Bacterial proteolytic complexes as therapeutic targets

Nature Reviews Drug Discovery 11, 777-789 DOI: 10.1038/nrd3846

Citation Report

#	Article	IF	CITATIONS
1	Bacterial cell division as a target for new antibiotics. Current Opinion in Microbiology, 2013, 16, 522-530.	5.1	76
2	Evaluation of a D-amino-acid-containing fluorescence resonance energy transfer peptide library for profiling prokaryotic proteases. Analytical Biochemistry, 2013, 441, 38-43.	2.4	21
3	Antibacterial Activity of and Resistance to Small Molecule Inhibitors of the ClpP Peptidase. ACS Chemical Biology, 2013, 8, 2669-2677.	3.4	58
4	Molecular Determinants of Binding to the <i>Plasmodium</i> Subtilisin-like Protease 1. Journal of Chemical Information and Modeling, 2013, 53, 573-583.	5.4	24
5	Substrate specificity of an elongationâ€specific peptidoglycan endopeptidase and its implications for cell wall architecture and growth of <i><scp>V</scp>ibrio cholerae</i> . Molecular Microbiology, 2013, 89, 949-962.	2.5	56
6	SerpinB2 mediated regulation of macrophage function during enteric infection. Gut Microbes, 2014, 5, 254-258.	9.8	21
7	Antiparasitic Chemotherapy: From Genomes to Mechanisms. Annual Review of Pharmacology and Toxicology, 2014, 54, 71-94.	9.4	53
8	Restriction of the Conformational Dynamics of the Cyclic Acyldepsipeptide Antibiotics Improves Their Antibiacterial Activity. Journal of the American Chemical Society, 2014, 136, 1922-1929.	13.7	73
9	An insight into the exploration of druggable genome of Streptococcus gordonii for the identification of novel therapeutic candidates. Genomics, 2014, 104, 203-214.	2.9	36
10	Conditional, Temperature-Induced Proteolytic Regulation of Cyanobacterial RNA Helicase Expression. Journal of Bacteriology, 2014, 196, 1560-1568.	2.2	14
11	Genetic Strategies for Identifying New Drug Targets. Microbiology Spectrum, 2014, 2, MGM2-0030-2013.	3.0	5
12	Involvement of a eukaryotic-like ubiquitin-related modifier in the proteasome pathway of the archaeon Sulfolobus acidocaldarius. Nature Communications, 2015, 6, 8163.	12.8	32
13	Aspects of a Distinct Cytotoxicity of Selenium Salts and Organic Selenides in Living Cells with Possible Implications for Drug Design. Molecules, 2015, 20, 13894-13912.	3.8	23
14	Structural and dynamical aspects of Streptococcus gordonii FabH through molecular docking and MD simulations. Journal of Molecular Graphics and Modelling, 2015, 60, 180-196.	2.4	10
15	Exogenous Alanine and/or Glucose plus Kanamycin Kills Antibiotic-Resistant Bacteria. Cell Metabolism, 2015, 21, 249-262.	16.2	328
16	Cleavage Specificity of Mycobacterium tuberculosis ClpP1P2 Protease and Identification of Novel Peptide Substrates and Boronate Inhibitors with Anti-bacterial Activity. Journal of Biological Chemistry, 2015, 290, 11008-11020.	3.4	51
17	The Cyclic Peptide Ecumicin Targeting ClpC1 Is Active against Mycobacterium tuberculosis In Vivo. Antimicrobial Agents and Chemotherapy, 2015, 59, 880-889.	3.2	148
18	Iron and zinc exploitation during bacterial pathogenesis. Metallomics, 2015, 7, 1541-1554.	2.4	68

#	Article	IF	CITATIONS
19	Target Mechanism-Based Whole-Cell Screening Identifies Bortezomib as an Inhibitor of Caseinolytic Protease in Mycobacteria. MBio, 2015, 6, e00253-15.	4.1	69
20	Acute Phase Protein α1-Antitrypsin Reduces the Bacterial Burden in Mice by Selective Modulation of Innate Cell Responses. Journal of Infectious Diseases, 2015, 211, 1489-1498.	4.0	54
21	The Mycobacterium tuberculosis Clp Gene Regulator Is Required for in Vitro Reactivation from Hypoxia-induced Dormancy. Journal of Biological Chemistry, 2015, 290, 2351-2367.	3.4	52
22	Identification of Novel Inhibitors against Coactivator Associated Arginine Methyltransferase 1 Based on Virtual Screening and Biological Assays. BioMed Research International, 2016, 2016, 1-8.	1.9	7
23	Plant Natural Products Targeting Bacterial Virulence Factors. Chemical Reviews, 2016, 116, 9162-9236.	47.7	333
24	Acyldepsipeptide antibiotics kill mycobacteria by preventing the physiological functions of the ClpP1P2 protease. Molecular Microbiology, 2016, 101, 194-209.	2.5	73
25	Development and Characterization of Potent Cyclic Acyldepsipeptide Analogues with Increased Antimicrobial Activity. Journal of Medicinal Chemistry, 2016, 59, 624-646.	6.4	44
26	Sclerotiamide: The First Non-Peptide-Based Natural Product Activator of Bacterial Caseinolytic Protease P. Journal of Natural Products, 2016, 79, 1193-1197.	3.0	30
27	Anti-tuberculosis lead molecules from natural products targeting <i>Mycobacterium tuberculosis</i> ClpC1. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 205-212.	3.0	50
28	Towards Selective Mycobacterial ClpP1P2 Inhibitors with Reduced Activity against the Human Proteasome. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	25
29	In Vivo-Selected Pyrazinoic Acid-Resistant <i>Mycobacterium tuberculosis</i> Strains Harbor Missense Mutations in the Aspartate Decarboxylase PanD and the Unfoldase ClpC1. ACS Infectious Diseases, 2017, 3, 492-501.	3.8	33
30	Bacterial proteases, untapped antimicrobial drug targets. Journal of Antibiotics, 2017, 70, 366-377.	2.0	182
31	Serine Protease Zymography: Low-Cost, Rapid, and Highly Sensitive RAMA Casein Zymography. Methods in Molecular Biology, 2017, 1626, 13-24.	0.9	4
33	The development of small-molecule modulators for ClpP protease activity. Molecular BioSystems, 2017, 13, 23-31.	2.9	49
34	Missense Mutations in the Unfoldase ClpC1 of the Caseinolytic Protease Complex Are Associated with Pyrazinamide Resistance in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	31
35	Different Phenotypes of Mature Biofilm in Flavobacterium psychrophilum Share a Potential for Virulence That Differs from Planktonic State. Frontiers in Cellular and Infection Microbiology, 2017, 7, 76.	3.9	33
36	Functional Diversity of AAA+ Protease Complexes in Bacillus subtilis. Frontiers in Molecular Biosciences, 2017, 4, 44.	3.5	42
37	Targeting the Proteostasis Network for Mycobacterial Drug Discovery. ACS Infectious Diseases, 2018, 4, 478-498.	3.8	55

#	Article	IF	CITATIONS
38	Total Synthesis of Ecumicin. Organic Letters, 2018, 20, 1019-1022.	4.6	18
39	Identification of inhibitor against H. pylori HtrA protease using structure-based virtual screening and molecular dynamics simulations approaches. Microbial Pathogenesis, 2018, 118, 365-377.	2.9	4
40	Strategies against methicillin-resistant <i>Staphylococcus aureus</i> persisters. Future Medicinal Chemistry, 2018, 10, 779-794.	2.3	31
41	Proteases and protease inhibitors in infectious diseases. Medicinal Research Reviews, 2018, 38, 1295-1331.	10.5	130
42	Universal Stress Proteins Contribute Edwardsiella ictaluri Virulence in Catfish. Frontiers in Microbiology, 2018, 9, 2931.	3.5	3
43	Reversible inhibition of the ClpP protease via an N-terminal conformational switch. Proceedings of the United States of America, 2018, 115, E6447-E6456.	7.1	56
44	Alanine Enhances Aminoglycosides-Induced ROS Production as Revealed by Proteomic Analysis. Frontiers in Microbiology, 2018, 9, 29.	3.5	77
45	Stress-related genes promote Edwardsiella ictaluri pathogenesis. PLoS ONE, 2018, 13, e0194669.	2.5	9
46	Insights to the Assembly of a Functionally Active Leptospiral ClpP1P2 Protease Complex along with Its ATPase Chaperone ClpX. ACS Omega, 2019, 4, 12880-12895.	3.5	10
47	The functional ClpXP protease of Chlamydia trachomatis requires distinct clpP genes from separate genetic loci. Scientific Reports, 2019, 9, 14129.	3.3	33
48	Pharmacological and Molecular Mechanisms Behind the Sterilizing Activity of Pyrazinamide. Trends in Pharmacological Sciences, 2019, 40, 930-940.	8.7	35
49	Mechanism of the allosteric activation of the ClpP protease machinery by substrates and active-site inhibitors. Science Advances, 2019, 5, eaaw3818.	10.3	41
50	Leveraging Peptide Substrate Libraries to Design Inhibitors of Bacterial Lon Protease. ACS Chemical Biology, 2019, 14, 2453-2462.	3.4	12
51	Ferrocene derivatives as anti-infective agents. Coordination Chemistry Reviews, 2019, 396, 22-48.	18.8	87
52	Recent Developments in Peptidyl Diaryl Phoshonates as Inhibitors and Activity-Based Probes for Serine Proteases. Pharmaceuticals, 2019, 12, 86.	3.8	11
53	Mycobacterium smegmatis HtrA Blocks the Toxic Activity of a Putative Cell Wall Amidase. Cell Reports, 2019, 27, 2468-2479.e3.	6.4	16
54	Chemical Validation of DegS As a Target for the Development of Antibiotics with a Novel Mode of Action. ChemMedChem, 2019, 14, 1074-1078.	3.2	11
55	The unique trimeric assembly of the virulence factor HtrA from Helicobacter pylori occurs via N-terminal domain swapping. Journal of Biological Chemistry, 2019, 294, 7990-8000.	3.4	16

CITATION REPORT

#	Article	IF	CITATIONS
56	Coumarin as a structural component of substrates and probes for serine and cysteine proteases. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140445.	2.3	21
57	Could confounding the allosteric communication of biotic machinery be an alternative path to antibiotics?. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8222-8224.	7.1	0
58	Cell Division Protein FtsZ Is Unfolded for N-Terminal Degradation by Antibiotic-Activated ClpP. MBio, 2020, 11, .	4.1	24
59	An allosteric switch regulates <i>Mycobacterium tuberculosis</i> ClpP1P2 protease function as established by cryo-EM and methyl-TROSY NMR. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5895-5906.	7.1	47
60	Acyldepsipeptide Antibiotics and a Bioactive Fragment Thereof Differentially Perturb <i>Mycobacterium tuberculosis</i> ClpXP1P2 Activity <i>in Vitro</i> . ACS Chemical Biology, 2023, 18, 724-733.	3.4	12
61	Cooperation and Cheating through a Secreted Aminopeptidase in the Pseudomonas aeruginosa RpoS Response. MBio, 2020, 11, .	4.1	12
62	<i>Pantoea ananatis</i> carotenoid production confers toxoflavin tolerance and is regulated by Hfqâ€controlled quorum sensing. MicrobiologyOpen, 2021, 10, e1143.	3.0	15
63	Protein Turnover Intracellular Protein Degradation. , 2021, , 212-224.		0
64	Biosynthetic Interrogation of Soil Metagenomes Reveals Metamarin, an Uncommon Cyclomarin Congener with Activity against <i>Mycobacterium tuberculosis</i> . Journal of Natural Products, 2021, 84, 1056-1066.	3.0	18
66	Discovery of a Novel Antimicrobial Agent by the Virtual Screening of a Library of Small Molecules. Molecular Informatics, 2021, 40, 2100035.	2.5	1
67	Targeted Protein Degradation: The New Frontier of Antimicrobial Discovery?. ACS Infectious Diseases, 2021, 7, 2050-2067.	3.8	11
68	Targeting aphA : a new high-throughput screening assay identifies compounds that reduce prime virulence factors of Vibrio cholerae. Journal of Medical Microbiology, 2016, 65, 678-687.	1.8	9
70	Structure of the N-terminal domain of ClpC1 in complex with the antituberculosis natural product ecumicin reveals unique binding interactions. Acta Crystallographica Section D: Structural Biology, 2020, 76, 458-471.	2.3	23
71	The Three Streptomyces lividans HtrA-Like Proteases Involved in the Secretion Stress Response Act in a Cooperative Manner. PLoS ONE, 2016, 11, e0168112.	2.5	11
72	Vitamin in the Crosshairs: Targeting Pantothenate and Coenzyme A Biosynthesis for New Antituberculosis Agents. Frontiers in Cellular and Infection Microbiology, 2020, 10, 605662.	3.9	16
73	A processive rotary mechanism couples substrate unfolding and proteolysis in the ClpXP degradation machinery. ELife, 2020, 9, .	6.0	94
74	Proteolytic Activities Expressed by Gastrointestinal Pathogens Bacillus cereus, Listeria monocytogenes and Enterococcus faecium in Different Growth Phases. British Microbiology Research Journal, 2015, 7, 62-70.	0.2	7
75	Acyldepsipeptide antibiotics – current state of knowledge. Polish Journal of Microbiology, 2015, 64, 85-92.	1.7	0

CITATION REPORT

#	Article	IF	CITATIONS
76	Genetic Strategies for Identifying New Drug Targets. , 0, , 493-509.		0
80	Effect of r-Mt-Cpn10 on human osteoblast cells. International Journal of Clinical and Experimental Medicine, 2014, 7, 2779-86.	1.3	1
81	Identification of ClpP Dual Isoform Disruption as an Antisporulation Strategy for Clostridioides difficile. Journal of Bacteriology, 2022, 204, JB0041121.	2.2	3
82	Clp protease and antisense RNA jointly regulate the global regulator CarD to mediate mycobacterial starvation response. ELife, 2022, 11, .	6.0	6
83	Function, molecular mechanisms, and therapeutic potential of bacterial HtrA proteins: An evolving view. Computational and Structural Biotechnology Journal, 2022, 20, 40-49.	4.1	8
84	An Introduction to Bacterial Biofilms and Their Proteases, and Their Roles in Host Infection and Immune Evasion. Biomolecules, 2022, 12, 306.	4.0	21
88	Widespread microbial utilization of ribosomal β-amino acid-containing peptides and proteins. CheM, 2022, 8, 2659-2677.	11.7	12
89	Cellular functions of the ClpP protease impacting bacterial virulence. Frontiers in Molecular Biosciences, 0, 9, .	3.5	3
90	The emerging roles of bacterial proteases in intestinal diseases. Gut Microbes, 2023, 15, .	9.8	13
92	Allosteric communication in the gating mechanism for controlled protein degradation by the bacterial ClpP peptidase. Journal of Chemical Physics, 2023, 158, .	3.0	4
94	Association of a single amino acid replacement with dorsal pigmentation in a lizard from the Qinghai-Tibetan Plateau. International Journal of Biological Macromolecules, 2023, 242, 124907.	7.5	0
95	Mitochondrial Protease Targeting Chimeras for Mitochondrial Matrix Protein Degradation. Journal of the American Chemical Society, 2023, 145, 12861-12869.	13.7	5
96	Clp-targeting BacPROTACs impair mycobacterial proteostasis and survival. Cell, 2023, 186, 2176-2192.e22.	28.9	14
97	Annotating Macromolecular Complexes in the Protein Data Bank: Improving the FAIRness of Structure Data. Scientific Data, 2023, 10, .	5.3	0
98	Defined microbial communities and their soluble products protect mice from Clostridioides difficile infection. Communications Biology, 2024, 7, .	4.4	0

CITATION REPORT