome profile and biomarker in Chinese type 2 diabetes mellitus patients. Endocrine, 2020, 68, 564-572.	1.1	29
2606	Gut DYSBIOSIS and altered barrier function precedes the appearance of metabolic syndrome in a rat model of nutrient-induced catch-up growth. Journal of Nutritional Biochemistry, 2020, 81, 108383.	1.9	17
2607	From Association to Causality: the Role of the Gut Microbiota and Its Functional Products on Host Metabolism. Molecular Cell, 2020, 78, 584-596.	4.5	177
2608	DeepMicro: deep representation learning for disease prediction based on microbiome data. Scientific Reports, 2020, 10, 6026.	1.6	67
2609	Characterizing the gut microbiota in patients with chronic kidney disease. Postgraduate Medicine, 2020, 132, 495-505.	0.9	57
2610	Probiotics, prebiotics, and synbiotics supplementation in prediabetes: protocol for a systematic review and meta-analysis. Medicine (United States), 2020, 99, e19708.	0.4	4
2611	Linking microbial communities to ecosystem functions: what we can learn from genotype–phenotype mapping in organisms. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190244.	1.8	36
2612	Microbiome-derived carnitine mimics as previously unknown mediators of gut-brain axis communication. Science Advances, 2020, 6, eaax6328.	4.7	45
2613	Synergy between Cell Surface Glycosidases and Glycan-Binding Proteins Dictates the Utilization of Specific Beta(1,3)-Glucans by Human Gut <i>Bacteroides</i> MBio, 2020, 11, .	1.8	58
2614	The Gut Microbial Diversity of Newly Diagnosed Diabetics but Not of Prediabetics Is Significantly Different from That of Healthy Nondiabetics. MSystems, 2020, 5, .	1.7	64
2615	Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents. Gut, 2020, 69, 2131-2142.	6.1	232
2616	Metformin and Its Benefits for Various Diseases. Frontiers in Endocrinology, 2020, 11, 191.	1.5	240
2617	Traditional Chinese Medicine and Gut Microbiome: Their Respective and Concert Effects on Healthcare. Frontiers in Pharmacology, 2020, 11, 538.	1.6	32
2618	The Controversial Role of Human Gut Lachnospiraceae. Microorganisms, 2020, 8, 573.	1.6	777
2619	Gut Microbiome, Intestinal Permeability, and Tissue Bacteria in Metabolic Disease: Perpetrators or Bystanders?. Nutrients, 2020, 12, 1082.	1.7	154

#	Article	IF	CITATIONS
2620	The Gene Catalog and Comparative Analysis of Gut Microbiome of Big Cats Provide New Insights on Panthera Species. Frontiers in Microbiology, 2020, 11, 1012.	1.5	9
2621	The gut microbiota confers protection in the CNS against neurodegeneration induced by manganism. Biomedicine and Pharmacotherapy, 2020, 127, 110150.	2.5	23
2622	The prolonged disruption of a single-course amoxicillin on mice gut microbiota and resistome, and recovery by inulin, Bifidobacterium longum and fecal microbiota transplantation. Environmental Pollution, 2020, 265, 114651.	3.7	23
2623	Human gut microbiome composition and tryptophan metabolites were changed differently by fast food and Mediterranean diet in 4 days: a pilot study. Nutrition Research, 2020, 77, 62-72.	1.3	79
2624	Microbiota Metabolites in Health and Disease. Annual Review of Immunology, 2020, 38, 147-170.	9.5	138
2625	The effect of probiotics supplementation on blood pressure: a systemic review and meta-analysis. Lipids in Health and Disease, 2020, 19, 79.	1.2	39
2626	MICOM: Metagenome-Scale Modeling To Infer Metabolic Interactions in the Gut Microbiota. MSystems, 2020, 5, .	1.7	126
2627	Protective effect of baicalin on the regulation of Treg/Th17 balance, gut microbiota and short-chain fatty acids in rats with ulcerative colitis. Applied Microbiology and Biotechnology, 2020, 104, 5449-5460.	1.7	98
2628	Resveratrol reduces obesity in high-fat diet-fed mice via modulating the composition and metabolic function of the gut microbiota. Free Radical Biology and Medicine, 2020, 156, 83-98.	1.3	134
2629	Effects of synbiotic supplementation on gut microbiome, serum level of TNF-α, and expression of microRNA-126 and microRNA-146a in patients with type 2 diabetes mellitus: study protocol for a double-blind controlled randomized clinical trial. Trials, 2020, 21, 324.	0.7	19
2630	Characterization of Gut Microbiota Composition in Hemodialysis Patients With Normal Weight Obesity. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 2006-2014.	1.8	8
2631	Hypoglycemic Effect of Ginsenoside Rg5 Mediated Partly by Modulating Gut Microbiota Dysbiosis in Diabetic db/db Mice. Journal of Agricultural and Food Chemistry, 2020, 68, 5107-5117.	2.4	52
2632	Modulation of Gut Microbiota by Fucoxanthin During Alleviation of Obesity in High-Fat Diet-Fed Mice. Journal of Agricultural and Food Chemistry, 2020, 68, 5118-5128.	2.4	72
2633	Microbial modulation of host body composition and plasma metabolic profile. Scientific Reports, 2020, 10, 6545.	1.6	14
2634	<p>Phocea, Pseudoflavonifractor and Lactobacillus intestinalis: Three Potential Biomarkers of Gut Microbiota That Affect Progression and Complications of Obesity-Induced Type 2 Diabetes Mellitus</p> . Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2020, Volume 13, 835-850.	1.1	35
2635	Relationships between Gut Microbiota, Metabolome, Body Weight, and Glucose Homeostasis of Obese Dogs Fed with Diets Differing in Prebiotic and Protein Content. Microorganisms, 2020, 8, 513.	1.6	22
2636	Role of Gut Microbiota in Neuroendocrine Regulation of Carbohydrate and Lipid Metabolism via the Microbiota-Gut-Brain-Liver Axis. Microorganisms, 2020, 8, 527.	1.6	101
2637	Chinese Propolis Prevents Obesity and Metabolism Syndromes Induced by a High Fat Diet and Accompanied by an Altered Gut Microbiota Structure in Mice. Nutrients, 2020, 12, 959.	1.7	13

#	Article	lF	CITATIONS
2638	Dairy product intake modifies gut microbiota composition among hyperinsulinemic individuals. European Journal of Nutrition, 2021, 60, 159-167.	1.8	15
2639	The Role and Mechanism of Intestinal Flora in Blood Pressure Regulation and Hypertension Development. Antioxidants and Redox Signaling, 2021, 34, 811-830.	2.5	28
2640	Cherry intake as a dietary strategy in sport and diseases: a review of clinical applicability and mechanisms of action. Critical Reviews in Food Science and Nutrition, 2021, 61, 417-430.	5.4	13
2641	Hypoglycemic mechanism of polysaccharide from Cyclocarya paliurus leaves in type 2 diabetic rats by gut microbiota and host metabolism alteration. Science China Life Sciences, 2021, 64, 117-132.	2.3	42
2642	gutMEGA: a database of the human gut MEtaGenome Atlas. Briefings in Bioinformatics, 2021, 22, .	3.2	22
2643	Extraordinary diversity of viruses in deepâ€sea sediments as revealed by metagenomics without prior virion separation. Environmental Microbiology, 2021, 23, 728-743.	1.8	27
2644	Standardizing translational microbiome studies and metagenomic analyses. Cardiovascular Research, 2021, 117, 640-642.	1.8	12
2645	Comorbid Diabetes in Inflammatory Bowel Disease Predicts Adverse Disease-Related Outcomes and Infectious Complications. Digestive Diseases and Sciences, 2021, 66, 2005-2013.	1.1	11
2646	Classical methods and perspectives for manipulating the human gut microbial ecosystem. Critical Reviews in Food Science and Nutrition, 2021, 61, 234-258.	5.4	13
2647	Screening of novel potential antidiabetic Lactobacillus plantarum strains based on in vitro and in vivo investigations. LWT - Food Science and Technology, 2021, 139, 110526.	2.5	13
2648	Kefir reduces nitrosative stress and upregulates Nrf2 in the kidney of diabetic rats. International Dairy Journal, 2021, 114, 104909.	1.5	6
2649	A doubleâ€edged sword: Role of butyrate in the oral cavity and the gut. Molecular Oral Microbiology, 2021, 36, 121-131.	1.3	31
2650	Exocrine Pancreatic Dysfunction Increases the Risk of Newâ€Onset Diabetes Mellitus: Results of a Nationwide Cohort Study. Clinical and Translational Science, 2021, 14, 170-178.	1.5	21
2651	Relationships between gut microbiota, plasma glucose and gestational diabetes mellitus. Journal of Diabetes Investigation, 2021, 12, 641-650.	1.1	29
2652	Trimethylamine N-oxide levels are associated with NASH in obese subjects with type 2 diabetes. Diabetes and Metabolism, 2021, 47, 101183.	1.4	59
2653	Integrated omics analysis reveals the alteration of gut microbe–metabolites in obese adults. Briefings in Bioinformatics, 2021, 22, .	3.2	35
2654	The effect of nut consumption (tree nuts and peanuts) on the gut microbiota of humans: a systematic review. British Journal of Nutrition, 2021, 125, 508-520.	1.2	36
2655	A unified catalog of 204,938 reference genomes from the human gut microbiome. Nature Biotechnology, 2021, 39, 105-114.	9.4	628

#	Article	IF	Citations
2656	Shenyan Kangfu tablet alleviates diabetic kidney disease through attenuating inflammation and modulating the gut microbiota. Journal of Natural Medicines, 2021, 75, 84-98.	1.1	23
2657	Xianglian Pill ameliorates antibiotic-associated diarrhea by restoring intestinal microbiota and attenuating mucosal damage. Journal of Ethnopharmacology, 2021, 264, 113377.	2.0	17
2658	Effects of incremental endosulfan sulfate exposure and high fat diet on lipid metabolism, glucose homeostasis and gut microbiota in mice. Environmental Pollution, 2021, 268, 115697.	3.7	18
2659	Colistin and amoxicillin combinatorial exposure alters the human intestinal microbiota and antibiotic resistome in the simulated human intestinal microbiota. Science of the Total Environment, 2021, 750, 141415.	3.9	14
2660	Effects of feeding a Lactobacillus plantarum JLO1 diet on caecal bacteria and metabolites of weaned piglets. Letters in Applied Microbiology, 2021, 72, 24-35.	1.0	5
2661	Dietary pattern, colonic microbiota and immunometabolism interaction: new frontiers for diabetes mellitus and related disorders. Diabetic Medicine, 2021, 38, e14415.	1.2	34
2662	Gut microbiota in adolescent girls with polycystic ovary syndrome: Effects of randomized treatments. Pediatric Obesity, 2021, 16, e12734.	1.4	16
2663	Alterations in Gut Microbiome in Cirrhosis as Assessed by Quantitative Metagenomics: Relationship With Acute-on-Chronic Liver Failure and Prognosis. Gastroenterology, 2021, 160, 206-218.e13.	0.6	89
2664	Defecation frequency and glycemic control in patients with diabetes: The Fukuoka Diabetes Registry. Journal of Diabetes and Its Complications, 2021, 35, 107751.	1.2	3
2665	Genistein ameliorates inflammation and insulin resistance through mediation of gut microbiota composition in type 2 diabetic mice. European Journal of Nutrition, 2021, 60, 2155-2168.	1.8	38
2666	Molecular Aspects of Plant Growth Promotion and Protection by (i) Bacillus subtilis (i). Molecular Plant-Microbe Interactions, 2021, 34, 15-25.	1.4	134
2667	Neutral Ceramidase Mediates Nonalcoholic Steatohepatitis by Regulating Monounsaturated Fatty Acids and Gut IgA+ B Cells. Hepatology, 2021, 73, 901-919.	3. 6	18
2668	Therapeutic mechanisms of traditional Chinese medicine to improve metabolic diseases via the gut microbiota. Biomedicine and Pharmacotherapy, 2021, 133, 110857.	2.5	67
2669	Tris (1,3-dichloro-2-propyl) phosphate exposure disrupts the gut microbiome and its associated metabolites in mice. Environment International, 2021, 146, 106256.	4.8	11
2670	Utilizing the gut microbiome in decompensated cirrhosis and acute-on-chronic liver failure. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 167-180.	8.2	97
2671	Metabolic Consequences of Solid Organ Transplantation. Endocrine Reviews, 2021, 42, 171-197.	8.9	16
2672	Review of the relationships among polysaccharides, gut microbiota, and human health. Food Research International, 2021, 140, 109858.	2.9	169
2673	Germâ€free mice are not protected against dietâ€induced obesity and metabolic dysfunction. Acta Physiologica, 2021, 231, e13581.	1.8	24

#	Article	IF	CITATIONS
2674	Subchronic exposure to concentrated ambient PM2.5 perturbs gut and lung microbiota as well as metabolic profiles in mice. Environmental Pollution, 2021, 272, 115987.	3.7	52
2675	Glycation of gut proteins initiates microbial dysbiosis and can promote establishment of diabetes in experimental animals. Microbial Pathogenesis, 2021, 152, 104589.	1.3	7
2676	Catalpol ameliorates diabetes-induced testicular injury and modulates gut microbiota. Life Sciences, 2021, 267, 118881.	2.0	13
2677	Gut microbiome - A potential mediator of pathogenesis in heart failure and its comorbidities: State-of-the-art review. Journal of Molecular and Cellular Cardiology, 2021, 152, 105-117.	0.9	58
2678	Introduction to host microbiome symbiosis in health and disease. Mucosal Immunology, 2021, 14, 547-554.	2.7	95
2679	Interpretable Machine Learning Framework Reveals Robust Gut Microbiome Features Associated With Type 2 Diabetes. Diabetes Care, 2021, 44, 358-366.	4.3	82
2680	Effective Disease Prediction on Gene Family Abundance Using Feature Selection and Binning Approach. Lecture Notes in Electrical Engineering, 2021, , 19-28.	0.3	1
2681	Metagenomic insights into Chinese northeast suancai: Predominance and diversity of genes associated with nitrogen metabolism in traditional household suancai fermentation. Food Research International, 2021, 139, 109924.	2.9	21
2682	Potential type 2 diabetes mellitus drug HMPA promotes shortâ€chain fatty acid production by improving carbon catabolite repression effect of gut microbiota. British Journal of Pharmacology, 2021, 178, 946-963.	2.7	7
2683	The Shared Resistome of Human and Pig Microbiota Is Mobilized by Distinct Genetic Elements. Applied and Environmental Microbiology, 2021, 87, .	1.4	5
2684	Metabolic modeling predicts specific gut bacteria as key determinants for <i>Candida albicans</i> colonization levels. ISME Journal, 2021, 15, 1257-1270.	4.4	23
2685	Alterations in Gut Microbiota Do Not Play a Causal Role in Diet-independent Weight Gain Caused by Ovariectomy. Journal of the Endocrine Society, 2021, 5, bvaa173.	0.1	6
2686	Comparison of two arylsulfatases for targeted mass spectrometric analysis of microbiota-derived metabolites. Journal of Pharmaceutical and Biomedical Analysis, 2021, 195, 113818.	1.4	6
2687	Sargassum fusiforme polysaccharide partly replaces acarbose against type 2 diabetes in rats. International Journal of Biological Macromolecules, 2021, 170, 447-458.	3.6	40
2688	Exposure to nitenpyram during pregnancy causes colonic mucosal damage and non-alcoholic steatohepatitis in mouse offspring: The role of gut microbiota. Environmental Pollution, 2021, 271, 116306.	3.7	24
2689	The protective effect of sulforaphane on type II diabetes induced by highâ€fat diet and lowâ€dosage streptozotocin. Food Science and Nutrition, 2021, 9, 747-756.	1.5	24
2691	Sleep and circadian disruption and the gut microbiome-possible links to dysregulated metabolism. Current Opinion in Endocrine and Metabolic Research, 2021, 17, 26-37.	0.6	16
2692	Implication of the Gut Microbiota in Metabolic Inflammation Associated with Nutritional Disorders and Obesity. Molecular Nutrition and Food Research, 2021, 65, e1900481.	1.5	8

#	Article	IF	CITATIONS
2693	Comparative evaluation of microbial profiles of oral samples obtained at different collection time points and using different methods. Clinical Oral Investigations, 2021, 25, 2779-2789.	1.4	9
2694	Alterations of the Treatment-Naive Gut Microbiome in Newly Diagnosed Hepatitis C Virus Infection. ACS Infectious Diseases, 2021, 7, 1059-1068.	1.8	17
2695	An Approach to Analyze Longitudinal Zero-Inflated Microbiome Count Data Using Two-Stage Mixed Effects Models. Statistics in Biosciences, 2021, 13, 267-290.	0.6	3
2696	Gut Microbiota in Patients with Morbid Obesity Before and After Bariatric Surgery: a Ten-Year Review Study (2009–2019). Obesity Surgery, 2021, 31, 317-326.	1.1	18
2697	Effect of Lactobacillus delbrueckii Subsp. lactis PTCC1057 on Serum Glucose, Fetuin-A ,and Sestrin 3 Levels in Streptozotocin-Induced Diabetic Mice. Probiotics and Antimicrobial Proteins, 2021, 13, 383-389.	1.9	11
2698	Gut microbiota in human metabolic health and disease. Nature Reviews Microbiology, 2021, 19, 55-71.	13.6	1,960
2699	Gut microbiome alterations and its link to corticosteroid resistance in immune thrombocytopenia. Science China Life Sciences, 2021, 64, 766-783.	2.3	10
2700	Shotgun metagenomics reveals both taxonomic and tryptophan pathway differences of gut microbiota in major depressive disorder patients. Psychological Medicine, 2021, 51, 90-101.	2.7	70
2701	Current challenges and best-practice protocols for microbiome analysis. Briefings in Bioinformatics, 2021, 22, 178-193.	3.2	268
2703	A systematic review of gut microbiome and ocular inflammatory diseases: Are they associated?. Indian Journal of Ophthalmology, 2021, 69, 535.	0.5	16
2704	Link between gut microbiome and cardiometabolic diseases. , 2021, , 185-205.		1
2706	Modulation of the immune response and metabolism in germ-free rats colonized by the probiotic Lactobacillus salivarius LI01. Applied Microbiology and Biotechnology, 2021, 105, 1629-1645.	1.7	19
2707	Research Progress of Intestinal Flora and Health. Advances in Clinical Medicine, 2021, 11, 2221-2227.	0.0	2
2708	Diabetes diminishes a typical metabolite of litchi pericarp oligomeric procyanidins (LPOPC) in urine mediated by imbalanced gut microbiota. Food and Function, 2021, 12, 5375-5386.	2.1	5
2709	Next-Generation Probiotics., 2021,, 45-79.		0
2710	Gastrointestinal Dysfunction and HIV Comorbidities. Current HIV/AIDS Reports, 2021, 18, 57-62.	1.1	17
2711	Synbiotics Alleviate the Gut Indole Load and Dysbiosis in Chronic Kidney Disease. Cells, 2021, 10, 114.	1.8	25
2712	Intestinal microbiota fingerprint in subjects with irritable bowel syndrome responders to a low FODMAP diet. Food and Function, 2021, 12, 3206-3218.	2.1	10

#	Article	IF	Citations
2713	Microbial Diversity and Classification. , 2021, , .		0
2714	Prediction and analysis of metagenomic operons via MetaRon: a pipeline for prediction of Metagenome and whole-genome opeRons. BMC Genomics, 2021, 22, 60.	1.2	2
2715	THE EFFECT OF MICROBIOTA ON DISEASES. Ankara Universitesi Eczacilik Fakultesi Dergisi, 0, , 96-108.	0.2	1
2716	Polysaccharides from fermented <i>Momordica charantia</i> L. with <i>Lactobacillus plantarum</i> NCU116 ameliorate metabolic disorders and gut microbiota change in obese rats. Food and Function, 2021, 12, 2617-2630.	2.1	37
2717	Dynamics of Microbiomes. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, , 57-99.	0.2	0
2718	Examining the influence of DPP4 inhibitors and sulphonyureas in combination with metformin on the Type II Diabetes gut microbiome: a pilot study. Proceedings of the Nutrition Society, 2021, 80, .	0.4	0
2719	Gut Microbiota Functional Dysbiosis Relates to Individual Diet in Subclinical Carotid Atherosclerosis. Nutrients, 2021, 13, 304.	1.7	16
2720	Association Between Gut Microbiome and Frailty in the Older Adult Population in Korea. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 1362-1368.	1.7	21
2721	Agro waste derived pectin poly and oligosaccharides: Synthesis and functional characterization. Biocatalysis and Agricultural Biotechnology, 2021, 31, 101910.	1.5	15
2722	Metagenomic Analysis of the Gut Microbiome Reveals Enrichment of Menaquinones (Vitamin K2) Pathway in Diabetes Mellitus. Diabetes and Metabolism Journal, 2021, 45, 77-85.	1.8	22
2723	Progressive Shifts in the Gut Microbiome Reflect Prediabetes and Diabetes Development in a Treatment-Naive Mexican Cohort. Frontiers in Endocrinology, 2020, 11, 602326.	1.5	13
2724	Environmental noise stress disturbs commensal microbiota homeostasis and induces oxi-inflammmation and AD-like neuropathology through epithelial barrier disruption in the EOAD mouse model. Journal of Neuroinflammation, 2021, 18, 9.	3.1	31
2725	Butyrate-producing human gut symbiont, <i>Clostridium butyricum</i> , and its role in health and disease. Gut Microbes, 2021, 13, 1-28.	4.3	157
2726	<scp>Glucagonâ€like</scp> peptideâ€l receptor agonists in the era of <scp>COVID</scp> â€l9: Friend or foe?. Clinical Obesity, 2021, 11, e12439.	1.1	21
2727	Sex- and age-related trajectories of the adult human gut microbiota shared across populations of different ethnicities. Nature Aging, 2021, 1 , 87-100.	5.3	86
2728	Effects of a high- \hat{l}^3 -polyglutamic acid-containing natto diet on liver lipids and cecal microbiota of adult female mice. Bioscience of Microbiota, Food and Health, 2021, 40, 176-185.	0.8	6
2729	Implications of microbiota in the pathogenesis of diabetes mellitus and cardiovascular disease. , 2021, , 159-184.		0
2730	Diet Ketogenik dan Dampaknya terhadap Mikrobiota Usus pada Kondisi Diabetes Melitus Tipe 2. Jurnal Gizi Dan Kesehatan, 2021, 13, 23-32.	0.1	0

#	Article	IF	CITATIONS
2731	MegaR: an interactive R package for rapid sample classification and phenotype prediction using metagenome profiles and machine learning. BMC Bioinformatics, 2021, 22, 25.	1.2	7
2732	Integrated Fecal Microbiome and Serum Metabolomics Analysis Reveals Abnormal Changes in Rats with Immunoglobulin A Nephropathy and the Intervention Effect of Zhen Wu Tang. Frontiers in Pharmacology, 2020, 11, 606689.	1.6	13
2733	Prospects of food-derived \hat{l} ±-glucosidase inhibitors in the management of diabetes., 2021, , 219-233.		0
2734	Gut microbiome dysbiosis and correlation with blood biomarkers in active-tuberculosis in endemic setting. PLoS ONE, 2021, 16, e0245534.	1.1	14
2735	Too much of a good thing. Evolution, Medicine and Public Health, 2021, 9, 53-67.	1.1	12
2736	Enteric Phageome Alterations in Patients With Type 2 Diabetes. Frontiers in Cellular and Infection Microbiology, 2020, 10, 575084.	1.8	16
2737	Gut Microbiome Diversity and Composition Are Associated with Habitual Dairy Intakes: A Cross-Sectional Study in Men. Journal of Nutrition, 2021, 151, 3400-3412.	1.3	6
2738	Anemarrhena asphodeloides modulates gut microbiota and restores pancreatic function in diabetic rats. Biomedicine and Pharmacotherapy, 2021, 133, 110954.	2.5	19
2739	Gut microbiota alterations reveal potential gut–brain axis changes in polycystic ovary syndrome. Journal of Endocrinological Investigation, 2021, 44, 1727-1737.	1.8	38
2740	Classification of Sequences with Deep Artificial Neural Networks: Representation and Architectural Issues., 2021,, 27-59.		0
2741	Gut microbiota and hypertension, diabetes, and other cardiovascular risk factors., 2021, , 375-390.		0
2742	Assessment of Possible Link of Intestinal Microbiota and Type 2 Diabetes Mellitus. American Journal of Molecular Biology, 2021, 11, 63-72.	0.1	0
2743	Chlorpyrifos and Î"9 Tetrahydrocannabinol exposure and effects on parameters associated with the endocannabinoid system and risk factors for obesity. Current Research in Toxicology, 2021, 2, 296-308.	1.3	6
2744	Dietary Fiber. , 2021, , 765-779.		0
2745	Large-scale association analyses identify host factors influencing human gut microbiome composition. Nature Genetics, 2021, 53, 156-165.	9.4	676
2746	An altered fecal microbial profiling in rosacea patients compared to matched controls. Journal of the Formosan Medical Association, 2021, 120, 256-264.	0.8	26
2747	The Association of Targeted Gut Microbiota with Body Composition in Type 2 Diabetes Mellitus. International Journal of Medical Sciences, 2021, 18, 511-519.	1.1	27
2748	Contribution of microbiota in obesity and obesity-related chronic diseases., 2021,, 207-219.		1

#	Article	IF	Citations
2749	Modulation of Short-Chain Fatty Acids as Potential Therapy Method for Type 2 Diabetes Mellitus. Canadian Journal of Infectious Diseases and Medical Microbiology, 2021, 2021, 1-13.	0.7	26
2750	The Double Face of Metals: The Intriguing Case of Chromium. Applied Sciences (Switzerland), 2021, 11, 638.	1.3	64
2751	The Impact of Migration on the Gut Metagenome of South Asian Canadians. Gut Microbes, 2021, 13, 1-29.	4.3	14
2752	A comprehensive evaluation of binning methods to recover human gut microbial species from a non-redundant reference gene catalog. NAR Genomics and Bioinformatics, 2021, 3, Iqab009.	1.5	5
2753	Beyond samples: A metric revealing more connections of gut microbiota between individuals. Computational and Structural Biotechnology Journal, 2021, 19, 3930-3937.	1.9	3
2754	Suppressed inflammation in obese children induced by a high-fiber diet is associated with the attenuation of gut microbial virulence factor genes. Virulence, 2021, 12, 1754-1770.	1.8	6
2755	Impacts of Selected Dietary Nutrient Intakes on Skeletal Muscle Insulin Sensitivity and Applications to Early Prevention of Type 2 Diabetes. Advances in Nutrition, 2021, 12, 1305-1316.	2.9	8
2756	<i>Sargassum fusiforme</i> fucoidan modifies gut microbiota and intestinal metabolites during alleviation of hyperglycemia in type 2 diabetic mice. Food and Function, 2021, 12, 3572-3585.	2.1	38
2757	Polysaccharides in Food., 2021,, 1401-1430.		0
2759	Treatment with broad-spectrum antibiotics upregulates Sglt1 and induces small intestinal villous hyperplasia in mice. Journal of Clinical Biochemistry and Nutrition, 2022, 70, 21-27.	0.6	1
2760	Comprehensive Gut Microbiota and Drug Processing., 2021,,.		0
2761	Altered gut microbial metabolites could mediate the effects of risk factors in Covidâ€19. Reviews in Medical Virology, 2021, 31, 1-13.	3.9	40
2762	Sex differences in growth performance are related to cecal microbiota in chicken. Microbial Pathogenesis, 2021, 150, 104710.	1.3	28
2763	IS THERE A RELATIONSHIP BETWEEN THE INTESTINAL MICROBIOTA AND DIABETES?. Postepy Mikrobiologii, 2021, 60, 195-200.	0.1	0
2764	Characterization of the gut DNA and RNA Viromes in a Cohort of Chinese Residents and Visiting Pakistanis. Virus Evolution, 2021, 7, veab022.	2.2	21
2765	Microbiota in utero? When and Where Microbial Establishment Starts?., 2021,, 13-13.		0
2766	Gut microbiota and their effects on atherosclerosis, platelet function, and hypertension. , 2021, , 295-309.		0
2767	Neonatal intensive care unit (NICU) exposures exert a sustained influence on the progression of gut microbiota and metabolome in the first year of life. Scientific Reports, 2021, 11, 1353.	1.6	11

#	ARTICLE	IF	CITATIONS
2768	<i>Lactobacillus paracasei</i> modulates the gut microbiota and improves inflammation in type 2 diabetic rats. Food and Function, 2021, 12, 6809-6820.	2.1	36
2769	Advanced Metabolomics for Metabolic Syndrome/Metabolic Diseases. , 2021, , 593-609.		0
2770	Dysbiosis of the Saliva Microbiome in Patients With Polycystic Ovary Syndrome. Frontiers in Cellular and Infection Microbiology, 2020, 10, 624504.	1.8	17
2771	Gastrointestinal Helminth Infection Improves Insulin Sensitivity, Decreases Systemic Inflammation, and Alters the Composition of Gut Microbiota in Distinct Mouse Models of Type 2 Diabetes. Frontiers in Endocrinology, 2020, 11, 606530.	1.5	17
2772	Metabolic Aspects of Anthracycline Cardiotoxicity. Current Treatment Options in Oncology, 2021, 22, 18.	1.3	48
2773	Green Manure Crops Affected Soil Chemical Properties and Fungal Diversity and Community of Apple Orchard in the Loess Plateau of China. Journal of Soil Science and Plant Nutrition, 2021, 21, 1089-1102.	1.7	24
2774	Analysis of Human Gut Microbiome: Taxonomy and Metabolic Functions in Thai Adults. Genes, 2021, 12, 331.	1.0	11
2775	Alterations in the gut bacterial microbiome in people with type 2 diabetes mellitus and diabetic retinopathy. Scientific Reports, 2021, 11, 2738.	1.6	91
2776	Inflammatory Mechanisms Underlying Nonalcoholic Steatohepatitis and the Transition to Hepatocellular Carcinoma. Cancers, 2021, 13, 730.	1.7	35
2777	Expanded catalog of microbial genes and metagenome-assembled genomes from the pig gut microbiome. Nature Communications, 2021, 12, 1106.	5.8	116
2778	Gut Microbiota Signatures in Gestational Anemia. Frontiers in Cellular and Infection Microbiology, 2021, 11, 549678.	1.8	6
2779	An Expanded Gene Catalog of Mouse Gut Metagenomes. MSphere, 2021, 6, .	1.3	13
2780	New Insights into Stroke Prevention and Treatment: Gut Microbiome. Cellular and Molecular Neurobiology, 2022, 42, 455-472.	1.7	15
2782	Alzheimer's Disease and Diabetes: Role of Diet, Microbiota and Inflammation in Preclinical Models. Biomolecules, 2021, 11, 262.	1.8	39
2783	Understanding connections and roles of gut microbiome in cardiovascular diseases. Canadian Journal of Microbiology, 2021, 67, 101-111.	0.8	14
2784	Machine Learning Reveals Time-Varying Microbial Predictors with Complex Effects on Glucose Regulation. MSystems, 2021, 6, .	1.7	13
2785	Kidney–Gut Crosstalk in AKI. Kidney360, 2021, 2, 886-889.	0.9	7
2786	Information Theoretic Metagenome Assembly Allows the Discovery of Disease Biomarkers in Human Microbiome. Entropy, 2021, 23, 187.	1.1	1

#	Article	IF	CITATIONS
2787	Antidepressants fluoxetine and amitriptyline induce alterations in intestinal microbiota and gut microbiome function in rats exposed to chronic unpredictable mild stress. Translational Psychiatry, 2021, 11, 131.	2.4	73
2788	The Fecal Microbiota Is Already Altered in Normoglycemic Individuals Who Go on to Have Type 2 Diabetes. Frontiers in Cellular and Infection Microbiology, 2021, 11, 598672.	1.8	23
2789	The Immune System Can Hear Noise. Frontiers in Immunology, 2020, 11, 619189.	2.2	24
2790	Microbiome or Infections: Amyloid-Containing Biofilms as a Trigger for Complex Human Diseases. Frontiers in Immunology, 2021, 12, 638867.	2.2	61
2791	Alterations of Gut Microbiota by Overnutrition Impact Gluconeogenic Gene Expression and Insulin Signaling. International Journal of Molecular Sciences, 2021, 22, 2121.	1.8	16
2792	The Role of the Gut Microbiome, Immunity, and Neuroinflammation in the Pathophysiology of Eating Disorders. Nutrients, 2021, 13, 500.	1.7	33
2793	Role of melatonin in murine "restraint stress―induced dysfunction of colonic microbiota. Journal of Microbiology, 2021, 59, 500-512.	1.3	12
2794	Ecology-guided prediction of cross-feeding interactions in the human gut microbiome. Nature Communications, 2021, 12, 1335.	5 . 8	37
2795	Metagenomic Analysis Reveals Microbial Community Structure and Metabolic Potential for Nitrogen Acquisition in the Oligotrophic Surface Water of the Indian Ocean. Frontiers in Microbiology, 2021, 12, 518865.	1.5	17
2796	Evaluation of the gut microbiota after metformin intervention in children with obesity: A metagenomic study of a randomized controlled trial. Biomedicine and Pharmacotherapy, 2021, 134, 111117.	2.5	7
2797	Effects of endocrine disrupting chemicals in host health: Three-way interactions between environmental exposure, host phenotypic responses, and gut microbiota. Environmental Pollution, 2021, 271, 116387.	3.7	24
2799	A genome-wide association study for gut metagenome in Chinese adults illuminates complex diseases. Cell Discovery, 2021, 7, 9.	3.1	49
2800	Intestinal bacteria are potential biomarkers and therapeutic targets for gastric cancer. Microbial Pathogenesis, 2021, 151, 104747.	1.3	25
2801	Characterization of the human skin resistome and identification of two microbiota cutotypes. Microbiome, 2021, 9, 47.	4.9	42
2802	Study of growth, metabolism, and morphology of Akkermansia muciniphila with an in vitro advanced bionic intestinal reactor. BMC Microbiology, 2021, 21, 61.	1.3	36
2803	PM2RA: A Framework for Detecting and Quantifying Relationship Alterations in Microbial Community. Genomics, Proteomics and Bioinformatics, 2021, 19, 154-167.	3.0	4
2804	Rapid gut dysbiosis induced by stroke exacerbates brain infarction in turn. Gut, 2021, 70, 1486-1494.	6.1	129
2805	Metagenomic analysis of the gut microbiome composition associated with vitamin D supplementation in Taiwanese infants. Scientific Reports, 2021, 11, 2856.	1.6	14

#	Article	IF	CITATIONS
2806	Diversity and dynamism of IgAâ^'microbiota interactions. Nature Reviews Immunology, 2021, 21, 514-525.	10.6	80
2807	The role of the microbiome in diabetes mellitus. Diabetes Research and Clinical Practice, 2021, 172, 108645.	1.1	43
2808	Effect of berberine on hyperglycaemia and gut microbiota composition in type 2 diabetic Goto-Kakizaki rats. World Journal of Gastroenterology, 2021, 27, 708-724.	1.4	42
2809	Ginsenoside Rb1, salvianolic acid B and their combination modulate gut microbiota and improve glucolipid metabolism in high-fat diet induced obese mice. PeerJ, 2021, 9, e10598.	0.9	17
2810	Benefits of Iterative Searches of Large Databases to Interpret Large Human Gut Metaproteomic Data Sets. Journal of Proteome Research, 2021, 20, 1522-1534.	1.8	15
2811	Multiomics Approach to Explore the Amelioration Mechanisms of Glucomannans on the Metabolic Disorder of Type 2 Diabetic Rats. Journal of Agricultural and Food Chemistry, 2021, 69, 2632-2645.	2.4	35
2812	Altered Gut Microbiota Related to Inflammatory Responses in Patients With Huntington's Disease. Frontiers in Immunology, 2020, 11, 603594.	2.2	53
2813	Sucralose and Cardiometabolic Health: Current Understanding from Receptors to Clinical Investigations. Advances in Nutrition, 2021, 12, 1500-1513.	2.9	13
2814	Fat, Sugar or Gut Microbiota in Reducing Cardiometabolic Risk: Does Diet Type Really Matter?. Nutrients, 2021, 13, 639.	1.7	4
2815	Clinical Study of Correlation for the Intestinal and Pharyngeal Microbiota in the Premature Neonates. Frontiers in Pediatrics, 2021, 9, 632573.	0.9	4
2816	kLDM: Inferring Multiple Metagenomic Association Networks Based on the Variation of Environmental Factors. Genomics, Proteomics and Bioinformatics, 2021, 19, 834-847.	3.0	2
2817	The role of the intestinal microbiota in allogeneic HCT: clinical associations and preclinical mechanisms. Current Opinion in Genetics and Development, 2021, 66, 25-35.	1.5	11
2818	Interconnections between the Oral and Gut Microbiomes: Reversal of Microbial Dysbiosis and the Balance between Systemic Health and Disease. Microorganisms, 2021, 9, 496.	1.6	40
2819	Identification of the relationship between the gut microbiome and feed efficiency in a commercial pig cohort. Journal of Animal Science, 2021, 99, .	0.2	22
2820	Ginsenoside Rk3 Ameliorates Obesity-Induced Colitis by Regulating of Intestinal Flora and the TLR4/NF-κB Signaling Pathway in C57BL/6 Mice. Journal of Agricultural and Food Chemistry, 2021, 69, 3082-3093.	2.4	35
2821	Identification of New Potential Biotherapeutics from Human Gut Microbiota-Derived Bacteria. Microorganisms, 2021, 9, 565.	1.6	16
2822	Trans-ethnic gut microbial signatures of prediabetic subjects from India and Denmark. Genome Medicine, 2021, 13, 36.	3.6	31
2823	Gut dysbiosis and mortality in hemodialysis patients. Npj Biofilms and Microbiomes, 2021, 7, 20.	2.9	26

#	Article	IF	CITATIONS
2824	Meta-Signer: Metagenomic Signature Identifier based onrank aggregation of features. F1000Research, 0, 10, 194.	0.8	4
2825	Associations between habitual diet, metabolic disease, and the gut microbiota using latent Dirichlet allocation. Microbiome, 2021, 9, 61.	4.9	47
2826	Gut Microbiota of Chinese Obese Children and Adolescents With and Without Insulin Resistance. Frontiers in Endocrinology, 2021, 12, 636272.	1.5	21
2827	Tea polyphenols regulate gut microbiota dysbiosis induced by antibiotic in mice. Food Research International, 2021, 141, 110153.	2.9	32
2828	Dissecting Individual Interactions between Pathogenic and Commensal Bacteria within a Multispecies Gut Microbial Community. MSphere, 2021, 6, .	1.3	10
2829	Diabetes and the Gut Microbiome. Seminars in Nephrology, 2021, 41, 104-113.	0.6	17
2830	Compositional change of gut microbiome and osteocalcin expressing endothelial progenitor cells in patients with coronary artery disease. PLoS ONE, 2021, 16, e0249187.	1.1	12
2831	Gut Microbiota in Metabolic-associated Fatty Liver Disease and in Other Chronic Metabolic Diseases. Journal of Clinical and Translational Hepatology, 2021, 000, 000-000.	0.7	17
2833	Liraglutide targets the gut microbiota and the intestinal immune system to regulate insulin secretion. Acta Diabetologica, 2021, 58, 881-897.	1.2	18
2836	Systems-wide effects of short-term feed deprivation in obese mice. Scientific Reports, 2021, 11, 5716.	1.6	6
2837	Probiotics, Pre-biotics and Synbiotics in the Treatment of Pre-diabetes: A Systematic Review of Randomized Controlled Trials. Frontiers in Public Health, 2021, 9, 645035.	1.3	13
2838	Retinitis pigmentosa is associated with shifts in the gut microbiome. Scientific Reports, 2021, 11, 6692.	1.6	16
2839	Key bacterial taxa and metabolic pathways affecting gut short-chain fatty acid profiles in early life. ISME Journal, 2021, 15, 2574-2590.	4.4	131
2840	Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cellular and Molecular Immunology, 2021, 18, 866-877.	4.8	175
2841	Ultrafine particles altered gut microbial population and metabolic profiles in a sex-specific manner in an obese mouse model. Scientific Reports, 2021, 11, 6906.	1.6	6
2842	CX3CR1 regulates gut microbiota and metabolism. A risk factor of type 2 diabetes. Acta Diabetologica, 2021, 58, 1035-1049.	1.2	4
2843	Lantibiotics Produced by Oral Inhabitants as a Trigger for Dysbiosis of Human Intestinal Microbiota. International Journal of Molecular Sciences, 2021, 22, 3343.	1.8	5
2844	Metagenomic Insight Into Patterns and Mechanism of Nitrogen Cycle During Biocrust Succession. Frontiers in Microbiology, 2021, 12, 633428.	1.5	14

#	Article	IF	CITATIONS
2845	Gut–Liver Axis in Nonalcoholic Fatty Liver Disease: the Impact of the Metagenome, End Products, and the Epithelial and Vascular Barriers. Seminars in Liver Disease, 2021, 41, 191-205.	1.8	10
2846	Differential gut microbiota composition between type 2 diabetes mellitus patients and healthy controls: A systematic review. Diabetes Research and Clinical Practice, 2021, 173, 108689.	1.1	24
2847	Longitudinal study of the scalp microbiome suggests coconut oil to enrich healthy scalp commensals. Scientific Reports, 2021, 11, 7220.	1.6	13
2848	Molecular Mechanisms of Obesity-Linked Cardiac Dysfunction: An Up-Date on Current Knowledge. Cells, 2021, 10, 629.	1.8	55
2849	The Relationship between the Gut Microbiome and Metformin as a Key for Treating Type 2 Diabetes Mellitus. International Journal of Molecular Sciences, 2021, 22, 3566.	1.8	62
2850	The Adult Phenylketonuria (PKU) Gut Microbiome. Microorganisms, 2021, 9, 530.	1.6	19
2851	Fasting alters the gut microbiome reducing blood pressure and body weight in metabolic syndrome patients. Nature Communications, 2021, 12, 1970.	5.8	108
2852	Gut Microbiota and Non-Alcoholic Fatty Liver Disease Severity in Type 2 Diabetes Patients. Journal of Personalized Medicine, 2021, 11, 238.	1.1	15
2853	SARS-CoV-2 - SYNOPTIC CHART OF THE MAIN CHARACTERISTICS OF VIRUS, PATHOGENESIS, IMMUNE RESPONSE, IMMUNOPROPHYLAXIS. Roumanian Archives of Microbiology and Immunology, 2021, 80, 51-80.	0.1	1
2854	The Role of Intestinal Flora in the Regulation of Bone Homeostasis. Frontiers in Cellular and Infection Microbiology, 2021, 11, 579323.	1.8	20
2855	Structural characterization of the microbial enzyme urocanate reductase mediating imidazole propionate production. Nature Communications, 2021, 12, 1347.	5 . 8	9
2856	Gut microbiota in patients with newly diagnosed acromegaly: a pilot cross-sectional study. Pituitary, 2021, 24, 600-610.	1.6	9
2857	Dysbiosis and Implication of the Gut Microbiota in Diabetic Retinopathy. Frontiers in Cellular and Infection Microbiology, 2021, 11, 646348.	1.8	74
2858	Redox Homeostasis in Pancreatic \hat{l}^2 -Cells: From Development to Failure. Antioxidants, 2021, 10, 526.	2.2	22
2859	Trans-ethnic gut microbiota signatures of type 2 diabetes in Denmark and India. Genome Medicine, 2021, 13, 37.	3.6	34
2860	Association of maternal gut microbiota and plasma metabolism with congenital heart disease in offspring: a multi-omic analysis. Scientific Reports, 2021, 11, 5339.	1.6	11
2861	The Role of the Gut Microbiota in the Gut–Brain Axis in Obesity: Mechanisms and Future Implications. International Journal of Molecular Sciences, 2021, 22, 2993.	1.8	26
2862	Dietary supplementation with Bacillus subtilis promotes growth performance of broilers by altering the dominant microbial community. Poultry Science, 2021, 100, 100935.	1.5	81

#	Article	IF	CITATIONS
2863	The Microbiome Meets Nanotechnology: Opportunities and Challenges in Developing New Diagnostic Devices. Advanced Materials, 2021, 33, e2006104.	11.1	24
2864	Characteristics of the gut microbiome in patients with prediabetes and type 2 diabetes. PeerJ, 2021, 9, e10952.	0.9	20
2865	Dysbiosis of the shrimp (<i>Penaeus monodon</i>) gut microbiome with AHPND outbreaks revealed by 16S rRNA metagenomics analysis. Aquaculture Research, 2021, 52, 3336-3349.	0.9	19
2866	Recognizing the Benefits of Pre-/Probiotics in Metabolic Syndrome and Type 2 Diabetes Mellitus Considering the Influence of Akkermansia muciniphila as a Key Gut Bacterium. Microorganisms, 2021, 9, 618.	1.6	80
2867	Occurrence and distribution of antimicrobial resistance genes in the soil of an industrial park in China: A metagenomics survey. Environmental Pollution, 2021, 273, 116467.	3.7	8
2868	Approaching precision medicine by tailoring the microbiota. Mammalian Genome, 2021, 32, 206-222.	1.0	3
2869	Metagenomic Insight: Dietary Thiamine Supplementation Promoted the Growth of Carbohydrate-Associated Microorganisms and Enzymes in the Rumen of Saanen Goats Fed High-Concentrate Diets. Microorganisms, 2021, 9, 632.	1.6	6
2870	Microbiota engraftment after faecal microbiota transplantation in obese subjects with type 2 diabetes: a 24-week, double-blind, randomised controlled trial. Gut, 2022, 71, 716-723.	6.1	83
2871	Fecal microbiota signatures of insulin resistance, inflammation, and metabolic syndrome in youth with obesity: a pilot study. Acta Diabetologica, 2021, 58, 1009-1022.	1.2	32
2872	The trimebutine effect on Helicobacter pylori-related gastrointestinal tract and brain disorders: A hypothesis. Neurochemistry International, 2021, 144, 104938.	1.9	9
2873	Butyrate in Energy Metabolism: There Is Still More to Learn. Trends in Endocrinology and Metabolism, 2021, 32, 159-169.	3.1	136
2874	Dietary Fibre Intake in Type 2 and New-Onset Prediabetes/Diabetes after Acute Pancreatitis: A Nested Cross-Sectional Study. Nutrients, 2021, 13, 1112.	1.7	8
2875	Histological and Biochemical Alterations in Testis Rats Treated with Chitosan Nanoparticles Against Hydroxyapatite Nanoparticles. Egyptian Academic Journal of Biological Sciences B Zoology, 2021, 13, 129-141.	0.1	2
2876	Carob fruit extract-enriched meat, as preventive and curative treatments, improves gut microbiota and colonic barrier integrity in a late-stage T2DM model. Food Research International, 2021, 141, 110124.	2.9	15
2877	Synergistic Protective Effects of Different Dietary Supplements Against Type 2 Diabetes via Regulating Gut Microbiota. Journal of Medicinal Food, 2021, 24, 319-330.	0.8	6
2878	Manipulation of intestinal microbiome as potential treatment for insulin resistance and type 2 diabetes. European Journal of Nutrition, 2021, 60, 2361-2379.	1.8	25
2879	Characterization of the rumen microbiota and its relationship with residual feed intake in sheep. Animal, 2021, 15, 100161.	1.3	64
2880	Microbiome meta-analysis and cross-disease comparison enabled by the SIAMCAT machine learning toolbox. Genome Biology, 2021, 22, 93.	3.8	122

#	Article	IF	CITATIONS
2881	Gut microbiota composition associated with hepatic fibrosis in nonâ€obese patients with nonâ€olcoholic fatty liver disease. Journal of Gastroenterology and Hepatology (Australia), 2021, 36, 2275-2284.	1.4	26
2882	Effect of fecal microbiota transplantation on neurological restoration in a spinal cord injury mouse model: involvement of brain-gut axis. Microbiome, 2021, 9, 59.	4.9	97
2883	Potential role of microbiome in Chronic Fatigue Syndrome/Myalgic Encephalomyelits (CFS/ME). Scientific Reports, 2021, 11, 7043.	1.6	42
2884	The Impact of a Dried Fruit and Vegetable Supplement and Fiber Rich Shake on Gut and Health Parameters in Female Healthcare Workers: A Placebo-Controlled, Double-Blind, Randomized Clinical Trial. Microorganisms, 2021, 9, 843.	1.6	6
2885	Multiple haplotype reconstruction from allele frequency data. Nature Computational Science, 2021, 1, 262-271.	3.8	6
2886	Multi-omics analyses reveal relationships among dairy consumption, gut microbiota and cardiometabolic health. EBioMedicine, 2021, 66, 103284.	2.7	24
2887	Modulating the Microbiota as a Therapeutic Intervention for Type 2 Diabetes. Frontiers in Endocrinology, 2021, 12, 632335.	1.5	63
2888	The Gut Microbiome in Hypertension. Circulation Research, 2021, 128, 934-950.	2.0	86
2889	Alterations of the Skin and Gut Microbiome in Psoriasis and Psoriatic Arthritis. International Journal of Molecular Sciences, 2021, 22, 3998.	1.8	77
2890	Gut microbiota in Immunoglobulin A Nephropathy: a Malaysian Perspective. BMC Nephrology, 2021, 22, 145.	0.8	14
2892	Transverse aortic constriction induces gut barrier alterations, microbiota remodeling and systemic inflammation. Scientific Reports, 2021, 11, 7404.	1.6	13
2893	Impact of preoperative antibiotics and other variables on integrated microbiome-host transcriptomic data generated from colorectal cancer resections. World Journal of Gastroenterology, 2021, 27, 1465-1482.	1.4	4
2894	Bacterial Diversity in Rhipicephalus sanguineus (Acari: Ixodidae) from Two States in Nigeria. Journal of Entomological Science, 2021, 56, 256-271.	0.2	1
2895	A critical assessment of gene catalogs for metagenomic analysis. Bioinformatics, 2021, 37, 2848-2857.	1.8	15
2896	Alteration of gut microbial profile in patients with diabetic nephropathy. Endocrine, 2021, 73, 71-84.	1.1	35
2897	The Role of the Gut-Liver Axis in Metabolic Dysfunction-Associated Fatty Liver Disease. Frontiers in Immunology, 2021, 12, 660179.	2.2	56
2898	Short-Chain Fatty Acids, Maternal Microbiota and Metabolism in Pregnancy. Nutrients, 2021, 13, 1244.	1.7	81
2899	Metabolic profiles of oligosaccharides derived from four microbial polysaccharides by faecal inocula from type 2 diabetes patients. International Journal of Food Sciences and Nutrition, 2021, 72, 1-12.	1.3	7

#	ARTICLE	IF	CITATIONS
2900	Drift of the Subgingival Periodontal Microbiome during Chronic Periodontitis in Type 2 Diabetes Mellitus Patients. Pathogens, 2021, 10, 504.	1.2	16
2901	Dynamics of rumen gene expression, microbiome colonization, and their interplay in goats. BMC Genomics, 2021, 22, 288.	1.2	18
2902	Role of the gut microbiota in type 2 diabetes and related diseases. Metabolism: Clinical and Experimental, 2021, 117, 154712.	1.5	152
2903	The Effects of Non-Nutritive Sweetener Consumption in the Pediatric Populations: What We Know, What We Don't, and What We Need to Learn. Frontiers in Endocrinology, 2021, 12, 625415.	1.5	15
2904	Could the Gut Microbiota Serve as a Therapeutic Target in Ischemic Stroke?. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-15.	0.5	8
2905	Gut microbiota compositions and metabolic functions in type 2 diabetes differ with glycemic durability to metformin monotherapy. Diabetes Research and Clinical Practice, 2021, 174, 108731.	1.1	8
2906	NAFLD-Associated HCC: Progress and Opportunities. Journal of Hepatocellular Carcinoma, 2021, Volume 8, 223-239.	1.8	33
2907	The complex relationship between metabolic syndrome and sweeteners. Journal of Food Science, 2021, 86, 1511-1531.	1.5	6
2908	The Gut Microbiome and Cardiovascular Disease. Cureus, 2021, 13, e14519.	0.2	12
2909	Treatment of contact lens related dry eye with intense pulsed light. Contact Lens and Anterior Eye, 2022, 45, 101449.	0.8	20
2910	Nutritional Effects of the Enteral Nutritional Formula on Regulation of Gut Microbiota and Metabolic Level in Type 2 Diabetes Mellitus Mice. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2021, Volume 14, 1855-1869.	1.1	5
2911	Association of diabetes and microbiota: An update. Saudi Journal of Biological Sciences, 2021, 28, 4446-4454.	1.8	14
2912	Effects of High-Fat Diet on Carcinogen-Induced Pancreatic Cancer and Intestinal Microbiota in C57BL/6 Wild-Type Mice. Pancreas, 2021, 50, 564-570.	0.5	2
2913	Gut Dysbiosis and Western Diet in the Pathogenesis of Essential Arterial Hypertension: A Narrative Review. Nutrients, 2021, 13, 1162.	1.7	20
2914	Environmental Influences on the Human Microbiome and Implications for Noncommunicable Disease. Annual Review of Public Health, 2021, 42, 277-292.	7.6	54
2915	Gut Microbiota May Mediate the Influence of Periodontitis on Prediabetes. Journal of Dental Research, 2021, 100, 1387-1396.	2.5	41
2916	Health benefits of edible mushroom polysaccharides and associated gut microbiota regulation. Critical Reviews in Food Science and Nutrition, 2022, 62, 6646-6663.	5.4	35
2917	Diabetes Mellitus'ta Mikrobiyotanın Rolü ve Hedeflenmesi. Turkish Journal of Diabetes and Obesity, 2021, 5, 51-58.	0.0	2

#	Article	IF	CITATIONS
2918	Drug Response Diversity: A Hidden Bacterium?. Journal of Personalized Medicine, 2021, 11, 345.	1.1	2
2919	Gut Microbiome of Indonesian Adults Associated with Obesity and Type 2 Diabetes: A Cross-Sectional Study in an Asian City, Yogyakarta. Microorganisms, 2021, 9, 897.	1.6	19
2920	Microbiota's role in health and diseases. Environmental Science and Pollution Research, 2021, 28, 36967-36983.	2.7	43
2922	Androgen-induced gut dysbiosis disrupts glucolipid metabolism and endocrinal functions in polycystic ovary syndrome. Microbiome, 2021, 9, 101.	4.9	50
2923	Pyridostigmine Protects Against Diabetic Cardiomyopathy by Regulating Vagal Activity, Gut Microbiota, and Branched-Chain Amino Acid Catabolism in Diabetic Mice. Frontiers in Pharmacology, 2021, 12, 647481.	1.6	14
2924	Rapid prototyping vaccine approach in mice against multiâ€drug resistant Gramâ€negative organisms from clinical isolates based on outer membrane vesicles. Microbiology and Immunology, 2021, 65, 214-227.	0.7	4
2925	Next-generation therapeutic bacteria for treatment of obesity, diabetes, and other endocrine diseases. Best Practice and Research in Clinical Endocrinology and Metabolism, 2021, 35, 101504.	2.2	16
2926	A Tryptophan-Deficient Diet Induces Gut Microbiota Dysbiosis and Increases Systemic Inflammation in Aged Mice. International Journal of Molecular Sciences, 2021, 22, 5005.	1.8	40
2927	Targeting the Gut Microbiota for Remediating Obesity and Related Metabolic Disorders. Journal of Nutrition, 2021, 151, 1703-1716.	1.3	7
2928	Human Gut Microbiome and Liver Diseases: From Correlation to Causation. Microorganisms, 2021, 9, 1017.	1.6	16
2929	16S rDNA Full-Length Assembly Sequencing Technology Analysis of Intestinal Microbiome in Polycystic Ovary Syndrome. Frontiers in Cellular and Infection Microbiology, 2021, 11, 634981.	1.8	29
2930	Dietary Fibre Modulates the Gut Microbiota. Nutrients, 2021, 13, 1655.	1.7	225
2931	The gut microbiota as a versatile immunomodulator in obesity and associated metabolic disorders. Best Practice and Research in Clinical Endocrinology and Metabolism, 2021, 35, 101542.	2.2	21
2932	Lipopolysaccharide from the commensal microbiota of the breast enhances cancer growth: role of \$100A7 and TLR4. Molecular Oncology, 2022, 16, 1508-1522.	2.1	9
2933	Behavioral Risk Factors and Risk of Early-Onset Colorectal Cancer: Review of the Mechanistic and Observational Evidence. Current Colorectal Cancer Reports, 2021, 17, 43-53.	1.0	2
2934	Influence of the densities and nutritional components of bacterial colonies on the culture-enriched gut bacterial community structure. AMB Express, 2021, 11, 78.	1.4	2
2935	The Baseline Gut Microbiota Directs Dieting-Induced Weight Loss Trajectories. Gastroenterology, 2021, 160, 2029-2042.e16.	0.6	63
2937	The relationship between gut microbiota, short-chain fatty acids and type 2 diabetes mellitus: the possible role of dietary fibre. Acta Diabetologica, 2021, 58, 1131-1138.	1.2	53

#	Article	IF	CITATIONS
2938	Gene-level metagenomic architectures across diseases yield high-resolution microbiome diagnostic indicators. Nature Communications, 2021, 12, 2907.	5.8	33
2939	Gut microbiota-mediated pesticide toxicity in humans: Methodological issues and challenges in the risk assessment of pesticides. Chemosphere, 2021, 271, 129817.	4.2	21
2940	Influence of Fluconazole Administration on Gut Microbiome, Intestinal Barrier, and Immune Response in Mice. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	17
2941	Potential of fecal microbiota for detection and postoperative surveillance of colorectal cancer. BMC Microbiology, 2021, 21, 156.	1.3	10
2942	Metaproteomic sample preparation methods bias the recovery of host and microbial proteins according to taxa and cellular compartment. Journal of Proteomics, 2021, 240, 104219.	1.2	4
2943	The gut microbiome in pancreatogenic diabetes differs from that of Type 1 and Type 2 diabetes. Scientific Reports, 2021, 11, 10978.	1.6	10
2944	Intestinal microbiota and diabetic kidney diseases: the Role of microbiota and derived metabolites inmodulation of renal inflammation and disease progression. Best Practice and Research in Clinical Endocrinology and Metabolism, 2021, 35, 101484.	2.2	42
2945	Gut Microbiome and Metabolites in Patients with NAFLD and after Bariatric Surgery: A Comprehensive Review. Metabolites, 2021, 11, 353.	1.3	19
2946	Taxonomic classification of metagenomic sequences from Relative Abundance Index profiles using deep learning. Biomedical Signal Processing and Control, 2021, 67, 102539.	3.5	12
2947	Gut microbiome, prebiotics, intestinal permeability and diabetes complications. Best Practice and Research in Clinical Endocrinology and Metabolism, 2021, 35, 101507.	2.2	63
2948	Association Between Gut Akkermansia and Metabolic Syndrome is Dose-Dependent and Affected by Microbial Interactions: A Cross-Sectional Study. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2021, Volume 14, 2177-2188.	1.1	25
2949	Gut microbiome differences among Mexican Americans with and without type 2 diabetes mellitus. PLoS ONE, 2021, 16, e0251245.	1.1	6
2950	Butyribacter intestini gen. nov., sp. nov., a butyric acid-producing bacterium of the family Lachnospiraceae isolated from human faeces, and reclassification of Acetivibrio ethanolgignens as Acetanaerobacter ethanolgignens gen. nov., comb. nov. Systematic and Applied Microbiology, 2021, 44, 126201.	1.2	21
2951	Bayesian variable selection for highâ€dimensional rank data. Environmetrics, 2021, 32, e2682.	0.6	2
2952	Constituents, Pharmacokinetics, and Pharmacology of Gegen-Qinlian Decoction. Frontiers in Pharmacology, 2021, 12, 668418.	1.6	29
2953	Early Life Exposure to Food Contaminants and Social Stress as Risk Factor for Metabolic Disorders Occurrence?—An Overview. Biomolecules, 2021, 11, 687.	1.8	2
2954	Sex differences in the intestinal microbiome: interactions with risk factors for atherosclerosis and cardiovascular disease. Biology of Sex Differences, 2021, 12, 35.	1.8	22
2956	Multi-Omics Analysis Provides Insight into the Possible Molecular Mechanism of Hay Fever Based on Gut Microbiota. Engineering, 2021, , .	3.2	0

#	Article	IF	CITATIONS
2957	Immunomodulatory role of Faecalibacterium prausnitzii in obesity and metabolic disorders. Minerva Biotechnology and Biomolecular Research, 2021, 33, .	0.3	10
2958	Potential Valorization of Hazelnut Shells through Extraction, Purification and Structural Characterization of Prebiotic Compounds: A Critical Review. Foods, 2021, 10, 1197.	1.9	14
2959	Mulberroside A from Cortex Mori Enhanced Gut Integrity in Diabetes. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-11.	0.5	3
2960	Co-exposure to inorganic arsenic and fluoride prominently disrupts gut microbiota equilibrium and induces adverse cardiovascular effects in offspring rats. Science of the Total Environment, 2021, 767, 144924.	3.9	18
2961	Protein Kinase D2 drives chylomicronâ€mediated lipid transport in the intestine and promotes obesity. EMBO Molecular Medicine, 2021, 13, e13548.	3.3	13
2962	Reads Binning Improves the Assembly of Viral Genome Sequences From Metagenomic Samples. Frontiers in Microbiology, 2021, 12, 664560.	1.5	1
2963	Gut microbiota in healthy and unhealthy long-living people. Gene, 2021, 779, 145510.	1.0	17
2964	Maternal Microbiota, Early Life Colonization and Breast Milk Drive Immune Development in the Newborn. Frontiers in Immunology, 2021, 12, 683022.	2.2	70
2965	Unravelling the involvement of gut microbiota in type 2 diabetes mellitus. Life Sciences, 2021, 273, 119311.	2.0	73
2966	The gut microbiota regulates hypothalamic inflammation and leptin sensitivity in Western diet-fed mice via a GLP-1R-dependent mechanism. Cell Reports, 2021, 35, 109163.	2.9	50
2967	Gut-Lung Dysbiosis Accompanied by Diabetes Mellitus Leads to Pulmonary Fibrotic Change through the NF-ÎB Signaling Pathway. American Journal of Pathology, 2021, 191, 838-856.	1.9	23
2968	Gut microbiota changes after metabolic surgery in adult diabetic patients with mild obesity: a randomised controlled trial. Diabetology and Metabolic Syndrome, 2021, 13, 56.	1.2	14
2970	Personalized Nutrition Approach in Pregnancy and Early Life to Tackle Childhood and Adult Non-Communicable Diseases. Life, 2021, 11, 467.	1.1	10
2971	Characterization and description of Faecalibacterium butyricigenerans sp. nov. and F. longum sp. nov., isolated from human faeces. Scientific Reports, 2021, 11, 11340.	1.6	42
2972	Gut Microbiota Perturbation in IgA Deficiency Is Influenced by IgA-Autoantibody Status. Gastroenterology, 2021, 160, 2423-2434.e5.	0.6	34
2973	Gut Microbiota Signature Among Asian Post-gestational Diabetes Women Linked to Macronutrient Intakes and Metabolic Phenotypes. Frontiers in Microbiology, 2021, 12, 680622.	1.5	13
2974	Role of Gut Microbiota in Multiple Sclerosis and Potential Therapeutic Implications. Current Neuropharmacology, 2022, 20, 1413-1426.	1.4	13
2975	Effects of Probiotic Bacteria Lactobacillaceae on the Gut Microbiota in Children With Celiac Disease Autoimmunity: A Placebo-Controlled and Randomized Clinical Trial. Frontiers in Nutrition, 2021, 8, 680771.	1.6	15

#	Article	IF	CITATIONS
2976	Circulating bacterial signature is linked to metabolic disease and shifts with metabolic alleviation after bariatric surgery. Genome Medicine, 2021, 13, 105.	3.6	14
2977	Correlations Between Intestinal Microbial Community and Hematological Profile in Native Tibetans and Han Immigrants. Frontiers in Microbiology, 2021, 12, 615416.	1.5	8
2978	Effects of Xian-Ling-Gu-Bao capsule on the gut microbiota in ovariectomized rats: Metabolism and modulation. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1176, 122771.	1.2	5
2979	Dietary Supplementation with Inulin Modulates the Gut Microbiota and Improves Insulin Sensitivity in Prediabetes. International Journal of Endocrinology, 2021, 2021, 1-8.	0.6	11
2980	Markers of metabolic health and gut microbiome diversity: findings from two population-based cohort studies. Diabetologia, 2021, 64, 1749-1759.	2.9	30
2981	The gut microbiome in pregnancy and pregnancy complications. Current Opinion in Endocrine and Metabolic Research, 2021, 18, 133-138.	0.6	22
2982	A transomic cohort as a reference point for promoting a healthy human gut microbiome. Medicine in Microecology, 2021, 8, 100039.	0.7	24
2983	Association of bowel movement frequency and laxative use with risk of hepatocellular carcinoma in <scp>US</scp> women and men. International Journal of Cancer, 2021, 149, 1529-1535.	2.3	O
2984	Roux-en-Y gastric bypass contributes to weight loss-independent improvement in hypothalamic inflammation and leptin sensitivity through gut-microglia-neuron-crosstalk. Molecular Metabolism, 2021, 48, 101214.	3.0	20
2985	The human microbiome and COVID-19: A systematic review. PLoS ONE, 2021, 16, e0253293.	1.1	95
2986	Adequacy of calcium and vitamin D reduces inflammation, \hat{l}^2 -catenin signaling, and dysbiotic Parasutterela bacteria in the colon of C57BL/6 mice fed a western-style diet. Journal of Nutritional Biochemistry, 2021, 92, 108613.	1.9	6
2988	Antidiabetic Function of Lactobacillus fermentum MF423-Fermented Rice Bran and Its Effect on Gut Microbiota Structure in Type 2 Diabetic Mice. Frontiers in Microbiology, 2021, 12, 682290.	1.5	28
2989	Can Changes in Gut Microbiota Predict Progression Toward Diabetes?. Journal of Exploratory Research in Pharmacology, 2021, 000, 000-000.	0.2	3
2991	A comparative study of acarbose, vildagliptin and saxagliptin intended for better efficacy and safety on type 2 diabetes mellitus treatment. Life Sciences, 2021, 274, 119069.	2.0	10
2992	The gut microbiome and type 2 diabetes status in the Multiethnic Cohort. PLoS ONE, 2021, 16, e0250855.	1.1	30
2993	The effects of Fushen Granule on the composition and function of the gut microbiota during Peritoneal Dialysis–Related Peritonitis. Phytomedicine, 2021, 86, 153561.	2.3	2
2994	Consistent Alterations of Human Fecal Microbes After Transplantation into Germ-free Mice. Genomics, Proteomics and Bioinformatics, 2022, 20, 382-393.	3.0	6
2995	Association Between Gut Microbial Abundance and Sight-Threatening Diabetic Retinopathy. , 2021, 62, 19.		19

#	Article	IF	CITATIONS
2996	Gene duplication and adaptive evolution of Toll-like receptor genes in birds. Developmental and Comparative Immunology, 2021, 119, 103990.	1.0	8
2997	A salivary microbiome-based auxiliary diagnostic model for type 2 diabetes mellitus. Archives of Oral Biology, 2021, 126, 105118.	0.8	14
2998	A catalog of tens of thousands of viruses from human metagenomes reveals hidden associations with chronic diseases. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	138
2999	The Hormetic Effect of Metformin: "Less Is More�. International Journal of Molecular Sciences, 2021, 22, 6297.	1.8	13
3000	Recent Progress in Metabolic Syndrome Research and Therapeutics. International Journal of Molecular Sciences, 2021, 22, 6862.	1.8	20
3001	Effects of a Diet Based on Foods from Symbiotic Agriculture on the Gut Microbiota of Subjects at Risk for Metabolic Syndrome. Nutrients, 2021, 13, 2081.	1.7	5
3002	Human Gut Faecalibacterium prausnitzii Deploys a Highly Efficient Conserved System To Cross-Feed on β-Mannan-Derived Oligosaccharides. MBio, 2021, 12, e0362820.	1.8	31
3003	The Effect of Probiotics on Health Outcomes in the Elderly: A Systematic Review of Randomized, Placebo-Controlled Studies. Microorganisms, 2021, 9, 1344.	1.6	17
3005	Decreased Abundance of <i>Akkermansia muciniphila</i> Leads to the Impairment of Insulin Secretion and Glucose Homeostasis in Lean Type 2 Diabetes. Advanced Science, 2021, 8, e2100536.	5.6	68
3006	Effect of Fecal Microbiota Transplantation Combined With Mediterranean Diet on Insulin Sensitivity in Subjects With Metabolic Syndrome. Frontiers in Microbiology, 2021, 12, 662159.	1.5	22
3007	Habitual Dietary Intake Affects the Altered Pattern of Gut Microbiome by Acarbose in Patients with Type 2 Diabetes. Nutrients, 2021, 13, 2107.	1.7	16
3008	Impact of the Gut Microbiota Balance on the Health–Disease Relationship: The Importance of Consuming Probiotics and Prebiotics. Foods, 2021, 10, 1261.	1.9	27
3009	Novel insights into the genetically obese (ob/ob) and diabetic (db/db) mice: two sides of the same coin. Microbiome, 2021, 9, 147.	4.9	92
3010	Genomics as a potential tool to unravel the rhizosphere microbiome interactions on plant health. Journal of Microbiological Methods, 2021, 185, 106215.	0.7	16
3011	Study on relationship between bacterial diversity and quality of Huangjiu (Chinese Rice Wine) fermentation. Food Science and Nutrition, 2021, 9, 3885-3892.	1.5	20
3012	Analysis of jejunum microbiota of HFD/STZ diabetic rats. Biomedicine and Pharmacotherapy, 2021, 138, 111094.	2.5	6
3013	Yearly changes in the composition of gut microbiota in the elderly, and the effect of lactobacilli intake on these changes. Scientific Reports, 2021, 11, 12765.	1.6	12
3014	Regulation of a New Type of Selenium-Rich Royal Jelly on Gut Microbiota Profile in Mice. Biological Trace Element Research, 2022, 200, 1763-1775.	1.9	9

#	Article	IF	CITATIONS
3015	Blood microbiota composition in Iranian pre-diabetic and type 2 diabetic patients1. Human Antibodies, 2022, 29, 243-248.	0.6	4
3016	Intestinal Microbiota in Common Chronic Inflammatory Disorders Affecting Children. Frontiers in Immunology, 2021, 12, 642166.	2.2	15
3017	Lower human defensin 5 in elderly people compared to middle-aged is associated with differences in the intestinal microbiota composition: the DOSANCO Health Study. GeroScience, 2022, 44, 997-1009.	2.1	13
3018	Influence of Lactobacillus paracasei HIIO1 Supplementation on Glycemia and Inflammatory Biomarkers in Type 2 Diabetes: A Randomized Clinical Trial. Foods, 2021, 10, 1455.	1.9	32
3019	Microbiome: Insulin signaling shapes gut community composition. Current Biology, 2021, 31, R803-R806.	1.8	0
3020	The role of the microbiome in gastrointestinal inflammation. Bioscience Reports, 2021, 41, .	1.1	27
3021	Decrease in abundance of bacteria of the genus Bifidobacterium in gut microbiota may be related to pre-eclampsia progression in women from East China. Food and Nutrition Research, 2021, 65, .	1.2	17
3022	Regulating the gut microbiota and SCFAs in the faeces of T2DM rats should be one of antidiabetic mechanisms of mogrosides in the fruits of Siraitia grosvenorii. Journal of Ethnopharmacology, 2021, 274, 114033.	2.0	29
3024	Compositional and genetic alterations in Graves' disease gut microbiome reveal specific diagnostic biomarkers. ISME Journal, 2021, 15, 3399-3411.	4.4	30
3025	Gut Microbiota: The Missing Link Between Helicobacter pylori Infection and Metabolic Disorders?. Frontiers in Endocrinology, 2021, 12, 639856.	1.5	29
3026	mbImpute: an accurate and robust imputation method for microbiome data. Genome Biology, 2021, 22, 192.	3.8	23
3027	The Human Gut Phageome: Origins and Roles in the Human Gut Microbiome. Frontiers in Cellular and Infection Microbiology, 2021, 11, 643214.	1.8	43
3029	Key Technologies for Progressing Discovery of Microbiome-Based Medicines. Frontiers in Microbiology, 2021, 12, 685935.	1.5	13
3030	The Mystery of Diabetic Cardiomyopathy: From Early Concepts and Underlying Mechanisms to Novel Therapeutic Possibilities. International Journal of Molecular Sciences, 2021, 22, 5973.	1.8	20
3032	Identification of pathogen(s) in infectious diseases using shotgun metagenomic sequencing and conventional culture: a comparative study. PeerJ, 2021, 9, e11699.	0.9	2
3033	Life History Recorded in the Vagino-cervical Microbiome Along with Multi-omes. Genomics, Proteomics and Bioinformatics, 2022, 20, 304-321.	3.0	18
3034	Upregulation of Anti-Oxidative Stress Response Improves Metabolic Changes in L-Selectin-Deficient Mice but Does Not Prevent NAFLD Progression or Fecal Microbiota Shifts. International Journal of Molecular Sciences, 2021, 22, 7314.	1.8	1
3035	Vegan Diet and the Gut Microbiota Composition in Healthy Adults. Nutrients, 2021, 13, 2402.	1.7	34

#	Article	IF	CITATIONS
3036	Roux-en-Y Gastric Bypass Improved Insulin Resistance via Alteration of the Human Gut Microbiome and Alleviation of Endotoxemia. BioMed Research International, 2021, 2021, 1-14.	0.9	5
3037	Blueberry as an Attractive Functional Fruit to Prevent (Pre)Diabetes Progression. Antioxidants, 2021, 10, 1162.	2.2	19
3038	ĐŸÑиÑĐ¾Đ±Ñ–Đ¾Ñ,Đ¸ĐºĐ¸ ÑĐº Đ¿ĐµÑ€ÑĐ¿ĐµĐºÑ,иĐ2Đ½Ñ– заÑĐ¾Đ±Đ¸ ĐʻĐ»Ñ•Đ»Ñ–ĐºÑƒĐ2Đ°Đ½Đ)⅓ØÑŧпр)¸ÑoоÑо
3039	Role of microbiota-derived short-chain fatty acids in nervous system disorders. Biomedicine and Pharmacotherapy, 2021, 139, 111661.	2.5	106
3041	Characterization of the blood and neutrophilâ€specific microbiomes and exploration of potential bacterial biomarkers for sepsis in surgical patients. Immunity, Inflammation and Disease, 2021, 9, 1343-1357.	1.3	17
3042	Do Bioactive Food Compound with Avena sativa L., Linum usitatissimum L. and Glycine max L. Supplementation with Moringa oleifera Lam. Have a Role against Nutritional Disorders? An Overview of the In Vitro and In Vivo Evidence. Nutrients, 2021, 13, 2294.	1.7	3
3043	Renal Sensing of Bacterial Metabolites in the Gut-kidney Axis. Kidney360, 2021, 2, 1501-1509.	0.9	12
3044	Diosmetin ameliorate type 2 diabetic mellitus by up-regulating Corynebacterium glutamicum to regulate IRS/PI3K/AKT-mediated glucose metabolism disorder in KK-Ay mice. Phytomedicine, 2021, 87, 153582.	2.3	20
3045	Effect of traditional Chinese medicine on gut microbiota in adults with type 2 diabetes: A systematic review and meta-analysis. Phytomedicine, 2021, 88, 153455.	2.3	33
3046	On the robustness of inference of association with the gut microbiota in stool, rectal swab and mucosal tissue samples. Scientific Reports, 2021, 11, 14828.	1.6	18
3047	Hidden Role of Gut Microbiome Dysbiosis in Schizophrenia: Antipsychotics or Psychobiotics as Therapeutics?. International Journal of Molecular Sciences, 2021, 22, 7671.	1.8	37
3048	Emerging trends and focus of human gastrointestinal microbiome research from 2010–2021: a visualized study. Journal of Translational Medicine, 2021, 19, 327.	1.8	31
3049	Allium-Derived Compound Propyl Propane Thiosulfonate (PTSO) Attenuates Metabolic Alterations in Mice Fed a High-Fat Diet through Its Anti-Inflammatory and Prebiotic Properties. Nutrients, 2021, 13, 2595.	1.7	17
3050	Gut microbiome research in multiple sclerosis. Neuroscience Research, 2021, 168, 28-31.	1.0	12
3051	A homogeneous polysaccharide from Lycium barbarum: Structural characterizations, anti-obesity effects and impacts on gut microbiota. International Journal of Biological Macromolecules, 2021, 183, 2074-2087.	3.6	71
3052	Characterizations of heavy metal contamination, microbial community, and resistance genes in a tailing of the largest copper mine in China. Environmental Pollution, 2021, 280, 116947.	3.7	80
3053	Dysbiosis of Gut Microbiota in Patients With Acute Myocardial Infarction. Frontiers in Microbiology, 2021, 12, 680101.	1.5	45
3054	Impact of 6-Month Exposure to Aerosols From Potential Modified Risk Tobacco Products Relative to Cigarette Smoke on the Rodent Gastrointestinal Tract. Frontiers in Microbiology, 2021, 12, 587745.	1.5	4

#	ARTICLE	IF	CITATIONS
3055	Leaky Gut: Effect of Dietary Fiber and Fats on Microbiome and Intestinal Barrier. International Journal of Molecular Sciences, 2021, 22, 7613.	1.8	88
3056	High sucrose diet-induced dysbiosis of gut microbiota promotes fatty liver and hyperlipidemia in rats. Journal of Nutritional Biochemistry, 2021, 93, 108621.	1.9	33
3057	MFGM components promote gut Bifidobacterium growth in infant and in vitro. European Journal of Nutrition, 2022, 61, 277-288.	1.8	12
3058	The Gut Microbiome Is Associated with Circulating Dietary Biomarkers of Fruit and Vegetable Intake in a Multiethnic Cohort. Journal of the Academy of Nutrition and Dietetics, 2022, 122, 78-98.	0.4	19
3059	Effect of different HbA1c levels on the gut microbiota in patients with typeÂ2 diabetes mellitus. World Academy of Sciences Journal, 2021, 3, .	0.4	0
3060	Association of Insulin Resistance and Type 2 Diabetes With Gut Microbial Diversity. JAMA Network Open, 2021, 4, e2118811.	2.8	119
3061	Discovering Potential Taxonomic Biomarkers of Type 2 Diabetes From Human Gut Microbiota via Different Feature Selection Methods. Frontiers in Microbiology, 2021, 12, 628426.	1.5	12
3062	Metagenome-wide association study revealed disease-specific landscape of the gut microbiome of systemic lupus erythematosus in Japanese. Annals of the Rheumatic Diseases, 2021, 80, 1575-1583.	0.5	38
3063	Molecular and Pathophysiological Links between Metabolic Disorders and Inflammatory Bowel Diseases. International Journal of Molecular Sciences, 2021, 22, 9139.	1.8	18
3064	Comprehensive Strain-Level Analysis of the Gut Microbe Faecalibacterium prausnitzii in Patients with Liver Cirrhosis. MSystems, 2021, 6, e0077521.	1.7	6
3065	Disturbed microbial ecology in Alzheimer's disease: evidence from the gut microbiota and fecal metabolome. BMC Microbiology, 2021, 21, 226.	1.3	38
3066	A powerful adaptive microbiome-based association test for microbial association signals with diverse sparsity levels. Journal of Genetics and Genomics, 2021, 48, 851-859.	1.7	3
3067	Gut microbiome in acute pancreatitis: A review based on current literature. World Journal of Gastroenterology, 2021, 27, 5019-5036.	1.4	20
3068	Effectiveness and safety of Bifidobacterium and berberine in human hyperglycemia and their regulatory effect on the gut microbiota: a multi-center, double-blind, randomized, parallel-controlled study. Genome Medicine, 2021, 13, 125.	3.6	28
3069	The microbial population structure and function of peanut peanut and their effects on aflatoxin contamination. LWT - Food Science and Technology, 2021, 148, 111285.	2.5	4
3070	Association between metabolic status and gut microbiome in obese populations. Microbial Genomics, 2021, 7, .	1.0	8
3072	The gut microbiome in microscopic polyangiitis with kidney involvement: common and unique alterations, clinical association and values for disease diagnosis and outcome prediction. Annals of Translational Medicine, 2021, 9, 1286-1286.	0.7	7
3073	The role of microbiome in pancreatic cancer. Cancer and Metastasis Reviews, 2021, 40, 777-789.	2.7	27

#	Article	IF	CITATIONS
3074	Prospective evaluation of probiotic and prebiotic supplementation on diabetic health associated with gut microbiota. Food Bioscience, 2021, 42, 101149.	2.0	6
3075	Impact of Gut Microbiota and Microbiota-Related Metabolites on Hyperlipidemia. Frontiers in Cellular and Infection Microbiology, 2021, 11, 634780.	1.8	77
3076	Effects of Herring Milt Hydrolysates and Fractions in a Diet-Induced Obesity Model. Foods, 2021, 10, 2046.	1.9	3
3077	Cornuside Alleviates Diabetes Mellitus-Induced Testicular Damage by Modulating the Gut Microbiota. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-13.	0.5	9
3078	Characterization of the Human Oropharyngeal Microbiomes in SARS oVâ€⊋ Infection and Recovery Patients. Advanced Science, 2021, 8, e2102785.	5.6	27
3079	Gut Microbiota and Subclinical Cardiovascular Disease in Patients with Type 2 Diabetes Mellitus. Nutrients, 2021, 13, 2679.	1.7	29
3080	Molecular Aspects of Lifestyle and Environmental Effects in Patients WithÂDiabetes. Journal of the American College of Cardiology, 2021, 78, 481-495.	1.2	2
3081	Influence of gut microbiome on the human physiology. Systems Microbiology and Biomanufacturing, 2022, 2, 217-231.	1.5	4
3082	Therapeutic Strategies for Diabetes: Immune Modulation in Pancreatic \hat{l}^2 Cells. Frontiers in Endocrinology, 2021, 12, 716692.	1.5	10
3083	Metagenomics-Based Analysis of the Age-Related Cumulative Effect of Antibiotic Resistance Genes in Gut Microbiota. Antibiotics, 2021, 10, 1006.	1.5	12
3084	Multi-omics profiling: the way toward precision medicine in metabolic diseases. Journal of Molecular Cell Biology, 2021, , .	1.5	16
3085	Revealing the community and metabolic potential of active methanotrophs by targeted metagenomics in the Zoige wetland of the Tibetan Plateau. Environmental Microbiology, 2021, 23, 6520-6535.	1.8	8
3086	Blockage of bacterial FimH prevents mucosal inflammation associated with Crohn's disease. Microbiome, 2021, 9, 176.	4.9	22
3087	Gut Microbiota and Type 2 Diabetes Mellitus: Association, Mechanism, and Translational Applications. Mediators of Inflammation, 2021, 2021, 1-12.	1.4	41
3088	Impact of Plant-Based Meat Alternatives on the Gut Microbiota of Consumers: A Real-World Study. Foods, 2021, 10, 2040.	1.9	39
3089	Exploration of the Characteristics of Intestinal Microbiota and Metabolomics in Different Rat Models of Mongolian Medicine. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-12.	0.5	2
3090	Plasma Metabolomic and Intestinal Microbial Analyses of Patients With Severe Aplastic Anemia. Frontiers in Cell and Developmental Biology, 2021, 9, 669887.	1.8	5
3091	Evaluating the knowledge, attitudes and practices of the UAE community on microbiota composition and the main factors affecting it: a cross-sectional study. BMJ Open, 2021, 11, e047869.	0.8	12

#	Article	IF	Citations
3092	Fried Foods, Gut Microbiota, and Glucose Metabolism. Diabetes Care, 2021, 44, 1907-1909.	4.3	0
3093	Integrating Dietary Data into Microbiome Studies: A Step Forward for Nutri-Metaomics. Nutrients, 2021, 13, 2978.	1.7	7
3094	Dietary supplementation with mung bean coat alleviates the disorders in serum glucose and lipid profile and modulates gut microbiota in highâ€fat diet and streptozotocinâ€induced prediabetic mice. Journal of Food Science, 2021, 86, 4183-4196.	1.5	14
3095	Metagenomic analysis revealed the potential role of gut microbiome in gout. Npj Biofilms and Microbiomes, 2021, 7, 66.	2.9	91
3096	Gut microbiota influence in type 2 diabetes mellitus (T2DM). Gut Pathogens, 2021, 13, 50.	1.6	89
3097	Alteration of Gut Microbiota Relates to Metabolic Disorders in Primary Aldosteronism Patients. Frontiers in Endocrinology, 2021, 12, 667951.	1.5	21
3098	Effects of active molecules of Korean pine seed on rodent health and implications for forest regeneration. Journal of Forestry Research, 2022, 33, 1045-1060.	1.7	2
3099	Gut Bacterial Characteristics of Patients With Type 2 Diabetes Mellitus and the Application Potential. Frontiers in Immunology, 2021, 12, 722206.	2.2	38
3101	Eightâ€week exercise training in humans with obesity: Marked improvements in insulin sensitivity and modest changes in gut microbiome. Obesity, 2021, 29, 1615-1624.	1.5	19
3102	Comprehensive Wet-Bench and Bioinformatics Workflow for Complex Microbiota Using Oxford Nanopore Technologies. MSystems, 2021, 6, e0075021.	1.7	14
3103	Microbiota-Centered Interventions: The Next Breakthrough in Immuno-Oncology?. Cancer Discovery, 2021, 11, 2396-2412.	7.7	81
3104	Impact of Antibiotic Resistance Genes in Gut Microbiome of Patients With Cirrhosis. Gastroenterology, 2021, 161, 508-521.e7.	0.6	33
3105	High doses of butyrate induce a reversible body temperature drop through transient proton leak in mitochondria of brain neurons. Life Sciences, 2021, 278, 119614.	2.0	8
3106	Genetic divergence and functional convergence of gut bacteria between the Eastern honey bee Apis cerana and the Western honey bee Apis mellifera. Journal of Advanced Research, 2022, 37, 19-31.	4.4	10
3107	Exploring Changes in the Host Gut Microbiota During a Controlled Human Infection Model for Campylobacter jejuni. Frontiers in Cellular and Infection Microbiology, 2021, 11, 702047.	1.8	6
3108	Fiber-Rich Barley Increases Butyric Acid-Producing Bacteria in the Human Gut Microbiota. Metabolites, 2021, 11, 559.	1.3	13
3109	The gut microbiome as non-invasive biomarkers for identifying overweight people at risk for osteoarthritis. Microbial Pathogenesis, 2021, 157, 104976.	1.3	21
3110	Characterization of gut microbiome and metabolome in <i>Helicobacter pylori</i> patients in an underprivileged community in the United States. World Journal of Gastroenterology, 2021, 27, 5575-5594.	1.4	16

#	Article	IF	Citations
3111	Comparative analysis of chicken cecal microbial diversity and taxonomic composition in response to dietary variation using 16S rRNA amplicon sequencing. Molecular Biology Reports, 2021, 48, 7203-7214.	1.0	3
3112	Effect of Continuous Feeding of Ayu-Narezushi on Lipid Metabolism in a Mouse Model of Metabolic Syndrome. Scientific World Journal, The, 2021, 2021, 1-7.	0.8	2
3113	Probiotic Bifidobacterium longum supplied with methimazole improved the thyroid function of Graves' disease patients through the gut-thyroid axis. Communications Biology, 2021, 4, 1046.	2.0	17
3114	A statistical model for describing and simulating microbial community profiles. PLoS Computational Biology, 2021, 17, e1008913.	1.5	21
3115	Dysbiosis, Host Metabolism, and Non-communicable Diseases: Trialogue in the Inborn Errors of Metabolism. Frontiers in Physiology, 2021, 12, 716520.	1.3	15
3116	Drosophila as a Model for Microbiota Studies of Neurodegeneration. Journal of Alzheimer's Disease, 2021, 84, 479-490.	1.2	10
3117	Micro-coevolution of host genetics with gut microbiome in three Chinese ethnic groups. Journal of Genetics and Genomics, 2021, 48, 972-983.	1.7	2
3118	Markers of Gut Barrier Function and Microbial Translocation Associate with Lower Gut Microbial Diversity in People with HIV. Viruses, 2021, 13, 1891.	1.5	17
3119	Role of the gut microbiome in chronic diseases: a narrative review. European Journal of Clinical Nutrition, 2022, 76, 489-501.	1.3	168
3120	MetaGeneBank: a standardized database to study deep sequenced metagenomic data from human fecal specimen. BMC Microbiology, 2021, 21, 263.	1.3	5
3121	Effects of gut microbiota and fatty acid metabolism on dyslipidemia following weight-loss diets in women: Results from a randomized controlled trial. Clinical Nutrition, 2021, 40, 5511-5520.	2.3	8
3123	Determination of Butyrate Synthesis Capacity in Gut Microbiota: Quantification of but Gene Abundance by qPCR in Fecal Samples. Biomolecules, 2021, 11, 1303.	1.8	6
3124	Characterizing Enterotypes in Human Metagenomics: A Viral Perspective. Frontiers in Microbiology, 2021, 12, 740990.	1.5	4
3125	Pancreatic cancer in 2021: What you need to know to win. World Journal of Gastroenterology, 2021, 27, 5851-5889.	1.4	59
3126	Identification of tick-borne pathogens using metagenomic analyses in H. longicornis feeding on humans in downtown Beijing. Animal Diseases, 2021, 1 , .	0.6	1
3127	Immunosuppressive therapy after solid organ transplantation and the gut microbiota: Bidirectional interactions with clinical consequences. American Journal of Transplantation, 2022, 22, 1014-1030.	2.6	29
3128	Moderate-Intensity Physical Exercise Affects the Exercise Performance and Gut Microbiota of Mice. Frontiers in Cellular and Infection Microbiology, 2021, 11, 712381.	1.8	21
3129	Pomegranate fruit pulp polyphenols reduce dietâ€induced obesity with modulation of gut microbiota in mice. Journal of the Science of Food and Agriculture, 2022, 102, 1968-1977.	1.7	27

#	Article	IF	CITATIONS
3130	Comprehensive Characterization of Microbial Community in the Female Genital Tract of Reproductive-Aged Women in China. Frontiers in Cellular and Infection Microbiology, 2021, 11, 649067.	1.8	2
3131	Agricultural management and cultivation period alter soil enzymatic activity and bacterial diversity in litchi (Litchi chinensis Sonn.) orchards., 2021, 62, 13.		2
3132	Microbiota and viral hepatitis: State of the art of a complex matter. World Journal of Gastroenterology, 2021, 27, 5488-5501.	1.4	9
3133	Cross-Sectional Study on the Gut Microbiome of Parkinson's Disease Patients in Central China. Frontiers in Microbiology, 2021, 12, 728479.	1.5	13
3134	Lactobacillus reuteri FYNLJ109L1 Attenuating Metabolic Syndrome in Mice via Gut Microbiota Modulation and Alleviating Inflammation. Foods, 2021, 10, 2081.	1.9	17
3135	Powerful and robust non-parametric association testing for microbiome data via a zero-inflated quantile approach (ZINQ). Microbiome, 2021, 9, 181.	4.9	8
3136	Relationship between <i>Fusobacterium nucleatum</i> and antitumor immunity in colorectal cancer liver metastasis. Cancer Science, 2021, 112, 4470-4477.	1.7	25
3137	Compositional and functional alterations of gut microbiota in patients with stroke. Nutrition, Metabolism and Cardiovascular Diseases, 2021, 31, 3434-3448.	1.1	18
3138	Gene targeting techniques for Huntington's disease. Ageing Research Reviews, 2021, 70, 101385.	5.0	12
3140	Butyrate Protects Pancreatic Beta Cells from Cytokine-Induced Dysfunction. International Journal of Molecular Sciences, 2021, 22, 10427.	1.8	19
3141	Gut microbiota and gestational Diabetes Mellitus: A systematic review. Diabetes Research and Clinical Practice, 2021, 180, 109078.	1.1	25
3142	Microbiota-Immune Interactions Regulate Metabolic Disease. Journal of Immunology, 2021, 207, 1719-1724.	0.4	9
3143	Analyzing Type 2 Diabetes Associations with the Gut Microbiome in Individuals from Two Ethnic Backgrounds Living in the Same Geographic Area. Nutrients, 2021, 13, 3289.	1.7	17
3144	Type 2 Diabetes and Dietary Carbohydrate Intake of Adolescents and Young Adults: What Is the Impact of Different Choices?. Nutrients, 2021, 13, 3344.	1.7	11
3145	Effects of Live and Pasteurized Forms of Akkermansia from the Human Gut on Obesity and Metabolic Dysregulation. Microorganisms, 2021, 9, 2039.	1.6	14
3146	Reversible insulin resistance helps Bactrian camels survive fasting. Scientific Reports, 2021, 11, 18815.	1.6	0
3147	Impact of Appendectomy on Gut Microbiota. Surgical Infections, 2021, 22, 651-661.	0.7	14
3148	Potassium Alginate Oligosaccharides Alter Gut Microbiota, and Have Potential to Prevent the Development of Hypertension and Heart Failure in Spontaneously Hypertensive Rats. International Journal of Molecular Sciences, 2021, 22, 9823.	1.8	17

#	Article	IF	Citations
3149	PathFams: statistical detection of pathogen-associated protein domains. BMC Genomics, 2021, 22, 663.	1.2	1
3150	The gut microbiome in konzo. Nature Communications, 2021, 12, 5371.	5. 8	8
3151	Fostering next-generation probiotics in human gut by targeted dietary modulation: An emerging perspective. Food Research International, 2021, 150, 110716.	2.9	43
3152	The characteristics of intestinal flora in overweight pregnant women and the correlation with gestational diabetes mellitus. Endocrine Connections, 2021, 10, 1366-1376.	0.8	4
3153	Analysis of Microorganism Diversity in Haemaphysalis longicornis From Shaanxi, China, Based on Metagenomic Sequencing. Frontiers in Genetics, 2021, 12, 723773.	1.1	1
3154	Emerging Applications of Metabolomics to Assess the Efficacy of Traditional Chinese Medicines for Treating Type 2 Diabetes Mellitus. Frontiers in Pharmacology, 2021, 12, 735410.	1.6	3
3155	Dairy consumption and physical fitness tests associated with fecal microbiome in a Chinese cohort. Medicine in Microecology, 2021, 9, 100038.	0.7	6
3156	The effect of probiotics/synbiotics supplementation on renal and liver biomarkers in patients with type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials. British Journal of Nutrition, 2022, 128, 625-635.	1.2	6
3158	Disease trends in a young Chinese cohort according to fecal metagenome and plasma metabolites. Medicine in Microecology, 2021, , 100037.	0.7	2
3159	Metabolic Influences of Gut Microbiota Dysbiosis on Inflammatory Bowel Disease. Frontiers in Physiology, 2021, 12, 715506.	1.3	56
3161	Spare and repair the gut microbiota from antibiotic-induced dysbiosis: state-of-the-art. Drug Discovery Today, 2021, 26, 2159-2163.	3.2	15
3163	Coronavirus disease 2019 and the gut–lung axis. International Journal of Infectious Diseases, 2021, 113, 300-307.	1.5	23
3164	Butyrate Production Pathway Abundances Are Similar in Human and Nonhuman Primate Gut Microbiomes. Molecular Biology and Evolution, 2022, 39, .	3.5	13
3166	Gut microbiota and renin-angiotensin system: a complex interplay at local and systemic levels. American Journal of Physiology - Renal Physiology, 2021, 321, G355-G366.	1.6	42
3167	Gut microbiota as the critical correlation of polycystic ovary syndrome and type 2 diabetes mellitus. Biomedicine and Pharmacotherapy, 2021, 142, 112094.	2.5	17
3168	Effects of aerobic exercise on gut microbiota in adolescents with subthreshold mood syndromes and healthy adolescents: A 12-week, randomized controlled trial. Journal of Affective Disorders, 2021, 293, 363-372.	2.0	10
3169	Liubao brick tea activates the PI3K-Akt signaling pathway to lower blood glucose, metabolic disorders and insulin resistance via altering the intestinal flora. Food Research International, 2021, 148, 110594.	2.9	34
3170	Functional comparison of breast milk, cow milk and goat milk based on changes in the intestinal flora of mice. LWT - Food Science and Technology, 2021, 150, 111976.	2.5	10

#	Article	IF	CITATIONS
3171	Mechanisms of traditional Chinese medicine in modulating gut microbiota metabolites-mediated lipid metabolism. Journal of Ethnopharmacology, 2021, 278, 114207.	2.0	25
3172	Alterations in the Gut Virome in Obesity and Type 2 Diabetes Mellitus. Gastroenterology, 2021, 161, 1257-1269.e13.	0.6	76
3173	Akkermansia muciniphila fermentation culture based on a novel bionic large intestine dynamic digestion model. Food Bioscience, 2021, 43, 101260.	2.0	6
3174	Intestine-liver crosstalk in Type 2 Diabetes and non-alcoholic fatty liver disease. Metabolism: Clinical and Experimental, 2021, 123, 154844.	1.5	20
3175	Polycystic ovary syndrome and cardiovascular risk. Could trimethylamine N-oxide (TMAO) be a major player? A potential upgrade forward in the DOGMA theory. Biomedicine and Pharmacotherapy, 2021, 143, 112171.	2.5	3
3176	MiDSystem: A comprehensive online system for de novo assembly and analysis of microbial genomes. New Biotechnology, 2021, 65, 42-52.	2.4	2
3177	Edible fungal polysaccharides, the gut microbiota, and host health. Carbohydrate Polymers, 2021, 273, 118558.	5.1	48
3178	Machine Learning analysis of the human infant gut microbiome identifies influential species in type 1 diabetes. Expert Systems With Applications, 2021, 185, 115648.	4.4	22
3179	Antidiabetic effect of an engineered bacterium Lactobacillus plantarum-pMG36e -GLP-1 in monkey model. Synthetic and Systems Biotechnology, 2021, 6, 272-282.	1.8	15
3180	Perturbations associated with hungry gut microbiome and postbiotic perspectives to strengthen the microbiome health. Future Foods, 2021, 4, 100043.	2.4	12
3181	The Role of Microbiota in Gut Inflammation and Sepsis. , 2022, , 370-370.		0
3182	Gut Microbiota: A New Marker of Cardiovascular Disease. , 2022, , .		0
3183	Metagenomics for mining of thermoalkalophilic enzymes., 2022,, 259-274.		0
3184	Chinese Torreya grandis cv. Merrillii seed oil affects obesity through accumulation of sciadonic acid and altering the composition of gut microbiota. Food Science and Human Wellness, 2022, 11, 58-67.	2.2	13
3185	The enriched gut commensal Faeciroseburia intestinalis contributes to the anti-metabolic disorders effects of the Ganoderma meroterpene derivative. Food Science and Human Wellness, 2022, 11, 85-96.	2.2	4
3186	Safety assessment of monosodium glutamate based on intestinal function and flora in mice. Food Science and Human Wellness, 2022, 11, 155-164.	2.2	9
3187	Ecological and molecular perspectives on responders and non-responders to probiotics and prebiotics. Current Opinion in Biotechnology, 2022, 73, 108-120.	3.3	15
3188	Arabinoxylan ameliorates type 2 diabetes by regulating the gut microbiota and metabolites. Food Chemistry, 2022, 371, 131106.	4.2	47

#	Article	IF	Citations
3189	Foxtail millet supplementation improves glucose metabolism and gut microbiota in rats with high-fat diet/streptozotocin-induced diabetes. Food Science and Human Wellness, 2022, 11, 119-128.	2.2	17
3190	MB-GAN: Microbiome Simulation via Generative Adversarial Network. GigaScience, 2021, 10, .	3.3	14
3191	Gut Bacterial Dysbiosis and Its Clinical Implications. , 2021, , 1-27.		0
3192	High-Fat Diet and Age-Dependent Effects of IgA-Bearing Cell Populations in the Small Intestinal Lamina Propria in Mice. International Journal of Molecular Sciences, 2021, 22, 1165.	1.8	5
3193	Polysaccharide on diabetes, obesity, and other cardiovascular disease risk factors., 2021, , 115-128.		0
3194	Associations between gut microbiota and thyroidal function status in Chinese patients with Graves' disease. Journal of Endocrinological Investigation, 2021, 44, 1913-1926.	1.8	17
3195	Spatial analysis of gut microbiome reveals a distinct ecological niche associated with the mucus layer. Gut Microbes, 2021, 13, 1874815.	4.3	40
3196	Gastrointestinal and Nutritional Disorders. , 2021, , 1-31.		0
3197	Association between Gut Microbiome and Metabolome in Mice Suffering from Acute Carbapenem-Resistant <i>Escherichia coli</i>	0.4	0
3198	Gene variations in Autism Spectrum Disorder are associated with alternation of gut microbiota, metabolites and cytokines. Gut Microbes, 2021, 13, 1-16.	4.3	28
3199	Microbiology and Microbiome. Laboratory Animal Science and Medicine, 2021, , 77-104.	0.1	0
3200	The Microbiome as an Endocrine Organ. , 2021, , .		0
3201	The Therapeutic Efficacy of Curcumin vs. Metformin in Modulating the Gut Microbiota in NAFLD Rats: A Comparative Study. Frontiers in Microbiology, 2020, 11, 555293.	1.5	27
3202	A microbial gene catalog of anaerobic digestion from full-scale biogas plants. GigaScience, 2021, 10, .	3.3	23
3204	Immunity and Gut Microbiome: Role of Probiotics and Prebiotics. Microorganisms for Sustainability, 2021, , 61-83.	0.4	1
3205	The Human Microbiome. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, , 1-28.	0.2	1
3206	Associations of sleep quality and night eating behaviour with gut microbiome composition in adults with metabolic syndrome. Proceedings of the Nutrition Society, 2021, 80, .	0.4	1
3207	Probiotics and their importance for human health. Medic Ro, 2021, 1, 26.	0.0	0

#	Article	IF	CITATIONS
3208	Shifting perspectives $\hat{a} \in ``interplay between non-alcoholic fatty liver disease and insulin resistance in lean individuals. World Journal of Hepatology, 2021, 13, 80-93.$	0.8	1
3209	Preparation, structural characteristics and physiological property of resistant starch. Advances in Food and Nutrition Research, 2021, 95, 1-40.	1.5	3
3210	New insights into the links between anti-diabetes drugs and gut microbiota. Endocrine Connections, 2021, 10, R36-R42.	0.8	4
3211	<i>Lactobacillus rhamnosus (i) FJSYC4-1 and (i) Lactobacillus reuteri (i) FGSZY33L6 alleviate metabolic syndrome (i) via (i) gut microbiota regulation. Food and Function, 2021, 12, 3919-3930.</i>	2.1	28
3212	Differences in the oral and intestinal microbiotas in pregnant women varying in periodontitis and gestational diabetes mellitus conditions. Journal of Oral Microbiology, 2021, 13, 1883382.	1.2	9
3213	Establishing a novel colorectal cancer predictive model based on unique gut microbial single nucleotide variant markers. Gut Microbes, 2021, 13, 1-6.	4.3	23
3214	Taxonomic Composition and Diversity of the Gut Microbiota in Relation to Habitual Dietary Intake in Korean Adults. Nutrients, 2021, 13, 366.	1.7	19
3215	Involvement of Body Temperature Increase and Sympathetic Nerve Activation in Exercise-Induced Microbiota Changes in Mice. SSRN Electronic Journal, 0, , .	0.4	0
3216	Kazak faecal microbiota transplantation induces short-chain fatty acids that promote glucagon-like peptide-1 secretion by regulating gut microbiota in <i>db/db</i> mice. Pharmaceutical Biology, 2021, 59, 1075-1085.	1.3	12
3217	Research Progress on the Influence of Gut Microbiota on Metabolic Syndrome-Associated Stroke. Advances in Clinical Medicine, 2021, 11, 3481-3486.	0.0	2
3218	Long-term dietary intake from infancy to late adolescence is associated with gut microbiota composition in young adulthood. American Journal of Clinical Nutrition, 2021, 113, 647-656.	2.2	12
3219	Analysis of global human gut metagenomes shows that metabolic resilience potential for short-chain fatty acid production is strongly influenced by lifestyle. Scientific Reports, 2021, 11, 1724.	1.6	11
3220	Immune System, Inflammation, and Essential Fatty Acids and Their Metabolites in Cancer., 2020,, 67-157.		1
3221	Human Gut Microbial Gene by Metagenomic Sequencing. , 2013, , 1-8.		1
3222	Gut Microbiome and Obesity. , 2014, , 73-82.		2
3223	Gut Microbiome and Obesity. , 2014, , 73-82.		3
3224	Metagenome-Based Disease Classification with Deep Learning and Visualizations Based on Self-organizing Maps. Lecture Notes in Computer Science, 2019, , 307-319.	1.0	7
3225	Nanoprobiotics: When Technology Meets Gut Health. Nanotechnology in the Life Sciences, 2020, , 389-425.	0.4	3

#	Article	IF	CITATIONS
3226	The Family Coriobacteriaceae. , 2014, , 201-238.		31
3227	Lactic Acid Bacteria and the Human Gastrointestinal Tract. , 2014, , 375-441.		3
3228	Potentials of Phytopharmaceuticals for Treating Microbiological and Oxidative Stress-Induced Type 2 Diabetes., 2019,, 489-509.		1
3229	Role of Gut Microbiota in Combating Oxidative Stress. , 2019, , 43-82.		19
3230	Gut Microbiota and Heart, Vascular Injury. Advances in Experimental Medicine and Biology, 2020, 1238, 107-141.	0.8	13
3231	Gut Microbial Predictors of Type 2 Diabetes Remission Following Bariatric Surgery. Obesity Surgery, 2020, 30, 3536-3548.	1.1	25
3232	The effects of cigarettes and alcohol on intestinal microbiota in healthy men. Journal of Microbiology, 2020, 58, 926-937.	1.3	26
3233	Antidiabetic Effects of Gegen Qinlian Decoction via the Gut Microbiota Are Attributable to Its Key Ingredient Berberine. Genomics, Proteomics and Bioinformatics, 2020, 18, 721-736.	3.0	70
3234	Effects of Nigella sativa seed polysaccharides on type 2 diabetic mice and gut microbiota. International Journal of Biological Macromolecules, 2020, 159, 725-738.	3.6	57
3235	A review: Roles of carbohydrates in human diseases through regulation of imbalanced intestinal microbiota. Journal of Functional Foods, 2020, 74, 104197.	1.6	18
3236	The effects of 6 mo of supplementation with probiotics and synbiotics on gut microbiota in the adults with prediabetes: A double blind randomized clinical trial. Nutrition, 2020, 79-80, 110854.	1.1	27
3237	Small intestinal physiology relevant to bariatric and metabolic endoscopic therapies: Incretins, bile acid signaling, and gut microbiome. Techniques and Innovations in Gastrointestinal Endoscopy, 2020, 22, 109-119.	0.4	8
3238	Metformin and Systemic Metabolism. Trends in Pharmacological Sciences, 2020, 41, 868-881.	4.0	105
3239	Linking perturbations to temporal changes in diversity, stability, and compositions of neonatal calf gut microbiota: prediction of diarrhea. ISME Journal, 2020, 14, 2223-2235.	4.4	77
3240	1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses. Nature Biotechnology, 2019, 37, 179-185.	9.4	402
3241	The Role of Intestinal Microbiota and Microbial Metabolites in the Development of Host Metabolic Syndrome. Food Chemistry, Function and Analysis, 2020, , 191-209.	0.1	2
3242	Ongoing Supplementation of Probiotics to Cesarean-Born Neonates during the First Month of Life may Impact the Gut Microbial. American Journal of Perinatology, 2021, 38, 1181-1191.	0.6	10
3243	Gut microbiota and aging. Critical Reviews in Food Science and Nutrition, 2022, 62, 3509-3534.	5.4	53

#	Article	IF	CITATIONS
3244	Method Validation for Extraction of DNA from Human Stool Samples for Downstream Microbiome Analysis. Biopreservation and Biobanking, 2020, 18, 102-116.	0.5	17
3245	Network analyses in microbiome based on high-throughput multi-omics data. Briefings in Bioinformatics, 2021, 22, 1639-1655.	3.2	48
3246	TaxoNN: ensemble of neural networks on stratified microbiome data for disease prediction. Bioinformatics, 2020, 36, 4544-4550.	1.8	37
3247	The diagnostic potential of gut microbiome for early hepatitis B virus-related hepatocellular carcinoma. European Journal of Gastroenterology and Hepatology, 2020, Publish Ahead of Print, .	0.8	12
3248	Intestinal Dysbiosis Correlates With Sirolimus-induced Metabolic Disorders in Mice. Transplantation, 2021, 105, 1017-1029.	0.5	14
3249	Metagenome-wide association study of the alterations in the intestinal microbiome composition of ankylosing spondylitis patients and the effect of traditional and herbal treatment. Journal of Medical Microbiology, 2020, 69, 797-805.	0.7	18
3250	Comprehensive screening of genomic and metagenomic data reveals a large diversity of tetracycline resistance genes. Microbial Genomics, 2020, 6, .	1.0	19
3251	Metabolic networks of the human gut microbiota. Microbiology (United Kingdom), 2020, 166, 96-119.	0.7	22
3308	PopPhy-CNN: A Phylogenetic Tree Embedded Architecture for Convolutional Neural Networks to Predict Host Phenotype From Metagenomic Data. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 2993-3001.	3.9	55
3309	The gut microbiome in solid organ transplantation. Pediatric Transplantation, 2020, 24, e13866.	0.5	17
3310	Association of Flavonifractor plautii, a Flavonoid-Degrading Bacterium, with the Gut Microbiome of Colorectal Cancer Patients in India. MSystems, 2019, 4, .	1.7	109
3311	Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients. Journal of Clinical Investigation, 2015, 125, 1752-1762.	3.9	272
3312	Immunologic impact of the intestine in metabolic disease. Journal of Clinical Investigation, 2017, 127, 33-42.	3.9	64
3313	Nonlinear expression and visualization of nonmetric relationships in genetic diseases and microbiome data. BMC Bioinformatics, 2018, 19, 505.	1.2	4
3314	Harnessing the strategy of metagenomics for exploring the intestinal microecology of sable (Martes) Tj ETQq0 0	0 rgβT /Ov	erlock 10 Tf
3315	The surviving sepsis campaign: basic/translational science research priorities. Intensive Care Medicine Experimental, 2020, 8, 31.	0.9	10
3318	A nonparametric spatial test to identify factors that shape a microbiome. Annals of Applied Statistics, 2019, 13, .	0.5	2
3319	Does the Gut Microbiota Modulate Host Physiology through Polymicrobial Biofilms?. Microbes and Environments, 2020, 35, n/a.	0.7	13

#	Article	IF	CITATIONS
3320	The Human Microbiota: Composition, Functions, and Therapeutic Potential. Medical Science Review, 0, 2, 92-103.	0.0	23
3321	A comparison of computationally predicted functional metagenomes and microarray analysis for microbial P cycle genes in a unique basalt-soil forest. F1000Research, 2018, 7, 179.	0.8	14
3322	Gut microbiome-Mediterranean diet interactions in improving host health. F1000Research, 2019, 8, 699.	0.8	81
3323	Role of the gut microbiota in human health. Journal of Education, Health and Sport, 2020, 10, 458.	0.0	2
3324	Characterization of microbiota in systemic-onset juvenile idiopathic arthritis with different disease severities. World Journal of Clinical Cases, 2019, 7, 2734-2745.	0.3	16
3325	Inference of Network Dynamics and Metabolic Interactions in the Gut Microbiome. PLoS Computational Biology, 2015, 11, e1004338.	1.5	106
3326	High-Specificity Targeted Functional Profiling in Microbial Communities with ShortBRED. PLoS Computational Biology, 2015, 11, e1004557.	1.5	235
3327	Inferring Aggregated Functional Traits from Metagenomic Data Using Constrained Non-negative Matrix Factorization: Application to Fiber Degradation in the Human Gut Microbiota. PLoS Computational Biology, 2016, 12, e1005252.	1.5	16
3328	Impact of Enterobius vermicularis infection and mebendazole treatment on intestinal microbiota and host immune response. PLoS Neglected Tropical Diseases, 2017, 11, e0005963.	1.3	25
3329	Diversified Microbiota of Meconium Is Affected by Maternal Diabetes Status. PLoS ONE, 2013, 8, e78257.	1.1	208
3330	High-Fat Diet Reduces the Formation of Butyrate, but Increases Succinate, Inflammation, Liver Fat and Cholesterol in Rats, while Dietary Fibre Counteracts These Effects. PLoS ONE, 2013, 8, e80476.	1.1	249
3331	Development of HuMiChip for Functional Profiling of Human Microbiomes. PLoS ONE, 2014, 9, e90546.	1.1	18
3332	Comparative Analysis of Functional Metagenomic Annotation and the Mappability of Short Reads. PLoS ONE, 2014, 9, e105776.	1.1	58
3333	Metagenomic Human Repiratory Air in a Hospital Environment. PLoS ONE, 2015, 10, e0139044.	1.1	6
3334	Type 2 Diabetes Biomarkers of Human Gut Microbiota Selected via Iterative Sure Independent Screening Method. PLoS ONE, 2015, 10, e0140827.	1.1	41
3335	COGNIZER: A Framework for Functional Annotation of Metagenomic Datasets. PLoS ONE, 2015, 10, e0142102.	1.1	87
3336	Functional Metagenomics of the Bronchial Microbiome in COPD. PLoS ONE, 2015, 10, e0144448.	1.1	40
3337	Deletion of the Toll-Like Receptor 5 Gene Per Se Does Not Determine the Gut Microbiome Profile That Induces Metabolic Syndrome: Environment Trumps Genotype. PLoS ONE, 2016, 11, e0150943.	1.1	20

#	Article	IF	CITATIONS
3338	Comparison of Boiling and Robotics Automation Method in DNA Extraction for Metagenomic Sequencing of Human Oral Microbes. PLoS ONE, 2016, 11, e0154389.	1.1	32
3339	Investigating Oral Microbiome Profiles in Children with Cleft Lip and Palate for Prognosis of Alveolar Bone Grafting. PLoS ONE, 2016, 11, e0155683.	1.1	14
3340	Alterations in Gut Microbiome Composition and Barrier Function Are Associated with Reproductive and Metabolic Defects in Women with Polycystic Ovary Syndrome (PCOS): A Pilot Study. PLoS ONE, 2017, 12, e0168390.	1.1	253
3341	Gut microbiome analysis of type 2 diabetic patients from the Chinese minority ethnic groups the Uygurs and Kazaks. PLoS ONE, 2017, 12, e0172774.	1.1	34
3342	Abundance profiling of specific gene groups using precomputed gut metagenomes yields novel biological hypotheses. PLoS ONE, 2017, 12, e0176154.	1.1	25
3343	A 3-dimensional mathematical model of microbial proliferation that generates the characteristic cumulative relative abundance distributions in gut microbiomes. PLoS ONE, 2017, 12, e0180863.	1.1	6
3344	The nasal microbiota of dairy farmers is more complex than oral microbiota, reflects occupational exposure, and provides competition for staphylococci. PLoS ONE, 2017, 12, e0183898.	1.1	33
3345	Modulation of the gut microbiota by the mixture of fish oil and krill oil in high-fat diet-induced obesity mice. PLoS ONE, 2017, 12, e0186216.	1.1	55
3346	Functional imaging of the interaction between gut microbiota and the human host: A proof-of-concept clinical study evaluating novel use for 18F-FDG PET-CT. PLoS ONE, 2018, 13, e0192747.	1.1	19
3347	Perturbation of the human gastrointestinal tract microbial ecosystem by oral drugs to treat chronic disease results in a spectrum of individual specific patterns of extinction and persistence of dominant microbial strains. PLoS ONE, 2020, 15, e0242021.	1.1	7
3348	Gut mycobiomes are altered in people with type 2 Diabetes Mellitus and Diabetic Retinopathy. PLoS ONE, 2020, 15, e0243077.	1.1	60
3349	Microbial Biomarkers for Colorectal Cancer Identified with Random Forest Model. Exploratory Research and Hypothesis in Medicine, 2020, 000, 1-000.	0.1	2
3350	Assessing the Effect of High Performance Inulin Supplementation via KLF5 mRNA Expression in Adults with Type 2 Diabetes: A Randomized Placebo Controlled Clinical Trail. Advanced Pharmaceutical Bulletin, 2018, 8, 39-47.	0.6	20
3351	Signature of Gut Microbiome by Conventional and Advanced Analysis Techniques: Advantages and Disadvantages. Middle East Journal of Digestive Diseases, 2020, 12, 5-11.	0.2	18
3352	Small Intestinal Bacterial Overgrowth Is Associated with Non- Alcoholic Fatty Liver Disease. Journal of Gastrointestinal and Liver Diseases, 2020, 25, 159-165.	0.5	60
3354	An altered fecal microbiota profile in patients with non-alcoholic fatty liver disease (NAFLD) associated with obesity. Revista Espanola De Enfermedades Digestivas, 2019, 111, 275-282.	0.1	41
3357	Changes of saliva microbiota in the onset and after the treatment of diabetes in patients with periodontitis. Aging, 2020, 12, 13090-13114.	1.4	29
3358	Fecal microbiota transplantation alters the susceptibility of obese rats to type 2 diabetes mellitus. Aging, 2020, 12, 17480-17502.	1.4	19

#	Article	IF	CITATIONS
3359	Periodontitis in elderly patients with type 2 diabetes mellitus: impact on gut microbiota and systemic inflammation. Aging, 2020, 12, 25956-25980.	1.4	19
3360	Gut microbial profile analysis by MiSeq sequencing of pancreatic carcinoma patients in China. Oncotarget, 2017, 8, 95176-95191.	0.8	160
3361	Specific alterations in gut microbiota are associated with prognosis of Budd-Chiari syndrome. Oncotarget, 2018, 9, 3303-3320.	0.8	7
3362	The alterations of gut microbiota in mice with chronic pancreatitis. Annals of Translational Medicine, 2019, 7, 464-464.	0.7	26
3363	Time-restricted feeding during childhood has persistent effects on mice commensal microbiota. Annals of Translational Medicine, 2019, 7, 556-556.	0.7	10
3364	The Landscape of Genetic Content in the Human Microbiome. SSRN Electronic Journal, 0, , .	0.4	1
3365	M-GWAS for the Gut Microbiome in Chinese Adults Illuminates on Complex Diseases. SSRN Electronic Journal, 0, , .	0.4	4
3366	The Food-gut Human Axis: The Effects of Diet on Gut Microbiota and Metabolome. Current Medicinal Chemistry, 2019, 26, 3567-3583.	1.2	74
3367	Depigmentation and Anti-aging Treatment by Natural Molecules. Current Pharmaceutical Design, 2019, 25, 2292-2312.	0.9	42
3368	Influence of the Intestinal Microbiota on Diabetes Management. Current Pharmaceutical Biotechnology, 2020, 21, 1603-1615.	0.9	8
3369	Gastrointestinal Interaction between Dietary Amino Acids and Gut Microbiota: With Special Emphasis on Host Nutrition. Current Protein and Peptide Science, 2020, 21, 785-798.	0.7	26
3370	Studying the Gut Microbiome of Latin America and Hispanic/Latino Populations. Insight into Obesity and Diabetes: Systematic Review. Current Diabetes Reviews, 2019, 15, 294-301.	0.6	14
3371	The Gut Microbiome, Lactobacillus acidophilus; Relation with Type 2 Diabetes Mellitus. Current Diabetes Reviews, 2019, 15, 480-485.	0.6	27
3372	Microbiome Regulation of Autoimmune, Gut and Liver Associated Diseases. Inflammation and Allergy: Drug Targets, 2016, 14, 84-93.	1.8	12
3373	Developing a Reproducible Microbiome Data Analysis Pipeline Using the Amazon Web Services Cloud for a Cancer Research Group: Proof-of-Concept Study. JMIR Medical Informatics, 2019, 7, e14667.	1.3	12
3374	A P4 medicine perspective of gut microbiota and prediabetes: Systems analysis and personalized intervention. Journal of Translational Internal Medicine, 2020, 8, 119-130.	1.0	9
3375	Interaction between gut microbiota and host immune cells. Inflammation and Regeneration, 2015, 35, 140-147.	1.5	1
3378	The clinical role of the gut microbiome and fecal microbiota transplantation in allogeneic stem cell transplantation. Haematologica, 2021, 106, 933-946.	1.7	13

#	Article	IF	CITATIONS
3379	Fecal microbiota transplantation in alcohol related liver diseases. Clinical and Molecular Hepatology, 2020, 26, 294-301.	4.5	24
3380	Podocyte NLRP3 Inflammasome Activation and Formation by Adipokine Visfatin. Cellular Physiology and Biochemistry, 2019, 53, 355-365.	1.1	13
3381	$ + \frac{1}{2} + \frac$)• & ¦ £ D~ĐĐ»	ĐĩĐ¡Đ¢ĐžĐ'
3382	Promising Treatment for Type 2 Diabetes: Fecal Microbiota Transplantation Reverses Insulin Resistance and Impaired Islets. Frontiers in Cellular and Infection Microbiology, 2019, 9, 455.	1.8	121
3383	Alterations in Urobiome in Patients With Bladder Cancer and Implications for Clinical Outcome: A Single-Institution Study. Frontiers in Cellular and Infection Microbiology, 2020, 10, 555508.	1.8	47
3384	Gut Microbiome Composition Remains Stable in Individuals with Diabetes-Related Early to Late Stage Chronic Kidney Disease. Biomedicines, 2021, 9, 19.	1.4	11
3385	Gallstone Disease, Obesity and the Firmicutes/Bacteroidetes Ratio as a Possible Biomarker of Gut Dysbiosis. Journal of Personalized Medicine, 2021, 11, 13.	1.1	121
3386	Gut Microbiota Profile of Obese Diabetic Women Submitted to Roux-en-Y Gastric Bypass and Its Association with Food Intake and Postoperative Diabetes Remission. Nutrients, 2020, 12, 278.	1.7	47
3387	Aging, Gut Microbiota and Metabolic Diseases: Management through Physical Exercise and Nutritional Interventions. Nutrients, 2021, 13, 16.	1.7	24
3388	<i>Akkermansia muciniphila</i> is a new universal probiotic on the basis of live human commensal gut bacteria: the reality or legend?. Zhurnal Mikrobiologii Epidemiologii I Immunobiologii, 2019, 96, 105-115.	0.3	1
3389	Intestinal Microbiota and Cardiovascular Diseases. International Journal of Cardiovascular Sciences, 2020, , .	0.0	2
3390	Freeze-dried Si-Ni-San powder can ameliorate high fat diet-induced non-alcoholic fatty liver disease. World Journal of Gastroenterology, 2019, 25, 3056-3068.	1.4	20
3391	Sodium glucose co-transporter 2 inhibition reduces succinate levels in diabetic mice. World Journal of Gastroenterology, 2020, 26, 3225-3235.	1.4	17
3392	Systems Biology: A Multi-Omics Integration Approach to Metabolism and the Microbiome. Endocrinology and Metabolism, 2020, 35, 507-514.	1.3	7
3393	Changes in intestinal flora in patients with type 2 diabetes on a lowâ€fat diet during 6 months of followâ€'up. Experimental and Therapeutic Medicine, 2020, 20, 1-1.	0.8	8
3394	Is it who you are or what you do that is important in the human gut?. Beneficial Microbes, 2013, 4, 219-222.	1.0	10
3395	Drug-microbiota interactions and treatment response: Relevance to rheumatoid arthritis. AIMS Microbiology, 2018, 4, 642-654.	1.0	26
3396	Insoluble Dietary Fiber from Pear Pomace Can Prevent High-Fat Diet-Induced Obesity in Rats Mainly by Improving the Structure of the Gut Microbiota. Journal of Microbiology and Biotechnology, 2017, 27, 856-867.	0.9	41

#	Article	IF	Citations
3397	Metagenomic Analysis of the Fecal Microbiomes of Wild Asian Elephants Reveals Microflora and Enzymes that Mainly Digest Hemicellulose. Journal of Microbiology and Biotechnology, 2019, 29, 1255-1265.	0.9	22
3398	An Optimized Graph-Based Metagenomic Gene Classification Approach. Advances in Medical Technologies and Clinical Practice Book Series, 0, , 290-314.	0.3	2
3399	Mediators of insulin resistance & Eardiometabolic risk: Newer insights. Indian Journal of Medical Research, 2018, 148, 127.	0.4	9
3400	Effect of yogic colon cleansing (laghu sankhaprakshalana kriya) on bowel health in normal individuals. Yoga Mimamsa, 2019, 51, 26.	0.2	3
3401	Implication of Gut Microbiota in Diabetes Mellitus and Obesity. Acta Endocrinologica, 2016, 12, 206-214.	0.1	31
3402	Prolonged high-fat-diet feeding promotes non-alcoholic fatty liver disease and alters gut microbiota in mice. World Journal of Hepatology, 2019, 11, 619-637.	0.8	98
3403	Implication of the intestinal microbiome in complications of cirrhosis. World Journal of Hepatology, 2016, 8, 1128.	0.8	25
3404	Essential roles of four-carbon backbone chemicals in the control of metabolism. World Journal of Biological Chemistry, 2015, 6, 223.	1.7	10
3405	The Hologenome Concept of Evolution: Medical Implications. Rambam Maimonides Medical Journal, 2019, 10, e0005.	0.4	16
3406	Humans as a Source of Colistin Resistance: In Silico Analysis of Public Metagenomes for the mcr-1 Gene in the Gut Microbiome. Erciyes Medical Journal, 2016, 38, 59-61.	0.0	1
3407	Is stool frequency associated with the richness and community composition of gut microbiota?. Intestinal Research, 2019, 17, 419-426.	1.0	26
3408	Dynamic changes of yak (Bos grunniens) gut microbiota during growth revealed by polymerase chain reaction-denaturing gradient gel electrophoresis and metagenomics. Asian-Australasian Journal of Animal Sciences, 2017, 30, 957-966.	2.4	10
3409	Natural Compounds in the Modulation of the Intestinal Microbiota: Implications in Human Physiology and Pathology. , 0 , , .		2
3410	Host– Gut Microbiota Interaction. Japanese Journal of Food Microbiology, 2015, 32, 95-99.	0.3	1
3411	The interaction between gut microbiome and nutrients on development of human disease through epigenetic mechanisms. Genomics and Informatics, 2019, 17, e24.	0.4	17
3412	Effect of Overgrowth or Decrease in Gut Microbiota on Health and Disease. Archives of Pediatric Infectious Diseases, 2016, 4, .	0.1	12
3413	The genetic architecture of NAFLD among inbred strains of mice. ELife, 2015, 4, e05607.	2.8	96
3414	A broadly distributed toxin family mediates contact-dependent antagonism between gram-positive bacteria. ELife, 2017, 6, .	2.8	132

#	Article	IF	CITATIONS
3415	Increase in clinically recorded type 2 diabetes after colectomy. ELife, 2018, 7, .	2.8	23
3416	Adjusting for age improves identification of gut microbiome alterations in multiple diseases. ELife, 2020, 9, .	2.8	113
3417	Comparative analysis of the metabolically active microbial communities in the rumen of dromedary camels under different feeding systems using total rRNA sequencing. PeerJ, 2020, 8, e10184.	0.9	14
3418	Partial restoration of normal intestinal microbiota in morbidly obese women six months after bariatric surgery. PeerJ, 2020, 8, e10442.	0.9	4
3419	MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ, 2015, 3, e1165.	0.9	1,546
3420	Impact of demographics on human gut microbial diversity in a US Midwest population. PeerJ, 2016, 4, e1514.	0.9	61
3421	A low dose of an organophosphate insecticide causes dysbiosis and sex-dependent responses in the intestinal microbiota of the Japanese quail (<i>Coturnix japonica</i>). PeerJ, 2016, 4, e2002.	0.9	18
3422	A longitudinal study of the diabetic skin and wound microbiome. PeerJ, 2017, 5, e3543.	0.9	93
3423	Detection of stable community structures within gut microbiota co-occurrence networks from different human populations. PeerJ, 2018, 6, e4303.	0.9	48
3424	Inulin-type fructan improves diabetic phenotype and gut microbiota profiles inÂrats. PeerJ, 2018, 6, e4446.	0.9	127
3425	The impact of chemerin or chemokine-like receptor 1 loss on the mouse gut microbiome. PeerJ, 2018, 6, e5494.	0.9	10
3426	Impact of inter- and intra-individual variation, sample storage and sampling fraction on human stool microbial community profiles. PeerJ, 2019, 7, e6172.	0.9	17
3427	Human gut resistome can be country-specific. PeerJ, 2019, 7, e6389.	0.9	13
3428	Effect of heat-killed <i>Streptococcus thermophilus</i> on type 2 diabetes rats. PeerJ, 2019, 7, e7117.	0.9	12
3429	Comparative study of gut microbiota in Tibetan wild asses (<i>Equus kiang</i>) and domestic donkeys (<i>Equus asinus</i>) on the Qinghai-Tibet plateau. Peerl, 2020, 8, e9032.	0.9	20
3430	Gut microbiota of obese and diabetic Thai subjects and interplay with dietary habits and blood profiles. Peerl, 2020, 8, e9622.	0.9	7
3431	Evaluation of computational methods for human microbiome analysis using simulated data. PeerJ, 2020, 8, e9688.	0.9	14
3432	Flos Lonicera Combined with Metformin Ameliorates Hepatosteatosis and Glucose Intolerance in Association with Gut Microbiota Modulation. Frontiers in Microbiology, 0, 8, .	1.5	1

#	Article	IF	CITATIONS
3433	Possible regulation of liver glycogen structure through the gut-liver axis by resistant starch: a review. Food and Function, 2021, 12, 11154-11164.	2.1	8
3434	Genome-Scale Metabolic Modelling of the Human Gut Microbiome Reveals Changes of the Glyoxylate and Dicarboxylate Metabolism in Metabolic Disorders. SSRN Electronic Journal, 0, , .	0.4	0
3435	The positive effects and underlying mechanisms of <i>Undaria pinnatifida</i> polysaccharides on type 2 diabetes mellitus in rats. Food and Function, 2021, 12, 11898-11912.	2.1	23
3436	mBodyMap: a curated database for microbes across human body and their associations with health and diseases. Nucleic Acids Research, 2022, 50, D808-D816.	6.5	26
3437	Gut microbiota changes in preeclampsia, abnormal placental growth and healthy pregnant women. BMC Microbiology, 2021, 21, 265.	1.3	24
3438	The East Asian gut microbiome is distinct from colocalized White subjects and connected to metabolic health. ELife, 2021, 10, .	2.8	25
3439	Flaxseed Powder Attenuates Non-Alcoholic Steatohepatitis via Modulation of Gut Microbiota and Bile Acid Metabolism through Gut–Liver Axis. International Journal of Molecular Sciences, 2021, 22, 10858.	1.8	15
3440	Fecal Transplantation from db/db Mice Treated with Sodium Butyrate Attenuates Ischemic Stroke Injury. Microbiology Spectrum, 2021, 9, e0004221.	1.2	32
3441	A glimpse at the metabolic research in China. Cell Metabolism, 2021, 33, 2122-2125.	7.2	18
3442	Alterations in Faecal Metagenomics and Serum Metabolomics Indicate Management Strategies for Patients With Budd-Chiari Syndrome. Frontiers in Cellular and Infection Microbiology, 2021, 11, 730091.	1.8	1
3443	Gut microbiota dysbiosis contributes to the development of chronic obstructive pulmonary disease. Respiratory Research, 2021, 22, 274.	1.4	56
3444	Network of Interactions Between Gut Microbiome, Host Biomarkers, and Urine Metabolome in Carotid Atherosclerosis. Frontiers in Cellular and Infection Microbiology, 2021, 11, 708088.	1.8	5
3445	The Impact of Gut Microbiota on Post-Stroke Management. Frontiers in Cellular and Infection Microbiology, 2021, 11, 724376.	1.8	1
3447	The Auto-Brewery Syndrome: A Perfect Metabolic "Storm―with Clinical and Forensic Implications. Journal of Clinical Medicine, 2021, 10, 4637.	1.0	10
3448	The bacterial gut microbiome of probiotic-treated very-preterm infants: changes from admission to discharge. Pediatric Research, 2022, 92, 142-150.	1.1	11
3449	Kudzu Resistant Starch: An Effective Regulator of Type 2 Diabetes Mellitus. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-15.	1.9	20
3451	Effects of Tartary Buckwheat Protein on Gut Microbiome and Plasma Metabolite in Rats with High-Fat Diet. Foods, 2021, 10, 2457.	1.9	20
3452	Gut Microbiota Composition and Fecal Metabolic Profiling in Patients With Diabetic Retinopathy. Frontiers in Cell and Developmental Biology, 2021, 9, 732204.	1.8	26

#	Article	IF	CITATIONS
3453	Distinct Effects of Short Chain Fatty Acids on Host Energy Balance and Fuel Homeostasis With Focus on Route of Administration and Host Species. Frontiers in Neuroscience, 2021, 15, 755845.	1.4	10
3454	A metagenomic study of the gut microbiome in PTB'S disease. Microbes and Infection, 2022, 24, 104893.	1.0	6
3455	Metabolites of gut microbiome are associated with glucose metabolism in non-diabetic obese adults: a Chinese monozygotic twin study. Diabetology and Metabolic Syndrome, 2021, 13, 106.	1.2	4
3456	Multiunit In Vitro Colon Model for the Evaluation of Prebiotic Potential of a Fiber Plus D-Limonene Food Supplement. Foods, 2021, 10, 2371.	1.9	13
3457	Gut microbiota dysbiosis of type 2 diabetic mice impairs the intestinal daily rhythms of GLP-1 sensitivity. Acta Diabetologica, 2022, 59, 243-258.	1.2	8
3458	Desulfovibrio desulfuricans aggravates atherosclerosis by enhancing intestinal permeability and endothelial TLR4/NF-κB pathway in Apoe mice. Genes and Diseases, 2023, 10, 239-253.	1.5	15
3459	Tuber flours improve intestinal health and modulate gut microbiota composition. Food Chemistry: X, 2021, 12, 100145.	1.8	1
3460	The Depletion of Carbohydrate Metabolic Genes in the Gut Microbiome Contributes to the Transition From Central Obesity to Type 2 Diabetes. Frontiers in Endocrinology, 2021, 12, 747646.	1.5	6
3461	Microbiome Changes after Type 2 Diabetes Treatment: A Systematic Review. Medicina (Lithuania), 2021, 57, 1084.	0.8	4
3462	Gut microbiotaâ€"a positive contributor in the process of intermittent fasting-mediated obesity control. Animal Nutrition, 2021, 7, 1283-1295.	2.1	12
3463	FiberGrowth Pipeline: A Framework Toward Predicting Fiber-Specific Growth From Human Gut Bacteroidetes Genomes. Frontiers in Microbiology, 2021, 12, 632567.	1.5	1
3464	Characteristics of the Gut Microbiota and Potential Effects of Probiotic Supplements in Individuals with Type 2 Diabetes mellitus. Foods, 2021, 10, 2528.	1.9	9
3466	Obesity, Metabolic Syndrome and Inflammation. , 2022, , 133-149.		0
3467	The role of Akkermansia muciniphila in obesity, diabetes and atherosclerosis. Journal of Medical Microbiology, 2021, 70, .	0.7	56
3468	Potential roles of 1,5-anhydro-d-fructose in modulating gut microbiome in mice. Scientific Reports, 2021, 11, 19648.	1.6	4
3469	Oral Dysbiosis in Severe Forms of Periodontitis Is Associated With Gut Dysbiosis and Correlated With Salivary Inflammatory Mediators: A Preliminary Study. Frontiers in Oral Health, 2021, 2, 722495.	1.2	22
3470	Intestinal microbiota has important effect on severity of hand foot and mouth disease in children. BMC Infectious Diseases, 2021, 21, 1062.	1.3	8
3471	The intestinal 3M (microbiota, metabolism, metabolome) zeitgeist – from fundamentals to future challenges. Free Radical Biology and Medicine, 2021, 176, 265-285.	1.3	27

#	Article	IF	CITATIONS
3476	Development of an Economic-trait Genetic Marker by Applying Next-generation Sequencing Technologies in a Whole Genome. Journal of Life Science, 2014, 24, 1258-1267.	0.2	1
3478	Perspective and Direction for Future Research: Modification of High Calorie Diet Needed for Optimal Health of Human Visceral and Brain Tissues. , 2015, , 277-298.		O
3479	å¿fè¡€ç®¡ç—…ã®æ²»ç™,æ™çš"ã•㕗㕦ã®è…,管å…ç−«ã•腸内ç∽èŒ. Journal of JCS Cardiologists, 2015, 23,	18 9.:1 195.	0
3480	Gut Microbiome, Obesity and Metabolic Syndrome. , 2015, , 1-14.		2
3481	The Human Microbiome., 0,, 226-237.		1
3482	Gut Microbiota-Induced 5-HT Synthesis and Obesity. Journal of Endocrinology and Diabetes, 2015, 2, 01-01.	0.2	0
3483	Modulation of Gut Microbiota: Potential Mechanism of Diabetes Remission after Bariatric/Metabolic Surgery. Journal of Metabolic and Bariatric Surgery, 2015, 4, 29-34.	0.1	0
3484	The Human Microbiome and Clinical Immunology. , 0, , 19-25.		0
3486	Data-Compression-Based Resource Management in Cloud Computing for Biology and Medicine. Journal of Computing Science and Engineering, 2016, 10, 21-31.	0.3	1
3487	Involment of gut microboita in the development of obesity and insulin resistance. Clinical Endocrinology and Endocrine Surgery, 2016, .	0.1	1
3488	Desarrollo de la Microbiota Gastrointestinal en Lactantes y Su Rol en Salud y Enfermedad. Ars Medica, 2016, 41, .	0.1	0
3491	Modification of intestinal microbiota and faecal transplantation as a perspective method of treatment of obesity, insulin resistance and diabetes mellitus type 2. Clinical Endocrinology and Endocrine Surgery, 2016, .	0.1	2
3492	Chronic kidney disease: pathophysiological role of dysbiosis of intestine and renoprotective effectiveness of interventions concerning its modulation. Rossiiskii Meditsinskii Zhurnal: Organ Ministerstva Zdravookhraneniia RSFSR, 2016, 22, 157-162.	0.1	1
3494	Kostens betydning for parodontal inflammation - nye veje til h \tilde{A} mning af destruktionen. Aktuel Nordisk Odontologi, 2017, 9, 99-107.	0.1	0
3495	Basic Immunobiology. Molecular and Integrative Toxicology, 2017, , 1-93.	0.5	0
3496	Surgical management of diabetes mellitus: future outlook. Endoscopic Surgery, 2017, 23, 46.	0.0	0
3498	Changes in gut microbiome as important risk-factor for development of metabolic diseases. Clinical Endocrinology and Endocrine Surgery, 2017, .	0.1	0
3499	Intestinal microbiota: its role in pathogenesis of arterial hypertension. Klinicheskaia Meditsina, 2017, 95, 123-126.	0.2	2

#	Article	IF	Citations
3505	Frequency of small intestinal bacterial overgrowth in type 2 diabetes. Clinical Endocrinology and Endocrine Surgery, 2017 , .	0.1	0
3506	The Microbiota and Energy Balance. Endocrinology, 2018, , 1-18.	0.1	0
3508	GUT MICROBIOTA AND DIABETES MELLITUS - AN INTERLINKAGE. Asian Journal of Pharmaceutical and Clinical Research, 2018, 11, 13.	0.3	1
3511	Butyrate. Praktické LékárenstvÃ; 2018, 14, 73-76.	0.0	0
3515	The ratio of the main types of intestinal microbiota in patients with type 2 diabetes mellitus. Clinical Endocrinology and Endocrine Surgery, 2018, .	0.1	2
3517	「è…,内デã,¶ã,∰³ã€ãŒå^‡ã,Šæ‹"ãç—…æ°—ã,¼ãƒç∰会. Kagaku To Seibutsu, 2018, 56, 692-696.	0.0	0
3521	A repository of microbial marker genes related to human health and diseases for host phenotype prediction using microbiome data. , 2018 , , .		2
3522	Relationship of clinical efficacy of glucose lowering agents, gut microbiota, diet, and patient's genotype in diabetes mellitus type 2. Reviews on Clinical Pharmacology and Drug Therapy, 2018, 16, 11-18.	0.2	0
3524	Fatty Acid Metabolism and Gut Microbiota in Host Homeostasis. Oleoscience, 2019, 19, 139-144.	0.0	0
3525	Variable Selection for High Dimensional Metagenomic Data. ICSA Book Series in Statistics, 2019, , 19-32.	0.0	0
3526	CRISPR-Cas Immune System of a Prevalent Human Gut Bacterium Reveals Hypertargeting Against Gut Virome Phages. SSRN Electronic Journal, 0, , .	0.4	0
3527	Estimation of Potential Richness of Dark Matters in "Pan Metagenome―Using Species Appearance Model. Lecture Notes in Computer Science, 2019, , 3-15.	1.0	0
3528	Evaluation of the anemia-ameliorating effects of changes in the intestinal microbiota in hemodialysis patients: a study of four cases. Nihon Toseki Igakkai Zasshi, 2019, 52, 271-279.	0.2	0
3529	Microbiome in Liver Cirrhosis., 2019,, 79-91.		0
3530	The profiles of dysbiotic microbial communities. AIMS Microbiology, 2019, 5, 87-101.	1.0	1
3535	Oral and Human Microbiome Research. Journal of Dental Hygiene Science, 2019, 19, 77-85.	0.1	0
3537	Frequency and features of gut dysbiosisin patients with obesity and diabetes mellitus type 2. Clinical Endocrinology and Endocrine Surgery, 2019, .	0.1	0
3538	Suplementação com probióticos e depressão: estratégia terapêutica?. Revista De Ciencias Medicas (Campinas): Journal of Medical Sciences, 2019, 28, 31.	0.3	1

#	Article	IF	CITATIONS
3539	Probiotic and Prebiotic Interventions for Obesity and Diabetes. Interventions in Obesity $\&$ Diabetes, 2019, 3, .	0.0	O
3545	Polysaccharides in Food. , 2020, , 1-30.		0
3546	Microbial Interaction Extraction from Biomedical Literature using Max-Bi-LSTM., 2019,,.		3
3551	Physiological Characteristics and Anti-diabetic Effect of Lactobacillus plantarum Kl69. Journal of Milk Science and Biotechnology, 2019, 37, 223-236.	0.3	4
3552	Intestinal microbiome and 2 type diabetes mellitus. Ukrainian Therapeutical Journal, 2019, .	0.0	0
3553	Diabetes mellitus and osteoarthritis. , 2020, , 285-315.		1
3555	Probiotic choice in patients with diabetic enterocolopathy. Clinical Endocrinology and Endocrine Surgery, 2020, .	0.1	0
3559	Deep learning model for metagenome fragment classification using spaced k-mers feature extraction. Jurnal Teknologi Dan Sistem Komputer, 2020, 8, 234-238.	0.2	1
3560	ÄÄNH GIÕCÃC CÔNG Cá»#Há»— TRỢ CHẠN ÄĐÃN BỆNH VỚI CÃCH TIẾP CẬN Y HỌC CÕTHá», HÁ Dalat University Journal of Science, 0, , 117-144.	("ĄŢŖÃŠN	Dás»® LlỆl
3562	Bacterial microbiota of lower gut and bronchi in tuberculosis patients. Tuberculosis and Lung Diseases, 2020, 98, 37-43.	0.2	3
3563	Sodium glucose co-transporter 2 inhibition reduces succinate levels in diabetic mice. World Journal of Gastroenterology, 2020, 26, 3225-3235.	1.4	0
3565	Evaluation of Akkermansia muciniphila bacteria in obese and overweight type 2 diabetic patients treated with insulin or oral hypoglycemic agents comparing with healthy subjects. Medical Journal of Tabriz University of Medical Sciences & Health Services, 2020, 42, 303-318.	0.1	0
3567	Alteration of Gut Microbiota in EDCs-Induced Metabolic Disorders. Emerging Contaminants and Associated Treatment Technologies, 2021, , 135-145.	0.4	0
3569	Effects of Drugs, Phytoestrogens, Nutrients and Probiotics on Endothelial Dysfunction in the Estrogen-Deficient State. Current Pharmaceutical Design, 2020, 26, 3711-3722.	0.9	5
3570	Umbilical cord blood culture in neonatal early-onset sepsis: a systematic review and meta-analysis. Pediatric Research, 2021, , .	1.1	6
3571	Gut microbiome signatures distinguish type 2 diabetes mellitus from non-alcoholic fatty liver disease. Computational and Structural Biotechnology Journal, 2021, 19, 5920-5930.	1.9	17
3572	Unique Habitual Food Intakes in the Gut Microbiota Cluster Associated with Type 2 Diabetes Mellitus. Nutrients, 2021, 13, 3816.	1.7	7
3573	Metformin inhibits tumor growth and affects intestinal flora in diabetic tumor-bearing mice. European Journal of Pharmacology, 2021, 912, 174605.	1.7	10

#	Article	IF	CITATIONS
3574	The gut-microbiome contribution to HIV-associated cardiovascular disease and metabolic disorders. Current Opinion in Endocrine and Metabolic Research, 2021, 21, 100287.	0.6	3
3575	Comprehensive functional core microbiome comparison in genetically obese and lean hosts under the same environment. Communications Biology, 2021, 4, 1246.	2.0	14
3576	Review: Uremic Toxins and Gut Microbiome. , 2020, , 17-39.		0
3578	Comparison of thrombus, gut, and oral microbiomes in Korean patients with ST-elevation myocardial infarction: a case–control study. Experimental and Molecular Medicine, 2020, 52, 2069-2079.	3.2	20
3581	Intestinal dysbacteriosis leads to kidney stone disease. Molecular Medicine Reports, 2020, 23, .	1.1	12
3582	Intestinal microflora in metabolic diseases. World Chinese Journal of Digestology, 2020, 28, 1192-1199.	0.0	1
3584	The Role of the Microbiome and Intestinal Mucosal Barrier in the Development and Progression of Non-Alcoholic Fatty Liver Disease. Russian Journal of Gastroenterology Hepatology Coloproctology, 2020, 30, 42-48.	0.2	0
3585	The gut microbiome and the kidney. , 2022, , 147-161.		1
3586	A comprehensive assessment of fungi in urban sewer biofilms: Community structure, environmental factors, and symbiosis patterns. Science of the Total Environment, 2022, 806, 150728.	3.9	5
3588	Gut Microbiota and Risk for Atherosclerosis: Current Understanding of the Mechanisms. , 2020, , 167-186.		0
3589	Deep Ensemble Models for 16S Ribosomal Gene Classification. Lecture Notes in Computer Science, 2020, , 282-290.	1.0	0
3590	Effect of probiotics, <i>Bifidobacterium bifidum</i> G9-1, on gastrointestinal symptoms in patients with type 2 diabetes mellitus: study protocol for open-label, single-arm, exploratory research trial (Big STAR study). Journal of Clinical Biochemistry and Nutrition, 2020, 67, 223-227.	0.6	3
3591	A Comparative Study on the Effect of <i>Massularia acuminata</i> Fractions against Bacterial and Fungal Isolates from the Oral Cavity. Health, 2020, 12, 904-913.	0.1	0
3592	Gut Microbiome in Inflammation and Chronic Enteric Infections. , 2020, , 133-152.		1
3593	Dietary Fiber. , 2020, , 1-16.		1
3594	Gut Microbiota as Signatures in Non-communicable Diseases and Mucosal Immunity. Diagnostics and Therapeutic Advances in GI Malignancies, 2020, , 167-208.	0.2	0
3595	A Comprehensive Analysis of the Global Human Gut Archaeome from a Thousand Genome Catalogue. SSRN Electronic Journal, 0, , .	0.4	0
3597	An Optimized Graph-Based Metagenomic Gene Classification Approach. , 2020, , 1168-1192.		0

#	Article	IF	CITATIONS
3598	Effects of the Bio-accumulative Environmental Pollutants on the Gut Microbiota., 2020, , 109-143.		1
3599	The Microbiome in Liver Diseases. , 2020, , 205-210.		0
3602	Utilization of Faecal Microbiota in Humans and Animals. Journal of Agriculture & Life Science, 2020, 54, 1-18.	0.1	0
3608	Is fecal microbiota transplantation a promising strategy for type 2 diabetes mellitus?. Endocrinology&Metabolism International Journal, 2020, 8, .	0.1	0
3609	GAA compound heterozygous mutations associated with autophagic impairment cause cerebral infarction in Pompe disease. Aging, 2020, 12, 4268-4282.	1.4	6
3612	Roseburia Abundance Associates With Severity, Evolution and Outcome of Acute Ischemic Stroke. Frontiers in Cellular and Infection Microbiology, 2021, 11, 669322.	1.8	12
3613	Therapeutic Potential of Butyrate for Treatment of Type 2 Diabetes. Frontiers in Endocrinology, 2021, 12, 761834.	1.5	40
3614	The Gut Microbiome: Connecting Diet, Glucose Homeostasis, and Disease. Annual Review of Medicine, 2022, 73, 469-481.	5.0	20
3615	Effects of probiotic <i>Bifidobacterium bifidum</i> G9â€1 on the gastrointestinal symptoms of patients with type 2 diabetes mellitus treated with metformin: An openâ€label, singleâ€arm, exploratory research trial. Journal of Diabetes Investigation, 2022, 13, 489-500.	1.1	8
3616	Altered metabolome and microbiome features provide clues in understanding irritable bowel syndrome and depression comorbidity. ISME Journal, 2022, 16, 983-996.	4.4	36
3617	Sex Differences in Cardiovascular Impact of Early Metabolic Impairment: Interplay between Dysbiosis and Adipose Inflammation. Molecular Pharmacology, 2022, 102, 60-79.	1.0	2
3618	Long-term dynamics of the human oral microbiome during clinical disease progression. BMC Biology, 2021, 19, 240.	1.7	10
3619	Predicting the recurrence of chronic rhinosinusitis with nasal polyps using nasal microbiota. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 540-549.	2.7	23
3620	Effect of mulberry galacto-oligosaccharide isolated from mulberry on glucose metabolism and gut microbiota in a type 2 diabetic mice. Journal of Functional Foods, 2021, 87, 104836.	1.6	8
3622	Role of Gut Microbiome on Metabolic Disorders. Journal of Advances in Medical and Pharmaceutical Sciences, 0, , 21-35.	0.2	0
3623	Cluster Analysis of Microbiome Data by Using Mixtures of Dirichlet–Multinomial Regression Models. Journal of the Royal Statistical Society Series C: Applied Statistics, 2020, 69, 1163-1187.	0.5	5
3628	The role of intestinal microbiota in the development of complications in pregnant women with gestational diabetes. Journal of Obstetrics and Women's Diseases, 2020, 69, 41-50.	0.0	2
3633	The Correlation Between Heart Failure and Gut Microbiome Metabolites. Infectious Microbes & Diseases, 2020, 2, 136-143.	0.5	2

#	Article	IF	CITATIONS
3637	Correction of the Taxonomic Composition of Human Gut Microbiota: Serine-Threonine Protein Kinases as Biotargets. Biology Bulletin Reviews, 2020, 10, 495-506.	0.3	0
3638	Can we Cure Type 2 Diabetes Mellitus ? Maybe Yes !. $M\tilde{A}^{\dagger}_{l}$ dica, 2013, 8, 229-30.	0.4	0
3639	Probiotic foods: can their increasing use in India ameliorate the burden of chronic lifestyle disorders?. Indian Journal of Medical Research, 2014, 139, 19-26.	0.4	0
3640	Part 1: The Human Gut Microbiome in Health and Disease. Integrative Medicine, 2014, 13, 17-22.	0.1	104
3641	The Gastrointestinal Microbiome: Alcohol Effects on the Composition of Intestinal Microbiota. , 2015, 37, 223-36.		130
3643	Targeting gut microbiota: a potential promising therapy for diabetic kidney disease. American Journal of Translational Research (discontinued), 2016, 8, 4009-4016.	0.0	13
3644	LDHB may be a significant predictor of poor prognosis in osteosarcoma. American Journal of Translational Research (discontinued), 2016, 8, 4831-4843.	0.0	19
3645	Change in gut microbiota is correlated with alterations in the surface molecule expression of monocytes after Roux-en-Y gastric bypass surgery in obese type 2 diabetic patients. American Journal of Translational Research (discontinued), 2017, 9, 1243-1254.	0.0	24
3646	Organ transplantation and gut microbiota: current reviews and future challenges. American Journal of Translational Research (discontinued), 2018, 10, 3330-3344.	0.0	12
3647	Natural Selection, The Microbiome, and Public Health. Yale Journal of Biology and Medicine, 2018, 91, 445-455.	0.2	14
3648	A repository of microbial marker genes related to human health and diseases for host phenotype prediction using microbiome data. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2019, 24, 236-247.	0.7	4
3651	Multiclass Disease Classification from Microbial Whole-Community Metagenomes. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2020, 25, 55-66.	0.7	0
3652	Engineered: A promising agent against diseases (Review). Experimental and Therapeutic Medicine, 2020, 20, 285.	0.8	4
3653	Will intestinal flora therapy become a new target in type-2 diabetes mellitus? A review based on 13 clinical trials. Nutricion Hospitalaria, 2021, , .	0.2	3
3654	The gut microbiota in retinal diseases. Experimental Eye Research, 2022, 214, 108867.	1.2	17
3655	Gut microbiota of patients with type 2 diabetes and gastrointestinal intolerance to metformin differs in composition and functionality from tolerant patients. Biomedicine and Pharmacotherapy, 2022, 145, 112448.	2.5	21
3656	The global scientific publications on gut microbiota in type 2 diabetes; a bibliometric, Scientometric, and descriptive analysis. Journal of Diabetes and Metabolic Disorders, 2022, 21, 13-32.	0.8	8
3657	Dysbiosis in the Human Microbiome of Cholangiocarcinoma. Frontiers in Physiology, 2021, 12, 715536.	1.3	11

#	Article	IF	CITATIONS
3658	Microbiome and Gestational Diabetes: Interactions with Pregnancy Outcome and Long-Term Infant Health. Journal of Diabetes Research, 2021, 2021, 1-10.	1.0	16
3659	Sex Differences in Fecal Microbiota Correlation With Physiological and Biochemical Indices Associated With End-Stage Renal Disease Caused by Immunoglobulin a Nephropathy or Diabetes. Frontiers in Microbiology, 2021, 12, 752393.	1.5	3
3660	Implications of Gut Microbiota in Complex Human Diseases. International Journal of Molecular Sciences, 2021, 22, 12661.	1.8	20
3661	Roseburia intestinalis: A Beneficial Gut Organism From the Discoveries in Genus and Species. Frontiers in Cellular and Infection Microbiology, 2021, 11, 757718.	1.8	139
3662	Is Colectomy Associated with the Risk of Type 2 Diabetes in Patients without Colorectal Cancer? A Population-Based Cohort Study. Journal of Clinical Medicine, 2021, 10, 5313.	1.0	3
3663	Treatment with mixed probiotics induced, enhanced and diversified modulation of the gut microbiome of healthy rats. FEMS Microbiology Ecology, 2021, 97, .	1.3	4
3665	Oral Mycobiome Differences in Various Spatial Niches With and Without Severe Early Childhood Caries. Frontiers in Pediatrics, 2021, 9, 748656.	0.9	7
3666	Structural and Functional Alterations of Gut Microbiota in Males With Hyperuricemia and High Levels of Liver Enzymes. Frontiers in Medicine, 2021, 8, 779994.	1.2	13
3667	Progression of diabetes is associated with changes in the ileal transcriptome and ilealâ€colon morphology in the UC Davis Type 2 Diabetes Mellitus rat. Physiological Reports, 2021, 9, e15102.	0.7	9
3668	Targeting the Gut Microbiome in Prader-Willi Syndrome. Journal of Clinical Medicine, 2021, 10, 5328.	1.0	1
3669	Reconstruction of intestinal microecology of Type 2 diabetes by Fecal Microbiota Transplantation: Why and How. Bosnian Journal of Basic Medical Sciences, 2021, , .	0.6	11
3670	Antimicrobial Properties of Chitosan and Chitosan Derivatives in the Treatment of Enteric Infections. Molecules, 2021, 26, 7136.	1.7	126
3671	A Possible Perspective about the Compositional Models, Evolution, and Clinical Meaning of Human Enterotypes. Microorganisms, 2021, 9, 2341.	1.6	12
3672	Examining the Interaction of the Gut Microbiome with Host Metabolism and Cardiometabolic Health in Metabolic Syndrome. Nutrients, 2021, 13, 4318.	1.7	5
3673	Role of the gut microbiome in cardiovascular drug response: The potential for clinical application. Pharmacotherapy, 2022, 42, 165-176.	1.2	5
3674	Gut Microbiota and Sunitinib-Induced Diarrhea in Metastatic Renal Cell Carcinoma: A Pilot Study. Cancer Management and Research, 2021, Volume 13, 8663-8672.	0.9	11
3675	Environmental risk factors of type 2 diabetes—an exposome approach. Diabetologia, 2022, 65, 263-274.	2.9	51
3676	The Complement Pathway: New Insights into Immunometabolic Signaling in Diabetic Kidney Disease. Antioxidants and Redox Signaling, 2022, 37, 781-801.	2.5	12

#	Article	IF	CITATIONS
3677	Urolithins: Diet-Derived Bioavailable Metabolites to Tackle Diabetes. Nutrients, 2021, 13, 4285.	1.7	14
3678	Blueberry Counteracts Prediabetes in a Hypercaloric Diet-Induced Rat Model and Rescues Hepatic Mitochondrial Bioenergetics. Nutrients, 2021, 13, 4192.	1.7	10
3679	It takes guts to learn: machine learning techniques for disease detection from the gut microbiome. Emerging Topics in Life Sciences, 2021, 5, 815-827.	1.1	13
3680	Toward a unified diversity–area relationship (DAR) of species and gene diversity illustrated with the human gut metagenome. Ecosphere, 2021, 12, e03807.	1.0	0
3682	Metagenomic Sequencing Analysis for Acne Using Machine Learning Methods Adapted to Single or Multiple Data. Computational and Mathematical Methods in Medicine, 2021, 2021, 1-11.	0.7	2
3683	Gut microbiome status of urban and rural Filipino adults in relation to diet and metabolic disorders. FEMS Microbiology Letters, 2021, 368, .	0.7	3
3684	The human microbiome encodes resistance to the antidiabetic drug acarbose. Nature, 2021, 600, 110-115.	13.7	44
3685	Involvement of the fecal amino acid profile in a clinical and anthropometric study of Mexican patients with insulin resistance and type 2 diabetes mellitus. Amino Acids, 2022, 54, 47-55.	1.2	3
3686	Ex Vivo Fecal Fermentation of Human Ileal Fluid Collected After Wild Strawberry Consumption Modulates Human Microbiome Community Structure and Metabolic Output and Protects Against DNA Damage in Colonic Epithelial Cells. Molecular Nutrition and Food Research, 2022, 66, e2100405.	1.5	4
3688	Revealing the composition of the eukaryotic microbiome of oyster spat by CRISPR-Cas Selective Amplicon Sequencing (CCSAS). Microbiome, 2021, 9, 230.	4.9	6
3689	A Pro-Inflammatory Gut Microbiome Characterizes SARS-CoV-2 Infected Patients and a Reduction in the Connectivity of an Anti-Inflammatory Bacterial Network Associates With Severe COVID-19. Frontiers in Cellular and Infection Microbiology, 2021, 11, 747816.	1.8	51
3690	Natural Ingredients from Medicine Food Homology as Chemopreventive Reagents against Type 2 Diabetes Mellitus by Modulating Gut Microbiota Homoeostasis. Molecules, 2021, 26, 6934.	1.7	8
3692	Alteration of the gut microbiota in rhesus monkey with spontaneous osteoarthritis. BMC Microbiology, 2021, 21, 328.	1.3	10
3693	Isolation, Structural, Functional, and Bioactive Properties of Cereal Arabinoxylan─A Critical Review. Journal of Agricultural and Food Chemistry, 2021, 69, 15437-15457.	2.4	21
3694	Polyphenols-rich extracts from walnut green husk prevent non-alcoholic fatty liver disease, vascular endothelial dysfunction and colon tissue damage in rats induced by high-fat diet. Journal of Functional Foods, 2021, 87, 104853.	1.6	15
3695	Hypotensive effect of captopril on deoxycorticosterone acetate-salt-induced hypertensive rat is associated with gut microbiota alteration. Hypertension Research, 2022, 45, 270-282.	1.5	14
3696	<i>Lactobacillus</i> alleviated obesity induced by highâ€fat diet in mice. Journal of Food Science, 2021, 86, 5439-5451.	1.5	23
3697	Effect of prophylactic dextrose gel on the neonatal gut microbiome. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2022, 107, 501-507.	1.4	3

#	Article	lF	CITATIONS
3700	An integrative understanding of the large metabolic shifts induced by antibiotics in critical illness. Gut Microbes, 2021, 13, 1993598.	4.3	10
3701	The Gut Microbiota and Immunopathophysiology. , 2021, , .		0
3703	Insulin resistance per se drives early and reversible dysbiosis-mediated gut barrier impairment and bactericidal dysfunction. Molecular Metabolism, 2022, 57, 101438.	3.0	16
3704	Towards a metagenomics machine learning interpretable model for understanding the transition from adenoma to colorectal cancer. Scientific Reports, 2022, 12, 450.	1.6	11
3705	Gut microbiota promotes cholesterol gallstone formation by modulating bile acid composition and biliary cholesterol secretion. Nature Communications, 2022, 13, 252.	5.8	67
3706	Mapping the human gut mycobiome in middle-aged and elderly adults: multiomics insights and implications for host metabolic health. Gut, 2022, 71, 1812-1820.	6.1	44
3707	Native and Engineered Probiotics: Promising Agents against Related Systemic and Intestinal Diseases. International Journal of Molecular Sciences, 2022, 23, 594.	1.8	19
3708	Metabolic tuning of a stable microbial community in the surface oligotrophic Indian Ocean revealed by integrated meta-omics. Marine Life Science and Technology, 0, , 1.	1.8	5
3709	Metagenomic analysis reveals gut bacterial signatures for diagnosis and treatment outcome prediction in bipolar depression. Psychiatry Research, 2022, 307, 114326.	1.7	10
3712	Diet dependent impact of benzoate on diabetes and obesity in mice. Biochimie, 2022, 194, 35-42.	1.3	2
3713	Vitamin D mitigates diabetes-associated metabolic and cognitive dysfunction by modulating gut microbiota and colonic cannabinoid receptor 1. European Journal of Pharmaceutical Sciences, 2022, 170, 106105.	1.9	18
3714	Efficient Microcystis removal and sulfonamide-resistance gene propagation mitigation by constructed wetlands and functional genes analysis. Chemosphere, 2022, 292, 133481.	4.2	7
3715	Engineered Akkermansia muciniphila : A promising agent against diseases (Review). Experimental and Therapeutic Medicine, 2020, 20, 1-1.	0.8	18
3716	SEVELAMER CARBONATE MODULATES THE NLRP3 AND NLRP6 INFLAMMASOME EXPRESSION IN PATIENTS WITH DIABETIC NEPHROPATHY. Roumanian Archives of Microbiology and Immunology, 2021, 80, 125-132.	0.1	0
3717	Gut Microbiota Modulation In Diabetic Patients. Eurasian Journal of Applied Biotechnology, 2021, , .	0.0	0
3718	Characterization of the consensus mucosal microbiome of colorectal cancer. NAR Cancer, 2021, 3, zcab049.	1.6	9
3719	Heart Disease and Stroke Statistics—2022 Update: A Report From the American Heart Association. Circulation, 2022, 145, CIR000000000001052.	1.6	2,561
3720	Large-scale characterization of the macrolide resistome reveals high diversity and several new pathogen-associated genes. Microbial Genomics, 2022, 8, .	1.0	5

#	Article	IF	CITATIONS
3721	Probiotics in the management of diabetes. , 2022, , 407-424.		2
3722	Human Microbiota in Esophageal Adenocarcinoma: Pathogenesis, Diagnosis, Prognosis and Therapeutic Implications. Frontiers in Microbiology, 2021, 12, 791274.	1.5	5
3723	Kinetically Orthogonal Probe for Simultaneous Measurement of H ₂ S and Nitroreductase: A Refined Method to Predict the Invasiveness of Tumor Cells. Analytical Chemistry, 2022, 94, 1769-1777.	3.2	4
3724	<i>Akkermansia muciniphila</i> administration exacerbated the development of colitis-associated colorectal cancer in mice. Journal of Cancer, 2022, 13, 124-133.	1.2	43
3725	The Gut–Brain Axis and Its Relation to Parkinson's Disease: A Review. Frontiers in Aging Neuroscience, 2021, 13, 782082.	1.7	59
3726	The Association of Plasma Trimethylamine N-Oxide with Coronary Atherosclerotic Burden in Patients with Type 2 Diabetes Among a Chinese North Population. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2022, Volume 15, 69-78.	1.1	2
3727	Limosilactobacillus fermentum MG4295 Improves Hyperglycemia in High-Fat Diet-Induced Mice. Foods, 2022, 11, 231.	1.9	6
3728	Age- and obesity-related metabolic changes and their impact on the incidence of digestion, metabolism, and immune health., 2022,, 55-75.		0
3729	Gut Microbial Signatures for Glycemic Responses of GLP-1 Receptor Agonists in Type 2 Diabetic Patients: A Pilot Study. Frontiers in Endocrinology, 2021, 12, 814770.	1.5	23
3730	Diversity of soil fungi in the vineyards of Changli region in China. Canadian Journal of Microbiology, 2022, 68, 341-352.	0.8	5
3731	Genetic manipulation of gut microbes enables single-gene interrogation in a complex microbiome. Cell, 2022, 185, 547-562.e22.	13.5	61
3733	Bicyclol Alleviates Atherosclerosis by Manipulating Gut Microbiota. Small, 2022, , 2105021.	5.2	6
3734	Changes in chemical composition, structural and functional microbiome during alfalfa (Medicago) Tj ETQq0 0 0 rg	gBT/Overlo 2.1	ock 10 Tf 50
3735	The intestine and the microbiota in maternal glucose homeostasis during pregnancy. Journal of Endocrinology, 2022, 253, R1-R19.	1.2	11
3736	The emerging potential of microbiome transplantation on human health interventions. Computational and Structural Biotechnology Journal, 2022, 20, 615-627.	1.9	14
3737	Human microbiome and metabolic health: An overview of systematic reviews. Obesity Reviews, 2022, 23, e13409.	3.1	41
3738	Hypertension- and glycaemia-lowering effects of a grape-pomace-derived seasoning in high-cardiovascular risk and healthy subjects. Interplay with the gut microbiome. Food and Function, 2022, 13, 2068-2082.	2.1	20
3740	The Role of the Gut Microbiota in the Pathogenesis of Diabetes. International Journal of Molecular Sciences, 2022, 23, 480.	1.8	55

#	Article	IF	Citations
3742	Gut microbiome alterations and gut barrier dysfunction are associated with host immune homeostasis in COVID-19 patients. BMC Medicine, 2022, 20, 24.	2.3	83
3743	Pomegranate peel anthocyanins prevent diet-induced obesity and insulin resistance in association with modulation of the gut microbiota in mice. European Journal of Nutrition, 2022, 61, 1837-1847.	1.8	12
3744	The Role of Gut Microbiota and Metabolites in Obesity-Associated Chronic Gastrointestinal Disorders. Nutrients, 2022, 14, 624.	1.7	19
3745	Dynamic Alteration of the Gut Microbiota Associated with Obesity and Intestinal Inflammation in Ovariectomy C57BL/6 Mice. International Journal of Endocrinology, 2022, 2022, 1-13.	0.6	2
3746	Health improvements of type 2 diabetic patients through diet and diet plus fecal microbiota transplantation. Scientific Reports, 2022, 12, 1152.	1.6	41
3748	Hybrid, ultra-deep metagenomic sequencing enables genomic and functional characterization of low-abundance species in the human gut microbiome. Gut Microbes, 2022, 14, 2021790.	4.3	27
3749	Food-gut microbiota interactions. , 2022, , 233-256.		0
3750	Beneficial microbes from human and animal intestines. , 2022, , 55-76.		0
3751	Polycystic Ovary Syndrome: An Evolutionary Adaptation to Lifestyle and the Environment. International Journal of Environmental Research and Public Health, 2022, 19, 1336.	1.2	30
3752	Gut microbiota-derived metabolites are novel targets for improving insulin resistance. World Journal of Diabetes, 2022, 13, 65-69.	1.3	11
3753	Patient knowledge of gut microbiota and acceptability of fecal microbiota transplantation in various diseases. Neurogastroenterology and Motility, 2022, , e14320.	1.6	2
3754	Gut Microbiome Composition Is Predictive of Incident Type 2 Diabetes in a Population Cohort of 5,572 Finnish Adults. Diabetes Care, 2022, 45, 811-818.	4.3	47
3756	Efficacy and Safety of Lactobacillus plantarum K50 on Lipids in Koreans With Obesity: A Randomized, Double-Blind Controlled Clinical Trial. Frontiers in Endocrinology, 2021, 12, 790046.	1.5	15
3757	Gut microbiome alteration as a diagnostic tool and associated with inflammatory response marker in primary liver cancer. Hepatology International, 2022, 16, 99-111.	1.9	24
3758	Why Do These Microbes Like Me and How Could There Be a Link with Cardiovascular Risk Factors?. Journal of Clinical Medicine, 2022, 11, 599.	1.0	0
3759	Intestinal alkaline phosphatase deficiency increases the risk of diabetes. BMJ Open Diabetes Research and Care, 2022, 10, e002643.	1.2	6
3760	A Potential Synbiotic Strategy for the Prevention of Type 2 Diabetes: Lactobacillus paracasei JY062 and Exopolysaccharide Isolated from Lactobacillus plantarum JY039. Nutrients, 2022, 14, 377.	1.7	16
3761	Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis. International Journal of Molecular Sciences, 2022, 23, 1105.	1.8	215

#	Article	IF	CITATIONS
3762	An insight into multifunctional tool box. , 2022, Publish Ahead of Print, .		0
3764	Systematic review of the changes in the microbiome following spinal cord injury: animal and human evidence. Spinal Cord, 2022, 60, 288-300.	0.9	17
3765	Interleukin- $1\hat{l}^2$ secretion induced by mucosa-associated gut commensal bacteria promotes intestinal barrier repair. Gut Microbes, 2022, 14, 2014772.	4.3	23
3767	The Role of the Microbiota in Regeneration-Associated Processes. Frontiers in Cell and Developmental Biology, 2021, 9, 768783.	1.8	3
3768	Gut microbiota in patients with obesity and metabolic disorders $\hat{a} \in "a$ systematic review. Genes and Nutrition, 2022, 17, 2.	1.2	67
3769	Comparative analysis of gut microbial composition and potential functions in captive forest and alpine musk deer. Applied Microbiology and Biotechnology, 2022, 106, 1325-1339.	1.7	15
3770	Multimodal deep learning applied to classify healthy and disease states of human microbiome. Scientific Reports, 2022, 12, 824.	1.6	13
3771	Identification of Gut Flora Based on Robust Support Vector Machine. Journal of Physics: Conference Series, 2022, 2171, 012066.	0.3	3
3772	Sesquiterpene glycoside isolated from loquat leaf targets gut microbiota to prevent type 2 diabetes mellitus in db/db mice. Food and Function, 2022, 13, 1519-1534.	2.1	14
3773	Insights on \hat{I}^2 -glucan as a prebiotic coadjuvant in the treatment of diabetes mellitus: A review. Food Hydrocolloids for Health, 2022, 2, 100056.	1.6	17
3774	Gut microbiome and health: mechanistic insights. Gut, 2022, 71, 1020-1032.	6.1	661
3775	Genetically Predicted Causality of 28 Gut Microbiome Families and Type 2 Diabetes Mellitus Risk. Frontiers in Endocrinology, 2022, 13, 780133.	1.5	10
3776	Unraveling Gut Microbiota Signatures Associated with PPARD and PARGC1A Genetic Polymorphisms in a Healthy Population. Genes, 2022, 13, 289.	1.0	4
3777	Effects of exercise intensity on gut microbiome composition and function in people with type 2 diabetes. European Journal of Sport Science, 2023, 23, 530-541.	1.4	16
3778	Increasing prediction performance of colorectal cancer disease status using random forests classification based on metagenomic shotgun sequencing data. Synthetic and Systems Biotechnology, 2022, 7, 574-585.	1.8	14
3779	Short chain fatty acids: Microbial metabolites for gut-brain axis signalling. Molecular and Cellular Endocrinology, 2022, 546, 111572.	1.6	117
3780	Deciphering the extracellular and intracellular antibiotic resistance genes in multiple environments reveals the persistence of extracellular ones. Journal of Hazardous Materials, 2022, 429, 128275.	6.5	18
3781	Correlation between the regulation of intestinal bacteriophages by green tea polyphenols and the flora diversity in SPF mice. Food and Function, 2022, 13, 2952-2965.	2.1	8

#	Article	IF	CITATIONS
3782	Circadian Rhythms, the Gut Microbiome, and Metabolic Disorders., 2022, 1, 93-105.		10
3783	Human Gut Antibiotic Resistome and Progression of Diabetes. Advanced Science, 2022, 9, e2104965.	5.6	17
3784	Metagenomics of the midgut microbiome of Rhipicephalus microplus from China. Parasites and Vectors, 2022, 15, 48.	1.0	10
3785	The microbiome of the buffalo digestive tract. Nature Communications, 2022, 13, 823.	5. 8	30
3786	Dietary macronutrients and the gut microbiome: a precision nutrition approach to improve cardiometabolic health. Gut, 2022, 71, 1214-1226.	6.1	50
3787	Implication des bactéries orales et intestinales dans le décours des maladies cardio-métaboliques et du diabà te de type 2. Medecine Des Maladies Metaboliques, 2022, , .	0.1	2
3788	Lactiplantibacillus plantarum Y15 alleviate type 2 diabetes in mice via modulating gut microbiota and regulating NF-κB and insulin signaling pathway. Brazilian Journal of Microbiology, 2022, 53, 935-945.	0.8	10
3789	Intake of flavonoids from Astragalus membranaceus ameliorated brain impairment in diabetic mice via modulating brain-gut axis. Chinese Medicine, 2022, 17, 22.	1.6	20
3790	Altered gut microbiota richness in individuals with a history of lateral ankle sprain. Research in Sports Medicine, 2023, 31, 719-733.	0.7	0
3791	Effects of acylated and nonacylated anthocyanins extracts on gut metabolites and microbiota in diabetic Zucker rats: A metabolomic and metagenomic study. Food Research International, 2022, 153, 110978.	2.9	22
3792	Metabolic fate of tea polyphenols and their crosstalk with gut microbiota. Food Science and Human Wellness, 2022, 11, 455-466.	2.2	23
3793	Emerging connections between gut microbiome bioenergetics and chronic metabolic diseases. Cell Reports, 2021, 37, 110087.	2.9	31
3794	Intestinal Barrier and Permeability in Health, Obesity and NAFLD. Biomedicines, 2022, 10, 83.	1.4	71
3795	Homeostasis and dysbiosis of the gut microbiome in health and disease. Journal of Biosciences, 2019, 44, .	0.5	29
3797	The evolving microbial taxonomy. , 2022, , 109-132.		0
3798	The Gut Microbiota and Host Metabolism. , 2022, , 141-175.		2
3800	Astilbin from <i>Smilax glabra </i> Roxb. alleviates high-fat diet-induced metabolic dysfunction. Food and Function, 2022, 13, 5023-5036.	2.1	15
3801	Blurring the line between opportunistic pathogens and commensals. , 2022, , 133-155.		0

#	Article	IF	CITATIONS
3802	Intestinal microbiota research from a global perspective. Gastroenterology Report, 2022, 10, goac010.	0.6	13
3803	Emulating interactions between microorganisms and tumor microenvironment to develop cancer theranostics. Theranostics, 2022, 12, 2833-2859.	4.6	15
3804	Metabolomics as a tool for precision medicine. , 2022, , 605-624.		0
3806	OMARU: a robust and multifaceted pipeline for metagenome-wide association study. NAR Genomics and Bioinformatics, 2022, 4, lqac019.	1.5	3
3807	Microbiome, Mycobiome and Related Metabolites Alterations in Patients with Metabolic Syndromeâ€"A Pilot Study. Metabolites, 2022, 12, 218.	1.3	12
3808	Immunoregulatory Intestinal Microbiota and COVID-19 in Patients with Type Two Diabetes: A Double-Edged Sword. Viruses, 2022, 14, 477.	1.5	18
3809	Microbiome in Chronic Kidney Disease (CKD): An Omics Perspective. Toxins, 2022, 14, 176.	1.5	22
3810	Intertwined Relationship of Mitochondrial Metabolism, Gut Microbiome and Exercise Potential. International Journal of Molecular Sciences, 2022, 23, 2679.	1.8	16
3811	Relationships Among Gut Microbiota, Ischemic Stroke and Its Risk Factors: Based on Research Evidence. International Journal of General Medicine, 0, Volume 15, 2003-2023.	0.8	1
3812	Gut Dysbiosis in Pancreatic Diseases: A Causative Factor and a Novel Therapeutic Target. Frontiers in Nutrition, 2022, 9, 814269.	1.6	14
3813	Glycolipid Metabolism and Metagenomic Analysis of the Therapeutic Effect of a Phenolics-Rich Extract from Noni Fruit on Type 2 Diabetic Mice. Journal of Agricultural and Food Chemistry, 2022, 70, 2876-2888.	2.4	34
3814	Exercise for the Diabetic Gut—Potential Health Effects and Underlying Mechanisms. Nutrients, 2022, 14, 813.	1.7	7
3815	<i>Portulaca oleracea</i> L. Extract Alleviated Type 2 Diabetes Via Modulating the Gut Microbiota and Serum Branchedâ€Chain Amino Acid Metabolism. Molecular Nutrition and Food Research, 2022, 66, e2101030.	1.5	18
3816	Sarecycline Demonstrated Reduced Activity Compared to Minocycline against Microbial Species Representing Human Gastrointestinal Microbiota. Antibiotics, 2022, 11, 324.	1.5	7
3817	Habitual Dietary Fiber Intake, Fecal Microbiota, and Hemoglobin A1c Level in Chinese Patients with Type 2 Diabetes. Nutrients, 2022, 14, 1003.	1.7	10
3818	INTERmittent FASTing in people with insulinâ€treated type 2 diabetes mellitus – the INTERFASTâ€2 study protocol. Diabetic Medicine, 2022, 39, e14813.	1.2	5
3819	Taxonomic and functional diversity of <i>Dendrobium officinale</i> microbiome in Danxia habitat. Journal of Applied Microbiology, 2022, 132, 3758-3770.	1.4	4
3820	Exploration of the correlation between intestinal flora and Escherichia coli peritoneal dialysis-related peritonitis. BMC Nephrology, 2022, 23, 76.	0.8	8

#	Article	IF	CITATIONS
3821	Gut bacterial dysbiosis and instability is associated with the onset of complications and mortality in COVID-19. Gut Microbes, 2022, 14, 2031840.	4.3	52
3822	PM2.5 and Serum Metabolome and Insulin Resistance, Potential Mediation by the Gut Microbiome: A Population-Based Panel Study of Older Adults in China. Environmental Health Perspectives, 2022, 130, 27007.	2.8	50
3823	The role of lipopolysaccharides in diabetic retinopathy. BMC Ophthalmology, 2022, 22, 86.	0.6	10
3824	Disordered Gut Microbiota Correlates With Altered Fecal Bile Acid Metabolism and Post-cholecystectomy Diarrhea. Frontiers in Microbiology, 2022, 13, 800604.	1.5	12
3825	Racial Disparities and Cardiometabolic Risk: New Horizons of Intervention and Prevention. Current Diabetes Reports, 2022, 22, 129-136.	1.7	5
3826	16S rRNA gene sequencing analysis of gut microbiome in a miniâ€pig diabetes model. Animal Models and Experimental Medicine, 2022, 5, 81-88.	1.3	7
3827	Dysbiotic Gut Bacteria in Obesity: An Overview of the Metabolic Mechanisms and Therapeutic Perspectives of Next-Generation Probiotics. Microorganisms, 2022, 10, 452.	1.6	45
3828	Modulation of the gut microbiota: opportunities and regulatory aspects. Minerva Gastroenterology, 2023, 69, .	0.3	4
3829	Metabolic Syndrome and Its Components in Psoriatic Arthritis. Open Access Rheumatology: Research and Reviews, 2022, Volume 14, 7-16.	0.8	6
3830	Effect of Different Functional Food Supplements on the Gut Microbiota of Prediabetic Indonesian Individuals during Weight Loss. Nutrients, 2022, 14, 781.	1.7	6
3831	Metabolic Reprogramming, Gut Dysbiosis, and Nutrition Intervention in Canine Heart Disease. Frontiers in Veterinary Science, 2022, 9, 791754.	0.9	3
3832	A novel bioactive postbiotics: from microbiota-derived extracellular nanoparticles to health promoting. Critical Reviews in Food Science and Nutrition, 2023, 63, 6885-6899.	5.4	4
3833	Diabetes and Its Cardiovascular Complications: Comprehensive Network and Systematic Analyses. Frontiers in Cardiovascular Medicine, 2022, 9, 841928.	1.1	7
3834	Berberine, a Herbal Metabolite in the Metabolic Syndrome: The Risk Factors, Course, and Consequences of the Disease. Molecules, 2022, 27, 1351.	1.7	20
3835	Microbiome risk profiles as biomarkers for inflammatory and metabolic disorders. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 383-397.	8.2	87
3836	Gut Microbiota: An Important Player in Type 2 Diabetes Mellitus. Frontiers in Cellular and Infection Microbiology, 2022, 12, 834485.	1.8	76
3837	Application of machine learning tools: Potential and useful approach for the prediction of typeÂ2 diabetes mellitus based on the gut microbiome profile. Experimental and Therapeutic Medicine, 2022, 23, 305.	0.8	9
3838	CRISPR-Cas Systems in Gut Microbiome of Children with Autism Spectrum Disorders. Life, 2022, 12, 367.	1.1	0

#	Article	IF	CITATIONS
3839	Gut microbiota from Mexican patients with metabolic syndrome and HIV infection: An inflammatory profile. Journal of Applied Microbiology, 2022, 132, 3839-3852.	1.4	6
3840	In silico evaluation of a targeted metaproteomics strategy for broad screening of cellulolytic enzyme capacities in anaerobic microbiome bioreactors. , 2022, 15, 32.		3
3841	Changes of gut microbiota in diabetic nephropathy and its effect on the progression of kidney injury. Endocrine, 2022, 76, 294-303.	1.1	23
3842	Extensive metagenomic analysis of the porcine gut resistome to identify indicators reflecting antimicrobial resistance. Microbiome, 2022, 10, 39.	4.9	19
3843	Anti-Diabetic Effects of Ethanol Extract from Sanghuangporous vaninii in High-Fat/Sucrose Diet and Streptozotocin-Induced Diabetic Mice by Modulating Gut Microbiota. Foods, 2022, 11, 974.	1.9	15
3844	An atlas of robust microbiome associations with phenotypic traits based on large-scale cohorts from two continents. PLoS ONE, 2022, 17, e0265756.	1.1	15
3845	Microbiome and Diabetes. Journal of Korean Diabetes, 2022, 23, 7-11.	0.1	0
3846	Diverse events have transferred genes for edible seaweed digestion from marine to human gut bacteria. Cell Host and Microbe, 2022, 30, 314-328.e11.	5.1	25
3847	Multi-Omics Characterization of Type 2 Diabetes Mellitus-Induced Cognitive Impairment in the db/db Mouse Model. Molecules, 2022, 27, 1904.	1.7	6
3848	Kombucha Reduces Hyperglycemia in Type 2 Diabetes of Mice by Regulating Gut Microbiota and Its Metabolites. Foods, 2022, 11, 754.	1.9	24
3849	The Bridge Between Ischemic Stroke and Gut Microbes: Short-Chain Fatty Acids. Cellular and Molecular Neurobiology, 2023, 43, 543-559.	1.7	9
3850	Analysis of the Ability of Capsaicin to Modulate the Human Gut Microbiota In Vitro. Nutrients, 2022, 14, 1283.	1.7	11
3851	Gut Microbiota: The Potential Key Target of TCM's Therapeutic Effect of Treating Different Diseases Using the Same Method—UC and T2DM as Examples. Frontiers in Cellular and Infection Microbiology, 2022, 12, 855075.	1.8	12
3852	Translational multi-omics microbiome research for strategies to improve cattle production and health. Emerging Topics in Life Sciences, 2022, , .	1.1	3
3853	Intestinal AMPK modulation of microbiota mediates crosstalk with brown fat to control thermogenesis. Nature Communications, 2022, 13, 1135.	5.8	28
3854	Changes in intestinal parameters and their association with dietary patterns in rotational shift workers. Chronobiology International, 2022, 39, 872-885.	0.9	6
3855	Understanding the mechanism underlying the anti-diabetic effect of dietary component: a focus on gut microbiota. Critical Reviews in Food Science and Nutrition, 2023, 63, 7378-7398.	5.4	11
3856	The Gut Microbiome May Help Address Mental Health Disparities in Hispanics: A Narrative Review. Microorganisms, 2022, 10, 763.	1.6	3

#	Article	IF	CITATIONS
3857	Effects of Short-Chain Fatty Acid Modulation on Potentially Diarrhea-Causing Pathogens in Yaks Through Metagenomic Sequencing. Frontiers in Cellular and Infection Microbiology, 2022, 12, 805481.	1.8	9
3858	A faecal microbiota signature with high specificity for pancreatic cancer. Gut, 2022, 71, 1359-1372.	6.1	104
3860	Integrated metagenomics identifies a crucial role for trimethylamine-producing Lachnoclostridium in promoting atherosclerosis. Npj Biofilms and Microbiomes, 2022, 8, 11.	2.9	41
3861	Neurohormonal Changes in the Gut–Brain Axis and Underlying Neuroendocrine Mechanisms following Bariatric Surgery. International Journal of Molecular Sciences, 2022, 23, 3339.	1.8	21
3862	The Role of the Gut Microbiota in the Development of Ischemic Stroke. Frontiers in Immunology, 2022, 13, 845243.	2.2	14
3863	Library Preparation and Sequencing Platform Introduce Bias in Metagenomic-Based Characterizations of Microbiomes. Microbiology Spectrum, 2022, 10, e0009022.	1.2	12
3864	The next generation beneficial actions of novel probiotics as potential therapeutic targets and prediction tool for metabolic diseases. Journal of Food and Drug Analysis, 2022, 30, 1-10.	0.9	6
3865	Association of gut microbiota with glycaemic traits and incident type 2 diabetes, and modulation by habitual diet: a population-based longitudinal cohort study in Chinese adults. Diabetologia, 2022, 65, 1145-1156.	2.9	19
3866	Identification of antimicrobial peptides from the human gut microbiome using deep learning. Nature Biotechnology, 2022, 40, 921-931.	9.4	142
3867	Dietary recommendations for persons with type 2 diabetes mellitus. Experimental and Clinical Endocrinology and Diabetes, 2022, 130, S151-S184.	0.6	7
3868	Alterations of gut microbiota diversity, composition and metabonomics in testosterone-induced benign prostatic hyperplasia rats. Military Medical Research, 2022, 9, 12.	1.9	18
3869	Fecal Microbiota Transplant in a Pre-Clinical Model of Type 2 Diabetes Mellitus, Obesity and Diabetic Kidney Disease. International Journal of Molecular Sciences, 2022, 23, 3842.	1.8	23
3870	Gut flora alterations due to lipopolysaccharide derived from Porphyromonas gingivalis. Odontology / the Society of the Nippon Dental University, 2022, 110, 673-681.	0.9	4
3871	Nutraceuticals in the Modulation of the Intestinal Microbiota: Current Status and Future Directions. Frontiers in Pharmacology, 2022, 13, 841782.	1.6	1
3872	New Paradigms for Familiar Diseases: Lessons Learned on Circulatory Bacterial Signatures in Cardiometabolic Diseases. Experimental and Clinical Endocrinology and Diabetes, 2022, , .	0.6	1
3873	Host-microbiome protein-protein interactions capture disease-relevant pathways. Genome Biology, 2022, 23, 72.	3.8	10
3874	Comparative Analysis of the Gut Microbiota of Mongolian Gazelle (Procapra gutturosa) Under Fragmented Habitats. Frontiers in Microbiology, 2022, 13, 830321.	1.5	1
3875	Chronic intermittent hypoxia induces gut microbial dysbiosis and infers metabolic dysfunction in mice. Sleep Medicine, 2022, 91, 84-92.	0.8	10

#	Article	IF	Citations
3877	Probi \tilde{A}^3 ticos – uma espada ou um escudo no desfecho da COVID-19?. Research, Society and Development, 2022, 11, e11011427165.	0.0	0
3878	Bacterial microbiota of the contact lens surface and associated care behaviours. Heliyon, 2022, 8, e09038.	1.4	5
3879	Insights into carbon-fixation pathways through metagonomics in the sediments of deep-sea cold seeps. Marine Pollution Bulletin, 2022, 176, 113458.	2.3	15
3880	The Maternal–Fetal Gut Microbiota Axis: Physiological Changes, Dietary Influence, and Modulation Possibilities. Life, 2022, 12, 424.	1.1	27
3881	Dynamics of the normal gut microbiota: A longitudinal one-year population study in Sweden. Cell Host and Microbe, 2022, 30, 726-739.e3.	5.1	64
3882	Urolithin A Attenuates Diabetesâ€Associated Cognitive Impairment by Ameliorating Intestinal Barrier Dysfunction via Nâ€glycan Biosynthesis Pathway. Molecular Nutrition and Food Research, 2022, 66, e2100863.	1.5	14
3883	Does the Microbiota Composition Influence the Efficacy of Colorectal Cancer Immunotherapy?. Frontiers in Oncology, 2022, 12, 852194.	1.3	5
3884	Metagenomic Identification of Microbial Signatures Predicting Pancreatic Cancer From a Multinational Study. Gastroenterology, 2022, 163, 222-238.	0.6	61
3885	Comparative transcriptomic and metagenomic analyses reveal key factors affecting the growth rate of Red Swamp Crayfish (Procambarus clarkii). Aquaculture Reports, 2022, 23, 101098.	0.7	0
3886	Shenqi compound ameliorates type-2 diabetes mellitus by modulating the gut microbiota and metabolites. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2022, 1194, 123189.	1.2	14
3887	Correlation Analysis of Gut Microbiota and Serum Metabolome With Porphyromonas gingivalis-Induced Metabolic Disorders. Frontiers in Cellular and Infection Microbiology, 2022, 12, 858902.	1.8	16
3888	Influences of gestational diabetes mellitus on the oral microbiota in offspring from birth to 1 month old. BMC Pregnancy and Childbirth, 2022, 22, 289.	0.9	2
3889	Correlation analysis of intestinal flora and pathological process of type 2 diabetes mellitus. Journal of Traditional Chinese Medical Sciences, 2022, , .	0.1	0
3890	Changes in the Gut Metabolic Profile of Gestational Diabetes Mellitus Rats Following Probiotic Supplementation. Frontiers in Microbiology, 2022, 13, 779314.	1.5	3
3891	Age-specific microbiota in altering host inflammatory and metabolic signaling and metabolome based on sex. Hepatobiliary Surgery and Nutrition, 2022, 11, 305-307.	0.7	2
3892	Mechanistic insights into consumption of the food additive xanthan gum by the human gut microbiota. Nature Microbiology, 2022, 7, 556-569.	5.9	21
3893	Gut Microbiome: Profound Implications for Diet and Disease. Kompass Nutrition & Dietetics, 0, , 1-16.	1.0	2
3894	Inter-species Metabolic Interactions in an In-vitro Minimal Human Gut Microbiome of Core Bacteria. Npj Biofilms and Microbiomes, 2022, 8, 21.	2.9	26

#	Article	IF	CITATIONS
3895	Metabolomic Workflow for the Accurate and High-Throughput Exploration of the Pathways of Tryptophan, Tyrosine, Phenylalanine, and Branched-Chain Amino Acids in Human Biofluids. Journal of Proteome Research, 2022, 21, 1262-1275.	1.8	7
3896	Human disease prediction from microbiome data by multiple feature fusion and deep learning. IScience, 2022, 25, 104081.	1.9	10
3897	Effects of caloric restriction on the gut microbiome are linked with immune senescence. Microbiome, 2022, 10, 57.	4.9	38
3898	Metabonomics combined with 16S rRNA sequencing to elucidate the hypoglycemic effect of dietary fiber from tea residues. Food Research International, 2022, 155, 111122.	2.9	20
3899	Gut microbiota-derived metabolites as key actors in type 2 diabetes mellitus. Biomedicine and Pharmacotherapy, 2022, 149, 112839.	2.5	40
3900	Microbiome abnormalities as a possible link between diabetes mellitus and mood disorders: Pathophysiology and implications for treatment. Neuroscience and Biobehavioral Reviews, 2022, 137, 104640.	2.9	4
3901	Bacterial bioactive metabolites as therapeutic agents: From production to action. Sustainable Chemistry and Pharmacy, 2022, 27, 100650.	1.6	4
3902	Evening rather than morning increased physical activity alters the microbiota in mice and is associated with increased body temperature and sympathetic nervous system activation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166373.	1.8	7
3903	Active metabolism and biomass dynamics of biocrusts are shaped by variation in their successional state and seasonal energy sources. Science of the Total Environment, 2022, 831, 154756.	3.9	3
3904	Analysis of Gut Microbiota in Patients with Coronary Artery Disease and Hypertension. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-9.	0.5	7
3905	Imbalance of the Gut Microbiota May Be Associated with Missed Abortions: A Perspective Study from a General Hospital of Hunan Province. Journal of Immunology Research, 2021, 2021, 1-13.	0.9	3
3906	Metagenome-genome-wide association studies reveal human genetic impact on the oral microbiome. Cell Discovery, 2021, 7, 117.	3.1	31
3908	Fiber mixture-specific effect on distal colonic fermentation and metabolic health in lean but not in prediabetic men. Gut Microbes, 2022, 14, 2009297.	4.3	15
3909	Deep ensemble learning over the microbial phylogenetic tree (DeepEn-Phy). , 2021, , .		1
3910	Interplay between Inflammaging, Frailty and Nutrition in Covid-19: Preventive and Adjuvant Treatment Perspectives. Journal of Nutrition, Health and Aging, 2022, 26, 67-76.	1.5	10
3911	Expanding the Colorectal Cancer Biomarkers Based on the Human Gut Phageome. Microbiology Spectrum, 2021, 9, e0009021.	1.2	13
3912	Role of Whole Grain Consumption in Glycaemic Control of Diabetic Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients, 2022, 14, 109.	1.7	9
3913	As a Staple Food Substitute, Oat and Buckwheat Compound Has Health-Promoting Effects for Diabetic Rats. Frontiers in Nutrition, 2021, 8, 762277.	1.6	3

#	Article	IF	CITATIONS
3914	Metabolic Syndrome and PCOS: Pathogenesis and the Role of Metabolites. Metabolites, 2021, 11, 869.	1.3	51
3915	The Gut Microbiome and Hepatocellular Carcinoma: Implications for Early Diagnostic Biomarkers and Novel Therapies. Liver Cancer, 2022, 11, 113-125.	4.2	27
3916	A Brief Overview on Probiotics: The Health Friendly Microbes. Biomedical and Pharmacology Journal, 2021, 14, 1869-1880.	0.2	12
3917	Active or Autoclaved Akkermansia muciniphila Relieves TNF-α-Induced Inflammation in Intestinal Epithelial Cells Through Distinct Pathways. Frontiers in Immunology, 2021, 12, 788638.	2.2	8
3919	Association of the gut microbiota and fecal short hain fatty acids with skeletal muscle mass and strength in children. FASEB Journal, 2022, 36, e22109.	0.2	7
3920	Effects of Probiotic Supplementation on Inflammatory Markers and Glucose Homeostasis in Adults With Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Frontiers in Pharmacology, 2021, 12, 770861.	1.6	14
3921	Sexual dimorphism in glucose metabolism is shaped by androgen-driven gut microbiome. Nature Communications, 2021, 12, 7080.	5.8	45
3922	Intake of MPRO3 over 4 Weeks Reduces Glucose Levels and Improves Gastrointestinal Health and Metabolism. Microorganisms, 2022, 10, 88.	1.6	3
3923	Gut Microbial Dysbiosis Associated with Type 2 Diabetes Aggravates Acute Ischemic Stroke. MSystems, 2021, 6, e0130421.	1.7	9
3924	Resistance and Endurance Exercise Training Induce Differential Changes in Gut Microbiota Composition in Murine Models. Frontiers in Physiology, 2021, 12, 748854.	1.3	15
3925	Streptozotocin-induced hyperglycemia alters the cecal metabolome and exacerbates antibiotic-induced dysbiosis. Cell Reports, 2021, 37, 110113.	2.9	11
3926	Captivity Influences the Gut Microbiome of Rhinopithecus roxellana. Frontiers in Microbiology, 2021, 12, 763022.	1.5	15
3927	Discovering microbe functionality in human disease with a gene-ontology-aware model., 2021,,.		0
3928	Population study of the gut microbiome: associations with diet, lifestyle, and cardiometabolic disease. Genome Medicine, 2021, 13, 188.	3.6	27
3929	Naturally Acquired Lactic Acid Bacteria from Fermented Cassava Improves Nutrient and Anti-dysbiosis Activity of Soy Tempeh. Open Access Macedonian Journal of Medical Sciences, 2021, 9, 1148-1155.	0.1	0
3930	TrpNet: Understanding Tryptophan Metabolism across Gut Microbiome. Metabolites, 2022, 12, 10.	1.3	11
3931	Whole gut virome analysis of 476 Japanese revealed a link between phage and autoimmune disease. Annals of the Rheumatic Diseases, 2022, 81, 278-288.	0.5	39
3932	Revealing microbial species diversity using sequence capture by hybridization. Microbial Genomics, 2021, 7, .	1.0	1

#	Article	IF	CITATIONS
3933	Different Types and Functional Effects of Probiotics on Human Health through Regulating Glucose Homeostasis. Journal of Agricultural and Food Chemistry, 2021, 69, 14781-14791.	2.4	3
3934	Immune Memory in Aging: a Wide Perspective Covering Microbiota, Brain, Metabolism, and Epigenetics. Clinical Reviews in Allergy and Immunology, 2022, 63, 499-529.	2.9	17
3935	Circulating Nucleic Acid-Based Biomarkers of Type 2 Diabetes. International Journal of Molecular Sciences, 2022, 23, 295.	1.8	8
3936	Potential Associations Between Microbiome and COVID-19. Frontiers in Medicine, 2021, 8, 785496.	1.2	23
3937	Reductions in Intestinal Taurine-Conjugated Bile Acids and Short-Chain Fatty Acid-Producing Bacteria Might be Novel Mechanisms of Type 2 Diabetes Mellitus in Otsuka Long-Evans Tokushima Fatty Rats. Experimental and Clinical Endocrinology and Diabetes, 2022, 130, 237-247.	0.6	4
3938	Characterization of Changes and Driver Microbes in Gut Microbiota During Healthy Aging Using A Captive Monkey Model. Genomics, Proteomics and Bioinformatics, 2022, 20, 350-365.	3.0	17
3939	Gut dysbiosis, inflammation and type 2 diabetes in mice using synthetic gut microbiota from diabetic humans. Brazilian Journal of Biology, 2021, 83, e242818.	0.4	8
3940	Systems Biology to Address Unmet Medical Needs in Neurological Disorders. Methods in Molecular Biology, 2022, 2486, 247-276.	0.4	4
3941	Prospective Study Reveals Host Microbial Determinants of Clinical Response to Fecal Microbiota Transplant Therapy in Type 2 Diabetes Patients. Frontiers in Cellular and Infection Microbiology, 2022, 12, 820367.	1.8	16
3942	Gut microbiota and diabetic kidney diseases: Pathogenesis and therapeutic perspectives. World Journal of Diabetes, 2022, 13, 308-318.	1.3	15
3943	Ginsenoside Rb1 Improves Metabolic Disorder in High-Fat Diet-Induced Obese Mice Associated With Modulation of Gut Microbiota. Frontiers in Microbiology, 2022, 13, 826487.	1.5	16
3944	Red Raspberry and Fructo-Oligosaccharide Supplementation, Metabolic Biomarkers, and the Gut Microbiota in Adults with Prediabetes: A Randomized Crossover Clinical Trial. Journal of Nutrition, 2022, 152, 1438-1449.	1.3	16
3945	More Positive or More Negative? Metagenomic Analysis Reveals Roles of Virome in Human Disease-Related Gut Microbiome. Frontiers in Cellular and Infection Microbiology, 2022, 12, 846063.	1.8	6
3946	Histological study of diurnal changes in bacterial settlement in the rat alimentary tract. Cell and Tissue Research, 2022, , 1.	1.5	2
3947	Metformin-induced reductions in tumor growth involves modulation of the gut microbiome. Molecular Metabolism, 2022, 61, 101498.	3.0	21
3948	Interrelationship of Gut Microbiota, Obesity, Body Composition and Insulin Resistance in Asians with Type 2 Diabetes Mellitus. Journal of Personalized Medicine, 2022, 12, 617.	1.1	6
3949	Bacterial Atlas of Mouse Gut Microbiota. Cellular Microbiology, 2022, 2022, 1-21.	1.1	5
3950	The relationship between the gut microbiota, benign prostatic hyperplasia, and erectile dysfunction. International Journal of Impotence Research, 2023, 35, 350-355.	1.0	9

#	Article	IF	CITATIONS
3951	Effect of RG (Coptis root and ginseng) formula in patients with type 2 diabetes mellitus: a study protocol for a randomized controlled and double-blinding trial. Trials, 2022, 23, 305.	0.7	1
3952	Analysis of Gut Microbiota and Metabolites in Diannan Small Ear Sows at Diestrus and Metestrus. Frontiers in Microbiology, 2022, 13, 826881.	1.5	3
3953	Metagenomic and Transcriptomic Analyses Reveal the Differences and Associations Between the Gut Microbiome and Muscular Genes in Angus and Chinese Simmental Cattle. Frontiers in Microbiology, 2022, 13, 815915.	1.5	7
3954	Microbiomics Revealed the Disturbance of Intestinal Balance in Rabbits with Diarrhea Caused by Stopping the Use of an Antibiotic Diet. Microorganisms, 2022, 10, 841.	1.6	3
3955	Microbiome-based disease prediction with multimodal variational information bottlenecks. PLoS Computational Biology, 2022, 18, e1010050.	1.5	18
3956	Multi-omics analyses of serum metabolome, gut microbiome and brain function reveal dysregulated microbiota-gut-brain axis in bipolar depression. Molecular Psychiatry, 2022, 27, 4123-4135.	4.1	57
3957	Peanut skin procyanidins ameliorate insulin resistance via modulation of gut microbiota and gut barrier in type 2 diabetic mice. Journal of the Science of Food and Agriculture, 2022, 102, 5935-5947.	1.7	15
3958	Gut mycobiome dysbiosis in rats showing retinal changes indicative of diabetic retinopathy. PLoS ONE, 2022, 17, e0267080.	1.1	2
3959	The Emerging Role of the Gut Microbiome in Cardiovascular Disease: Current Knowledge and Perspectives. Biomedicines, 2022, 10, 948.	1.4	14
3960	Statistical Methods for Microbiome Compositional Data Network Inference: A Survey. Journal of Computational Biology, 2022, , .	0.8	5
3961	Association between gut microbiome and metabolome in mice suffering from acute carbapenem-resistant Escherichia coli infection. Journal of Pharmaceutical and Biomedical Analysis, 2022, 215, 114770.	1.4	2
3962	The critical role of short-chain fatty acids in health and disease: A subtle focus on cardiovascular disease-NLRP3 inflammasome-angiogenesis axis. Clinical Immunology, 2022, 238, 109013.	1.4	16
4225	The Kidney in Liver Disease., 0,, 619-638.		0
4227	Host phenotype classification from human microbiome data is mainly driven by the presence of microbial taxa. PLoS Computational Biology, 2022, 18, e1010066.	1.5	9
4228	Correlation Between Gut Microbiota and Testosterone in Male Patients With Type 2 Diabetes Mellitus. Frontiers in Endocrinology, 2022, 13, 836485.	1.5	7
4229	Transplantation of Gut Microbiota From High-Fat-Diet-Tolerant Cynomolgus Monkeys Alleviates Hyperlipidemia and Hepatic Steatosis in Rats. Frontiers in Microbiology, 2022, 13, 876043.	1.5	4
4230	The Microbiome in Periodontitis and Diabetes. Frontiers in Oral Health, 2022, 3, 859209.	1.2	12
4232	Gut microbiota and differential genes-maintained homeostasis is key to maintaining health of individuals with Yang-deficiency constitution Journal of Traditional Chinese Medicine, 2022, 42, 96-101.	0.1	0

#	ARTICLE	IF	CITATIONS
4235	Gastrointestinal and Nutritional Disorders. , 2022, , 7215-7245.		0
4236	<i>Lactobacillus reuteri</i> J1 prevents obesity by altering the gut microbiota and regulating bile acid metabolism in obese mice. Food and Function, 2022, 13, 6688-6701.	2.1	31
4237	Microbiota-Dependent Tryptophan Metabolite Alleviates High-Fat Diet-Induced Insulin Resistance Through Activation of Hepatic AhR/TSC2/mTORC1 Axis. SSRN Electronic Journal, 0, , .	0.4	0
4238	Mutational Pattern Induced by 5-Fluorouracil and Oxaliplatin in the Gut Microbiome. Frontiers in Microbiology, 2022, 13, 841458.	1.5	3
4240	A Three-Day Intervention With Granola Containing Cereal Beta-Glucan Improves Glycemic Response and Changes the Gut Microbiota in Healthy Individuals: A Crossover Study. Frontiers in Nutrition, 2022, 9, 796362.	1.6	4
4241	Domestic Environment and Gut Microbiota: Lessons from Pet Dogs. Microorganisms, 2022, 10, 949.	1.6	7
4242	Arabinogalactan, <i>Bifidobacterium longum</i> , and <i>Faecalibacterium prausnitzii</i> improve insulin resistance in highâ€fat dietâ€induced C57BL/6J mice. EFood, 2022, 3, .	1.7	7
4243	The contribution of gastrointestinal microbiota in the existence of Type 2 diabetes in Saudi Arabia: Current information and perspectives. Saudi Journal of Biological Sciences, 2022, , 103286.	1.8	O
4245	Altered Salivary Microbiota Following Bifidobacterium animalis Subsp. Lactis BL-11 Supplementation Are Associated with Anthropometric Growth and Social Behavior Severity in Individuals with Prader-Willi Syndrome. Probiotics and Antimicrobial Proteins, 2022, , 1.	1.9	0
4246	Prediction of Pathogenic Factors in Dysbiotic Gut Microbiomes of Colorectal Cancer Patients Using Reverse Microbiomics. Frontiers in Oncology, 2022, 12, 882874.	1.3	2
4247	Knowledge Mapping of the Links Between the Gut Microbiota and Heart Failure: A Scientometric Investigation (2006–2021). Frontiers in Cardiovascular Medicine, 2022, 9, 882660.	1.1	20
4248	Gut Microbiome Alterations Associated with Diabetes in Mexican Americans in South Texas. MSystems, 2022, 7, e0003322.	1.7	14
4249	Oat \hat{l}^2 Glucan Ameliorates Renal Function and Gut Microbiota in Diabetic Rats. Frontiers in Nutrition, 2022, 9, .	1.6	4
4250	Construction of <i>in vitro</i> fermentation model using gut microbiota relating to glucose and lipid metabolism: a supplementary method for initial screening of polysaccharides with hypoglycemic potentials. Journal of the Science of Food and Agriculture, 2022, 102, 6328-6339.	1.7	6
4251	Metabolites of Gut Microbiota and Possible Implication in Development of Diabetes Mellitus. Journal of Agricultural and Food Chemistry, 2022, 70, 5945-5960.	2.4	19
4252	Lactobacillus acidophilus and HKL Suspension Alleviates Ulcerative Colitis in Rats by Regulating Gut Microbiota, Suppressing TLR9, and Promoting Metabolism. Frontiers in Pharmacology, 2022, 13, .	1.6	8
4253	Gut Dysbiosis Is Associated With the Severity of Cryptogenic Stroke and Enhanced Systemic Inflammatory Response. Frontiers in Immunology, 2022, 13, .	2.2	8
4254	Different effects of hydrogen-rich water intake and hydrogen gas inhalation on gut microbiome and plasma metabolites of rats in health status. Scientific Reports, 2022, 12, 7231.	1.6	12

#	Article	IF	Citations
4255	Changes in systolic blood pressure, postprandial glucose, and gut microbial composition following mango consumption in individuals with overweight and obesity. Applied Physiology, Nutrition and Metabolism, 2022, 47, 565-574.	0.9	3
4256	Hostâ€"microbial interactions in metabolic diseases: from diet to immunity. Journal of Microbiology, 2022, , 1.	1.3	3
4257	Alterations in the Gut Microbiota of Tibetan Patients With Echinococcosis. Frontiers in Microbiology, 2022, 13, .	1.5	2
4258	Bacteroides ovatus-mediated CD27â^' MAIT cell activation is associated with obesity-related T2D progression., 2022, 19, 791-804.		10
4259	Gut Microbiome and Plasma Metabolomic Analysis in Patients with Myelodysplastic Syndrome. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-21.	1.9	2
4260	Integrated analysis of multi-tissues lipidome and gut microbiome reveals microbiota-induced shifts on lipid metabolism in pigs. Animal Nutrition, 2022, 10, 280-293.	2.1	10
4261	Does <i>Lactobacillus reuteri</i> influence ergothioneine levels in the human body?. FEBS Letters, 2022, 596, 1241-1251.	1.3	7
4263	A neural networkâ€based framework to understand the type 2 diabetesâ€related alteration of the human gut microbiome. , 2022, 1, .		5
4264	The Microbiome and Gut Endocannabinoid System in the Regulation of Stress Responses and Metabolism. Frontiers in Cellular Neuroscience, 2022, 16, .	1.8	13
4265	Maternal heme-enriched diet promotes a gut pro-oxidative status associated with microbiota alteration, gut leakiness and glucose intolerance in mice offspring. Redox Biology, 2022, 53, 102333.	3.9	5
4266	Resistant Maltodextrin Intake Reduces Virulent Metabolites in the Gut Environment: A Randomized Control Study in a Japanese Cohort. Frontiers in Microbiology, 2022, 13, .	1.5	4
4267	Generalizing predictions to unseen sequencing profiles via deep generative models. Scientific Reports, 2022, 12, 7151.	1.6	3
4268	Effects of Low-Carbohydrate Diet and Exercise Training on Gut Microbiota. Frontiers in Nutrition, 2022, 9, 884550.	1.6	12
4269	Comparative Genomics Revealed Wide Intra-Species Genetic Heterogeneity and Lineage-Specific Genes of <i>Akkermansia muciniphila</i> . Microbiology Spectrum, 2022, 10, e0243921.	1.2	3
4270	Regulation of the intestinal flora: A potential mechanism of natural medicines in the treatment of type 2 diabetes mellitus. Biomedicine and Pharmacotherapy, 2022, 151, 113091.	2.5	11
4272	Dietary Copper and Selenium Intakes and the Risk of Type 2 Diabetes Mellitus: Findings from the China Health and Nutrition Survey. Nutrients, 2022, 14, 2055.	1.7	14
4273	Adaptation of gut microbiome and host metabolic systems to lignocellulosic degradation in bamboo rats. ISME Journal, 2022, 16, 1980-1992.	4.4	14
4274	Probiotics as food supplements. , 2018, 52, 31-34.		0

#	Article	IF	CITATIONS
4275	The polysaccharides from the fruits of Lycium barbarum L. confer anti-diabetic effect by regulating gut microbiota and intestinal barrier. Carbohydrate Polymers, 2022, 291, 119626.	5.1	41
4276	Gut dysbiosis in rheumatic diseases: A systematic review and meta-analysis of 92 observational studies. EBioMedicine, 2022, 80, 104055.	2.7	40
4277	Human Gut Microbiome Data Analysis for Disease Likelihood Prediction Using Autoencoders. , 2021, , .		2
4279	Intestinal microbiota composition of children with infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and multisystem inflammatory syndrome (MIS-C). European Journal of Pediatrics, 2022, 181, 3175-3191.	1.3	20
4280	Locality-Sensitive Hashing-Based k-Mer Clustering for Identification of Differential Microbial Markers Related to Host Phenotype. Journal of Computational Biology, 2022, 29, 738-751.	0.8	2
4281	Rapid evolution and strain turnover in the infant gut microbiome. Genome Research, 2022, 32, 1124-1136.	2.4	22
4282	Changes in the gut microbiome associated with liver stiffness improvement in nonalcoholic steatohepatitis. Therapeutic Advances in Gastroenterology, 2022, 15, 175628482210982.	1.4	2
4283	Precision Nutrition for Type 2 Diabetes. , 2022, , 233-249.		1
4284	The Promising Role of Microbiome Therapy on Biomarkers of Inflammation and Oxidative Stress in Type 2 Diabetes: A Systematic and Narrative Review. Frontiers in Nutrition, 2022, 9, .	1.6	10
4286	Disease-associated dysbiosis and potential therapeutic role of Akkermansia muciniphila, a mucus degrading bacteria of gut microbiome. Folia Microbiologica, 2022, 67, 811-824.	1.1	16
4287	Nodules of wild legumes as unique natural hotspots of antibiotic resistance genes. Science of the Total Environment, 2022, 839, 156036.	3.9	1
4288	From Gut Microbiota through Low-Grade Inflammation to Obesity: Key Players and Potential Targets. Nutrients, 2022, 14, 2103.	1.7	29
4289	Review article: the future of microbiomeâ€based therapeutics. Alimentary Pharmacology and Therapeutics, 2022, 56, 192-208.	1.9	21
4291	Non-Alcoholic Components in Huangjiu as Potential Factors Regulating the Intestinal Barrier and Gut Microbiota in Mouse Model of Alcoholic Liver Injury. Foods, 2022, 11, 1537.	1.9	6
4292	Hypoglycaemic and anti-ageing activities of green alga Ulva lactuca polysaccharide via gut microbiota in ageing-associated diabetic mice. International Journal of Biological Macromolecules, 2022, 212, 97-110.	3.6	19
4293	An adaptive direction-assisted test for microbiome compositional data. Bioinformatics, 2022, 38, 3493-3500.	1.8	2
4294	Kitchen Diet vs. Industrial Dietsâ€"Impact on Intestinal Barrier Parameters among Stroke Patients. International Journal of Environmental Research and Public Health, 2022, 19, 6168.	1.2	1
4295	Microbiota analysis with next-generation 16S rDNA gene sequencing in recurrent common bile duct stones. Annals of Translational Medicine, 2022, 10, 576-576.	0.7	6

#	Article	IF	CITATIONS
4296	Astragalus membranaceus ultrafine powder alleviates hyperuricemia by regulating the gut microbiome and reversing bile acid and adrenal hormone biosynthesis dysregulation. Arabian Journal of Chemistry, 2022, , 103970.	2.3	2
4297	Effects of acute administration of trimethylamine N-oxide on endothelial function: a translational study. Scientific Reports, 2022, 12, .	1.6	4
4298	Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 625-637.	8.2	239
4299	The gut microbiota-bile acid axis links the positive association between chronic insomnia and cardiometabolic diseases. Nature Communications, 2022, 13, .	5.8	42
4300	Dysbiosis of gut microbiota and intestinal damage in mice induced by a single intravenous exposure to CdTe quantum dots at low concentration. Journal of Applied Toxicology, 2022, 42, 1757-1765.	1.4	2
4301	Beneficial Actions of Essential Fatty Acids in Streptozotocin-Induced Type 1 Diabetes Mellitus. Frontiers in Nutrition, 2022, 9, .	1.6	8
4302	A Wipe-Based Stool Collection and Preservation Kit for Microbiome Community Profiling. Frontiers in Immunology, 0, 13 , .	2.2	4
4304	Differential modulations of lauric acid and its glycerides on high fat diet-induced metabolic disorders and gut microbiota dysbiosis. Food Research International, 2022, 157, 111437.	2.9	8
4305	GNPI: Graph normalization to integrate phylogenetic information for metagenomic host phenotype prediction. Methods, 2022, 205, 11-17.	1.9	2
4306	Enrichment of sulphate-reducers and depletion of butyrate-producers may be hyperglycaemia signatures in the diabetic oral microbiome. Journal of Oral Microbiology, 2022, 14, .	1.2	4
4307	Whey protein and xylitol complex alleviate type 2 diabetes in C57BL/6 mice by regulating the intestinal microbiota. Food Research International, 2022, 157, 111454.	2.9	9
4308	Large Yellow Tea Extract Ameliorates Metabolic Syndrome by Suppressing Lipogenesis through SIRT6/SREBP1 Pathway and Modulating Microbiota in Leptin Receptor Knockout Rats. Foods, 2022, 11, 1638.	1.9	13
4309	Genome-scale metabolic modelling of the human gut microbiome reveals changes in the glyoxylate and dicarboxylate metabolism in metabolic disorders. IScience, 2022, 25, 104513.	1.9	15
4310	Aqueous Extract of Guava (Psidium guajava L.) Leaf Ameliorates Hyperglycemia by Promoting Hepatic Glycogen Synthesis and Modulating Gut Microbiota. Frontiers in Pharmacology, 0, 13, .	1.6	6
4311	Exploration of the correlation between intestinal flora and peritoneal dialysis-related peritonitis. Clinical and Experimental Nephrology, 2022, 26, 1030-1038.	0.7	1
4312	The Comparative Analysis of Genomic Diversity and Genes Involved in Carbohydrate Metabolism of Eighty-Eight Bifidobacterium pseudocatenulatum Isolates from Different Niches of China. Nutrients, 2022, 14, 2347.	1.7	4
4313	Microbial and genes diversity analysis: Relationship between starch conversion and carbohydrate metabolism during Niandoubao fermentation via the glutinous proso millet (GPM) process. Food Control, 2022, 140, 109154.	2.8	4
4314	Fermented noni (<i>Morinda citrifolia</i> L.) fruit juice improved oxidative stress and insulin resistance under the synergistic effect of Nrf2/ARE pathway and gut flora in db/db mice and HepG2 cells. Food and Function, 2022, 13, 8254-8273.	2.1	7

#	Article	IF	CITATIONS
4315	Enhanced Metagenomic Deep Learning for Disease Prediction and Reproducible Signature Identification by Restructured Microbiome 2D-Representations. SSRN Electronic Journal, 0, , .	0.4	0
4316	Exploring the role of Microbiome in Susceptibility, Treatment Response and Outcome among Tuberculosis Patients from Pakistan: study protocol for a prospective cohort study (Micro-STOP). BMJ Open, 2022, 12, e058463.	0.8	0
4317	The impact of Rhodiola rosea on biomarkers of diabetes, inflammation, and microbiota in a leptin receptor-knockout mouse model. Scientific Reports, 2022, 12, .	1.6	8
4318	Metagenomic Analyses of Multiple Gut Datasets Revealed the Association of Phage Signatures in Colorectal Cancer. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	16
4319	The oral microbiome, pancreatic cancer and human diversity in the age of precision medicine. Microbiome, 2022, 10, .	4.9	22
4320	Explainable Machine Learning for Longitudinal Multi-Omic Microbiome. Mathematics, 2022, 10, 1994.	1.1	3
4321	Dietary Influences on Gut Microbiota with a Focus on Metabolic Syndrome. Metabolic Syndrome and Related Disorders, 2022, 20, 429-439.	0.5	16
4322	A Freshwater Fish-Based Diet Alleviates Liver Steatosis by Modulating Gut Microbiota and Metabolites: A Clinical Randomized Controlled Trial in Chinese Participants With Nonalcoholic Fatty Liver Disease. American Journal of Gastroenterology, 2022, 117, 1621-1631.	0.2	11
4323	Analysis of Gut Microbiome Structure Based on GMPR+Spectrum. Applied Sciences (Switzerland), 2022, 12, 5895.	1.3	0
4324	Evaluation of Probiotic and Antidiabetic Attributes of Lactobacillus Strains Isolated From Fermented Beetroot. Frontiers in Microbiology, $0,13,.$	1.5	19
4325	Deciphering the interdependent labyrinth between gut microbiota and the immune system. Letters in Applied Microbiology, 2022, 75, 1122-1135.	1.0	7
4326	Antidiabetogenic mechanisms of probiotic action in food matrices: A review. PharmaNutrition, 2022, , 100302.	0.8	0
4327	Identification and Characterization of Major Bile Acid 7α-Dehydroxylating Bacteria in the Human Gut. MSystems, 2022, 7, .	1.7	12
4328	NAD+ and its possible role in gut microbiota: Insights on the mechanisms by which gut microbes influence host metabolism. Animal Nutrition, 2022, 10, 360-371.	2.1	10
4329	Targeting the gut to prevent and counteract metabolic disorders and pathologies during aging. Critical Reviews in Food Science and Nutrition, 2023, 63, 11185-11210.	5.4	2
4330	Super-taxon in human microbiome are identified to be associated with colorectal cancer. BMC Bioinformatics, 2022, 23, .	1.2	4
4331	Polyethylene Glycol Loxenatide Injection (GLP-1) Protects Vascular Endothelial Cell Function in Middle-Aged and Elderly Patients With Type 2 Diabetes by Regulating Gut Microbiota. Frontiers in Molecular Biosciences, 0, 9, .	1.6	11
4332	The Gut Microbiota (Microbiome) in Cardiovascular Disease and Its Therapeutic Regulation. Frontiers in Cellular and Infection Microbiology, 0, 12 , .	1.8	65

#	Article	IF	CITATIONS
4333	Vegetarianism, microbiota, and cardiovascular health: looking back, and forward. European Journal of Preventive Cardiology, 2022, 29, 1895-1910.	0.8	11
4334	Insights into microbial contamination in multi-type manure-amended soils: The profile of human bacterial pathogens, virulence factor genes and antibiotic resistance genes. Journal of Hazardous Materials, 2022, 437, 129356.	6.5	34
4335	Probiotics, Prebiotics, and Synbiotics in Human Health. Food Chemistry, Function and Analysis, 2022, , 86-119.	0.1	0
4336	Gut Microbiota Potential in Type 2 Diabetes. , 0, , .		0
4337	Integrated Analysis of the Alterations in Gut Microbiota and Metabolites of Mice Induced After Long-Term Intervention With Different Antibiotics. Frontiers in Microbiology, 0, 13, .	1.5	4
4338	Gut Microbiota-Derived Metabolites and Cardiovascular Disease Risk: A Systematic Review of Prospective Cohort Studies. Nutrients, 2022, 14, 2654.	1.7	19
4339	Complex Role of Microbiome in Pancreatic Tumorigenesis: Potential Therapeutic Implications. Cells, 2022, 11, 1900.	1.8	3
4340	Integrating Choline and Specific Intestinal Microbiota to Classify Type 2 Diabetes in Adults: A Machine Learning Based Metagenomics Study. Frontiers in Endocrinology, 0, 13, .	1.5	7
4341	Ethnic disparities attributed to the manifestation in and response to type 2 diabetes: insights from metabolomics. Metabolomics, 2022, 18 , .	1.4	11
4342	Latent Autoimmune Diabetes in Adults and Metabolic Syndromeâ€"A Mini Review. Frontiers in Endocrinology, 0, 13, .	1.5	0
4343	Fu Brick Tea Manages HFD/STZ-Induced Type 2 Diabetes by Regulating the Gut Microbiota and Activating the IRS1/PI3K/Akt Signaling Pathway. Journal of Agricultural and Food Chemistry, 2022, 70, 8274-8287.	2.4	22
4344	Gut Microbiota and Sex Hormones: Crosstalking Players in Cardiometabolic and Cardiovascular Disease. International Journal of Molecular Sciences, 2022, 23, 7154.	1.8	10
4345	The Leaves of <i>Cyclocarya paliurus</i> : A Functional Tea with Preventive and Therapeutic Potential of Type 2 Diabetes. The American Journal of Chinese Medicine, 2022, 50, 1447-1473.	1.5	4
4346	Dynamics of Small Non-coding RNA Profiles and the Intestinal Microbiome of High and Low Weight Chickens. Frontiers in Microbiology, 0, 13 , .	1.5	3
4347	New Insights into the Diurnal Rhythmicity of Gut Microbiota and Its Crosstalk with Host Circadian Rhythm. Animals, 2022, 12, 1677.	1.0	12
4348	The impact of mass drug administration of antibiotics on the gut microbiota of target populations. Infectious Diseases of Poverty, 2022, 11 , .	1.5	8
4349	Metabolic Action of Metformin. Pharmaceuticals, 2022, 15, 810.	1.7	23
4350	Relative contributions of the host genome, microbiome, and environment to the metabolic profile. Genes and Genomics, 0, , .	0.5	0

#	Article	IF	Citations
4351	Linkage between microbial functional genes and net N mineralisation in forest soils along an elevational gradient. European Journal of Soil Science, 2022, 73, .	1.8	7
4352	Effects of the Lipid Profile, Type 2 Diabetes and Medication on the Metabolic Syndrome—Associated Gut Microbiome. International Journal of Molecular Sciences, 2022, 23, 7509.	1.8	11
4353	Gut microbiota interactions with anti-diabetic medications and pathogenesis of type 2 diabetes mellitus. World Journal of Methodology, 2022, 12, 246-257.	1.1	6
4354	Nutrition for precision health: The time is now. Obesity, 2022, 30, 1335-1344.	1.5	6
4355	Colonic Microflora Protagonist of Liver Metabolism and Gut Permeability: Study on Mice Model. Indian Journal of Microbiology, 0, , .	1.5	0
4356	Effects of High Ambient Temperature on Small Intestinal Morphology and Colonic Microbiota in Weaned Piglets. Animals, 2022, 12, 1743.	1.0	3
4357	Role of the Gut Microbiota in Glucose Metabolism During Heart Failure. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	1
4358	Is Intestinal Dysbiosis-Associated With Immunosuppressive Therapy a Key Factor in the Pathophysiology of Post-Transplant Diabetes Mellitus?. Frontiers in Endocrinology, 0, 13, .	1.5	3
4359	Akkermansia muciniphila and Gut Immune System: A Good Friendship That Attenuates Inflammatory Bowel Disease, Obesity, and Diabetes. Frontiers in Immunology, 0, 13, .	2.2	71
4360	Alterations of Gut Microbiome and Fecal Fatty Acids in Patients With Polycystic Ovary Syndrome in Central China. Frontiers in Microbiology, 0, 13 , .	1.5	11
4361	Effect of Tanshinone IIA on Gut Microbiome in Diabetes-Induced Cognitive Impairment. Frontiers in Pharmacology, 0, 13, .	1.6	3
4362	Role of butyrogenic Firmicutes in type-2 diabetes. Journal of Diabetes and Metabolic Disorders, 2022, 21, 1873-1882.	0.8	5
4363	An Investigation into the Correlation of Intestinal Flora with Obesity and Gestational Diabetes Mellitus. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-15.	0.7	4
4364	Gut microbiota diversity in middle-aged and elderly patients with end-stage diabetic kidney disease. Annals of Translational Medicine, 2022, 10, 750-750.	0.7	11
4365	Gut Microbiota Composition and Metabolic Potential of Long-Living People in China. Frontiers in Aging Neuroscience, 0, 14, .	1.7	2
4366	Insights of Host Physiological Parameters and Gut Microbiome of Indian Type 2 Diabetic Patients Visualized via Metagenomics and Machine Learning Approaches. Frontiers in Microbiology, 0, 13, .	1.5	5
4367	Effects of Oral Glucose-Lowering Agents on Gut Microbiota and Microbial Metabolites. Frontiers in Endocrinology, 0, 13, .	1.5	9
4368	Grape seed and skin extract, a potential prebiotic with anti-obesity effect through gut microbiota modulation. Gut Pathogens, 2022, 14, .	1.6	9

#	Article	IF	CITATIONS
4369	Profiling of <scp>d</scp> â€alanine production by the microbial isolates of rat gut microbiota. FASEB Journal, 2022, 36, .	0.2	5
4370	Clostridium species diversity in gut microbiota of patients with renal failure. Microbial Pathogenesis, 2022, 169, 105667.	1.3	7
4371	The potential mechanism of Liu–Wei–Di–Huang Pills in treatment of type 2 diabetic mellitus: from gut microbiota to short-chain fatty acids metabolism. Acta Diabetologica, 2022, 59, 1295-1308.	1.2	6
4372	Relationship between Fasting and Postprandial Glucose Levels and the Gut Microbiota. Metabolites, 2022, 12, 669.	1.3	3
4373	Antibiotics-induced disruption of gut microbiota increases systemic exposure of clopidogrel active metabolite in type 2 diabetic rats. Drug Metabolism and Disposition, 0, , DMD-AR-2022-000906.	1.7	0
4375	Key features of the genetic architecture and evolution of host-microbe interactions revealed by high-resolution genetic mapping of the mucosa-associated gut microbiome in hybrid mice. ELife, 0, 11 , .	2.8	9
4376	Morphological and Genetic Characterization of Eggerthella lenta Bacteriophage PMBT5. Viruses, 2022, 14, 1598.	1.5	2
4377	Butyrate to combat obesity and obesityâ€associated metabolic disorders: Current status and future implications for therapeutic use. Obesity Reviews, 2022, 23, .	3.1	36
4378	Effects of Probiotic Supplementation during Pregnancy on the Future Maternal Risk of Metabolic Syndrome. International Journal of Molecular Sciences, 2022, 23, 8253.	1.8	9
4379	Dirichlet-tree multinomial mixtures for clustering microbiome compositions. Annals of Applied Statistics, 2022, 16, .	0.5	2
4380	The beneficial role of healthy microbiome in metabolic syndrome and cardiovascular health. , 2022, , $109-124$.		1
4381	Exploring the Correlation between Changes in Gut Microbial Community Diversity and Depression in Human Populations. BioMed Research International, 2022, 2022, 1-16.	0.9	5
4382	The metabolic nature of inflammatory bowel diseases. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 753-767.	8.2	76
4383	The dynamic effects of maternal high-calorie diet on glycolipid metabolism and gut microbiota from weaning to adulthood in offspring mice. Frontiers in Nutrition, 0, 9, .	1.6	7
4384	Altered Lung Microbiome and Metabolome Profile in Children With Pulmonary Arterial Hypertension Associated With Congenital Heart Disease. Frontiers in Medicine, 0, 9, .	1.2	6
4386	Gut microbiome is associated with metabolic syndrome accompanied by elevated gamma-glutamyl transpeptidase in men. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	18
4387	Metagenomics Approach to the Intestinal Microbiome Structure and Abundance in High-Fat-Diet-Induced Hyperlipidemic Rat Fed with (â°')-Epigallocatechin-3-Gallate Nanoparticles. Molecules, 2022, 27, 4894.	1.7	1
4388	Gut Microbiota Correlates With Clinical Responsiveness to Erythropoietin in Hemodialysis Patients With Anemia. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	2

#	Article	IF	CITATIONS
4389	Recent advances in diabetes and microbiota. Science Bulletin, 2022, 67, 1720-1723.	4.3	5
4390	The impact of dietary nutrient intake on gut microbiota in the progression and complications of chronic kidney disease. Kidney International, 2022, 102, 728-739.	2.6	8
4391	Characterizing the influence of gut microbiota on host tryptophan metabolism with germ-free pigs. Animal Nutrition, 2022, 11 , $190-200$.	2.1	6
4392	Vaginal microbiota and personal risk factors associated with HPV status conversionâ€"A new approach to reduce the risk of cervical cancer?. PLoS ONE, 2022, 17, e0270521.	1.1	3
4393	Type 2 diabetes, gut microbiome, and systems biology: A novel perspective for a new era. Gut Microbes, 2022, 14, .	4.3	17
4395	Gut-derived bacterial flagellin induces beta-cell inflammation and dysfunction. Gut Microbes, 2022, 14,	4.3	6
4396	Differences in intestinal microflora of birds among different ecological types. Frontiers in Ecology and Evolution, $0,10,10$	1,1	2
4397	Nicotine Exposure during Rodent Pregnancy Alters the Composition of Maternal Gut Microbiota and Abundance of Maternal and Amniotic Short Chain Fatty Acids. Metabolites, 2022, 12, 735.	1.3	5
4398	Orlistat and ezetimibe could differently alleviate the high-fat diet-induced obesity phenotype by modulating the gut microbiota. Frontiers in Microbiology, $0,13,13$	1.5	12
4399	Butyrate-Producing Bacteria and Insulin Homeostasis: The Microbiome and Insulin Longitudinal Evaluation Study (MILES). Diabetes, 2022, 71, 2438-2446.	0.3	18
4400	An urban diet differentially alters the gut microbiome and metabolomic profiles compared with a seed diet in mourning doves. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2022, 323, R385-R396.	0.9	0
4401	Gut Microbiota Patterns Predicting Long-Term Weight Loss Success in Individuals with Obesity Undergoing Nonsurgical Therapy. Nutrients, 2022, 14, 3182.	1.7	10
4402	Synbiotics and Gut Microbiota: New Perspectives in the Treatment of Type 2 Diabetes Mellitus. Foods, 2022, 11, 2438.	1.9	9
4403	Tang-Ping-San Decoction Remodel Intestinal Flora and Barrier to Ameliorate Type 2 Diabetes Mellitus in Rodent Model. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 0, Volume 15, 2563-2581.	1.1	5
4404	The role of iron in host–microbiota crosstalk and its effects on systemic glucose metabolism. Nature Reviews Endocrinology, 2022, 18, 683-698.	4.3	35
4406	Elucidation of Anti-Hypertensive Mechanism by a Novel Lactobacillus rhamnosus AC1 Fermented Soymilk in the Deoxycorticosterone Acetate-Salt Hypertensive Rats. Nutrients, 2022, 14, 3174.	1.7	5
4407	Microbiota Sampling Capsule: Design, Prototyping and Assessment of a Sealing Solution Based on a Bistable Mechanism. Journal of Medical Devices, Transactions of the ASME, 2022, 16, .	0.4	1
4408	Role of 5â€HT in the enteric nervous system and enteroendocrine cells. British Journal of Pharmacology, 0, , .	2.7	8

#	ARTICLE	IF	Citations
4409	Fucoxanthin: A Promising Phytochemical on Diverse Pharmacological Targets. Frontiers in Pharmacology, $0,13,\ldots$	1.6	19
4410	A new predictive model for the concurrent risk of diabetic retinopathy in type 2 diabetes patients and the effect of metformin on amino acids. Frontiers in Endocrinology, $0,13,.$	1.5	0
4411	MicroRNA as a diagnostic marker in cutaneous T-cell lymphomas. Russian Journal of Skin and Venereal Diseases, 2022, 25, 5-16.	0.0	0
4412	Composition and diversity of gut microbiota in diabetic retinopathy. Frontiers in Microbiology, 0, 13, .	1.5	21
4413	Alterations in Microbiota and Metabolites Related to Spontaneous Diabetes and Pre-Diabetes in Rhesus Macaques. Genes, 2022, 13, 1513.	1.0	3
4414	Namco: a microbiome explorer. Microbial Genomics, 2022, 8, .	1.0	4
4415	Microbiota and COVID-19: Long-term and complex influencing factors. Frontiers in Microbiology, 0, 13,	1.5	25
4416	The role and mechanisms of gut microbiota in diabetic nephropathy, diabetic retinopathy and cardiovascular diseases. Frontiers in Microbiology, $0,13,.$	1.5	9
4417	Sodium Butyrate Attenuated Diabetes-Induced Intestinal Inflammation by Modulating Gut Microbiota. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-12.	0.5	4
4419	Analysis and evaluation of different sequencing depths from 5 to 20 million reads in shotgun metagenomic sequencing, with optimal minimum depth being recommended. Genome, 2022, 65, 491-504.	0.9	5
4420	Time dependent effects of prolonged hyperglycemia in zebrafish brain and retina. Frontiers in Ophthalmology, 0, 2, .	0.2	2
4421	Roles of intestinal <i>Parabacteroides</i> in human health and diseases. FEMS Microbiology Letters, 2022, 369, .	0.7	77
4422	Gut Microbiota Modulation as a Novel Therapeutic Strategy in Cardiometabolic Diseases. Foods, 2022, 11, 2575.	1.9	14
4423	Gut microbiota: A new target for T2DM prevention and treatment. Frontiers in Endocrinology, 0, 13, .	1.5	29
4424	Oral administration of Blautia wexlerae ameliorates obesity and type 2 diabetes via metabolic remodeling of the gut microbiota. Nature Communications, 2022, 13, .	5.8	84
4425	Tartary Buckwheat Flavonoids Improve Colon Lesions and Modulate Gut Microbiota Composition in Diabetic Mice. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-14.	0.5	5
4426	The Roles of Gut Microbiome and Plasma Metabolites in the Associations between ABO Blood Groups and Insulin Homeostasis: The Microbiome and Insulin Longitudinal Evaluation Study (MILES). Metabolites, 2022, 12, 787.	1.3	0
4427	The mechanism of berberine alleviating metabolic disorder based on gut microbiome. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	12

#	ARTICLE	IF	Citations
4428	Diabetes mellitus $\hat{a} \in ``risk factor and potential future target for hepatic encephalopathy in patients with liver cirrhosis?. Metabolic Brain Disease, 2023, 38, 1691-1700.$	1.4	5
4429	Gut Microbiota and Coronary Plaque Characteristics. Journal of the American Heart Association, 2022, 11, .	1.6	16
4430	Metagenomic analysis reveals crosstalk between gut microbiota and glucose-lowering drugs targeting the gastrointestinal tract in Chinese patients with type 2 diabetes: a 6 month, two-arm randomised trial. Diabetologia, 2022, 65, 1613-1626.	2.9	4
4431	Gut Microbiota Composition in Prediabetes and Newly Diagnosed Type 2 Diabetes: A Systematic Review of Observational Studies. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	27
4432	$\mbox{\sc k}$ \mbo	1.5	10
4433	The effects of medicinal herbs on gut microbiota and metabolic factors in obesity models: A systematic review. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2022, 16, 102586.	1.8	1
4434	Peptidoglycan-Mediated Bone Marrow Autonomic Neuropathy Impairs Hematopoietic Stem/Progenitor Cells via a NOD1-Dependent Pathway in db/db Mice. Stem Cells International, 2022, 2022, 1-16.	1.2	3
4435	Butyrate inhibits IL- $1\hat{l}^2$ -induced inflammatory gene expression by suppression of NF- \hat{l}^2 B activity in pancreatic beta cells. Journal of Biological Chemistry, 2022, 298, 102312.	1.6	9
4436	Culturomics, a potential approach paving the way towardÂbacteriotherapy. Current Opinion in Microbiology, 2022, 69, 102194.	2.3	9
4437	A Chinese medical nutrition therapy diet accompanied by intermittent energy restriction alleviates type 2 diabetes by enhancing pancreatic islet function and regulating gut microbiota composition. Food Research International, 2022, 161, 111744.	2.9	9
4438	Comparing the significance of the utilization of next generation and third generation sequencing technologies in microbial metagenomics. Microbiological Research, 2022, 264, 127154.	2.5	24
4439	Fecal metabolomics reveals the positive effect of ethanol extract of propolis on T2DM mice. Food Science and Human Wellness, 2023, 12, 161-172.	2.2	9
4440	Characterization of antidiabetic effects of Dendrobium officinale derivatives in a mouse model of type 2 diabetes mellitus. Food Chemistry, 2023, 399, 133974.	4.2	15
4441	Severe psychiatric disorders and general medical comorbidities: inflammation-related mechanisms and therapeutic opportunities. Clinical Science, 2022, 136, 1257-1280.	1.8	2
4442	Causal effects of gut microbiota on diabetic retinopathy: A Mendelian randomization study. Frontiers in Immunology, $0,13,$	2.2	41
4443	Functional components of Chinese rice wine can ameliorate diabetic cardiomyopathy through the modulation of autophagy, apoptosis, gut microbiota, and metabolites. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	6
4444	Intestinal microbiology and metabolomics of streptozotocin-induced type 2 diabetes mice by polysaccharide from Cardamine violifolia. Journal of Functional Foods, 2022, 97, 105251.	1.6	4
4445	Recent findings in Akkermansia muciniphila-regulated metabolism and its role in intestinal diseases. Clinical Nutrition, 2022, 41, 2333-2344.	2.3	32

#	Article	IF	CITATIONS
4446	Inulin mitigates high fructose-induced gut dysbiosis and metabolic dysfunction in mice. Journal of Functional Foods, 2022, 97, 105236.	1.6	6
4447	Effects of N-enriched biochar on ecosystem greenhouse gas emissions, rice yield, and bacterial community diversity in subtropical rice paddy soils. European Journal of Soil Biology, 2022, 113, 103440.	1.4	6
4448	Short-chain fatty acid receptors and gut microbiota as therapeutic targets in metabolic, immune, and neurological diseases., 2022, 239, 108273.		42
4449	Xanthan gum oligosaccharides ameliorate glucose metabolism and related gut microbiota dysbiosis in type 2 diabetic mice. Food Bioscience, 2022, 50, 102002.	2.0	4
4450	Effect of fructooligosaccharides on the colonization of Lactobacillus rhamnosus AS 1.2466T in the gut of mice. Food Science and Human Wellness, 2023, 12, 607-613.	2.2	5
4451	The oral microbiota as part of the human microbiota – links to general health. , 2020, 131, .		0
4452	Dysbiosis of human microbiome and infectious diseases. Progress in Molecular Biology and Translational Science, 2022, , 33-51.	0.9	8
4453	Antidiabetic potential of polysaccharides from Brasenia schreberi regulating insulin signaling pathway and gut microbiota in type 2 diabetic mice. Current Research in Food Science, 2022, 5, 1465-1474.	2.7	5
4454	Extracted yam bean (Pachyrhizus erosus (L.) Urb.) fiber counteracts adiposity, insulin resistance, and inflammation while modulating gut microbiota composition in mice fed with a high-fat diet. Research in Pharmaceutical Sciences, 2022, 17, 558.	0.6	0
4455	Research Progress of Probiotics in the Treatment of Nonalcoholic Fatty Liver Disease. Advances in Clinical Medicine, 2022, 12, 7249-7255.	0.0	1
4456	Recent insights into the role of microbiome in the pathogenesis of obesity. Therapeutic Advances in Gastroenterology, 2022, 15, 175628482211153.	1.4	6
4457	Human microbiome and cardiovascular diseases. Progress in Molecular Biology and Translational Science, 2022, , 231-279.	0.9	3
4458	Gut dysbiosis and metabolic diseases. Progress in Molecular Biology and Translational Science, 2022, ,	0.9	0
4459	The effect of resveratrol-mediated gut microbiota remodeling on metabolic disorders. , 2022, , 193-202.		0
4460	The gut microbiome in chronic kidney disease. , 2022, , 233-263.		1
4461	EnsDeepDP: An Ensemble Deep Learning Approach for Disease Prediction Through Metagenomics. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023, 20, 986-998.	1.9	7
4462	The Complex Link and Disease Between the Gut Microbiome and the Immune System in Infants. Frontiers in Cellular and Infection Microbiology, $0,12,.$	1.8	8
4463	High-throughput sequencing technologies in metagenomics. , 2023, , 685-708.		1

#	Article	IF	CITATIONS
4464	Environmental microplastics exposure decreases antioxidant ability, perturbs gut microbial homeostasis and metabolism in chicken. Science of the Total Environment, 2023, 856, 159089.	3.9	22
4465	Clostridium butyricum Potentially Improves Immunity and Nutrition through Alteration of the Microbiota and Metabolism of Elderly People with Malnutrition in Long-Term Care. Nutrients, 2022, 14, 3546.	1.7	8
4466	A modified standard American diet induces physiological parameters associated with metabolic syndrome in C57BL/6J mice. Frontiers in Nutrition, 0, 9, .	1.6	0
4467	Gut Microbiota Changes by an SGLT2 Inhibitor, Luseogliflozin, Alters Metabolites Compared with Those in a Low Carbohydrate Diet in db/db Mice. Nutrients, 2022, 14, 3531.	1.7	17
4468	Intestinal phages interact with bacteria and are involved in human diseases. Gut Microbes, 2022, 14, .	4.3	26
4470	Local and systemic effects of microbiomeâ€derived metabolites. EMBO Reports, 2022, 23, .	2.0	15
4471	Salidroside Affects Gut Microbiota Structure in db/db Mice by Affecting Insulin, Blood Glucose and Body Weight. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 0, Volume 15, 2619-2631.	1,1	3
4473	The interactions between traditional Chinese medicine and gut microbiota: Global research status and trends. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	11
4474	Mechanistic Role of Jak3 in Obesity-Associated Cognitive Impairments. Nutrients, 2022, 14, 3715.	1.7	2
4475	Microbial interactions play an important role in regulating the effects of plant species on soil bacterial diversity. Frontiers in Microbiology, 0, 13 , .	1.5	5
4476	Potential associations between alterations in gut microbiome and obesityâ€related traits after the bariatric surgery. Journal of Human Nutrition and Dietetics, 2023, 36, 981-996.	1.3	1
4477	Probiotics Bring New Hope for Atherosclerosis Prevention and Treatment. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-13.	1.9	4
4478	Smoking-induced microbial dysbiosis in health and disease. Clinical Science, 2022, 136, 1371-1387.	1.8	11
4479	Markers of Bacterial Translocation in Type 2 Diabetes Mellitus. Biomarkers in Disease, 2023, , 923-945.	0.0	O
4480	Longitudinal analysis of the rectal microbiome in dogs with diabetes mellitus after initiation of insulin therapy. PLoS ONE, 2022, 17, e0273792.	1.1	3
4481	Research progress on the immune microenvironment of the gallbladder in patients with cholesterol gallstones. World Journal of Gastrointestinal Surgery, 0, 14, 887-895.	0.8	O
4482	Adult-onset autoimmune diabetes. Nature Reviews Disease Primers, 2022, 8, .	18.1	16
4483	Selective single-bacteria extraction based on capture and release of microemulsion droplets. Scientific Reports, 2022, 12, .	1.6	0

#	Article	IF	Citations
4484	Small molecule modulation of microbiota: a systems pharmacology perspective. BMC Bioinformatics, 2022, 23, .	1.2	0
4485	Mechanisms of the intestinal and urinary microbiome in kidney stone disease. Nature Reviews Urology, 2022, 19, 695-707.	1.9	14
4486	Global research trends on the links between the gut microbiota and diabetes between 2001 and 2021: A bibliometrics and visualized study. Frontiers in Microbiology, $0, 13, .$	1.5	5
4487	Global research trends in the field of liver cirrhosis from 2011 to 2020: A visualised and bibliometric study. World Journal of Gastroenterology, 2022, 28, 4909-4919.	1.4	2
4488	Roles of Gut Microbiome in Bone Homeostasis and Its Relationship with Bone-Related Diseases. Biology, 2022, 11, 1402.	1.3	7
4489	Multiomic analysis of dark tea extract on glycolipid metabolic disorders in db/db mice. Frontiers in Nutrition, 0, 9, .	1.6	2
4491	Association between Microbiome-Related Human Genetic Variants and Fasting Plasma Glucose in a High-Cardiovascular-Risk Mediterranean Population. Medicina (Lithuania), 2022, 58, 1238.	0.8	1
4492	Gut microbiome associations with host genotype vary across ethnicities and potentially influence cardiometabolic traits. Cell Host and Microbe, 2022, 30, 1464-1480.e6.	5.1	13
4493	Research gaps and opportunities in precision nutrition: an NIH workshop report. American Journal of Clinical Nutrition, 2022, 116, 1877-1900.	2.2	21
4494	Potential Health-Promoting Effects of Two Candidate Probiotics Isolated from Infant Feces Using an Immune-Based Screening Strategy. Nutrients, 2022, 14, 3651.	1.7	1
4495	Gut and obesity/metabolic disease: Focus on microbiota metabolites. MedComm, 2022, 3, .	3.1	15
4496	Gastrointestinal Microbiome and Multiple Health Outcomes: Umbrella Review. Nutrients, 2022, 14, 3726.	1.7	10
4497	Washed microbiota transplantation improves patients with high blood glucose in South China. Frontiers in Endocrinology, 0, 13 , .	1.5	7
4498	Probiotics with anti-type 2 diabetes mellitus properties: targets of polysaccharides from traditional Chinese medicine. Chinese Journal of Natural Medicines, 2022, 20, 641-655.	0.7	3
4499	Specific gut bacterial and fungal microbiota pattern in the first half of pregnancy is linked to the development of gestational diabetes mellitus in the cohort including obese women. Frontiers in Endocrinology, 0, 13, .	1.5	4
4500	Role of probiotics/synbiotic supplementation in glycemic control: A critical umbrella review of meta-analyses of randomized controlled trials. Critical Reviews in Food Science and Nutrition, 2024, 64, 1467-1485.	5.4	6
4502	Isolation and purification of Tartary buckwheat polysaccharides and their effect on gut microbiota. Food Science and Nutrition, 0, , .	1.5	0
4503	Gut microbiome and microbial metabolites in NAFLD and after bariatric surgery: Correlation and causality. Frontiers in Microbiology, 0, 13, .	1.5	16

#	Article	IF	CITATIONS
4504	The Influence of Probiotics Consumption on Management of Prediabetic State: A Systematic Review of Clinical Trials. International Journal of Clinical Practice, 2022, 2022, 1-14.	0.8	5
4505	Fecal Bile Acids and Neutral Sterols Are Associated with Latent Microbial Subgroups in the Human Gut. Metabolites, 2022, 12, 846.	1.3	2
4506	Batch effects removal for microbiome data via conditional quantile regression. Nature Communications, 2022, 13, .	5.8	23
4508	Synbiotic Intervention with Lactobacilli, Bifidobacteria, and Inulin in Healthy Volunteers Increases the Abundance of Bifidobacteria but Does Not Alter Microbial Diversity. Applied and Environmental Microbiology, 2022, 88, .	1.4	2
4509	Effect of Probiotic Lactobacillus plantarum Dad-13 on Metabolic Profiles and Gut Microbiota in Type 2 Diabetic Women: A Randomized Double-Blind Controlled Trial. Microorganisms, 2022, 10, 1806.	1.6	4
4510	Association of Gut Microbial Dysbiosis and Hypertension: A Systematic Review. Cureus, 2022, , .	0.2	0
4511	Multi-omic phenotyping reveals host-microbe responses to bariatric surgery, glycaemic control and obesity. Communications Medicine, 2022, 2, .	1.9	2
4512	Altered gut microbiome diversity and function in patients with propionic acidemia. Molecular Genetics and Metabolism, 2022, 137, 308-322.	0.5	2
4513	Morchella esculenta mushroom polysaccharide attenuates diabetes and modulates intestinal permeability and gut microbiota in a type 2 diabetic mice model. Frontiers in Nutrition, 0, 9, .	1.6	13
4514	Microbiome epidemiology and association studies in human health. Nature Reviews Genetics, 2023, 24, 109-124.	7.7	17
4515	Electroacupuncture reduces blood glucose by regulating intestinal flora in type 2 diabetic mice. Journal of Diabetes, 2022, 14, 695-710.	0.8	5
4516	Recurrence of Early Hepatocellular Carcinoma after Surgery May Be Related to Intestinal Oxidative Stress and the Development of a Predictive Model. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-13.	1.9	1
4517	Metabolomic profiles and microbiota of GDM offspring: The key for future perspective?. Frontiers in Pediatrics, 0, 10, .	0.9	1
4518	Intestinal microbiota and cardiovascular diseases. Eksperimental'naya I Klinicheskaya Gastroenterologiya, 2022, , 125-133.	0.1	1
4519	Dysregulation of secondary bile acid metabolism precedes islet autoimmunity and type 1 diabetes. Cell Reports Medicine, 2022, 3, 100762.	3.3	9
4520	Microbiome and metabolism: Advancements in microbiome engineering. Current Opinion in Endocrine and Metabolic Research, 2022, 27, 100404.	0.6	0
4521	Dietary sodium acetate (SA) improves the growth performance, intestinal health, and carbohydrate metabolism of juvenile common carp (Cyprinus carpio). Aquaculture Reports, 2022, 27, 101350.	0.7	0
4522	The Human Gut Microbiome in Health, Disease, and Therapeutics. , 2022, , 249-260.		0

#	Article	IF	CITATIONS
4523	Microbiome Derived Metabolites in CKD and ESRD. , 2022, , 45-60.		0
4524	An exploratory to analysis the effects of the dirrerent roles of mathca on lipid metabolism and intestinal flora regulation between normal and diabetic mice fed a high-fat diet. Food Science and Technology, 0, 42, .	0.8	0
4525	The Structure and Function of the Sargassum fusiforme Microbiome under Different Conditions. Journal of Marine Science and Engineering, 2022, 10, 1401.	1.2	1
4526	Sex Difference is a Determinant of Gut Microbes and Their Metabolites SCFAs/MCFAs in High Fat Diet Fed Rats. Current Microbiology, 2022, 79, .	1.0	6
4527	Action mechanism of hypoglycemic principle 9-(R)-HODE isolated from cortex lycii based on a metabolomics approach. Frontiers in Pharmacology, $0,13,.$	1.6	2
4528	Microbiome and Colorectal Cancer Management. Cureus, 2022, , .	0.2	1
4529	Helicobacter Pylori Infection Induces Intestinal Dysbiosis That Could Be Related to the Onset of Atherosclerosis. BioMed Research International, 2022, 2022, 1-16.	0.9	5
4530	Gut Microbiome Changes in Gestational Diabetes. International Journal of Molecular Sciences, 2022, 23, 12839.	1.8	10
4531	Gut Microbiota and Their Associated Metabolites in Diabetes: A Cross Talk Between Host and Microbesâ€"A Review. Metabolic Syndrome and Related Disorders, 2023, 21, 3-15.	0.5	3
4532	Functional and metabolic alterations of gut microbiota in children with new-onset type 1 diabetes. Nature Communications, 2022, 13, .	5.8	28
4533	Getting the guts to expand stroke treatment: The potential for microbiome targeted therapies. CNS Neuroscience and Therapeutics, 0, , .	1.9	6
4534	Role of gut microbiota in the pathogenesis and treatment of diabetes mullites: Advanced research-based review. Frontiers in Microbiology, 0, 13, .	1.5	14
4535	Integrated Multi-Omics Analysis Reveals Differential Effects of Fructo-Oligosaccharides (FOS) Supplementation on the Human Gut Ecosystem. International Journal of Molecular Sciences, 2022, 23, 11728.	1.8	0
4536	White common bean extract remodels the gut microbiota and ameliorates type 2 diabetes and its complications: A randomized double-blinded placebo-controlled trial. Frontiers in Endocrinology, 0, 13, .	1.5	6
4537	A new method for mining information of gut microbiome with probabilistic topic models. Multimedia Tools and Applications, 2023, 82, 16081-16104.	2.6	0
4538	Akkermansia muciniphila: The state of the art, 18 years after its first discovery., 0, 1, .		4
4539	Meta-analysis of microbiome association networks reveal patterns of dysbiosis in diseased microbiomes. Scientific Reports, 2022, 12, .	1.6	13
4540	The potential of tailoring the gut microbiome to prevent and treat cardiometabolic disease. Nature Reviews Cardiology, 2023, 20, 217-235.	6.1	31

#	Article	IF	Citations
4541	Microbial assemblages of Schisandraceae plants and the correlations between endophytic species and the accumulation of secondary metabolites. Plant and Soil, 2023, 483, 85-107.	1.8	4
4542	Sharing of Antimicrobial Resistance Genes between Humans and Food Animals. MSystems, 2022, 7, .	1.7	9
4543	Association of body mass index and intestinal (faecal) Streptococcus in adults in Xining city, China P.R Beneficial Microbes, 2022, 13, 465-471.	1.0	5
4544	Selenium-Enriched and Ordinary Black Teas Regulate the Metabolism of Glucose and Lipid and Intestinal Flora of Hyperglycemic Mice. Plant Foods for Human Nutrition, 2023, 78, 61-67.	1.4	4
4545	The metabolic, protective, and immune functions of Akkermansia muciniphila. Microbiological Research, 2023, 266, 127245.	2.5	13
4546	BIC: a database for the transcriptional landscape of bacteria in cancer. Nucleic Acids Research, 0, , .	6.5	3
4547	Metagenomic Analysis of Gut Microbiome in Gout Patients with Different Chinese Traditional Medicine Treatments. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-12.	0.5	1
4549	The role of the gut microbiota in health and cardiovascular diseases. Molecular Biomedicine, 2022, 3, .	1.7	22
4550	Potential benefits of metformin and pioglitazone combination therapy via gut microbiota and metabolites in high-fat diet-fed mice. Frontiers in Pharmacology, 0, 13, .	1.6	6
4551	A time-restricted feeding intervention in children and adolescents with obesity: The TRansForm study protocol. Frontiers in Nutrition, $0, 9, .$	1.6	0
4552	Effects of different amoxicillin treatment durations on microbiome diversity and composition in the gut. PLoS ONE, 2022, 17, e0275737.	1.1	6
4553	Antibiotics in the pathogenesis of diabetes and inflammatory diseases of the gastrointestinal tract. Nature Reviews Gastroenterology and Hepatology, 2023, 20, 81-100.	8.2	24
4555	Precise strategies for selecting probiotic bacteria in treatment of intestinal bacterial dysfunctional diseases. Frontiers in Immunology, 0, 13, .	2.2	4
4556	Exploratory studies of oral and fecal microbiome in healthy human aging. Frontiers in Aging, 0, 3, .	1.2	5
4557	Crosstalk between the Gut and Brain in Ischemic Stroke: Mechanistic Insights and Therapeutic Options. Mediators of Inflammation, 2022, 2022, 1-17.	1.4	2
4558	Sexâ€specific associations between gut microbiota and skeletal muscle mass in a populationâ€based study. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 2908-2919.	2.9	8
4559	A novel therapeutic concern: Antibiotic resistance genes in common chronic diseases. Frontiers in Microbiology, $0,13,1$	1.5	5
4561	The critical role of gut microbiota in obesity. Frontiers in Endocrinology, 0, 13, .	1.5	38

#	Article	IF	Citations
4562	Calorie restriction ameliorates hyperglycemia, modulates the disordered gut microbiota, and mitigates metabolic endotoxemia and inflammation in type 2 diabetic rats. Journal of Endocrinological Investigation, 2023, 46, 699-711.	1.8	16
4563	Duodenal Mucosa: A New Target for the Treatment of Type 2 Diabetes. Endocrine Practice, 2023, 29, 53-59.	1.1	3
4564	Characteristics of Gut Microbiota in Female Patients with Diabetic Microvascular Complications. Journal of Diabetes Research, 2022, 2022, 1-7.	1.0	0
4566	The Interaction of Gut Microbiota-brain Axis in Relation to Human Health with the Use of Animal Models. , 0, , .		0
4567	The Influence of the Gut Microbiome in Paediatric Cancer Origin and Treatment. Antibiotics, 2022, 11, 1521.	1.5	1
4568	Genetic and environmental circadian disruption induce weight gain through changes in the gut microbiome. Molecular Metabolism, 2022, 66, 101628.	3.0	9
4569	Bacterial Community and Antibiotic Resistance Gene Profiles of Fish Gut Contents and Their Aquaculture Environment in Tianjin, China. Aquaculture Journal, 2022, 2, 269-284.	0.7	2
4570	Microbiome analysis revealing microbial interactions and secondary bacterial infections in COVIDâ€19 patients comorbidly affected by Type 2 diabetes. Journal of Medical Virology, 2023, 95, .	2.5	11
4571	The dynamics of molecular, immune and physiological features of the host and the gut microbiome, and their interactions before and after onset of laying in two hen strains. Poultry Science, 2023, 102, 102256.	1.5	1
4574	Precise Nutrition and Metabolic Syndrome, Remodeling the Microbiome with Polyphenols, Probiotics, and Postbiotics., 2022, , 145-178.		0
4575	Role of Probiotics in Diabetes: A Review of Their Rationale and Efficacy. European Medical Journal Diabetes, 0, , 104-110.	4.0	13
4576	Unravelling Diabetes-related Pathways Using 16S rRNA Microbiome Data from Human Gut and Nasal Cavity. , 2022, , .		0
4577	Study on the differences of gut microbiota composition between phlegm-dampness syndrome and qi-yin deficiency syndrome in patients with metabolic syndrome. Frontiers in Endocrinology, 0, 13, .	1.5	6
4578	Ginsenoside $Rg1$ modulates intestinal microbiota and supports re-generation of immune cells in dexamethasone-treated mice. Acta Microbiologica Et Immunologica Hungarica, 2022, , .	0.4	4
4579	Gut microbial response to host metabolic phenotypes. Frontiers in Nutrition, 0, 9, .	1.6	3
4580	Host diet shapes functionally differentiated gut microbiomes in sympatric speciation of blind mole rats in Upper Galilee, Israel. Frontiers in Microbiology, $0,13,.$	1.5	2
4581	Metagenomic Insights into Microbial Community Structure, Function, and Salt Adaptation in Saline Soils of Arid Land, China. Microorganisms, 2022, 10, 2183.	1.6	2
4582	Buyang Huanwu decoction affects gut microbiota and lipid metabolism in a ZDF rat model of co-morbid type 2 diabetes mellitus and obesity: An integrated metabolomics analysis. Frontiers in Chemistry, 0, 10, .	1.8	12

#	Article	IF	CITATIONS
4583	Influence of the Microbiome Metagenomics and Epigenomics on Gastric Cancer. International Journal of Molecular Sciences, 2022, 23, 13750.	1.8	1
4584	Distinct Gut Microbiota Structure and Function of Children with Idiopathic Central and Peripheral Precocious Puberty. International Journal of Endocrinology, 2022, 2022, 1-11.	0.6	1
4585	Relationships between dietary diversity and gut microbial diversity in the elderly. Beneficial Microbes, 2022, 13, 453-464.	1.0	7
4587	Effects of Enzamin, a Microbial Product, on Alterations of Intestinal Microbiota Induced by a High-Fat Diet. Nutrients, 2022, 14, 4743.	1.7	0
4588	Gut microbiota mediated hypoglycemic effect of Astragalus membranaceus polysaccharides in db/db mice. Frontiers in Pharmacology, 0, 13, .	1.6	10
4589	Duodenal Dual-Wavelength Photobiomodulation Improves Hyperglycemia and Hepatic Parameters with Alteration of Gut Microbiome in Type 2 Diabetes Animal Model. Cells, 2022, 11, 3490.	1.8	8
4590	Washed microbiota transplantation improves patients with metabolic syndrome in South China. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	9
4591	Fermented Psidium guajava leaves regulate the gut microbiota and improve metabolic alterations in diabetic mice. Food Bioscience, 2023, 51, 102201.	2.0	2
4592	Butyrate-producing colonic clostridia: picky glycan utilization specialists. Essays in Biochemistry, 2023, 67, 415-428.	2.1	12
4593	The Role of Catechins in Regulating Diabetes: An Update Review. Nutrients, 2022, 14, 4681.	1.7	23
4594	Effect of Intermittent Fasting, Probiotic-Fermented Camel Milk, and Probiotic-Fermented Camel Milk Incorporating Sukkari Date on Diet-Induced Obesity in Rats. Fermentation, 2022, 8, 619.	1.4	5
4595	Hemodynamic response to intestinal pH stimulation measured with spectroscopic video imaging. Biomedical Physics and Engineering Express, 0, , .	0.6	0
4596	Deciphering the gut microbiome in neurodegenerative diseases and metagenomic approaches for characterization of gut microbes. Biomedicine and Pharmacotherapy, 2022, 156, 113958.	2.5	20
4598	Multi-target regulation of intestinal microbiota by berberine to improve type 2 diabetes mellitus. Frontiers in Endocrinology, 0, 13 , .	1.5	5
4599	Toward an improved definition of a healthy microbiome for healthy aging. Nature Aging, 2022, 2, 1054-1069.	5.3	27
4600	Use of antibiotics and risk of type 2 diabetes, overweight and obesity: the Cardiovascular Risk in Young Finns Study and the national FINRISK study. BMC Endocrine Disorders, 2022, 22, .	0.9	2
4602	Gut Microbiota and Metabolic Diseases. Journal of Biosciences and Medicines, 2022, 10, 113-141.	0.1	0
4603	Interactions between NSAIDs, opioids and the gut microbiota - Future perspectives in the management of inflammation and pain., 2023, 241, 108327.		16

#	ARTICLE	IF	CITATIONS
4604	Perillartine protects against metabolic associated fatty liver in high-fat diet-induced obese mice. Food and Function, 2023, 14, 961-977.	2.1	2
4605	Alginate oligosaccharide ameliorates azithromycin-induced gut microbiota disorder <i>via Bacteroides acidifaciens</i> -FAHFAs and <i>Bacteroides</i> -TCA cycle axes. Food and Function, 2023, 14, 427-444.	2.1	6
4606	Exercise effect on the gut microbiota in young adolescents with subthreshold depression: A randomized psychoeducation-controlled Trial. Psychiatry Research, 2023, 319, 115005.	1.7	9
4607	Metagenomic insights into the effects of organic and inorganic agricultural managements on soil phosphorus cycling. Agriculture, Ecosystems and Environment, 2023, 343, 108281.	2.5	8
4608	Living probiotic biomaterials for osteoporosis therapy. , 2023, 1, 52-64.		7
4609	Prediction of functional proteins associated with the gut microbiome of an adult population in Lagos State, Nigeria. Scientific African, 2023, 19, e01445.	0.7	0
4610	Skeletal muscle insulin resistance and adipose tissue hypertrophy persist beyond the reshaping of gut microbiota in young rats fed a fructose-rich diet. Journal of Nutritional Biochemistry, 2023, 113, 109247.	1.9	2
4612	Identification of key bacterial taxa and metabolic pathways affecting gut organic acid profiles in early life. Japanese Journal of Lactic Acid Bacteria, 2021, 32, 107-118.	0.1	0
4613	The role of bile acids and intestinal microbiota in metabolic transformations after gastric bypass surgery. Diabetes Mellitus, 2022, 25, 499-503.	0.5	0
4614	Regional pattern and signatures of gut microbiota in rural residents with coronary heart disease: A metagenomic analysis. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	2
4615	Application Potential of Probiotics in Acute Myocardial Infarction. Cardiovascular Innovations and Applications, 2022, 7 , .	0.1	1
4616	Age matters: Microbiome depletion prior to repeat mild traumatic brain injury differentially alters microbial composition and function in adolescent and adult rats. PLoS ONE, 2022, 17, e0278259.	1.1	6
4618	Increased abundance of Ruminococcus gnavus in gut microbiota is associated with moyamoya disease and non-moyamoya intracranial large artery disease. Scientific Reports, 2022, 12, .	1.6	8
4619	Snapshot into the Type-2-Diabetes-Associated Microbiome of a Romanian Cohort. International Journal of Molecular Sciences, 2022, 23, 15023.	1.8	6
4620	Gut microbiome alterations in preclinical Alzheimer's disease. PLoS ONE, 2022, 17, e0278276.	1.1	12
4621	Type 2 Diabetes and the Microbiome. Journal of the Endocrine Society, 2022, 7, .	0.1	3
4622	Renal Health Improvement in Diabetes through Microbiome Modulation of the Gut–Kidney Axis with Biotics: A Systematic and Narrative Review of Randomized Controlled Trials. International Journal of Molecular Sciences, 2022, 23, 14838.	1.8	6
4623	Characterization of Gut Microbiota Composition in Type 2 Diabetes Patients: A Population-Based Study. International Journal of Environmental Research and Public Health, 2022, 19, 15913.	1.2	9

#	ARTICLE	IF	CITATIONS
4624	Effect of Acylated and Nonacylated Anthocyanins on Urine Metabolic Profile during the Development of Type 2 Diabetes in Zucker Diabetic Fatty Rats. Journal of Agricultural and Food Chemistry, 2022, 70, 15143-15156.	2.4	0
4625	Different maturation of gut microbiome in Korean children. Frontiers in Microbiology, 0, 13, .	1.5	0
4626	Chrono-exercise: Time-of-day-dependent physiological responses to exercise. Sports Medicine and Health Science, 2023, 5, 50-58.	0.7	5
4627	Machine learning for data integration in human gut microbiome. Microbial Cell Factories, 2022, 21, .	1.9	15
4629	Analysis of correlations between gut microbiota, stool short chain fatty acids, calprotectin and cardiometabolic risk factors in postmenopausal women with obesity: a cross-sectional study. Journal of Translational Medicine, 2022, 20, .	1.8	5
4630	Underdevelopment of gut microbiota in failure to thrive infants of up to 12 months of age. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	1
4632	Clearing Steatosis Prior to Liver Surgery for Colorectal Metastasis: A Narrative Review and Case Illustration. Nutrients, 2022, 14, 5340.	1.7	0
4633	Time-scale analysis of the long-term variability of human gut microbiota characteristics in Chinese individuals. Communications Biology, 2022, 5, .	2.0	3
4634	Hypoglycemic effects of different molecular weight konjac glucomannans via intestinal microbiota and SCFAs mediated mechanism. International Journal of Biological Macromolecules, 2023, 234, 122941.	3.6	9
4635	The harmful intestinal microbial community accumulates during DKD exacerbation and microbiome–metabolome combined validation in a mouse model. Frontiers in Endocrinology, 0, 13, .	1.5	5
4636	Mechanistic Understanding of the Effects of Pectin on In Vivo Starch Digestion: A Review. Nutrients, 2022, 14, 5107.	1.7	10
4637	Effects of green tea polyphenol extract and epigallocatechin-3-O-gallate on diabetes mellitus and diabetic complications: Recent advances. Critical Reviews in Food Science and Nutrition, 0, , 1-29.	5.4	11
4638	Gut Microbiome and Its Impact on Obesity and Obesity-Related Disorders. Current Gastroenterology Reports, 2023, 25, 31-44.	1.1	13
4639	A population-based study of precision health assessments using multi-omics network-derived biological functional modules. Cell Reports Medicine, 2022, 3, 100847.	3.3	1
4640	The role of the gut microbiome in the intergenerational transmission of the obesity phenotype: A narrative review. Frontiers in Medicine, 0, 9, .	1.2	2
4641	Oral and gut microbiome alterations in heart failure: Epidemiology, pathogenesis and response to advanced heart failure therapies. Journal of Heart and Lung Transplantation, 2023, 42, 291-300.	0.3	2
4642	The gut microbiome: a core regulator of metabolism. Journal of Endocrinology, 2023, 256, .	1.2	18
4643	Effects of Bifidobacterium with the Ability of 2′-Fucosyllactose Utilization on Intestinal Microecology of Mice. Nutrients, 2022, 14, 5392.	1.7	O

#	Article	IF	CITATIONS
4645	Nutritional implications in the mechanistic link between the intestinal microbiome, renin-angiotensin system, and the development of obesity and metabolic syndrome. Journal of Nutritional Biochemistry, 2022, , 109252.	1.9	1
4646	Microbiome alterations in women with gestational diabetes mellitus and their offspring: A systematic review. Frontiers in Endocrinology, 0, 13 , .	1.5	5
4647	Microbial vitamin production mediates dietary effects on diabetic risk. Gut Microbes, 2022, 14, .	4.3	2
4648	Gut microbiota as an antioxidant system in centenarians associated with high antioxidant activities of gut-resident Lactobacillus. Npj Biofilms and Microbiomes, 2022, 8, .	2.9	13
4649	Diverse functional genes harboured in extracellular vesicles from environmental and human microbiota. Journal of Extracellular Vesicles, 2022, 11, .	5 . 5	2
4650	The gut microbiome of obese postpartum women with and without previous gestational diabetes mellitus and the gut microbiota of their babies. Diabetology and Metabolic Syndrome, 2022, 14, .	1.2	3
4652	The mitigative effect of isorhamnetin against type 2 diabetes via gut microbiota regulation in mice. Frontiers in Nutrition, 0, 9, .	1.6	8
4654	Dihydroquercetin Supplementation Improved Hepatic Lipid Dysmetabolism Mediated by Gut Microbiota in High-Fat Diet (HFD)-Fed Mice. Nutrients, 2022, 14, 5214.	1.7	2
4656	Trimethylamine N-Oxide Levels in Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Metabolites, 2022, 12, 1243.	1.3	17
4657	MetaLab-MAG: A Metaproteomic Data Analysis Platform for Genome-Level Characterization of Microbiomes from the Metagenome-Assembled Genomes Database. Journal of Proteome Research, 2023, 22, 387-398.	1.8	3
4658	Enhanced metagenomic deep learning for disease prediction and consistent signature recognition by restructured microbiome 2D representations. Patterns, 2023, 4, 100658.	3.1	4
4659	Association between gut microbiota and longevity: a genetic correlation and mendelian randomization study. BMC Microbiology, 2022, 22, .	1.3	4
4660	Increased levels of oral Streptococcus-derived d-alanine in patients with chronic kidney disease and diabetes mellitus. Scientific Reports, 2022, 12, .	1.6	7
4661	Assessing and removing the effect of unwanted technical variations in microbiome data. Scientific Reports, 2022, 12, .	1.6	5
4662	Bile acids and microbes in metabolic disease. World Journal of Gastroenterology, 0, 28, 6846-6866.	1.4	3
4663	The gut microbiota in neurodegenerative diseases: revisiting possible therapeutic targets for cannabidiol. Heliyon, 2022, 8, e12172.	1.4	2
4664	Methionine-Restricted Diet: A Feasible Strategy Against Chronic or Aging-Related Diseases. Journal of Agricultural and Food Chemistry, 2023, 71, 5-19.	2.4	1
4665	Evaluation of gut dysbiosis using serum and fecal bile acid profiles. World Journal of Clinical Cases, 0, 10, 12484-12493.	0.3	0

#	Article	IF	CITATIONS
4666	Metformin modulates the gut microbiome in a mice model of high-fat diet-induced glycolipid metabolism disorder. BMJ Open Diabetes Research and Care, 2022, 10, e003149.	1.2	2
4667	Algal oil alleviates antibiotic-induced intestinal inflammation by regulating gut microbiota and repairing intestinal barrier. Frontiers in Nutrition, 0, 9, .	1.6	7
4668	Childhood Socioeconomic Disadvantage and Health in the Second Half of Life: The Role of Gender and Welfare States in the Life Course of Europeans. , 2023, , 217-238.		0
4669	Gut-muscle crosstalk. A perspective on influence of microbes on muscle function. Frontiers in Medicine, 0, 9, .	1.2	6
4670	Relationship between changes in microbiota induced by resveratrol and its anti-diabetic effect on type 2 diabetes. Frontiers in Nutrition, 0, 9, .	1.6	3
4671	Phenotypeâ€specific signatures of systemsâ€level gut microbiome associated with childhood airway allergies. Pediatric Allergy and Immunology, 2023, 34, .	1.1	1
4672	The predicted mechanisms and evidence of probiotics on type 2 diabetes mellitus (T2DM). Archives of Physiology and Biochemistry, 0, , 1-16.	1.0	5
4673	New insights into the mechanisms of highâ€fat diet mediated gut microbiota in chronic diseases. , 2023, 2, .		16
4674	Preterm birth is associated with xenobiotics and predicted by the vaginal metabolome. Nature Microbiology, 2023, 8, 246-259.	5.9	23
4675	Risk Factors of Severe COVID-19: A Review of Host, Viral and Environmental Factors. Viruses, 2023, 15, 175.	1.5	33
4676	Gut microbiome and stages of diabetes in middle-aged adults: CARDIA microbiome study. Nutrition and Metabolism, 2023, 20, .	1.3	5
4677	Lacticaseibacillus rhamnosus Hao9 exerts antidiabetic effects by regulating gut microbiome, glucagon metabolism, and insulin levels in type 2 diabetic mice. Frontiers in Nutrition, 0, 9, .	1.6	2
4678	Lung and Gut Microbiota Interactions with Air Pollution and Aging in Human Chronic Diseases. Healthy Ageing and Longevity, 2023, , 215-236.	0.2	0
4679	Radix paeoniae alba polysaccharide attenuates lipopolysaccharide-induced intestinal injury by regulating gut microbiota. Frontiers in Microbiology, 0, 13 , .	1.5	4
4680	Fatty acid overproduction by gut commensal microbiota exacerbates obesity. Cell Metabolism, 2023, 35, 361-375.e9.	7.2	28
4681	Microbiome Features Differentiating Unsupervised-Stratification-Based Clusters of Patients with Abnormal Glycometabolism. MBio, 2023, 14, .	1.8	4
4682	Immunomagnetic Capture of Faecalibacterium prausnitzii Selectively Modifies the Fecal Microbiota and Its Immunomodulatory Profile. Microbiology Spectrum, 2023, 11, .	1.2	3
4683	Microbiota intestinal e sÃndrome metabólica: utilização terapêutica de probióticos. Revista Da Associação Brasileira De Nutrição, 2023, 13, 1-24.	0.1	0

#	Article	IF	CITATIONS
4684	Rhein for treating diabetes mellitus: A pharmacological and mechanistic overview. Frontiers in Pharmacology, $0,13,.$	1.6	1
4685	Gestational diabetes is driven by microbiota-induced inflammation months before diagnosis. Gut, 2023, 72, 918-928.	6.1	28
4686	Human Gut Microbiota Plasticity throughout the Life Course. International Journal of Environmental Research and Public Health, 2023, 20, 1463.	1.2	11
4687	Alterations of the gut virome in patients with systemic lupus erythematosus. Frontiers in Immunology, 0, 13 , .	2.2	10
4688	The role of the gut microbiota in depressive-like behavior induced by chlorpyrifos in mice. Ecotoxicology and Environmental Safety, 2023, 250, 114470.	2.9	6
4689	Current progress and critical challenges to overcome in the bioinformatics of mass spectrometry-based metaproteomics. Computational and Structural Biotechnology Journal, 2023, 21, 1140-1150.	1.9	1
4690	CRISPR-Cas provides limited phage immunity to a prevalent gut bacterium in gnotobiotic mice. ISME Journal, 2023, 17, 432-442.	4.4	0
4691	Comprehensive analysis of 84 Faecalibacterium prausnitzii strains uncovers their genetic diversity, functional characteristics, and potential risks. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	6
4692	Multi-Omics Data Analysis for Inflammation Disease Research: Correlation Analysis, Causal Analysis and Network Analysis. Translational Bioinformatics, 2023, , 101-118.	0.0	0
4693	Phage-encoded carbohydrate-interacting proteins in the human gut. Frontiers in Microbiology, 0, 13, .	1.5	5
4694	Oral administration of silver nanomaterials affects the gut microbiota and metabolic profile altering the secretion of 5-HT in mice. Journal of Materials Chemistry B, 2023, 11, 1904-1915.	2.9	6
4695	Advances in Lactobacillus Restoration for \hat{l}^2 -Lactam Antibiotic-Induced Dysbiosis: A System Review in Intestinal Microbiota and Immune Homeostasis. Microorganisms, 2023, 11, 179.	1.6	4
4696	Characterization of the Gut Microbiota in Urban Thai Individuals Reveals Enterotype-Specific Signature. Microorganisms, 2023, 11, 136.	1.6	2
4697	Bacterial Translocation to the Mesentery. , 2023, , 93-109.		0
4698	Effects of Initial Combinations of Gemigliptin Plus Metformin Compared with Glimepiride Plus Metformin on Gut Microbiota and Glucose Regulation in Obese Patients with Type 2 Diabetes: The INTESTINE Study. Nutrients, 2023, 15, 248.	1.7	4
4699	Role of microbiome and its metabolite, short chain fatty acid in prostate cancer. Investigative and Clinical Urology, 2023, 64, 3.	1.0	5
4700	The crosstalk between the gut microbiota and tumor immunity: Implications for cancer progression and treatment outcomes. Frontiers in Immunology, $0,13,.$	2.2	2
4701	Gut microbiota and bile acids partially mediate the improvement of fibroblast growth factor 21 on methionine-choline-deficient diet-induced non-alcoholic fatty liver disease mice. Free Radical Biology and Medicine, 2023, 195, 199-218.	1.3	7

#	Article	IF	CITATIONS
4702	Đ£ÑÑſĐ½ĐμĐ½Đ½Ñ•Đ½Đ°ĐĐ»Đ¸Ñ°Đ°Đ¾ĐĐ¾ĐĐ¾ĐĐ¾Đ3Đ¾ бааÑ,ĐμÑ€Ñ–Đ°Đ»ÑŒĐ½Đ¾Đ3Đ¾ Ñ€Đ¾ÑÑ	Ň,Ñ∯.Đ²Ñ,	о 6 нкÑ⊸
4704	Intestinal dysbiosis, obesity and metabolic syndrome: how to quit this tricky triangle?. Modern Gastroenterology, 2019, , 45-56.	0.1	0
4705	Antibiotics and antibiotic-resistant bacteria in the environment: sources and impacts., 2023,, 39-65.		2
4706	Association of gut microbiota and glucose metabolism in children with disparate degrees of adiposity. Pediatric Obesity, 2023, 18, .	1.4	4
4707	Yogurt Supplementation Attenuates Insulin Resistance in Obese Mice by Reducing Metabolic Endotoxemia and Inflammation. Journal of Nutrition, 2023, 153, 703-712.	1.3	2
4708	Integrated Multiâ€Cohort Analysis of the Parkinson's Disease Gut Metagenome. Movement Disorders, 2023, 38, 399-409.	2.2	4
4709	From Dysbiosis to Neurodegenerative Diseases through Different Communication Pathways: An Overview. Biology, 2023, 12, 195.	1.3	8
4710	The Gut Microbiome Dynamically Associates with Host Glucose Metabolism throughout Pregnancy: Longitudinal Findings from a Matched Case ontrol Study of Gestational Diabetes Mellitus. Advanced Science, 2023, 10, .	5.6	12
4711	Interactions between Bitter Taste Receptor Gene Variants and Dietary Intake Are Associated with the Incidence of Type 2 Diabetes Mellitus in Middle-Aged and Older Korean Adults. International Journal of Molecular Sciences, 2023, 24, 2199.	1.8	1
4712	Fermented foods and gut microbiome: a focus on African Indigenous fermented foods. , 2023, , 315-331.		O
4713	Potential role of healthy microbiome in metabolic syndrome and immune competence., 2023,, 805-814.		0
4715	Biosynthetic gene clusters of symbiotic gut microbiome in succession of human health. , 2023, , 847-859.		O
4716	Probiotic Administration for the Prevention and Treatment of Gastrointestinal, Metabolic and Neurological Disorders. Advances in Predictive, Preventive and Personalised Medicine, 2023, , 219-250.	0.6	0
4718	Gut Microbiota of the Asian-Indian Type 2 Diabetes Phenotype: How Different It Is from the Rest of the World?. Journal of the Indian Institute of Science, 0, , .	0.9	O
4720	Immunologic, metabolic and genetic impact of diabetes on tuberculosis susceptibility. Frontiers in Immunology, $0,14,\ldots$	2.2	5
4721	Melatonin improved glucose homeostasis is associated with the reprogrammed gut microbiota and reduced fecal levels of shortâ€chain fatty acids in db/db mice. Food Science and Nutrition, 0, , .	1.5	1
4723	Mulching decreased the abundance of microbial functional genes in phosphorus cycling under maize. Applied Soil Ecology, 2023, 187, 104833.	2.1	1
4724	Chlorella modulation of gut microbiota dysbiosis in patients with type-2 diabetes. Fundamental Toxicological Sciences, 2023, 10, 45-58.	0.2	0

#	Article	IF	CITATIONS
4725	Disease mechanisms as subtypes: Microbiome. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2023, , 107-131.	1.0	2
4726	Enhancing intestinal barrier efficiency: A novel metabolic diseases therapy. Frontiers in Nutrition, 0, 10, .	1.6	6
4727	Pharmacomicrobiomics and type 2 diabetes mellitus: A novel perspective towards possible treatment. Frontiers in Endocrinology, 0, 14 , .	1.5	3
4728	Identification reproducible microbiota biomarkers for the diagnosis of cirrhosis and hepatocellular carcinoma. AMB Express, 2023, 13, .	1.4	4
4729	Gut-brain axis through the lens of gut microbiota and their relationships with Alzheimer's disease pathology: Review and recommendations. Mechanisms of Ageing and Development, 2023, 211, 111787.	2.2	10
4731	The selection of software and database for metagenomics sequence analysis impacts the outcome of microbial profiling and pathogen detection. PLoS ONE, 2023, 18, e0284031.	1.1	0
4732	The Implication of the Gut Microbiome in Heart Failure. Cells, 2023, 12, 1158.	1.8	19
4733	Role of microbial dysbiosis in the pathogenesis of Alzheimer's disease. Neuropharmacology, 2023, 229, 109478.	2.0	10
4734	Three Klebsiella species as potential pathobionts generating endogenous ethanol in a clinical cohort of patients with auto-brewery syndrome: a case control study. EBioMedicine, 2023, 91, 104560.	2.7	7
4735	Role of microbiota short-chain fatty acids in the pathogenesis of autoimmune diseases. Biomedicine and Pharmacotherapy, 2023, 162, 114620.	2.5	7
4736	Ethanol extract of propolis regulates type 2 diabetes in mice via metabolism and gut microbiota. Journal of Ethnopharmacology, 2023, 310, 116385.	2.0	9
4737	Gut microbiome as a therapeutic target for liver diseases. Life Sciences, 2023, 322, 121685.	2.0	5
4738	Future foods, dietary factors and healthspan. Journal of Future Foods, 2023, 3, 75-98.	2.0	2
4739	Polysaccharides from small black soybean alleviating type 2 diabetes via modulation of gut microbiota and serum metabolism. Food Hydrocolloids, 2023, 141, 108670.	5.6	11
4740	The specificity of ten non-digestible carbohydrates to enhance butyrate-producing bacteria and butyrate production in vitro fermentation. Food Science and Human Wellness, 2023, 12, 2344-2354.	2.2	2
4741	Theasinensin A attenuated diabetic development by restoring glucose homeostasis, improving hepatic steatosis and modulating gut microbiota in high-fat-diet/streptozotocin-induced diabetic mice. Food Science and Human Wellness, 2023, 12, 2073-2086.	2.2	5
4742	Review on mechanisms and structure-activity relationship of hypoglycemic effects of polysaccharides from natural resources. Food Science and Human Wellness, 2023, 12, 1969-1980.	2.2	46
4743	Supplementation with yak (Bos grunniens) bone collagen hydrolysate altered the structure of gut microbiota and elevated short-chain fatty acid production in mice. Food Science and Human Wellness, 2023, 12, 1637-1645.	2.2	2

#	Article	IF	CITATIONS
4744	Metabolic independence drives gut microbial colonization and resilience in health and disease. Genome Biology, 2023, 24, .	3.8	19
4745	Food additive glycerol monocaprylate modulated systemic inflammation and gut microbiota without stimulating metabolic dysfunction in high-fat diet fed mice. Food Research International, 2023, 167, 112734.	2.9	4
4747	Improvement in ovarian function following fecal microbiota transplantation from high-laying rate breeders. Poultry Science, 2023, 102, 102467.	1.5	3
4748	Intestinal microbiome diversity of diabetic and non-diabetic kidney disease: Current status and future perspective. Life Sciences, 2023, 316, 121414.	2.0	3
4749	Interactions between structure and function of resistant glucans for alleviating type 2 diabetes mellitus (T2DM) and its complications in mice. International Journal of Biological Macromolecules, 2023, 231, 123405.	3.6	1
4750	A toxic shrub turned therapeutic: The dichotomy of Nerium oleander bioactivities. Toxicon, 2023, 224, 107047.	0.8	5
4751	A Deep Learning Approach to Predict Health Status Using Microbiome Profiling. , 2022, , .		0
4752	Microbiota: A potential orchestrator of antidiabetic therapy. Frontiers in Endocrinology, 0, 14, .	1.5	3
4753	<pre><scp>LC</scp> / <scp>MS</scp> analysis of mushrooms provided new insights into dietary management of diabetes mellitus in rats. Food Science and Nutrition, 0, , .</pre>	1.5	2
4754	Rhizosphere phage communities drive soil suppressiveness to bacterial wilt disease. Microbiome, 2023, 11, .	4.9	15
4755	Interrogating the role of the milk microbiome in mastitis in the multi-omics era. Frontiers in Microbiology, 0, 14 , .	1.5	2
4756	Acidaminococcus homini s sp. nov., Amedibacillus hominis sp. nov., Lientehia hominis gen. nov. sp. nov., Merdimmobilis hominis gen. nov. sp. nov., and Paraeggerthella hominis sp. nov., isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology, 2023, 73, .	0.8	4
4757	Effects of Berries, Phytochemicals, and Probiotics on Atherosclerosis through Gut Microbiota Modification: A Meta-Analysis of Animal Studies. International Journal of Molecular Sciences, 2023, 24, 3084.	1.8	7
4758	Effects of hemicellulose on intestinal mucosal barrier integrity, gut microbiota, and metabolomics in a mouse model of type 2 diabetes mellitus. Frontiers in Microbiology, 0, 14, .	1.5	2
4759	Effects of levodopa on gut bacterial antibiotic resistance in Parkinsonâ \in [™] s disease rat. Frontiers in Aging Neuroscience, 0, 15, .	1.7	1
4760	The gut microbiota pathway mechanisms of diabetes. AMB Express, 2023, 13, .	1.4	7
4761	Gut microbiota in patients with COVID-19 and type 2 diabetes: A culture-based method. Frontiers in Cellular and Infection Microbiology, 0, 13, .	1.8	10
4762	Taiwanese green propolis ameliorates metabolic syndrome via remodeling of white adipose tissue and modulation of gut microbiota in diet-induced obese mice. Biomedicine and Pharmacotherapy, 2023, 160, 114386.	2.5	5

#	Article	IF	CITATIONS
4763	Sex-Related Effects of Gut Microbiota in Metabolic Syndrome-Related Diabetic Retinopathy. Microorganisms, 2023, 11, 447.	1.6	2
4764	Arabinoxylan supplemented bread: From extraction of fibers to effect of baking, digestion, and fermentation. Food Chemistry, 2023, 413, 135660.	4.2	6
4765	Propionylated high-amylose maize starch alleviates obesity by modulating gut microbiota in high-fat diet-fed mice. Journal of Functional Foods, 2023, 102, 105447.	1.6	2
4766	Variation of butyrate production in the gut microbiome in type 2 diabetes patients. International Microbiology, 2023, 26, 601-610.	1.1	7
4767	The Role of Gut Microbiota in High-Fat-Diet-Induced Diabetes: Lessons from Animal Models and Humans. Nutrients, 2023, 15, 922.	1.7	5
4768	The Gut Microbiome and Metastatic Renal Cell Carcinoma. Journal of Clinical Medicine, 2023, 12, 1502.	1.0	3
4769	Akkermansia muciniphila as a Next-Generation Probiotic in Modulating Human Metabolic Homeostasis and Disease Progression: A Role Mediated by Gut–Liver–Brain Axes?. International Journal of Molecular Sciences, 2023, 24, 3900.	1.8	22
4770	Comparison of the gut microbiome and resistome in captive African and Asian elephants on the same diet. Frontiers in Veterinary Science, $0,10,.$	0.9	1
4771	Exercise-induced microbial changes in preventing type 2 diabetes. Science China Life Sciences, 0, , .	2.3	7
4772	Probiotics intervention in preventing conversion of impaired glucose tolerance to diabetes: The PPDP follow-on study. Frontiers in Endocrinology, $0,14,.$	1.5	0
4773	In Vitro Digestion and Fecal Fermentation of Low-Gluten Rice and Its Effect on the Gut Microbiota. Foods, 2023, 12, 855.	1.9	3
4774	Black Rice Anthocyanidins Regulates Gut Microbiota and Alleviates Related Symptoms through PI3K/AKT Pathway in Type 2 Diabetic Rats. Journal of Food Biochemistry, 2023, 2023, 1-13.	1.2	0
4775	从"微生物组"å^°"微生物ç¾ਲ਼ৢ³»":Microbiom	eèōani°aŒ-	–è∯ŒåŽåº"æ
4776	A MALDI-TOF MS library for rapid identification of human commensal gut bacteria from the class Clostridia. Frontiers in Microbiology, 0, 14, .	1.5	4
4777	Diet Gut Microbiota Axis in Pregnancy: A Systematic Review of Recent Evidence. Current Nutrition Reports, 2023, 12, 203-214.	2.1	4
4778	Microbe-Disease Association Prediction Using RGCN Through Microbe-Drug-Disease Network. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023, 20, 3353-3362.	1.9	4
4779	Oral Exposure to Polystyrene Microplastics of Mice on a Normal or High-Fat Diet and Intestinal and Metabolic Outcomes. Environmental Health Perspectives, 2023, 131, .	2.8	20
4780	The Cause and Effect Relationship of Diabetes after Acute Pancreatitis. Biomedicines, 2023, 11, 667.	1.4	6

#	ARTICLE	IF	CITATIONS
4782	Butyrate and obesity: Current research status and future prospect. Frontiers in Endocrinology, 0, 14, .	1.5	5
4783	The Gut Microbial Bile Acid Modulation and Its Relevance to Digestive Health and Diseases. Gastroenterology, 2023, 164, 1069-1085.	0.6	14
4784	Targeted Delivery of Butyrate Improves Glucose Homeostasis, Reduces Hepatic Lipid Accumulation and Inflammation in db/db Mice. International Journal of Molecular Sciences, 2023, 24, 4533.	1.8	7
4785	Interplay between gut microbiota in immune homeostasis and inflammatory diseases. , 2023, , 143-154.		O
4786	Alterations in the Gut Microbiota in Pregnant Women with Pregestational Type 2 Diabetes Mellitus. MSystems, 2023, 8, .	1.7	2
4787	The Interplay of Dietary Fibers and Intestinal Microbiota Affects Type 2 Diabetes by Generating Short-Chain Fatty Acids. Foods, 2023, 12, 1023.	1.9	10
4788	Diets, Gut Microbiota and Metabolites. Phenomics, 2023, 3, 268-284.	0.9	4
4789	Improvement effect of a next-generation probiotic <i>L. plantarum ⟨i⟩-pMG36e-GLP-1 on type 2 diabetes mellitus <i>via ⟨i⟩ the gut–pancreas–liver axis. Food and Function, 2023, 14, 3179-3195.</i></i>	2.1	2
4790	The key players of dysbiosis in Noma disease; A systematic review of etiological studies. Frontiers in Oral Health, 0, 4, .	1.2	1
4791	Discovering the Potential Mechanisms of Medicinal Mushrooms Antidepressant Activity: A Review. Antioxidants, 2023, 12, 623.	2.2	3
4792	Association between Antibiotic Exposure and Type 2 Diabetes Mellitus in Middle-Aged and Older Adults. Nutrients, 2023, 15, 1290.	1.7	3
4793	Gut Microbial Genes and Metabolism for Methionine and Branched-Chain Amino Acids in Diabetic Nephropathy. Microbiology Spectrum, 2023, 11 , .	1.2	2
4794	Dietary administration with hydrolyzed silk sericin improves the intestinal health of diabetic rats. Frontiers in Microbiology, 0, 14, .	1.5	1
4795	A simple tandem mass spectrometry method for structural identification of pentose oligosaccharides. Analyst, The, 2023, 148, 1712-1731.	1.7	3
4796	Oral microbiome, COVID-19 and probiotics: A review. Vojnosanitetski Pregled, 2023, , 14-14.	0.1	0
4797	Application of Computational Data Modeling to a Large-Scale Population Cohort Assists the Discovery of Inositol as a Strain-Specific Substrate for Faecalibacterium prausnitzii. Nutrients, 2023, 15, 1311.	1.7	0
4798	Tissue-resident Lachnospiraceae family bacteria protect against colorectal carcinogenesis by promoting tumor immune surveillance. Cell Host and Microbe, 2023, 31, 418-432.e8.	5.1	44
4799	Effect of "maccog―TCM tea on improving glucolipid metabolism and gut microbiota in patients with type 2 diabetes in community. Frontiers in Endocrinology, 0, 14, .	1.5	1

#	Article	IF	CITATIONS
4800	Analysis of the effect of hyaluronic acid on intestinal flora and its metabolites in diabetic mice via high-throughput sequencing and nontargeted metabolomics. Journal of Functional Foods, 2023, 103, 105496.	1.6	2
4801	Microbiota and Cardiovascular Diseases: Mechanisms of Influence and Correction Possibilities. Rational Pharmacotherapy in Cardiology, 2023, 19, 58-64.	0.3	1
4802	Foodborne Carbon Dot Exposure Induces Insulin Resistance through Gut Microbiota Dysbiosis and Damaged Intestinal Mucus Layer. ACS Nano, 2023, 17, 6081-6094.	7.3	10
4803	Impact of high altitude on composition and functional profiling of oral microbiome in Indian male population. Scientific Reports, 2023, 13, .	1.6	1
4804	Changes in the Microbiota and their Roles in Patients with Type 2 Diabetes Mellitus. Current Microbiology, 2023, 80, .	1.0	6
4805	Towards applications of genomeâ€scale metabolic modelâ€based approaches in designing synthetic microbial communities. Quantitative Biology, 2023, 11, 15-30.	0.3	2
4806	Gut microbiota and stroke: New avenues to improve prevention and outcome. European Journal of Neurology, 2023, 30, 3595-3604.	1.7	3
4808	Effects of common plastic products heat exposure on cognition: Mediated by gut microbiota. Ecotoxicology and Environmental Safety, 2023, 254, 114758.	2.9	1
4809	Integrated <i>de novo</i> gene prediction and peptide assembly of metagenomic sequencing data. NAR Genomics and Bioinformatics, 2023, 5, .	1.5	0
4810	Comammox <i>Nitrospira</i> and Ammonia-Oxidizing Archaea Are Dominant Ammonia Oxidizers in Sediments of an Acid Mine Lake Containing High Ammonium Concentrations. Applied and Environmental Microbiology, 2023, 89, .	1.4	2
4811	Role of the Gut Microbiome in the Development of Atherosclerotic Cardiovascular Disease. International Journal of Molecular Sciences, 2023, 24, 5420.	1.8	10
4812	Corinthian Currants Supplementation Restores Serum Polar Phenolic Compounds, Reduces IL-1beta, and Exerts Beneficial Effects on Gut Microbiota in the Streptozotocin-Induced Type-1 Diabetic Rat. Metabolites, 2023, 13, 415.	1.3	2
4813	Short-chain fatty acids as a link between diet and cardiometabolic risk: a narrative review. Lipids in Health and Disease, 2023, 22, .	1.2	3
4814	Application of prototypical networks in microbiome-based disease prediction. , 2022, , .		0
4816	NEMoE: a nutrition aware regularized mixture of experts model to identify heterogeneous diet-microbiome-host health interactions. Microbiome, 2023, 11 , .	4.9	1
4817	Gut microbiota in a mouse model of obesity and peripheral neuropathy associated with plasma and nerve lipidomics and nerve transcriptomics. Microbiome, 2023, 11 , .	4.9	6
4818	Comparative Gut Microbiome Differences between High and Low Aortic Arch Calcification Score in Patients with Chronic Diseases. International Journal of Molecular Sciences, 2023, 24, 5673.	1.8	4
4819	Microbiome–metabolomics analysis reveals the potential effect of verbascoside in alleviating cognitive impairment in db/db mice. Food and Function, 2023, 14, 3488-3508.	2.1	7

#	Article	IF	CITATIONS
4822	Microbiome and Retinal Vascular Diseases. American Journal of Pathology, 2023, 193, 1675-1682.	1.9	2
4823	Health and Disease: <i>Akkermansia muciniphila</i> , the Shining Star of the Gut Flora. Research, 2023, 6, .	2.8	4
4824	Personalized and Targeted Gut Microbiome Modulation in the Prevention and Treatment of Chronic Diseases. , 0, , .		0
4826	Alterations of gut microbes and their correlation with clinical features in middle and end-stages chronic kidney disease. Frontiers in Cellular and Infection Microbiology, 0, 13, .	1.8	1
4827	Metagenomic and targeted metabolomic analyses reveal distinct phenotypes of the gut microbiota in patients with colorectal cancer and type 2 diabetes mellitus. Chinese Medical Journal, 2023, 136, 2847-2856.	0.9	2
4828	Rutin alleviates colon lesions and regulates gut microbiota in diabetic mice. Scientific Reports, 2023, 13, .	1.6	5
4831	Gut Microbiota and Its Role in Anti-aging Phenomenon: Evidence-Based Review. Applied Biochemistry and Biotechnology, 2023, 195, 6809-6823.	1.4	1
4833	Comparison of gut viral communities in children under 5 years old and newborns. Virology Journal, 2023, 20, .	1.4	1
4834	Intestinal permeability and its role in the pathogenesis of metabolic disorders (metabolic syndrome). Literature review. Ukrainian Therapeutical Journal, 2023, , 44-56.	0.0	0
4835	Human Genes Involved in the Interaction between Host and Gut Microbiome: Regulation and Pathogenic Mechanisms. Genes, 2023, 14, 857.	1.0	3
4836	Dysbiome and Its Role in Surgically Relevant Medical Disease. Surgical Infections, 2023, 24, 226-231.	0.7	1
4837	Metagenomic Shotgun Sequencing Reveals Specific Human Gut Microbiota Associated with Insulin Resistance and Body Fat Distribution in Saudi Women. Biomolecules, 2023, 13, 640.	1.8	0
4838	Instead of Calories, Should We Be Counting our Consumption of Exosomes and MicroRNAs?. MicroRNA (Shariqah, United Arab Emirates), 2023, 12, .	0.6	0
4840	Forging the microbiome to help us live long and prosper. PLoS Biology, 2023, 21, e3002087.	2.6	1
4841	Alterations of the intestinal microbiota in age-related macular degeneration. Frontiers in Microbiology, 0, 14, .	1.5	3
4842	Understanding of the efficacy of gut microbiota-directed foods on human health. Trends in Food Science and Technology, 2023, 136, 92-99.	7.8	2
4843	The Pathogenesis of Diabetes. International Journal of Molecular Sciences, 2023, 24, 6978.	1.8	8
4844	Role of Akkermansia in Human Diseases: From Causation to Therapeutic Properties. Nutrients, 2023, 15, 1815.	1.7	9

#	Article	IF	CITATIONS
4845	The regulatory effects of Lonicera japonica flos on fecal microbiota from humans with type 2 diabetes in a SHIME model. Journal of Herbal Medicine, 2023, 39, 100654.	1.0	2
4846	Microbial gut dysbiosis induced by xenobiotics in model organisms and the relevance of experimental criteria: a minireview. Gut Microbiome, 2023, 4, .	0.8	0
4849	Large-scale phage cultivation for commensal human gut bacteria. Cell Host and Microbe, 2023, 31, 665-677.e7.	5.1	10
4851	Alterations of the gut microbiota in type 2 diabetics with or without subclinical hypothyroidism. PeerJ, 0, 11, e15193.	0.9	2
4853	Targeting gut microbiota in osteoporosis: impact of the microbial based functional food ingredients. , 2024, 13 , 1 - 15 .		6
4854	Complete bacterial profile and potential pathogens ofÂcat fleas Ctenocephalides felis. Acta Tropica, 2023, 243, 106923.	0.9	1
4856	Omics biomarkers and an approach for their practical implementation to delineate health status for personalized nutrition strategies. Critical Reviews in Food Science and Nutrition, 0, , 1-29.	5.4	6
4857	Probiotics as Potential Therapy in the Management of Non-Alcoholic Fatty Liver Disease (NAFLD). Fermentation, 2023, 9, 395.	1.4	O
4858	Effects of the synbiotic composed of mangiferin and Lactobacillus reuteri 1–12 on type 2 diabetes mellitus rats. Frontiers in Microbiology, 0, 14, .	1.5	1
4859	An Evaluation Method of Human Gut Microbial Homeostasis by Testing Specific Fecal Microbiota. Engineering, 2023, 29, 110-119.	3.2	O
4860	Nutritional and Lifestyle Therapy for NAFLD in People with HIV. Nutrients, 2023, 15, 1990.	1.7	1
4861	Multi-omics signatures in new-onset diabetes predict metabolic response to dietary inulin: findings from an observational study followed by an interventional trial. Nutrition and Diabetes, 2023, 13, .	1.5	6
4862	Genetic basis of metabolism and inflammation in PCOS., 2023,, 531-563.		0
4883	Gut Microbiome–Brain Alliance: A Landscape View into Mental and Gastrointestinal Health and Disorders. ACS Chemical Neuroscience, 2023, 14, 1717-1763.	1.7	24
4891	Personalized nutrition, personalized medicine, and microbiome therapeutics., 2023,, 387-399.		0
4893	Recent advances in microbiome engineering for therapeutic applications. , 2023, , 127-137.		O
4895	Microbiota and its therapeutic implications in reproductive health and diseases., 2023,, 355-386.		0
4933	Microbiome abnormalities and retinal disease. , 2023, , 181-196.		O

#	Article	IF	CITATIONS
4935	From symbiosis to dysbiosis in gut-consequence includes metabolic syndrome., 2023,, 61-83.		0
4970	Gut OncoMicrobiome Signatures (GOMS) as next-generation biomarkers for cancer immunotherapy. Nature Reviews Clinical Oncology, 2023, 20, 583-603.	12.5	16
4987	An Overview of the Human Microbiome. , 2023, , 1-19.		0
4990	Gut Microbiota Links With Disease. , 2023, , 105-145.		0
5025	Gut Microbiome, Obesity, and Metabolic Syndrome., 2023,, 1-12.		0
5060	Precision Nutrition to Improve Risk Factors of Obesity and Type 2 Diabetes. Current Nutrition Reports, 2023, 12, 679-694.	2.1	2
5114	Environmental and Lifestyle Factors Influencing Inflammation and Type 2 Diabetes. Contemporary Endocrinology, 2023, , 165-183.	0.3	0
5167	Machine learning for microbiologists. Nature Reviews Microbiology, 2024, 22, 191-205.	13.6	6
5185	The Microbiome, Metabolism, and Networks in Precision Nutrition., 2024,, 91-142.		0
5211	Endocrinology in the multi-omics era. Nature Reviews Endocrinology, 0, , .	4.3	0
5213	A New Regression Model for the Analysis of Microbiome Data. Studies in Classification, Data Analysis, and Knowledge Organization, 2023, , 35-42.	0.1	0
5223	Utilization of the microbiome in personalized medicine. Nature Reviews Microbiology, 0, , .	13.6	5
5224	Gut microbiota in relationship to diabetes mellitus and its late complications with a focus on diabetic foot syndrome: A review. Folia Microbiologica, 0, , .	1.1	1
5227	Antimicrobial Agents Induced Microbiome Dysbiosis Its Impact on Immune System and Metabolic Health. , 2023, , 81-95.		0
5228	Role of Microbiomes in Defining the Metabolic and Regulatory Networks that Distinguishes Between Good Health and a Continuum of Disease States. , 2023, , 219-240.		0
5245	Germ-Free Animals. , 2024, , 401-454.		0
5246	Gut Microbiota and Type 2 Diabetes Mellitus. Endocrinology, 2023, , 1-31.	0.1	0
5251	The relationship between polycystic ovary syndrome and intestinal flora., 2024,,.		0

#	Article	IF	CITATIONS
5263	Gut microbiota and type 2 diabetes mellitus: a focus on the gut-brain axis. Endocrine, 2024, 84, 1-15.	1.1	0
5267	Gut Microbiota and Metabolism. , 2024, , 145-159.		0
5271	Metagenomics approaches for microbiome analysis. , 2024, , 191-204.		0
5273	Correlating the Gut Microbiome to Health and Disease. , 2024, , 1-36.		0
5277	Cellular and molecular mechanisms involved in colonic disorders. , 2024, , 23-41.		0
5289	Gut Microbiome, Obesity, and Metabolic Syndrome. , 2023, , 373-384.		0
5293	Gut Microbiota and Type 2 Diabetes Mellitus. Endocrinology, 2024, , 199-229.	0.1	0
5312	Changes in the Gut Microbiome as Seen in Diabetes and Obesity. , 2023, , 61-81.		0
5341	Gut microbiota and diabetes: Exploring the intricate connection. , 2024, , 353-376.		0