A Physically Transient Form of Silicon Electronics

Science 337, 1640-1644 DOI: 10.1126/science.1226325

Citation Report

#	Article	IF	CITATIONS
1	Remote control within the UJI Robotics Manufacturing Cell using FPGA-based vision. , 2007, , .		4
3	Uniting ENCODE with genome-wide proteomics. Nature Biotechnology, 2012, 30, 1065-1067.	9.4	45
4	Peel-and-Stick: Fabricating Thin Film Solar Cell on Universal Substrates. Scientific Reports, 2012, 2, 1000.	1.6	66
5	Biodegradable electronics here today, gone tomorrow. Nature, 2012, , .	13.7	0
6	Deterministic assembly of releasable single crystal silicon-metal oxide field-effect devices formed from bulk wafers. Applied Physics Letters, 2013, 102, .	1.5	34
7	Biodegradable Mesostructured Polymer Membranes. Nano Letters, 2013, 13, 4410-4415.	4.5	6
8	Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics. Nature Protocols, 2013, 8, 2413-2428.	5.5	177
9	Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices. Proceedings of the United States of America, 2013, 110, 20912-20917.	3.3	260
10	Methods for the microfabrication of magnesium. , 2013, , .		6
11	Lightâ€Induced Disintegration of Robust Physically Crossâ€Linked Polymer Networks. Macromolecular Rapid Communications, 2013, 34, 1446-1451.	2.0	11
12	An analytical mechanics model for the island-bridge structure of stretchable electronics. Soft Matter, 2013, 9, 8476.	1.2	82
13	In the Spotlight: Neuroengineering. IEEE Reviews in Biomedical Engineering, 2013, 6, 24-26.	13.1	0
14	Silk stabilized graphene FET enzymatic glucose biosensor. , 2013, , .		3
15	Soft robots. Current Biology, 2013, 23, R639-R641.	1.8	78
16	An Analytical Model of Reactive Diffusion for Transient Electronics. Advanced Functional Materials, 2013, 23, 3106-3114.	7.8	74
17	Graphene Films for Flexible Organic and Energy Storage Devices. Journal of Physical Chemistry Letters, 2013, 4, 831-841.	2.1	65
18	Electronic and optoelectronic materials and devices inspired by nature. Reports on Progress in Physics, 2013, 76, 034501.	8.1	174
19	Materials and Fabrication Processes for Transient and Bioresorbable Highâ€Performance Electronics. Advanced Functional Materials, 2013, 23, 4087-4093.	7.8	222

#	Article	IF	CITATIONS
20	Transient, Biocompatible Electronics and Energy Harvesters Based on ZnO. Small, 2013, 9, 3398-3404.	5.2	342
21	Materials for Bioresorbable Radio Frequency Electronics. Advanced Materials, 2013, 25, 3526-3531.	11.1	189
22	Self-deployable current sources fabricated from edible materials. Journal of Materials Chemistry B, 2013, 1, 3781.	2.9	103
23	Green chemistry for organic solar cells. Energy and Environmental Science, 2013, 6, 2053.	15.6	244
24	25th Anniversary Article: The Evolution of Electronic Skin (E kin): A Brief History, Design Considerations, and Recent Progress. Advanced Materials, 2013, 25, 5997-6038.	11.1	2,001
25	End Group Characterization of Poly(phthalaldehyde): Surprising Discovery of a Reversible, Cationic Macrocyclization Mechanism. Journal of the American Chemical Society, 2013, 135, 12755-12761.	6.6	117
26	Breakthroughs in Photonics 2012: Large-Area Ultrathin Photonics. IEEE Photonics Journal, 2013, 5, 0700805-0700805.	1.0	2
27	UISilk. , 2013, , .		0
28	Theoretical and experimental study of the bending influence on the capacitance of interdigitated micro-electrodes patterned on flexible substrates. Journal of Applied Physics, 2013, 114, 174907.	1.1	10
29	Stability of Silk and Collagen Protein Materials in Space. Scientific Reports, 2013, 3, 3428.	1.6	19
30	Development of a micro-indentation device for measuring the mechanical properties of soft materials. Theoretical and Applied Mechanics Letters, 2013, 3, 054004.	1.3	4
31	Breakthroughs in Photonics 2012: Breakthroughs in Nanomembranes and Nanomembrane Lasers. IEEE Photonics Journal, 2013, 5, 0700707-0700707.	1.0	18
32	Peel-and-Stick: Mechanism Study for Efficient Fabrication of Flexible/Transparent Thin-film Electronics. Scientific Reports, 2013, 3, 2917.	1.6	59
33	Flexible integrated photonics: where materials, mechanics and optics meet [Invited]. Optical Materials Express, 2013, 3, 1313.	1.6	153
34	Implantable Devices: Issues and Challenges. Electronics (Switzerland), 2013, 2, 1-34.	1.8	239
35	Hybrid Materials for Integrated Photonics. Advances in Optics, 2014, 2014, 1-24.	0.3	17
36	Public Health in the Twenty-First Century: The Role of Advanced Technologies. Frontiers in Public Health, 2014, 2, 224.	1.3	5
37	Flexible Electronics from Foils to Textiles. , 2014, , 199-233.		1

#	Article	IF	CITATIONS
38	From chips to dust: The MEMS shatter secure chip. , 2014, , .		19
39	Protein-based soft micro-optics fabricated by femtosecond laser direct writing. Light: Science and Applications, 2014, 3, e129-e129.	7.7	133
40	Development of Electroplated Magnesium Microstructures for Biodegradable Devices and Energy Sources. Journal of Microelectromechanical Systems, 2014, 23, 1281-1289.	1.7	18
42	Mechanics of Interfacial Delamination in Epidermal Electronics Systems. Journal of Applied Mechanics, Transactions ASME, 2014, 81, .	1.1	46
43	Contact resistance and overlapping capacitance in flexible sub-micron long oxide thin-film transistors for above 100 MHz operation. Applied Physics Letters, 2014, 105, .	1.5	57
44	Diffraction phase microscopy: monitoring nanoscale dynamics in materials science [Invited]. Applied Optics, 2014, 53, G33.	0.9	46
45	Integrated silicon and silicon nitride photonic circuits on flexible substrates. Optics Letters, 2014, 39, 3449.	1.7	13
46	Dissolution Behaviors and Applications of Silicon Oxides and Nitrides in Transient Electronics. Advanced Functional Materials, 2014, 24, 4427-4434.	7.8	206
47	Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17385-17389.	3.3	281
48	Flexible Single-Crystal Silicon Nanomembrane Photonic Crystal Cavity. ACS Nano, 2014, 8, 12265-12271.	7.3	35
49	Hydrolyzable Polyureas Bearing Hindered Urea Bonds. Journal of the American Chemical Society, 2014, 136, 16974-16977.	6.6	138
50	Solution-processed single-walled carbon nanotube field effect transistors and bootstrapped inverters for disintegratable, transient electronics. Applied Physics Letters, 2014, 105, .	1.5	51
51	System architecture and simulation methodology of a multi-scale drug delivery platform using transient microbots. , 2014, , .		3
52	Study of Physically Transient Insulating Materials as a Potential Platform for Transient Electronics and Bioelectronics. Advanced Functional Materials, 2014, 24, 4135-4143.	7.8	127
53	25th Anniversary Article: A Soft Future: From Robots and Sensor Skin to Energy Harvesters. Advanced Materials, 2014, 26, 149-162.	11.1	732
54	Highâ€Performance Biodegradable/Transient Electronics on Biodegradable Polymers. Advanced Materials, 2014, 26, 3905-3911.	11.1	359
55	Synthesis and patterning of tunable multiscale materials with engineered cells. Nature Materials, 2014, 13, 515-523.	13.3	329
56	Biodegradable metals. Materials Science and Engineering Reports, 2014, 77, 1-34.	14.8	1,816

#	Article	IF	CITATIONS
57	Resource Letter N-1: Nanotechnology. American Journal of Physics, 2014, 82, 8-22.	0.3	3
58	Wearable, Humanâ€Interactive, Healthâ€Monitoring, Wireless Devices Fabricated by Macroscale Printing Techniques. Advanced Functional Materials, 2014, 24, 3299-3304.	7.8	392
59	Materials, Designs, and Operational Characteristics for Fully Biodegradable Primary Batteries. Advanced Materials, 2014, 26, 3879-3884.	11.1	263
60	Biologically Inspired Micro- and Nanoengineering Systems for Functional and Complex Tissues. Tissue Engineering - Part A, 2014, 20, 2127-2130.	1.6	18
61	Long Term Stability of Nanowire Nanoelectronics in Physiological Environments. Nano Letters, 2014, 14, 1614-1619.	4.5	126
62	The Rise of Organic Bioelectronics. Chemistry of Materials, 2014, 26, 679-685.	3.2	579
63	Wireless power transfer to deep-tissue microimplants. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7974-7979.	3.3	399
64	Introduction to biomaterials and implantable device design. , 2014, , 1-31.		2
65	Molecularly Stretchable Electronics. Chemistry of Materials, 2014, 26, 3028-3041.	3.2	170
66	Nanoscale semiconductor devices as new biomaterials. Biomaterials Science, 2014, 2, 619-626.	2.6	25
67	Simple metal/SiO ₂ /Si planar photodetector utilizing leakage current flows through a SiO ₂ layer. Journal of Materials Chemistry C, 2014, 2, 2045-2050.	2.7	11
68	Wafer-scale design of lightweight and transparent electronics that wraps around hairs. Nature Communications, 2014, 5, 2982.	5.8	279
69	Surgical materials: Current challenges and nano-enabled solutions. Nano Today, 2014, 9, 574-589.	6.2	158
70	Conceptual design and simulations of a nano-communication model for drug delivery based on a transient microbot system. , 2014, , .		10
71	Nanowire Field Effect Transistors: Principles and Applications. , 2014, , .		17
72	Next-generation flexible neural and cardiac electrode arrays. Biomedical Engineering Letters, 2014, 4, 95-108.	2.1	33
73	Advanced materials for neural surface electrodes. Current Opinion in Solid State and Materials Science, 2014, 18, 301-307.	5.6	21
74	Flexible Sensors for Chronic Wound Management. IEEE Reviews in Biomedical Engineering, 2014, 7, 73-86.	13.1	76

#	Article	IF	CITATIONS
75	Biodegradable Materials for Multilayer Transient Printed Circuit Boards. Advanced Materials, 2014, 26, 7371-7377.	11.1	136
76	Triggered Transience of Metastable Poly(phthalaldehyde) for Transient Electronics. Advanced Materials, 2014, 26, 7637-7642.	11.1	173
77	Substrate porosity induces phenotypic alterations in retinal cells cultured on silicon nanowires. RSC Advances, 2014, 4, 27888-27897.	1.7	24
78	Rapid fabrication of silk films with controlled architectures via electrogelation. Journal of Materials Chemistry B, 2014, 2, 4983.	2.9	28
79	Dissolution Chemistry and Biocompatibility of Single-Crystalline Silicon Nanomembranes and Associated Materials for Transient Electronics. ACS Nano, 2014, 8, 5843-5851.	7.3	171
80	Biodegradable Nanofibrous Polymeric Substrates for Generating Elastic and Flexible Electronics. Advanced Materials, 2014, 26, 5823-5830.	11.1	117
81	Physically Transient Photonics: Random <i>versus</i> Distributed Feedback Lasing Based on Nanoimprinted DNA. ACS Nano, 2014, 8, 10893-10898.	7.3	42
82	Processing of Bombyx mori silk for biomedical applications. , 2014, , 78-99.		20
83	Observation of Emission Enhancement Caused by Symmetric Carrier Depletion in III–V Nanomembrane Heterostructures. ACS Photonics, 2014, 1, 863-870.	3.2	9
84	Porous silicon for medical use: from conception to clinical use. , 2014, , 3-20.		25
85	Microfabricated implantable wireless microsystems: Permanent and biodegradable implementations. , 2014, , .		9
86	Bio-integrated electronics. , 2014, , .		0
87	A MEMS-enabled biodegradable battery for powering transient implantable devices. , 2014, , .		16
88	Electrocardiographic Recording with Conformable Organic Electrochemical Transistor Fabricated on Resorbable Bioscaffold. Advanced Materials, 2014, 26, 3874-3878.	11.1	252
89	Highly Stretchable Carbon Nanotube Transistors with Ion Gel Gate Dielectrics. Nano Letters, 2014, 14, 682-686.	4.5	152
90	A Microfabricated Wireless RF Pressure Sensor Made Completely of Biodegradable Materials. Journal of Microelectromechanical Systems, 2014, 23, 4-13.	1.7	177
91	Self-Folding Single Cell Grippers. Nano Letters, 2014, 14, 4164-4170.	4.5	141
92	Silk/molecular conductor bilayer thin-films: properties and sensing functions. Materials Horizons, 2014, 1, 522-528.	6.4	17

		CITATION R	EPORT	
#	ARTICLE		IF	Citations
93	Dissolvable Metals for Transient Electronics. Advanced Functional Materials, 2014, 24,	645-658.	7.8	379
94	Carbon aerogels based on regenerated silk proteins and graphene oxide for supercapac Macromolecular Research, 2014, 22, 509-514.	itors.	1.0	34
95	Morphological and chemical stability of silicon nanostructures and their molecular over under physiological conditions: towards long-term implantable nanoelectronic biosense of Nanobiotechnology, 2014, 12, 7.		4.2	33
96	Thin Film Receiver Materials for Deterministic Assembly by Transfer Printing. Chemistry 2014, 26, 3502-3507.	of Materials,	3.2	35
97	Experimental and Theoretical Studies of Serpentine Microstructures Bonded To Prestra Elastomers for Stretchable Electronics. Advanced Functional Materials, 2014, 24, 2028		7.8	273
98	Negative differential conductance materials for flexible electronics. Journal of Applied P Science, 2014, 131, .	olymer	1.3	5
99	High performance pentacene organic field-effect transistors consisting of biocompatibl fibroin bilayer dielectric. Chinese Physics B, 2014, 23, 038505.	e PMMA/silk	0.7	13
100	Built To Disappear. ACS Nano, 2014, 8, 5380-5382.		7.3	29
101	Graphene-based field effect transistor enzymatic glucose biosensor using silk protein fo immobilization and device substrate. Sensors and Actuators B: Chemical, 2014, 202, 12	or enzyme 357-1365.	4.0	122
102	25th Anniversary Article: Materials for Highâ€Performance Biodegradable Semiconduct Advanced Materials, 2014, 26, 1992-2000.	or Devices.	11.1	161
103	Buckling of a stiff thin film on a pre-strained bi-layer substrate. International Journal of S Structures, 2014, 51, 3113-3118.	Solids and	1.3	52
104	Progress in 2D photonic crystal Fano resonance photonics. Progress in Quantum Electr 38, 1-74.	onics, 2014,	3.5	232
105	Silk-based stabilization of biomacromolecules. Journal of Controlled Release, 2015, 219	9, 416-430.	4.8	117
107	Sub-0.5 V Highly Stable Aqueous Salt Gated Metal Oxide Electronics. Scientific Reports	, 2015, 5, 13088.	1.6	51
108	Self-Heating Effects In Polysilicon Source Gated Transistors. Scientific Reports, 2015, 5	, 14058.	1.6	16
109	Biodegradable magnesium/iron batteries with polycaprolactone encapsulation: A micro power source for transient implantable devices. Microsystems and Nanoengineering, 20	fabricated 015, 1, .	3.4	76
110	Cost-Effective and Highly Photoresponsive Nanophosphor-P3HT Photoconductive Nano Near-Infrared Detection. Scientific Reports, 2015, 5, 16761.	ocomposite for	1.6	11
112	Transient bioelectronics: Electronic properties of silver microparticle-based circuits on p substrates subjected to mechanical load. Journal of Polymer Science, Part B: Polymer Pl 1603-1610.	oolymeric hysics, 2015, 53,	2.4	24

	CITATION N	LEPORT	
# 113	ARTICLE Nanoscale Sensor Technologies for Disease Detection via Volatolomics. Small, 2015, 11, 6142-6164.	IF 5.2	Citations
114	Fabrication of Tunable, Highâ€Refractiveâ€Index Titanate–Silk Nanocomposites on the Micro―and Nanoscale. Advanced Materials, 2015, 27, 6728-6732.	11.1	31
115	Biocompatible Collagen Films as Substrates for Flexible Implantable Electronics. Advanced Electronic Materials, 2015, 1, 1500154.	2.6	61
116	Design Considerations for Unconventional Electrochemical Energy Storage Architectures. Advanced Energy Materials, 2015, 5, 1402115.	10.2	271
117	Biocompatible and Flexible Chitosanâ€Based Resistive Switching Memory with Magnesium Electrodes. Advanced Functional Materials, 2015, 25, 5586-5592.	7.8	262
118	A Mechanofluorochromic Push–Pull Small Molecule with Aggregationâ€Controlled Linear and Nonlinear Optical Properties. Advanced Materials, 2015, 27, 4285-4289.	11.1	80
119	Stretchable and Tunable Microtectonic ZnO-Based Sensors and Photonics. Small, 2015, 11, 4532-4539.	5.2	54
120	Thermally Triggered Degradation of Transient Electronic Devices. Advanced Materials, 2015, 27, 3783-3788.	11.1	153
121	Deterministic Assembly of Flexible Si/Ge Nanoribbons via Edgeâ€Cutting Transfer and Printing for van der Waals Heterojunctions. Small, 2015, 11, 4140-4148.	5.2	23
123	Transfer Printed Nanomembranes for Heterogeneously Integrated Membrane Photonics. Photonics, 2015, 2, 1081-1100.	0.9	14
124	A Microring Temperature Sensor Based on the Surface Plasmon Wave. Advances in OptoElectronics, 2015, 2015, 1-7.	0.6	0
125	Characterizing Physically Transient Antennas. IEEE Transactions on Antennas and Propagation, 2015, 63, 2421-2429.	3.1	6
126	High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nature Communications, 2015, 6, 7170.	5.8	707
127	Passive resonance sensor based method for monitoring particle suspensions. Sensors and Actuators B: Chemical, 2015, 219, 324-330.	4.0	11
128	Low ost Synthesis of Porous Silicon via Ferriteâ€Assisted Chemical Etching and Their Application as Siâ€Based Anodes for Liâ€lon Batteries. Advanced Electronic Materials, 2015, 1, 1400059.	2.6	18
129	Carbonization of a stable β-sheet-rich silk protein into a pseudographitic pyroprotein. Nature Communications, 2015, 6, 7145.	5.8	192
130	Electronics for the Human Body. JAMA - Journal of the American Medical Association, 2015, 313, 561.	3.8	74
131	Low-Voltage Transient/Biodegradable Transistors Based on Free-Standing Sodium Alginate Membranes. IEEE Electron Device Letters, 2015, 36, 576-578.	2.2	18

		LEPUKI	
#	Article	IF	Citations
132	Analytical Evaluation of Interfacial Crack Propagation in Vacuum-Based Picking-up Process. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2015, 5, 1700-1708.	1.4	11
133	In-situ measurements of nanoscale phenomena using diffraction phase microscopy. Proceedings of SPIE, 2015, , .	0.8	0
134	Fully biodegradable pressure sensor, viscoelastic behavior of PGS dielectric elastomer upon degradation. , 2015, , .		4
135	Statistical characterization of physically transient antennas. , 2015, , .		0
136	Nature as microelectronic fab: Bioelectronics: Materials, transistors and circuits. , 2015, , .		6
137	Nature as microelectronic fab: Bioelectronics: Materials, transistors and circuits. , 2015, , .		0
139	Flexible and Stretchable Micromagnet Arrays for Tunable Biointerfacing. Advanced Materials, 2015, 27, 1083-1089.	11.1	20
140	Thermally Stable, Biocompatible, and Flexible Organic Fieldâ€Effect Transistors and Their Application in Temperature Sensing Arrays for Artificial Skin. Advanced Functional Materials, 2015, 25, 2138-2146.	7.8	184
141	Imperceptible magnetoelectronics. Nature Communications, 2015, 6, 6080.	5.8	184
142	A Touch-Communication Framework for Drug Delivery Based on a Transient Microbot System. IEEE Transactions on Nanobioscience, 2015, 14, 397-408.	2.2	51
143	Mechanisms for Hydrolysis of Silicon Nanomembranes as Used in Bioresorbable Electronics. Advanced Materials, 2015, 27, 1857-1864.	11.1	98
144	Materials and fabrication sequences for water soluble silicon integrated circuits at the 90 nm node. Applied Physics Letters, 2015, 106, .	1.5	28
145	Direct Transfer of Magnetic Sensor Devices to Elastomeric Supports for Stretchable Electronics. Advanced Materials, 2015, 27, 1333-1338.	11.1	69
146	Impacts of gold nanoparticle charge and ligand type on surface binding and toxicity to Gram-negative and Gram-positive bacteria. Chemical Science, 2015, 6, 5186-5196.	3.7	203
147	Functionalized ultrathin palladium nanosheets as patches for HepG2 cancer cells. Chemical Communications, 2015, 51, 14171-14174.	2.2	18
148	Lasing within Live Cells Containing Intracellular Optical Microresonators for Barcode-Type Cell Tagging and Tracking. Nano Letters, 2015, 15, 5647-5652.	4.5	158
149	Performance improvement of organic field-effect transistor based nitrogen dioxide gas sensor using biocompatible PMMA/silk fibroin bilayer dielectric. Journal of Materials Science: Materials in Electronics, 2015, 26, 7948-7954.	1.1	14
150	Transient Rechargeable Batteries Triggered by Cascade Reactions. Nano Letters, 2015, 15, 4664-4671.	4.5	77

		15	C
#	ARTICLE Photoelectric artefact from optogenetics and imaging on microelectrodes and bioelectronics: new	IF	CITATIONS
151	challenges and opportunities. Journal of Materials Chemistry B, 2015, 3, 4965-4978.	2.9	127
152	Bioresorbable Electronic Stent Integrated with Therapeutic Nanoparticles for Endovascular Diseases. ACS Nano, 2015, 9, 5937-5946.	7.3	203
153	Biopatterning of Silk Proteins for Soft Micro-optics. ACS Applied Materials & Interfaces, 2015, 7, 8809-8816.	4.0	47
154	Fully implantable and resorbable wireless medical devices for postsurgical infection abatement. , 2015, , .		2
155	Water-Soluble Thin Film Transistors and Circuits Based on Amorphous Indium–Gallium–Zinc Oxide. ACS Applied Materials & Interfaces, 2015, 7, 8268-8274.	4.0	113
156	Impedance sensing device enables early detection of pressure ulcers in vivo. Nature Communications, 2015, 6, 6575.	5.8	176
157	Cashmere-derived keratin for device manufacturing on the micro- and nanoscale. Journal of Materials Chemistry C, 2015, 3, 2783-2787.	2.7	22
158	Renewableâ€Jugloneâ€Based Highâ€Performance Sodiumâ€Ion Batteries. Advanced Materials, 2015, 27, 2348-2	35 f4. 1	208
159	Inâ€Depth Studies on Rapid Photochemical Activation of Various Sol–Gel Metal Oxide Films for Flexible Transparent Electronics. Advanced Functional Materials, 2015, 25, 2807-2815.	7.8	172
160	Toward organic electronics with properties inspired by biological tissue. Journal of Materials Chemistry B, 2015, 3, 4947-4952.	2.9	44
161	A Highly Tunable and Fully Biocompatible Silk Nanoplasmonic Optical Sensor. Nano Letters, 2015, 15, 3358-3363.	4.5	88
162	Biodegradable Thin Metal Foils and Spinâ€On Glass Materials for Transient Electronics. Advanced Functional Materials, 2015, 25, 1789-1797.	7.8	135
163	Biodegradable Elastomers and Silicon Nanomembranes/Nanoribbons for Stretchable, Transient Electronics, and Biosensors. Nano Letters, 2015, 15, 2801-2808.	4.5	281
164	Highly Stretchable Gold Nanobelts with Sinusoidal Structures for Recording Electrocorticograms. Advanced Materials, 2015, 27, 3145-3151.	11.1	145
165	Materials Advances for Next-Generation Ingestible Electronic Medical Devices. Trends in Biotechnology, 2015, 33, 575-585.	4.9	94
166	Cycle stability and dielectric properties of a new biodegradable energy storage material. Nano Energy, 2015, 17, 348-355.	8.2	28
167	Aqueous multiphoton lithography with multifunctional silk-centred bio-resists. Nature Communications, 2015, 6, 8612.	5.8	111
168	Shapeable magnetic sensorics. , 2015, , .		0

#	Article	IF	Citations
169	Biodegradable Junctionless Transistors With Extremely Simple Structure. IEEE Electron Device Letters, 2015, 36, 908-910.	2.2	8
170	A Sensitive and Biodegradable Pressure Sensor Array for Cardiovascular Monitoring. Advanced Materials, 2015, 27, 6954-6961.	11.1	544
171	Bending behavior of a flexible single crystal nanomembrane photonic crystal cavity. , 2015, , .		0
172	Dissolution Chemistry and Biocompatibility of Silicon- and Germanium-Based Semiconductors for Transient Electronics. ACS Applied Materials & amp; Interfaces, 2015, 7, 9297-9305.	4.0	147
173	Wearable and Implantable Mechanical Energy Harvesters for Self-Powered Biomedical Systems. ACS Nano, 2015, 9, 7742-7745.	7.3	132
174	Materials for microfabricated implantable devices: a review. Lab on A Chip, 2015, 15, 4256-4272.	3.1	126
175	Silk–Its Mysteries, How It Is Made, and How It Is Used. ACS Biomaterials Science and Engineering, 2015, 1, 864-876.	2.6	85
176	Modulated Degradation of Transient Electronic Devices through Multilayer Silk Fibroin Pockets. ACS Applied Materials & Interfaces, 2015, 7, 19870-19875.	4.0	66
177	Highly stretchable carbon nanotube transistors enabled by buckled ion gel gate dielectrics. Applied Physics Letters, 2015, 107, .	1.5	29
178	Chip-level anti-reverse engineering using transformable interconnects. , 2015, , .		25
179	Flexible Piezoelectric Thinâ€Film Energy Harvesters and Nanosensors for Biomedical Applications. Advanced Healthcare Materials, 2015, 4, 646-658.	3.9	249
180	Self-powered flexible inorganic electronic system. Nano Energy, 2015, 14, 111-125.	8.2	110
181	Materials and Wireless Microfluidic Systems for Electronics Capable of Chemical Dissolution on Demand. Advanced Functional Materials, 2015, 25, 1338-1343.	7.8	41
182	Wearable Magnetic Field Sensors for Flexible Electronics. Advanced Materials, 2015, 27, 1274-1280.	11.1	201
183	Facile strain analysis of largely bending films by a surface-labelled grating method. Scientific Reports, 2014, 4, 5377.	1.6	33
184	Vertically Architectured Stack of Multiple Graphene Fieldâ€Effect Transistors for Flexible Electronics. Small, 2015, 11, 1660-1664.	5.2	12
185	Sweet Substrate: A Polysaccharide Nanocomposite for Conformal Electronic Decals. Advanced Materials, 2015, 27, 1600-1606.	11.1	41
186	Highâ€Performance Magnetic Sensorics for Printable and Flexible Electronics. Advanced Materials, 2015, 27, 880-885.	11.1	87

#	Article	IF	CITATIONS
187	Materials for Programmed, Functional Transformation in Transient Electronic Systems. Advanced Materials, 2015, 27, 47-52.	11.1	81
188	Cellulose Nanofiber Paper as an Ultra Flexible Nonvolatile Memory. Scientific Reports, 2014, 4, 5532.	1.6	122
189	Silicon: The evolution of its use in biomaterials. Acta Biomaterialia, 2015, 11, 17-26.	4.1	163
191	Silks. , 2016, , .		0
192	Mechanical Circulatory Support: Heart Failure Therapy "in Motion― Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery, 2016, 11, 305-314.	0.4	0
193	Semiconductor Nanomembrane-Based Light-Emitting and Photodetecting Devices. Photonics, 2016, 3, 40.	0.9	8
194	CMOSâ€Technologyâ€Enabled Flexible and Stretchable Electronics for Internet of Everything Applications. Advanced Materials, 2016, 28, 4219-4249.	11.1	179
195	Photolithographic Micropatterning of Conducting Polymers on Flexible Silk Matrices. Advanced Materials, 2016, 28, 1406-1412.	11.1	99
196	Study of mechanics of physically transient electronics: A step toward controlled transiency. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 517-524.	2.4	17
197	Physical-chemical hybrid transiency: A fully transient li-ion battery based on insoluble active materials. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2021-2027.	2.4	26
198	Silk Fibroin for Flexible Electronic Devices. Advanced Materials, 2016, 28, 4250-4265.	11.1	466
199	An implantable and controlled drug-release silk fibroin nanofibrous matrix to advance the treatment of solid tumour cancers. Biomaterials, 2016, 103, 33-43.	5.7	54
200	Evidence of Porphyrin-Like Structures in Natural Melanin Pigments Using Electrochemical Fingerprinting. Advanced Materials, 2016, 28, 3173-3180.	11.1	75
201	Allâ€Component Transient Lithiumâ€Ion Batteries. Advanced Energy Materials, 2016, 6, 1502496.	10.2	47
202	Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8169-E8177.	3.3	111
203	Transport in organic single-crystal microbelt for conformal electronics. Applied Physics Letters, 2016, 108, .	1.5	8
204	Physically Transient Memory on a Rapidly Dissoluble Paper for Security Application. Scientific Reports, 2016, 6, 38324.	1.6	36
205	Propagation channel modeling for transient communication. , 2016, , .		1

#	Article	IF	Citations
206	Shapeable magnetoelectronics. Applied Physics Reviews, 2016, 3, 011101.	5.5	141
207	Inorganic dissolvable electronics: materials and devices for biomedicine and environment. Journal of Materials Research, 2016, 31, 2549-2570.	1.2	28
208	Polymers with autonomous life-cycle control. Nature, 2016, 540, 363-370.	13.7	322
209	Metal oxide semiconductor thin-film transistors for flexible electronics. Applied Physics Reviews, 2016, 3, 021303.	5.5	511
210	Cellular uptake and dynamics of unlabeled freestanding silicon nanowires. Science Advances, 2016, 2, e1601039.	4.7	84
211	Water-Soluble Glass Substrate as a Platform for Biodegradable Solid-State Devices. IEEE Journal of the Electron Devices Society, 2016, 4, 490-494.	1.2	13
212	Mechanical Circulatory Support: Heart Failure Therapy "in Motion― Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery, 2016, 11, 305-314.	0.4	4
213	Sensor substrates based on biodegradable glass materials. , 2016, , .		4
214	A sensor measuring deformation and pressure, entirely biodegradable, for orthopedic applications. , 2016, , .		4
215	Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Science Advances, 2016, 2, e1501478.	4.7	461
216	Stretchable Bioelectronics for Medical Devices and Systems. Microsystems and Nanosystems, 2016, , .	0.1	90
217	Wireless Applications of Conformal Bioelectronics. Microsystems and Nanosystems, 2016, , 83-114.	0.1	1
218	Bioelectronics with two-dimensional materials. Microelectronic Engineering, 2016, 161, 18-35.	1.1	47
219	Eco-friendly photolithography using water-developable pure silk fibroin. RSC Advances, 2016, 6, 39330-39334.	1.7	43
220	Transient Resistive Switching Devices Made from Egg Albumen Dielectrics and Dissolvable Electrodes. ACS Applied Materials & Interfaces, 2016, 8, 10954-10960.	4.0	129
221	Methods and Applications of Multilayer Silk Fibroin Laminates Based on Spatially Controlled Welding in Protein Films. Advanced Functional Materials, 2016, 26, 44-50.	7.8	26
222	Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity fromÂthe cerebral cortex. Nature Materials, 2016, 15, 782-791.	13.3	400
223	Wearable Chemical Sensors: Present Challenges and Future Prospects. ACS Sensors, 2016, 1, 464-482.	4.0	596

#	Article	IF	CITATIONS
224	Biodegradable electronics: cornerstone for sustainable electronics and transient applications. Journal of Materials Chemistry C, 2016, 4, 5531-5558.	2.7	184
225	Transient Electronics: Materials and Devices. Chemistry of Materials, 2016, 28, 3527-3539.	3.2	284
226	Transient materials from thermally-sensitive polycarbonates and polycarbonate nanocomposites. Polymer, 2016, 101, 59-66.	1.8	19
227	Holographic Structuring of Elastomer Actuator: First True Monolithic Tunable Elastomer Optics. Advanced Materials, 2016, 28, 10217-10223.	11.1	5
228	Cut-and-stack nanofiber paper toward fast transient energy storage. Inorganic Chemistry Frontiers, 2016, 3, 681-688.	3.0	10
229	Novel concepts in functional resistive switching memories. Journal of Materials Chemistry C, 2016, 4, 9637-9645.	2.7	59
230	Recent Advancements in Functionalized Paper-Based Electronics. ACS Applied Materials & Interfaces, 2016, 8, 20501-20515.	4.0	150
231	Nanomaterialâ€Based Soft Electronics for Healthcare Applications. ChemNanoMat, 2016, 2, 1006-1017.	1.5	65
232	In situ growth of fluorescent silicon nanocrystals in a monolithic microcapsule as a photostable, versatile platform. Nanoscale, 2016, 8, 15645-15657.	2.8	7
233	Programing Performance of Wool Keratin and Silk Fibroin Composite Materials by Mesoscopic Molecular Network Reconstruction. Advanced Functional Materials, 2016, 26, 9032-9043.	7.8	75
234	Strain sensors on water-soluble cellulose nanofibril paper by polydimethylsiloxane (PDMS) stencil lithography. RSC Advances, 2016, 6, 85427-85433.	1.7	26
235	Design for Rituals of Letting Go. ACM Transactions on Computer-Human Interaction, 2016, 23, 1-37.	4.6	60
237	Robust and stretchable indium gallium zinc oxide-based electronic textiles formed by cilia-assisted transfer printing. Nature Communications, 2016, 7, 11477.	5.8	73
238	Green microwave electronics for the coming era of flexible electronics. , 2016, , .		0
239	All-nanocellulose nonvolatile resistive memory. NPG Asia Materials, 2016, 8, e310-e310.	3.8	64
244	Nano-Communication for Biomedical Applications: A Review on the State-of-the-Art From Physical Layers to Novel Networking Concepts. IEEE Access, 2016, 4, 3920-3935.	2.6	84
246	Biodegradable resistive switching memory based on magnesium difluoride. Nanoscale, 2016, 8, 15048-15055.	2.8	20
247	Silk Fibroinâ€Carbon Nanotube Composite Electrodes for Flexible Biocatalytic Fuel Cells. Advanced Electronic Materials, 2016, 2, 1600190.	2.6	19

ARTICLE IF CITATIONS # Liquid Exfoliated Natural Silk Nanofibrils: Applications in Optical and Electrical Devices. Advanced 248 11.1 134 Materials, 2016, 28, 7783-7790. 249 Smart Assembly for Soft Bioelectronics. IEEE Potentials, 2016, 35, 9-13. 0.2 250 Soft and bio-degradable electronics: Technology challenges and future applications. , 2016, , . 0 Transient Micromotors That Disappear When No Longer Needed. ACS Nano, 2016, 10, 10389-10396. 109 Silk Fibroin as Edible Coating for Perishable Food Preservation. Scientific Reports, 2016, 6, 25263. 252 1.6 168 An implantable compound-releasing capsule triggered on demand by ultrasound. Scientific Reports, 1.6 2016, 6, 22803. Nanoscale probing of electron-regulated structural transitions in silk proteins by near-field IR 254 5.8 78 imaging and nano-spectroscopy. Nature Communications, 2016, 7, 13079. Reverse engineering resistant ROM design using transformable via-programming structure., 2016,,. Impact of degradable nanowires on long-term brain tissue responses. Journal of Nanobiotechnology, 256 4.2 6 2016, 14, 64. Physically Transient Resistive Switching Memory Based on Silk Protein. Small, 2016, 12, 2715-2719. 5.2 148 Recent Advances in Flexible and Stretchable Bioâ€Electronic Devices Integrated with Nanomaterials. 258 11.1 894 Advanced Materials, 2016, 28, 4203-4218. Direct Transfer Printing of Water Hydrolyzable Metals onto Silk Fibroin Substrates through Thermalâ€Reflowâ€Based Adhesion. Advanced Materials Interfaces, 2016, 3, 1600094. Protein-Based Bioelectronics. ACS Biomaterials Science and Engineering, 2016, 2, 1211-1223. 260 2.6 87 Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces. Nature Materials, 13.3 2016, 15, 1023-1030. Dissolvable and biodegradable resistive switching memory based on magnesium oxide. IEEE Electron 262 2.2 19 Device Letters, 2016, , 1-1. Toward Biodegradable Mg–Air Bioelectric Batteries Composed of Silk Fibroin–Polypyrrole Film. 99 Advanced Functional Materials, 2016, 26, 1454-1462. Foodâ€Materialsâ€Based Edible Supercapacitors. Advanced Materials Technologies, 2016, 1, 1600059. 264 3.081 Bioresorbable silicon electronic sensors for the brain. Nature, 2016, 530, 71-76. 778

#	Article	IF	Citations
266	Self-Destructible Fin Flip-Flop Actuated Channel Transistor. IEEE Electron Device Letters, 2016, 37, 130-133.	2.2	10
267	Characterizing Nanoscale Transient Communication. IEEE Transactions on Nanobioscience, 2016, 15, 218-229.	2.2	8
268	Ultrafast triggered transient energy storage by atomic layer deposition into porous silicon for integrated transient electronics. Nanoscale, 2016, 8, 7384-7390.	2.8	32
269	Stress analysis for nanomembranes under stamp compression. Extreme Mechanics Letters, 2016, 7, 136-144.	2.0	2
270	Recent development of transient electronics. Theoretical and Applied Mechanics Letters, 2016, 6, 21-31.	1.3	61
271	Transient micropackets for silicon dioxide and polymer-based vaporizable electronics. , 2016, , .		6
272	Nanowire-Based Sensors for Biological and Medical Applications. IEEE Transactions on Nanobioscience, 2016, 15, 186-199.	2.2	60
273	Sustainable Life Cycles of Natural-Precursor-Derived Nanocarbons. Chemical Reviews, 2016, 116, 163-214.	23.0	163
274	Development of silk fibroin-derived nanofibrous drug delivery system in supercritical CO2. Materials Letters, 2016, 167, 175-178.	1.3	19
275	Bioprinting: an assessment based on manufacturing readiness levels. Critical Reviews in Biotechnology, 2017, 37, 333-354.	5.1	36
276	Carbonized Silk Nanofiber Membrane for Transparent and Sensitive Electronic Skin. Advanced Functional Materials, 2017, 27, 1605657.	7.8	413
277	Dielectric Properties of Sustainable Nanocomposites Based on Zein Protein and Lignin for Biodegradable Insulators. Advanced Functional Materials, 2017, 27, 1605142.	7.8	41
278	Electronic Devices for Humanâ€Machine Interfaces. Advanced Materials Interfaces, 2017, 4, 1600709.	1.9	76
279	Paper: A promising material for human-friendly functional wearable electronics. Materials Science and Engineering Reports, 2017, 112, 1-22.	14.8	128
280	Mechanically Milled Irregular Zinc Nanoparticles for Printable Bioresorbable Electronics. Small, 2017, 13, 1700065.	5.2	50
281	Interface Engineering of Metal Oxide Semiconductors for Biosensing Applications. Advanced Materials Interfaces, 2017, 4, 1700020.	1.9	72
282	Metal Oxide Semiconductor Thin-Film Transistors: Device Physics and Compact Modeling. , 2017, , 69-98.		0
283	Imperceptible organic electronics. MRS Bulletin, 2017, 42, 124-130.	1.7	42

#	Article	IF	CITATIONS
284	Design of High Capacity Dissoluble Electrodes for All Transient Batteries. Advanced Functional Materials, 2017, 27, 1605724.	7.8	21
285	Dry Transient Electronic Systems by Use of Materials that Sublime. Advanced Functional Materials, 2017, 27, 1606008.	7.8	34
286	Interfacial Stress in Physically Transient Layered Structures: An Experimental and Analytical Approach. Advanced Materials Interfaces, 2017, 4, 1601076.	1.9	8
287	Evaluation of Silk Inverse Opals for "Smart―Tissue Culture. ACS Omega, 2017, 2, 470-477.	1.6	13
288	Recent advances in wearable tactile sensors: Materials, sensing mechanisms, and device performance. Materials Science and Engineering Reports, 2017, 115, 1-37.	14.8	557
290	Synergistic Integration of Experimental and Simulation Approaches for the <i>de Novo</i> Design of Silk-Based Materials. Accounts of Chemical Research, 2017, 50, 866-876.	7.6	45
291	Silk protein as a new optically transparent adhesion layer for an ultra-smooth sub-10 nm gold layer. Nanotechnology, 2017, 28, 115201.	1.3	15
292	Sol-gel metal oxide dielectrics for all-solution-processed electronics. Materials Science and Engineering Reports, 2017, 114, 1-22.	14.8	180
293	Lowâ€Cost Manufacturing of Bioresorbable Conductors by Evaporation–Condensationâ€Mediated Laser Printing and Sintering of Zn Nanoparticles. Advanced Materials, 2017, 29, 1700172.	11.1	88
295	Nanoionicsâ€Enabled Memristive Devices: Strategies and Materials for Neuromorphic Applications. Advanced Electronic Materials, 2017, 3, 1600510.	2.6	167
296	Destructive electronics from electrochemical-mechanically triggered chemical dissolution. Journal of Micromechanics and Microengineering, 2017, 27, 065010.	1.5	14
297	Thermally Triggered Mechanically Destructive Electronics Based On Electrospun Poly(ε-caprolactone) Nanofibrous Polymer Films. Scientific Reports, 2017, 7, 947.	1.6	24
298	Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5107-5112.	3.3	347
299	Flexible Device Applications of 2D Semiconductors. Small, 2017, 13, 1603994.	5.2	167
300	High-performance green semiconductor devices: materials, designs, and fabrication. Semiconductor Science and Technology, 2017, 32, 063002.	1.0	18
301	Ultrasensitive Multi-Functional Flexible Sensors Based on Organic Field-Effect Transistors with Polymer-Dispersed Liquid Crystal Sensing Layers. Scientific Reports, 2017, 7, 2630.	1.6	57
302	Fully Biodegradable Microsupercapacitor for Power Storage in Transient Electronics. Advanced Energy Materials, 2017, 7, 1700157.	10.2	196
303	Instant tough bonding of hydrogels for soft machines and electronics. Science Advances, 2017, 3, e1700053.	4.7	359

#	Article	IF	CITATIONS
304	The fabrication and characterization of flexible single-crystalline silicon and germanium p-intrinsic-n photodetectors on plastic substrates. Applied Physics Letters, 2017, 110, .	1.5	14
305	Composites Formed from Thermoresponsive Polymers and Conductive Nanowires for Transient Electronic Systems. ACS Applied Materials & amp; Interfaces, 2017, 9, 21991-21997.	4.0	21
306	Radio-frequency flexible and stretchable electronics: the need, challenges and opportunities. Proceedings of SPIE, 2017, , .	0.8	6
307	Next-generation probes, particles, and proteins for neural interfacing. Science Advances, 2017, 3, e1601649.	4.7	377
308	Assembly of Heterogeneous Materials for Biology and Electronics: From Bio-Inspiration to Bio-Integration. Journal of Electronic Packaging, Transactions of the ASME, 2017, 139, .	1.2	12
309	Mechanical Properties of Organic Semiconductors for Stretchable, Highly Flexible, and Mechanically Robust Electronics. Chemical Reviews, 2017, 117, 6467-6499.	23.0	624
310	Bioinspired stimuli-responsive multilayer film made of silk–titanate nanocomposites. Journal of Materials Chemistry C, 2017, 5, 3924-3931.	2.7	49
311	Recent Progress on Piezoelectric and Triboelectric Energy Harvesters in Biomedical Systems. Advanced Science, 2017, 4, 1700029.	5.6	405
313	Expandable Polymer Enabled Wirelessly Destructible Highâ€Performance Solid State Electronics. Advanced Materials Technologies, 2017, 2, 1600264.	3.0	20
314	Advanced Materials for Printed Wearable Electrochemical Devices: A Review. Advanced Electronic Materials, 2017, 3, 1600260.	2.6	358
315	Differences between graphene and graphene oxide in gelatin based systems for transient biodegradable energy storage applications. Nanotechnology, 2017, 28, 054005.	1.3	31
316	Shear deformation dominates in the soft adhesive layers of the laminated structure of flexible electronics. International Journal of Solids and Structures, 2017, 110-111, 305-314.	1.3	33
317	Biocompatible, optically transparent, patterned, and flexible electrodes and radio-frequency antennas prepared from silk protein and silver nanowire networks. RSC Advances, 2017, 7, 574-580.	1.7	30
318	Preparation and implementation of optofluidic neural probes for in vivo wireless pharmacology and optogenetics. Nature Protocols, 2017, 12, 219-237.	5.5	61
319	Organic flash memory on various flexible substrates for foldable and disposable electronics. Nature Communications, 2017, 8, 725.	5.8	88
320	Resistive switching memory using biomaterials. Journal of Electroceramics, 2017, 39, 223-238.	0.8	70
321	Inorganic semiconducting materials for flexible and stretchable electronics. Npj Flexible Electronics, 2017, 1, .	5.1	144
324	Biaxially stretchable carbon nanotube transistors. Journal of Applied Physics, 2017, 122, 124901.	1.1	15

~			_	
	$IT \Delta^{-}$	τιων	ILLE	PORT
\sim	uл			

#	Article	IF	CITATIONS
325	Scalable Manufacturing of Solderable and Stretchable Physiologic Sensing Systems. Advanced Materials, 2017, 29, 1701312.	11.1	49
326	Room Temperature Electrochemical Sintering of Zn Microparticles and Its Use in Printable Conducting Inks for Bioresorbable Electronics. Advanced Materials, 2017, 29, 1702665.	11.1	71
327	Foodâ€Based Edible and Nutritive Electronics. Advanced Materials Technologies, 2017, 2, 1700181.	3.0	61
328	Moisture-triggered physically transient electronics. Science Advances, 2017, 3, e1701222.	4.7	122
329	New insights and perspectives into biological materials for flexible electronics. Chemical Society Reviews, 2017, 46, 6764-6815.	18.7	322
330	Precise Protein Photolithography (P ³): High Performance Biopatterning Using Silk Fibroin Light Chain as the Resist. Advanced Science, 2017, 4, 1700191.	5.6	47
331	Toward Soft Skin‣ike Wearable and Implantable Energy Devices. Advanced Energy Materials, 2017, 7, 1700648.	10.2	175
332	Integration of graphene sensor with electrochromic device on modulus-gradient polymer for instantaneous strain visualization. 2D Materials, 2017, 4, 035020.	2.0	19
333	Biodegradable and Highly Deformable Temperature Sensors for the Internet of Things. Advanced Functional Materials, 2017, 27, 1702390.	7.8	178
334	Triggered degradation of 250 μm-thick Mg targets using acetic acid for transient electronic applications. Heliyon, 2017, 3, e00366.	1.4	2
335	Phototriggerable, Fully Transient Electronics: Component and Device Fabrication. , 2017, , .		1
337	Dissolution of Monocrystalline Silicon Nanomembranes and Their Use as Encapsulation Layers and Electrical Interfaces in Water-Soluble Electronics. ACS Nano, 2017, 11, 12562-12572.	7.3	82
338	High performance transient organic solar cells on biodegradable polyvinyl alcohol composite substrates. RSC Advances, 2017, 7, 52930-52937.	1.7	22
339	Scalable Fabrication Framework of Implantable Ultrathin and Flexible Probes with Biodegradable Sacrificial Layers. Nano Letters, 2017, 17, 7315-7322.	4.5	12
340	Materials and processing approaches for foundry-compatible transient electronics. Proceedings of the United States of America, 2017, 114, E5522-E5529.	3.3	93
341	Flammable carbon nanotube transistors on a nitrocellulose paper substrate for transient electronics. Nano Research, 2017, 10, 87-96.	5.8	37
342	Ultraâ€Wideband Multiâ€Dyeâ€Sensitized Upconverting Nanoparticles for Information Security Application. Advanced Materials, 2017, 29, 1603169.	11.1	153
343	Dissolvable tattoo sensors: from science fiction to a viable technology. Physica Scripta, 2017, 92, 013001.	1.2	20

	CITATION	Report	
#	Article	IF	CITATIONS
344	Advanced Mechatronics and MEMS Devices II. Microsystems and Nanosystems, 2017, , .	0.1	10
345	Flexible Electronic Devices for Biomedical Applications. Microsystems and Nanosystems, 2017, , 341-366.	0.1	4
346	Introduction of Biopolymer Composites: What to Do in Electronics?. , 2017, , 1-12.		7
347	Advances in nanowire bioelectronics. Reports on Progress in Physics, 2017, 80, 016701.	8.1	99
348	Silicon-Integrated High-Density Electrocortical Interfaces. Proceedings of the IEEE, 2017, 105, 11-33.	16.4	68
349	Industrial Internet of Things. Springer Series in Wireless Technology, 2017, , .	1.1	172
350	Heterogeneous Monolithic Integration of Singleâ€Crystal Organic Materials. Advanced Materials, 2017, 29, 1603285.	11.1	25
351	Recyclable and Green Triboelectric Nanogenerator. Advanced Materials, 2017, 29, 1604961.		141
352	A space-time multi-input-multi-output system framework for touchable communication. , 2017, , .		0
354	Degradation of silicon photonic biosensors in cell culture media: analysis and prevention. Biomedical Optics Express, 2017, 8, 2924.	1.5	2
355	Stencil Lithography for Scalable Micro- and Nanomanufacturing. Micromachines, 2017, 8, 131.	1.4	43
356	Nanofibrous Silver-Coated Polymeric Scaffolds with Tunable Electrical Properties. Nanomaterials, 2017, 7, 63.	1.9	23
357	Obfuscating the interconnects: Low-cost and resilient full-chip layout camouflaging. , 2017, , .		26
358	Simulation framework for touchable communication on NS3Sim. , 2017, , .		1
359	Recent Advances on Implantable Wireless Sensor Networks. , 0, , .		7
360	Advances in the fabrication of graphene transistors on flexible substrates. Beilstein Journal of Nanotechnology, 2017, 8, 467-474.	1.5	20
361	ZnO-Based Physically Transient and Bioresorbable Memory on Silk Protein. IEEE Electron Device Letters, 2018, 39, 31-34.	2.2	42
362	Biomimetic approaches toward smart bio-hybrid systems. Nano Research, 2018, 11, 3009-3030.	5.8	26

#	Article	IF	CITATIONS
364	Talking to Cells: Semiconductor Nanomaterials at the Cellular Interface. Advanced Biology, 2018, 2, 1700242.	3.0	16
365	Flexible and Transparent Organic Phototransistors on Biodegradable Cellulose Nanofibrillated Fiber Substrates. Advanced Optical Materials, 2018, 6, 1701140.	3.6	34
368	Strain engineering and mechanical assembly of silicon/germanium nanomembranes. Materials Science and Engineering Reports, 2018, 128, 1-31.	14.8	48
370	Skin-Inspired Electronics: An Emerging Paradigm. Accounts of Chemical Research, 2018, 51, 1033-1045.	7.6	407
371	Advanced Materials and Devices for Bioresorbable Electronics. Accounts of Chemical Research, 2018, 51, 988-998.	7.6	152
372	Rational Design of Semiconductor Nanostructures for Functional Subcellular Interfaces. Accounts of Chemical Research, 2018, 51, 1014-1022.	7.6	21
373	Functional, RFâ€Trilayer Sensors for Toothâ€Mounted, Wireless Monitoring of the Oral Cavity and Food Consumption. Advanced Materials, 2018, 30, e1703257.	11.1	146
374	Plasticizing Silk Protein for Onâ€ S kin Stretchable Electrodes. Advanced Materials, 2018, 30, e1800129.	11.1	230
375	Sensor Embodiment and Flexible Electronics. , 2018, , 197-279.		5
376	Hydroxypropyl cellulose photonic architectures by soft nanoimprinting lithography. Nature Photonics, 2018, 12, 343-348.	15.6	146
377	Simulation framework for touchable communication on NS3Sim. Nano Communication Networks, 2018, 16, 26-36.	1.6	6
378	Biodegradable Monocrystalline Silicon Photovoltaic Microcells as Power Supplies for Transient Biomedical Implants. Advanced Energy Materials, 2018, 8, 1703035.	10.2	98
379	Photoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowires. Nature Nanotechnology, 2018, 13, 260-266.	15.6	185
380	From biomaterial-based data storage to bio-inspired artificial synapse. Materials Today, 2018, 21, 537-552.	8.3	218
381	Metal microparticle – Polymer composites as printable, bio/ecoresorbable conductive inks. Materials Today, 2018, 21, 207-215.	8.3	64
382	Flexible fiber-shaped energy storage devices: principles, progress, applications and challenges. Flexible and Printed Electronics, 2018, 3, 013001.	1.5	34
383	Biodegradable Electronic Systems in 3D, Heterogeneously Integrated Formats. Advanced Materials, 2018, 30, 1704955.	11.1	72
384	Biodegradable Polymeric Materials in Degradable Electronic Devices. ACS Central Science, 2018, 4, 337-348.	5.3	302

		CITATION RE	PORT	
#	Article		IF	CITATIONS
385	Materials and applications of bioresorbable electronics. Journal of Semiconductors, 201	8, 39, 011003.	2.0	25
386	Alcohol gas sensors capable of wireless detection using In2O3/Pt nanoparticles and Ag Sensors and Actuators B: Chemical, 2018, 259, 825-832.	nanowires.	4.0	45
387	Recent progress on biodegradable materials and transient electronics. Bioactive Materia 322-333.	als, 2018, 3,	8.6	149
388	Implantable, wireless device platforms for neuroscience research. Current Opinion in Ne 2018, 50, 42-49.	eurobiology,	2.0	104
389	Implantable and Biodegradable Poly(<scp>l</scp> â€lactic acid) Fibers for Optical Neura Advanced Optical Materials, 2018, 6, 1700941.	al Interfaces.	3.6	92
390	Flexible, Stretchable, and Biodegradable Thin-Film Silicon Photovoltaics. , 2018, , 161-12	75.		1
391	Soft and transient magnesium plasmonics for environmental and biomedical sensing. N 2018, 11, 4390-4400.	ano Research,	5.8	21
392	Transient Resistive Switching Memory of CsPbBr ₃ Thin Films. Advanced Ele Materials, 2018, 4, 1700596.	ectronic	2.6	60
393	Nanomaterials for bioelectronics and integrated medical systems. Korean Journal of Chemical Engineering, 2018, 35, 1-11.		1.2	76
394	Tissue–electronics interfaces: from implantable devices to engineered tissues. Nature Reviews Materials, 2018, 3, .		23.3	372
395	Biomimetic Chitin–Silk Hybrids: An Optically Transparent Structural Platform for Wea and Advanced Electronics. Advanced Functional Materials, 2018, 28, 1705480.	ırable Devices	7.8	74
396	Roadmap on semiconductor–cell biointerfaces. Physical Biology, 2018, 15, 031002.		0.8	45
397	Controllably degradable transient electronic antennas based on water-soluble PVA/TiO2 Journal of Materials Science, 2018, 53, 2638-2647.	! films.	1.7	61
398	In vitro dissolution behavior of hydrogenated amorphous silicon thin-film transistors. Nj Degradation, 2018, 2, .	pj Materials	2.6	0
399	Latticed Channel Model of Touchable Communication over Capillary Microcirculation N 2018, , .	etwork.,		1
400	Best of both worlds. , 2018, , .			16
401	A bio-inspired physically transient/biodegradable synapse for security neuromorphic cor on memristors. Nanoscale, 2018, 10, 20089-20095.	nputing based	2.8	82
402	Flexible elastomer patch with vertical silicon nanoneedles for intracellular and intratissu nanoinjection of biomolecules. Science Advances, 2018, 4, eaau6972.	e	4.7	39

#	Article	IF	CITATIONS
403	Bioresorbable Silicon Nanomembranes and Iron Catalyst Nanoparticles for Flexible, Transient Electrochemical Dopamine Monitors. Advanced Healthcare Materials, 2018, 7, e1801071.	3.9	48
404	Inorganic semiconductor biointerfaces. Nature Reviews Materials, 2018, 3, 473-490.	23.3	154
405	An overview of healthcare monitoring by flexible electronics. Science China: Physics, Mechanics and Astronomy, 2018, 61, 1.	2.0	11
406	Nanowire-Based Biosensors: From Growth to Applications. Micromachines, 2018, 9, 679.	1.4	99
407	Materialien und Strukturen für schluckbare elektromechanische medizinische Funktionseinheiten. Angewandte Chemie, 2018, 130, 17190-17203.	1.6	0
408	Effect of Hardness on Surface Strain of PDMS Films Detected by a Surface Labeled Grating Method. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2018, 31, 523-526.	0.1	6
409	The Potential for Convergence between Synthetic Biology and Bioelectronics. Cell Systems, 2018, 7, 231-244.	2.9	46
410	Plantâ€Based Modular Building Blocks for "Green―Electronic Skins. Advanced Functional Materials, 2018, 28, 1804510.	7.8	97
411	Fully Water-Soluble, High-Performance Transient Sensors on a Versatile Galactomannan Substrate Derived from the Endosperm. ACS Applied Materials & Interfaces, 2018, 10, 36664-36674.	4.0	26
412	Enabling Transient Electronics with Degradation on Demand via Light-Responsive Encapsulation of a Hydrogel–Oxide Bilayer. ACS Applied Materials & Interfaces, 2018, 10, 36171-36176.	4.0	21
413	Flexible Transient Phototransistors by Use of Wafer ompatible Transferred Silicon Nanomembranes. Small, 2018, 14, e1802985.	5.2	17
414	Materials and Devices for Biodegradable and Soft Biomedical Electronics. Materials, 2018, 11, 2108.	1.3	66
415	Solvent-Free Strategy To Encapsulate Degradable, Implantable Metals in Silk Fibroin. ACS Applied Bio Materials, 2018, 1, 1677-1686.	2.3	3
416	Towards personalized medicine: the evolution of imperceptible health-care technologies. Foresight, 2018, 20, 589-601.	1.2	23
417	Advances in Materials and Structures for Ingestible Electromechanical Medical Devices. Angewandte Chemie - International Edition, 2018, 57, 16946-16958.	7.2	49
418	Transfer printing techniques for flexible and stretchable inorganic electronics. Npj Flexible Electronics, 2018, 2, .	5.1	206
419	Delayed Sensor Activation Based on Transient Coatings: Biofouling Protection in Complex Biofluids. Journal of the American Chemical Society, 2018, 140, 14050-14053.	6.6	59
420	Tunable Adhesion for Bio-Integrated Devices. Micromachines, 2018, 9, 529.	1.4	15

#	Article	IF	CITATIONS
421	Physically Transient Field-Effect Transistors Based on Black Phosphorus. ACS Applied Materials & Interfaces, 2018, 10, 42630-42636.	4.0	22
422	Biocompatible and Implantable Optical Fibers and Waveguides for Biomedicine. Materials, 2018, 11, 1283.	1.3	87
423	Mechanosensation-Active Matrix Based on Direct-Contact Tribotronic Planar Graphene Transistor Array. ACS Nano, 2018, 12, 9381-9389.	7.3	64
424	Propagation Channel Modeling for Transient Communication: An Antenna-Dependent Perspective. IEEE Transactions on Antennas and Propagation, 2018, 66, 6225-6232.	3.1	0
425	"Printâ€ŧoâ€patternâ€ŧ Silkâ€Based Water Lithography. Small, 2018, 14, e1802953.	5.2	11
426	Highâ€Temperatureâ€Triggered Thermally Degradable Electronics Based on Flexible Silicon Nanomembranes. Advanced Functional Materials, 2018, 28, 1801448.	7.8	34
427	A bilayered PVA/PLGA-bioresorbable shuttle to improve the implantation of flexible neural probes. Journal of Neural Engineering, 2018, 15, 065001.	1.8	47
428	Designing Liquidâ€Infused Surfaces for Medical Applications: A Review. Advanced Materials, 2018, 30, e1802724.	11.1	232
429	Transient and Flexible Photodetectors. ACS Applied Nano Materials, 2018, 1, 5092-5100.	2.4	22
430	Cytotoxicity and in Vitro Degradation Kinetics of Foundry-Compatible Semiconductor Nanomembranes and Electronic Microcomponents. ACS Nano, 2018, 12, 9721-9732.	7.3	18
431	Poly(vinyl alcohol)/Chitosan composites: Physically transient materials for sustainable and transient bioelectronics. Journal of Cleaner Production, 2018, 195, 786-795.	4.6	49
432	High Performance, Biocompatible Dielectric Thinâ€Film Optical Filters Integrated with Flexible Substrates and Microscale Optoelectronic Devices. Advanced Optical Materials, 2018, 6, 1800146.	3.6	25
433	Three-Dimensional Printed Poly(vinyl alcohol) Substrate with Controlled On-Demand Degradation for Transient Electronics. ACS Nano, 2018, 12, 6006-6012.	7.3	43
434	Protein-Based Electronic Skin Akin to Biological Tissues. ACS Nano, 2018, 12, 5637-5645.	7.3	112
435	A Fully Biodegradable Battery for Selfâ€Powered Transient Implants. Small, 2018, 14, e1800994.	5.2	113
436	Recent Advances in Materials, Devices, and Systems for Neural Interfaces. Advanced Materials, 2018, 30, e1800534.	11.1	148
437	Physically Transient Threshold Switching Device Based on Magnesium Oxide for Security Application. Small, 2018, 14, e1800945.	5.2	44
438	A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nature Electronics, 2018, 1, 314-321.	13.1	469

		CITATION RE	IPORT	
#	Article		IF	CITATIONS
439	Monitoring rehabilitation with transient sensors. Nature Electronics, 2018, 1, 272-273.		13.1	11
440	Biosafe, Ecoâ€Friendly Levan Polysaccharide toward Transient Electronics. Small, 2018, 1	4, e1801332.	5.2	33
441	Materials, Processes, and Facile Manufacturing for Bioresorbable Electronics: A Review. Ad Materials, 2018, 30, e1707624.	lvanced	11.1	133
442	Laserâ€Enabled Processing of Stretchable Electronics on a Hydrolytically Degradable Hydr Advanced Healthcare Materials, 2018, 7, e1800231.	rogel.	3.9	26
443	Flexible Transient Optical Waveguides and Surfaceâ€Wave Biosensors Constructed from Monocrystalline Silicon. Advanced Materials, 2018, 30, e1801584.		11.1	55
444	Semiconductor Nanomembrane Materials for High-Performance Soft Electronic Devices. J the American Chemical Society, 2018, 140, 9001-9019.	ournal of	6.6	34
445	Fully Bioabsorbable Naturalâ€Materialsâ€Based Triboelectric Nanogenerators. Advanced I 30, e1801895.	Vaterials, 2018,	11.1	319
446	A fully verified theoretical analysis of strain-photonic coupling for quantum wells embedd nanoribbons. Nanoscale, 2018, 10, 12657-12664.	ed in wavy	2.8	6
447	Natural Wax for Transient Electronics. Advanced Functional Materials, 2018, 28, 180181	Э.	7.8	90
448	Biodegradable and Flexible Resistive Memory for Transient Electronics. Journal of Physical C, 2018, 122, 16909-16915.	Chemistry	1.5	52
449	Flexibleâ€Đevice Injector with a Microflap Array for Subcutaneously Implanting Flexible M Electronics. Advanced Healthcare Materials, 2018, 7, e1800419.	edical	3.9	17
450	A Water Dissolvable Electrolyte with an Ionic Liquid for Ecoâ€Friendly Electronics. Small, 2 e1800937.	2018, 14,	5.2	18
451	Transient and Flexible Hyperbolic Metamaterials on Freeform Surfaces. Scientific Reports, 9469.	2018, 8,	1.6	17
452	Design and Analysis of Magnetic-Assisted Transfer Printing. Journal of Applied Mechanics, Transactions ASME, 2018, 85, .		1.1	18
453	Biofriendly, Stretchable, and Reusable Hydrogel Electronics as Wearable Force Sensors. S 14, e1801711.	nall, 2018,	5.2	144
454	Highly flexible, foldable, and rollable microsupercapacitors on an ultrathin polyimide subs high power density. Microsystems and Nanoengineering, 2018, 4, 16.	trate with	3.4	50
455	Rapid thermal nanoimprinting on silk protein substrates for controlled degradation of tra devices. , 2018, , .	nsient		1
456	Selfâ€Powered Multifunctional Transient Bioelectronics. Small, 2018, 14, e1802050.		5.2	47

#	Article	IF	Citations
457	Phototriggered Depolymerization of Flexible Poly(phthalaldehyde) Substrates by Integrated Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 28062-28068.	4.0	25
458	Self-powered data erasing of nanoscale flash memory by triboelectricity. Nano Energy, 2018, 52, 63-70.	8.2	11
459	Novel Electronics for Flexible and Neuromorphic Computing. Advanced Functional Materials, 2018, 28, 1801690.	7.8	94
460	Engineering the Future of Silk Materials through Advanced Manufacturing. Advanced Materials, 2018, 30, e1706983.	11.1	126
461	Multilayer Graphene Epidermal Electronic Skin. ACS Nano, 2018, 12, 8839-8846.	7.3	257
462	Highâ€₽erformance Flexible Magnetic Tunnel Junctions for Smart Miniaturized Instruments. Advanced Engineering Materials, 2018, 20, 1800471.	1.6	24
463	Biomaterials for Enhancing Neuronal Repair. Frontiers in Materials, 2018, 5, .	1.2	29
464	Transient security transistors self-supported on biodegradable natural-polymer membranes for brain-inspired neuromorphic applications. Nanoscale, 2018, 10, 14893-14901.	2.8	90
465	Advances in Materials for Recent Low-Profile Implantable Bioelectronics. Materials, 2018, 11, 522.	1.3	38
466	Recent Advances in Tactile Sensing Technology. Micromachines, 2018, 9, 321.	1.4	67
467	Real Time Analysis of Bioanalytes in Healthcare, Food, Zoology and Botany. Sensors, 2018, 18, 5.	2.1	32
468	Recent advances in materials and flexible electronics for peripheral nerve interfaces. Bioelectronic Medicine, 2018, 4, 6.	1.0	55
469	A Fully Transient Mechanical Energy Harvester. Advanced Materials Technologies, 2018, 3, 1800083.	3.0	13
470	Effect of hydrolytic degradation on the mechanical property of a thermoplastic polyether ester elastomer. Polymer Degradation and Stability, 2018, 155, 35-42.	2.7	10
471	A triboelectric nanogenerator based on polypropylene carbonate and photoacid generator. Solid-State Electronics, 2018, 148, 16-19.	0.8	7
472	Wearable Technology for Chronic Wound Monitoring: Current Dressings, Advancements, and Future Prospects. Frontiers in Bioengineering and Biotechnology, 2018, 6, 47.	2.0	132
473	Aerosol printing and photonic sintering of bioresorbable zinc nanoparticle ink for transient electronics manufacturing. Science China Information Sciences, 2018, 61, 1.	2.7	25
474	Transient Light Emitting Devices Based on Soluble Polymer Composites. Scientific Reports, 2018, 8, 6408.	1.6	23

#	Article	IF	CITATIONS
475	Promoting Helix-Rich Structure in Silk Fibroin Films through Molecular Interactions with Carbon Nanotubes and Selective Heating for Transparent Biodegradable Devices. ACS Applied Nano Materials, 2018, 1, 5441-5450.	2.4	13
476	Voltage Control of Magnetic Anisotropy through Ionic Gel Gating for Flexible Spintronics. ACS Applied Materials & Interfaces, 2018, 10, 29750-29756.	4.0	16
477	Poly-albumen: Bio-derived structural polymer from polymerized egg white. Materials Today Chemistry, 2018, 9, 73-79.	1.7	7
478	Recent Advances in Biointegrated Optoelectronic Devices. Advanced Materials, 2018, 30, e1800156.	11.1	76
479	Selfâ€Destructing Secured Microchips by Onâ€Chip Triggered Energetic and Corrosive Attacks for Transient Electronics. Advanced Materials Technologies, 2018, 3, 1800044.	3.0	31
480	Nanomaterials-based flexible and stretchable bioelectronics. MRS Bulletin, 2019, 44, 643-656.	1.7	30
481	Biodegradable Frequencyâ€Selective Magnesium Radioâ€Frequency Microresonators for Transient Biomedical Implants. Advanced Functional Materials, 2019, 29, 1903051.	7.8	24
482	Bioâ€Multifunctional Smart Wearable Sensors for Medical Devices. Advanced Intelligent Systems, 2019, 1, 1900040.	3.3	115
483	Bioresorbable photonic devices for the spectroscopic characterization of physiological status and neural activity. Nature Biomedical Engineering, 2019, 3, 644-654.	11.6	98
484	Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point. Nature Electronics, 2019, 2, 335-342.	13.1	125
485	Inkjet Printing of Patterned, Multispectral, and Biocompatible Photonic Crystals. Advanced Materials, 2019, 31, e1901036.	11.1	78
486	PEDOT:PSS for Flexible and Stretchable Electronics: Modifications, Strategies, and Applications. Advanced Science, 2019, 6, 1900813.	5.6	563
487	Physically Transient Memristor Synapse Based on Embedding Magnesium Nanolayer in Oxide for Security Neuromorphic Electronics. IEEE Electron Device Letters, 2019, 40, 1265-1268.	2.2	22
488	Futuristic medical implants using bioresorbable materials and devices. Biosensors and Bioelectronics, 2019, 142, 111489.	5.3	58
489	Bioresorbable optical sensor systems for monitoring of intracranial pressure and temperature. Science Advances, 2019, 5, eaaw1899.	4.7	146
490	Physically Transient True Random Number Generators Based on Paired Threshold Switches Enabling Monte Carlo Method Applications. IEEE Electron Device Letters, 2019, 40, 1096-1099.	2.2	26
491	Skinâ€Friendly Electronics for Acquiring Human Physiological Signatures. Advanced Materials, 2019, 31, e1905767.	11.1	91
492	Waferâ€Scale Highâ€Yield Manufacturing of Degradable Electronics for Environmental Monitoring. Advanced Functional Materials, 2019, 29, 1905518.	7.8	19

#	Article	IF	CITATIONS
493	Thermoresponsive Transient Radio Frequency Antennas: Toward Triggered Wireless Transient Circuits. Advanced Materials Technologies, 2019, 4, 1900528.	3.0	7
494	Sunlightâ€Triggerable Transient Energy Harvester and Sensors Based on Triboelectric Nanogenerator Using Acidâ€5ensitive Poly(phthalaldehyde). Advanced Electronic Materials, 2019, 5, 1900725.	2.6	15
495	Devices for promising applications. , 2019, , 247-314.		0
496	A Bioresorbable Magnetically Coupled System for Lowâ€Frequency Wireless Power Transfer. Advanced Functional Materials, 2019, 29, 1905451.	7.8	58
497	3D Electron Printing in Genetically Engineered Spider Silk Proteins at $\hat{a}^{1}\!4$ 50 nm Resolution. , 2019, , .		0
498	Stretchable and Fully Degradable Semiconductors for Transient Electronics. ACS Central Science, 2019, 5, 1884-1891.	5.3	92
499	Transient Multi-Mode Silk Memory Devices. , 2019, , .		1
500	Water Lithography: From Programmable Printing to Functional Patterning. , 2019, , .		0
501	Fast failure of highly conductive transient track using silver nanowire/PEDOT:PSS composite. Materials Research Express, 2019, 6, 1150e4.	0.8	1
502	Latticed Channel Model of Touchable Communication Over Capillary Microcirculation Network. IEEE Transactions on Nanobioscience, 2019, 18, 669-678.	2.2	9
503	Laser Sintering of Zn Microparticles and Its Application in Printable Biodegradable Electronics. Advanced Electronic Materials, 2019, 5, 1800693.	2.6	36
504	3d Electron Printing in Recombinant Spider Silk Proteins at the Molecular Level. , 2019, , .		0
505	Regenerating leather waste for flexible pressure sensing applications. Journal of Leather Science and Engineering, 2019, 1, .	2.7	14
506	Silk: A Promising Biomaterial Opening New Vistas Towards Affordable Healthcare Solutions. Journal of the Indian Institute of Science, 2019, 99, 445-487.	0.9	54
507	Physically transient memristor based on the permeation of water at the interface of electrode and substrate. Journal of Alloys and Compounds, 2019, 810, 151957.	2.8	6
508	Physically Transient Resistive Switching Memory With Material Implication Operation. IEEE Electron Device Letters, 2019, 40, 1618-1621.	2.2	10
509	Living IoT. , 2019, , .		61
510	Insight into Silk-Based Biomaterials: From Physicochemical Attributes to Recent Biomedical Applications. ACS Applied Bio Materials, 2019, 2, 5460-5491.	2.3	93

#	Apticie	IF	CITATIONS
	ARTICLE Silk-Based Advanced Materials for Soft Electronics. Accounts of Chemical Research, 2019, 52,		CITATIONS
511	2916-2927.	7.6	232
512	Glucose-based resistive random access memory for transient electronics. Journal of Information Display, 2019, 20, 231-237.	2.1	12
513	Progress in the Field of Micro-Electrocorticography. Micromachines, 2019, 10, 62.	1.4	34
514	Liquid Metalâ€Based Transient Circuits for Flexible and Recyclable Electronics. Advanced Functional Materials, 2019, 29, 1808739.	7.8	223
515	Fully Bioabsorbable Capacitor as an Energy Storage Unit for Implantable Medical Electronics. Advanced Science, 2019, 6, 1801625.	5.6	106
516	Functionalized water soluble nanomaterials and their applications in wirelessly destructible programmed flexible transient photodetectors. Materials Science in Semiconductor Processing, 2019, 93, 324-330.	1.9	6
517	Hydrogel bioelectronics. Chemical Society Reviews, 2019, 48, 1642-1667.	18.7	1,267
518	Transient fiber-shaped flexible electronics comprising dissolvable polymer composites toward multicolor lighting. Journal of Materials Chemistry C, 2019, 7, 1472-1476.	2.7	18
519	Transient bioelectrical devices inspired by a silkworm moth breaking out of its cocoon. RSC Advances, 2019, 9, 14254-14259.	1.7	6
520	Synaptic-functional and fully water-soluble transient memristor made from materials compatible with semiconductor technology. Japanese Journal of Applied Physics, 2019, 58, 060903.	0.8	5
521	Sensor-Instrumented Scaffold Integrated with Microporous Spongelike Ultrabuoy for Long-Term 3D Mapping of Cellular Behaviors and Functions. ACS Nano, 2019, 13, 7898-7904.	7.3	8
522	Cationic Copolymerization of o-Phthalaldehyde and Functional Aliphatic Aldehydes. Macromolecules, 2019, 52, 4020-4029.	2.2	18
523	Fabrication and performance test of biodegradable supercapacitor. MRS Advances, 2019, 4, 2063-2070.	0.5	3
524	Transparent crystalline cubic SiC-on-glass electrodes enable simultaneous electrochemistry and optical microscopy. Chemical Communications, 2019, 55, 7978-7981.	2.2	5
525	Electrochemically triggered degradation of silicon membranes for smart on-demand transient electronic devices. Nanotechnology, 2019, 30, 394002.	1.3	10
526	Silk Composite Electronic Textile Sensor for High Space Precision 2D Combo Temperature–Pressure Sensing. Small, 2019, 15, e1901558.	5.2	184
527	Length-scale dominated thermal fatigue behavior in nanocrystalline Au interconnect lines. Materialia, 2019, 7, 100337.	1.3	0
528	Advanced Electronic Packaging. , 2019, , 1-27.		1

#	Article	IF	CITATIONS
529	Laser Transfer, Printing, and Assembly Techniques for Flexible Electronics. Advanced Electronic Materials, 2019, 5, 1800900.	2.6	91
531	Geometrical and Chemical-Dependent Hydrolysis Mechanisms of Silicon Nanomembranes for Biodegradable Electronics. ACS Applied Materials & Interfaces, 2019, 11, 18013-18023.	4.0	17
532	Integration of biological systems with electronic-mechanical assemblies. Acta Biomaterialia, 2019, 95, 91-111.	4.1	23
533	Flexible Transparent Organic Artificial Synapse Based on the Tungsten/Egg Albumen/Indium Tin Oxide/Polyethylene Terephthalate Memristor. ACS Applied Materials & Interfaces, 2019, 11, 18654-18661.	4.0	77
534	Nanowired Bioelectric Interfaces. Chemical Reviews, 2019, 119, 9136-9152.	23.0	92
535	Learning from Solar Energy Conversion: Biointerfaces for Artificial Photosynthesis and Biological Modulation. Nano Letters, 2019, 19, 2189-2197.	4.5	24
536	The Electronic Properties of Silicon Nanowires during Their Dissolution under Simulated Physiological Conditions. Applied Sciences (Switzerland), 2019, 9, 804.	1.3	2
537	Numerical Analysis on the Wrinkling Instability of a Stiff Film Adhering to an Elastic Substrate with a Graded Coating. International Journal of Applied Mechanics, 2019, 11, 1950015.	1.3	6
538	A Traction-Free Model for the Tensile Stiffness and Bending Stiffness of Laminated Ribbons of Flexible Electronics. Journal of Applied Mechanics, Transactions ASME, 2019, 86, .	1.1	13
539	Silkâ€Enabled Conformal Multifunctional Bioelectronics for Investigation of Spatiotemporal Epileptiform Activities and Multimodal Neural Encoding/Decoding. Advanced Science, 2019, 6, 1801617.	5.6	52
540	Recent Progress in Inkjetâ€Printed Thinâ€Film Transistors. Advanced Science, 2019, 6, 1801445.	5.6	187
541	Materials for biointegrated electronic and microfluidic systems. MRS Bulletin, 2019, 44, 195-202.	1.7	6
542	Stretchable, self-healing, transient macromolecular elastomeric gel for wearable electronics. Microsystems and Nanoengineering, 2019, 5, 9.	3.4	35
543	Strain Effects on the Energy-Level Alignment at Metal/Organic Semiconductor Interfaces. ACS Applied Materials & Interfaces, 2019, 11, 12717-12722.	4.0	8
544	Bioresorbable Electronic Implants: History, Materials, Fabrication, Devices, and Clinical Applications. Advanced Healthcare Materials, 2019, 8, e1801660.	3.9	86
545	Spatially Controlled Transience of Grapheneâ€Polymer Electronics with Silicon Singulation. Advanced Functional Materials, 2019, 29, 1900592.	7.8	2
546	Physically Transient Memristive Synapse With Short-Term Plasticity Based on Magnesium Oxide. IEEE Electron Device Letters, 2019, 40, 706-709.	2.2	16
547	Paper-based methodology for investigation of triboelectric nanogenerators. Energy Reports, 2019, 5, 393-397.	2.5	9

#	Article	IF	CITATIONS
548	Second Skin Enabled by Advanced Electronics. Advanced Science, 2019, 6, 1900186.	5.6	177
549	Effects of material properties and geometric parameters on electromagnetic-assisted transfer printing. Journal Physics D: Applied Physics, 2019, 52, 255302.	1.3	8
550	Skin-inspired, open mesh electrochemical sensors for lactate and oxygen monitoring. Biosensors and Bioelectronics, 2019, 132, 343-351.	5.3	58
551	Fundamental Theory of Biodegradable Metals—Definition, Criteria, and Design. Advanced Functional Materials, 2019, 29, 1805402.	7.8	226
552	Selfâ€Healable Multifunctional Electronic Tattoos Based on Silk and Graphene. Advanced Functional Materials, 2019, 29, 1808695.	7.8	236
553	Photodegradable transient bilayered poly(phthalaldehyde) with improved shelf life. Polymers for Advanced Technologies, 2019, 30, 1198-1204.	1.6	8
554	Interface Engineering of Fully Metallic Stents Enabling Controllable H2O2Generation for Antirestenosis. Langmuir, 2019, 35, 3634-3642.	1.6	6
555	Route towards sustainable smart sensors: ferroelectric polyvinylidene fluoride-based materials and their integration in flexible electronics. Chemical Society Reviews, 2019, 48, 1787-1825.	18.7	226
556	Transfer Printing and its Applications in Flexible Electronic Devices. Nanomaterials, 2019, 9, 283.	1.9	78
557	Human hair keratin for physically transient resistive switching memory devices. Journal of Materials Chemistry C, 2019, 7, 3315-3321.	2.7	55
558	Electric Conductivity of Electrolytic Copper Powder Filled Poly(Lactide-co-Glycolide) Composites. International Journal of Electrochemical Science, 2019, 14, 9825-9837.	0.5	3
559	Fuzzy Logic Based Intrusion Detection System as a Service for Malicious Port Scanning Traffic Detection. , 2019, , .		3
560	Shape Control Systems for Sendzimir Cold-rolling Steel Mills with Actuator Saturation. , 2019, , .		0
561	An Architecture for 2D Game Streaming Using Multi-Layer Object Coding. , 2019, , .		1
562	Synchronization of quadratic integrate-and-fire spiking neurons: Constant versus voltage-dependent couplings. , 2019, , .		1
563	Action Recognition from Depth Video Sequences Using Microsoft Kinect. , 2019, , .		0
564	Large Scale Desalination: Potential for a Significant Electric Energy Market. , 2019, , .		0
565	IoT and Edge Computing Based Direct Load Control for Fast Adaptive Frequency Regulation. , 2019, , .		6

#	Article	IF	Citations
566	Development of Wheel-Spider-Inspired Hexapod Robot Realizing Walking and Rolling Locomotion. , 2019, , .		2
567	Physicochemical characterization of sodium bentonite clay and its significance as a catalyst in plastic wastes valorization. , 2019, , .		4
568	Partition Heuristic RRT Algorithm of Path Planning Based on Q-learning. , 2019, , .		5
569	Voltage Regulation in Distribution Systems with High Penetration of Renewable Resources. , 2019, , .		0
570	Wearable and Implantable Electronics: Moving toward Precision Therapy. ACS Nano, 2019, 13, 12280-12286.	7.3	150
571	Protect Your Chip Design Intellectual Property. , 2019, , .		25
572	Maskless Patterning of Biodegradable Conductors by Selective Laser Sintering of Microparticle Inks and Its Application in Flexible Transient Electronics. ACS Applied Materials & Interfaces, 2019, 11, 45844-45852.	4.0	35
573	Flexible, sticky, and biodegradable wireless device for drug delivery to brain tumors. Nature Communications, 2019, 10, 5205.	5.8	148
574	Ultra-thin atom layer deposited alumina film enables the precise lifetime control of fully biodegradable electronic devices. Nanoscale, 2019, 11, 22369-22377.	2.8	7
575	Thermally Triggered Vanishing Bulk Polyoxymethylene for Transient Electronics. Scientific Reports, 2019, 9, 18107.	1.6	9
576	Introducing Temperature-Controlled Phase Transition Elastin-like Polypeptides to Transient Electronics: Realization of Proactive Biotriggered Electronics with Local Transience. ACS Applied Materials & Interfaces, 2019, 11, 46490-46496.	4.0	5
577	Introduction to ECoG interfaces. , 2019, , 1-30.		0
578	Dielectric ceramics/TiO ₂ /single-crystalline silicon nanomembrane heterostructure for high performance flexible thin-film transistors on plastic substrates. RSC Advances, 2019, 9, 35289-35296.	1.7	3
579	Programmable Vanishing Multifunctional Optics. Advanced Science, 2019, 6, 1801746.	5.6	16
580	Cationic polymerization of highâ€molecularâ€weight phthalaldehydeâ€butanal copolymer. Journal of Applied Polymer Science, 2019, 136, 46921.	1.3	9
581	Strain-optoelectronic coupling properties of externally deformed nanoribbons with embedded quantum well. Materials Research Express, 2019, 6, 035025.	0.8	1
582	A biodegradable wireless blood-flow sensor. Nature Biomedical Engineering, 2019, 3, 7-8.	11.6	7
583	Synthetic Cells: Colloidal-sized state machines. , 2019, , 361-386.		2

#	Article	IF	CITATIONS
584	A Mossâ€Inspired Electroless Goldâ€Coating Strategy Toward Stretchable Fiber Conductors by Dry Spinning. Advanced Electronic Materials, 2019, 5, 1800462.	2.6	62
585	Macroscale Biomolecular Electronics and Ionics. Advanced Materials, 2019, 31, e1802221.	11.1	80
586	Solution-Processed Physically Transient Resistive Memory Based on Magnesium Oxide. IEEE Electron Device Letters, 2019, 40, 193-195.	2.2	23
587	Wafer-Scale Multilayer Fabrication for Silk Fibroin-Based Microelectronics. ACS Applied Materials & Interfaces, 2019, 11, 115-124.	4.0	22
588	Biodegradable Natural Pectinâ€Based Flexible Multilevel Resistive Switching Memory for Transient Electronics. Small, 2019, 15, e1803970.	5.2	109
589	The Effects of Confinement on the Fracturing Performance of Printed Nanothermites. Propellants, Explosives, Pyrotechnics, 2019, 44, 47-54.	1.0	17
590	Recent Advances in Flexible Inorganic Light Emitting Diodes: From Materials Design to Integrated Optoelectronic Platforms. Advanced Optical Materials, 2019, 7, 1800936.	3.6	75
591	Bioresorbable pressure sensors protected with thermally grown silicon dioxide for the monitoring of chronic diseases and healing processes. Nature Biomedical Engineering, 2019, 3, 37-46.	11.6	185
592	Nontransient silk sandwich for soft, conformal bionic links. Materials Today, 2020, 32, 68-83.	8.3	24
593	Mimicking Human and Biological Skins for Multifunctional Skin Electronics. Advanced Functional Materials, 2020, 30, 1904523.	7.8	247
594	Spin-Orbit Torque Devices for Hardware Security: From Deterministic to Probabilistic Regime. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 1591-1606.	1.9	15
595	Macroscale bending large-deformation and microbuckling behavior of a unidirectional fiber-reinforced soft composite. Journal of Composite Materials, 2020, 54, 243-257.	1.2	5
596	Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics. Advanced Materials, 2020, 32, e1903558.	11.1	289
597	Multiscale Soft–Hard Interface Design for Flexible Hybrid Electronics. Advanced Materials, 2020, 32, e1902278.	11.1	65
598	Materials Strategies and Device Architectures of Emerging Power Supply Devices for Implantable Bioelectronics. Small, 2020, 16, e1902827.	5.2	86
599	Recent progress in tactile sensors and their applications in intelligent systems. Science Bulletin, 2020, 65, 70-88.	4.3	132
600	Multifunctional materials for implantable and wearable photonic healthcare devices. Nature Reviews Materials, 2020, 5, 149-165.	23.3	403
601	Reviews of wearable healthcare systems: Materials, devices and system integration. Materials Science and Engineering Reports, 2020, 140, 100523.	14.8	215

#	Article	IF	CITATIONS
602	Dissolvable Memristors for Physically Transient Neuromorphic Computing Applications. ACS Applied Electronic Materials, 2020, 2, 310-315.	2.0	10
603	Recent Progress of Miniature MEMS Pressure Sensors. Micromachines, 2020, 11, 56.	1.4	119
604	Design of biodegradable, implantable devices towards clinical translation. Nature Reviews Materials, 2020, 5, 61-81.	23.3	440
605	Emerging Soft Conductors for Bioelectronic Interfaces. Advanced Functional Materials, 2020, 30, 1907184.	7.8	70
606	Advances in Physicochemically Stimuli-Responsive Materials for On-Demand Transient Electronic Systems. Matter, 2020, 3, 1031-1052.	5.0	49
607	Flexible Integrated Circuits Based on Carbon Nanotubes. Accounts of Materials Research, 2020, 1, 88-99.	5.9	18
608	Physically Transient Optic-Neural Synapse for Secure In-Sensor Computing. IEEE Electron Device Letters, 2020, 41, 1641-1644.	2.2	14
609	Exploration of the proton conduction behavior in natural neutral polysaccharides for biodegradable organic synaptic transistors. Journal of Materials Chemistry C, 2020, 8, 16542-16550.	2.7	18
610	Recent progress in physically transient resistive switching memory. Journal of Materials Chemistry C, 2020, 8, 14695-14710.	2.7	30
611	Bioelectronics on Mammalian Collagen. Advanced Electronic Materials, 2020, 6, 2000391.	2.6	8
611	Bioelectronics on Mammalian Collagen. Advanced Electronic Materials, 2020, 6, 2000391. Recent advances in bioelectronics chemistry. Chemical Society Reviews, 2020, 49, 7978-8035.	2.6 18.7	8
612	Recent advances in bioelectronics chemistry. Chemical Society Reviews, 2020, 49, 7978-8035. Biodegradable, flexible silicon nanomembrane-based NOx gas sensor system with record-high	18.7	54
612 613	Recent advances in bioelectronics chemistry. Chemical Society Reviews, 2020, 49, 7978-8035. Biodegradable, flexible silicon nanomembrane-based NOx gas sensor system with record-high performance for transient environmental monitors and medical implants. NPG Asia Materials, 2020, 12, . Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators	18.7 3.8	54 32
612 613 614	Recent advances in bioelectronics chemistry. Chemical Society Reviews, 2020, 49, 7978-8035. Biodegradable, flexible silicon nanomembrane-based NOx gas sensor system with record-high performance for transient environmental monitors and medical implants. NPG Asia Materials, 2020, 12, . Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration. Nature Communications, 2020, 11, 5990. Biodegradable Optical Fiber in a Soft Optoelectronic Device for Wireless Optogenetic Applications.	18.7 3.8 5.8	54 32 144
612613614615	Recent advances in bioelectronics chemistry. Chemical Society Reviews, 2020, 49, 7978-8035. Biodegradable, flexible silicon nanomembrane-based NOx gas sensor system with record-high performance for transient environmental monitors and medical implants. NPG Asia Materials, 2020, 12, . Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration. Nature Communications, 2020, 11, 5990. Biodegradable Optical Fiber in a Soft Optoelectronic Device for Wireless Optogenetic Applications. Coatings, 2020, 10, 1153. Investigation of physically transient resistive switching memory based on GeO2 thin films. Applied	18.7 3.8 5.8 1.2	54 32 144 11
 612 613 614 615 616 	Recent advances in bioelectronics chemistry. Chemical Society Reviews, 2020, 49, 7978-8035. Biodegradable, flexible silicon nanomembrane-based NOx gas sensor system with record-high performance for transient environmental monitors and medical implants. NPG Asia Materials, 2020, 12, . Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration. Nature Communications, 2020, 11, 5990. Biodegradable Optical Fiber in a Soft Optoelectronic Device for Wireless Optogenetic Applications. Coatings, 2020, 10, 1153. Investigation of physically transient resistive switching memory based on GeO2 thin films. Applied Physics Letters, 2020, 117, 192102. Expandable and implantable bioelectronic complex for analyzing and regulating real-time activity of	18.7 3.8 5.8 1.2 1.5	 54 32 144 11 12

#	Article	IF	CITATIONS
620	Skin-Integrated Wearable Systems and Implantable Biosensors: A Comprehensive Review. Biosensors, 2020, 10, 79.	2.3	120
621	Low-Cost PVD Shadow Masks with Submillimeter Resolution from Laser-Cut Paper. Micromachines, 2020, 11, 676.	1.4	9
622	Electromagnetic Pulse Powered by a Triboelectric Nanogenerator with Applications in Accurate Selfâ€Powered Sensing and Security. Advanced Materials Technologies, 2020, 5, 2000368.	3.0	15
623	Tyrosineâ€Rich Peptide Insulator for Rapidly Dissolving Transient Electronics. Advanced Materials Technologies, 2020, 5, 2000516.	3.0	7
624	Devising Materials Manufacturing Toward Labâ€ŧoâ€Fab Translation of Flexible Electronics. Advanced Materials, 2020, 32, e2001903.	11.1	60
625	A Review of Bioresorbable Implantable Medical Devices: Materials, Fabrication, and Implementation. Advanced Healthcare Materials, 2020, 9, e2000790.	3.9	72
626	Hydroxypropyl Cellulose Adhesives for Transfer Printing of Carbon Nanotubes and Metallic Nanostructures. Small, 2020, 16, e2004795.	5.2	8
627	Sensors Made of Natural Renewable Materials: Efficiency, Recyclability or Biodegradability—The Green Electronics. Sensors, 2020, 20, 5898.	2.1	21
628	Naturally Degradable Photonic Devices with Transient Function by Heterostructured Waxy‣ublimating and Water‣oluble Materials. Advanced Science, 2020, 7, 2001594.	5.6	3
629	Highly Conductive Collagen by Low-Temperature Atomic Layer Deposition of Platinum. ACS Applied Materials & Interfaces, 2020, 12, 44371-44380.	4.0	6
630	Advanced Materials and Systems for Biodegradable, Transient Electronics. Advanced Materials, 2020, 32, e2002211.	11.1	101
631	Hot electrons in a nanowire hard X-ray detector. Nature Communications, 2020, 11, 4729.	5.8	4
632	Highly conductive and transient tracks based on silver flakes and a polyvinyl pyrrolidone composite. RSC Advances, 2020, 10, 33112-33118.	1.7	1
633	Multimodal spectroscopic investigation of the conformation and local environment of biomolecules at an electrified interface. Journal of Materials Chemistry B, 2020, 8, 7024-7030.	2.9	2
634	A Flexible Transient Biomemristor Based on Hybrid Structure HfO ₂ /BSA:Au Double Layers. Advanced Materials Technologies, 2020, 5, 2000191.	3.0	15
635	Flexible/Stretchable Supercapacitors with Novel Functionality for Wearable Electronics. Advanced Materials, 2020, 32, e2002180.	11.1	236
636	A Comprehensive Survey on Hybrid Communication in Context of Molecular Communication and Terahertz Communication for Body-Centric Nanonetworks. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2020, 6, 107-133.	1.4	44
637	Stretchable Self-Powered Generator for Multiple Functional Detection. ACS Applied Electronic Materials, 2020, 2, 3577-3584.	2.0	4

ARTICLE IF CITATIONS # Highly Thermally Stable, Green Solvent Disintegrable, and Recyclable Polymer Substrates for Flexible 638 2.0 10 Electronics. Macromolecular Rapid Communications, 2020, 41, 2000292. Bioresorbable and Biodegradable Electronics and Photonics., 2020, , . Design of Silicon Photonic Structures for Multi-Site, Multi-Spectral Optogenetics in the Deep Brain. 640 1.0 1 IEEE Photonics Journal, 2020, 12, 1-7. Biodegradable Amino acid-based Pressure Sensor., 2020,,. 641 Water-soluble energy harvester as a promising power solution for temporary electronic implants. APL 642 2.2 13 Materials, 2020, 8, 1 Stretchable, Healable, and Degradable Soft Ionic Microdevices Based on Multifunctional Soaking-Toughened Dual-Dynamic-Network Organohydrogel Electrolytes. ACS Applied Materials & amp; 4.0 Interfaces, 2020, 12, 56393-56402. High precision epidermal radio frequency antenna via nanofiber network for wireless stretchable 644 5.8 48 multifunction electronics. Nature Communications, 2020, 11, 5629. Heterogeneous integration of rigid, soft, and liquid materials for self-healable, recyclable, and 645 4.7 118 reconfigurable wearable electronics. Science Advances, 2020, 6, . Ultrafast degradable resistive switching memory based on α-lactose thin films. Organic Electronics, 646 1.4 11 2020, 83, 105750. Structural Control of the Molecular Packing and Dynamics of Mechanofluorochromic Materials 647 Based on Small Donor–Acceptor Systems with Turnâ€On Luminescence. Advanced Optical Materials, 3.6 2020, 8, 2000420. Micro/nano processing of natural silk fibers with near-field enhanced ultrafast laser. Science China 648 3.5 13 Materials, 2020, 63, 1300-1309. A Strategy to Synthesize Ultrahigh-N-Doped Hierarchical Carbons via Induced β-Sheet from Silk Fibroin by <i>In Šitu</i> Electrogelation/Electropolymerization. ACS Applied Energy Materials, 2020, 3, 2.5 3596-3608. Bodyâ€Integrated, Enzymeâ€Triggered Degradable, Silkâ€Based Mechanical Sensors for Customized 650 5.6 64 Health/Fitness Monitoring and In Situ Treatment. Advanced Science, 2020, 7, 1903802. Wafer-Scale Two-Dimensional MoS₂ Layers Integrated on Cellulose Substrates Toward Environmentally Friendly Transient Electronic Devices. ACS Applied Materials & amp; Interfaces, 2020, 12, 25200-25210. Electronic biopolymers: From molecular engineering to functional devices. Chemical Engineering 652 6.6 55 Journal, 2020, 397, 125499. Preparation of transient electronic devices with silk fibroin film as a flexible substrate. Colloids and 2.3 Surfaces A: Physicochemical and Engineering Aspects, 2020, 600, 124896. Untethered Single Cell Grippers for Active Biopsy. Nano Letters, 2020, 20, 5383-5390. 654 4.5 53 Intrinsically Stretchable, Transient Conductors from a Composite Material of Ag Flakes and Gelatin Hydrogel. ACS Applied Materials & amp; Interfaces, 2020, 12, 27572-27577.

#	Article	IF	CITATIONS
656	Skin-inspired electronics: emerging semiconductor devices and systems. Journal of Semiconductors, 2020, 41, 041601.	2.0	63
657	Controlling the dissolution of iron through the development of nanostructured Fe-Mg for biomedical applications. Acta Biomaterialia, 2020, 113, 660-676.	4.1	18
658	Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics. Nature Materials, 2020, 19, 1102-1109.	13.3	278
659	Recent development of bioresorbable electronics using additive manufacturing. Current Opinion in Chemical Engineering, 2020, 28, 118-126.	3.8	6
660	Programmable Degradation of Transient Soluble Silk Based Optical Devices via Thermal Nanoimprinting. , 2020, , .		0
661	Biodegradable Polyanhydrides as Encapsulation Layers for Transient Electronics. Advanced Functional Materials, 2020, 30, 2000941.	7.8	67
662	Intelligent Silk Fibroin Ionotronic Skin for Temperature Sensing. Advanced Materials Technologies, 2020, 5, 2000430.	3.0	45
663	Polymer nanocomposite meshes for flexible electronic devices. Progress in Polymer Science, 2020, 107, 101279.	11.8	119
664	Polyvinyl Alcohol/SiO ₂ Hybrid Dielectric for Transparent Flexible/Stretchable All arbonâ€Nanotube Thinâ€Filmâ€Transistor Integration. Advanced Electronic Materials, 2020, 6, 1901133.	2.6	22
665	Generative Models for Low-Dimensional Video Representation and Reconstruction. IEEE Transactions on Signal Processing, 2020, 68, 1688-1701.	3.2	13
666	Obfuscating the Interconnects: Low-Cost and Resilient Full-Chip Layout Camouflaging. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 4466-4481.	1.9	20
667	Implantable, Degradable, Therapeutic Terahertz Metamaterial Devices. Small, 2020, 16, e2000294.	5.2	18
668	Toward Nontransient Silk Bioelectronics: Engineering Silk Fibroin for Bionic Links. Small Methods, 2020, 4, 2000274.	4.6	24
669	Metal oxide dielectrics. , 2020, , 31-39.		2
670	Temperature Sensor with a Water-Dissolvable Ionic Gel for Ionic Skin. ACS Applied Materials & Interfaces, 2020, 12, 36449-36457.	4.0	59
671	Edible and Nutritive Electronics: Materials, Fabrications, Components, and Applications. Advanced Materials Technologies, 2020, 5, 2000100.	3.0	37
672	Biodegradable Materials and Green Processing for Green Electronics. Advanced Materials, 2020, 32, e2001591.	11.1	168
673	A flexible and physically transient electrochemical sensor for real-time wireless nitric oxide monitoring. Nature Communications, 2020, 11, 3207.	5.8	142

	CHATION R	LPORT	
#	ARTICLE	IF	CITATIONS
674	Green Product Supply Chain Coordination Under Demand Uncertainty. IEEE Access, 2020, 8, 25877-25891.	2.6	17
675	Autonomous Surgical Robot With Camera-Based Markerless Navigation for Oral and Maxillofacial Surgery. IEEE/ASME Transactions on Mechatronics, 2020, 25, 1084-1094.	3.7	24
676	Injectable Biomedical Devices for Sensing and Stimulating Internal Body Organs. Advanced Materials, 2020, 32, e1907478.	11.1	42
677	From Silk Spinning to 3D Printing: Polymer Manufacturing using Directed Hierarchical Molecular Assembly. Advanced Healthcare Materials, 2020, 9, e1901552.	3.9	53
678	Wireless implantable and biodegradable sensors for postsurgery monitoring: current status and future perspectives. Nanotechnology, 2020, 31, 252001.	1.3	42
679	Natural Biopolymers for Flexible Sensing and Energy Devices. Chinese Journal of Polymer Science (English Edition), 2020, 38, 459-490.	2.0	69
680	Fully transient electrochemical testing strips for eco-friendly point of care testing. RSC Advances, 2020, 10, 7241-7250.	1.7	8
681	Engineering silk materials: From natural spinning to artificial processing. Applied Physics Reviews, 2020, 7, .	5.5	56
682	Ultra-flexibility, robust waterproof and breathability of polyvinylidene fluoride membrane blended silver nitrate for electronic skin substrate. Journal Physics D: Applied Physics, 2020, 53, 195403.	1.3	5
683	Mechanically and biologically skin-like elastomers for bio-integrated electronics. Nature Communications, 2020, 11, 1107.	5.8	162
684	Flexible and fully biodegradable resistance random access memory based on a gelatin dielectric. Nanotechnology, 2020, 31, 255204.	1.3	12
685	Granular-Causality-Based Byproduct Energy Scheduling for Energy-Intensive Enterprise. IEEE Transactions on Automation Science and Engineering, 2020, 17, 1662-1673.	3.4	8
686	Recent Developments of Flexible and Stretchable Electrochemical Biosensors. Micromachines, 2020, 11, 243.	1.4	57
687	Materials, Mechanics Designs, and Bioresorbable Multisensor Platforms for Pressure Monitoring in the Intracranial Space. Advanced Functional Materials, 2020, 30, 1910718.	7.8	53
688	Inorganic materials for transient electronics in biomedical applications. MRS Bulletin, 2020, 45, 103-112.	1.7	62
689	The emergence of transient electronic devices. MRS Bulletin, 2020, 45, 87-95.	1.7	39
690	Interfacing Bioelectronics and Biomedical Sensing. , 2020, , .		8
691	Material strategies for on-demand smart transient electronics. MRS Bulletin, 2020, 45, 129-134.	1.7	16

		CITATION RE	PORT	
#	Article		IF	CITATIONS
692	Advanced manufacturing for transient electronics. MRS Bulletin, 2020, 45, 113-120.		1.7	9
693	Biodegradable and bioabsorbable sensors based on two-dimensional materials. Journal Chemistry B, 2020, 8, 1082-1092.	of Materials	2.9	30
694	Biointegrated and Wirelessly Powered Implantable Brain Devices: A Review. IEEE Trans Biomedical Circuits and Systems, 2020, 14, 343-358.	actions on	2.7	100
695	Engineering Smart Hybrid Tissues with Built-In Electronics. IScience, 2020, 23, 100833		1.9	16
696	Electrolyte-gated transistors for synaptic electronics, neuromorphic computing, and a biointerfacing. Applied Physics Reviews, 2020, 7, .	daptable	5.5	166
697	Streaming Algorithms for Estimating High Set Similarities in LogLog Space. IEEE Transa Knowledge and Data Engineering, 2021, 33, 3438-3452.	actions on	4.0	4
698	Bioresorbable Materials on the Rise: From Electronic Components and Physical Sensor Monitoring Systems. Advanced Science, 2020, 7, 1902872.	s to In Vivo	5.6	70
699	Biodegradable Piezoelectric Transducer for Powering Transient Implants. IEEE Access, 2 68219-68225.	2020, 8,	2.6	18
700	Physically Transient W/ZnO/MgO/W Schottky Diode for Rectifying and Artificial Synap Device Letters, 2020, 41, 844-847.	se. IEEE Electron	2.2	10
701	Biomimetic human small muscular pulmonary arteries. Science Advances, 2020, 6, eaa	z2598.	4.7	16
702	Active Transiency: A Novel Approach to Expedite Degradation in Transient Electronics. 13, 1514.	Materials, 2020,	1.3	5
703	Biomemristic Behavior for Water-Soluble Chitosan Blended with Graphene Quantum D Nanocomposite. Nanomaterials, 2020, 10, 559.	ot	1.9	7
704	Glymphatic clearance of simulated silicon dispersion in mouse brain analyzed by laser breakdown spectroscopy. Heliyon, 2020, 6, e03702.	induced	1.4	2
705	Enhanced Visible Light Communication Modulator With Dual-Feedback Control. IEEE J Emerging and Selected Topics in Power Electronics, 2021, 9, 123-137.	ournal of	3.7	7
706	A Singleâ€Step Hot Embossing Process for Integration of Microlens Arrays in Biodegra for Improved Light Extraction of Lightâ€Emitting Devices. Advanced Materials Technol 1900933.		3.0	23
707	Security and privacy issues of physical objects in the IoT: Challenges and opportunities Communications and Networks, 2021, 7, 373-384.	. Digital	2.7	45
708	Eco-friendly Strategies for the Material and Fabrication of Wearable Sensors. Internation of Precision Engineering and Manufacturing - Green Technology, 2021, 8, 1323-1346.	onal Journal	2.7	35
709	How is flexible electronics advancing neuroscience research?. Biomaterials, 2021, 268	120559.	5.7	32

#		IF	CITATIONS
710	Envisioned strategy for an early intervention in virus-suspected patients through non-invasive piezo- and pyro-electric-based wearable sensors. Journal of Materials Chemistry A, 2021, 9, 1887-1909.	5.2	19
711	Highly flexible and degradable memory electronics comprised of all-biocompatible materials. Nanoscale, 2021, 13, 724-729.	2.8	17
712	Becoming Sustainable, The New Frontier in Soft Robotics. Advanced Materials, 2021, 33, e2004413.	11.1	107
713	Biodegradable Materials for Sustainable Health Monitoring Devices. ACS Applied Bio Materials, 2021, 4, 163-194.	2.3	133
714	From wearables to implantables—clinical drive and technical challenges. , 2021, , 29-84.		8
715	Highly tough, freezing-tolerant, healable and thermoplastic starch/poly(vinyl alcohol) organohydrogels for flexible electronic devices. Journal of Materials Chemistry A, 2021, 9, 18406-18420.	5.2	91
716	Natural Biopolymer-Based Biocompatible Conductors for Stretchable Bioelectronics. Chemical Reviews, 2021, 121, 2109-2146.	23.0	199
717	Biocompatible and functional inorganic magnesium ceramic particles for biomedical applications. Biomaterials Science, 2021, 9, 1903-1923.	2.6	29
719	Flexible Artificial Sensory Systems Based on Neuromorphic Devices. ACS Nano, 2021, 15, 3875-3899.	7.3	135
720	A biodegradable and rechargeable fiber battery. Journal of Materials Chemistry A, 2021, 9, 10104-10109.	5.2	23
721	Chemically fueled materials with a self-immolative mechanism: transient materials with a fast on/off response. Chemical Science, 2021, 12, 9969-9976.	3.7	13
722	Bioresorbable Metals for Biomedical Applications: From Mechanical Components to Electronic Devices. Advanced Healthcare Materials, 2021, 10, e2002236.	3.9	35
723	Wearable Biosensors: An Alternative and Practical Approach in Healthcare and Disease Monitoring. Molecules, 2021, 26, 748.	1.7	134
724	Fabricate Graphenne-based Textile Sensors and Their Applications. Journal of Physics: Conference Series, 2021, 1790, 012063.	0.3	0
725	Smart power system of biocompatible and flexible micro-supercapacitor. Applied Physics Letters, 2021, 118, .	1.5	3
726	Recent Advances in Patterning Natural Polymers: From Nanofabrication Techniques to Applications. Small Methods, 2021, 5, e2001060.	4.6	29
727	From Diagnosis to Treatment: Recent Advances in Patient-Friendly Biosensors and Implantable Devices. ACS Nano, 2021, 15, 1960-2004.	7.3	171
728	Magnetosensitive Eâ€Skins for Interactive Devices. Advanced Functional Materials, 2021, 31, 2007788.	7.8	33

	CITATION	Report	
#	Article	IF	CITATIONS
729	The 2021 battery technology roadmap. Journal Physics D: Applied Physics, 2021, 54, 183001.	1.3	158
730	Bio-based Materials for Microwave Devices: A Review. Journal of Electronic Materials, 2021, 50, 1893-1921.	1.0	8
731	A Biodegradable Secondary Battery and its Biodegradation Mechanism for Ecoâ€Friendly Energyâ€Storage Systems. Advanced Materials, 2021, 33, e2004902.	11.1	42
732	Hindered urea bonds for dynamic polymers: An overview. Reactive and Functional Polymers, 2021, 159, 104807.	2.0	43
733	Biodegradable Metallic Glass for Stretchable Transient Electronics. Advanced Science, 2021, 8, 2004029.	5.6	21
734	Development and application of transient electronic based on degradable materials. IOP Conference Series: Earth and Environmental Science, 2021, 714, 032045.	0.2	4
735	Gold-Decorated Silicon Nanowire Photocatalysts for Intracellular Production of Hydrogen Peroxide. ACS Applied Materials & Interfaces, 2021, 13, 15490-15500.	4.0	4
736	Wearable sensors: At the frontier of personalised health monitoring, smart prosthetics and assistive technologies. Biosensors and Bioelectronics, 2021, 176, 112946.	5.3	100
738	Near-Field Vortex Beams Diffraction on Surface Micro-Defects and Diffractive Axicons for Polarization State Recognition. Sensors, 2021, 21, 1973.	2.1	21
739	Spontaneous Grafting of OH-Terminated Molecules on Siâ^'H Surfaces via Si–O–C Covalent Bonding. Surfaces, 2021, 4, 81-88.	1.0	13
740	Bioresorbable Primary Battery Anodes Built on Core–Double-Shell Zinc Microparticle Networks. ACS Applied Materials & Interfaces, 2021, 13, 14275-14282.	4.0	10
743	Biodegradable Molybdenum/Polybutylene Adipate Terephthalate Conductive Paste for Flexible and Stretchable Transient Electronics. Advanced Materials Technologies, 2022, 7, 2001297.	3.0	22
744	Biodegradable Flexible Electronic Device with Controlled Drug Release for Cancer Treatment. ACS Applied Materials & amp; Interfaces, 2021, 13, 21067-21075.	4.0	14
745	Foreign Body Reaction to Implanted Biomaterials and Its Impact in Nerve Neuroprosthetics. Frontiers in Bioengineering and Biotechnology, 2021, 9, 622524.	2.0	161
746	Repairing slight damages on monocrystalline silicon surface by thermal annealing. Materials Research Express, 2021, 8, 045005.	0.8	4
747	Mechanics of nonbuckling interconnects with prestrain for stretchable electronics. Applied Mathematics and Mechanics (English Edition), 2021, 42, 689-702.	1.9	2
748	Design, Simulation and Experimental Verification of Chip-Level Cracking Structure. DEStech Transactions on Materials Science and Engineering, 2021, , .	0.0	0
749	Si nanomebranes: Material properties and applications. Nano Research, 2021, 14, 3010-3032.	5.8	6

#	Article	IF	Citations
750	Biosensors Based Medical Devices For Disease Monitoring Therapy. International Journal of Advanced Research in Science, Communication and Technology, 0, , 263-278.	0.0	0
751	Printable and recyclable carbon electronics using crystalline nanocellulose dielectrics. Nature Electronics, 2021, 4, 261-268.	13.1	62
752	Printed carbon electronics get recycled. Nature Electronics, 2021, 4, 241-242.	13.1	3
753	Flexible and degradable resistive switching memory fabricated with sodium alginate*. Chinese Physics B, 2021, 30, 047302.	0.7	3
754	Recent Advances of Energy Solutions for Implantable Bioelectronics. Advanced Healthcare Materials, 2021, 10, e2100199.	3.9	65
755	Design of the Magnetic Stamp Film for Electromagnetic-Assisted Transfer Printing. Journal of Applied Mechanics, Transactions ASME, 2021, 88, .	1.1	9
756	Transient Electronics as Sustainable Systems: From Fundamentals to Applications. Advanced Sustainable Systems, 2022, 6, 2100057.	2.7	26
757	Advances in Soft Materials for Sustainable Electronics. Engineering, 2021, 7, 564-580.	3.2	20
758	Degradation Behavior, Biocompatibility, Electrochemical Performance, and Circularity Potential of Transient Batteries. Advanced Science, 2021, 8, 2004814.	5.6	44
759	SynCells: A 60 × 60 μ4m ² Electronic Platform with Remote Actuation for Sensing Applications in Constrained Environments. ACS Nano, 2021, 15, 8803-8812.	7.3	4
760	Recent progress in silk fibroin-based flexible electronics. Microsystems and Nanoengineering, 2021, 7, 35.	3.4	109
761	Materials and Fabrication Strategies for Biocompatible and Biodegradable Conductive Polymer Composites toward Bioâ€Integrated Electronic Systems. Advanced Sustainable Systems, 2022, 6, 2100075.	2.7	20
762	Recent Progress on Bioresorbable Passive Electronic Devices and Systems. Micromachines, 2021, 12, 600.	1.4	8
763	Lateral Photovoltaic Effect in Silk-Protein-Based Nanocomposite Structure for Physically Transient Position-Sensitive Detectors. Physical Review Applied, 2021, 15, .	1.5	12
764	Wearable, Implantable, and Interventional Medical Devices Based on Smart Electronic Skins. Advanced Materials Technologies, 2021, 6, 2100107.	3.0	81
765	Flexible Electrodes for In Vivo and In Vitro Electrophysiological Signal Recording. Advanced Healthcare Materials, 2021, 10, e2100646.	3.9	62
766	Transient Neurovascular Interface for Minimally Invasive Neural Recording and Stimulation. Advanced Materials Technologies, 2022, 7, 2100176.	3.0	8
767	Self-sustained green neuromorphic interfaces. Nature Communications, 2021, 12, 3351.	5.8	42

#	Article	IF	CITATIONS
768	Nanowire-enabled bioelectronics. Nano Today, 2021, 38, 101135.	6.2	31
769	Transient Rechargeable Battery with a High Lithium Transport Number Cellulosic Separator. Advanced Functional Materials, 2021, 31, 2101827.	7.8	36
770	Bioresorbable Photonics: Materials, Devices and Applications. Photonics, 2021, 8, 235.	0.9	4
771	Highly Thermal-Wet Comfortable and Conformal Silk-Based Electrodes for On-Skin Sensors with Sweat Tolerance. ACS Nano, 2021, 15, 9955-9966.	7.3	79
772	Flow Analysis of Regenerated Silk Fibroin/Cellulose Nanofiber Suspensions via a Bioinspired Microfluidic Chip. Advanced Materials Technologies, 2021, 6, 2100124.	3.0	14
773	Biocompatible and Nanoenabled Technologies for Biological Modulation. Advanced Materials Technologies, 2022, 7, 2100216.	3.0	8
774	Chlorophylls as Molecular Semiconductors: Introduction and State of Art. Advanced Materials Technologies, 2022, 7, 2100245.	3.0	11
775	Quantum-Dots Optimized Electrode for High-Stability Transient Memristor. IEEE Electron Device Letters, 2021, 42, 824-827.	2.2	15
776	Conformal manufacturing of soft deformable sensors on the curved surface. International Journal of Extreme Manufacturing, 2021, 3, 042001.	6.3	68
777	A review on emerging biodegradable polymers for environmentally benign transient electronic skins. Journal of Materials Science, 2021, 56, 16765-16789.	1.7	49
778	Fully Degradable Memristors and Humidity Sensors Based on a Tyrosine-Rich Peptide. ACS Applied Electronic Materials, 2021, 3, 3372-3378.	2.0	14
779	Advances in Si and SiC Materials for Highâ€Performance Supercapacitors toward Integrated Energy Storage Systems. Small, 2021, 17, e2101775.	5.2	30
780	Physically transient electronic materials and devices. Materials Science and Engineering Reports, 2021, 145, 100624.	14.8	46
781	Research progress of ionic liquids-based gels in energy storage, sensors and antibacterial. Green Chemical Engineering, 2021, 2, 368-383.	3.3	27
782	Conductive Polymerâ€Based Bioelectronic Platforms toward Sustainable and Biointegrated Devices: A Journey from Skin to Brain across Human Body Interfaces. Advanced Materials Technologies, 2022, 7, 2100293.	3.0	36
783	All-polymeric transient neural probe for prolonged in-vivo electrophysiological recordings. Biomaterials, 2021, 274, 120889.	5.7	26
784	Stretchable, Rehealable, Recyclable, and Reconfigurable Integrated Strain Sensor for Joint Motion and Respiration Monitoring. Research, 2021, 2021, 9846036.	2.8	19
785	Additiveâ€Free Energetic Film Based on Graphene Oxide and Nanoscale Energetic Coordination Polymer for Transient Microchip. Advanced Functional Materials. 2021. 31. 2103199.	7.8	22

#	Article	IF	CITATIONS
786	Recycling of Nanowire Percolation Network for Sustainable Soft Electronics. Advanced Electronic Materials, 2021, 7, 2100588.	2.6	10
787	Fabrication of Soft Tissue Scaffold-Mimicked Microelectrode Arrays Using Enzyme-Mediated Transfer Printing. Micromachines, 2021, 12, 1057.	1.4	6
788	Transient and Biocompatible Resistive Switching Memory Based on Electrochemicallyâ€Đeposited Zinc Oxide. Advanced Electronic Materials, 2021, 7, 2100322.	2.6	10
789	Implantable application of polymerâ€based biosensors. Journal of Polymer Science, 2022, 60, 328-347.	2.0	24
790	Biodegradable Implantable Sensors: Materials Design, Fabrication, and Applications. Advanced Functional Materials, 2021, 31, 2104149.	7.8	53
791	Nanoenabled Bioelectrical Modulation. Accounts of Materials Research, 2021, 2, 895-906.	5.9	3
792	A Review on Printed Electronics: Fabrication Methods, Inks, Substrates, Applications and Environmental Impacts. Journal of Manufacturing and Materials Processing, 2021, 5, 89.	1.0	77
793	Shapeâ€Engineerable Silk Fibroin Papers for Ideal Substrate Alternatives of Plastic Electronics. Advanced Functional Materials, 2021, 31, 2104088.	7.8	18
794	Modular Synthesis of Fully Degradable Imine-Based Semiconducting p-Type and n-Type Polymers. Chemistry of Materials, 2021, 33, 7465-7474.	3.2	21
795	The Food–Materials Nexus: Next Generation Bioplastics and Advanced Materials from Agriâ€Food Residues. Advanced Materials, 2021, 33, e2102520.	11.1	50
796	Biomimetic Woodâ€Inspired Batteries: Fabrication, Electrochemical Performance, and Sustainability within a Circular Perspective. Advanced Sustainable Systems, 2021, 5, 2100236.	2.7	8
797	Biomaterials-based bioengineering strategies for bioelectronic medicine. Materials Science and Engineering Reports, 2021, 146, 100630.	14.8	18
798	Silk-based pressure/temperature sensing bimodal ionotronic skin with stimulus discriminability and low temperature workability. Chemical Engineering Journal, 2021, 422, 130091.	6.6	36
799	Transient electronics: new opportunities for implantable neurotechnology. Current Opinion in Biotechnology, 2021, 72, 22-28.	3.3	20
800	A Review: Electrode and Packaging Materials for Neurophysiology Recording Implants. Frontiers in Bioengineering and Biotechnology, 2020, 8, 622923.	2.0	31
801	Materials, Devices, and Applications for Wearable and Implantable Electronics. ACS Applied Electronic Materials, 2021, 3, 485-503.	2.0	37
802	Multifunctional Batteries: Flexible, Transient, and Transparent. ACS Central Science, 2021, 7, 231-244.	5.3	45
803	Graphene-On-Polymer Flexible Vaporizable Sensor. , 2021, , .		0

# 804	ARTICLE Conformable on-skin devices for thermo-electro-tactile stimulation: materials, design, and fabrication. Materials Advances, 2021, 2, 1787-1820.	IF 2.6	CITATIONS
805	Bioimpedance Sensors: A Tutorial. IEEE Sensors Journal, 2021, 21, 22190-22219.	2.4	24
806	Power and data communication in wearable and implantable devices. , 2021, , 279-309.		2
807	A thin, deformable, high-performance supercapacitor implant that can be biodegraded and bioabsorbed within an animal body. Science Advances, 2021, 7, .	4.7	89
808	Bioinspired Prosthetic Interfaces. Advanced Materials Technologies, 2020, 5, 1900856.	3.0	42
809	Silk and Paper: Progress and Prospects in Green Photonics and Electronics. Advanced Sustainable Systems, 2022, 6, 2000216.	2.7	22
810	Triboelectric nanogenerator based on degradable materials. EcoMat, 2021, 3, e12072.	6.8	108
811	WSN Applications. Signals and Communication Technology, 2021, , 67-232.	0.4	8
812	Development of the Quantified Human. Trends in Augmentation of Human Performance, 2014, , 181-205.	0.4	1
814	Bring on the bodyNET. Nature, 2017, 549, 328-330.	13.7	121
815	Additive manufacturing of natural biopolymers and composites for bone tissue engineering. Materials Horizons, 2020, 7, 2011-2027.	6.4	81
816	Modulating the percolation network of polymer nanocomposites for flexible sensors. Journal of Applied Physics, 2020, 128, 220901.	1.1	18
817	A review on the exploitation of biodegradable magnesium-based composites for medical applications. Biomedical Materials (Bristol), 2018, 13, 022001.	1.7	52
818	Strain-Limiting Substrates Based on Nonbuckling, Prestrain-Free Mechanics for Robust Stretchable Electronics. Journal of Applied Mechanics, Transactions ASME, 2017, 84, .	1.1	19
819	Sensitive photoreceiver based on carbon nanotube/tobacco cell composite material. Proceedings of SPIE, 2017, , .	0.8	1
820	Humidity sensing using THz metamaterial with silk protein fibroin. Optics Express, 2018, 26, 33575.	1.7	27
821	Active optics with silk. Nanophotonics, 2020, 10, 137-148.	2.9	15
822	Mechanics of Interfacial Bonding in Dissimilar Soft Transient Materials and Electronics. MRS Advances, 2016, 1, 2501-2511.	0.5	2

#	Article	IF	CITATIONS
823	Degradable and Dissolvable Thin-Film Materials for the Applications of New-Generation Environmental-Friendly Electronic Devices. Applied Sciences (Switzerland), 2020, 10, 1320.	1.3	15
824	Sutures for the wireless sensing of deep wounds. Nature Biomedical Engineering, 2021, 5, 1113-1114.	11.6	5
825	Wirelessly operated bioelectronic sutures for the monitoring of deep surgical wounds. Nature Biomedical Engineering, 2021, 5, 1217-1227.	11.6	47
826	Flexible and recyclable bio-based transient resistive memory enabled by self-healing polyimine membrane. Journal of Colloid and Interface Science, 2022, 608, 1126-1134.	5.0	15
827	Fiberâ€Based Biopolymer Processing as a Route toward Sustainability. Advanced Materials, 2022, 34, e2105196.	11.1	71
828	Organic Electrochemical Transistors for In Vivo Bioelectronics. Advanced Materials, 2021, 33, e2101874.	11.1	78
829	Unconventional Resistive Switching Behavior in Fibroinâ€Based Memristor. Advanced Electronic Materials, 2022, 8, 2100843.	2.6	21
830	Reconfigurability for Static Camouflaging. , 2021, , 35-52.		0
831	Fabrication of Nanowires and Their Applications. , 2014, , 89-128.		0
833	Biodegradable battery could melt inside the body. Nature, 0, , .	13.7	1
834	Correlation between Mechanical Behaviour and Microstructure in the Mg-Ca-Si-Sr System for Degradable Biomaterials Based on Thermodynamic Calculations. , 2015, , 431-436.		0
835	Trillion Sensing —Sensory Inspection in IoT Era—. Journal of Japan Institute of Electronics Packaging, 2016, 19, 485-491.	0.0	0
836	The Future of Product Design Utilising Printed Electronics. , 0, , .		0
837	Transfer Printing for Cyber-Manufacturing Systems. Springer Series in Wireless Technology, 2017, , 671-690.	1.1	1
838	Advances in the Fabrication of Large-Area Back-Gated Graphene Field-Effect Transistors on Plastics: Platform for Flexible Electronics and Sensing. Carbon Nanostructures, 2017, , 125-136.	0.1	0
839	Silicon transient electronics: bioresorbable to hardware-secure device. , 2019, , .		0
840	Design, Simulation, and Experimental Verification of a Destruction Mechanism of Transient Electronic Devices. Active and Passive Electronic Components, 2020, 2020, 1-11.	0.3	0
841	Flexible Cyclicâ€Poly(phthalaldehyde)/Poly(εâ€caprolactone) Blend Fibers with Fast Daylightâ€Triggered Transience. Macromolecular Rapid Communications, 2021, 42, 2000657.	2.0	2

#	Article	IF	Citations
842	Phototriggerable Transient Electronics via Fullerene-Mediated Degradation of Polymer:Fullerene Encapsulation Layer. ACS Applied Materials & Interfaces, 2021, 13, 904-911.	4.0	5
843	Highly Improved Performance in Ag-Doped BSA Films by Inserting the ZrOâ,, Layer for Nonvolatile Resistive Switching Memory. IEEE Transactions on Electron Devices, 2021, 68, 510-515.	1.6	6
844	Inorganic Dissolvable Bioelectronics. , 2020, , 73-100.		0
845	Recent advances in silk-based wearable sensors. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 178703.	0.2	6
846	Natural Acidic Polysaccharideâ€Based Memristors for Transient Electronics: Highly Controllable Quantized Conductance for Integrated Memory and Nonvolatile Logic Applications. Advanced Materials, 2021, 33, e2104023.	11,1	30
847	Ultrahigh Sensitive Auâ€Doped Silicon Nanomembrane Based Wearable Sensor Arrays for Continuous Skin Temperature Monitoring with High Precision. Advanced Materials, 2022, 34, e2105865.	11.1	69
848	Research Progress of Microtransfer Printing Technology for Flexible Electronic Integrated Manufacturing. Micromachines, 2021, 12, 1358.	1.4	9
851	Stretchable Conductors Fabricated by Stencil Lithography and Centrifugal Force-Assisted Patterning of Liquid Metal. ACS Applied Electronic Materials, 2021, 3, 5423-5432.	2.0	11
852	Recent Advances in Multiresponsive Flexible Sensors towards Eâ€skin: A Delicate Design for Versatile Sensing. Small, 2022, 18, e2103734.	5.2	76
853	Water soluble flexible and wearable electronic devices: a review. Flexible and Printed Electronics, 2021, 6, 043006.	1.5	6
854	Transient WORM Memory Device Using Biocompatible Protamine Sulfate with Very High Data Retention and Stability. ACS Applied Electronic Materials, 2021, 3, 5248-5256.	2.0	10
855	Natural Polymer in Soft Electronics: Opportunities, Challenges, and Future Prospects. Advanced Materials, 2022, 34, e2105020.	11.1	49
856	Flexible Wearables for Plants. Small, 2021, 17, e2104482.	5.2	34
857	Recent Progress in Materials Chemistry to Advance Flexible Bioelectronics in Medicine. Advanced Materials, 2022, 34, e2106787.	11.1	44
858	Biologically Safe, Degradable Self-Destruction System for On-Demand, Programmable Transient Electronics. ACS Nano, 2021, 15, 19310-19320.	7.3	20
859	Analog Resistive Switching in Reduced Graphene Oxide and Chitosanâ€Based Bioâ€Resistive Random Access Memory Device for Neuromorphic Computing Applications. Physica Status Solidi - Rapid Research Letters, 2022, 16, 2100465.	1.2	9
860	Recent progress in biodegradable and bioresorbable materials: From passive implants to active electronics. Applied Materials Today, 2021, 25, 101257.	2.3	24
861	The Role of Critical Raw Materials for Novel Strategies in Sustainable Secondary Batteries. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	0.8	4

#	Article	IF	CITATIONS
862	Silk materials at the convergence of science, sustainability, healthcare, and technology. Applied Physics Reviews, 2022, 9, .	5.5	31
864	Towards Transient Electronics through Heat Triggered Shattering of Off-the-Shelf Electronic Chips. Micromachines, 2022, 13, 242.	1.4	2
865	Ultrasound-mediated triboelectric nanogenerator for powering on-demand transient electronics. Science Advances, 2022, 8, eabl8423.	4.7	71
866	Benefits of a Skullâ€Interfaced Flexible and Implantable Multilight Emitting Diode Array for Photobiomodulation in Ischemic Stroke. Advanced Science, 2022, 9, e2104629.	5.6	14
867	Smart bioelectronics and biomedical devices. Bio-Design and Manufacturing, 2022, 5, 1-5.	3.9	4
868	Degradation Study of Thin-Film Silicon Structures in a Cell Culture Medium. Sensors, 2022, 22, 802.	2.1	2
869	Heteroâ€Integration of Silicon Nanomembranes with 2D Materials for Bioresorbable, Wireless Neurochemical System. Advanced Materials, 2022, 34, e2108203.	11.1	28
870	Controlled Bi-Axial Buckling and Postbuckling of Thin Films Suspended on a Stretchable Substrate With Square Prism Relief Structures. International Journal of Applied Mechanics, 0, , .	1.3	4
871	The sustainable materials roadmap. JPhys Materials, 2022, 5, 032001.	1.8	24
872	Physical Unclonable Functions Based on Transient Form of Memristors for Emergency Defenses. IEEE Electron Device Letters, 2022, 43, 378-381.	2.2	3
873	Visualized Drug Release Silk Patch Using Thermal Nanoimprinting of Pdms Template. , 2022, , .		0
874	2D Heterostructures for Ubiquitous Electronics and Optoelectronics: Principles, Opportunities, and Challenges. Chemical Reviews, 2022, 122, 6514-6613.	23.0	187
875	Electronic Textiles for Wearable Point-of-Care Systems. Chemical Reviews, 2022, 122, 3259-3291.	23.0	316
876	Materials for wearable sensors. , 2022, , 5-40.		3
877	Next-Generation Healthcare: Enabling Technologies for Emerging Bioelectromagnetics Applications. IEEE Open Journal of Antennas and Propagation, 2022, 3, 363-390.	2.5	24
878	Impact of Molecular Design on Degradation Lifetimes of Degradable Imine-Based Semiconducting Polymers. Journal of the American Chemical Society, 2022, 144, 3717-3726.	6.6	29
879	Superâ€Assembled Hierarchical Cellulose Aerogelâ€Gelatin Solid Electrolyte for Implantable and Biodegradable Zinc Ion Battery. Advanced Functional Materials, 2022, 32, .	7.8	48
880	Biological SERS-active sensor platform based on flexible silk fibroin film and gold nanoislands. Optics Express, 2022, 30, 7782.	1.7	4

#	ARTICLE Enhancing the Resistive Switching Performance in a Physically Transient Memristor by Doping <mml:math <="" display="inline" th="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><th>IF</th><th>CITATIONS</th></mml:math>	IF	CITATIONS
881	overflow="scroll"> <mml:msub><mml:mrow><mml:mi>Mo</mml:mi><mml:mi mathvariant="normal">S</mml:mi </mml:mrow><mml:mn>2</mml:mn></mml:msub> Quantum Dots. Physical Review Applied, 2022, 17, .	1.5	4
882	High-Performance Carbon Nanotube-Based Transient Complementary Electronics. ACS Applied Materials & Materials & Amp; Interfaces, 2022, 14, 12515-12522.	4.0	6
883	Sustainable Natural Bioâ€Origin Materials for Future Flexible Devices. Advanced Science, 2022, 9, e2200560.	5.6	43
884	A Hierarchically Encoded Data Storage Device with Controlled Transiency. Advanced Materials, 2022, , 2201035.	11.1	4
885	Biodegradable silicon nanoneedles for ocular drug delivery. Science Advances, 2022, 8, eabn1772.	4.7	31
886	Recent Advances in Self-Powered Piezoelectric and Triboelectric Sensors: From Material and Structure Design to Frontier Applications of Artificial Intelligence. Sensors, 2021, 21, 8422.	2.1	14
887	Micro and nano materials and processing techniques for printed biodegradable electronics. Materials Today Nano, 2022, 18, 100201.	2.3	11
888	Biodegradable Molybdenum (Mo) and Tungsten (W) Devices: One Step Closer towards Fully-Transient Biomedical Implants. Sensors, 2022, 22, 3062.	2.1	12
889	Electrochemically fabricated molecule–electrode contacts for molecular electronics. Current Opinion in Electrochemistry, 2022, 34, 101019.	2.5	9
890	Functional Encapsulating Structure for Wireless and Immediate Monitoring of the Fluid Penetration. Advanced Functional Materials, 2022, 32, .	7.8	6
891	Highâ€Performance n hannel Printed Transistors on Biodegradable Substrate for Transient Electronics. Advanced Electronic Materials, 2022, 8, .	2.6	10
892	Rapid meniscus-guided printing of stable semi-solid-state liquid metal microgranular-particle for soft electronics. Nature Communications, 2022, 13, 2643.	5.8	62
893	Stretchable, Multi-Layered Stack Antenna for Smart/Wearable Electronic Applications. Materials, 2022, 15, 3275.	1.3	2
894	Potential soluble substrates for transient electronics applications: A review. AIP Advances, 2022, 12, .	0.6	9
895	Conductive Ink with Circular Life Cycle for Printed Electronics. Advanced Materials, 2022, 34, e2202177.	11.1	20
896	A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy. Science, 2022, 376, 1006-1012.	6.0	90
897	Research on Insurance Method for Energetic Materials on Information Self-Destruction Chips. Micromachines, 2022, 13, 875.	1.4	3
898	Bioresorbable Nanostructured Chemical Sensor for Monitoring of pH Level In Vivo. Advanced Science, 2022, 9, .	5.6	20

#	Article	IF	CITATIONS
899	A Transient Supercapacitor with a Water-Dissolvable Ionic Gel for Sustainable Electronics. ACS Applied Materials & Interfaces, 2022, 14, 26595-26603.	4.0	18
900	Liquid Metal/Wood Anisotropic Conductors for Flexible and Recyclable Electronics. Advanced Materials Interfaces, 2022, 9, .	1.9	1
901	Design of information self-destruction module based on security control of energetic materials. Measurement: Journal of the International Measurement Confederation, 2022, 198, 111396.	2.5	2
902	2022 roadmap on neuromorphic devices and applications research in China. Neuromorphic Computing and Engineering, 2022, 2, 042501.	2.8	4
904	Biomaterials and Electroactive Bacteria for Biodegradable Electronics. Frontiers in Microbiology, 0, 13, .	1.5	3
906	Information self-destruction module design based on micro thermoelectric power generation and energetic materials. ISA Transactions, 2023, 132, 573-581.	3.1	1
907	Transient, Biodegradable Energy Systems as a Promising Power Solution for Ecofriendly and Implantable Electronics. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	8
908	Nature-derived highly tribopositive ϰ-carrageenan-agar composite-based fully biodegradable triboelectric nanogenerators. Nano Energy, 2022, 100, 107480.	8.2	13
909	Transient Materials from Hypersensitive Ionic Polymer Fibers. SSRN Electronic Journal, 0, , .	0.4	0
910	Soft, bioresorbable coolers for reversible conduction block of peripheral nerves. Science, 2022, 377, 109-115.	6.0	62
911	A systematic review of cellulosic material for green electronics devices. Carbohydrate Polymer Technologies and Applications, 2022, 4, 100234.	1.6	14
912	Biodegradable sensors are ready to transform autonomous ecological monitoring. Nature Ecology and Evolution, 2022, 6, 1245-1247.	3.4	13
913	A Reactive Inkjet Printing Process for Fabricating Biodegradable Conductive Zinc Structures. Advanced Engineering Materials, 2023, 25, .	1.6	6
915	Biodegradable germanium electronics for integrated biosensing of physiological signals. Npj Flexible Electronics, 2022, 6, .	5.1	11
916	The laser beams formation with an extended light focal segment by subwavelength silicon microaxicons. , 2022, , .		0
917	Pinaceae Fir Resins as Natural Dielectrics for Low Voltage Operating, Hysteresisâ€Free Organic Field Effect Transistors. Advanced Sustainable Systems, 2022, 6, .	2.7	5
918	Nano Quantum Computing thin films electronic components to act as rectifier and amplifier in simulation theory. Optik, 2022, 269, 169843.	1.4	1
919	Large-area vertically aligned 2D MoS ₂ layers on TEMPO-cellulose nanofibers for biodegradable transient gas sensors. Nanotechnology, 2022, 33, 475502.	1.3	5

#	Article	IF	CITATIONS
920	Interaction of advanced micro/nano electronics and materials with marine environment. Frontiers in Marine Science, 0, 9, .	1.2	0
921	High performance dual-electrolyte magnesium–iodine batteries that can harmlessly resorb in the environment or in the body. Energy and Environmental Science, 2022, 15, 4095-4108.	15.6	14
922	Biodegradable bioelectronics for biomedical applications. Journal of Materials Chemistry B, 2022, 10, 8575-8595.	2.9	6
923	Ultraâ€Thin Flexible Encapsulating Materials for Soft Bioâ€Integrated Electronics. Advanced Science, 2022, 9, .	5.6	37
924	Soft, environmentally degradable microfluidic devices for measurement of sweat rate and total sweat loss and for colorimetric analysis of sweat biomarkers. EcoMat, 2023, 5, .	6.8	20
926	Supertough and highly stretchable silk protein-based films with controlled biodegradability. Acta Biomaterialia, 2022, 153, 149-158.	4.1	8
927	Mucosa-interfacing electronics. Nature Reviews Materials, 2022, 7, 908-925.	23.3	35
928	Bioresorbable thin-film silicon diodes for the optoelectronic excitation and inhibition of neural activities. Nature Biomedical Engineering, 2023, 7, 486-498.	11.6	25
929	Heat and light triggered mechanical destruction of 2D materials based electronic devices fabricated on wax substrate. FlatChem, 2022, 35, 100423.	2.8	1
930	Biodegradable polymeric materials for flexible and degradable electronics. Frontiers in Electronics, 0, 3, .	2.0	10
931	Nanolaminated HfO ₂ /Al ₂ O ₃ Dielectrics for Highâ€Performance Silicon Nanomembrane Based Fieldâ€Effect Transistors on Biodegradable Substrates. Advanced Materials Interfaces, 2022, 9, .	1.9	5
932	Geometrically Curved Magnetic Field Sensors for Interactive Electronics. Topics in Applied Physics, 2022, , 375-401.	0.4	0
933	Sustainable Biopolymers. , 2022, , 1-31.		0
934	High-speed, scanned laser structuring of multi-layered eco/bioresorbable materials for advanced electronic systems. Nature Communications, 2022, 13, .	5.8	14
935	Lens on Tropical Sericulture Development in Indonesia: Recent Status and Future Directions for Industry and Social Forestry. Insects, 2022, 13, 913.	1.0	3
936	Double-Action Disinfection with Silk Fibroin Gauze: Reliable Therapeutics to Prevent Infectious Complications. , 2022, 4, 2219-2232.		2
937	Fully Recyclable Liquidâ€Metalâ€Based Multi‣ayer Thermally Triggered Transient Electronic Devices. Advanced Materials Technologies, 2023, 8, .	3.0	3
938	Micro-/Nano-Structured Biodegradable Pressure Sensors for Biomedical Applications. Biosensors, 2022, 12, 952.	2.3	8

#	Article	IF	CITATIONS
939	Sustainable Biopolymers. , 2023, , 1-31.		0
940	3D conductive material strategies for modulating and monitoring cells. Progress in Materials Science, 2023, 133, 101041.	16.0	3
941	Mg/Zn metalâ€air primary batteries using silk fibroinâ€ionic liquid polymer electrolytes. Nano Select, 2023, 4, 90-101.	1.9	0
942	Biodegradable Electronics. Springer Handbooks, 2023, , 1019-1041.	0.3	0
943	Transient materials from hypersensitive ionic polymer fibers. Chemical Engineering Journal, 2023, 454, 140549.	6.6	0
944	Integration of flexible, recyclable, and transient gelatin hydrogels toward multifunctional electronics. Journal of Materials Science and Technology, 2023, 145, 83-92.	5.6	10
945	Implantable and Bioresorbable Nanostructured Fluorescence Sensor for In vivo pH Monitoring. , 2022, , , .		1
946	Green double crosslinked starch-alginate hydrogel regulated by sustained calcium ion-gluconolactone release for human motion monitoring. Chemical Engineering Journal, 2023, 455, 140653.	6.6	19
947	Toward Sustainable Wearable Electronic Textiles. ACS Nano, 2022, 16, 19755-19788.	7.3	42
948	Features of the Optical Vortices Diffraction on Silicon Ring Gratings. Optical Memory and Neural Networks (Information Optics), 2022, 31, 55-66.	0.4	3
949	The comparison of the optical vortices focusing by silicon diffraction axicons and ring gratings with variable relief heights using high-performance computer systems. , 2022, , .		0
950	Electrolyte-gated synaptic transistors for brain-inspired computing. Japanese Journal of Applied Physics, 2023, 62, SE0801.	0.8	6
951	Tough, Bioâ€disintegrable and Stretchable Substrate Reinforced with Nanofibers for Transient Wearable Electronics. Advanced Functional Materials, 2023, 33, .	7.8	10
952	Nanobridge Stencil Enabling High Resolution Arbitrarily Shaped Metallic Thin Films on Various Substrates. Advanced Materials Technologies, 0, , 2201119.	3.0	0
953	Bio-hybrid electronic and photonic devices. Experimental Biology and Medicine, 2022, 247, 2128-2141.	1.1	3
954	Vitamin C-Induced Enhanced Performance of PEDOT:PSS Thin Films for Eco-Friendly Transient Thermoelectrics. ACS Applied Materials & amp; Interfaces, 2023, 15, 2852-2860.	4.0	8
955	Bubble-blowing-inspired sub-micron thick freestanding silk films for programmable electronics. Nanoscale, 0, , .	2.8	2
956	A Transient Pseudo apacitor Using a Bioderived Ionic Liquid with Na Ions. Small, 2023, 19, .	5.2	5

		CITATION REPORT	
#	Article	IF	CITATIONS
957	Isotropic conductive paste for bioresorbable electronics. Materials Today Bio, 2023, 18, 100541.	2.6	6
958	Biodegradable Polymers in Triboelectric Nanogenerators. Polymers, 2023, 15, 222.	2.0	23
959	The Synergy of Hydrogen Bond and Entanglement of Elastomer Captures Unprecedented Flaw Insensitivity Rate. Small, 2023, 19, .	5.2	8
960	2D materials for flexible electronics. , 2023, , 169-206.		1
961	Optical Properties of Biopolymers. , 2023, , 1-29.		0
962	Printed Silk Microelectrode Arrays for Electrophysiological Recording and Controlled Drug Delivery. Advanced Healthcare Materials, 2023, 12, .	3.9	5
963	Flame-retardant fibre-particle-polymer semiconductive networks for physically transient supercapacitors and chemiresistors. Chemical Engineering Journal, 2023, 460, 141861.	6.6	3
964	Material Design in Implantable Biosensors toward Future Personalized Diagnostics and Treatments Applied Sciences (Switzerland), 2023, 13, 4630.	5. 1.3	1
965	Aqueous electrolyte-gated solution-processed metal oxide transistors for direct cellular interfaces. APL Bioengineering, 2023, 7, .	3.3	3
966	Physically Transient Artificial Neuron Based on Mg/Magnesium Oxide Threshold Switching Memrist IEEE Transactions on Electron Devices, 2023, 70, 2047-2051.	or. 1.6	6
967	Self-destructive microchip: Support-free energetic film of BiOBr/Al/Bi2O3 nanothermites and its destructive performance. Chemical Engineering Journal, 2023, 459, 141506.	6.6	3
968	Green Flexible Electronics: Natural Materials, Fabrication, and Applications. Advanced Materials, 20 35, .)23, 11.1	40
969	WSNs Applications. Signals and Communication Technology, 2023, , 67-242.	0.4	3
970	Environmentally Friendly Improvement of Plasmonic Nanostructure Functionality towards Magneti Resonance Applications. Nanomaterials, 2023, 13, 764.	ic 1.9	3
971	Tough Transient Ionic Junctions Printed with Ionic Microgels. Advanced Functional Materials, 2023 33, .	, 7.8	5
972	Biocomposites: Prospects and Manifold Applications for Human and Environmental Sustainability. Journal of Solid State Science and Technology, 2023, 12, 037002.	ECS 0.9	0
973	Sustainable Biopolymers. , 2023, , 319-349.		0
974	Zinc hybrid sintering for printed transient sensors and wireless electronics. Npj Flexible Electronics 2023, 7, .	, 5.1	7

	CHAHONR	LFORT	
#	Article	IF	CITATIONS
975	Skin-Interfaced Wearable Sweat Sensors for Precision Medicine. Chemical Reviews, 2023, 123, 5049-5138.	23.0	85
976	PVA–FeCl ₃ composites as substrate and packaging materials for the controlled degradation of non-degradable metals in transient electronics. Journal of Materials Chemistry A, 2023, 11, 12999-13006.	5.2	2
977	Utilization of Bioactive Silk Protein in the Development of Optical Devices: Recent Advancements and Applications. Current Protein and Peptide Science, 2023, 24, .	0.7	1
978	Substrateâ€Free Transfer of Largeâ€Area Ultraâ€Thin Electronics. Advanced Electronic Materials, 2023, 9, .	2.6	2
979	Functional Destruction: Utilizing Sustainable Materials' Physical Transiency for Electronics Applications. , 2023, , .		3
980	Nanoporous Cu Prepared through Dealloying by Selectively Etching an Alkaline Metal with Saline. ACS Applied Nano Materials, 2023, 6, 7229-7233.	2.4	3
981	Electrical stimulation for therapeutic approach. , 2023, 1, .		10
988	Optical Properties of Biopolymers. , 2023, , 223-251.		0
991	Biodegradable sensor platforms. , 2023, , 775-801.		0
992	Biodegradable materials and devices for neuroelectronics. MRS Bulletin, 0, , .	1.7	1
996	Hygroscopically-driven transient actuator for environmental sensor deployment. , 2023, , .		0
998	Service behavior of triboelectric nanogenerators: Bridging the gap between prototypes and applications. Nano Research, 0, , .	5.8	0
1011	PEDOT:PSS materials for optoelectronics, thermoelectrics, and flexible and stretchable electronics. Journal of Materials Chemistry A, 2023, 11, 18561-18591.	5.2	7
1013	Flexible Thin-Film Temperature Sensors on Gelatin-Based Biodegradable Substrates for the Development of Green Electronics. , 2023, , .		0
1014	Sputtered Zinc Electrodes on Pullulan Substrates for Flexible Biodegradable Transient Electronics. , 2023, , .		0
1022	Transient Internet of Things: Redesigning the Lifetime of Electronics for a More Sustainable Networked Environment. , 2023, , .		0
1032	Recent advances in smart wearable sensors as electronic skin. Journal of Materials Chemistry B, 2023, 11, 10332-10354.	2.9	0
1037	Biodegradable Polymers for Wearable Electronics and Device Fabrication. , 2023, , 1-12.		Ο

#	Article	IF	CITATIONS
1041	Customer Side Load Measurement and Control Technology Basing Power Consumption Information Monitoring and Analysis. , 2023, , .		0
1047	Bioactive and Biodegradable Supercapacitors: Recent Advances, Challenges, and Future Perspectives. , 2023, , 240-261.		0
1059	Incorporation of soft materials for flexible electronics. , 2024, , 155-225.		0
1063	Silk proteins for bioelectronic devices in healthcare. , 2024, , 735-769.		0
1064	Processing of Bombyx mori silk biomaterials. , 2024, , 41-54.		0
1068	Transfer-printed devices for biomedical applications. , 2024, , 279-323.		0
1070	Organic encapsulants for bioresorbable medical electronics. MRS Bulletin, 2024, 49, 247-255.	1.7	0
1075	Implantable Electrode Based on Pre-Stretched Silk Film for in Vivo Application. , 2024, , .		0
1082	Green and Sustainable Paper-Based Sensing Systems Using Nanoparticles. , 2024, , .		0