Identification and Functional Expression of the Mitoche

Science 337, 93-96 DOI: 10.1126/science.1218530

Citation Report

#	Article	IF	CITATIONS
2	Carbohydrate Metabolism I. , 2011, , 115-133.		2
3	Heptahelical protein PQLC2 is a lysosomal cationic amino acid exporter underlying the action of cysteamine in cystinosis therapy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3434-43.	3.3	138
4	Construction of an Artificial Pathway for Isobutanol Biosynthesis in the Cytosol of <i>Saccharomyces cerevisiae</i> . Bioscience, Biotechnology and Biochemistry, 2012, 76, 2139-2141.	0.6	32
5	The Mitochondrial Pyruvate Carrier: Has It Been Unearthed at Last?. Cell Metabolism, 2012, 16, 141-143.	7.2	38
6	A Mitochondrial Pyruvate Carrier Required for Pyruvate Uptake in Yeast, <i>Drosophila</i> , and Humans. Science, 2012, 337, 96-100.	6.0	694
7	Targeting Cancer Metabolism. Clinical Cancer Research, 2012, 18, 5537-5545.	3.2	125
8	Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae. Biotechnology for Biofuels, 2012, 5, 65.	6.2	128
9	Pyruvate dehydrogenase E1α phosphorylation is induced by glucose but does not control metabolism-secretion coupling in INS-1E clonal β-cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1815-1824.	1.9	22
10	Mitochondrial signal transduction in pancreatic \hat{l}^2 -cells. Best Practice and Research in Clinical Endocrinology and Metabolism, 2012, 26, 739-752.	2.2	11
12	Identification of the sodium-dependent pyruvate transporter located in plastid envelops. Journal of Pesticide Sciences, 2012, 37, 381-385.	0.8	0
13	A Mitochondrial Mystery, Solved. Science, 2012, 337, 41-43.	6.0	32
14	Biogenesis of mitochondrial carrier proteins: Molecular mechanisms of import into mitochondria. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 494-502.	1.9	56
15	Inhibition of Mitochondrial Pyruvate Transport by Zaprinast Causes Massive Accumulation of Aspartate at the Expense of Glutamate in the Retina. Journal of Biological Chemistry, 2013, 288, 36129-36140.	1.6	72
16	Mitochondrial function and insulin secretion. Molecular and Cellular Endocrinology, 2013, 379, 12-18.	1.6	98
17	Hallmarks of a new era in mitochondrial biochemistry. Genes and Development, 2013, 27, 2615-2627.	2.7	146
19	The substrate specificity of mitochondrial carriers: Mutagenesis revisited. Molecular Membrane Biology, 2013, 30, 149-159.	2.0	21
20	Defects in mitochondrial fatty acid synthesis result in failure of multiple aspects of mitochondrial biogenesis in <i><scp>S</scp>accharomyces cerevisiae</i> . Molecular Microbiology, 2013, 90, 824-840.	1.2	45
21	The role of membrane transport in metabolic engineering of plant primary metabolism. Current Opinion in Biotechnology, 2013, 24, 256-262.	3.3	26

ATION RE

#	Article	IF	CITATIONS
22	Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier. Proceedings of the United States of America, 2013, 110, 5422-5427.	3.3	239
23	Mitochondrial Energy and Redox Signaling in Plants. Antioxidants and Redox Signaling, 2013, 18, 2122-2144.	2.5	154
24	Targeting mitochondrial oxidative metabolism as an approach to treat heart failure. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 857-865.	1.9	111
25	Lack of association between MPC2 variants and schizophrenia in a replication study of Han Chinese. Neuroscience Letters, 2013, 552, 120-123.	1.0	12
26	The long and winding road to the mitochondrial pyruvate carrier. Cancer & Metabolism, 2013, 1, 6.	2.4	61
27	Which way does the citric acid cycle turn during hypoxia? The critical role of αâ€ketoglutarate dehydrogenase complex. Journal of Neuroscience Research, 2013, 91, 1030-1043.	1.3	105
28	Understanding Metabolic Regulation and Its Influence on Cell Physiology. Molecular Cell, 2013, 49, 388-398.	4.5	253
29	Metabolic signaling by lactate in the brain. Trends in Neurosciences, 2013, 36, 396-404.	4.2	271
30	Myocardial energetics in heart failure. Basic Research in Cardiology, 2013, 108, 358.	2.5	117
31	Monocarboxylic Acid Transport. , 2013, 3, 1611-1643.		274
32	Functional role of oligomerization for bacterial and plant SWEET sugar transporter family. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3685-94.	3.3	233
33	Metabolic regulation of osteoclast differentiation and function. Journal of Bone and Mineral Research, 2013, 28, 2392-2399.	3.1	176
34	Resistance to hypoxia-induced necroptosis is conferred by glycolytic pyruvate scavenging of mitochondrial superoxide in colorectal cancer cells. Cell Death and Disease, 2013, 4, e622-e622.	2.7	99
35	Clinical Proof-of-Concept Study With MSDC-0160, a Prototype mTOT-Modulating Insulin Sensitizer. Clinical Pharmacology and Therapeutics, 2013, 93, 352-359.	2.3	70
36	Identification of a Mitochondrial Target of Thiazolidinedione Insulin Sensitizers (mTOT)—Relationship to Newly Identified Mitochondrial Pyruvate Carrier Proteins. PLoS ONE, 2013, 8, e61551.	1.1	141
37	Novel Insulin Sensitizer Modulates Nutrient Sensing Pathways and Maintains β-Cell Phenotype in Human Islets. PLoS ONE, 2013, 8, e62012.	1.1	25
38	Recent Advances in the Composition and Heterogeneity of the Arabidopsis Mitochondrial Proteome. Frontiers in Plant Science, 2013, 4, 4.	1.7	86
39	Membrane transporters for the special amino acid glutamine: structure/function relationships and relevance to human health. Frontiers in Chemistry, 2014, 2, 61.	1.8	193

#	Article	IF	CITATIONS
42	The ongoing story: the mitochondria pyruvate carrier 1 in plant stress response in Arabidopsis. Plant Signaling and Behavior, 2014, 9, e973810.	1.2	11
43	Pathogenicity of Mycobacterium tuberculosis Is Expressed by Regulating Metabolic Thresholds of the Host Macrophage. PLoS Pathogens, 2014, 10, e1004265.	2.1	94
44	BCKDH: The Missing Link in Apicomplexan Mitochondrial Metabolism Is Required for Full Virulence of Toxoplasma gondii and Plasmodium berghei. PLoS Pathogens, 2014, 10, e1004263.	2.1	115
45	Heart Failure and Loss of Metabolic Control. Journal of Cardiovascular Pharmacology, 2014, 63, 302-313.	0.8	45
46	The Apicoplast and Mitochondrion ofÂToxoplasma gondii. , 2014, , 297-350.		5
47	Pathway transfer in fungi. Bioengineered, 2014, 5, 335-339.	1.4	10
48	Metabolism–Secretion Coupling and Mitochondrial Calcium Activities in Clonal Pancreatic β-Cells. Vitamins and Hormones, 2014, 95, 63-86.	0.7	4
49	Reliability of Nine Programs of Topological Predictions and Their Application to Integral Membrane Channel and Carrier Proteins. Journal of Molecular Microbiology and Biotechnology, 2014, 24, 161-190.	1.0	19
50	Availability of the key metabolic substrates dictates the respiratory response of cancer cells to the mitochondrial uncoupling. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 51-62.	0.5	45
51	Changing appetites: the adaptive advantages of fuel choice. Trends in Cell Biology, 2014, 24, 118-127.	3.6	42
52	Intravenous (â^)-epicatechin reduces myocardial ischemic injury by protecting mitochondrial function. International Journal of Cardiology, 2014, 175, 297-306.	0.8	41
53	Regulation of pyruvate metabolism and human disease. Cellular and Molecular Life Sciences, 2014, 71, 2577-2604.	2.4	587
54	Regulation of Autophagy by Cytosolic Acetyl-Coenzyme A. Molecular Cell, 2014, 53, 710-725.	4.5	412
55	Regulation of pyruvate metabolism in metabolic-related diseases. Reviews in Endocrine and Metabolic Disorders, 2014, 15, 99-110.	2.6	50
56	Mitochondrial transporters of the SLC25 family and associated diseases: a review. Journal of Inherited Metabolic Disease, 2014, 37, 565-575.	1.7	169
57	Differential sensitivities to lactate transport inhibitors of breast cancer cell lines. Endocrine-Related Cancer, 2014, 21, 27-38.	1.6	54
58	Improved sake metabolic profile during fermentation due to increased mitochondrial pyruvate dissimilation. FEMS Yeast Research, 2014, 14, 249-260.	1.1	14
59	A Guide to the Metabolic Pathways and Function of Metabolites Observed in Human Brain 1H Magnetic Resonance Spectra. Neurochemical Research, 2014, 39, 1-36.	1.6	391

#	Article	IF	CITATIONS
60	Rewiring Mitochondrial Pyruvate Metabolism: Switching Off the Light in Cancer Cells?. Molecular Cell, 2014, 56, 343-344.	4.5	13
61	Regulation of Substrate Utilization by the Mitochondrial Pyruvate Carrier. Molecular Cell, 2014, 56, 425-435.	4.5	243
62	Towards an integrative model of C4 photosynthetic subtypes: insights from comparative transcriptome analysis of NAD-ME, NADP-ME, and PEP-CK C4 species. Journal of Experimental Botany, 2014, 65, 3579-3593.	2.4	102
63	Minireview: Challenges and Opportunities in Development of PPAR Agonists. Molecular Endocrinology, 2014, 28, 1756-1768.	3.7	138
64	Tailoring strain construction strategies for muconic acid production in S. cerevisiae and E. coli. Metabolic Engineering Communications, 2014, 1, 19-28.	1.9	35
65	A Role for the Mitochondrial Pyruvate Carrier as a Repressor of the Warburg Effect and Colon Cancer Cell Growth. Molecular Cell, 2014, 56, 400-413.	4.5	294
66	Variability of the transporter gene complement in ammonia-oxidizing archaea. Trends in Microbiology, 2014, 22, 665-675.	3.5	81
67	Protein Acetylation and Acetyl Coenzyme A Metabolism in Budding Yeast. Eukaryotic Cell, 2014, 13, 1472-1483.	3.4	96
68	The Switch from Fermentation to Respiration in <i>Saccharomyces cerevisiae</i> Is Regulated by the Ert1 Transcriptional Activator/Repressor. Genetics, 2014, 198, 547-560.	1.2	31
69	Balancing glycolysis and mitochondrial OXPHOS: Lessons from the hematopoietic system and exercising muscles. Mitochondrion, 2014, 19, 3-7.	1.6	14
70	Glutamine Oxidation Maintains the TCA Cycle and Cell Survival during Impaired Mitochondrial Pyruvate Transport. Molecular Cell, 2014, 56, 414-424.	4.5	504
71	Structures of bacterial homologues of SWEET transporters in two distinct conformations. Nature, 2014, 515, 448-452.	13.7	144
72	Mitochondrial target of thiazolidinediones. Diabetes, Obesity and Metabolism, 2014, 16, 1048-1054.	2.2	26
73	Lactococcus lactis: Recent Developments in Functional Expression of Membrane Proteins. , 2014, , 107-132.		4
74	ATP-Dependent Lon Protease Controls Tumor Bioenergetics by Reprogramming Mitochondrial Activity. Cell Reports, 2014, 8, 542-556.	2.9	186
75	Mitochondrial Metabolism of Pyruvate Is Essential for Regulating Glucose-stimulated Insulin Secretion. Journal of Biological Chemistry, 2014, 289, 13335-13346.	1.6	69
76	Metabolic control at the cytosol–mitochondria interface in different growth phases of CHO cells. Metabolic Engineering, 2014, 23, 9-21.	3.6	38
77	Dietary Fat and Hepatic Lipogenesis: Mitochondrial Citrate Carrier as a Sensor of Metabolic Changes1. Advances in Nutrition, 2014, 5, 217-225.	2.9	24

#	Article	IF	CITATIONS
78	Adipose tissue metabolism and inflammation are differently affected by weight loss in obese mice due to either a high-fat diet restriction or change to a low-fat diet. Genes and Nutrition, 2014, 9, 391.	1.2	23
79	NRGA1, a Putative Mitochondrial Pyruvate Carrier, Mediates ABA Regulation of Guard Cell Ion Channels and Drought Stress Responses in Arabidopsis. Molecular Plant, 2014, 7, 1508-1521.	3.9	65
80	Mitochondrial Pyruvate Carrier 2 Hypomorphism in Mice Leads to Defects in Glucose-Stimulated Insulin Secretion. Cell Reports, 2014, 7, 2042-2053.	2.9	94
81	Physicochemical characterization, identification and improved photo-stability of alpha-lipoic acid-loaded nanostructured lipid carrier. Drug Development and Industrial Pharmacy, 2014, 40, 201-210.	0.9	27
82	Extensive weight loss reveals distinct gene expression changes in human subcutaneous and visceral adipose tissue. Scientific Reports, 2015, 5, 14841.	1.6	62
83	Diabetic silkworms for evaluation of therapeutically effective drugs against type II diabetes. Scientific Reports, 2015, 5, 10722.	1.6	32
84	Cell cycle progression is regulated by intertwined redox oscillators. Theoretical Biology and Medical Modelling, 2015, 12, 10.	2.1	56
85	Metabolic plasticity maintains proliferation in pyruvate dehydrogenase deficient cells. Cancer & Metabolism, 2015, 3, 7.	2.4	56
86	Bioprotective Carnitinoids: Lipoic Acid, Butyrate, and Mitochondriaâ€Targeting to Treat Radiation Injury: Mitochondrial Drugs Come of Age. Drug Development Research, 2015, 76, 167-175.	1.4	13
87	Pathophysiological mechanisms of death resistance in colorectal carcinoma. World Journal of Gastroenterology, 2015, 21, 11777.	1.4	44
88	Carbohydrate Metabolism I. , 2015, , 165-185.		6
89	Cerebral metabolism following traumatic brain injury: new discoveries with implications for treatment. Frontiers in Neuroscience, 2014, 8, 408.	1.4	75
90	Application of mitochondrial pyruvate carrier blocker UK5099 creates metabolic reprogram and greater stem-like properties in LnCap prostate cancer cells <i>in vitro</i> . Oncotarget, 2015, 6, 37758-37769.	0.8	57
91	Late-onset caloric restriction alters skeletal muscle metabolism by modulating pyruvate metabolism. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E942-E949.	1.8	22
92	Acetyl Coenzyme A: A Central Metabolite and Second Messenger. Cell Metabolism, 2015, 21, 805-821.	7.2	963
94	Stratification of Hepatocellular Carcinoma Patients Based on Acetate Utilization. Cell Reports, 2015, 13, 2014-2026.	2.9	113
95	Sirt3 binds to and deacetylates mitochondrial pyruvate carrier 1 to enhance its activity. Biochemical and Biophysical Research Communications, 2015, 468, 807-812.	1.0	42
96	Emerging concepts in bioenergetics and cancer research: Metabolic flexibility, coupling, symbiosis, switch, oxidative tumors, metabolic remodeling, signaling and bioenergetic therapy. International Journal of Biochemistry and Cell Biology, 2015, 59, 167-181.	1.2	116

#	Article	IF	CITATIONS
97	The spectrum of pyruvate oxidation defects in the diagnosis of mitochondrial disorders. Journal of Inherited Metabolic Disease, 2015, 38, 391-403.	1.7	44
98	Regulation of mitochondrial pyruvate uptake by alternative pyruvate carrier complexes. EMBO Journal, 2015, 34, 911-924.	3.5	98
99	The mitochondrial dicarboxylate and 2â€oxoglutarate carriers do not transport glutathione. FEBS Letters, 2015, 589, 621-628.	1.3	49
100	Power2: The power of yeast genetics applied to the powerhouse of the cell. Trends in Endocrinology and Metabolism, 2015, 26, 59-68.	3.1	25
101	Single muscle fiber proteomics reveals unexpected mitochondrial specialization. EMBO Reports, 2015, 16, 387-395.	2.0	163
102	Skeletal muscle mitochondria of NDUFS4â^'/â^' mice display normal maximal pyruvate oxidation and ATP production. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 526-533.	0.5	21
103	Malleable Mitochondrion of Trypanosoma brucei. International Review of Cell and Molecular Biology, 2015, 315, 73-151.	1.6	88
104	Metabolic remodeling: a pyruvate transport affair. EMBO Journal, 2015, 34, 835-837.	3.5	7
105	Identification and application of keto acids transporters in Yarrowia lipolytica. Scientific Reports, 2015, 5, 8138.	1.6	28
106	The twisted relation between Pnu and SWEET transporters. Trends in Biochemical Sciences, 2015, 40, 183-188.	3.7	16
107	Diabetogenic milieus induce specific changes in mitochondrial transcriptome and differentiation of human pancreatic islets. Human Molecular Genetics, 2015, 24, 5270-5284.	1.4	31
108	A new model for the aerobic metabolism of yeast allows the detailed analysis of the metabolic regulation during glucose pulse. Biophysical Chemistry, 2015, 206, 40-57.	1.5	7
109	Metabolic Needs and Capabilities of Toxoplasma gondii through Combined Computational and Experimental Analysis. PLoS Computational Biology, 2015, 11, e1004261.	1.5	92
110	Mitochondrial pyruvate transport: a historical perspective and future research directions. Biochemical Journal, 2015, 466, 443-454.	1.7	188
111	Membrane Protein Expression in Lactococcus lactis. Methods in Enzymology, 2015, 556, 77-97.	0.4	22
112	Drivers of the Warburg Phenotype. Cancer Journal (Sudbury, Mass), 2015, 21, 56-61.	1.0	51
113	The regulation of neuronal mitochondrial metabolism by calcium. Journal of Physiology, 2015, 593, 3447-3462.	1.3	130
114	3-BrPA eliminates human bladder cancer cells with highly oncogenic signatures via engagement of specific death programs and perturbation of multiple signaling and metabolic determinants. Molecular Cancer, 2015, 14, 135.	7.9	32

#	Article	IF	CITATIONS
115	Monitoring Mitochondrial Pyruvate Carrier Activity in Real Time Using a BRET-Based Biosensor: Investigation of the Warburg Effect. Molecular Cell, 2015, 59, 491-501.	4.5	76
116	NH4+ triggers the release of astrocytic lactate via mitochondrial pyruvate shunting. Proceedings of the United States of America, 2015, 112, 11090-11095.	3.3	67
117	Hepatic Mitochondrial Pyruvate Carrier 1 Is Required for Efficient Regulation of Gluconeogenesis and Whole-Body Glucose Homeostasis. Cell Metabolism, 2015, 22, 669-681.	7.2	193
118	Loss of Mitochondrial Pyruvate Carrier 2 in the Liver Leads to Defects in Gluconeogenesis and Compensation via Pyruvate-Alanine Cycling. Cell Metabolism, 2015, 22, 682-694.	7.2	179
119	Cancer's Fuel Choice: New Flavors for a Picky Eater. Molecular Cell, 2015, 60, 514-523.	4.5	120
120	Compartmentalizing metabolic pathway in Candida glabrata for acetoin production. Metabolic Engineering, 2015, 28, 1-7.	3.6	43
121	Mitochondrial pyruvate import and its effects on homeostasis. Current Opinion in Cell Biology, 2015, 33, 35-41.	2.6	57
122	13C MRS and LC–MS Flux Analysis of Tumor Intermediary Metabolism. Frontiers in Oncology, 2016, 6, 135.	1.3	23
123	Metabolic Pathways and Cycles. , 2016, , 39-55.		12
124	An ancestral role for the mitochondrial pyruvate carrier in glucose-stimulated insulin secretion. Molecular Metabolism, 2016, 5, 602-614.	3.0	36
125	Mitochondrial Pyruvate Import Promotes Long-Term Survival of Antibody-Secreting Plasma Cells. Immunity, 2016, 45, 60-73.	6.6	212
126	MPC1-like Is a Placental Mammal-specific Mitochondrial Pyruvate Carrier Subunit Expressed in Postmeiotic Male Germ Cells. Journal of Biological Chemistry, 2016, 291, 16448-16461.	1.6	30
128	Age-related impairments in skeletal muscle PDH phosphorylation and plasma lactate are indicative of metabolic inflexibility and the effects of exercise training. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E145-E156.	1.8	37
129	Mitochondrial pyruvate carrier regulates autophagy, inflammation, and neurodegeneration in experimental models of Parkinson's disease. Science Translational Medicine, 2016, 8, 368ra174.	5.8	143
130	Genome and methylome of the oleaginous diatom Cyclotella cryptica reveal genetic flexibility toward a high lipid phenotype. Biotechnology for Biofuels, 2016, 9, 258.	6.2	87
131	Lactococcus lactis is an Efficient Expression System for Mammalian Membrane Proteins Involved in Liver Detoxification, CYP3A4, and MGST1. Molecular Biotechnology, 2016, 58, 299-310.	1.3	6
132	A Method for Multiplexed Measurement of Mitochondrial Pyruvate Carrier Activity. Journal of Biological Chemistry, 2016, 291, 7409-7417.	1.6	18
133	The anti-tumour agent lonidamine is a potent inhibitor of the mitochondrial pyruvate carrier and plasma membrane monocarboxylate transporters. Biochemical Journal, 2016, 473, 929-936.	1.7	93

#	Article	IF	CITATIONS
134	Improvement of isobutanol production in Saccharomyces cerevisiae by increasing mitochondrial import of pyruvate through mitochondrial pyruvate carrier. Applied Microbiology and Biotechnology, 2016, 100, 7591-7598.	1.7	27
135	Requirement for the Mitochondrial Pyruvate Carrier in Mammalian Development Revealed by a Hypomorphic Allelic Series. Molecular and Cellular Biology, 2016, 36, 2089-2104.	1.1	47
136	Mitochondrial Sirt3 supports cell proliferation by regulating glutamine-dependent oxidation in renal cell carcinoma. Biochemical and Biophysical Research Communications, 2016, 474, 547-553.	1.0	36
137	Alternative reactions at the interface of glycolysis and citric acid cycle in <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2016, 16, fow017.	1.1	36
138	Mitochondria and the hallmarks of cancer. FEBS Journal, 2016, 283, 803-814.	2.2	100
139	Excessive by-product formation: A key contributor to low isobutanol yields of engineered Saccharomyces cerevisiae strains. Metabolic Engineering Communications, 2016, 3, 39-51.	1.9	30
140	The Crabtree and Warburg effects: Do metabolite-induced regulations participate in their induction?. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1139-1146.	0.5	35
141	Pyruvate transport systems in organelles: future directions in C4 biology research. Current Opinion in Plant Biology, 2016, 31, 143-148.	3.5	12
142	The Plant Mitochondrial Transportome: Balancing Metabolic Demands with Energetic Constraints. Trends in Plant Science, 2016, 21, 662-676.	4.3	32
143	Transport of haloacids across biological membranes. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 3061-3070.	1.4	5
144	Immune Cell Metabolism in Systemic Lupus Erythematosus. Current Rheumatology Reports, 2016, 18, 66.	2.1	30
145	Membrane Protein Production in Lactococcus lactis for Functional Studies. Methods in Molecular Biology, 2016, 1432, 79-101.	0.4	2
146	Targeting hepatic glucose metabolism in the treatment of type 2 diabetes. Nature Reviews Drug Discovery, 2016, 15, 786-804.	21.5	254
147	Investigating mitochondrial redox state using NADH and NADPH autofluorescence. Free Radical Biology and Medicine, 2016, 100, 53-65.	1.3	266
148	The anticancer agent 3-bromopyruvate: a simple but powerful molecule taken from the lab to the bedside. Journal of Bioenergetics and Biomembranes, 2016, 48, 349-362.	1.0	55
149	The Pancreatic Î ² -Cell: A Bioenergetic Perspective. Physiological Reviews, 2016, 96, 1385-1447.	13.1	86
150	Glucose-independent Acetate Metabolism Promotes Melanoma Cell Survival and Tumor Growth. Journal of Biological Chemistry, 2016, 291, 21869-21879.	1.6	50
151	MPC1 and MPC2 expressions are associated with favorable clinical outcomes in prostate cancer. BMC Cancer, 2016, 16, 894.	1.1	31

#	Article	IF	CITATIONS
152	E4F1 controls a transcriptional program essential for pyruvate dehydrogenase activity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10998-11003.	3.3	27
153	E4F1-mediated control of pyruvate dehydrogenase activity is essential for skin homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11004-11009.	3.3	22
154	Metabolically engineered Saccharomyces cerevisiae for branched-chain ester productions. Journal of Biotechnology, 2016, 239, 90-97.	1.9	17
155	Induction of triglyceride accumulation and mitochondrial maintenance in muscle cells by lactate. Scientific Reports, 2016, 6, 33732.	1.6	27
156	Metabolism and acetylation in innate immune cell function and fate. Seminars in Immunology, 2016, 28, 408-416.	2.7	39
157	Mitochondrial Carriers Link the Catabolism of Hydroxyaromatic Compounds to the Central Metabolism in Candida parapsilosis. G3: Genes, Genomes, Genetics, 2016, 6, 4047-4058.	0.8	7
158	Mitochondrial pyruvate carrier function and cancer metabolism. Current Opinion in Genetics and Development, 2016, 38, 102-109.	1.5	40
159	Replacement of the initial steps of ethanol metabolism in <i>Saccharomyces cerevisiae</i> by ATP-independent acetylating acetaldehyde dehydrogenase. FEMS Yeast Research, 2016, 16, fow006.	1.1	13
160	Regulation of Glucose Metabolism – A Perspective From Cell Bioprocessing. Trends in Biotechnology, 2016, 34, 638-651.	4.9	103
161	Channels and transporters in cell metabolism. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2359-2361.	1.9	3
162	Mitochondrial pyruvate carrier in <scp><i>T</i></scp> <i>rypanosoma brucei</i> . Molecular Microbiology, 2016, 100, 442-456.	1.2	14
163	Acid-Base Balance. , 2016, , 111-133.e2.		6
164	The mitochondrial pyruvate carrier in health and disease: To carry or not to carry?. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2436-2442.	1.9	91
165	Reduced Histone Expression or a Defect in Chromatin Assembly Induces Respiration. Molecular and Cellular Biology, 2016, 36, 1064-1077.	1.1	26
166	Beta-cell mitochondrial carriers and the diabetogenic stress response. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2540-2549.	1.9	33
167	Pyruvate and Metabolic Flexibility: Illuminating a Path Toward Selective Cancer Therapies. Trends in Biochemical Sciences, 2016, 41, 219-230.	3.7	104
168	Ion Channels in Plant Bioenergetic Organelles, Chloroplasts and Mitochondria: From Molecular Identification to Function. Molecular Plant, 2016, 9, 371-395.	3.9	57
169	Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis. Metabolic Engineering, 2016, 36, 80-89.	3.6	73

#	Article	IF	CITATIONS
170	Bonded Cumomer Analysis of Human Melanoma Metabolism Monitored by 13C NMR Spectroscopy of Perfused Tumor Cells. Journal of Biological Chemistry, 2016, 291, 5157-5171.	1.6	22
171	Glucose Oxidation Is Critical for CD4+ T Cell Activation in a Mouse Model of Systemic Lupus Erythematosus. Journal of Immunology, 2016, 196, 80-90.	0.4	132
172	Analysis of Mitochondrial Proteins in the Surviving Myocardium after Ischemia Identifies Mitochondrial Pyruvate Carrier Expression as Possible Mediator of Tissue Viability. Molecular and Cellular Proteomics, 2016, 15, 246-255.	2.5	23
173	Traditional and novel tools to probe the mitochondrial metabolism in health and disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2017, 9, e1373.	6.6	12
174	Decreased Mitochondrial Pyruvate Transport Activity in the Diabetic Heart. Journal of Biological Chemistry, 2017, 292, 4423-4433.	1.6	44
175	Inhibition of the mitochondrial pyruvate carrier protects from excitotoxic neuronal death. Journal of Cell Biology, 2017, 216, 1091-1105.	2.3	140
176	A mathematical model predicting host mitochondrial pyruvate transporter activity to be a critical regulator of Mycobacterium tuberculosis pathogenicity. BioSystems, 2017, 155, 1-9.	0.9	3
177	Intratumor Heterogeneity in Primary Kidney Cancer Revealed by Metabolic Profiling of Multiple Spatially Separated Samples within Tumors. EBioMedicine, 2017, 19, 31-38.	2.7	50
178	Cell-surface G-protein-coupled receptors for tumor-associated metabolites: A direct link to mitochondrial dysfunction in cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2017, 1868, 246-257.	3.3	53
179	Energy Metabolism of the Osteoblast: Implications for Osteoporosis. Endocrine Reviews, 2017, 38, 255-266.	8.9	272
180	Functional Properties of the Mitochondrial Carrier System. Trends in Cell Biology, 2017, 27, 633-644.	3.6	86
181	Mitochondrial Bioenergetics and Dysfunction in Failing Heart. Advances in Experimental Medicine and Biology, 2017, 982, 65-80.	0.8	49
182	The beneficial metabolic effects of insulin sensitizers are not attenuated by mitochondrial pyruvate carrier 2 hypomorphism. Experimental Physiology, 2017, 102, 985-999.	0.9	18
183	Individualâ€specific variation in the respiratory activities of HMECs and their bioenergetic response to IGF1 and TNFI±. Journal of Cellular Physiology, 2017, 232, 2750-2765.	2.0	3
184	Multilayered control of peroxisomal activity upon salt stress in <scp><i>S</i></scp> <i>accharomyces cerevisiae</i> . Molecular Microbiology, 2017, 104, 851-868.	1.2	20
185	Expression and putative role of mitochondrial transport proteins in cancer. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 641-654.	0.5	58
186	Systems Biology of Metabolism. Annual Review of Biochemistry, 2017, 86, 245-275.	5.0	173
187	Measuring Mitochondrial Pyruvate Oxidation. Neuromethods, 2017, , 321-338.	0.2	Ο

#	Article	IF	CITATIONS
188	Metabolic Reprogramming in Brain Tumors. Annual Review of Pathology: Mechanisms of Disease, 2017, 12, 515-545.	9.6	82
189	Pioglitazone inhibits mitochondrial pyruvate metabolism and glucose production in hepatocytes. FEBS Journal, 2017, 284, 451-465.	2.2	27
190	Molecular and Physiological Logics of the Pyruvate-Induced Response of a Novel Transporter in <i>Bacillus subtilis</i> . MBio, 2017, 8, .	1.8	35
191	Increased heme synthesis in yeast induces a metabolic switch from fermentation to respiration even under conditions of glucose repression. Journal of Biological Chemistry, 2017, 292, 16942-16954.	1.6	48
192	Treating fatty liver disease by modulating mitochondrial pyruvate metabolism. Hepatology Communications, 2017, 1, 193-197.	2.0	21
193	Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism. Nature Cell Biology, 2017, 19, 1027-1036.	4.6	238
194	Zinc enhances the cellular energy supply to improve cell motility and restore impaired energetic metabolism in a toxic environment induced by OTA. Scientific Reports, 2017, 7, 14669.	1.6	27
195	The mitochondrial pyruvate carrier mediates high fat diet-induced increases in hepatic TCA cycle capacity. Molecular Metabolism, 2017, 6, 1468-1479.	3.0	67
196	Mitochondrial fatty acid synthesis, fatty acids and mitochondrial physiology. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 39-48.	1.2	105
198	Carbon Metabolism. , 2017, , 297-321.		0
198 199	Carbon Metabolism. , 2017, , 297-321. MSDC-0160 and MSDC-0602 Binding with Human Mitochondrial Pyruvate Carrier (MPC) 1 and 2 Heterodimer. International Journal of Knowledge Discovery in Bioinformatics, 2017, 7, 43-67.	0.8	0
	MSDC-0160 and MSDC-0602 Binding with Human Mitochondrial Pyruvate Carrier (MPC) 1 and 2	0.8	
199	MSDC-0160 and MSDC-0602 Binding with Human Mitochondrial Pyruvate Carrier (MPC) 1 and 2 Heterodimer. International Journal of Knowledge Discovery in Bioinformatics, 2017, 7, 43-67. Alzheimer's and Parkinson's Disease Novel Therapeutic Target. International Journal of Knowledge		7
199 200	MSDC-0160 and MSDC-0602 Binding with Human Mitochondrial Pyruvate Carrier (MPC) 1 and 2 Heterodimer. International Journal of Knowledge Discovery in Bioinformatics, 2017, 7, 43-67. Alzheimer's and Parkinson's Disease Novel Therapeutic Target. International Journal of Knowledge Discovery in Bioinformatics, 2017, 7, 68-82. A metabolic switch controls intestinal differentiation downstream of Adenomatous polyposis coli	0.8	7 2
199 200 201	 MSDC-0160 and MSDC-0602 Binding with Human Mitochondrial Pyruvate Carrier (MPC) 1 and 2 Heterodimer. International Journal of Knowledge Discovery in Bioinformatics, 2017, 7, 43-67. Alzheimer's and Parkinson's Disease Novel Therapeutic Target. International Journal of Knowledge Discovery in Bioinformatics, 2017, 7, 68-82. A metabolic switch controls intestinal differentiation downstream of Adenomatous polyposis coli (APC). ELife, 2017, 6, . Mitochondrial pyruvate carrier 1 mediates abscisic acid-regulated stomatal closure and the drought response by affecting cellular pyruvate content in Arabidopsis thaliana. BMC Plant Biology, 2017, 17, 	0.8 2.8	7 2 23
199 200 201 202	 MSDC-0160 and MSDC-0602 Binding with Human Mitochondrial Pyruvate Carrier (MPC) 1 and 2 Heterodimer. International Journal of Knowledge Discovery in Bioinformatics, 2017, 7, 43-67. Alzheimer's and Parkinson's Disease Novel Therapeutic Target. International Journal of Knowledge Discovery in Bioinformatics, 2017, 7, 68-82. A metabolic switch controls intestinal differentiation downstream of Adenomatous polyposis coli (APC). ELife, 2017, 6, . Mitochondrial pyruvate carrier 1 mediates abscisic acid-regulated stomatal closure and the drought response by affecting cellular pyruvate content in Arabidopsis thaliana. BMC Plant Biology, 2017, 17, 217. Mitochondrial pyruvate carrier modulates the epithelial-mesenchymal transition in 	0.8 2.8 1.6	7 2 23 28
199 200 201 202 203	 MSDC-0160 and MSDC-0602 Binding with Human Mitochondrial Pyruvate Carrier (MPC) 1 and 2 Heterodimer. International Journal of Knowledge Discovery in Bioinformatics, 2017, 7, 43-67. Alzheimer's and Parkinson's Disease Novel Therapeutic Target. International Journal of Knowledge Discovery in Bioinformatics, 2017, 7, 68-82. A metabolic switch controls intestinal differentiation downstream of Adenomatous polyposis coli (APC). ELife, 2017, 6, . Mitochondrial pyruvate carrier 1 mediates abscisic acid-regulated stomatal closure and the drought response by affecting cellular pyruvate content in Arabidopsis thaliana. BMC Plant Biology, 2017, 17, 217. Mitochondrial pyruvate carrier modulates the epithelial-mesenchymal transition in cholangiocarcinoma. Oncology Reports, 2018, 39, 1276-1282. Overexpression of MPC1 inhibits the proliferation, migration, invasion, and stem cell-like properties 	0.8 2.8 1.6 1.2	7 2 23 28 12

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
207	The Science and Translation of Lactate Shuttle Theory. Cell Metabolism, 2018, 27, 757	<i>'-</i> 785.	7.2	687
208	Glucose metabolism during in vitro maturation of mouse oocytes: An study using RNA Journal of Cellular Physiology, 2018, 233, 6952-6964.	interference.	2.0	17
209	Inhibition of the Mitochondrial Pyruvate Carrier by Tolylfluanid. Endocrinology, 2018, 2	159, 609-621.	1.4	12
210	The regulation of host cellular and gut microbial metabolism in the development and p colorectal cancer. Critical Reviews in Microbiology, 2018, 44, 436-454.	prevention of	2.7	22
211	Respiromics – An integrative analysis linking mitochondrial bioenergetics to molecu Molecular Metabolism, 2018, 9, 4-14.	ar signatures.	3.0	12
212	Prognostic role of mitochondrial pyruvate carrier in isocitrate dehydrogenase–muta Journal of Neurosurgery, 2018, 130, 56-66.	nt glioma.	0.9	14
213	The Force Is Strong with This One: Metabolism (Over)powers Stem Cell Fate. Trends ir 2018, 28, 551-559.	ı Cell Biology,	3.6	32
214	Clinical use of plasma lactate concentration. Part 1: Physiology, pathophysiology, and Journal of Veterinary Emergency and Critical Care, 2018, 28, 85-105.	measurement.	0.4	44
215	A Narrative Review of Potential Future Antidiabetic Drugs: Should We Expect More?. Ir Clinical Biochemistry, 2018, 33, 121-131.	ıdian Journal of	0.9	14
216	Enhanced pyruvate production in <i>Candida glabrata</i> by carrier engineering. Biote Bioengineering, 2018, 115, 473-482.	echnology and	1.7	22
217	Nonalcoholic Fatty Liver Disease as a Nexus of Metabolic and Hepatic Diseases. Cell M 27, 22-41.	etabolism, 2018,	7.2	496
218	Fatty acid oxidation alleviates the energy deficiency caused by the loss of MPC1 in MP Biochemical and Biophysical Research Communications, 2018, 495, 1008-1013.	C1+/â^' mice.	1.0	19
219	Nuclear Encoded Mitochondrial Proteins in Metabolite Transport and Oxidation Pathw Metabolism of Nutrients. , 2018, , .	ay Connecting		0
220	Hypoxia induces lactate secretion and glycolytic efflux by downregulating mitochondr carrier levels in human umbilical vein endothelial cells. Molecular Medicine Reports, 20	ial pyruvate 18, 18, 1710-1717.	1.1	15
221	Impairments in Oxidative Clucose Metabolism in Epilepsy and Metabolic Treatments T in Cellular Neuroscience, 2018, 12, 274.	hereof. Frontiers	1.8	54
222	Methionine supplementation stimulates mitochondrial respiration. Biochimica Et Biop Molecular Cell Research, 2018, 1865, 1901-1913.	nysica Acta -	1.9	17
223	Mild Impairment of Mitochondrial OXPHOS Promotes Fatty Acid Utilization in POMC N Improves Glucose Homeostasis in Obesity. Cell Reports, 2018, 25, 383-397.e10.	Veurons and	2.9	26
224	PPARÎ ³ -sparing thiazolidinediones as insulin sensitizers. Design, synthesis and selection for clinical development. Bioorganic and Medicinal Chemistry, 2018, 26, 5870-5884.	n of compounds	1.4	9

#	Article	IF	CITATIONS
225	Crystal structure of the bacterial acetate transporter SatP reveals that it forms a hexameric channel. Journal of Biological Chemistry, 2018, 293, 19492-19500.	1.6	24
226	Function of mitochondrial pyruvate carriers in hepatocellular carcinoma patients. Oncology Letters, 2018, 15, 9110-9116.	0.8	12
227	Mitochondrial Metabolism and Aging in Yeast. International Review of Cell and Molecular Biology, 2018, 340, 1-33.	1.6	24
228	The multifaceted contributions of mitochondria to cellular metabolism. Nature Cell Biology, 2018, 20, 745-754.	4.6	969
229	MSDC-0602K, a metabolic modulator directed at the core pathology of non-alcoholic steatohepatitis. Expert Opinion on Investigational Drugs, 2018, 27, 631-636.	1.9	39
230	Targeting energy metabolism via the mitochondrial pyruvate carrier as a novel approach to attenuate neurodegeneration. Molecular Neurodegeneration, 2018, 13, 28.	4.4	57
231	Mitochondrial Glycolysis in a Major Lineage of Eukaryotes. Genome Biology and Evolution, 2018, 10, 2310-2325.	1.1	62
232	Stem Cell Metabolism in Cancer and Healthy Tissues: Pyruvate in the Limelight. Frontiers in Pharmacology, 2017, 8, 958.	1.6	40
233	Loss of Metabolic Flexibility in the Failing Heart. Frontiers in Cardiovascular Medicine, 2018, 5, 68.	1.1	258
234	Proton Transport Chains in Glucose Metabolism: Mind the Proton. Frontiers in Neuroscience, 2018, 12, 404.	1.4	18
235	Downregulation of COUP‑TFII inhibits glioblastoma growth via targeting MPC1. Oncology Letters, 2018, 15, 9697-9702.	0.8	13
236	Berberine Reduces Pyruvate-driven Hepatic Glucose Production by Limiting Mitochondrial Import of Pyruvate through Mitochondrial Pyruvate Carrier 1. EBioMedicine, 2018, 34, 243-255.	2.7	21
237	Lapachol inhibits glycolysis in cancer cells by targeting pyruvate kinase M2. PLoS ONE, 2018, 13, e0191419.	1.1	55
238	Microenvironmental control of glucose metabolism in tumors by regulation of pyruvate dehydrogenase. International Journal of Cancer, 2019, 144, 674-686.	2.3	49
239	Mitochondrial plasticity in cell fate regulation. Journal of Biological Chemistry, 2019, 294, 13852-13863.	1.6	98
240	A yeast phenomic model for the influence of Warburg metabolism on genetic buffering of doxorubicin. Cancer & Metabolism, 2019, 7, 9.	2.4	6
241	Maternal Lipid Metabolism Directs Fetal Liver Programming following Nutrient Stress. Cell Reports, 2019, 29, 1299-1310.e3.	2.9	14
242	Targeting glycolysis in proliferative kidney diseases. American Journal of Physiology - Renal Physiology, 2019, 317, F1531-F1535.	1.3	7

#	Article	IF	Citations
243	Repression of mitochondrial metabolism for cytosolic pyruvate-derived chemical production in Saccharomyces cerevisiae. Microbial Cell Factories, 2019, 18, 177.	1.9	11
244	Disrupting Mitochondrial Pyruvate Uptake Directs Glutamine into the TCA Cycle away from Glutathione Synthesis and Impairs Hepatocellular Tumorigenesis. Cell Reports, 2019, 28, 2608-2619.e6.	2.9	63
245	Targeting the Mitochondrial Pyruvate Carrier for Neuroprotection. Brain Sciences, 2019, 9, 238.	1.1	12
246	Treating Hepatic Steatosis and Fibrosis by Modulating Mitochondrial Pyruvate Metabolism. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7, 275-284.	2.3	27
247	Wild-Type p53 Promotes Cancer Metabolic Switch by Inducing PUMA-Dependent Suppression of Oxidative Phosphorylation. Cancer Cell, 2019, 35, 191-203.e8.	7.7	139
248	<i>AGP30</i> : Cd tolerance related gene associate with mitochondrial pyruvate carrier 1. Plant Signaling and Behavior, 2019, 14, 1629269.	1.2	6
249	Inhibition of ERRα Prevents Mitochondrial Pyruvate Uptake Exposing NADPH-Generating Pathways as Targetable Vulnerabilities in Breast Cancer. Cell Reports, 2019, 27, 3587-3601.e4.	2.9	29
250	MPC1 deletion is associated with poor prognosis and temozolomide resistance in glioblastoma. Journal of Neuro-Oncology, 2019, 144, 293-301.	1.4	22
251	Glucagon upâ€regulates hepatic mitochondrial pyruvate carrier 1 through cAMPâ€responsive elementâ€binding protein; inhibition of hepatic gluconeogenesis by ginsenoside <scp>Rb1</scp> . British Journal of Pharmacology, 2019, 176, 2962-2976.	2.7	26
252	Adaptations in Protein Expression and Regulated Activity of Pyruvate Dehydrogenase Multienzyme Complex in Human Systolic Heart Failure. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-11.	1.9	38
253	Forecasting and control of lactate bifurcation in Chinese hamster ovary cell culture processes. Biotechnology and Bioengineering, 2019, 116, 2223-2235.	1.7	7
254	Identification by comparative transcriptomics of core regulatory genes for higher alcohol production in a top-fermenting yeast at different temperatures in beer fermentation. Applied Microbiology and Biotechnology, 2019, 103, 4917-4929.	1.7	18
255	Contributions of Mitochondrial Dysfunction to \hat{I}^2 Cell Failure in Diabetes Mellitus. , 2019, , 217-243.		2
256	Metabolic perturbations after pediatric TBI: It's not just about glucose. Experimental Neurology, 2019, 316, 74-84.	2.0	17
257	Development of an efficient cytosolic isobutanol production pathway in Saccharomyces cerevisiae by optimizing copy numbers and expression of the pathway genes based on the toxic effect of α-acetolactate. Scientific Reports, 2019, 9, 3996.	1.6	26
258	Plasma cells: You are what you eat. Immunological Reviews, 2019, 288, 161-177.	2.8	41
259	A method for assessing mitochondrial physiology using mechanically permeabilized flight muscle of Aedes aegypti mosquitoes. Analytical Biochemistry, 2019, 576, 33-41.	1.1	14
260	The yeast mitochondrial pyruvate carrier is a heteroâ€dimer in its functional state. EMBO Journal, 2019, 38, .	3.5	45

#	Article	IF	CITATIONS
261	MPC1 deficiency accelerates lung adenocarcinoma progression through the STAT3 pathway. Cell Death and Disease, 2019, 10, 148.	2.7	21
262	Mitochondrial Pyruvate Carriers Prevent Cadmium Toxicity by Sustaining the TCA Cycle and Glutathione Synthesis. Plant Physiology, 2019, 180, 198-211.	2.3	51
263	Loss of MPC1 reprograms retinal metabolism to impair visual function. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3530-3535.	3.3	83
264	Regulation of Drosophila Intestinal Stem Cell Proliferation by Enterocyte Mitochondrial Pyruvate Metabolism. G3: Genes, Genomes, Genetics, 2019, 9, 3623-3630.	0.8	14
265	Mitochondrial metabolism: a common link between neuroinflammation and neurodegeneration. Behavioural Pharmacology, 2019, 30, 641-651.	0.8	31
266	Toward a better understanding of folate metabolism in health and disease. Journal of Experimental Medicine, 2019, 216, 253-266.	4.2	109
267	Mitochondrial pyruvate import is a metabolic vulnerability in androgen receptor-driven prostate cancer. Nature Metabolism, 2019, 1, 70-85.	5.1	110
268	Increased sesqui- and triterpene production by co-expression of HMG-CoA reductase and biotin carboxyl carrier protein in tobacco (Nicotiana benthamiana). Metabolic Engineering, 2019, 52, 20-28.	3.6	32
269	Regulation of the fermentative metabolism in apple fruit exposed to low-oxygen stress reveals a high flexibility. Postharvest Biology and Technology, 2019, 149, 118-128.	2.9	29
270	Loss of mitochondrial calcium uniporter rewires skeletal muscle metabolism and substrate preference. Cell Death and Differentiation, 2019, 26, 362-381.	5.0	53
271	Mitochondrial pyruvate carrier 1 functions as a tumor suppressor and predicts the prognosis of human renal cell carcinoma. Laboratory Investigation, 2019, 99, 191-199.	1.7	28
272	Convergent Evolution of Hydrogenosomes from Mitochondria by Gene Transfer and Loss. Molecular Biology and Evolution, 2020, 37, 524-539.	3.5	38
273	Protein Lysine Acetylation: Grease or Sand in the Gears of β-Cell Mitochondria?. Journal of Molecular Biology, 2020, 432, 1446-1460.	2.0	6
274	A novel KDM5A/MPC-1 signaling pathway promotes pancreatic cancer progression via redirecting mitochondrial pyruvate metabolism. Oncogene, 2020, 39, 1140-1151.	2.6	37
275	Altered Gene Expression along the Glycolysis–Cholesterol Synthesis Axis Is Associated with Outcome in Pancreatic Cancer. Clinical Cancer Research, 2020, 26, 135-146.	3.2	121
276	Effects of dietary calcium pyruvate on gastrointestinal tract development, intestinal health and growth performance of newly weaned piglets fed lowâ€protein diets. Journal of Applied Microbiology, 2020, 128, 355-365.	1.4	14
277	The Race to Bash NASH: Emerging Targets and Drug Development in a Complex Liver Disease. Journal of Medicinal Chemistry, 2020, 63, 5031-5073.	2.9	67
278	The mitochondrial carrier pathway transports non-canonical substrates with an odd number of transmembrane segments. BMC Biology, 2020, 18, 2.	1.7	34

#	Article	IF	CITATIONS
279	A Chemical Proteomic Probe for the Mitochondrial Pyruvate Carrier Complex. Angewandte Chemie, 2020, 132, 3924-3927.	1.6	0
280	A Chemical Proteomic Probe for the Mitochondrial Pyruvate Carrier Complex. Angewandte Chemie - International Edition, 2020, 59, 3896-3899.	7.2	10
281	Regulation of Tumor Initiation by the Mitochondrial Pyruvate Carrier. Cell Metabolism, 2020, 31, 284-300.e7.	7.2	103
282	iTRAQ-based proteomic analysis on the mitochondrial responses in gill tissues of juvenile olive flounder Paralichthys olivaceus exposed to cadmium. Environmental Pollution, 2020, 257, 113591.	3.7	27
283	Nuclear metabolism and the regulation of the epigenome. Nature Metabolism, 2020, 2, 1190-1203.	5.1	66
284	Metabolite regulation of the mitochondrial calcium uniporter channel. Cell Calcium, 2020, 92, 102288.	1.1	13
285	Biogenesis of Mitochondrial Metabolite Carriers. Biomolecules, 2020, 10, 1008.	1.8	32
286	Mitochondrial pyruvate carrier: a potential target for diabetic nephropathy. BMC Nephrology, 2020, 21, 274.	0.8	6
287	Insights on the Quest for the Structure–Function Relationship of the Mitochondrial Pyruvate Carrier. Biology, 2020, 9, 407.	1.3	4
288	Warburg-like Metabolic Reprogramming in Aging Intestinal Stem Cells Contributes to Tissue Hyperplasia. Cell Reports, 2020, 33, 108423.	2.9	36
289	Sequence Features of Mitochondrial Transporter Protein Families. Biomolecules, 2020, 10, 1611.	1.8	21
290	Enhanced Production of Ethyl Lactate in <i>Saccharomyces cerevisiae</i> by Genetic Modification. Journal of Agricultural and Food Chemistry, 2020, 68, 13863-13870.	2.4	11
291	Enhanced pyruvate metabolism in plastids by overexpression of putative plastidial pyruvate transporter in Phaeodactylum tricornutum. Biotechnology for Biofuels, 2020, 13, 120.	6.2	20
292	The Multifaceted Pyruvate Metabolism: Role of the Mitochondrial Pyruvate Carrier. Biomolecules, 2020, 10, 1068.	1.8	65
293	Metabolic Roles of Plant Mitochondrial Carriers. Biomolecules, 2020, 10, 1013.	1.8	11
294	Mitochondrial Pyruvate Carrier Function in Health and Disease across the Lifespan. Biomolecules, 2020, 10, 1162.	1.8	16
295	The SLC25 Carrier Family: Important Transport Proteins in Mitochondrial Physiology and Pathology. Physiology, 2020, 35, 302-327.	1.6	77
296	Mitochondrial pyruvate carrier abundance mediates pathological cardiac hypertrophy. Nature Metabolism, 2020, 2, 1223-1231.	5.1	68

#	Article	IF	CITATIONS
297	Mitochondrial pyruvate carriers are required for myocardial stress adaptation. Nature Metabolism, 2020, 2, 1248-1264.	5.1	87
298	Nutritional modulation of heart failure in mitochondrial pyruvate carrier–deficient mice. Nature Metabolism, 2020, 2, 1232-1247.	5.1	74
299	Quantitative Assessment of Blood Lactate in Shock: Measure of Hypoxia or Beneficial Energy Source. BioMed Research International, 2020, 2020, 1-24.	0.9	13
300	Augmented mitochondrial energy metabolism is an early response to chronic glucose stress in human pancreatic beta cells. Diabetologia, 2020, 63, 2628-2640.	2.9	24
301	Mechanism of futile creatine cycling in thermogenesis. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E947-E949.	1.8	3
302	MPC1 Deficiency Promotes CRC Liver Metastasis via Facilitating Nuclear Translocation of β-Catenin. Journal of Immunology Research, 2020, 2020, 1-11.	0.9	6
303	The Role of Pi, Glutamine and the Essential Amino Acids in Modulating the Metabolism in Diabetes and Cancer. Journal of Diabetes and Metabolic Disorders, 2020, 19, 1731-1775.	0.8	6
304	Forces, Fluxes, and Fuels: Tracking mitochondrial metabolism by integrating measurements of membrane potential, respiration, and metabolites. American Journal of Physiology - Cell Physiology, 2021, 320, C80-C91.	2.1	10
305	Selective Alanine Transporter Utilization Creates a Targetable Metabolic Niche in Pancreatic Cancer. Cancer Discovery, 2020, 10, 1018-1037.	7.7	104
306	Lower oxygen consumption and Complex I activity in mitochondria isolated from skeletal muscle of fetal sheep with intrauterine growth restriction. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E67-E80.	1.8	29
307	Characteristic Analysis of Homo- and Heterodimeric Complexes of Human Mitochondrial Pyruvate Carrier Related to Metabolic Diseases. International Journal of Molecular Sciences, 2020, 21, 3403.	1.8	15
308	20,000 picometers under the <scp>OMM</scp> : diving into the vastness of mitochondrial metabolite transport. EMBO Reports, 2020, 21, e50071.	2.0	29
309	Defining the Substrate Spectrum of the TIM22 Complex Identifies Pyruvate Carrier Subunits as Unconventional Cargos. Current Biology, 2020, 30, 1119-1127.e5.	1.8	29
310	Mapping mitochondrial respiratory chain deficiencies by respirometry: Beyond the Mito Stress Test. Experimental Neurology, 2020, 328, 113282.	2.0	16
311	Mitochondrial Pyruvate Carrier 1 Promotes Peripheral T Cell Homeostasis through Metabolic Regulation of Thymic Development. Cell Reports, 2020, 30, 2889-2899.e6.	2.9	34
312	Recent progress on the role and molecular mechanism of chicken ovalbumin upstream promoter-transcription factor II in cancer. Journal of International Medical Research, 2020, 48, 030006052091923.	0.4	0
313	Harnessing sub-organelle metabolism for biosynthesis of isoprenoids in yeast. Synthetic and Systems Biotechnology, 2020, 5, 179-186.	1.8	40
314	Pyruvate metabolism redirection for biological production of commodity chemicals in aerobic fungus Aspergillus oryzae. Metabolic Engineering, 2020, 61, 225-237.	3.6	20

#	Article	IF	CITATIONS
315	The tortuous path of lactate shuttle discovery: From cinders and boards to the lab and ICU. Journal of Sport and Health Science, 2020, 9, 446-460.	3.3	32
316	Defective Mitochondrial Pyruvate Flux Affects Cell Bioenergetics in Alzheimer's Disease-Related Models. Cell Reports, 2020, 30, 2332-2348.e10.	2.9	67
317	Effects of glucose metabolism pathways on nuclear and cytoplasmic maturation of pig oocytes. Scientific Reports, 2020, 10, 2782.	1.6	25
318	The fuel and engine: The roles of reprogrammed metabolism in metastasis of primary liver cancer. Genes and Diseases, 2020, 7, 299-307.	1.5	12
319	Tumour metabolism and its unique properties in prostate adenocarcinoma. Nature Reviews Urology, 2020, 17, 214-231.	1.9	88
320	Stress-seventy subfamily A 4, A member of HSP70, confers yeast cadmium tolerance in the loss of mitochondria pyruvate carrier 1. Plant Signaling and Behavior, 2020, 15, 1719312.	1.2	2
321	Metabolic reprogramming and disease progression in cancer patients. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165721.	1.8	45
322	A subcellular proteome atlas of the yeast <i>Komagataella phaffii</i> . FEMS Yeast Research, 2020, 20, .	1.1	16
323	Metabolic Regulation of Tissue Stem Cells. Trends in Cell Biology, 2020, 30, 566-576.	3.6	49
324	Systems Biochemistry Approaches to Defining Mitochondrial Protein Function. Cell Metabolism, 2020, 31, 669-678.	7.2	16
325	Mitochondrial pyruvate and fatty acid flux modulate MICU1-dependent control of MCU activity. Science Signaling, 2020, 13, .	1.6	48
326	Expansion of the Transporter-Opsin-G protein-coupled receptor superfamily with five new protein families. PLoS ONE, 2020, 15, e0231085.	1.1	11
327	Mitochondrial lactate metabolism: history and implications for exercise and disease. Journal of Physiology, 2021, 599, 863-888.	1.3	97
328	Getting out what you put in: Copper in mitochondria and its impacts on human disease. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118867.	1.9	103
329	Biosynthetic Polymalic Acid as a Delivery Nanoplatform for Translational Cancer Medicine. Trends in Biochemical Sciences, 2021, 46, 213-224.	3.7	14
330	Mitochondrial pyruvate carrier as a key regulator of fever and neuroinflammation. Brain, Behavior, and Immunity, 2021, 92, 90-101.	2.0	6
331	Altered gene expression in glycolysis–cholesterol synthesis axis correlates with outcome of triple-negative breast cancer. Experimental Biology and Medicine, 2021, 246, 560-571.	1.1	8
332	Alterations in mitochondrial glucose carbon metabolism in epilepsy and targeted metabolic treatments. , 2021, , 653-677.		2

#	Article	IF	Citations
333	The anaerobic threshold: 50+ years of controversy. Journal of Physiology, 2021, 599, 737-767.	1.3	156
334	Characterization of drug-induced human mitochondrial ADP/ATP carrier inhibition. Theranostics, 2021, 11, 5077-5091.	4.6	12
335	The two-cell model of glucose metabolism: a hypothesis of schizophrenia. Molecular Psychiatry, 2021, 26, 1738-1747.	4.1	8
336	Role of glutathione in enhancing metal hyperaccumulation in plants. , 2021, , 115-152.		2
337	Heart failure—emerging roles for the mitochondrial pyruvate carrier. Cell Death and Differentiation, 2021, 28, 1149-1158.	5.0	22
338	MSDC-0160 and MSDC-0602 Binding with Human Mitochondrial Pyruvate Carrier (MPC) 1 and 2 Heterodimer. , 2021, , 427-455.		0
339	Amino Acid Homeostasis in Mammalian Cells with a Focus on Amino Acid Transport. Journal of Nutrition, 2022, 152, 16-28.	1.3	29
341	The distinct roles of calcium in rapid control of neuronal glycolysis and the tricarboxylic acid cycle. ELife, 2021, 10, .	2.8	51
343	Lactate in contemporary biology: a phoenix risen. Journal of Physiology, 2022, 600, 1229-1251.	1.3	85
344	Development of Novel Mitochondrial Pyruvate Carrier Inhibitors to Treat Hair Loss. Journal of Medicinal Chemistry, 2021, 64, 2046-2063.	2.9	16
345	The Importance of Mitochondrial Pyruvate Carrier in Cancer Cell Metabolism and Tumorigenesis. Cancers, 2021, 13, 1488.	1.7	29
346	Mitochondrial Fuel Dependence on Glutamine Drives Chemo-Resistance in the Cancer Stem Cells of Hepatocellular Carcinoma. International Journal of Molecular Sciences, 2021, 22, 3315.	1.8	18
347	Identification and Development of Subtypes With Poor Prognosis in Pan-Gynecological Cancer Based on Gene Expression in the Glycolysis-Cholesterol Synthesis Axis. Frontiers in Oncology, 2021, 11, 636565.	1.3	7
348	Decreased Expression of MPC2 Contributes to Aerobic Glycolysis and Colorectal Cancer Proliferation by Activating mTOR Pathway. Journal of Immunology Research, 2021, 2021, 1-12.	0.9	6
349	Mitochondria as Signaling Organelles Control Mammalian Stem Cell Fate. Cell Stem Cell, 2021, 28, 394-408.	5.2	151
350	Dual-process brain mitochondria isolation preserves function and clarifies protein composition. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	7
351	Lactate Dehydrogenase B and Pyruvate Oxidation Pathway Associated With Carfilzomib-Related Cardiotoxicity in Multiple Myeloma Patients: Result of a Multi-Omics Integrative Analysis. Frontiers in Cardiovascular Medicine, 2021, 8, 645122.	1.1	9
352	Interleukin-33 regulates metabolic reprogramming of the retinal pigment epithelium in response to immune stressors. JCI Insight, 2021, 6, .	2.3	6

#	Article	IF	CITATIONS
353	Abnormal early folliculogenesis due to impeded pyruvate metabolism in mouse oocytes. Biology of Reproduction, 2021, 105, 64-75.	1.2	7
354	Glutathione Metabolism and the Novel Role of Mitochondrial GSH in Retinal Degeneration. Antioxidants, 2021, 10, 661.	2.2	45
355	Harnessing Drug Repurposing for Exploration of New Diseases: An Insight to Strategies and Case Studies. Current Molecular Medicine, 2021, 21, 111-132.	0.6	5
356	Brown Adipose Tissue Heterogeneity, Energy Metabolism, and Beyond. Frontiers in Endocrinology, 2021, 12, 651763.	1.5	38
357	Mitochondrial Pyruvate Carrier Subunits Are Essential for Pyruvate-Driven Respiration, Infectivity, and Intracellular Replication of Trypanosoma cruzi. MBio, 2021, 12, .	1.8	7
358	Mitochondrial dysfunction and mitochondrion-targeted therapeutics in liver diseases. Journal of Drug Targeting, 2021, 29, 1080-1093.	2.1	13
359	ARRB1 Regulates Metabolic Reprogramming to Promote Glycolysis in Stem Cell-Like Bladder Cancer Cells. Cancers, 2021, 13, 1809.	1.7	10
360	Metabolic flexibility via mitochondrial BCAA carrier SLC25A44 is required for optimal fever. ELife, 2021, 10, .	2.8	15
361	Mitochondrial Control of Stem Cell State and Fate: Lessons From Drosophila. Frontiers in Cell and Developmental Biology, 2021, 9, 606639.	1.8	7
362	Excitotoxicity Revisited: Mitochondria on the Verge of a Nervous Breakdown. Trends in Neurosciences, 2021, 44, 342-351.	4.2	27
363	Mitochondrial pyruvate carrier 1: a novel prognostic biomarker that predicts favourable patient survival in cancer. Cancer Cell International, 2021, 21, 288.	1.8	11
364	The "Anaerobic Threshold―Concept Is Not Valid in Physiology and Medicine. Medicine and Science in Sports and Exercise, 2021, 53, 1093-1096.	0.2	5
365	Metabolic reprogramming of terminally exhausted CD8+ T cells by IL-10 enhances anti-tumor immunity. Nature Immunology, 2021, 22, 746-756.	7.0	160
366	Pan-cancer characterization of metabolism-related biomarkers identifies potential therapeutic targets. Journal of Translational Medicine, 2021, 19, 219.	1.8	8
367	Energy metabolism in brown adipose tissue. FEBS Journal, 2021, 288, 3647-3662.	2.2	35
368	Application of Q-TOF–MS based metabonomics techniques to analyze the plasma metabolic profile changes on rats following death due to acute intoxication of phorate. International Journal of Legal Medicine, 2021, 135, 1437-1447.	1.2	0
369	Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein and Cell, 2022, 13, 877-919.	4.8	179
370	The mitochondrial pyruvate carrier (MPC) complex mediates one of three pyruvate-supplying pathways that sustain Arabidopsis respiratory metabolism. Plant Cell, 2021, 33, 2776-2793.	3.1	39

#	Article	IF	CITATIONS
371	Mitochondrial pyruvate carrier 1 regulates ferroptosis in drug-tolerant persister head and neck cancer cells via epithelial-mesenchymal transition. Cancer Letters, 2021, 507, 40-54.	3.2	44
372	Structural Mechanism of Transport of Mitochondrial Carriers. Annual Review of Biochemistry, 2021, 90, 535-558.	5.0	31
373	CRISPR screens in physiologic medium reveal conditionally essential genes in human cells. Cell Metabolism, 2021, 33, 1248-1263.e9.	7.2	77
374	Oncogenic KRAS creates an aspartate metabolism signature in colorectal cancer cells. FEBS Journal, 2021, 288, 6683-6699.	2.2	7
375	Mitochondrial pyruvate carrier regulates the lignocellulosic decomposition rate through metabolism in <i>Ganoderma lucidum</i> . FEMS Microbiology Letters, 2021, 368, .	0.7	4
376	An engineered genetic circuit for lactose intolerance alleviation. BMC Biology, 2021, 19, 137.	1.7	2
377	Pyruvate Kinase Is Required for Sex Pheromone Biosynthesis in Helicoverpa armigera. Frontiers in Physiology, 2021, 12, 707389.	1.3	5
378	New insights into TCR Î ² -selection. Trends in Immunology, 2021, 42, 735-750.	2.9	37
379	Mitochondrial Metabolism behind Region-Specific Resistance to Ischemia-Reperfusion Injury in Gerbil Hippocampus. Role of PKCβII and Phosphate-Activated Glutaminase. International Journal of Molecular Sciences, 2021, 22, 8504.	1.8	5
381	An Overview of Cell-Based Assay Platforms for the Solute Carrier Family of Transporters. Frontiers in Pharmacology, 2021, 12, 722889.	1.6	31
382	Control of topoisomerase II activity and chemotherapeutic inhibition by TCA cycle metabolites. Cell Chemical Biology, 2022, 29, 476-489.e6.	2.5	10
383	Learning from Yeast about Mitochondrial Carriers. Microorganisms, 2021, 9, 2044.	1.6	5
384	Genetic dissection of complex traits using hierarchical biological knowledge. PLoS Computational Biology, 2021, 17, e1009373.	1.5	1
385	Hexokinase Is Required for Sex Pheromone Biosynthesis in Helicoverpa armigera. Insects, 2021, 12, 889.	1.0	2
388	PGC-1α promotes mitochondrial respiration and biogenesis during the differentiation of hiPSCs into cardiomyocytes. Genes and Diseases, 2021, 8, 891-906.	1.5	13
390	Mitochondrial Structure and Bioenergetics in Normal and Disease Conditions. International Journal of Molecular Sciences, 2021, 22, 586.	1.8	72
391	Alzheimer's and Parkinson's Disease Novel Therapeutic Target. , 2021, , 411-426.		0
392	Rethinking the Citric Acid Cycle: Connecting Pyruvate Carboxylase and Citrate Synthase to the Flow of Energy and Material. International Journal of Molecular Sciences, 2021, 22, 604.	1.8	21

	CITATION	Report	
# 393	ARTICLE The mitochondrial calcium homeostasis orchestra plays its symphony: Skeletal muscle is the guest of honor. International Review of Cell and Molecular Biology, 2021, 362, 209-259.	IF 1.6	Citations
394	Overexpression of the mitochondrial pyruvate carrier reduces lactate production and increases recombinant protein productivity in CHO cells. Biotechnology and Bioengineering, 2020, 117, 2633-2647.	1.7	11
395	Role of Mitochondria in \hat{l}^2 -Cell Function and Dysfunction. , 2015, , 633-657.		1
396	NADPH and Glutathione Redox Link TCA Cycle Activity to Endoplasmic Reticulum Homeostasis. IScience, 2020, 23, 101116.	1.9	51
402	Two human patient mitochondrial pyruvate carrier mutations reveal distinct molecular mechanisms of dysfunction. JCI Insight, 2019, 4, .	2.3	26
403	Chicken or the egg: Warburg effect and mitochondrial dysfunction. F1000prime Reports, 2015, 7, 41.	5.9	64
404	Embryonic Lethality of Mitochondrial Pyruvate Carrier 1 Deficient Mouse Can Be Rescued by a Ketogenic Diet. PLoS Genetics, 2016, 12, e1006056.	1.5	56
405	Differential Regulation of Mitochondrial Pyruvate Carrier Genes Modulates Respiratory Capacity and Stress Tolerance in Yeast. PLoS ONE, 2013, 8, e79405.	1.1	36
406	Imaging Mitochondrial Flux in Single Cells with a FRET Sensor for Pyruvate. PLoS ONE, 2014, 9, e85780.	1.1	160
407	Mitochondrial Physiology in the Major Arbovirus Vector Aedes aegypti: Substrate Preferences and Sexual Differences Define Respiratory Capacity and Superoxide Production. PLoS ONE, 2015, 10, e0120600.	1.1	45
409	Blocking mitochondrial pyruvate import in brown adipocytes induces energy wasting via lipid cycling. EMBO Reports, 2020, 21, e49634.	2.0	31
410	Chronic cold exposure enhances glucose oxidation in brown adipose tissue. EMBO Reports, 2020, 21, e50085.	2.0	33
411	Rewiring yeast acetate metabolism through MPC1 loss of function leads to mitochondrial damage and decreases chronological lifespan. Microbial Cell, 2014, 1, 393-405.	1.4	17
412	Exogenous pyruvate facilitates cancer cell adaptation to hypoxia by serving as an oxygen surrogate. Oncotarget, 2016, 7, 47494-47510.	0.8	20
413	Establishment of mitochondrial pyruvate carrier 1 (MPC1) gene knockout mice with preliminary gene function analyses. Oncotarget, 2016, 7, 79981-79994.	0.8	17
414	Mitochondrial pyruvate carrier function is negatively linked to Warburg phenotype <i>in vitro</i> and malignant features in esophageal squamous cell carcinomas. Oncotarget, 2017, 8, 1058-1073.	0.8	36
415	Mitochondrial pyruvate carrier function determines cell stemness and metabolic reprogramming in cancer cells. Oncotarget, 2017, 8, 46363-46380.	0.8	50
416	Mechanisms through which lithocholic acid delays yeast chronological aging under caloric restriction conditions. Oncotarget, 2018, 9, 34945-34971.	0.8	11

#	Article	IF	CITATIONS
417	MPC1, a key gene in cancer metabolism, is regulated by COUPTFII in human prostate cancer. Oncotarget, 2016, 7, 14673-14683.	0.8	46
418	Mitochondrial diseases: expanding the diagnosis in the era of genetic testing. , 2020, 4, 384-428.		11
419	Myocardial Energy Substrate Metabolism in Heart Failure : from Pathways to Therapeutic Targets. Current Pharmaceutical Design, 2015, 21, 3654-3664.	0.9	92
420	Role of Mitochondrial Carriers in Metabolic Engineering. Journal of Bioprocessing & Biotechniques, 2014, 04, .	0.2	3
421	The Mitochondrial Pyruvate Carrier and Metabolic Regulation. CellBio, 2014, 03, 111-117.	1.3	5
422	Mitochondria in Cancer Energy Metabolism: Culprits or Bystanders?. Toxicological Research, 2015, 31, 323-330.	1.1	33
423	Impaired skeletal muscle mitochondrial pyruvate uptake rewires glucose metabolism to drive whole-body leanness. ELife, 2019, 8, .	2.8	54
424	Mitochondrial pyruvate carrier is required for optimal brown fat thermogenesis. ELife, 2020, 9, .	2.8	45
425	A highly responsive pyruvate sensor reveals pathway-regulatory role of the mitochondrial pyruvate carrier MPC. ELife, 2020, 9, .	2.8	53
426	Localized Glucose Import, Glycolytic Processing, and Mitochondria Generate a Focused ATP Burst to Power Basement Membrane Invasion. SSRN Electronic Journal, 0, , .	0.4	0
427	Basigin deficiency prevents anaplerosis and ameliorates insulin resistance and hepatosteatosis. JCI Insight, 2021, 6, .	2.3	3
428	Mitochondrial Dysfunction in Metabolic Disease. Indonesian Biomedical Journal, 2012, 4, 119.	0.2	1
429	Role of Mitochondria in \hat{l}^2 -Cell Function and Dysfunction. , 2013, , 1-25.		0
430	Role of Mitochondria in \hat{l}^2 -Cell Function and Dysfunction. , 2014, , 1-24.		0
431	Cardiac Metabolism and Energetic Control. , 2016, , 97-134.		0
439	Structural Insights into the Human Mitochondrial Pyruvate Carrier Complexes. Journal of Chemical Information and Modeling, 2021, 61, 5614-5625.	2.5	5
440	Tubular Cell Glucose Metabolism Shift During Acute and Chronic Injuries. Frontiers in Medicine, 2021, 8, 742072.	1.2	25
441	Dihydrolipoamide dehydrogenase, pyruvate oxidation, and acetylation-dependent mechanisms intersecting drug iatrogenesis. Cellular and Molecular Life Sciences, 2021, 78, 7451-7468.	2.4	8

		CITATION RE	PORT	
#	Article		IF	Citations
443	The Multifaceted Connections Between Photosynthesis and Respiratory Metabolism. ,	2020, , 55-107.		1
444	Lactate supports a metabolic-epigenetic link in macrophage polarization. Science Advaeabi8602.	nces, 2021, 7,	4.7	70
445	5-Benzylidene, 5-benzyl, and 3-benzylthiazolidine-2,4-diones as potential inhibitors of t mitochondrial pyruvate carrier: Effects on mitochondrial functions and survival in Dros melanogaster. European Journal of Pharmacology, 2021, 913, 174627.		1.7	7
447	Imaging Approaches for the Study of Metabolism in Real Time Using Genetically Encod Frontiers in Cell and Developmental Biology, 2021, 9, 725114.	ed Reporters.	1.8	4
448	Lactococcus lactis, an Attractive Cell Factory for the Expression of Functional Membra Biomolecules, 2022, 12, 180.	ne Proteins.	1.8	7
449	Astrocytes as Key Regulators of Brain Energy Metabolism: New Therapeutic Perspective Physiology, 2021, 12, 825816.	es. Frontiers in	1.3	76
450	Trehalase is required for sex pheromone biosynthesis in <i>Helicoverpa armigera</i> . Ir Molecular Biology, 2022, 31, 334-345.	ısect	1.0	2
451	Identification and characterization of novel <scp><i>MPC1</i></scp> gene variants carrier deficiency. Journal of Inherited Metabolic Disease, 2022	using , 45, 264-277.	1.7	7
452	Alteration in glycolytic/cholesterogenic gene expression is associated with bladder can and immune cell infiltration. BMC Cancer, 2022, 22, 2.	.cer prognosis	1.1	7
453	Glutamine-Derived Aspartate Biosynthesis in Cancer Cells: Role of Mitochondrial Trans New Therapeutic Perspectives. Cancers, 2022, 14, 245.	porters and	1.7	12
455	Identification of Novel Mitochondrial Pyruvate Carrier Inhibitors by Homology Modeling Pharmacophore-Based Virtual Screening. Biomedicines, 2022, 10, 365.	g and	1.4	8
456	Mitochondrial pyruvate carrier inhibitors improve metabolic parameters in diet-induced Journal of Biological Chemistry, 2022, 298, 101554.	l obese mice.	1.6	20
457	Chemical augmentation of mitochondrial electron transport chains tunes T cell activat in tumors. , 2022, 10, e003958.	ion threshold		4
458	Highâ€throughput cellâ€free screening of eukaryotic membrane protein expression in Protein Science, 2022, 31, 639-651.	lipidic mimetics.	3.1	7
459	Paradoxical neuronal hyperexcitability in a mouse model of mitochondrial pyruvate imp ELife, 2022, 11, .	oort deficiency.	2.8	21
461	Localized glucose import, glycolytic processing, and mitochondria generate a focused power basement-membrane invasion. Developmental Cell, 2022, 57, 732-749.e7.	ATP burst to	3.1	22
462	Transcriptome Analysis on Key Metabolic Pathways in Rhodotorula mucilaginosa Unde Applied and Environmental Microbiology, 2022, 88, e0221521.	r Pb(II) Stress.	1.4	5
463	Mitochondrial pyruvate carrier blockade results in decreased osteoclastogenesis and b resorption via regulating mitochondrial energy production. Journal of Biological Chemi 101775.	one stry, 2022, ,	1.6	2

#	Article	IF	CITATIONS
464	Organelle transporters and inter-organelle communication as drivers of metabolic regulation and cellular homeostasis. Molecular Metabolism, 2022, 60, 101481.	3.0	29
465	Reprogramming hormone-sensitive prostate cancer to a lethal neuroendocrine cancer lineage by mitochondrial pyruvate carrier (MPC). Molecular Metabolism, 2022, 59, 101466.	3.0	5
466	Key features of inhibitor binding to the human mitochondrial pyruvate carrier hetero-dimer. Molecular Metabolism, 2022, 60, 101469.	3.0	8
468	Advances of Glycometabolism Engineering in Chinese Hamster Ovary Cells. Frontiers in Bioengineering and Biotechnology, 2021, 9, 774175.	2.0	3
469	The mitochondrial pyruvate carrier regulates memory TÂcell differentiation and antitumor function. Cell Metabolism, 2022, 34, 731-746.e9.	7.2	63
470	Energy metabolism homeostasis in cardiovascular diseases Journal of Geriatric Cardiology, 2021, 18, 1044-1057.	0.2	3
471	Downregulation of mitochondrial pyruvate carrier 2 aggravates neuronal injury in the cortex following cerebral ischemia in rat. Brain Research Bulletin, 2022, 185, 193-202.	1.4	2
472	Targeting Energy Metabolism in Cancer Treatment. International Journal of Molecular Sciences, 2022, 23, 5572.	1.8	6
474	The mitochondrial pyruvate carrier at the crossroads of intermediary metabolism. American Journal of Physiology - Endocrinology and Metabolism, 2022, 323, E33-E52.	1.8	13
476	Cancer metabolism regulation by phytonutrients. , 2022, , 237-290.		0
477	Cancer cells depend on environmental lipids for proliferation when electron acceptors are limited. Nature Metabolism, 2022, 4, 711-723.	5.1	29
478	Metabolic Mechanisms Connecting Alzheimer's and Parkinson's Diseases: Potential Avenues for Novel Therapeutic Approaches. Frontiers in Molecular Biosciences, 0, 9, .	1.6	4
480	Simulations of Pathogenic E1α Variants: Allostery and Impact on Pyruvate Dehydrogenase Complex-E1 Structure and Function. Journal of Chemical Information and Modeling, 2022, 62, 3463-3475.	2.5	1
481	Pyruvate Supports RET-Dependent Mitochondrial ROS Production to Control Mycobacterium avium Infection in Human Primary Macrophages. Frontiers in Immunology, 0, 13, .	2.2	1
482	Plasma Metabonomics in Insulin-Resistant Hypogonadic Patients Induced by Testosterone Treatment. International Journal of Molecular Sciences, 2022, 23, 7754.	1.8	5
483	Molecular and biochemical regulation of skeletal muscle metabolism. Journal of Animal Science, 2022, 100, .	0.2	9
484	A practical guide for the analysis, standardization and interpretation of oxygen consumption measurements. Nature Metabolism, 2022, 4, 978-994.	5.1	28
486	Glycolytic potential enhanced by blockade of pyruvate influx into mitochondria sensitizes prostate cancer to detection and radiotherapy. Cancer Biology and Medicine, 0, , 1-1.	1.4	1

#	Article	IF	CITATIONS
487	Carbohydrate metabolism I: glycolysis and the tricarboxylic acid cycle. , 2023, , 203-227.		2
488	DNA damage, metabolism, and epigenetic regulation. , 2022, , 111-138.		0
489	Effects of Ketogenic Diet on Muscle Metabolism in Health and Disease. Nutrients, 2022, 14, 3842.	1.7	10
490	Maintenance of small molecule redox homeostasis in mitochondria. FEBS Letters, 2023, 597, 205-223.	1.3	6
491	Pyruvate transporter <scp>BnaBASS2</scp> impacts seed oil accumulation in <i>Brassica napus</i> . Plant Biotechnology Journal, 2022, 20, 2406-2417.	4.1	10
492	Tracing the lactate shuttle to the mitochondrial reticulum. Experimental and Molecular Medicine, 2022, 54, 1332-1347.	3.2	20
493	The role of protein acetylation in carcinogenesis and targeted drug discovery. Frontiers in Endocrinology, 0, 13, .	1.5	9
494	Experimental Investigations on the Structure of Yeast Mitochondrial Pyruvate Carriers. Membranes, 2022, 12, 916.	1.4	1
495	Development of an industrial yeast strain for efficient production of 2,3-butanediol. Microbial Cell Factories, 2022, 21, .	1.9	4
496	Top-Down, Knowledge-Based Genetic Reduction of Yeast Central Carbon Metabolism. MBio, 2022, 13, .	1.8	2
497	Classification and Prognostic Characteristics of Hepatocellular Carcinoma Based on Glycolysis Cholesterol Synthesis Axis. Journal of Oncology, 2022, 2022, 1-17.	0.6	1
498	Requirement of hepatic pyruvate carboxylase during fasting, high fat, and ketogenic diet. Journal of Biological Chemistry, 2022, 298, 102648.	1.6	4
499	On the Need to Distinguish between Insulin-Normal and Insulin-Resistant Patients in Testosterone Therapy. International Journal of Molecular Sciences, 2022, 23, 12730.	1.8	2
500	Principles and functions of metabolic compartmentalization. Nature Metabolism, 2022, 4, 1232-1244.	5.1	28
501	Mitochondrial signal transduction. Cell Metabolism, 2022, 34, 1620-1653.	7.2	112
503	LCMT1 indicates poor prognosis and is essential for cell proliferation in hepatocellular carcinoma. Translational Oncology, 2023, 27, 101572.	1.7	0
504	<i>MPC2</i> variants disrupt mitochondrial pyruvate metabolism and cause an early-onset mitochondriopathy. Brain, 2023, 146, 858-864.	3.7	2
506	Loss of Mature Lamin A/C Triggers a Shift in Intracellular Metabolic Homeostasis via AMPKα Activation. Cells, 2022, 11, 3988.	1.8	1

#	Article	IF	CITATIONS
507	Regulation and function of the mammalian tricarboxylic acidÂcycle. Journal of Biological Chemistry, 2023, 299, 102838.	1.6	53
508	Role of Mitochondrial Transporters on Metabolic Rewiring of Pancreatic Adenocarcinoma: A Comprehensive Review. Cancers, 2023, 15, 411.	1.7	5
509	Mitochondrial pyruvate carrier 1 regulates fatty acid synthase lactylation and mediates treatment of nonalcoholic fatty liver disease. Hepatology, 2023, 78, 1800-1815.	3.6	18
510	Protein acylation: mechanisms, biological functions and therapeutic targets. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	21
512	The SLC25A47 locus controls gluconeogenesis and energy expenditure. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	5
513	The mitochondrial pyruvate carrier complex potentiates the efficacy of proteasome inhibitors in multiple myeloma. Blood Advances, 2023, 7, 3485-3500.	2.5	5
514	Pyruvate dehydrogenase fuels a critical citrate pool that is essential for Th17 cell effector functions. Cell Reports, 2023, 42, 112153.	2.9	7
515	Mitochondrial pyruvate carrier inhibition initiates metabolic crosstalk to stimulate branched chain amino acid catabolism. Molecular Metabolism, 2023, 70, 101694.	3.0	15
516	Extracellular vesicles as a strategy for cadmium secretion in bacteria SH225. Chemosphere, 2023, 324, 138373.	4.2	3
517	Exon definitive regions for MPC1 microexon splicing and its usage for splicing modulation. Molecular Therapy - Nucleic Acids, 2023, 31, 398-410.	2.3	0
518	Inactivation of mitochondrial pyruvate carrier promotes <scp>NLRP3</scp> inflammasome activation and gout development via metabolic reprogramming. Immunology, 0, , .	2.0	2
519	The Hepatic Mitochondrial Pyruvate Carrier as a Regulator of Systemic Metabolism and a Therapeutic Target for Treating Metabolic Disease. Biomolecules, 2023, 13, 261.	1.8	6
520	Extracellularly Detectable Electrochemical Signals of Living Cells Originate from Metabolic Reactions. Advanced Science, 2023, 10, .	5.6	6
521	Nutrient transporters: connecting cancer metabolism to therapeutic opportunities. Oncogene, 2023, 42, 711-724.	2.6	5
522	Metabolism and epigenetics at the heart of T cell function. Trends in Immunology, 2023, 44, 231-244.	2.9	11
523	DRP1 mutations associated with EMPF1 encephalopathy alter mitochondrial membrane potential and metabolic programs. Journal of Cell Science, 2023, 136, .	1.2	8
525	Loss of a Functional Mitochondrial Pyruvate Carrier in Komagataella phaffii Does Not Improve Lactic Acid Production from Glycerol in Aerobic Cultivation. Microorganisms, 2023, 11, 483.	1.6	1
527	How Warburg-Associated Lactic Acidosis Rewires Cancer Cell Energy Metabolism to Resist Glucose Deprivation. Cancers, 2023, 15, 1417.	1.7	8

#	Article	IF	CITATIONS
528	Mitochondrial pyruvate metabolism regulates the activation of quiescent adult neural stem cells. Science Advances, 2023, 9, .	4.7	19
529	Targeting Mitochondrial Metabolic Reprogramming as a Potential Approach for Cancer Therapy. International Journal of Molecular Sciences, 2023, 24, 4954.	1.8	8
530	Glycolytic System in Axons Supplement Decreased ATP Levels after Axotomy of the Peripheral Nerve. ENeuro, 2023, 10, ENEURO.0353-22.2023.	0.9	2
531	Gluconeogenesis in the kidney: in health and in chronic kidney disease. CKJ: Clinical Kidney Journal, 2023, 16, 1249-1257.	1.4	1
532	The Mitochondrial Pyruvate Carrier Coupling Glycolysis and the Tricarboxylic Acid Cycle Is Required for the Asexual Reproduction of Toxoplasma gondii. Microbiology Spectrum, 2023, 11, .	1.2	2
533	Mitochondrial metabolism of the facultative parasite Chilodonella uncinata (Alveolata, Ciliophora). Parasites and Vectors, 2023, 16, .	1.0	3
546	Trends and prospects in mitochondrial genome editing. Experimental and Molecular Medicine, 2023, 55, 871-878.	3.2	5