Estimating the proportion of variation in susceptibility common SNPs

Nature Genetics 44, 247-250 DOI: 10.1038/ng.1108

Citation Report

#	Article	IF	CITATIONS
1	Runs of Homozygosity Implicate Autozygosity as a Schizophrenia Risk Factor. PLoS Genetics, 2012, 8, e1002656.	1.5	109
2	Estimating the proportion of variation in susceptibility to multiple sclerosis captured by common SNPs. Scientific Reports, 2012, 2, 770.	1.6	16
3	Prenatal nutrition, epigenetics and schizophrenia risk: can we test causal effects?. Epigenomics, 2012, 4, 303-315.	1.0	76
5	A commentary on the gender-specific association of TSNAX/DISC1 locus for schizophrenia and bipolar affective disorder in South Indian population. Journal of Human Genetics, 2012, 57, 475-476.	1.1	0
6	Estimation of pleiotropy between complex diseases using single-nucleotide polymorphism-derived genomic relationships and restricted maximum likelihood. Bioinformatics, 2012, 28, 2540-2542.	1.8	564
7	The gene in its natural habitat: The importance of gene–trait interactions. Development and Psychopathology, 2012, 24, 1307-1318.	1.4	26
8	Genome-wide approaches in pharmacogenomics: heritability estimation and pharmacoethnicity as primary challenges. Pharmacogenomics, 2012, 13, 1101-1104.	0.6	11
9	The genetic architecture of economic and political preferences. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8026-8031.	3.3	225
10	Implications of Genetic Findings for Understanding Schizophrenia. Schizophrenia Bulletin, 2012, 38, 904-907.	2.3	48
11	A mixed-model approach for genome-wide association studies of correlated traits in structured populations. Nature Genetics, 2012, 44, 1066-1071.	9.4	380
12	Understanding and predicting complex traits: knowledge from cattle. Human Molecular Genetics, 2012, 21, R45-R51.	1.4	64
13	Lack of support for association between the copy number variants in the FCGR locus and schizophrenia: A case control study. Neuroscience Letters, 2012, 522, 85-91.	1.0	1
14	Improved Heritability Estimation from Genome-wide SNPs. American Journal of Human Genetics, 2012, 91, 1011-1021.	2.6	656
15	Target practice: HDAC inhibitors for schizophrenia. Nature Neuroscience, 2012, 15, 1180-1181.	7.1	15
16	Puzzling over schizophrenia: Schizophrenia as a pathway disease. Nature Medicine, 2012, 18, 210-211.	15.2	80
17	Confluence of genes, environment, development, and behavior in a post Genome-Wide Association Study world. Development and Psychopathology, 2012, 24, 1195-1214.	1.4	43
18	Common genetic variants, acting additively, are a major source of risk for autism. Molecular Autism, 2012, 3, 9.	2.6	357
19	Using summary data from the Danish National Registers to estimate heritabilities for schizophrenia, bipolar disorder, and major depressive disorder. Frontiers in Genetics, 2012, 3, 118.	1.1	176

	CITATION RE	PORT	
#	Article	IF	Citations
20	Open Peer Commentary. European Journal of Personality, 2012, 26, 391-413.	1.9	8
21	Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nature Reviews Genetics, 2012, 13, 537-551.	7.7	1,025
22	MAINTENANCE OF GENETIC VARIATION IN HUMAN PERSONALITY: TESTING EVOLUTIONARY MODELS BY ESTIMATING HERITABILITY DUE TO COMMON CAUSAL VARIANTS AND INVESTIGATING THE EFFECT OF DISTANT INBREEDING. Evolution; International Journal of Organic Evolution, 2012, 66, 3238-3251.	1.1	166
23	Role of DISC1 Interacting Proteins in Schizophrenia Risk from Genomeâ€Wide Analysis of Missense SNPs. Annals of Human Genetics, 2013, 77, 504-512.	0.3	22
24	Whole-genome sequencing in an autism multiplex family. Molecular Autism, 2013, 4, 8.	2.6	76
25	Contribution of Common Genetic Variants to Antidepressant Response. Biological Psychiatry, 2013, 73, 679-682.	0.7	199
26	Evaluating Rare Variants in Complex Disorders Using Next-Generation Sequencing. Current Psychiatry Reports, 2013, 15, 349.	2.1	14
27	What psychiatric genetics has taught us about the nature of psychiatric illness and what is left to learn. Molecular Psychiatry, 2013, 18, 1058-1066.	4.1	157
28	Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nature Genetics, 2013, 45, 1150-1159.	9.4	1,395
29	Intelligence indexes generalist genes for cognitive abilities. Intelligence, 2013, 41, 560-565.	1.6	25
30	The evolutionary paradox and the missing heritability of schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2013, 162, 122-136.	1.1	86
31	Genetics of psychiatric disorders in the GWAS era: an update on schizophrenia. European Archives of Psychiatry and Clinical Neuroscience, 2013, 263, 147-154.	1.8	49
32	Projecting the performance of risk prediction based on polygenic analyses of genome-wide association studies. Nature Genetics, 2013, 45, 400-405.	9.4	350
33	Evaluating empirical bounds on complex disease genetic architecture. Nature Genetics, 2013, 45, 1418-1427.	9.4	147
34	Candidate and non-candidate genes in behavior genetics. Current Opinion in Neurobiology, 2013, 23, 57-61.	2.0	83
35	The emerging spectrum of allelic variation in schizophrenia: current evidence and strategies for the identification and functional characterization of common and rare variants. Molecular Psychiatry, 2013, 18, 38-52.	4.1	75
36	Where GWAS and Epidemiology Meet: Opportunities for the Simultaneous Study of Genetic and Environmental Risk Factors in Schizophrenia. Schizophrenia Bulletin, 2013, 39, 955-959.	2.3	65
37	Using Phenotypic Heterogeneity to Increase the Power of Genomeâ€Wide Association Studies: Application to Age at Onset of Ischaemic Stroke Subphenotypes. Genetic Epidemiology, 2013, 37, 495-503.	0.6	10

	CITATION REL		
#	Article	IF	CITATIONS
38	Genome-wide association study of Tourette's syndrome. Molecular Psychiatry, 2013, 18, 721-728.	4.1	161
39	Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nature Genetics, 2013, 45, 984-994.	9.4	2,067
40	Transcriptome study of differential expression in schizophrenia. Human Molecular Genetics, 2013, 22, 5001-5014.	1.4	73
41	Family-based exome-sequencing approach identifies rare susceptibility variants for lithium-responsive bipolar disorder. Genome, 2013, 56, 634-640.	0.9	42
42	Estimation and partitioning of polygenic variation captured by common SNPs for Alzheimer's disease, multiple sclerosis and endometriosis. Human Molecular Genetics, 2013, 22, 832-841.	1.4	186
43	No Genetic Influence for Childhood Behavior Problems From DNA Analysis. Journal of the American Academy of Child and Adolescent Psychiatry, 2013, 52, 1048-1056.e3.	0.3	76
44	Laterality interacts with sex across the schizophrenia/bipolarity continuum: An interpretation of meta-analyses of structural MRI. Psychiatry Research, 2013, 210, 1232-1244.	1.7	44
45	Estimation of SNP Heritability from Dense Genotype Data. American Journal of Human Genetics, 2013, 93, 1151-1155.	2.6	103
46	Association of rs1344706 in the ZNF804A gene with schizophrenia in a case/control sample from Indonesia. Schizophrenia Research, 2013, 147, 46-52.	1.1	30
47	Schizophrenia susceptibility and age of diagnosis — A frailty approach. Schizophrenia Research, 2013, 147, 140-146.	1.1	3
48	Additive Genetic Variation in Schizophrenia Risk Is Shared by Populations of African and European Descent. American Journal of Human Genetics, 2013, 93, 463-470.	2.6	72
49	Improving the Accuracy and Efficiency of Partitioning Heritability into the Contributions of Genomic Regions. American Journal of Human Genetics, 2013, 92, 558-564.	2.6	24
50	Progress in the Genetics of Polygenic Brain Disorders: Significant New Challenges for Neurobiology. Neuron, 2013, 80, 578-587.	3.8	74
51	Polygenic Risk for Schizophrenia Is Associated with Cognitive Change Between Childhood and Old Age. Biological Psychiatry, 2013, 73, 938-943.	0.7	118
52	Génétique des schizophréniesÂ: mise en perspective des schizophrénies à début précoce et autres pathologies du développement. Neuropsychiatrie De L'Enfance Et De L'Adolescence, 2013, 61, 317-325.	0.1	0
53	A Population-Specific Uncommon Variant in GRIN3A Associated with Schizophrenia. Biological Psychiatry, 2013, 73, 532-539.	0.7	41
54	Genetic Schizophrenia Risk Variants Jointly Modulate Total Brain and White Matter Volume. Biological Psychiatry, 2013, 73, 525-531.	0.7	119
55	Progress in imaging the effects of psychosis susceptibility gene variants. Expert Review of Neurotherapeutics, 2013, 13, 37-47.	1.4	7

#	Article	IF	CITATIONS
56	The heritability of human disease: estimation, uses and abuses. Nature Reviews Genetics, 2013, 14, 139-149.	7.7	231
57	A Kernel of Truth. Advances in Genetics, 2013, 81, 1-31.	0.8	56
58	Pitfalls of predicting complex traits from SNPs. Nature Reviews Genetics, 2013, 14, 507-515.	7.7	617
59	AKAPs integrate genetic findings for autism spectrum disorders. Translational Psychiatry, 2013, 3, e270-e270.	2.4	61
60	Sequence Kernel Association Tests for the Combined Effect of Rare and Common Variants. American Journal of Human Genetics, 2013, 92, 841-853.	2.6	393
61	Gene expression alterations in bipolar disorder postmortem brains. Bipolar Disorders, 2013, 15, 177-187.	1.1	37
62	Genome-Wide Complex Trait Analysis (GCTA): Methods, Data Analyses, and Interpretations. Methods in Molecular Biology, 2013, 1019, 215-236.	0.4	200
63	Genome-Wide Association Studies and Genomic Prediction. Methods in Molecular Biology, 2013, , .	0.4	53
64	A Comprehensive Family-Based Replication Study of Schizophrenia Genes. JAMA Psychiatry, 2013, 70, 573.	6.0	138
65	Estimating heritability using genomic data. Methods in Ecology and Evolution, 2013, 4, 1151-1158.	2.2	54
66	Multiple variants aggregate in the neuregulin signaling pathway in a subset of schizophrenia patients. Translational Psychiatry, 2013, 3, e264-e264.	2.4	37
67	A Genome-Wide Association Study of Behavioral Disinhibition. Behavior Genetics, 2013, 43, 363-373.	1.4	119
68	Extracting Actionable Information From Genome Scans. Genetic Epidemiology, 2013, 37, 48-59.	0.6	7
69	Ubiquitous Polygenicity of Human Complex Traits: Genome-Wide Analysis of 49 Traits in Koreans. PLoS Genetics, 2013, 9, e1003355.	1.5	56
70	Improved Detection of Common Variants Associated with Schizophrenia and Bipolar Disorder Using Pleiotropy-Informed Conditional False Discovery Rate. PLoS Genetics, 2013, 9, e1003455.	1.5	298
71	Power and Predictive Accuracy of Polygenic Risk Scores. PLoS Genetics, 2013, 9, e1003348.	1.5	1,238
72	Congruence of Additive and Non-Additive Effects on Gene Expression Estimated from Pedigree and SNP Data. PLoS Genetics, 2013, 9, e1003502.	1.5	79
73	Polygenic Modeling with Bayesian Sparse Linear Mixed Models. PLoS Genetics, 2013, 9, e1003264.	1.5	686

	CHATION	REPORT	
#	Article	IF	CITATIONS
74	Schizophrenia at a Genetics Crossroads: Where to Now?. Schizophrenia Bulletin, 2013, 39, 490-495.	2.3	12
75	Resistance to Germline RNA Interference in a <i>Caenorhabditis elegans</i> Wild Isolate Exhibits Complexity and Nonadditivity. G3: Genes, Genomes, Genetics, 2013, 3, 941-947.	0.8	30
76	Molecular genetics and subjective well-being. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9692-9697.	3.3	82
77	Common DNA Markers Can Account for More Than Half of the Genetic Influence on Cognitive Abilities. Psychological Science, 2013, 24, 562-568.	1.8	135
78	The future of genomics for developmentalists. Development and Psychopathology, 2013, 25, 1263-1278.	1.4	41
79	Shared polygenic contribution between childhood attention-deficit hyperactivity disorder and adult schizophrenia. British Journal of Psychiatry, 2013, 203, 107-111.	1.7	93
80	Common biological networks underlie genetic risk for alcoholism in African―and Europeanâ€American populations. Genes, Brain and Behavior, 2013, 12, 532-542.	1.1	21
82	The XY gene hypothesis of psychosis: Origins and current status. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2013, 162, 800-824.	1.1	41
83	Neonatal levels of acute phase proteins and later risk of non-affective psychosis. Translational Psychiatry, 2013, 3, e228-e228.	2.4	42
84	New Ethical Issues for Genetic Counseling in Common Mental Disorders. American Journal of Psychiatry, 2013, 170, 968-976.	4.0	74
85	Schizophrenia genetic variants are not associated with intelligence. Psychological Medicine, 2013, 43, 2563-2570.	2.7	40
86	Genome-wide association study implicates NDST3 in schizophrenia and bipolar disorder. Nature Communications, 2013, 4, 2739.	5.8	101
87	GWAS meta analysis identifies TSNARE1 as a novel Schizophrenia / Bipolar susceptibility locus. Scientific Reports, 2013, 3, 3075.	1.6	52
88	Polygenic heritability estimates in pharmacogenetics. Pharmacogenetics and Genomics, 2013, 23, 324-328.	0.7	45
89	Altered dopamine ontogeny in the developmentally vitamin D deficient rat and its relevance to schizophrenia. Frontiers in Cellular Neuroscience, 2013, 7, 111.	1.8	37
91	A method for generating realistic correlation matrices. Annals of Applied Statistics, 2013, 7, .	0.5	41
92	The Molecular Genetic Architecture of Self-Employment. PLoS ONE, 2013, 8, e60542.	1.1	41
93	Genetics of Callous-Unemotional Behavior in Children. PLoS ONE, 2013, 8, e65789.	1.1	45

#	Article	IF	CITATIONS
94	A Genetic Deconstruction of Neurocognitive Traits in Schizophrenia and Bipolar Disorder. PLoS ONE, 2013, 8, e81052.	1.1	20
95	Whole-Genome Pathway Analysis on 132,497 Individuals Identifies Novel Gene-Sets Associated with Body Mass Index. PLoS ONE, 2014, 9, e78546.	1.1	4
96	Machine learning patterns for neuroimaging-genetic studies in the cloud. Frontiers in Neuroinformatics, 2014, 8, 31.	1.3	11
98	The Effects of Demography and Long-Term Selection on the Accuracy of Genomic Prediction with Sequence Data. Genetics, 2014, 198, 1671-1684.	1.2	74
99	Estimation and partitioning of (co)heritability of inflammatory bowel disease from GWAS and immunochip data. Human Molecular Genetics, 2014, 23, 4710-4720.	1.4	110
100	Identifying Gene-Environment Interactions in Schizophrenia: Contemporary Challenges for Integrated, Large-scale Investigations. Schizophrenia Bulletin, 2014, 40, 729-736.	2.3	229
101	Measuring missing heritability: Inferring the contribution of common variants. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5272-81.	3.3	279
102	Neurodevelopmental and neuropsychiatric disorders represent an interconnected molecular system. Molecular Psychiatry, 2014, 19, 294-301.	4.1	188
103	Genome-wide study of association and interaction with maternal cytomegalovirus infection suggests new schizophrenia loci. Molecular Psychiatry, 2014, 19, 325-333.	4.1	163
104	DNA evidence for strong genetic stability and increasing heritability of intelligence from age 7 to 12. Molecular Psychiatry, 2014, 19, 380-384.	4.1	91
105	A systematic review of antipsychotic drug effects on human gene expression related to risk factors for cardiovascular disease. Pharmacogenomics Journal, 2014, 14, 446-451.	0.9	6
107	A Population Genetic Signal of Polygenic Adaptation. PLoS Genetics, 2014, 10, e1004412.	1.5	447
108	GPA: A Statistical Approach to Prioritizing GWAS Results by Integrating Pleiotropy and Annotation. PLoS Genetics, 2014, 10, e1004787.	1.5	189
109	Evolving toward a human-cell based and multiscale approach to drug discovery for CNS disorders. Frontiers in Pharmacology, 2014, 5, 252.	1.6	34
110	Global Genetic Variations Predict Brain Response to Faces. PLoS Genetics, 2014, 10, e1004523.	1.5	18
111	Applying polygenic risk scores to postpartum depression. Archives of Women's Mental Health, 2014, 17, 519-528.	1.2	62
112	A Rare Functional Noncoding Variant at the GWAS-Implicated MIR137/MIR2682 Locus Might Confer Risk to Schizophrenia and Bipolar Disorder. American Journal of Human Genetics, 2014, 95, 744-753.	2.6	91
113	Word Reading Fluency: Role of Genomeâ€Wide Singleâ€Nucleotide Polymorphisms in Developmental Stability and Correlations With Print Exposure. Child Development, 2014, 85, 1190-1205.	1.7	20

		CITATION R	EPORT	
#	Article		IF	CITATIONS
114	Genetic architecture of cognitive traits. Scandinavian Journal of Psychology, 2014, 55,	255-262.	0.8	16
115	Searching for missing heritability: Designing rare variant association studies. Proceedin National Academy of Sciences of the United States of America, 2014, 111, E455-64.	gs of the	3.3	570
116	The use of epigenetic phenomena for the improvement of sheep and cattle. Frontiers in 5, 247.	ו Genetics, 2014,	1.1	51
117	Genotype-Environment Correlation in the Era of DNA. Behavior Genetics, 2014, 44, 629	9-638.	1.4	56
118	Association of Transcription Factor 4 (TCF4) variants with schizophrenia and intellectu Current Behavioral Neuroscience Reports, 2014, 1, 206-214.	al disability.	0.6	4
119	An inherited duplication at the gene p21 Protein-Activated Kinase 7 (PAK7) is a risk fac Human Molecular Genetics, 2014, 23, 3316-3326.	tor for psychosis.	1.4	37
120	Heritability of variation in glycaemic response to metformin: a genome-wide complex to Lancet Diabetes and Endocrinology,the, 2014, 2, 481-487.	ait analysis.	5.5	101
121	Theory of mind and the social brain: implications for understanding the genetic basis o schizophrenia. Genes, Brain and Behavior, 2014, 13, 104-117.		1.1	39
122	Genetic influences on alcohol use across stages of development: <i>GABRA2</i> and log trajectories of drunkenness from adolescence to young adulthood. Addiction Biology, 2 1055-1064.	ıgitudinal 2014, 19,	1.4	41
123	Explaining additional genetic variation in complex traits. Trends in Genetics, 2014, 30,	124-132.	2.9	128
124	DSM-5 cannabis use disorder: A phenotypic and genomic perspective. Drug and Alcoho 2014, 134, 362-369.	l Dependence,	1.6	38
125	No evidence that runs of homozygosity are associated with schizophrenia in an Irish ge association dataset. Schizophrenia Research, 2014, 154, 79-82.	nome-wide	1.1	18
126	Combined analysis of exon splicing and genome wide polymorphism data predict schiz loci. Journal of Psychiatric Research, 2014, 52, 44-49.	ophrenia risk	1.5	37
127	Common variants explain a large fraction of the variability in the liability to psoriasis in population. BMC Genomics, 2014, 15, 87.	a Han Chinese	1.2	16
128	The emerging molecular architecture of schizophrenia, polygenic risk scores and the cli implications for GxE research. Social Psychiatry and Psychiatric Epidemiology, 2014, 49		1.6	68
129	Multivariate analysis reveals genetic associations of the resting default mode network bipolar disorder and schizophrenia. Proceedings of the National Academy of Sciences of States of America, 2014, 111, E2066-75.		3.3	207
130	Genetic Relationships Between Schizophrenia, Bipolar Disorder, and Schizoaffective Di Schizophrenia Bulletin, 2014, 40, 504-515.	sorder.	2.3	204
132	Revitalizing Psychiatric Therapeutics. Neuropsychopharmacology, 2014, 39, 220-229.		2.8	76

# 133	ARTICLE A polygenic burden of rare disruptive mutations in schizophrenia. Nature, 2014, 506, 185-190.	IF 13.7	CITATIONS
134	Molecular genetic evidence for overlap between general cognitive ability and risk for schizophrenia: a report from the Cognitive Genomics consorTium (COGENT). Molecular Psychiatry, 2014, 19, 168-174.	4.1	178
135	Genetic burden of common variants in progressive and bout-onset multiple sclerosis. Multiple Sclerosis Journal, 2014, 20, 802-811.	1.4	11
136	Leveraging population admixture to characterize the heritability of complex traits. Nature Genetics, 2014, 46, 1356-1362.	9.4	69
137	Partitioning Heritability of Regulatory and Cell-Type-Specific Variants across 11 Common Diseases. American Journal of Human Genetics, 2014, 95, 535-552.	2.6	569
138	Cross-Tissue and Tissue-Specific eQTLs: Partitioning the Heritability of a Complex Trait. American Journal of Human Genetics, 2014, 95, 521-534.	2.6	82
139	Genomic insights into the overlap between psychiatric disorders: implications for research and clinical practice. Genome Medicine, 2014, 6, 29.	3.6	189
140	Genome-wide association studies of suicidal behaviors: A review. European Neuropsychopharmacology, 2014, 24, 1567-1577.	0.3	35
141	Dissection of additive genetic variability for quantitative traits in chickens using <scp>SNP</scp> markers. Journal of Animal Breeding and Genetics, 2014, 131, 183-193.	0.8	27
142	DEMONSTRATING THE VALIDITY OF TWIN RESEARCH IN CRIMINOLOGY. Criminology, 2014, 52, 588-626.	2.0	160
144	Genetic liability for schizophrenia predicts risk of immune disorders. Schizophrenia Research, 2014, 159, 347-352.	1.1	40
145	De novo mutations in schizophrenia implicate chromatin remodeling and support a genetic overlap with autism and intellectual disability. Molecular Psychiatry, 2014, 19, 652-658.	4.1	332
146	A genomeâ€wide CNV analysis of schizophrenia reveals a potential role for a multipleâ€hit model. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2014, 165, 619-626.	1.1	25
147	The contribution of genetic variants to disease depends on the ruler. Nature Reviews Genetics, 2014, 15, 765-776.	7.7	153
148	Genetic Confounds in the Study of Sexual Orientation: Comment on Roberts, Glymour, and Koenen (2014). Archives of Sexual Behavior, 2014, 43, 1675-1677.	1.2	4
149	The synapse in schizophrenia. European Journal of Neuroscience, 2014, 39, 1059-1067.	1.2	53
150	Arguments for the sake of endophenotypes: Examining common misconceptions about the use of endophenotypes in psychiatric genetics. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2014, 165, 122-130.	1.1	135
151	Research Review: Polygenic methods and their application to psychiatric traits. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2014, 55, 1068-1087.	3.1	578

ARTICLE IF CITATIONS # Excess of homozygosity in the major histocompatibility complex in schizophrenia. Human Molecular 152 1.4 18 Genetics, 2014, 23, 6088-6095. An Excess of Risk-Increasing Low-Frequency Variants Can Be a Signal of Polygenic Inheritance in 2.6 Complex Diseases. American Journal of Human Genetics, 2014, 94, 437-452 154 Genetics of Schizophrenia., 2014, , 59-70. 1 Fine Mapping on Chromosome 13q32–34 and Brain Expression Analysis Implicates MYO16 in Schizophrenia. Neuropsychopharmacology, 2014, 39, 934-943. A Genome-wide Association Meta-analysis of Preschool Internalizing Problems. Journal of the 156 0.3 54 American Academy of Child and Adolescent Psychiatry, 2014, 53, 667-676.e7. Assessment of first and second degree relatives of individuals with bipolar disorder shows increased genetic risk scores in both affected relatives and young Atâ€Risk Individuals. American Journal of 1.1 Medical Genetics Part B: Neuropsychiatric Genetics, 2015, 168, 617-629. Copy number variations play important roles in heredity of common diseases: a novel method to 158 1.6 6 calculate heritability of a polymorphism. Scientific Reports, 2015, 5, 17156. Schizophrenia. Nature Reviews Disease Primers, 2015, 1, 15067. 159 18.1 724 Evidence of Mitochondrial Dysfunction within the Complex Genetic Etiology of Schizophrenia. 160 3.0 74 Molecular Neuropsychiatry, 2015, 1, 201-219. Secondary association of PDLIM5 with paranoid schizophrenia in Emirati patients. Meta Gene, 2015, 5, 135-139. Genome-wide association study dissects genetic architecture underlying longitudinal egg weights in 163 1.2 40 chickens. BMC Genomics, 2015, 16, 746. Kernel Approach for Modeling Interaction Effects in Genetic Association Studies of Complex 164 0.6 Quantitative Traits. Genetic Epidemiology, 2015, 39, 366-375. Bioinformatic analyses and conceptual synthesis of evidence linking <i>ZNF804A</i> to risk for 165 schizophrenia and bipolar disorder. American Journal of Medical Genetics Part B: Neuropsychiatric 1.1 19 Genetics, 2015, 168, 14-35. Genomeâ€wide association and genome partitioning reveal novel genomic regions underlying variation in gastrointestinal nematode burden in a wild bird. Molecular Ecology, 2015, 24, 4175-4192 Impact of QTL minor allele frequency on genomic evaluation using real genotype data and simulated 167 2.7 29 phenotypes in Japanese Black cattle. BMC Genetics, 2015, 16, 134. RNA Sequencing in Schizophrenia. Bioinformatics and Biology Insights, 2015, 9s1, BBI.S28992. Genetic markers of white matter integrity in schizophrenia revealed by parallel ICA. Frontiers in 169 1.0 11 Human Neuroscience, 2015, 9, 100. 170 Genetics and epigenetics of eating disorders. Advances in Genomics and Genetics, 2015, 5, 131. 156

#	Article	IF	CITATIONS
171	Relationship between polymorphisms in the proline dehydrogenase gene and schizophrenia risk. Genetics and Molecular Research, 2015, 14, 11681-11691.	0.3	10
172	Disproportionate Contributions of Select Genomic Compartments and Cell Types to Genetic Risk for Coronary Artery Disease. PLoS Genetics, 2015, 11, e1005622.	1.5	70
173	An Empirical Bayes Mixture Model for Effect Size Distributions in Genome-Wide Association Studies. PLoS Genetics, 2015, 11, e1005717.	1.5	22
174	Promising Loci and Genes for Yolk and Ovary Weight in Chickens Revealed by a Genome-Wide Association Study. PLoS ONE, 2015, 10, e0137145.	1.1	30
175	Rare Variants in Transcript and Potential Regulatory Regions Explain a Small Percentage of the Missing Heritability of Complex Traits in Cattle. PLoS ONE, 2015, 10, e0143945.	1.1	16
176	A Critical Assessment of the Equal-Environment Assumption of the Twin Method for Schizophrenia. Frontiers in Psychiatry, 2015, 6, 62.	1.3	37
178	A kernel machine method for detecting effects of interaction between multidimensional variable sets: An imaging genetics application. NeuroImage, 2015, 109, 505-514.	2.1	23
179	Sleep and Plasticity in Schizophrenia. Current Topics in Behavioral Neurosciences, 2015, 25, 433-458.	0.8	13
180	Biomarkers for Psychosis: the Molecular Genetics of Psychosis. Current Behavioral Neuroscience Reports, 2015, 2, 112-118.	0.6	1
181	Transcriptome outlier analysis implicates schizophrenia susceptibility genes and enriches putatively functional rare genetic variants. Human Molecular Genetics, 2015, 24, 4674-4685.	1.4	9
182	The Psychiatric Genomics Consortium Posttraumatic Stress Disorder Workgroup: Posttraumatic Stress Disorder Enters the Age of Large-Scale Genomic Collaboration. Neuropsychopharmacology, 2015, 40, 2287-2297.	2.8	123
183	Common variants in the ARC gene are not associated withÂcognitive abilities. Brain and Behavior, 2015, 5, e00376.	1.0	7
184	Genome-wide association study revealed a promising region and candidate genes for eggshell quality in an F2 resource population. BMC Genomics, 2015, 16, 565.	1.2	29
185	Genetic Architecture of Complex Human Traits: What Have We Learned from Genome-Wide Association Studies?. Current Genetic Medicine Reports, 2015, 3, 143-150.	1.9	3
186	Genetic studies of schizophrenia: an update. Neuroscience Bulletin, 2015, 31, 87-98.	1.5	33
187	Massively expedited genome-wide heritability analysis (MEGHA). Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2479-2484.	3.3	69
188	Joint Analysis of Psychiatric Disorders Increases Accuracy of Risk Prediction for Schizophrenia, Bipolar Disorder, and Major Depressive Disorder. American Journal of Human Genetics, 2015, 96, 283-294.	2.6	225
189	Path from schizophrenia genomics to biology: gene regulation and perturbation in neurons derived from induced pluripotent stem cells and genome editing. Neuroscience Bulletin, 2015, 31, 113-127.	1.5	12

#	Article	IF	CITATIONS
190	Effectiveness of Shrinkage and Variable Selection Methods for the Prediction of Complex Human Traits using Data from Distantly Related Individuals. Annals of Human Genetics, 2015, 79, 122-135.	0.3	14
191	Resequencing and association analysis of coding regions at twenty candidate genes suggest a role for rare risk variation at AKAP9 and protective variation at NRXN1 in schizophrenia susceptibility. Journal of Psychiatric Research, 2015, 66-67, 38-44.	1.5	18
192	Large-scale genomics unveil polygenic architecture of human cortical surface area. Nature Communications, 2015, 6, 7549.	5.8	30
193	A Fast Method that Uses Polygenic Scores to Estimate the Variance Explained by Genome-wide Marker Panels and the Proportion of Variants Affecting a Trait. American Journal of Human Genetics, 2015, 97, 250-259.	2.6	212
194	Simultaneous Discovery, Estimation and Prediction Analysis of Complex Traits Using a Bayesian Mixture Model. PLoS Genetics, 2015, 11, e1004969.	1.5	339
195	Heritability estimates on Hodgkin's lymphoma: a genomic- versus population-based approach. European Journal of Human Genetics, 2015, 23, 824-830.	1.4	9
196	Gene by Social-Environment Interaction for Youth Delinquency and Violence: Thirty-Nine Aggression-Related Genes. Social Forces, 2015, 93, 881-903.	0.9	26
197	Mixed Model with Correction for Case-Control Ascertainment Increases Association Power. American Journal of Human Genetics, 2015, 96, 720-730.	2.6	60
198	Sterol Regulatory Element Binding Transcription Factor-1 Gene Variation and Medication Load Influence White Matter Structure in Schizophrenia. Neuropsychobiology, 2015, 71, 112-119.	0.9	14
199	Spine pruning drives antipsychotic-sensitive locomotion via circuit control of striatal dopamine. Nature Neuroscience, 2015, 18, 883-891.	7.1	113
200	Evolutionary behavioral genetics. Current Opinion in Behavioral Sciences, 2015, 2, 73-80.	2.0	26
201	Partitioning heritability by functional annotation using genome-wide association summary statistics. Nature Genetics, 2015, 47, 1228-1235.	9.4	2,045
202	Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis. Nature Genetics, 2015, 47, 1385-1392.	9.4	431
203	Genes associated with RSV lower respiratory tract infection and asthma: the application of genetic epidemiological methods to understand causality. Future Virology, 2015, 10, 883-897.	0.9	32
204	Genetic Architecture of Lacunar Stroke. Stroke, 2015, 46, 2407-2412.	1.0	33
205	Quantitative genetics of disease traits. Journal of Animal Breeding and Genetics, 2015, 132, 198-203.	0.8	13
206	Analysis of t(9;17)(q33.2;q25.3) chromosomal breakpoint regions and genetic association reveals novel candidate genes for bipolar disorder. Bipolar Disorders, 2015, 17, 205-211.	1.1	19
207	Population Genomics for Understanding Adaptation in Wild Plant Species. Annual Review of Genetics, 2015, 49, 315-338.	3.2	94

#	Article	IF	CITATIONS
208	Heritability of Individual Psychotic Experiences Captured by Common Genetic Variants in a Community Sample of Adolescents. Behavior Genetics, 2015, 45, 493-502.	1.4	31
209	Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index. Nature Genetics, 2015, 47, 1114-1120.	9.4	709
210	New data and an old puzzle: the negative association between schizophrenia and rheumatoid arthritis. International Journal of Epidemiology, 2015, 44, 1706-1721.	0.9	53
211	Pervasive pleiotropy between psychiatric disorders and immune disorders revealed by integrative analysis of multiple GWAS. Human Genetics, 2015, 134, 1195-1209.	1.8	72
212	Schizophrenia risk variants modulate white matter volume across the psychosis spectrum: Evidence from two independent cohorts. NeuroImage: Clinical, 2015, 7, 764-770.	1.4	22
213	Risk Classification With an Adaptive Naive Bayes Kernel Machine Model. Journal of the American Statistical Association, 2015, 110, 393-404.	1.8	20
214	Identification of schizophrenia-associated loci by combining DNA methylation and gene expression data from whole blood. European Journal of Human Genetics, 2015, 23, 1106-1110.	1.4	44
215	Uncovering the Hidden Risk Architecture of the Schizophrenias: Confirmation in Three Independent Genome-Wide Association Studies. American Journal of Psychiatry, 2015, 172, 139-153.	4.0	204
216	The genetic architecture of pediatric cognitive abilities in the Philadelphia Neurodevelopmental Cohort. Molecular Psychiatry, 2015, 20, 454-458.	4.1	46
217	Genomic architecture of human neuroanatomical diversity. Molecular Psychiatry, 2015, 20, 1011-1016.	4.1	50
219	Recent genetic findings in schizophrenia and their therapeutic relevance. Journal of Psychopharmacology, 2015, 29, 85-96.	2.0	157
220	Genetics of Complex Traits in Psychiatry. Biological Psychiatry, 2015, 77, 36-42.	0.7	47
0.01			
221	A joint history of the nature of genetic variation and the nature of schizophrenia. Molecular Psychiatry, 2015, 20, 77-83.	4.1	35
221		4.1 2.0	35 44
	Pšychiatry, 2015, 20, 77-83.		
222	Psychiatry, 2015, 20, 77-83. Genetics of schizophrenia. Current Opinion in Behavioral Sciences, 2015, 2, 8-14. Genetic Risk for Schizophrenia: Convergence on Synaptic Pathways Involved in Plasticity. Biological	2.0	44
222 223	 Psychiatry, 2015, 20, 77-83. Genetics of schizophrenia. Current Opinion in Behavioral Sciences, 2015, 2, 8-14. Genetic Risk for Schizophrenia: Convergence on Synaptic Pathways Involved in Plasticity. Biological Psychiatry, 2015, 77, 52-58. Genetic Mechanisms Emerging from Mouse Models of CNV-Associated Neuropsychiatric Disorders. , 	2.0	44 256

#	Article	IF	CITATIONS
227	Estimating Effect Sizes and Expected Replication Probabilities from GWAS Summary Statistics. Frontiers in Genetics, 2016, 7, 15.	1.1	40
228	Leveraging Genomic Annotations and Pleiotropic Enrichment for Improved Replication Rates in Schizophrenia GWAS. PLoS Genetics, 2016, 12, e1005803.	1.5	34
229	Systems psychopharmacology: A network approach to developing novel therapies. World Journal of Psychiatry, 2016, 6, 66.	1.3	15
230	The role of protein intrinsic disorder in major psychiatric disorders. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2016, 171, 848-860.	1.1	9
231	On high-dimensional misspecified mixed model analysis in genome-wide association study. Annals of Statistics, 2016, 44, .	1.4	38
232	Major histocompatibility complex harbors widespread genotypic variability of non-additive risk of rheumatoid arthritis including epistasis. Scientific Reports, 2016, 6, 25014.	1.6	17
233	Introduction to statistical methods in genome-wide association studies. , 0, , 26-52.		0
234	Electrophysiological Endophenotypes for Schizophrenia. Harvard Review of Psychiatry, 2016, 24, 129-147.	0.9	37
235	Genome-Wide Estimates of Heritability for Social Demographic Outcomes. Biodemography and Social Biology, 2016, 62, 1-18.	0.4	8
236	Study of the tetraspanin 18 association with schizophrenia in a Han Chinese population. Psychiatry Research, 2016, 241, 263-266.	1.7	3
237	Converging findings from linkage and association analyses on susceptibility genes for smoking and other addictions. Molecular Psychiatry, 2016, 21, 992-1008.	4.1	33
238	Increased rare duplication burden genomewide in patients with treatment-resistant schizophrenia. Psychological Medicine, 2016, 46, 469-476.	2.7	32
239	Risk of psychiatric illness from advanced paternal age is not predominantly from de novo mutations. Nature Genetics, 2016, 48, 718-724.	9.4	98
240	Advancing the understanding of autism disease mechanisms through genetics. Nature Medicine, 2016, 22, 345-361.	15.2	684
241	Genetic Variation in Schizophrenia Liability is Shared With Intellectual Ability and Brain Structure. Schizophrenia Bulletin, 2016, 42, 1167-1175.	2.3	19
242	A Danish Twin Study of Schizophrenia Liability: Investigation from Interviewed Twins for Genetic Links to Affective Psychoses and for Cross-Cohort Comparisons. Behavior Genetics, 2016, 46, 193-204.	1.4	10
243	Developing and evaluating polygenic risk prediction models for stratified disease prevention. Nature Reviews Genetics, 2016, 17, 392-406.	7.7	559
244	Opportunities and challenges of big data for the social sciences: The case of genomic data. Social Science Research, 2016, 59, 13-22.	1.1	28

#	Article	IF	CITATIONS
245	Association study of MiRSNPs with schizophrenia, tardive dyskinesia and cognition. Schizophrenia Research, 2016, 174, 29-34.	1.1	18
246	Morphometricity as a measure of the neuroanatomical signature of a trait. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5749-56.	3.3	53
247	Common variants in the chromosome 2p23 region containing the SLC30A3 (ZnT3) gene are associated with schizophrenia in female but not male individuals in a large collection of European samples. Psychiatry Research, 2016, 246, 335-340.	1.7	21
248	Partitioning heritability analysis reveals a shared genetic basis of brain anatomy and schizophrenia. Molecular Psychiatry, 2016, 21, 1680-1689.	4.1	69
249	Impact of polygenic schizophrenia-related risk and hippocampal volumes on the onset of psychosis. Translational Psychiatry, 2016, 6, e868-e868.	2.4	36
250	Animal Models of Behavior Genetics. , 2016, , .		0
251	The dysconnection hypothesis (2016). Schizophrenia Research, 2016, 176, 83-94.	1.1	426
252	Neurological dysfunctions associated with altered <scp>BACE</scp> 1â€dependent Neuregulinâ€1 signaling. Journal of Neurochemistry, 2016, 136, 234-249.	2.1	40
253	Contribution of Genetic Epidemiology to Our Understanding of Psychiatric Disorders. , 2016, , 27-50.		0
255	Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nature Genetics, 2016, 48, 1043-1048.	9.4	494
256	Genetic architecture dissection by genome-wide association analysis reveals avian eggshell ultrastructure traits. Scientific Reports, 2016, 6, 28836.	1.6	12
257	Analysis of Shared Haplotypes amongst Palauans Maps Loci for Psychotic Disorders to 4q28 and 5q23-q31. Molecular Neuropsychiatry, 2016, 2, 173-184.	3.0	2
258	Heritability of Recurrent Exertional Rhabdomyolysis in Standardbred and Thoroughbred Racehorses Derived From SNP Genotyping Data. Journal of Heredity, 2016, 107, 537-543.	1.0	17
259	Introduction to Statistical Methods for Integrative Data Analysis in Genome-Wide Association Studies. , 2016, , 3-23.		3
260	Identifying genetically driven clinical phenotypes using linear mixed models. Nature Communications, 2016, 7, 11433.	5.8	12
262	Covariance Association Test (CVAT) Identifies Genetic Markers Associated with Schizophrenia in Functionally Associated Biological Processes. Genetics, 2016, 203, 1901-1913.	1.2	34
263	Consensus paper of the WFSBP Task Force on Biological Markers: Criteria for biomarkers and endophenotypes of schizophrenia part II: Cognition, neuroimaging and genetics. World Journal of Biological Psychiatry, 2016, 17, 406-428.	1.3	30
264	Identification of Gene Loci That Overlap Between Schizophrenia and Educational Attainment. Schizophrenia Bulletin, 2017, 43, sbw085.	2.3	56

#	Article	IF	CITATIONS
265	A pilot study on commonality and specificity of copy number variants in schizophrenia and bipolar disorder. Translational Psychiatry, 2016, 6, e824-e824.	2.4	35
266	Genomeâ€wide association study reveals greater polygenic loading for schizophrenia in cases with a family history of illness. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2016, 171, 276-289.	1.1	28
267	Cognitive endophenotypes, gene–environment interactions and experience-dependent plasticity in animal models of schizophrenia. Biological Psychology, 2016, 116, 82-89.	1.1	34
268	New statistical approaches exploit the polygenic architecture of schizophrenia—implications for the underlying neurobiology. Current Opinion in Neurobiology, 2016, 36, 89-98.	2.0	53
269	Uncovering the Genetic Architectures of Quantitative Traits. Computational and Structural Biotechnology Journal, 2016, 14, 28-34.	1.9	39
270	Molecular Risk Factors for Schizophrenia. Trends in Molecular Medicine, 2016, 22, 242-253.	3.5	34
271	Functional Effects of Schizophrenia-Linked Genetic Variants on Intrinsic Single-Neuron Excitability: A Modeling Study. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2016, 1, 49-59.	1.1	21
272	Limitations of GCTA as a solution to the missing heritability problem. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E61-70.	3.3	84
273	A Statistical Approach for Testing Cross-Phenotype Effects of Rare Variants. American Journal of Human Genetics, 2016, 98, 525-540.	2.6	75
274	An Equation to Predict the Accuracy of Genomic Values by Combining Data from Multiple Traits, Populations, or Environments. Genetics, 2016, 202, 799-823.	1.2	54
275	Modeling psychiatric disorders with patient-derived iPSCs. Current Opinion in Neurobiology, 2016, 36, 118-127.	2.0	72
276	Common alleles contribute to schizophrenia in CNV carriers. Molecular Psychiatry, 2016, 21, 1085-1089.	4.1	95
277	Schizophrenia: A critical view on genetic effects. Psychosis, 2016, 8, 72-84.	0.4	4
278	Exome Sequence Data From Multigenerational Families Implicate AMPA Receptor Trafficking in Neurocognitive Impairment and Schizophrenia Risk. Schizophrenia Bulletin, 2016, 42, 288-300.	2.3	22
279	Comprehensive association analysis of 27 genes from the GABAergic system in Japanese individuals affected with schizophrenia. Schizophrenia Research, 2017, 185, 33-40.	1.1	10
280	Evidence for genetic heterogeneity between clinical subtypes of bipolar disorder. Translational Psychiatry, 2017, 7, e993-e993.	2.4	162
281	VarScan2 analysis of de novo variants in monozygotic twins discordant for schizophrenia. Psychiatric Genetics, 2017, 27, 62-70.	0.6	29
282	Common variants in ZMIZ1 and near NGF confer risk for primary dysmenorrhoea. Nature Communications, 2017, 8, 14900.	5.8	9

	C	CITATION REPORT	
#	Article	IF	Citations
283	Reevaluation of SNP heritability in complex human traits. Nature Genetics, 2017, 49, 986-992.	9.4	427
284	Identification of genetic loci shared between schizophrenia and the Big Five personality traits. Scientific Reports, 2017, 7, 2222.	1.6	79
285	The impact of rare and low-frequency genetic variants in common disease. Genome Biology, 2017, 1	8, 77. 3.8	277
286	Whole-genome sequencing of monozygotic twins discordant for schizophrenia indicates multiple genetic risk factors for schizophrenia. Journal of Genetics and Genomics, 2017, 44, 295-306.	1.7	36
287	Genetic Analysis of Venous Thromboembolism in UK Biobank Identifies the ZFPM2 Locus and Implica Obesity as a Causal Risk Factor. Circulation: Cardiovascular Genetics, 2017, 10, .	otes 5.1	90
288	Genetics of stroke in a UK African ancestry case-control study. Neurology: Genetics, 2017, 3, e142.	0.9	19
289	A Preliminary Study of Genetic Variation in the Dopaminergic and Serotonergic Systems and Genome-Wide Additive Genetic Effects on Depression Severity and Treatment Response. Clinical Psychological Science, 2017, 5, 158-165.	2.4	2
290	Genes, behavior, and behavior genetics. Wiley Interdisciplinary Reviews: Cognitive Science, 2017, 8, e1405.	1.4	16
291	SNPâ€Based Heritability Estimates of Common and Specific Variance in Self―and Informantâ€Repo Neuroticism Scales. Journal of Personality, 2017, 85, 906-919.	orted 1.8	8
292	Integration of expression quantitative trait loci and pleiotropy identifies a novel psoriasis susceptibility gene, <i>PTPN1</i> . Journal of Gene Medicine, 2017, 19, e2939.	1.4	5
293	Validation of Polygenic Scores for QT Interval in Clinical Populations. Circulation: Cardiovascular Genetics, 2017, 10, .	5.1	17
294	Concepts, estimation and interpretation of SNP-based heritability. Nature Genetics, 2017, 49, 1304-	1310. 9.4	378
295	Linkage disequilibrium–dependent architecture of human complex traits shows action of negative selection. Nature Genetics, 2017, 49, 1421-1427.	9.4	400
296	Will Big Data Close the Missing Heritability Gap?. Genetics, 2017, 207, 1135-1145.	1.2	56
297	Exome sequences of multiplex, multigenerational families reveal schizophrenia risk loci with potential implications for neurocognitive performance. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 817-827.	1.1	8
298	Cross-ethnic meta-analysis identifies association of the GPX3-TNIP1 locus with amyotrophic lateral sclerosis. Nature Communications, 2017, 8, 611.	5.8	93
299	Optimal detection of weak positive latent dependence between two sequences of multiple tests. Journal of Multivariate Analysis, 2017, 160, 169-184.	0.5	5
300	The Decomposition of Shared Environmental Influences on Externalizing Syndromes in the Swedish Population: A Multivariate Study. Twin Research and Human Genetics, 2017, 20, 298-309.	0.3	0

#	Article	IF	CITATIONS
301	Partitioning the heritability of coronary artery disease highlights the importance of immune-mediated processes and epigenetic sites associated with transcriptional activity. Cardiovascular Research, 2017, 113, 973-983.	1.8	31
302	Sexual dimorphism in the genetic influence on human childlessness. European Journal of Human Genetics, 2017, 25, 1067-1074.	1.4	10
303	Integrative Genetic Risk Prediction Using Non-Parametric Empirical Bayes Classification. Biometrics, 2017, 73, 582-592.	0.8	2
304	Epistatic and Independent Effects on Schizophrenia-Related Phenotypes Following Co-disruption of the Risk Factors Neuregulin-1 × DISC1. Schizophrenia Bulletin, 2017, 43, 214-225.	2.3	15
305	Heritability of Neuropsychological Measures in Schizophrenia and Nonpsychiatric Populations: A Systematic Review and Meta-analysis. Schizophrenia Bulletin, 2017, 43, 788-800.	2.3	62
306	Independent component analysis of SNPs reflects polygenic risk scores for schizophrenia. Schizophrenia Research, 2017, 181, 83-85.	1.1	6
307	Pleiotropic effects of schizophrenia-associated genetic variants in neuron firing and cardiac pacemaking revealed by computational modeling. Translational Psychiatry, 2017, 7, 5.	2.4	24
308	Genetics of Schizophrenia: Overview of Methods, Findings and Limitations. Frontiers in Human Neuroscience, 2017, 11, 322.	1.0	110
309	Pleiotropy of genetic variants on obesity and smoking phenotypes: Results from the Oncoarray Project of The International Lung Cancer Consortium. PLoS ONE, 2017, 12, e0185660.	1.1	11
310	Association of ARHGAP18 polymorphisms with schizophrenia in the Chinese-Han population. PLoS ONE, 2017, 12, e0175209.	1.1	6
311	Contribution of rare and low-frequency whole-genome sequence variants to complex traits variation in dairy cattle. Genetics Selection Evolution, 2017, 49, 60.	1.2	15
312	Assessment of Cognition and Personality as Potential Endophenotypes in the Western Australian Family Study of Schizophrenia. Schizophrenia Bulletin, 2018, 44, 908-921.	2.3	12
313	Partitioning the Pleiotropy Between Coronary Artery Disease and Body Mass Index Reveals the Importance of Low Frequency Variants and Central Nervous System–Specific Functional Elements. Circulation Genomic and Precision Medicine, 2018, 11, e002050.	1.6	16
314	Tobacco Smoking Addiction: Epidemiology, Genetics, Mechanisms, and Treatment. , 2018, , .		7
315	Successful Explanations Start with Accurate Descriptions: Questionnaire Items as Personality Markers for More Accurate Predictions. European Journal of Personality, 2018, 32, 186-201.	1.9	70
316	Imaging and Genetic Biomarkers Predicting Transition to Psychosis. Current Topics in Behavioral Neurosciences, 2018, 40, 353-388.	0.8	13
317	Narrow-sense heritability estimation of complex traits using identity-by-descent information. Heredity, 2018, 121, 616-630.	1.2	20
318	Enrichment of schizophrenia heritability in both neuronal and glia cell regulatory elements. Translational Psychiatry, 2018, 8, 7.	2.4	18

#	Article	IF	CITATIONS
319	Evolutionary Perspectives on Genetic and Environmental Risk Factors for Psychiatric Disorders. Annual Review of Clinical Psychology, 2018, 14, 471-493.	6.3	31
320	Novel rare variations in genes that regulate developmental change in N-methyl-d-aspartate receptor in patients with schizophrenia. Human Genome Variation, 2018, 5, 17056.	0.4	6
321	Power Analysis for Genetic Association Test (PAGEANT) provides insights to challenges for rare variant association studies. Bioinformatics, 2018, 34, 1506-1513.	1.8	18
322	Using partitioned heritability methods to explore genetic architecture. Nature Reviews Genetics, 2018, 19, 185-185.	7.7	9
323	Rare Risk Variants Identification by Identity-by-Descent Mapping and Whole-Exome Sequencing Implicates Neuronal Development Pathways in Schizophrenia and Bipolar Disorder. Molecular Neurobiology, 2018, 55, 7366-7376.	1.9	17
324	Comparison of methods that use whole genome data to estimate the heritability and genetic architecture of complex traits. Nature Genetics, 2018, 50, 737-745.	9.4	205
325	Detection of candidate genes for growth and carcass traits using genome-wide association strategy in Chinese Simmental beef cattle. Animal Production Science, 2018, 58, 224.	0.6	22
326	Rare disruptive variants in the DISC1 Interactome and Regulome: association with cognitive ability and schizophrenia. Molecular Psychiatry, 2018, 23, 1270-1277.	4.1	37
327	Polygenic risk for schizophrenia, transition and cortical gyrification: a high-risk study. Psychological Medicine, 2018, 48, 1532-1539.	2.7	19
328	Genetic risk scores and family history as predictors of schizophrenia in Nordic registers. Psychological Medicine, 2018, 48, 1201-1208.	2.7	32
329	A polygenic risk score analysis of psychosis endophenotypes across brain functional, structural, and cognitive domains. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2018, 177, 21-34.	1.1	57
330	Embracing polygenicity: a review of methods and tools for psychiatric genetics research. Psychological Medicine, 2018, 48, 1055-1067.	2.7	66
331	Genome-wide association studies for small intestine length in an F2 population of chickens. Italian Journal of Animal Science, 2018, 17, 294-300.	0.8	8
332	Different shades of default mode disturbance in schizophrenia: Subnodal covariance estimation in structure and function. Human Brain Mapping, 2018, 39, 644-661.	1.9	38
333	Accounting for heteroscedasticity and censoring in chromosome partitioning analyses. Evolution Letters, 2018, 2, 599-609.	1.6	5
334	Detecting significant genotype–phenotype association rules in bipolar disorder: market research meets complex genetics. International Journal of Bipolar Disorders, 2018, 6, 24.	0.8	8
335	Prediction of treatment response in rheumatoid arthritis patients using genomeâ€wide SNP data. Genetic Epidemiology, 2018, 42, 754-771.	0.6	15
336	Inherited Susceptibility to Complex Diseases. , 2018, , 475-483.		0

#	Article	IF	Citations
337	Functional architecture of low-frequency variants highlights strength of negative selection across coding annotations. Nature Genetics, 2018, 50, 1600-1607.	9.4	132
338	Common and Rare Genetic Risk Factors Converge in Protein Interaction Networks Underlying Schizophrenia. Frontiers in Genetics, 2018, 9, 434.	1.1	26
339	A novel homozygous mutation in GAD1 gene described in a schizophrenic patient impairs activity and dimerization of GAD67 enzyme. Scientific Reports, 2018, 8, 15470.	1.6	17
340	Cross-tissue eQTL enrichment of associations in schizophrenia. PLoS ONE, 2018, 13, e0202812.	1.1	6
341	Enhancing Psychosis-Spectrum Nosology Through an International Data Sharing Initiative. Schizophrenia Bulletin, 2018, 44, S460-S467.	2.3	15
342	Double hits in schizophrenia. Human Molecular Genetics, 2018, 27, 2755-2761.	1.4	7
343	Estimation of Genetic Correlation via Linkage Disequilibrium Score Regression and Genomic Restricted Maximum Likelihood. American Journal of Human Genetics, 2018, 102, 1185-1194.	2.6	119
344	Global genetic differentiation of complex traits shaped by natural selection in humans. Nature Communications, 2018, 9, 1865.	5.8	70
345	Age at first birth in women is genetically associated with increased risk of schizophrenia. Scientific Reports, 2018, 8, 10168.	1.6	17
346	Leveraging molecular quantitative trait loci to understand the genetic architecture of diseases and complex traits. Nature Genetics, 2018, 50, 1041-1047.	9.4	154
347	Impact on the Onset of Psychosis of a Polygenic Schizophrenia-Related Risk Score and Changes in White Matter Volume. Cellular Physiology and Biochemistry, 2018, 48, 1201-1214.	1.1	10
348	Decomposing Additive Genetic Variance Revealed Novel Insights into Trait Evolution in Synthetic Hexaploid Wheat. Frontiers in Genetics, 2018, 9, 27.	1.1	17
349	Empirical Bayes Estimation of Semi-parametric Hierarchical Mixture Models for Unbiased Characterization of Polygenic Disease Architectures. Frontiers in Genetics, 2018, 9, 115.	1.1	10
350	Genome-Wide Association Analysis of Age-Dependent Egg Weights in Chickens. Frontiers in Genetics, 2018, 9, 128.	1.1	23
351	Functional Partitioning of Genomic Variance and Genome-Wide Association Study for Carcass Traits in Korean Hanwoo Cattle Using Imputed Sequence Level SNP Data. Frontiers in Genetics, 2018, 9, 217.	1.1	38
352	Analysis of Gene Expression Variance in Schizophrenia Using Structural Equation Modeling. Frontiers in Molecular Neuroscience, 2018, 11, 192.	1.4	20
353	The coexistence of copy number variations (CNVs) and single nucleotide polymorphisms (SNPs) at a locus can result in distorted calculations of the significance in associating SNPs to disease. Human Genetics, 2018, 137, 553-567.	1.8	57
354	Association between genetic variability of neuronal nitric oxide synthase and sensorimotor gating in humans. Nitric Oxide - Biology and Chemistry, 2018, 80, 32-36.	1.2	8

#	Article	IF	CITATIONS
355	Genome-wide association study results for educational attainment aid in identifying genetic heterogeneity of schizophrenia. Nature Communications, 2018, 9, 3078.	5.8	64
356	Transcriptomic signatures of schizophrenia revealed by dopamine perturbation in an ex vivo model. Translational Psychiatry, 2018, 8, 158.	2.4	15
357	The influence of the serotonin transporter gene 5-HTTLPR polymorphism on suicidal behaviors: a meta-analysis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 88, 375-387.	2.5	35
358	Heritability of Regional Brain Volumes in Large-Scale Neuroimaging and Genetic Studies. Cerebral Cortex, 2019, 29, 2904-2914.	1.6	36
359	Accurate estimation of SNP-heritability from biobank-scale data irrespective of genetic architecture. Nature Genetics, 2019, 51, 1244-1251.	9.4	69
360	Association of Schizophrenia Risk With Disordered Niacin Metabolism in an Indian Genome-wide Association Study. JAMA Psychiatry, 2019, 76, 1026.	6.0	51
361	Association of Childhood Exposure to Nitrogen Dioxide and Polygenic Risk Score for Schizophrenia With the Risk of Developing Schizophrenia. JAMA Network Open, 2019, 2, e1914401.	2.8	29
362	Increased schizophrenia family history burden and reduced premorbid IQ in treatment-resistant schizophrenia: a Swedish National Register and Genomic Study. Molecular Psychiatry, 2021, 26, 4487-4495.	4.1	24
363	Three Novel Players: PTK2B, SYK, and TNFRSF21 Were Identified to Be Involved in the Regulation of Bovine Mastitis Susceptibility via GWAS and Post-transcriptional Analysis. Frontiers in Immunology, 2019, 10, 1579.	2.2	21
364	Functional disease architectures reveal unique biological role of transposable elements. Nature Communications, 2019, 10, 4054.	5.8	14
365	The Genome-Wide Study of Human Social Behavior and Its Application in Sociology. Frontiers in Sociology, 2019, 4, 53.	1.0	2
366	Gene and environment interplay in cognition: Evidence from twin and molecular studies, future directions and suggestions for effective candidate gene x environment (cGxE) research. Multiple Sclerosis and Related Disorders, 2019, 33, 121-130.	0.9	3
367	Translational Potential of Neuroimaging Genomic Analyses to Diagnosis and Treatment in Mental Disorders. Proceedings of the IEEE, 2019, 107, 912-927.	16.4	4
368	Genetic architecture of socioeconomic outcomes: Educational attainment, occupational status, and wealth. Social Science Research, 2019, 82, 137-147.	1.1	8
369	Impact of Polygenic Risk for Schizophrenia on Cortical Structure in UK Biobank. Biological Psychiatry, 2019, 86, 536-544.	0.7	62
370	The genomics of schizophrenia: Shortcomings and solutions. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 93, 71-76.	2.5	27
371	Unravelling the genetic basis of schizophrenia and bipolar disorder with GWAS: A systematic review. Journal of Psychiatric Research, 2019, 114, 178-207.	1.5	81
372	Computational Approaches for Identification of Pleiotropic Biomarker Profiles in Psychiatry. Advances in Experimental Medicine and Biology, 2019, 1134, 111-128.	0.8	0

#	Article	IF	CITATIONS
373	Functional Connectivity of Corticostriatal Circuitry and Psychosis-like Experiences in the General Community. Biological Psychiatry, 2019, 86, 16-24.	0.7	44
374	Quantification of frequency-dependent genetic architectures in 25 UK Biobank traits reveals action of negative selection. Nature Communications, 2019, 10, 790.	5.8	98
375	Biological and practical implications of genome-wide association study of schizophrenia using Bayesian variable selection. NPJ Schizophrenia, 2019, 5, 19.	2.0	0
376	Targeted Sequencing of 10,198 Samples Confirms Abnormalities in Neuronal Activity and Implicates Voltage-Gated Sodium Channels in Schizophrenia Pathogenesis. Biological Psychiatry, 2019, 85, 554-562.	0.7	40
377	Repurposing large health insurance claims data to estimate genetic and environmental contributions in 560 phenotypes. Nature Genetics, 2019, 51, 327-334.	9.4	52
378	Predictive modeling of schizophrenia from genomic data: Comparison of polygenic risk score with kernel support vector machines approach. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2019, 180, 80-85.	1.1	27
379	Estimating crossâ€population genetic correlations of causal effect sizes. Genetic Epidemiology, 2019, 43, 180-188.	0.6	70
380	Shared Genetic Risk of Schizophrenia and Gray Matter Reduction in 6p22.1. Schizophrenia Bulletin, 2019, 45, 222-232.	2.3	31
381	Understanding the genetics of neuropsychiatric disorders: the potential role of genomic regulatory blocks. Molecular Psychiatry, 2020, 25, 6-18.	4.1	26
382	Contributions of common genetic variants to risk of schizophrenia among individuals of African and Latino ancestry. Molecular Psychiatry, 2020, 25, 2455-2467.	4.1	82
383	Exome sequencing in schizophrenia-affected parent–offspring trios reveals risk conferred by protein-coding de novo mutations. Nature Neuroscience, 2020, 23, 185-193.	7.1	125
384	Genomics of schizophrenia. , 2020, , 173-186.		0
385	Advances in genetics toward identifying pathogenic cell states of rheumatoid arthritis. Immunological Reviews, 2020, 294, 188-204.	2.8	23
386	Maternal Bacterial Infection During Pregnancy: A Potential Causal Risk Factor for Psychosis in Offspring. American Journal of Psychiatry, 2020, 177, 14-16.	4.0	3
387	Genomic Chaos Begets Psychiatric Disorder. Complex Psychiatry, 2020, 6, 20-29.	1.3	6
388	Genetics of Equine Endocrine and Metabolic Disease. Veterinary Clinics of North America Equine Practice, 2020, 36, 341-352.	0.3	3
389	Efficient variance components analysis across millions of genomes. Nature Communications, 2020, 11, 4020.	5.8	31
390	Elucidation of molecular pathogenesis and drug development for psychiatric disorders from rare disease-susceptibility variants. Neuroscience Research, 2021, 170, 24-31.	1.0	5

ARTICLE IF CITATIONS Beyond SNP heritability: Polygenicity and discoverability of phenotypes estimated with a univariate 391 1.5 120 Gaussian mixture model. PLoS Genetics, 2020, 16, e1008612. The polygenic architecture of schizophrenia — rethinking pathogenesis and nosology. Nature Reviews Neurológy, 2020, 16, 366-379. Fineâ€mapping of <i>ZDHHC2</i> identifies risk variants for schizophrenia in the Han Chinese population. 393 0.6 7 Molecular Genetics & amp; Genomic Medicine, 2020, 8, e1190. Functional genomics links genetic origins to pathophysiology in neurodegenerative and 394 neuropsychiatric disease. Current Opinion in Genetics and Development, 2020, 65, 117-125. Novel genetic susceptibility loci identified by family based whole exome sequencing in Han Chinese 395 2.4 16 schizophrenia patients. Translational Psychiatry, 2020, 10, 5. Polygenic Architecture of Human Neuroanatomical Diversity. Cerebral Cortex, 2020, 30, 2307-2320. 1.6 16 De novo mutations identified by exome sequencing implicate rare missense variants in SLC6A1 in 397 7.1 100 schizophrenia. Nature Neuroscience, 2020, 23, 179-184. Novel Approaches for Identifying the Molecular Background of Schizophrenia. Cells, 2020, 9, 246. 398 1.8 Translating insights from neuropsychiatric genetics and genomics for precision psychiatry. Genome 399 3.6 53 Medicine, 2020, 12, 43. Molecular Genetic Risk for Psychosis Is Associated With Psychosis Risk Symptoms in a Population-Based UK Cohort: Findings From Generation Scotland. Schizophrenia Bulletin, 2020, 46, 2.3 1045-1052. Partitioning heritability analyses unveil the genetic architecture of human brain multidimensional 401 17 1.9 functional connectivity patterns. Human Brain Mapping, 2020, 41, 3305-3317. A Recessively Inherited Risk Locus on Chromosome 13q22-31 Conferring Susceptibility to 2.3 Schizophrenia. Schizophrenia Bulletin, 2021, 47, 796-802. Generative network models of altered structural brain connectivity in schizophrenia. NeuroImage, 403 2.1 24 2021, 225, 117510. Low-Level Brain Somatic Mutations Are Implicated in Schizophrenia. Biological Psychiatry, 2021, 90, 404 16 35-46 405 Linear Mixed Models: Part I. Springer Series in Statistics, 2021, , 1-61. 0.9 6 Induced pluripotent stem cells for modeling schizophrenia pathogenesis., 2021, , 105-127. 406 Genetic architecture of schizophrenia: a review of major advancements. Psychological Medicine, 2021, 408 2.7 76 51, 2168-2177. Familial Psychosis Associated With a Missense Mutation at MACF1 Gene Combined With the Rare 409 Duplications DUP3p26.3 and DUP16q23.3, Affecting the CNTN6 and CDH13 Genes. Frontiers in Genetics, 1.1

CITATION REPORT

2021, 12, 622886.

#	Article	IF	CITATIONS
410	Genetic basis of lacunar stroke: a pooled analysis of individual patient data and genome-wide association studies. Lancet Neurology, The, 2021, 20, 351-361.	4.9	95
411	Novel ultra-rare exonic variants identified in a founder population implicate cadherins in schizophrenia. Neuron, 2021, 109, 1465-1478.e4.	3.8	21
412	Integrating genomic selection with a genotype plus genotype x environment (<scp>GGE</scp>) model improves prediction accuracy and computational efficiency. Plant, Cell and Environment, 2021, 44, 3459-3470.	2.8	5
413	The conserved ASTN2/BRINP1 locus at 9q33.1–33.2 is associated with major psychiatric disorders in a large pedigree from Southern Spain. Scientific Reports, 2021, 11, 14529.	1.6	3
414	Cell type-specific and cross-population polygenic risk score analyses of MIR137 gene pathway in schizophrenia. IScience, 2021, 24, 102785.	1.9	15
416	A genetic risk score using human chromosomal-scale length variation can predict schizophrenia. Scientific Reports, 2021, 11, 18866.	1.6	0
417	Schizophrenia, autism spectrum disorders and developmental disorders share specific disruptive coding mutations. Nature Communications, 2021, 12, 5353.	5.8	44
418	Characterising the shared genetic determinants of bipolar disorder, schizophrenia and risk-taking. Translational Psychiatry, 2021, 11, 466.	2.4	15
419	Parental consanguinity among patients with schizophrenia in a rural community of South India: A clinical and genetic investigation. Asian Journal of Psychiatry, 2021, 64, 102814.	0.9	3
420	Combining Structural-Equation Modeling with Genomic-Relatedness-Matrix Restricted Maximum Likelihood in OpenMx. Behavior Genetics, 2021, 51, 331-342.	1.4	11
424	SNP Analysis Using a Molecular Beacon-Based Operating Cooperatively (OC) Sensor. Methods in Molecular Biology, 2013, 1039, 81-86.	0.4	2
425	Converging Findings from Linkage and Association Analyses on Susceptibility Genes for Smoking Addiction. , 2018, , 153-181.		1
426	Familial Studies: Genetic Inferences. , 2015, , 715-724.		3
427	Molecular genetic evidence for overlap between general cognitive ability and risk for schizophrenia: a report from the Cognitive Genomics consorTium (COGENT). , 0, .		1
428	The Genetics of Schizophrenia. RSC Drug Discovery Series, 2015, , 1-27.	0.2	3
455	Are Genetic Risk Factors for Psychosis Also Associated with Dimension-Specific Psychotic Experiences in Adolescence?. PLoS ONE, 2014, 9, e94398.	1.1	56
456	Direct Estimates of the Genomic Contributions to Blood Pressure Heritability within a Population-Based Cohort (ARIC). PLoS ONE, 2015, 10, e0133031.	1.1	47
457	The performance of a new local false discovery rate method on tests of association between coronary artery disease (CAD) and genome-wide genetic variants. PLoS ONE, 2017, 12, e0185174.	1.1	5

#	Article	IF	CITATIONS
458	Integrative genetic analysis suggests that skin color modifies the genetic architecture of melanoma. PLoS ONE, 2017, 12, e0185730.	1.1	10
459	Next-generation sequencing refines the genetic architecture of Greek GnRH-deficient patients. Endocrine Connections, 2019, 8, 468-480.	0.8	16
460	Genetic and genomic analyses as a basis for new diagnostic nosologies. Dialogues in Clinical Neuroscience, 2015, 17, 69-78.	1.8	7
461	Association of HLA-DR/DQ polymorphisms with schizophrenia in Tunisian patients. Annals of Saudi Medicine, 2014, 34, 503-507.	0.5	7
462	Direct introgression of untapped diversity into elite wheat lines. Nature Food, 2021, 2, 819-827.	6.2	18
464	Schizophrenia and Bipolar Disorder. , 2014, , 153-183.		4
465	Future Directions in Genetics of Psychiatric Disorders. , 2014, , 311-337.		1
467	Modeling the Genetics of Social Cognition in the Laboratory. , 2014, , .		Ο
473	Inflammmation During Pregnancy Associates with Schizophrenia. Gynecology & Obstetrics (Sunnyvale,) Tj ETQq	0 0 0 rgB 0.1	[/Oyerlock 10
474	Severe Psychopathology. Autism and Child Psychopathology Series, 2016, , 301-314.	0.1	0
474 475	Severe Psychopathology. Autism and Child Psychopathology Series, 2016, , 301-314. Social Endophenotypes in Mouse Models of Psychiatric Disease. , 2016, , 231-264.	0.1	0
		0.1	
475	Social Endophenotypes in Mouse Models of Psychiatric Disease. , 2016, , 231-264.		0
475 494	Social Endophenotypes in Mouse Models of Psychiatric Disease. , 2016, , 231-264. Affecting Factors of Egg Weight. Tavukçuluk Araştırma Dergisi, 0, , 39-47. Diversity matters: opportunities in the study of the genetics of psychotic disorders in low- and	0.1	0
475 494 499	Social Endophenotypes in Mouse Models of Psychiatric Disease. , 2016, , 231-264. Affecting Factors of Egg Weight. Tavukçuluk Araştırma Dergisi, 0, , 39-47. Diversity matters: opportunities in the study of the genetics of psychotic disorders in low- and middle-income countries in Latin America. Revista Brasileira De Psiquiatria, 2021, 43, 631-637. The Genetic Architecture of Obsessive-Compulsive Disorder: Contribution of Liability to OCD From	0.1	0 0 10
475 494 499 500	Social Endophenotypes in Mouse Models of Psychiatric Disease. , 2016, , 231-264. Affecting Factors of Egg Weight. Tavukā§uluk AraåŸtä±rma Dergisi, 0, , 39-47. Diversity matters: opportunities in the study of the genetics of psychotic disorders in low- and middle-income countries in Latin America. Revista Brasileira De Psiquiatria, 2021, 43, 631-637. The Genetic Architecture of Obsessive-Compulsive Disorder: Contribution of Liability to OCD From Alleles Across the Frequency Spectrum. American Journal of Psychiatry, 2022, 179, 216-225. Regulatory Variant rs2535629 in <i>ITIH3</i>	0.1 0.9 4.0	0 0 10 16
475 494 499 500 501	Social Endophenotypes in Mouse Models of Psychiatric Disease. , 2016, , 231-264. Affecting Factors of Egg Weight. TavukāŠuluk AraÅŸtırma Dergisi, 0, , 39-47. Diversity matters: opportunities in the study of the genetics of psychotic disorders in low- and middle-income countries in Latin America. Revista Brasileira De Psiquiatria, 2021, 43, 631-637. The Genetic Architecture of Obsessive-Compulsive Disorder: Contribution of Liability to OCD From Alleles Across the Frequency Spectrum. American Journal of Psychiatry, 2022, 179, 216-225. Regulatory Variant rs2535629 in <i>ITH13 Regulatory Variant rs2535629 in <i>ITH13 Undergraduate laboratory series that employs a complete polymerase chain reactionâ€restriction fragment length polymorphism experiment for determination of a single nucleotide polymorphism in</i></i>	0.1 0.9 4.0 5.6	0 0 10 16 8

#	Article	IF	CITATIONS
505	A comprehensive gene-centric pleiotropic association analysis for 14 psychiatric disorders with GWAS summary statistics. BMC Medicine, 2021, 19, 314.	2.3	20
506	Schizophrenia genomics. , 2022, , 17-41.		0
507	Catalytic Reaction Model of Suicide. Frontiers in Psychiatry, 2022, 13, 817224.	1.3	5
508	Average semivariance directly yields accurate estimates of the genomic variance in complex trait analyses. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	7
546	Magical thinking in individuals with high polygenic risk for schizophrenia but no non-affective psychoses—a general population study. Molecular Psychiatry, 2022, 27, 3286-3293.	4.1	6
547	Brain somatic mutations as RNA therapeutic targets in neurological disorders. Annals of the New York Academy of Sciences, 2022, 1514, 11-20.	1.8	2
548	Bridging the Gap Between Environmental Adversity and Neuropsychiatric Disorders: The Role of Transposable Elements. Frontiers in Genetics, 0, 13, .	1.1	6
550	How Variation in Risk Allele Output and Gene Interactions Shape the Genetic Architecture of Schizophrenia. Genes, 2022, 13, 1040.	1.0	1
551	The genetic architecture of schizophrenia: review of large-scale genetic studies. Journal of Human Genetics, 2023, 68, 175-182.	1.1	19
552	NRN1 Gene as a Potential Marker of Early-Onset Schizophrenia: Evidence from Genetic and Neuroimaging Approaches. International Journal of Molecular Sciences, 2022, 23, 7456.	1.8	2
553	Quantity as a Fish Views It: Behavior and Neurobiology. Frontiers in Neuroanatomy, 0, 16, .	0.9	9
555	A cognitive neurogenetic approach to uncovering the structure of executive functions. Nature Communications, 2022, 13, .	5.8	8
556	Large-scale genome-wide association study of coronary artery disease in genetically diverse populations. Nature Medicine, 2022, 28, 1679-1692.	15.2	106
557	Biological hypotheses, risk factors, and biomarkers of schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2023, 120, 110626.	2.5	26
558	Genetic Analysis of RASD1 as a Candidate Gene for Schizophrenia. Balkan Medical Journal, 2022, 39, 422-428.	0.3	1
560	Genetic architecture of heart failure with preserved versus reduced ejection fraction. Nature Communications, 2022, 13, .	5.8	14
561	Significance tests for R2 of out-of-sample prediction using polygenic scores. American Journal of Human Genetics, 2023, 110, 349-358.	2.6	7
562	A method for an unbiased estimate of cross-ancestry genetic correlation using individual-level data. Nature Communications, 2023, 14, .	5.8	4

#	Article	IF	CITATIONS
563	The identification of mediating effects using genome-based restricted maximum likelihood estimation. PLoS Genetics, 2023, 19, e1010638.	1.5	2
564	Genomic insights into schizophrenia. Royal Society Open Science, 2023, 10, .	1.1	3
565	Estimation of Variance Components and Genome Partitioning According to Minor Allele Frequency for Quantitative Traits in Sheep. Research on Animal Production, 2022, 13, 139-148.	0.2	0