Enhanced power-conversion efficiency in polymer solar structure

Nature Photonics 6, 591-595 DOI: 10.1038/nphoton.2012.190

Citation Report

#	Article	IF	CITATIONS
2	MoO3 Thickness, Thermal Annealing and Solvent Annealing Effects on Inverted and Direct Polymer Photovoltaic Solar Cells. Materials, 2012, 5, 2521-2536.	1.3	58
3	Immerse precipitation as an efficient protocol to optimize morphology and performance of organic solar cells. Applied Physics Letters, 2012, 101, 233306.	1.5	2
4	Spectral aspects of cavity tuned absorption in organic photovoltaic films. Optics Express, 2012, 20, A954.	1.7	13
5	Themed issue: nanomaterials for energy conversion and storage. Journal of Materials Chemistry, 2012, 22, 24190.	6.7	48
6	High-performance polymer solar cells with a conjugated zwitterion by solution processing or thermal deposition as the electron-collection interlayer. Journal of Materials Chemistry, 2012, 22, 24155.	6.7	76
7	Layer-by-layer processed high-performance polymer solar cells. Applied Physics Letters, 2012, 101, .	1.5	37
8	n-Type Naphthalene Diimide–Biselenophene Copolymer for All-Polymer Bulk Heterojunction Solar Cells. Macromolecules, 2012, 45, 9056-9062.	2.2	123
9	Improved Charge Transport and Absorption Coefficient in Indacenodithieno[3,2â€b]thiopheneâ€based Ladderâ€Type Polymer Leading to Highly Efficient Polymer Solar Cells. Advanced Materials, 2012, 24, 6356-6361.	11.1	343
10	Fine tuning the HOMO energy levels of polythieno[3,4-b]thiophene derivatives by incorporation of thiophene-3,4-dicarboxylate moiety for photovoltaic applications. Synthetic Metals, 2012, 162, 2005-2009.	2.1	10
11	A crystalline D-Ï€-A organic small molecule with naphtho[1,2-b:5,6-bâ€2]dithiophene-core for solution processed organic solar cells. Organic Electronics, 2012, 13, 3183-3194.	1.4	27
12	Hybrid bulk heterojunction solar cells based on poly(3-hexylthiophene) and ZnO nanoparticles modified by side-chain functional polythiophenes. Thin Solid Films, 2012, 526, 120-126.	0.8	15
13	Organic photovoltaics. Materials Today, 2012, 15, 554-562.	8.3	391
14	Synthesis and photovoltaic properties of conjugated copolymers with benzo[1,2-b:4,5-bâ€2]dithiophene and thiadiazolo[3,4-c]pyridine moieties. European Polymer Journal, 2013, 49, 2738-2747.	2.6	11
15	Overcoming the "Light‣oaking―Issue in Inverted Organic Solar Cells by the Use of Al:ZnO Electron Extraction Layers. Advanced Energy Materials, 2013, 3, 1437-1444.	10.2	160
16	Facile synthesis of 1-(2,6-diisopropylphenyl)-2,5-di(2-thienyl)pyrrole-based narrow band gap small molecules for solar cell applications. Synthetic Metals, 2013, 176, 96-103.	2.1	11
17	Biopolymer as an electron selective layer for inverted polymer solar cells. Applied Physics Letters, 2013, 103, .	1.5	14
18	Monodisperse Low-Bandgap Macromolecule-Based 5,5′-Bibenzo[c][1,2,5]thiadiazole Swivel Cruciform for Organic Solar Cells. ACS Macro Letters, 2013, 2, 621-624.	2.3	13
19	Advanced Functional Polymers for Increasing the Stability of Organic Photovoltaics. Macromolecular Chemistry and Physics, 2013, 214, 1546-1558.	1.1	23

# 20	ARTICLE A green, low-cost, and highly effective strategy to enhance the performance of hybrid solar cells: Post-deposition ligand exchange by acetic acid. Solar Energy Materials and Solar Cells, 2013, 117,	IF 3.0	CITATIONS
21	All-polymer solar cells based on side-chain-isolated polythiophenes and poly(perylene) Tj ETQq1 1 0.784314 rgBT	Qverlock	10 Tf 50 70
22	Alkyl Chain Extension as a Route to Novel Thieno[3,2- <i>b</i>]thiophene Flanked Diketopyrrolopyrrole Polymers for Use in Organic Solar Cells and Field Effect Transistors. Macromolecules, 2013, 46, 5961-5967.	2.2	67
23	Fluoreneâ€Based Coâ€polymer with High Hole Mobility and Device Performance in Bulk Heterojunction Organic Solar Cells. Macromolecular Rapid Communications, 2013, 34, 1157-1162.	2.0	24
24	â€~Inorganics-in-Organics': recent developments and outlook for 4G polymer solar cells. Nanoscale, 2013, 5, 8411.	2.8	147
25	Efficient Polymer Solar Cells Based on Benzothiadiazole and Alkylphenyl Substituted Benzodithiophene with a Power Conversion Efficiency over 8%. Advanced Materials, 2013, 25, 4944-4949.	11.1	306
26	Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices. Nature Photonics, 2013, 7, 732-738.	15.6	501
27	Solution processed reduced graphene oxide/metal oxide hybrid electron transport layers for highly efficient polymer solar cells. Journal of Materials Chemistry A, 2013, 1, 9922.	5.2	74
28	Aluminum nanoparticles for efficient and stable organic photovoltaics. RSC Advances, 2013, 3, 16288.	1.7	38
30	Light Trapping with Dielectric Scatterers in Single―and Tandemâ€Junction Organic Solar Cells. Advanced Energy Materials, 2013, 3, 1606-1613.	10.2	30
31	[6,6]â€Phenylâ€C ₆₁ â€Butyric Acid Dimethylamino Ester as a Cathode Buffer Layer for Highâ€Performance Polymer Solar Cells. Advanced Energy Materials, 2013, 3, 1569-1574.	10.2	77
32	Benzodithiophene bridged dimeric perylene diimide amphiphiles as efficient solution-processed non-fullerene small molecules. Polymer Chemistry, 2013, 4, 4631.	1.9	66
33	A bi-functional structure with tunable electrical and optical properties for organic photovoltaic cells. Journal of Applied Physics, 2013, 113, .	1.1	12
34	Toward green solvent processable photovoltaic materials for polymer solar cells: the role of highly polar pendant groups in charge carrier transport and photovoltaic behavior. Energy and Environmental Science, 2013, 6, 3022.	15.6	158
35	Predicting Morphologies of Solution Processed Polymer:Fullerene Blends. Journal of the American Chemical Society, 2013, 135, 12057-12067.	6.6	274
36	Molecular Weight Effect on the Absorption, Charge Carrier Mobility, and Photovoltaic Performance of an Indacenodiselenophene-Based Ladder-Type Polymer. Chemistry of Materials, 2013, 25, 3188-3195.	3.2	155
37	Light trapping enhancement of inverted polymer solar cells with a nanostructured scattering rear electrode. Organic Electronics, 2013, 14, 2158-2163.	1.4	36
38	Toward high efficiency of inverted organic solar cells: Concurrent improvement in optical and electrical properties of electron transport layers. Applied Physics Letters, 2013, 102, .	1.5	22

ARTICLE IF CITATIONS # High open circuit voltage polymer solar cells with blend of MEH-PPV as donor and fumaronitrile 39 2.14 derivate as acceptor. Synthetic Metals, 2013, 178, 22-26. Low HOMO isoindigo based small molecule for high open-circuit voltage 1.0V solution processed 2.1 organic solar cells. Synthetic Metals, 2013, 178, 38-43. 41 The case for organic photovoltaics. RSC Advances, 2013, 3, 17633. 1.7 471 Photoinduced Hole Transfer Becomes Suppressed with Diminished Driving Force in Polymerâ \in Fullerene 101 Solar Cells While Electron Transfer Remains Active. Advanced Functional Materials, 2013, 23, 1238-1249. Competition between morphological attributes in the thermal annealing and additive processing of 43 2.7 44 polymer solar cells. Journal of Materials Chemistry C, 2013, 1, 5023. Photodegradation in Encapsulated Siloleâ€Based Polymer: PCBM Solar Cells Investigated using Transient Absorption Spectroscopy and Charge Extraction Measurements. Advanced Energy Materials, 10.2 2013, 3, 1473-1483. Enhanced Efficiency of Single and Tandem Organic Solar Cells Incorporating a Diketopyrrolopyrroleâ€Based Lowâ€Bandgap Polymer by Utilizing Combined ZnO/Polyelectrolyte 45 11.1 111 Electronâ€Transport Layers. Advanced Materials, 2013, 25, 4783-4788. Fullereneâ∈Bisadduct Acceptors for Polymer Solar Cells. Chemistry - an Asian Journal, 2013, 8, 2316-2328. 1.7 46 148 Inter-crosslinking through both donor and acceptor with unsaturated bonds for highly efficient and 47 1.9 14 stable organic solar cells. Polymer Chemistry, 2013, 4, 5637. Polythiophenes comprising conjugated pendants toward long-term air-stable inverted polymer solar 5.2 cells with high open circuit voltages. Journal of Materials Chemistry A, 2013, 1, 8950. A Potential Perylene Diimide Dimerâ€Based Acceptor Material for Highly Efficient Solutionâ€Processed 49 11.1 444 Nonâ€Fullerene Organic Solar Cells with 4.03% Efficiency. Advanced Materials, 2013, 25, 5791-5797. Enhancing the Performance of Polymer Photovoltaic Cells by Using an Alcohol Soluble Fullerene 4.0 Derivative as the Interfacial Layer. ACS Applied Materials & amp; Interfaces, 2013, 5, 8076-8080. Charge Separation and Recombination of Charge-Transfer Excitons in Donor–Acceptor Polymer Solar 51 1.5 20 Cells. Journal of Physical Chemistry C, 2013, 117, 16769-16773. Synthesis and photovoltaic properties of fluorene-based copolymers with pendent donor–acceptor 1.1 units. Journal of Materials Science: Materials in Electronics, 2013, 24, 4284-4289. Tin naphthalocyanine complexes for infrared absorption in organic photovoltaic cells. Organic 53 1.4 26 Electronics, 2013, 14, 804-808. Remove the Residual Additives toward Enhanced Efficiency with Higher Reproducibility in Polymer 54 210 Solar Cells. Journal of Physical Chemistry C, 2013, 117, 14920-14928. A combination of Al-doped ZnO and a conjugated polyelectrolyte interlayer for small molecule 55 solution-processed solar cells with an inverted structure. Journal of Materials Chemistry A, 2013, 1, 5.248 11306. A Solutionâ€Processed Hole Extraction Layer Made from Ultrathin MoS₂ Nanosheets for 231 Efficient Organic Solar Cells. Advanced Energy Materials, 2013, 3, 1262-1268.

#	Article	IF	Citations
57	Improving the long-term stability of PBDTTPD polymer solar cells through material purification aimed at removing organic impurities. Energy and Environmental Science, 2013, 6, 2529.	15.6	98
58	High-performance semi-transparent polymer solar cells possessing tandem structures. Energy and Environmental Science, 2013, 6, 2714.	15.6	170
59	Random and V-groove texturing for efficient light trapping in organic photovoltaic cells. Solar Energy Materials and Solar Cells, 2013, 115, 36-41.	3.0	70
60	Side-Chain Effect on Cyclopentadithiophene/Fluorobenzothiadiazole-Based Low Band Gap Polymers and Their Applications for Polymer Solar Cells. Macromolecules, 2013, 46, 5497-5503.	2.2	94
61	Structural Factors That Affect the Performance of Organic Bulk Heterojunction Solar Cells. Macromolecules, 2013, 46, 6379-6387.	2.2	145
62	Solution processed metal-oxides for organic electronic devices. Journal of Materials Chemistry C, 2013, 1, 4796.	2.7	128
63	Performance enhancement of fullerene-based solar cells by light processing. Nature Communications, 2013, 4, 2227.	5.8	119
64	Ultra-fast excitation dynamics in low bandgap polymer solar cell. Applied Physics Letters, 2013, 103, 073902.	1.5	7
65	Improved Photovoltaic Performance of MEHâ€PPV/PCBM Solar Cells via Incorporation of Si Nanocrystals. Chinese Journal of Chemistry, 2013, 31, 1380-1384.	2.6	6
66	The identification, characterization and mitigation of defect states in organic photovoltaic devices: a review and outlook. Energy and Environmental Science, 2013, 6, 3414.	15.6	124
67	Triple junction polymer solar cells. Energy and Environmental Science, 2013, 6, 3150.	15.6	77
68	Charge carrier recombination in organic solar cells. Progress in Polymer Science, 2013, 38, 1941-1960.	11.8	534
69	Characterization of the morphology of solution-processed bulk heterojunction organic photovoltaics. Progress in Polymer Science, 2013, 38, 1990-2052.	11.8	252
70	Optimization and simplification of polymer–fullerene solar cells through polymer and active layer design. Polymer, 2013, 54, 5267-5298.	1.8	119
71	Solution Processed Al-Doped ZnO Nanoparticles/TiOx Composite for Highly Efficient Inverted Organic Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 8440-8445.	4.0	16
72	High performance polymer solar cells with a polar fullerene derivative as the cathode buffer layer. Journal of Materials Chemistry A, 2013, 1, 12413.	5.2	52
73	Recent advances in water/alcohol-soluble π-conjugated materials: new materials and growing applications in solar cells. Chemical Society Reviews, 2013, 42, 9071.	18.7	437
74	Polymer solar cells with enhanced fill factors. Nature Photonics, 2013, 7, 825-833.	15.6	887

#	Article	IF	CITATIONS
75	Visualizing charge separation in bulk heterojunction organic solar cells. Nature Communications, 2013, 4, 2334.	5.8	158
76	PCDTBT: en route for low cost plastic solar cells. Journal of Materials Chemistry A, 2013, 1, 11097.	5.2	171
77	High Performance Photovoltaic Applications Using Solution-Processed Small Molecules. Accounts of Chemical Research, 2013, 46, 2645-2655.	7.6	624
78	Colloidal quantum dots in solar cells. Russian Chemical Reviews, 2013, 82, 429-448.	2.5	34
79	Amine group functionalized fullerene derivatives as cathode buffer layers for high performance polymer solar cells. Journal of Materials Chemistry A, 2013, 1, 9624.	5.2	69
80	On the identification of deeper defect levels in organic photovoltaic devices. Journal of Applied Physics, 2013, 114, .	1.1	41
81	Double acceptor D–A copolymers containing benzotriazole and benzothiadiazole units: chemical tailoring towards efficient photovoltaic properties. Journal of Materials Chemistry A, 2013, 1, 10736.	5.2	25
82	Thin-film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces. NPG Asia Materials, 2013, 5, e55-e55.	3.8	322
83	Synthesis and photovoltaic performance of novel thiophenyl-methylene-9H-fluorene-based low bandgap polymers. Polymer, 2013, 54, 4930-4939.	1.8	19
84	Inverted polymer solar cells with TiO2 electron extraction layers prepared by magnetron sputtering. Science China Chemistry, 2013, 56, 1573-1577.	4.2	12
85	Synthesis and optoelectronic properties of amino-functionalized carbazole-based conjugated polymers. Science China Chemistry, 2013, 56, 1119-1128.	4.2	17
86	Electroluminescence performances of 1,1-bis(4-(N,N-dimethylamino)phenyl)-2,3,4,5-tetraphenylsilole based polymers in three cathode architectures. Science China Chemistry, 2013, 56, 1129-1136.	4.2	14
87	Visualizing physical, electronic, and optical properties of organic photovoltaic cells. Energy and Environmental Science, 2013, 6, 2871.	15.6	54
88	Efficiency enhancement in P3HT-based polymer solar cells with a NaYF4:2% Er3+, 18% Yb3+ up-converter. Journal of Materials Chemistry C, 2013, 1, 5872.	2.7	16
89	Charge carrier transport and contact selectivity limit the operation of PTB7-based organic solar cells of varying active layer thickness. Journal of Materials Chemistry A, 2013, 1, 12345.	5.2	87
90	Optimization of Polymer Solar Cells Based on the Conjugated Copolymer of Poly(phenylenevinyleneâ€ <i>alt</i> â€4,7â€diphenylâ€2,1,3â€benzothiadiazole) (PPâ€DBT). Macromolecular Cho and Physics, 2013, 214, 1836-1844.	emistry	3
91	Theoretical design of donor-acceptor conjugated copolymers based on furo-, thieno-, and selenopheno[3,4-c] thiophene-4,6-dione and benzodithiophene units for organic solar cells. Journal of Molecular Modeling, 2013, 19, 4283-4291.	0.8	20
92	An alternating D–A1–D–A2 copolymer containing two electron-deficient moieties for efficient polymer solar cells. Journal of Materials Chemistry A, 2013, 1, 11141.	5.2	66

#	Article	IF	CITATIONS
93	Thermo-cleavable fullerene materials as buffer layers for efficient polymer solar cells. Journal of Materials Chemistry A, 2013, 1, 11170.	5.2	29
94	Correlation between structure and photovoltaic performance of a series of furan bridged donor–acceptor conjugated polymers. Journal of Materials Chemistry A, 2013, 1, 12128.	5.2	25
95	Allâ€polymer solar cells utilizing low band gap polymers as donor and acceptor. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 403-409.	2.4	44
96	Review on Recent Progress on Sandwichâ€Structure Hybrid Solar Cells. Energy Technology, 2013, 1, 382-391.	1.8	1
97	Inverted polymer solar cells integrated with small molecular electron collection layer. Organic Electronics, 2013, 14, 1844-1851.	1.4	14
98	Nanoparticle-based plasmonic organic photovoltaic devices. Materials Today, 2013, 16, 133-146.	8.3	369
99	Transferable Graphene Oxide by Stamping Nanotechnology: Electronâ€Transport Layer for Efficient Bulkâ€Heterojunction Solar Cells. Angewandte Chemie - International Edition, 2013, 52, 2874-2880.	7.2	112
100	Improvement of power conversion efficiencies in Cr ₂ O ₃ -nanoparticle-embedded polymer solar cells. Applied Physics Letters, 2013, 103, 133306.	1.5	7
101	Investigation of the optical characteristics of a combination of InP/ZnS-quantum dots with MWCNTs in a PMMA matrix. Optical Materials, 2013, 35, 2490-2495.	1.7	16
102	Interface investigation of the alcohol-/water-soluble conjugated polymer PFN as cathode interfacial layer in organic solar cells. Journal of Applied Physics, 2013, 114, .	1.1	38
103	Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency. Scientific Reports, 2013, 3, 3356.	1.6	542
104	Plasmonic Forward Scattering Effect in Organic Solar Cells: A Powerful Optical Engineering Method. Scientific Reports, 2013, 3, .	1.6	215
105	Interfacial dipole in organic p–n junction to realize write-once–read-many-times memory. Organic Electronics, 2013, 14, 1163-1169.	1.4	12
106	All-Polymer Solar Cells with 3.3% Efficiency Based on Naphthalene Diimide-Selenophene Copolymer Acceptor. Journal of the American Chemical Society, 2013, 135, 14960-14963.	6.6	363
107	β-Phase transformation and energy transfer induced photoluminescence modulation of fluorene based coploymer mono-dispersive nanoparticles. RSC Advances, 2013, 3, 23704.	1.7	4
108	High-Efficiency Polymer Solar Cells via the Incorporation of an Amino-Functionalized Conjugated Metallopolymer as a Cathode Interlayer. Journal of the American Chemical Society, 2013, 135, 15326-15329.	6.6	321
109	Enhanced Performance of Semitransparent Inverted Organic Photovoltaic Devices via a High Reflector Structure. ACS Applied Materials & Interfaces, 2013, 5, 10185-10190.	4.0	32
110	Evolution of the Electron Mobility in Polymer Solar Cells with Different Fullerene Acceptors. ACS Applied Materials & amp; Interfaces, 2013, 5, 8038-8043.	4.0	17

#	Article	IF	CITATIONS
111	Fluoreneâ€based copolymers with donor–acceptor units on the side chain and main chain: Synthesis and application in polymer solar cells. Journal of Applied Polymer Science, 2013, 130, 3276-3281.	1.3	12
112	Enhanced charge extraction in organic solar cells through electron accumulation effects induced by metal nanoparticles. Energy and Environmental Science, 2013, 6, 3372.	15.6	95
113	Revealing Exciton Dynamics in a Small-Molecule Organic Semiconducting Film with Subdomain Transient Absorption Microscopy. Journal of Physical Chemistry C, 2013, 117, 22111-22122.	1.5	54
114	Influence of Incorporating Different Electron-Rich Thiophene-Based Units on the Photovoltaic Properties of Isoindigo-Based Conjugated Polymers: An Experimental and DFT Study. Macromolecules, 2013, 46, 8488-8499.	2.2	58
115	High performance inverted organic solar cells with solution processed Ga-doped ZnO as an interfacial electron transport layer. Journal of Materials Chemistry C, 2013, 1, 8161.	2.7	45
116	<i>N</i> -Acyldithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]pyrrole-Based Low-Band-Gap Conjugated Polymer Solar Cells with Amine-Modified [6,6]-Phenyl-C61-butyric Acid Ester Cathode Interlayers. ACS Applied Materials & Interfaces, 2013, 5, 10995-11003.	4.0	25
117	Correlating molecular morphology with optoelectronic function in solar cells based on low band-gap copolymer:fullerene blends. Journal of Materials Chemistry C, 2013, 1, 7266.	2.7	67
118	Introducing 3D conjugated acceptors with intense red absorption: homoleptic metal(ii) complexes of di(phenylacetylene) azadipyrromethene. Journal of Materials Chemistry C, 2013, 1, 6684.	2.7	35
119	Solution-Processed Hybrid Cathode Interlayer for Inverted Organic Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 10428-10432.	4.0	32
120	An A′–A–D–A—A′ type small molecule based on 2,7-carbazole for solution-processed organic solar o with high open-circuit voltage. RSC Advances, 2013, 3, 23098.	cells 1.7	15
121	Transparent polymer solar cells employing a layered light-trapping architecture. Nature Photonics, 2013, 7, 995-1000.	15.6	267
122	Flexible and twistable non-volatile memory cell array with all-organic one diode–one resistor architecture. Nature Communications, 2013, 4, 2707.	5.8	156
123	A Family of Donor–Acceptor Photovoltaic Polymers with Fused 4,7-Dithienyl-2,1,3-benzothiadiazole Units: Effect of Structural Fusion and Side Chains. Macromolecules, 2013, 46, 7920-7931.	2.2	58
124	A Hyperbranched Conjugated Polymer as the Cathode Interlayer for Highâ€Performance Polymer Solar Cells. Advanced Materials, 2013, 25, 6889-6894.	11.1	101
125	Self-assembly of interfacial and photoactive layers via one-step solution processing for efficient inverted organic solar cells. Nanoscale, 2013, 5, 11587.	2.8	48
126	Photocatalytic Synthesis and Photovoltaic Application of Ag-TiO ₂ Nanorod Composites. Nano Letters, 2013, 13, 5698-5702.	4.5	173
127	Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nature Communications, 2013, 4, 2761.	5.8	1,525
128	Molecular Weight Effect on the Efficiency of Polymer Solar Cells. ACS Applied Materials & amp; Interfaces, 2013, 5, 12163-12167.	4.0	111

#	Article	IF	CITATIONS
129	High-performance polymer photovoltaics based on rationally designed fullerene acceptors. Solar Energy Materials and Solar Cells, 2013, 118, 171-178.	3.0	25
130	Solar-energy photoconverters based on thin films of organic materials. Technical Physics Letters, 2013, 39, 854-857.	0.2	15
131	Side-Chain Engineering of Isoindigo-Containing Conjugated Polymers Using Polystyrene for High-Performance Bulk Heterojunction Solar Cells. Chemistry of Materials, 2013, 25, 4874-4880.	3.2	136
132	Two-Dimensional Polyfluorenes Bearing Thienylenevinylene π-Bridge-Acceptor Side Chains for Photovoltaic Solar Cells. Journal of Physical Chemistry C, 2013, 117, 24700-24709.	1.5	19
133	Unified assay of adverse effects from the varied nanoparticle hybrid in polymer–fullerene organic photovoltaics. Solar Energy Materials and Solar Cells, 2013, 116, 153-170.	3.0	16
134	Application of a CdS nanostructured layer in inverted solar cells. Journal Physics D: Applied Physics, 2013, 46, 495114.	1.3	7
135	Effect of Local and Global Structural Order on the Performance of Perylene Diimide Excimeric Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 11844-11857.	4.0	81
136	Air-stable inverted ZnO nanorod arrays/polymer hybrid solar cell. Synthetic Metals, 2013, 185-186, 133-136.	2.1	7
137	Nearâ€Infrared Photovoltaic Performance of Conjugated Polymers Containing Thienoisoindigo Acceptor Units. Macromolecular Chemistry and Physics, 2013, 214, 2388-2397.	1.1	22
138	Thieno[3,4- <i>b</i>]thiophene Acceptors with Alkyl, Aryl, Perfluoroalkyl, and Perfluorophenyl Pendants for Donor–Acceptor Low Bandgap Polymers. Macromolecules, 2013, 46, 8873-8881.	2.2	46
139	Efficient organic photovoltaic cells with vertically ordered bulk heterojunctions. Nanotechnology, 2013, 24, 484006.	1.3	9
140	Correlation between the Open Circuit Voltage and the Energetics of Organic Bulk Heterojunction Solar Cells. Journal of Physical Chemistry Letters, 2013, 4, 3865-3871.	2.1	64
141	Effect of structure on the solubility and photovoltaic properties of bis-diketopyrrolopyrrole molecules. Journal of Materials Chemistry A, 2013, 1, 15150.	5.2	35
142	Structural variation of donor–acceptor copolymers containing benzodithiophene with bithienyl substituents to achieve high open circuit voltage in bulk heterojunction solar cells. Journal of Materials Chemistry A, 2013, 1, 15535.	5.2	33
143	Electrostatic Self-Assembled Metal Oxide/Conjugated Polyelectrolytes as Electron-Transporting Layers for Inverted Solar Cells with High Efficiency. Journal of Physical Chemistry C, 2013, 117, 24804-24814.	1.5	49
144	Additives for morphology control in high-efficiency organic solar cells. Materials Today, 2013, 16, 326-336.	8.3	483
145	Technological status of organic photovoltaics (OPV). Solar Energy Materials and Solar Cells, 2013, 119, 309-310.	3.0	53
146	High performance PEDOT:PSS films prepared through a treatment with fluoro compounds and their application in polymer solar cells. , 2013, , .		0

#	Article	IF	CITATIONS
147	Relating Chemical Structure to Device Performance via Morphology Control in Diketopyrrolopyrrole-Based Low Band Gap Polymers. Journal of the American Chemical Society, 2013, 135, 19248-19259.	6.6	121
148	Power efficiency enhancement of solution-processed small-molecule solar cells based on squaraine via thermal annealing and solvent additive methods. Solar Energy Materials and Solar Cells, 2013, 109, 262-269.	3.0	29
149	ITO Interface Modifiers Can Improve <i>V</i> _{OC} in Polymer Solar Cells and Suppress Surface Recombination. Journal of Physical Chemistry Letters, 2013, 4, 4038-4044.	2.1	78
150	Surface Plasmon Enhanced Organic Solar Cells with a MoO ₃ Buffer Layer. ACS Applied Materials & Interfaces, 2013, 5, 12847-12853.	4.0	58
151	High-Performance Polymer Solar Cells with Solution-Processed and Environmentally Friendly CuO _{<i>x</i>} Anode Buffer Layer. ACS Applied Materials & Interfaces, 2013, 5, 10658-10664.	4.0	77
152	Complementary Hydrogen Bonding and Block Copolymer Self-Assembly in Cooperation toward Stable Solar Cells with Tunable Morphologies. Macromolecules, 2013, 46, 9021-9031.	2.2	53
153	Fabrication of Fullyâ€Sprayâ€Processed Organic Photovoltaic Modules by using an Automated Process in Air. Energy Technology, 2013, 1, 757-762.	1.8	27
154	Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science, 2013, 342, 341-344.	6.0	8,703
155	Device Modelling of Organic Bulk Heterojunction Solar Cells. Topics in Current Chemistry, 2013, 352, 279-324.	4.0	23
156	On the properties of aluminium doped zinc oxide thin films deposited on plastic substrates from ceramic targets. Applied Surface Science, 2013, 274, 306-313.	3.1	35
157	Fluorinated Benzothiadiazole-Based Conjugated Polymers for High-Performance Polymer Solar Cells without Any Processing Additives or Post-treatments. Journal of the American Chemical Society, 2013, 135, 17060-17068.	6.6	327
158	Electrospun Organic Nanofiber Electronics and Photonics. Macromolecular Materials and Engineering, 2013, 298, 475-486.	1.7	83
159	Exciton-to-Carrier Conversion Processes in a Low-Band-Gap Organic Photovoltaic. Japanese Journal of Applied Physics, 2013, 52, 062405.	0.8	22
160	Solution-processed efficient CdTe nanocrystal/CBD-CdS hetero-junction solar cells with ZnO interlayer. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	19
161	Surface Modification of a ZnO Electron-Collecting Layer Using Atomic Layer Deposition to Fabricate High-Performing Inverted Organic Photovoltaics. ACS Applied Materials & Interfaces, 2013, 5, 8718-8723.	4.0	58
162	Understanding the relationship between molecular order and charge transport properties in conjugated polymer based organic blend photovoltaic devices. Journal of Chemical Physics, 2013, 139, 064901.	1.2	25
163	Solution-Processed MoS _{<i>x</i>} as an Efficient Anode Buffer Layer in Organic Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 8823-8827.	4.0	48
164	Greatly Reduced Processing Temperature for a Solutionâ€Processed NiO _{<i>x</i>} Buffer Layer in Polymer Solar Cells. Advanced Energy Materials, 2013, 3, 1614-1622.	10.2	88

#	ARTICLE	IF	CITATIONS
165	Novel Cyclopentadithiopheneâ€Based D–A Copolymers for Organic Photovoltaic Cell Applications. Macromolecular Chemistry and Physics, 2013, 214, 2144-2156.	1.1	12
166	Fullerene Derivativeâ€Doped Zinc Oxide Nanofilm as the Cathode of Inverted Polymer Solar Cells with Lowâ€Bandgap Polymer (PTB7â€Th) for High Performance. Advanced Materials, 2013, 25, 4766-4771.	11.1	1,162
167	Enhanced charge extraction of polymer solar cell by solution-processable gold nanoparticles. Journal of Materials Chemistry C, 2013, 1, 5402-5409.	2.7	10
168	Conjugated polymer-based photonic nanostructures. Polymer Chemistry, 2013, 4, 5181.	1.9	44
169	The effect of thieno[3,2-b]thiophene on the absorption, charge mobility and photovoltaic performance of diketopyrrolopyrrole-based low bandgap conjugated polymers. Journal of Materials Chemistry C, 2013, 1, 7526.	2.7	38
170	One, two and three-branched triphenylamine–oligothiophene hybrids for solution-processed solar cells. Journal of Materials Chemistry A, 2013, 1, 5128.	5.2	41
171	ITO-free photovoltaic cell utilizing a high-resolution silver grid current collecting layer. Solar Energy Materials and Solar Cells, 2013, 113, 85-89.	3.0	79
172	Understanding the Effect of Donor Layer Thickness and a MoO ₃ Hole Transport Layer on the Open-Circuit Voltage in Squaraine/C ₆₀ Bilayer Solar Cells. Journal of Physical Chemistry C, 2013, 117, 19866-19874.	1.5	25
173	Conjugated polyelectrolytes: A new class of semiconducting material for organic electronic devices. Polymer, 2013, 54, 5104-5121.	1.8	83
174	A material combination principle for highly efficient polymer solar cells investigated by mesoscopic phase heterogeneity. Nanoscale, 2013, 5, 11649.	2.8	11
175	Donorâ€Acceptor Oligomers and Polymers Composed of Benzothiadiazole and 3â€Hexylthiophene: Effect of Chain Length and Regioregularity. Chinese Journal of Chemistry, 2013, 31, 1367-1379.	2.6	15
176	Polymers for electronics and spintronics. Chemical Society Reviews, 2013, 42, 8895.	18.7	370
177	A pentacyclic aromatic lactam building block for efficient polymer solar cells. Energy and Environmental Science, 2013, 6, 3224.	15.6	143
178	Molecular Doping Enhances Photoconductivity in Polymer Bulk Heterojunction Solar Cells. Advanced Materials, 2013, 25, 7038-7044.	11.1	173
179	25th Anniversary Article: A Decade of Organic/Polymeric Photovoltaic Research. Advanced Materials, 2013, 25, 6642-6671.	11.1	1,055
180	Conjugated Polymeric Zwitterions as Efficient Interlayers in Organic Solar Cells. Advanced Materials, 2013, 25, 6868-6873.	11.1	92
181	Interface Control of Semiconducting Metal Oxide Layers for Efficient and Stable Inverted Polymer Solar Cells with Open-Circuit Voltages over 1.0 Volt. ACS Applied Materials & Interfaces, 2013, 5, 9015-9025.	4.0	64
182	Designing π-conjugated polymers for organic electronics. Progress in Polymer Science, 2013, 38, 1832-1908.	11.8	698

#	Article	IF	CITATIONS
183	New solution-processable small molecules as hole-transporting layer in efficient polymer solar cells. Journal of Materials Chemistry A, 2013, 1, 14253.	5.2	26
184	Modifications in Morphology Resulting from Nanoimprinting Bulk Heterojunction Blends for Light Trapping Organic Solar Cell Designs. ACS Applied Materials & Interfaces, 2013, 5, 8225-8230.	4.0	8
185	Towards 15% energy conversion efficiency: a systematic study of the solution-processed organic tandem solar cells based on commercially available materials. Energy and Environmental Science, 2013, 6, 3407.	15.6	96
186	High-Crystalline Medium-Band-Gap Polymers Consisting of Benzodithiophene and Benzotriazole Derivatives for Organic Photovoltaic Cells. ACS Applied Materials & Interfaces, 2013, 5, 12820-12831.	4.0	64
187	Compression-Induced Open Circuit Voltage Increase in All-Polymer Solar Cells with Lithium Fluoride Nanolayers. ACS Sustainable Chemistry and Engineering, 2013, 1, 1280-1285.	3.2	4
188	Influence of intermolecular interactions of electron donating small molecules on their molecular packing and performance in organic electronic devices. Journal of Materials Chemistry A, 2013, 1, 14538.	5.2	86
189	Synthesis of Poly(benzothiadiazoleâ€ <i>co</i> â€dithienobenzodithiophenes) and Effect of Thiophene Insertion for Highâ€Performance Polymer Solar Cells. Chemistry - A European Journal, 2013, 19, 13242-13248.	1.7	38
190	Control of Polymer-Packing Orientation in Thin Films through Synthetic Tailoring of Backbone Coplanarity. Chemistry of Materials, 2013, 25, 4088-4096.	3.2	206
191	A star-shaped electron acceptor based on 5,5′-bibenzothiadiazole for solution processed solar cells. Journal of Materials Chemistry A, 2013, 1, 14627.	5.2	38
192	Donor–acceptor conjugated polymers based on a pentacyclic aromatic lactam acceptor unit for polymer solar cells. Physical Chemistry Chemical Physics, 2013, 15, 19990.	1.3	21
193	Improved uniformity in high-performance organic photovoltaics enabled by (3-aminopropyl)triethoxysilane cathode functionalization. Physical Chemistry Chemical Physics, 2013, 15, 20966.	1.3	24
194	Impact of molecular solvophobicity vs. solvophilicity on device performances of dimeric perylene diimide based solution-processed non-fullerene organic solar cells. Physical Chemistry Chemical Physics, 2013, 15, 11375.	1.3	43
195	Correlation of diffusion and performance in sequentially processed P3HT/PCBM heterojunction films by time-resolved neutron reflectometry. Journal of Materials Chemistry C, 2013, 1, 2593.	2.7	33
196	The role of Ag nanoparticles in inverted polymer solar cells: Surface plasmon resonance and backscattering centers. Applied Physics Letters, 2013, 102, .	1.5	26
197	Ladderâ€ŧype Diindenopyrazine Based Conjugated Copolymers for Organic Solar Cells with High Open•ircuit Voltages. Chinese Journal of Chemistry, 2013, 31, 1409-1417.	2.6	7
198	Efficient Polymer Solar Cells Based on Solutionâ€processed Vanadium Oxide as Holeâ€extracting Layer. Chinese Journal of Chemistry, 2013, 31, 1423-1427.	2.6	2
199	Effects of NPB anode buffer layer on charge collection in ZnO/MEH-PPV hybrid solar cells. Chinese Physics B, 2013, 22, 128402.	0.7	4
200	2D ̈€-conjugated benzo[1,2-b:4,5-b′]dithiophene- and quinoxaline-based copolymers for photovoltaic applications. RSC Advances, 2013, 3, 24543.	1.7	34

#	Article	IF	CITATIONS
201	Enhanced performance and stability in PBDTTT-C-T : PC70 BM polymer solar cells by optimizing thickness of NiOx buffer layers. Journal Physics D: Applied Physics, 2013, 46, 305106.	1.3	23
202	Exploring polymer/nanoparticle hybrid solar cells in tandem architecture. RSC Advances, 2013, 3, 18643.	1.7	17
203	Fluorine substitution enhanced photovoltaic performance of a D–A1–D–A2 copolymer. Chemical Communications, 2013, 49, 9335.	2.2	116
204	Influence of a polyelectrolyte based-fluorene interfacial layer on the performance of a polymer solar cell. Journal of Materials Chemistry A, 2013, 1, 11443.	5.2	10
205	A photovoltaic system composed of a keplerate-type polyoxometalate and a water-soluble poly(p-phenylenevinylene) derivative. Journal of Materials Chemistry A, 2013, 1, 6727.	5.2	26
206	Using volatile additives to alter the morphology and performance of active layers in thin-film molecular photovoltaic devices incorporating bulk heterojunctions. Chemical Society Reviews, 2013, 42, 9105.	18.7	69
207	Improving the layer morphology of solution-processed perylene diimide organic solar cells with the use of a polymeric interlayer. Organic Photonics and Photovoltaics, 2013, 1, .	1.3	7
208	Polymer defect states modulate open-circuit voltage in bulk-heterojunction solar cells. Applied Physics Letters, 2013, 103, 243306.	1.5	40
209	Side-chain effects on the solution-phase conformations and charge photogeneration dynamics of low-bandgap copolymers. Journal of Chemical Physics, 2013, 139, 124904.	1.2	25
210	Hole Transfer from Low Band Gap Quantum Dots to Conjugated Polymers in Organic/Inorganic Hybrid Photovoltaics. Journal of Physical Chemistry Letters, 2013, 4, 280-284.	2.1	38
211	Evolved structure of thiazolothiazole based small molecules towards enhanced efficiency in organic solar cells. Organic Electronics, 2013, 14, 599-606.	1.4	45
212	Fluorine substituted thiophene–quinoxalinecopolymer to reduce the HOMO level and increase the dielectric constant for high open-circuit voltage organic solar cells. Journal of Materials Chemistry C, 2013, 1, 630-637.	2.7	101
213	Some like it hot. Nature Materials, 2013, 12, 5-6.	13.3	32
214	Synthesis and photovoltaic properties of two-dimension-conjugated D–A copolymers based on benzodithiophene or benzodifuran units. Polymer Chemistry, 2013, 4, 1474-1481.	1.9	55
215	Insight into the efficiency enhancement of polymer solar cells by incorporating gold nanoparticles. Solar Energy Materials and Solar Cells, 2013, 111, 1-8.	3.0	65
216	Enhanced performance of solution-processed solar cells based on porphyrin small molecules with a diketopyrrolopyrrole acceptor unit and a pyridine additive. Journal of Materials Chemistry A, 2013, 1, 2144-2150.	5.2	94
217	Efficient small molecule bulk heterojunction solar cells with high fill factors via introduction of Ï€-stacking moieties as end group. Journal of Materials Chemistry A, 2013, 1, 1801-1809.	5.2	96
218	Efficient polymer solar cells based on a broad bandgap D–A copolymer of "zigzag― naphthodithiophene and thieno[3,4-c]pyrrole-4,6-dione. Journal of Materials Chemistry A, 2013, 1, 1540-1543.	5.2	55

#	Article	IF	CITATIONS
219	Efficient truxenone-based acceptors for organic photovoltaics. Journal of Materials Chemistry A, 2013, 1, 73-76.	5.2	48
220	New alkylthienyl substituted benzo[1,2-b:4,5-b′]dithiophene-based polymers for high performance solar cells. Journal of Materials Chemistry A, 2013, 1, 570-577.	5.2	54
221	Wide band gap copolymers based on phthalimide: synthesis, characterization, and photovoltaic properties with 3.70% efficiency. Polymer Chemistry, 2013, 4, 2174.	1.9	28
222	Synthesis of new n-type isoindigo copolymers. Polymer Chemistry, 2013, 4, 1836.	1.9	91
223	A Smallâ€Molecule Zwitterionic Electrolyte without a Ï€â€Delocalized Unit as a Chargeâ€Injection Layer for Highâ€Performance PLEDs. Angewandte Chemie - International Edition, 2013, 52, 3417-3420.	7.2	51
224	Limits on the Fill Factor in Organic Photovoltaics: Distinguishing Nongeminate and Geminate Recombination Mechanisms. Journal of Physical Chemistry Letters, 2013, 4, 803-808.	2.1	102
225	Synthesis and photovoltaic performances of benzo[1,2â€b:4,5â€b']dithiopheneâ€ <i>alt</i> â€2,3â€diphenylquinoxaline copolymers pending functional group phenyl rings. Journal of Polymer Science Part A, 2013, 51, 1051-1057.	S 2175	15
226	Bulk heterojunction photocells utilizing neat C70 and low energy-gap polymer prepared with halogen-free solvent. Solar Energy Materials and Solar Cells, 2013, 117, 194-197.	3.0	20
227	Synthesis and Photovoltaic Properties of Poly(5,6-bis(octyloxy)-4,7-di(thiophen-2-yl)benzo-[c][1,2,5]-thiadiazole-9,9-dioctylfluorene). Journal of Materials Science and Technology, 2013, 29, 1214-1218.	5.6	4
228	The effect of built-in field on the interface exciton recombination and dissociation in Nî—,N type organic solarcells. Solar Energy Materials and Solar Cells, 2013, 112, 73-77.	3.0	8
229	Cathodic multilayer transparent electrodes for ITO-free inverted organic solar cells. Organic Electronics, 2013, 14, 1477-1482.	1.4	17
230	Novel photovoltaic polymers constructed from alternative donor and acceptor units having one mother structure. Polymer, 2013, 54, 2278-2284.	1.8	9
231	A plasmonically enhanced polymer solar cell with gold–silica core–shell nanorods. Organic Electronics, 2013, 14, 2360-2368.	1.4	58
232	Influence of doping on charge carrier collection in normal and inverted geometry polymer:fullerene solar cells. Scientific Reports, 2013, 3, .	1.6	65
234	Determining the optimum morphology in high-performance polymer-fullerene organic photovoltaic cells. Nature Communications, 2013, 4, 2867.	5.8	307
235	Control of Miscibility and Aggregation Via the Material Design and Coating Process for Highâ€Performance Polymer Blend Solar Cells. Advanced Materials, 2013, 25, 6991-6996.	11.1	197
236	Synergistic effects of buffer layer processing additives for enhanced hole carrier selectivity in inverted Organic Photovoltaics. Organic Electronics, 2013, 14, 3123-3130.	1.4	32
237	Star-shaped chromophores based on a benzodithiophene fused truxene core for solution processed organic solar cells. Dyes and Pigments, 2013, 99, 366-373.	2.0	22

#	Article	IF	CITATIONS
238	Inverted polymer solar cells with a boron-doped zinc oxide layer deposited by metal organic chemical vapor deposition. Solar Energy Materials and Solar Cells, 2013, 117, 610-616.	3.0	19
239	Properties of interlayer for organic photovoltaics. Materials Today, 2013, 16, 424-432.	8.3	168
240	A new alcohol-soluble electron-transporting molecule for efficient inverted polymer solar cells. Organic Electronics, 2013, 14, 2164-2171.	1.4	9
241	Hybrid solar cells based on poly(3-hexylthiophene) and electrospun TiO2 nanofibers modified with CdS nanoparticles. Progress in Natural Science: Materials International, 2013, 23, 514-518.	1.8	11
242	Coordinatable and High Chargeâ€Carrierâ€Mobility Waterâ€Soluble Conjugated Copolymers for Effective Aqueousâ€Processed Polymer–Nanocrystal Hybrid Solar Cells and OFET Applications. Advanced Functional Materials, 2013, 23, 4035-4042.	7.8	26
243	New –(D–A1–D–A2)n– type conjugated polymers for photovoltaic applications: consensus between low band-gap and low HOMO energy level. Tetrahedron, 2013, 69, 3419-3424.	1.0	13
244	Probing Electric Fields in Polymer Tandem and Single Junction Cells with Electroabsorption Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 4374-4382.	1.5	7
245	A Solutionâ€Processable Electron Acceptor Based on Dibenzosilole and Diketopyrrolopyrrole for Organic Solar Cells. Advanced Energy Materials, 2013, 3, 724-728.	10.2	161
246	Investigation of a Conjugated Polyelectrolyte Interlayer for Inverted Polymer:Fullerene Solar Cells. Advanced Energy Materials, 2013, 3, 718-723.	10.2	92
247	In Situ Formation of MoO ₃ in PEDOT:PSS Matrix: A Facile Way to Produce a Smooth and Less Hygroscopic Hole Transport Layer for Highly Stable Polymer Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2013, 3, 349-355.	10.2	118
248	Highâ€Efficiency Polymer Solar Cells Enhanced by Solvent Treatment. Advanced Materials, 2013, 25, 1646-1652.	11.1	455
249	Star-Shaped D–A Small Molecules Based on Diketopyrrolopyrrole and Triphenylamine for Efficient Solution-Processed Organic Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 972-980.	4.0	62
250	Synthesis and Properties of Two Cationic Narrow Band Gap Conjugated Polyelectrolytes. Journal of the American Chemical Society, 2013, 135, 4163-4166.	6.6	83
251	Semiâ€Random Twoâ€Acceptor Polymers: Elucidating Electronic Trends Through Multiple Acceptor Combinations. Macromolecular Chemistry and Physics, 2013, 214, 681-690.	1.1	28
252	Structure, band gap and energy level modulations for obtaining efficient materials in inverted polymer solar cells. Organic Electronics, 2013, 14, 635-643.	1.4	28
253	Conjugated polymers with 2,7-linked 3,6-difluorocarbazole as donor unit for high efficiency polymer solar cells. Polymer Chemistry, 2013, 4, 2773.	1.9	31
254	Influence of Exciton Diffusion and Charge-Transfer State Dissociation Efficiency on the Short-Circuit Current Densities in Semi-Random Donor/Acceptor Polymer:Fullerene Solar Cells. Journal of Physical Chemistry C, 2013, 117, 6940-6948.	1.5	28
255	Modulation of the molecular geometry of carbazolebis(thiadiazole)-based conjugated polymers for photovoltaic applications. Polymer Chemistry, 2013, 4, 2480.	1.9	9

		CITATION REPORT		
#	Article		IF	Citations
256	A water-soluble polythiophene for organic field-effect transistors. Polymer Chemistry, 2	2013, 4, 5270.	1.9	78
257	Benzodifuran-alt-thienothiophene based low band gap copolymers: substituent effects molecular energy levels and photovoltaic properties. Polymer Chemistry, 2013, 4, 304	s on their 7.	1.9	45
258	Microlens array induced light absorption enhancement in polymer solar cells. Physical Chemical Physics, 2013, 15, 4297.	Chemistry	1.3	49
259	Novel solar cells in a wire format. Chemical Society Reviews, 2013, 42, 5031.		18.7	170
260	Efficient Small Bandgap Polymer Solar Cells with High Fill Factors for 300 nm Thick Filr Materials, 2013, 25, 3182-3186.	ns. Advanced	11.1	295
261	Control of Intrachain Charge Transfer in Model Systems for Block Copolymer Photovol Materials. Journal of the American Chemical Society, 2013, 135, 5074-5083.	taic	6.6	57
262	Design and synthesis of indole-substituted fullerene derivatives with different side gro organic photovoltaic devices. Organic Electronics, 2013, 14, 682-692.	ups for	1.4	16
263	Plasmonic organic photovoltaic devices with graphene based buffer layers for stability enhancement. Nanoscale, 2013, 5, 4144.	and efficiency	2.8	57
264	MoO3–Au composite interfacial layer for high efficiency and air-stable organic solar Electronics, 2013, 14, 797-803.	cells. Organic	1.4	52
265	Ultrathin interlayers of a conjugated polyelectrolyte for low work-function cathodes in inverted organic solar cells. Organic Electronics, 2013, 14, 951-957.	efficient	1.4	72
266	Benzotrithiophene and benzodithiophene-based polymers for efficient polymer solar c open-circuit voltage. Polymer Chemistry, 2013, 4, 3390.	ells with high	1.9	15
267	Domain Purity, Miscibility, and Molecular Orientation at Donor/Acceptor Interfaces in I Performance Organic Solar Cells: Paths to Further Improvement. Advanced Energy Ma 864-872.	High terials, 2013, 3,	10.2	283
268	Synthesis and photovoltaic properties of acceptor materials based on the dimerizatior C60 for use in efficient polymer solar cells. Chemical Communications, 2013, 49, 3670	ı of fullerene).	2.2	25
269	Enhanced power conversion efficiencies in bulk heterojunction solar cells based on co polymer with isoindigo side chain. Chemical Communications, 2013, 49, 3857.	njugated	2.2	43
270	A new donor–acceptor–donor ternary copolymer pending additional diketopyrrolo the side of a donor for efficient solar cells. Organic Electronics, 2013, 14, 1510-1515.	opyrrole unit in	1.4	16
271	A Novel Benzo[1,2- <i>b</i> ;4,5- <i>b</i> ′]dithiophene-Based Conjugated Polymer w Diketopyrrolopyrrole Unit for High-Performance Solar Cells. Macromolecules, 2013, 46	vith a Pendant 5, 113-118.	2.2	74
272	Influences of charge of conjugated polymer electrolytes cathode interlayer for bulk-he polymer solar cells. Organic Electronics, 2013, 14, 1551-1561.	terojunction	1.4	22
273	Efficient Tandem and Triple-Junction Polymer Solar Cells. Journal of the American Chen 2013, 135, 5529-5532.	nical Society,	6.6	498

#	Article	IF	CITATIONS
274	From planar-heterojunction to n–i structure: an efficient strategy to improve short-circuit current and power conversion efficiency of aqueous-solution-processed hybrid solar cells. Energy and Environmental Science, 2013, 6, 1597.	15.6	74
275	Self-Organized Hole Transport Layers Based on Polythiophene Diblock Copolymers for Inverted Organic Solar Cells with High Efficiency. Chemistry of Materials, 2013, 25, 897-904.	3.2	57
276	Correlating triplet yield, singlet oxygen generation and photochemical stability in polymer/fullerene blend films. Chemical Communications, 2013, 49, 1291.	2.2	136
277	Imidazolium‣ubstituted Polythiophenes as Efficient Electron Transport Materials Improving Photovoltaic Performance. Advanced Energy Materials, 2013, 3, 1180-1185.	10.2	55
278	Improved efficiency of solution processed small molecules organic solar cells using thermal annealing. Organic Electronics, 2013, 14, 1562-1569.	1.4	26
279	A strategy to enhance both VOC and JSC of A–D–A type small molecules based on diketopyrrolopyrrole for high efficient organic solar cells. Organic Electronics, 2013, 14, 1621-1628.	1.4	55
280	Enhanced performance in inverted polymer solar cells via solution process: Morphology controlling of PEDOT:PSS as anode buffer layer by adding surfactants. Organic Electronics, 2013, 14, 1629-1635.	1.4	29
281	Perylene diimides based materials for organic solar cells. Dyes and Pigments, 2013, 98, 160-179.	2.0	334
282	Toward Highâ€Performance Semiâ€Transparent Polymer Solar Cells: Optimization of Ultraâ€Thin Light Absorbing Layer and Transparent Cathode Architecture. Advanced Energy Materials, 2013, 3, 417-423.	10.2	141
283	Triple Junction Polymer Solar Cells for Photoelectrochemical Water Splitting. Advanced Materials, 2013, 25, 2932-2936.	11.1	67
284	Layer-by-Layer All-Transfer-Based Organic Solar Cells. Langmuir, 2013, 29, 5377-5382.	1.6	22
285	Fabricating High Performance, Donor–Acceptor Copolymer Solar Cells by Spray oating in Air. Advanced Energy Materials, 2013, 3, 505-512.	10.2	85
286	A star-shaped oligothiophene with triphenylamine as core and octyl cyanoacetate as end groups for solution-processed organic solar cells. Organic Electronics, 2013, 14, 875-881.	1.4	21
287	The Effect of Organic and Metal Oxide Interfacial layers on the Performance of Inverted Organic Photovoltaics. Advanced Energy Materials, 2013, 3, 391-398.	10.2	40
288	Efficient Computational Screening of Organic Polymer Photovoltaics. Journal of Physical Chemistry Letters, 2013, 4, 1613-1623.	2.1	161
289	Efficient Solutionâ€Processed Smallâ€Molecule Solar Cells with Inverted Structure. Advanced Materials, 2013, 25, 2397-2402.	11.1	480
290	Enhanced Efficiency Parameters of Solutionâ€Processable Smallâ€Molecule Solar Cells Depending on ITO Sheet Resistance. Advanced Energy Materials, 2013, 3, 1161-1165.	10.2	94
291	Synthesis and characterization of a low band gap quinoxaline based D–A copolymer and its application as a donor for bulk heterojunction polymer solar cells. Polymer Chemistry, 2013, 4, 4033.	1.9	33

#	Article	IF	CITATIONS
292	Dithiazolyl-benzothiadiazole-containing polymer acceptors: synthesis, characterization, and all-polymer solar cells. Polymer Chemistry, 2013, 4, 5228.	1.9	41
293	Enhanced Performance of Inverted Polymer Solar Cells by Using Poly(ethylene oxide)-Modified ZnO as an Electron Transport Layer. ACS Applied Materials & Interfaces, 2013, 5, 380-385.	4.0	162
294	Investigation of Quinquethiophene Derivatives with Different End Groups for High Open Circuit Voltage Solar Cells. Advanced Energy Materials, 2013, 3, 639-646.	10.2	65
295	Conformational Disorder Enhances Solubility and Photovoltaic Performance of a Thiophene–Quinoxaline Copolymer. Advanced Energy Materials, 2013, 3, 806-814.	10.2	86
296	Dithienocoronene diimide based conjugated polymers as electron acceptors for all-polymer solar cells. Solar Energy Materials and Solar Cells, 2013, 112, 13-19.	3.0	35
297	Recent trends in polymer tandem solar cells research. Progress in Polymer Science, 2013, 38, 1909-1928.	11.8	246
298	Two Similar Near-Infrared (IR) Absorbing Benzannulated Aza-BODIPY Dyes as Near-IR Sensitizers for Ternary Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 5609-5616.	4.0	70
299	Low-Band-Gap Conjugated Polymers of Dithieno[2,3- <i>b</i> :7,6- <i>b</i>]carbazole and Diketopyrrolopyrrole: Effect of the Alkyl Side Chain on Photovoltaic Properties. ACS Applied Materials & Interfaces, 2013, 5, 5741-5747.	4.0	37
300	Traps in Regioregular Poly(3-hexylthiophene) and its Blend with [6,6]-Phenyl-C ₆₁ -Butyric Acid Methyl Ester for Polymer Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 4086-4092.	4.0	10
301	Thieno[3,2- <i>b</i>]thiophene-Bridged Dâ^'π–A Polymer Semiconductor Based on Benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene and Benzoxadiazole. Macromolecules, 2013, 46, 4805-4812.	2.2	66
302	Barium: An Efficient Cathode Layer for Bulk-heterojunction Solar Cells. Scientific Reports, 2013, 3, 1965.	1.6	353
303	Regioregular pyridyl[2,1,3]thiadiazole-co-indacenodithiophene conjugated polymers. Chemical Communications, 2013, 49, 7192.	2.2	43
304	Exploring Cyclometalated Ir Complexes as Donor Materials for Organic Solar Cells. Inorganic Chemistry, 2013, 52, 7338-7343.	1.9	37
305	Doping of Fullerenes via Anionâ€Induced Electron Transfer and Its Implication for Surfactant Facilitated High Performance Polymer Solar Cells. Advanced Materials, 2013, 25, 4425-4430.	11.1	244
306	Small D–π–A Systems with <i>o</i> â€Phenyleneâ€Bridged Accepting Units as Active Materials for Organic Photovoltaics. Chemistry - A European Journal, 2013, 19, 9948-9960.	1.7	80
307	Fused structures in the polymer backbone to investigate the photovoltaic and electrochromic properties of donor–acceptorâ€ŧype conjugated polymers. Journal of Polymer Science Part A, 2013, 51, 1933-1941.	2.5	34
308	Tuning the frontier molecular orbital energy levels of <i>n</i> â€type conjugated copolymers by using angularâ€shaped naphthalene tetracarboxylic diimides, and their use in allâ€polymer solar cells with high openâ€circuit voltages. Journal of Polymer Science Part A, 2013, 51, 1999-2005.	2.5	23
309	Influence of heteroatoms on photovoltaic performance of donor–acceptor copolymers based on 2,6-di(thiophen-2-yl)benzo[1,2-b:4,5-b′]difurans and diketopyrrolopyrrole. Polymer Chemistry, 2013, 4, 5329.	1.9	28

ARTICLE IF CITATIONS Indacenodithieno[3,2-b]thiophene-based broad bandgap polymers for high efficiency polymer solar 310 1.9 42 cells. Polymer Chemistry, 2013, 4, 5220. A Solutionâ€Processable Small Molecule Based on Benzodithiophene and Diketopyrrolopyrrole for 311 10.2 Highâ€Performance Organic Solar Cells. Advanced Energy Materials, 2013, 3, 1166-1170 Enhancing the Efficiency of Solution-Processed Polymer:Colloidal Nanocrystal Hybrid Photovoltaic 312 7.3 108 Cells Using Ethanedithiol Treatment. ACS Nano, 2013, 7, 4846-4854. Toward High-Performance Organic–Inorganic Hybrid Solar Cells: Bringing Conjugated Polymers and Inorganic Nanocrystals in Close Contact. Journal of Physical Chemistry Letters, 2013, 4, 1788-1796. Remarkable Order of a High-Performance Polymer. Nano Letters, 2013, 13, 2522-2527. 314 4.5 120 Electrochemical Route to Fabricate Filmâ€Like Conjugated Microporous Polymers and Application for Organic Electronics. Advanced Materials, 2013, 25, 3443-3448. 11.1 PDTâ€Sâ€T: A New Polymer with Optimized Molecular Conformation for Controlled Aggregation and 316 <i>ï€</i>–<i>ï€</i> Stacking and Its Application in Efficient Photovoltaic Devices. Advanced Materials, 11.1 190 2013, 25, 3449-3455. Polymer Bulk Heterojunction Solar Cells with PEDOT:PSS Bilayer Structure as Hole Extraction Layer. 3.6 26 ChémSusChem, 2013, 6, 1070-1075. Synthesis of 5<i>H</i>-Dithieno[3,2-<i>b</i>:2â€2,3â€2-<i>d</i>]pyran as an Electron-Rich Building Block for 318 2.2 17 Donor–Acceptor Type Low-Bandgap Polymers. Macromolecules, 2013, 46, 4734-4734. Air-Stable Efficient Inverted Polymer Solar Cells Using Solution-Processed Nanocrystalline ZnO Interfacial Layer. ACS Applied Materials & amp; Interfaces, 2013, 5, 4696-4701. Improved performance of polymer solar cells based on P3HT and ICBA using alcohol soluble titanium 320 1.4 20 chelate as electron collection layer. Organic Electronics, 2013, 14, 845-851. Improving the stability of P3HT/PC61BM solar cells by a thermal crosslinker. Journal of Materials 5.2 39 Chemistry A, 2013, 1, 4589. High-efficiency ITO-free polymer solar cells using highly conductive PEDOT:PSS/surfactant bilayer 322 15.6 207 transparent anodes. Energy and Environmental Science, 2013, 6, 1956. Fill factor in organic solar cells. Physical Chemistry Chemical Physics, 2013, 15, 8972. 1.3 Manipulating Backbone Structure to Enhance Low Band Gap Polymer Photovoltaic Performance. 324 10.2 62 Advanced Energy Materials, 2013, 3, 930-937. Efficient Electron Collection in Hybrid Polymer Solar Cells: In-Situ-Generated ZnO/Poly(3-hexylthiophene) Scaffolded by a TiO₂ Nanorod Array. Journal of Physical 24 Chemistry Letters, 2013, 4, 1983-1988. Synthesis of donor–acceptor copolymers based on anthracene derivatives for polymer solar cells. 326 1.9 23 Polymer Chemistry, 2013, 4, 3949. Enhanced carrier mobility and photon-harvesting property by introducing Au nano-particles in bulk 1.4 heterojunction photovoltaic cells. Organic Electronics, 2013, 14, 1931-1938.

	CITATION REI	PORT	
#	Article	IF	CITATIONS
328	Solution-Processed and High-Performance Organic Solar Cells Using Small Molecules with a Benzodithiophene Unit. Journal of the American Chemical Society, 2013, 135, 8484-8487.	6.6	675
329	Understanding the Reduced Efficiencies of Organic Solar Cells Employing Fullerene Multiadducts as Acceptors. Advanced Energy Materials, 2013, 3, 744-752.	10.2	125
330	Interface Engineering to Enhance the Efficiency of Conventional Polymer Solar Cells by Alcohol-/Water-Soluble C ₆₀ Materials Doped with Alkali Carbonates. ACS Applied Materials & Interfaces, 2013, 5, 5122-5128.	4.0	21
331	Harvesting light. Nature Photonics, 2013, 7, 425-426.	15.6	9
332	Novel conjugated polymers with planar backbone bearing acenaphtho[1,2-b]quinoxaline acceptor subunit for polymer solar cells. Synthetic Metals, 2013, 175, 21-29.	2.1	17
333	Effect of Bridging Atom Identity on the Morphological Behavior of Solution-Processed Small Molecule Bulk Heterojunction Photovoltaics. Chemistry of Materials, 2013, 25, 1688-1698.	3.2	49
334	10.2% Power Conversion Efficiency Polymer Tandem Solar Cells Consisting of Two Identical Sub ells. Advanced Materials, 2013, 25, 3973-3978.	11.1	419
335	Effect of a furan π-bridge on polymer coplanarity and performance in organic field effect transistors. Polymer Chemistry, 2013, 4, 4199.	1.9	18
336	Understanding tandem organic photovoltaic cell performance. Journal of Applied Physics, 2013, 113, .	1.1	21
337	Low Band Gap Polymers Incorporating a Dicarboxylic Imide-Derived Acceptor Moiety for Efficient Polymer Solar Cells. ACS Macro Letters, 2013, 2, 605-608.	2.3	51
338	High Open Circuit Voltage Solution-Processed Tandem Organic Photovoltaic Cells Employing a Bottom Cell Using a New Medium Band Gap Semiconducting Polymer. Chemistry of Materials, 2013, 25, 2722-2732.	3.2	83
339	Small molecules based on 2,7-carbazole for efficient solution-processed organic solar cells. Journal of Materials Chemistry A, 2013, 1, 8805.	5.2	33
340	Anthraceneâ€Containing Wideâ€Bandâ€Gap Conjugated Polymers for Highâ€Openâ€Circuitâ€Voltage Polymer S Cells. Macromolecular Rapid Communications, 2013, 34, 1163-1168.	olar 2.0	18
341	Integrated Devices to Realize Energy Conversion and Storage Simultaneously. ChemPhysChem, 2013, 14, 1777-1782.	1.0	44
342	Inverted ITO- and PEDOT:PSS-free polymer solar cells with high power conversion efficiency. Solar Energy Materials and Solar Cells, 2013, 117, 98-102.	3.0	31
343	Relating Recombination, Density of States, and Device Performance in an Efficient Polymer:Fullerene Organic Solar Cell Blend. Advanced Energy Materials, 2013, 3, 1201-1209.	10.2	89
344	Influence of Crystallinity and Energetics on Charge Separation in Polymer–Inorganic Nanocomposite Films for Solar Cells. Scientific Reports, 2013, 3, 1531.	1.6	84
345	Solution processable tungsten polyoxometalate as highly effective cathode interlayer for improved efficiency and stability polymer solar cells. Solar Energy Materials and Solar Cells, 2013, 114, 205-213.	3.0	63

#	Article	IF	CITATIONS
346	Improved Light Harvesting and Improved Efficiency by Insertion of an Optical Spacer (ZnO) in Solution-Processed Small-Molecule Solar Cells. Nano Letters, 2013, 13, 3796-3801.	4.5	554
347	Solutionâ€Processed Small Molecules Using Different Electron Linkers for Highâ€Performance Solar Cells. Advanced Materials, 2013, 25, 4657-4662.	11.1	96
348	Solutionâ€Processed (Graphene Oxide)–(d ⁰ Transition Metal Oxide) Composite Anodic Buffer Layers toward Highâ€Performance and Durable Inverted Polymer Solar Cells. Advanced Energy Materials, 2013, 3, 1279-1285.	10.2	38
349	Oligothiopheneâ€Bridged Bis(arylene ethynylene) Small Molecules for Solutionâ€Processible Organic Solar Cells with High Openâ€Circuit Voltage. Chemistry - an Asian Journal, 2013, 8, 1892-1900.	1.7	15
350	Influence of crystalline titanium oxide layer smoothness on the performance of inverted organic bilayer solar cells. Applied Physics Letters, 2013, 102, .	1.5	22
351	Enhanced stability in polymer solar cells by controlling the electrode work function via modification of indium tin oxide. Solar Energy Materials and Solar Cells, 2013, 115, 123-128.	3.0	26
352	High light intensity effects on nanoscale open-circuit voltage for three common donor materials in bulk heterojunction solar cells. Energy and Environmental Science, 2013, 6, 1766.	15.6	10
353	A highly efficient transition metal oxide layer for hole extraction and transport in inverted polymer bulk heterojunction solar cells. Journal of Materials Chemistry A, 2013, 1, 6895.	5.2	63
354	Synthesis of 5 <i>H</i> -Dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]pyran as an Electron-Rich Building Block for Donor–Acceptor Type Low-Bandgap Polymers. Macromolecules, 2013, 46, 3384-3390.	2.2	299
355	Naphtho[1,2- <i>b</i> :5,6- <i>b</i> ′]dithiophene-Based Donor–Acceptor Copolymer Semiconductors for High-Mobility Field-Effect Transistors and Efficient Polymer Solar Cells. Macromolecules, 2013, 46, 3358-3366.	2.2	75
356	Tuning Energy Levels of Low Bandgap Semi-Random Two Acceptor Copolymers. Macromolecules, 2013, 46, 3391-3394.	2.2	70
357	Experimental Investigation and Theoretical Calculation of Molecular Architectures on Carbazole for Photovoltaics. Journal of Physical Chemistry C, 2013, 117, 9581-9589.	1.5	13
358	Design and Synthesis of Copolymers of Indacenodithiophene and Naphtho[1,2- <i>c</i> :5,6- <i>c</i>]bis(1,2,5-thiadiazole) for Polymer Solar Cells. Macromolecules, 2013, 46, 3950-3958.	2.2	69
359	Synthesis and photovoltaic properties of amorphous polymers based on dithienylbenzothiadiazoleâ€triphenylamine with hexyl side chains on different positions of thienyl groups. Journal of Polymer Science Part A, 2013, 51, 2536-2544.	2.5	16
360	Ladder-Type Dithienonaphthalene-Based Donor–Acceptor Copolymers for Organic Solar Cells. Macromolecules, 2013, 46, 4813-4821.	2.2	40
361	Triindole-cored star-shaped molecules for organic solar cells. Journal of Materials Chemistry A, 2013, 1, 7657.	5.2	53
362	Dithienosilole-bridged small molecules with different alkyl group substituents for organic solar cells exhibiting high open-circuit voltage. Journal of Materials Chemistry A, 2013, 1, 7622.	5.2	38
363	Domain-like ultra-thin layers deposited electrochemically from carbazole-functionalized perylene bisimides for electron collection in inverted photovoltaic cells. Chemical Communications, 2013, 49, 6283.	2.2	17

#	Article	IF	CITATIONS
364	A Series of New Mediumâ€Bandgap Conjugated Polymers Based on Naphtho[1,2â€c:5,6â€c]bis(2â€octylâ€{1,2,3]triazole) for Highâ€Performance Polymer Solar Cells. Advanced Materials, 2013, 25, 3683-3688.	11.1	125
365	Poly(3-hexylthiophene) nanofiber networks for enhancing the morphology stability of polymer solar cells. Organic Electronics, 2013, 14, 1383-1390.	1.4	34
366	Fluorine substituted benzothiazole-based low bandgap polymers for photovoltaic applications. RSC Advances, 2013, 3, 11869.	1.7	20
367	Charge Carrier Dynamics of Vapor-Deposited Small-Molecule/Fullerene Organic Solar Cells. Journal of the American Chemical Society, 2013, 135, 8790-8793.	6.6	27
368	Toward Printed Integrated Circuits based on Unipolar or Ambipolar Polymer Semiconductors. Advanced Materials, 2013, 25, 4210-4244.	11.1	473
369	Optimizing the light absorption of graphene-based organic solar cells by tailoring the weak microcavity with dielectric/graphene/dielectric multilayer. Applied Physics Letters, 2013, 103, 063301.	1.5	2
370	Scanning Angle Raman Spectroscopy of Poly(3-hexylthiophene)-Based Films on Indium Tin Oxide, Gold, and Sapphire Surfaces. ACS Applied Materials & Interfaces, 2013, 5, 8686-8693.	4.0	11
371	Tuning indium tin oxide work function with solution-processed alkali carbonate interfacial layers for high-efficiency inverted organic photovoltaic cells. Nanotechnology, 2013, 24, 484011.	1.3	29
372	Conjugated polyelectrolyte and zinc oxide stacked structure as an interlayer in highly efficient and stable organic photovoltaic cells. Journal of Materials Chemistry A, 2013, 1, 6446.	5.2	122
373	Optimizing ZnO nanoparticle surface for bulk heterojunction hybrid solar cells. Solar Energy Materials and Solar Cells, 2013, 118, 43-47.	3.0	44
374	Nanostructures and Electronic Properties of a High-Efficiency Electron-Donating Polymer. Journal of Physical Chemistry A, 2013, 117, 12628-12634.	1.1	23
375	Synthesis, characterization and photovoltaic performances of D–A copolymers based on BDT and DBPz: the largely improved performance caused by additional thiophene blocks. Journal of Materials Chemistry A, 2013, 1, 4508.	5.2	31
376	Molecular orbital energy level modulation through incorporation of selenium and fluorine into conjugated polymers for organic photovoltaic cells. Journal of Materials Chemistry A, 2013, 1, 13422.	5.2	31
377	Graphene as a Target for Polymer Synthesis. Advances in Polymer Science, 2013, , 61-92.	0.4	12
378	Influence of Fullerene Multiadducts on the Morphology and Charge Photogeneration of Their Photovoltaic Blends with Poly(3-hexylthiophene). Journal of Physical Chemistry C, 2013, 117, 25898-25907.	1.5	13
379	Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chemical Society Reviews, 2013, 42, 173-201.	18.7	1,446
380	Influence of selenophene on the properties of semi-random polymers and their blends with PC ₆₁ BM. Nanotechnology, 2013, 24, 484002.	1.3	6
381	Broadband charge transfer dynamics in P3HT:PCBM blended film. Optics Letters, 2013, 38, 5342.	1.7	32

#	Article	IF	CITATIONS
382	Theoretical study of phenyl-substituted indacenodithiophene copolymers for high performance organic photovoltaics. Journal of Chemical Physics, 2013, 138, 064901.	1.2	17
383	Self-assembled monolayer as an interfacial modification material for highly efficient and air-stable inverted organic solar cells. Applied Physics Letters, 2013, 102, .	1.5	46
384	Magnetic-field annealing of inverted polymer:fullerene hybrid solar cells with FePt nanowires as additive. Applied Physics Letters, 2013, 103, 253305.	1.5	1
385	Charge-Transporting Polymers. , 2013, , 1-11.		0
386	Effect of Doping Phosphorescent Material and Annealing Treatment on the Performance of Polymer Solar Cells. International Journal of Photoenergy, 2013, 2013, 1-7.	1.4	1
387	A DMF-assisted solution process boosts the efficiency in P3HT:PCBM solar cells up to 5.31%. Nanotechnology, 2013, 24, 484008.	1.3	27
388	Organic photovoltaic cells with copper (II) tetra-methyl substituted phthalocyanine. Chinese Physics B, 2013, 22, 128505.	0.7	6
389	Influence of morphology and polymer:nanoparticle ratio on device performance of hybrid solar cells—an approach in experiment and simulation. Nanotechnology, 2013, 24, 484005.	1.3	27
390	Plastic solar cells with engineered interfaces. Proceedings of SPIE, 2013, , .	0.8	9
391	Increasing the Openâ€Circuit Voltage in Highâ€Performance Organic Photovoltaic Devices through Conformational Twisting of an Indacenodithiopheneâ€Based Conjugated Polymer. Macromolecular Rapid Communications, 2013, 34, 1623-1628.	2.0	32
392	Dithieno[3,2â€ <i>b</i> :2′,3′â€ <i>d</i>]pyrrole and Benzothiadiazoleâ€Based Semicrystalline Copolymer for Photovoltaic Devices with Indeneâ€C ₆₀ Bisadduct. Macromolecular Chemistry and Physics, 2013, 214, 2083-2090.	or 1.1	7
393	Synthesis and characterization of naphtho[2,1-b:3,4-b′]dithiophene-based polymers with extended Ï€-conjugation systems for use in bulk heterojunction polymer solar cells. Journal of Polymer Science Part A, 2013, 51, 4742-4751.	2.5	13
394	Study of the mechanism and rate of exciton dissociation at the donor-acceptor interface in bulk-heterojunction organic solar cells. Journal of Applied Physics, 2013, 114, .	1.1	56
395	Bromination of Isothianaphthene Derivatives towards the Application in Organic Electronics. Chinese Journal of Chemistry, 2013, 31, 1391-1396.	2.6	5
396	Organic nonvolatile resistive memory devices based on thermally deposited Au nanoparticle. AIP Advances, 2013, 3, .	0.6	33
397	Low roll off radiation efficiency of charge transfer state excitons based on organic photovoltaic and electroluminescent integrated device. Applied Physics Letters, 2013, 102, 183302.	1.5	23
398	Carrier formation dynamics of a small-molecular organic photovoltaic. Applied Physics Letters, 2013, 102, .	1.5	11
399	Fullerene concentration dependent bimolecular recombination in organic photovoltaic films. Applied Physics Letters, 2013, 102, .	1.5	20

#	Article	IF	CITATIONS
400	Detailed balance limit of power conversion efficiency for organic photovoltaics. Applied Physics Letters, 2013, 103, .	1.5	14
401	High efficiency tandem organic photovoltaics incorporating small molecule blended squaraine donors and a fullerene acceptor. , 2013, , .		0
402	Layer-by-layer processed polymer solar cells with self-assembled electron buffer layer. Applied Physics Letters, 2013, 102, .	1.5	11
403	Channel II photocurrent quantification in narrow optical gap polymer-fullerene solar cells with complimentary acceptor absorption. Applied Physics Letters, 2013, 102, 223302.	1.5	15
404	Organic solar cell by using vertically aligned nanostructured ZnO nanorods. , 2013, , .		1
405	<i>In-situ</i> monitoring of molecular vibrations of two organic semiconductors in photovoltaic blends and their impact on thin film morphology. Applied Physics Letters, 2013, 102, .	1.5	24
406	Synthesis of two dihydropyrroloindoledioneâ€based copolymers for organic electronics. Journal of Polymer Science Part A, 2013, 51, 1285-1291.	2.5	24
407	Efficient inverted polymer solar cells with thermal-evaporated and solution-processed small molecular electron extraction layer. Applied Physics Letters, 2013, 102, 133303.	1.5	10
408	Dâ€A Conjugated Polymers Based on Tetracyclic Acceptor Units: Synthesis and Application in Organic Solar Cells. Macromolecular Chemistry and Physics, 2013, 214, 2054-2060.	1.1	8
409	High-performance and air-processed polymer solar cells by room-temperature drying of the active layer. Applied Physics Letters, 2013, 102, 043307.	1.5	11
410	Synthesis and Photovoltaic Performance of a [1,2,3]Triazolo[4,5â€g]quinoxalineâ€Based Lowâ€Bandgap Polymer. Macromolecular Chemistry and Physics, 2013, 214, 2473-2479.	1.1	14
411	New selenophene-based low-band gap conjugated polymers for organic photovoltaics. Journal of Polymer Science Part A, 2013, 51, 4550-4557.	2.5	10
412	Polymers for Solar Cells. , 2013, , 1-9.		0
413	Photophysics and morphology of a polyfluorene donor–acceptor triblock copolymer for solar cells. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1705-1718.	2.4	6
414	Benzo[1,2â€b:4,5â€b′]dithiopheneâ€ <i>alt</i> â€ŧerthiophene Copolymers Containing Styrylâ€Triphenylamin Chains: Synthesis and Photovoltaic Performance Optimization with Fullerene Acceptors. Macromolecular Chemistry and Physics, 2013, 214, 1081-1088.	e Side 1.1	1
415	Synthesis and characterization of fused-thiophene containing naphthalene diimide <i>n</i> -type copolymers for organic thin film transistor and all-polymer solar cell applications. Journal of Polymer Science Part A, 2013, 51, 4061-4069.	2.5	45
416	Perspective: Hybrid solar cells: How to get the polymer to cooperate?. APL Materials, 2013, 1, .	2.2	7
417	Enhancement of polymer solar cell performance under low-concentrated sunlight by 3D surface-engineered silicon nanocrystals. , 2013, , .		1

#	Article	IF	CITATIONS
418	Voltage-dependent photocurrent transients of PTB7:PC70BM solar cells: Experiment and numerical simulation. Journal of Applied Physics, 2013, 114, .	1.1	52
419	Electrochemically gated organic photovoltaic with tunable carbon nanotube cathodes. Applied Physics Letters, 2013, 103, .	1.5	6
420	Efficient and ultraviolet durable inverted organic solar cells based on an aluminum-doped zinc oxide transparent cathode. Applied Physics Letters, 2013, 103, 043309.	1.5	54
421	Balance between light trapping and charge carrier collection: Electro-photonic optimization of organic photovoltaics with ridge-patterned back electrodes. Journal of Applied Physics, 2013, 113, 244503.	1.1	4
422	Polymer photovoltaic cells with a graded active region achieved using double stamp transfer printing. Applied Physics Letters, 2013, 103, .	1.5	4
423	Evidence for space-charge-limited conduction in organic photovoltaic cells at open-circuit conditions. Physical Review B, 2013, 87, .	1.1	17
424	Robust carrier formation process in low-band gap organic photovoltaics. Applied Physics Letters, 2013, 103, 173901.	1.5	9
425	Synthesis and Photovoltaic Properties of Polythiophene Incorporating with 3,4â€Difluorothiophene Units. Chinese Journal of Chemistry, 2013, 31, 1385-1390.	2.6	5
426	Enhanced Performance and Stability in Polymer Photovoltaic Cells Using Ultraviolet-Treated PEDOT:PSS. Chinese Physics Letters, 2013, 30, 077201.	1.3	12
427	Highly Efficient Polymer Solar Cells by using the Homogeneous Selfâ€Assembly of a Sulphydrylâ€Capped Photoactive Polymer Covalently Bound to the Anode. Energy Technology, 2013, 1, 613-616.	1.8	17
428	Role of electron and hole collecting buffer layers on the stability of inverted polymer: Fullerene photovoltaic devices. , 2013, , .		1
429	Light harvesting in organic solar cells using a nanostructured ITO grating. , 2013, , .		0
431	Ultrathin oxidized Ti to increase stability and smoothness of Al doped ZnO transparent conductors for high efficiency indium-free polymer solar cells. Applied Physics Letters, 2013, 103, 183304.	1.5	13
432	Multiple-interface tracking of degradation process in organic photovoltaics. AIP Advances, 2013, 3, .	0.6	10
433	Ambipolar Low-bandgap Copolymers Consisting of Dithienoketopyrrole for All-Polymer Solar Cells. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2013, 26, 217-221.	0.1	7
434	A Study on the Development of Organic Thin Film Solar Cell Devicewith Optimized Hole Transfer Layer of PEDOT:PSS. Journal of Materials Science Research, 2013, 3, .	0.1	0
435	Investigation on Excited-State Photophysical Characteristics of Low Bandgap Polymer APFO3. Chinese Journal of Chemical Physics, 2014, 27, 109-114.	0.6	5
436	Flexible PTB7:PC71BM bulk heterojunction solar cells with a LiF buffer layer. Japanese Journal of Applied Physics, 2014, 53, 02BE05.	0.8	21

#	Article	IF	CITATIONS
437	Microstructured porous ZnO thin film for increased light scattering and improved efficiency in inverted organic photovoltaics. Optics Express, 2014, 22, A1412.	1.7	13
438	ITO-free Anode with Plasmonic Silver Nanoparticles for High Efficient Polymer Solar Cells. Energy Procedia, 2014, 60, 13-22.	1.8	2
439	Enhanced efficiency of inverted polymer solar cells using two-step sputtered ZnO as cathode interfacial layer. Materials Research Express, 2014, 1, 025020.	0.8	6
440	Electrodeposited cobalt sulfide hole collecting layer for polymer solar cells. Applied Physics Letters, 2014, 105, 063304.	1.5	3
441	Charge Transfer Dynamics in Donor–Acceptor Complexes between a Conjugated Polymer and Fluorene Acceptors. Journal of Physical Chemistry C, 2014, 118, 30291-30301.	1.5	26
442	Modeling and simulation of energetically disordered organic solar cells. Journal of Applied Physics, 2014, 116, .	1.1	34
443	New Alkoxyâ€Functionalized Naphthodithiopheneâ€Based Semiconducting Oligomers and Polymers. Israel Journal of Chemistry, 2014, 54, 796-816.	1.0	0
444	Current voltage analysis of silver nanoparticle doped organic photovoltaic devices. , 2014, , .		0
445	UV-ozone-treated MoO 3 as the hole-collecting buffer layer for high-efficiency solution-processed SQ:PC 71 BM photovoltaic devices. Chinese Physics B, 2014, 23, 038405.	0.7	1
446	Effective absorption enhancement in small molecule organic solar cells using trapezoid gratings. Chinese Physics B, 2014, 23, 038803.	0.7	6
447	The dependence of the cathode architecture on the photoactive layer morphology in bulk-heterojunction polymeric solar cells. Semiconductor Science and Technology, 2014, 29, 125011.	1.0	8
448	Formation of relaxed charge-transfer excitons in donor–acceptor-type polymer solar cells. Japanese Journal of Applied Physics, 2014, 53, 05HB12.	0.8	6
449	ORGANIC PHOTOVOLTAICS. Series on Photoconversion of Solar Energy, 2014, , 339-412.	0.2	0
450	Efficient inverted polymer solar cells based on ultrathin aluminum interlayer modified aluminum-doped zinc oxide electrode. Applied Physics Letters, 2014, 104, 103901.	1.5	8
451	Higher LUMO Level Endohedral Fullerene and Fullerene Bisadduct Acceptors for Polymer Solar Cells. , 2014, , 417-431.		0
452	Inverted Organic Photodetectors With ZnO Electron-Collecting Buffer Layers and Polymer Bulk Heterojunction Active Layers. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 130-136.	1.9	11
453	Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors. Light: Science and Applications, 2014, 3, e222-e222.	7.7	118
454	Morphology Development in Amorphous Polymer:Fullerene Photovoltaic Blend Films During Solution Casting. Advanced Functional Materials, 2014, 24, 659-667.	7.8	55

#	Article	IF	CITATIONS
455	Influence of β-linkages on the morphology and performance of DArP P3HT–PC ₆₁ BM solar cells. Nanotechnology, 2014, 25, 014005.	1.3	57
456	Semitransparent inverted polymer solar cells employing a sol-gel-derived TiO2 electron-selective layer on FTO and MoO3/Ag/MoO3 transparent electrode. Nanoscale Research Letters, 2014, 9, 579.	3.1	32
457	Tailoring Dispersion and Aggregation of Au Nanoparticles in the BHJ Layer of Polymer Solar Cells: Plasmon Effects versus Electrical Effects. ChemSusChem, 2014, 7, 3452-3458.	3.6	12
458	Introduction to Organic Solar Cells. , 2014, , 1-18.		3
459	Effects of Organic Solvents for Composite Active Layer of PCDTBT/PC ₇₁ BM on Characteristics of Organic Solar Cell Devices. International Journal of Photoenergy, 2014, 2014, 1-8.	1.4	16
460	n-Type Electron-Accepting Materials for Organic Solar Cells (OSC). , 2014, , 97-119.		2
461	Towards High Performance Organic Photovoltaic Cells: A Review of Recent Development in Organic Photovoltaics. Polymers, 2014, 6, 2473-2509.	2.0	162
462	Inverted polymer solar cells comprising a solution-processed work-function tunable hybrid electron-collecting layer. Journal of Renewable and Sustainable Energy, 2014, 6, 043108.	0.8	2
463	Development of Polymer Acceptors for Organic Photovoltaic Cells. Polymers, 2014, 6, 382-407.	2.0	62
464	Polythiophenes Comprising Conjugated Pendants for Polymer Solar Cells: A Review. Materials, 2014, 7, 2411-2439.	1.3	56
465	Fused-Thiophene Based Materials for Organic Photovoltaics and Dye-Sensitized Solar Cells. Polymers, 2014, 6, 2645-2669.	2.0	85
466	The Promotion of the Efficiency of Organic Photovoltaic Devices by Addition of Anisotropic CdSe Nanocrystals. International Journal of Photoenergy, 2014, 2014, 1-8.	1.4	0
467	Are hot charge transfer states the primary cause of efficient free-charge generation in polymer:fullerene organic photovoltaic devices? A kinetic Monte Carlo study. Physical Chemistry Chemical Physics, 2014, 16, 20310-20320.	1.3	33
468	Influence of solvent treatment with fluoro compounds on the properties of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) polymer as a hole transport layer in polymer solar cells. Journal of Photonics for Energy, 2014, 4, 043097.	0.8	2
469	Charge-displacement analysis for excited states. Journal of Chemical Physics, 2014, 140, 054110.	1.2	26
470	More stable hybrid organic solar cells deposited on amorphous Si electron transfer layer. Applied Physics Letters, 2014, 104, .	1.5	4
471	Triphenylamine-based amorphous polymers for bulk-heterojunction photovoltaic cells. IOP Conference Series: Materials Science and Engineering, 2014, 54, 012015.	0.3	3
472	Enhance carrier transport and efficiency by twice-growth ZnO nanorods in inverted polymer solar cells. , 2014, , .		0

#	Article	IF	CITATIONS
473	Hybrid bulk heterojunction solar cells based on low band gap polymers and CdSe nanocrystals. Proceedings of SPIE, 2014, , .	0.8	2
474	Enhanced performances in inverted small molecule solar cells by Ag nanoparticles. Optics Express, 2014, 22, A1669.	1.7	6
475	High-efficiency, broad-band and wide-angle optical absorption in ultra-thin organic photovoltaic devices. Optics Express, 2014, 22, A376.	1.7	27
476	Morphology of P3HT in Thin Films in Relation to Optical and Electrical Properties. Advances in Polymer Science, 2014, , 39-82.	0.4	118
477	CHAPTER 9. Active Layer Limitations and Non-geminate Recombination in Polymer–Fullerene Bulk Heterojunction Solar Cells. RSC Energy and Environment Series, 0, , 287-323.	0.2	0
478	Band tail recombination in polymer:fullerene organic solar cells. Journal of Applied Physics, 2014, 116, 074503.	1.1	53
479	Contrary interfacial exciton dissociation at metal/organic interface in regular and reverse configuration organic solar cells. Applied Physics Letters, 2014, 105, 103302.	1.5	23
480	Extraction of Photogenerated Electrons and Holes from a Covalent Organic Framework Integrated Heterojunction. Journal of the American Chemical Society, 2014, 136, 17802-17807.	6.6	354
481	Synthesis and solar cells applications of EOâ€₽Fâ€ÐTBT polymer. Journal of Applied Polymer Science, 2014, 131, .	1.3	2
482	Properties of Bulk Heterojunction Organic Solar Cells with LiF Buffer Layer at Various Concentrations of Active Layer. Molecular Crystals and Liquid Crystals, 2014, 602, 177-184.	0.4	0
483	Photovoltaic Effect at the Schottky Interface with Organic Single Crystal Rubrene. Advanced Functional Materials, 2014, 24, 1039-1046.	7.8	41
484	Enhanced regeneration of degraded polymer solar cells by thermal annealing. Applied Physics Letters, 2014, 104, .	1.5	17
485	Efficient indium-tin-oxide free inverted organic solar cells based on aluminum-doped zinc oxide cathode and low-temperature aqueous solution processed zinc oxide electron extraction layer. Applied Physics Letters, 2014, 104, .	1.5	7
486	Photocurrent Enhancement of BODIPY-Based Solution-Processed Small-Molecule Solar Cells by Dimerization via the Meso Position. ACS Applied Materials & Interfaces, 2014, 6, 22496-22505.	4.0	48
487	Environmental stability of PTB7:PCBM bulk heterojunction solar cell. Journal of Modern Optics, 2014, 61, 1749-1753.	0.6	33
488	Over 1.1 eV Workfunction Tuning of Cesium Intercalated Metal Oxides for Functioning as Both Electron and Hole Transport Layers in Organic Optoelectronic Devices. Advanced Functional Materials, 2014, 24, 7348-7356.	7.8	44
489	Fullerene C70 as a p-type donor in organic photovoltaic cells. Applied Physics Letters, 2014, 105, 093301.	1.5	16
490	Effect of conjugated polyelectrolyte interlayer at cathode in bulk heterojunction photocells based on neat C70and low-energy-gap polymer prepared with halogen-free solvent. Applied Physics Express, 2014. 7, 051601.	1.1	19

#	Article	IF	CITATIONS
491	Breakdown mechanisms and reverse current-voltage characteristics of organic bulk heterojunction solar cells and photodetectors. Journal of Applied Physics, 2014, 115, .	1.1	7
492	Effect of doping on the short-circuit current and open-circuit voltage of polymer solar cells. Journal of Applied Physics, 2014, 116, .	1.1	19
493	Improved efficiency of P3HT:PCBM solar cells by incorporation of silver oxide interfacial layer. Journal of Applied Physics, 2014, 116, .	1.1	19
494	A Depletionâ€Free, Ionic, Selfâ€Assembled Recombination Layer for Tandem Polymer Solar Cells. Advanced Energy Materials, 2014, 4, 1301226.	10.2	28
495	Simultaneously improving optical absorption of both transverse-electric polarized and transverse-magnetic polarized light for organic solar cells with Ag grating used as transparent electrode. AIP Advances, 2014, 4, .	0.6	6
496	Ambient Air Processing Causes Light Soaking Effects in Inverted Organic Solar Cells Employing Conjugated Polyelectrolyte Electron Transfer Layer. Journal of Physical Chemistry C, 2014, 118, 27219-27225.	1.5	14
498	Substrateâ€Oriented Nanorod Scaffolds in Polymer–Fullerene Bulk Heterojunction Solar Cells. ChemPhysChem, 2014, 15, 1070-1075.	1.0	12
499	Theoretical analysis and the morphology control of vertical phase segregation in high-efficiency polymer/fullerene solar cells. High Performance Polymers, 2014, 26, 197-204.	0.8	5
500	Strategic Design of Three-Dimensional (3D) Urchin-Like Pt–Ni Nanoalloys: How This Unique Nanostructure Boosts the Bulk Heterojunction Polymer Solar Cells Efficiency to 8.48%. Chemistry of Materials, 2014, 26, 7029-7038.	3.2	13
501	Pyrrolo[3,4-c]pyrrole-1,3-dione-based large band gap polymers containing benzodithiophene derivatives for highly efficient simple structured polymer solar cells. Journal of Polymer Science Part A, 2014, 52, n/a-n/a.	2.5	9
502	Annealing temperature dependence of the efficiency and vertical phase segregation of polymer/polymer bulk heterojunction photovoltaic cells. Applied Physics Letters, 2014, 104, .	1.5	22
503	Impacts of side chain and excess energy on the charge photogeneration dynamics of low-bandgap copolymer-fullerene blends. Journal of Chemical Physics, 2014, 140, 084903.	1.2	16
504	Balanced Carrier Mobilities: Not a Necessary Condition for Highâ€Efficiency Thin Organic Solar Cells as Determined by MISâ€CELIV. Advanced Energy Materials, 2014, 4, 1300954.	10.2	129
505	High-performance hybrid organic-inorganic solar cell based on planar n-type silicon. Applied Physics Letters, 2014, 104, .	1.5	32
506	Novel wide band-gap polymer utilizing fused hetero-aromatic unit for efficient polymer solar cells and field-effect transistors. Polymer, 2014, 55, 6708-6716.	1.8	30
507	Postâ€Deposition Activation of Latent Hydrogenâ€Bonding: A New Paradigm for Enhancing the Performances of Bulk Heterojunction Solar Cells. Advanced Functional Materials, 2014, 24, 7410-7419.	7.8	27
508	Organic and Hybrid Solar Cells. , 2014, , .		18
509	Solution-Processed Parallel Tandem Polymer Solar Cells Using Silver Nanowires as Intermediate Electrode. ACS Nano, 2014, 8, 12632-12640.	7.3	34

ARTICLE IF CITATIONS # Tailoring Porphyrin-Based Electron Accepting Materials for Organic Photovoltaics. Journal of the 510 6.6 55 American Chemical Society, 2014, 136, 17561-17569. Optimisation of the material properties of indium tin oxide layers for use in organic photovoltaics. 511 1.1 Journal of Applied Physics, 2014, 116, 103103. Synthesis and Photovoltaic Properties of a D–A Copolymer Based on the 512 2,3â€Di(5â€hexylthioÂphenâ€2â€yl)quinoxaline Acceptor Unit. Macromolecular Chemistry and Physics, 2014, 2151.1 11 597-603. Influence of Interfacial Area on Exciton Separation and Polaron Recombination in Nanostructured Bilayer All-Polymer Solar Cells. ACS Nano, 2014, 8, 12397-12409. "Supersaturated―Self-Assembled Charge-Selective Interfacial Layers for Organic Solar Cells. Journal 514 6.6 36 of the American Chemical Society, 2014, 136, 17762-17773. Effect of Copper Oxide Oxidation State on the Polymer-Based Solar Cell Buffer Layers. ACS Applied 4.0 Materials & amp; Interfaces, 2014, 6, 22445-22450. Photo annealing effect on p-doped inverted organic solar cell. Journal of Applied Physics, 2014, 115, 516 1.1 6 244511. Highly Flexible and Lightweight Organic Solar Cells on Biocompatible Silk Fibroin. ACS Applied 517 4.0 Materials & amp; Interfaces, 2014, 6, 20670-20675. Bulk Charge Carrier Transport in Pushâ€"Pull Type Organic Semiconductor. ACS Applied Materials & amp; 518 4.0 22 Interfaces, 2014, 6, 20904-20912. Role of Localized States on Carrier Transport in Bulk Heterojunction Materials Comprised of Organic 11.1 Small Molecule Donors. Advanced Materials, 2014, 26, 2341-2345. Disodium Edetate As a Promising Interfacial Material for Inverted Organic Solar Cells and the Device 520 4.023 Performance Optimization. ACS Applied Materials & amp; Interfaces, 2014, 6, 20569-20573. Chemical Sciences: Contributions to Building a Sustainable Society and Sharing of International 521 0.5 Responsibilities. ACS Symposium Series, 2014, , 101-139. Seleniumâ€Containing Ï€â€Conjugated Polymers for Organic Solar Cells. Israel Journal of Chemistry, 2014, 522 1.0 27 54, 621-641. Diketopyrrolopyrrole-based Small Molecule for Application in Solution Processed Organic Solar 0.4 Cells. Molecular Crystals and Liquid Crystals, 2014, 598, 111-119. $Random poly (3 \widehat{a} \in hexylthiophene \widehat{a} \in i > co < /i > \widehat{a} \in 3 \widehat{a} \in cyanothiophene) copolymers with high open \widehat{a} \in circuit voltage in_{2.5}$ 524 26 organic solar cells. Journal of Polymer Science Part A, 2014, 52, 1055-1058. Amineâ€Based Polar Solvent Treatment for Highly Efficient Inverted Polymer Solar Cells. Advanced 11.1 159 Materials, 2014, 26, 494-500. Selecting a Donor Polymer for Realizing Favorable Morphology in Efficient Nonâ€fullerene 526 5.276 Acceptorâ€based Solar Cells. Small, 2014, 10, 4658-4663. All-organic optoelectronic sensor for pulse oximetry. Nature Communications, 2014, 5, 5745. 5.8

#	Article	IF	CITATIONS
528	Enhanced Photovoltaic Performance of Amorphous Copolymers Based on Dithienosilole and Dioxocycloalkene-annelated Thiophene. Chemistry of Materials, 2014, 26, 6971-6978.	3.2	32
529	Synthesis of Anthracene-Based Donor–Acceptor Copolymers with a Thermally Removable Group for Polymer Solar Cells. Macromolecules, 2014, 47, 8585-8593.	2.2	16
530	Influence of characteristic energy of the valence band tail on performance of P3HT: PCBM bulk-heterojunction solar cell: AMPS-1D simulation study. , 2014, , .		0
531	Roles of solvent additive in organic photovoltaic cells through intensity dependence of current-voltage characteristics and charge recombination. Applied Physics Letters, 2014, 105, .	1.5	7
532	High open circuit voltage organic solar cells based upon fullerene free bulk heterojunction active layers. Canadian Journal of Chemistry, 2014, 92, 932-939.	0.6	5
533	Dithienobenzothiadiazoleâ€Based Conjugated Polymer: Processing Solventâ€Relied Interchain Aggregation and Device Performances in Fieldâ€Effect Transistors and Polymer Solar Cells. Macromolecular Rapid Communications, 2014, 35, 1960-1967.	2.0	24
534	Polyethylenimine Aqueous Solution: A Low-Cost and Environmentally Friendly Formulation to Produce Low-Work-Function Electrodes for Efficient Easy-to-Fabricate Organic Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 22628-22633.	4.0	41
535	Spectral Conversion From Ultraviolet to Near Infrared in <scp><scp>Yb</scp></scp> ³⁺ â€Doped Pyrovanadate <scp><scp>Zn</scp></scp> ₂ <scp><scp>V</scp>₂<scp></scp> Particles. lournal of the American Ceramic Society. 2014. 97. 3202-3207.</scp>	_{7<td>ub></td>}	ub>
536	Poly(<i>N</i> â€vinylpyrrolidone)â€Decorated Reduced Graphene Oxide with ZnO Grown In Situ as a Cathode Buffer Layer for Polymer Solar Cells. Chemistry - A European Journal, 2014, 20, 17178-17184.	1.7	19
537	A Conjugated Random Copolymer of Benzodithiopheneâ€Difluorobenzeneâ€Diketopyrrolopyrrole with Full Visibleâ€Light Absorption for Bulkâ€Heterojunction Solar Cells. Macromolecular Chemistry and Physics, 2014, 215, 2119-2124.	1.1	4
538	Solution-processed nickel compound as hole collection layer for efficient polymer solar cells. Journal Physics D: Applied Physics, 2014, 47, 505101.	1.3	9
539	Solution-processable perylene diimide based star-shaped small molecule acceptor: synthesis and photovoltaic properties. Proceedings of SPIE, 2014, , .	0.8	4
540	High-performance inverted polymer solar cells based on thin copper film. Journal of Photonics for Energy, 2014, 5, 057206.	0.8	4
541	π -conjugated donor–acceptor porphyrin copolymers for organic photovoltaics. Journal of Photonics for Energy, 2014, 5, 057202.	0.8	1
542	Formulation strategies for optimizing the morphology of polymeric bulk heterojunction organic solar cells: a brief review. Journal of Photonics for Energy, 2014, 4, 040998.	0.8	22
543	Laminated Polymer Solar Cells with PEDOT:PSS Film as Anode. Chinese Physics Letters, 2014, 31, 028801.	1.3	1
544	Lateral control system for roll-to-roll fabrication process of organic photovoltaic. Japanese Journal of Applied Physics, 2014, 53, 05HC09.	0.8	7
545	Effect of light incidence angle on optical absorption characteristics of low bandgap polymer-based bulk heterojunction organic solar cells. Japanese Journal of Applied Physics, 2014, 53, 08MG06.	0.8	Ο

ARTICLE IF CITATIONS # Charge transfer state energy in ternary bulk-heterojunction polymerâ€"fullerene solar cells. Journal 546 0.8 30 of Photonics for Energy, 2014, 5, 057203. MoO ₃ /Ag/Al/ZnO intermediate layer for inverted tandem polymer solar cells. Chinese 547 Physics B, 2014, 23, 038802. 548 Interfacial Layers in Organic Solar Cells., 2014, , 121-176. 4 Degradation of Polymer Solar Cells Based on P3HT:PCBM System. Advanced Materials Research, 0, 924, 549 193-199. Copper nanoparticle incorporated plasmonic organic bulk-heterojunction solar cells. Applied Physics 550 1.5 32 Letters, 2014, 105, 223306. Effect of Organically-Modified Titania Nanoparticles on the Performance of Poly(3-hexythiophene): PCBM Bulk Heterojunction Solar Cells. Materials Research Society Symposia Proceedings, 2014, 1668, 0.1 35. Parameter free calculation of the subgap density of states in poly(3-hexylthiophene). Faraday 552 1.6 29 Discussions, 2014, 174, 255-266. Flexible organic tandem solar modules: a story of up-scaling., 2014, , . Investigation of Thermal Instability of Additive-Based High-Efficiency Organic Photovoltaics. 554 1.4 3 International Journal of Photoenergy, 2014, 2014, 1-8. investigation on Thermal Degradation Process of Polymer Solar Cells Based on Blend of PBDTTT-C and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:msub><mml:mrow><mml:mtext>PC</mml:mtext></mml:mrow><mml:mrow><mml:mrate mathvariant="bold">70</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>BM. Characterization of the Organic Thin Film Solar Cells with Active Layers of PTB7/PC₇₁BM Prepared by Using Solvent Mixtures with Different Additives. International Journal of Photoenergy, 556 1.4 8 2014, 2014, 1-8. Influence of nanoparticle shape on charge transport and recombination in polymer/nanocrystal solar 1.3 cells. Physical Chemistry Chemical Physics, 2014, 16, 25684-25693. Side Chain Engineering in Solution-Processable Conjugated Polymers. Chemistry of Materials, 2014, 26, 558 3.2 932 604-615. Impact of alkyl side chains on the photovoltaic and charge mobility properties of 1.9 naphthodithiophene–benzothiadiazole copolymers. Polymer Chemistry, 2014, 5, 836-843. Pushâ€"pull organic semiconductors with planar indenothiophene bridges for solution-processed 560 1.0 5 small-molecule organic solar cells. Tetrahedron, 2014, 70, 6235-6240. On the role of aggregation effects in the performance of perylene-diimide based solar cells. Organic 1.4 Electronics, 2014, 15, 1347-1361. Amphiphilic N-methylimidazole-functionalized diblock copolythiophenes. European Polymer Journal, 562 2.6 21 2014, 53, 206-214. Modeling and simulation of bulk heterojunction polymer solar cells. Solar Energy Materials and Solar Cells, 2014, 127, 67-86.

#	Article	IF	CITATIONS
564	A new polymer from fluorinated benzothiadiazole and alkoxylphenyl substituted benzo[1,2-b:4,5-b′]dithiophene: Synthesis and photovoltaic applications. Synthetic Metals, 2014, 187, 201-208.	2.1	13
565	The underlying reason of DIO additive on the improvement polymer solar cells performance. Applied Surface Science, 2014, 305, 221-226.	3.1	44
566	Dinaphtho-s-indacene-based copolymers for inverted organic solar cells with high open-circuit voltages. Polymer, 2014, 55, 2262-2270.	1.8	5
567	Control of molecular orientation and morphology in organic bilayer solar cells: Copper phthalocyanine on gold nanodots. Thin Solid Films, 2014, 562, 467-470.	0.8	9
568	Bulky rigid substitutions: A route to high electron mobility and high solid-state luminescence efficiency of perylene diimide. Organic Electronics, 2014, 15, 281-285.	1.4	19
569	High-efficiency polymer solar cells by blade coating in chlorine-free solvents. Organic Electronics, 2014, 15, 893-903.	1.4	51
570	Smallâ€Molecule Solar Cells with Fill Factors up to 0.75 via a Layerâ€by‣ayer Solution Process. Advanced Energy Materials, 2014, 4, 1300626.	10.2	90
571	Effects of Fullerene Bisadduct Regioisomers on Photovoltaic Performance. Advanced Functional Materials, 2014, 24, 158-163.	7.8	104
572	Roles of Flexible Chains in Organic Semiconducting Materials. Chemistry of Materials, 2014, 26, 594-603.	3.2	436
573	High-efficiency inverted tandem polymer solar cells with step-Al-doped MoO3 interconnection layer. Solar Energy Materials and Solar Cells, 2014, 120, 744-750.	3.0	17
574	Fluoro-benzoselenadiazole-based low band gap polymers for high efficiency organic solar cells. Polymer Chemistry, 2014, 5, 330-334.	1.9	28
575	Large active area inverted tandem polymer solar cell with high performance via insertion of subnano-scale silver layer. Solar Energy Materials and Solar Cells, 2014, 120, 728-734.	3.0	12
576	Solutionâ€Processed Rhenium Oxide: A Versatile Anode Buffer Layer for High Performance Polymer Solar Cells with Enhanced Light Harvest. Advanced Energy Materials, 2014, 4, 1300884.	10.2	71
577	Effect of organically-modified titania nanoparticles on the performance of poly(3-hexylthiophene):PCBM bulk heterojunction solar cells. Macromolecular Research, 2014, 22, 4-7.	1.0	0
578	How to design low bandgap polymers for highly efficient organic solar cells. Materials Today, 2014, 17, 11-15.	8.3	209
579	Low Bandâ€Gap Conjugated Polymers with Strong Interchain Aggregation and Very High Hole Mobility Towards Highly Efficient Thickâ€Film Polymer Solar Cells. Advanced Materials, 2014, 26, 2586-2591.	11.1	375
580	25th Anniversary Article: Bulk Heterojunction Solar Cells: Understanding the Mechanism of Operation. Advanced Materials, 2014, 26, 10-28.	11.1	1,514
581	Controlling Solutionâ€Phase Polymer Aggregation with Molecular Weight and Solvent Additives to Optimize Polymerâ€Fullerene Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2014, 4, 1301733.	10.2	194

#	Article	IF	CITATIONS
582	Facile Monitoring of Fullerene Crystallization in Polymer Solar Cell Blends by UV–vis Spectroscopy. Macromolecular Chemistry and Physics, 2014, 215, 530-535.	1.1	16
583	Highâ€Molecularâ€Weight Insulating Polymers Can Improve the Performance of Molecular Solar Cells. Advanced Materials, 2014, 26, 4168-4172.	11.1	101
584	A water-processable organic electron-selective layer for solution-processed inverted organic solar cells. Applied Physics Letters, 2014, 104, 053304.	1.5	12
585	The influence of molecular orientation on organic bulk heterojunction solar cells. Nature Photonics, 2014, 8, 385-391.	15.6	439
586	Morphological Control for Highly Efficient Inverted Polymer Solar Cells Via the Backbone Design of Cathode Interlayer Materials. Advanced Energy Materials, 2014, 4, 1400359.	10.2	98
587	Enhanced Photovoltaic Performance by Modulating Surface Composition in Bulk Heterojunction Polymer Solar Cells Based on PBDTTTâ€Câ€T/PC ₇₁ BM. Advanced Materials, 2014, 26, 4043-4049.	11.1	203
588	Achieving High Efficiency of PTB7â€Based Polymer Solar Cells via Integrated Optimization of Both Anode and Cathode Interlayers. Advanced Energy Materials, 2014, 4, 1301771.	10.2	102
589	Applications of functional fullerene materials in polymer solar cells. Energy and Environmental Science, 2014, 7, 1866.	15.6	174
590	Dithienocarbazole and Isoindigo based Amorphous Low Bandgap Conjugated Polymers for Efficient Polymer Solar Cells. Advanced Materials, 2014, 26, 471-476.	11.1	191
591	Conductive Conjugated Polyelectrolyte as Holeâ€Transporting Layer for Organic Bulk Heterojunction Solar Cells. Advanced Materials, 2014, 26, 780-785.	11.1	193
592	A direct arylation-derived DPP-based small molecule for solution-processed organic solar cells. Nanotechnology, 2014, 25, 014006.	1.3	30
593	Structural Design of Benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene-Based 2D Conjugated Polymers with Bithienyl and Terthienyl Substituents toward Photovoltaic Applications. Macromolecules, 2014, 47, 1008-1020.	2.2	56
594	Bimolecular Recombination in Organic Photovoltaics. Annual Review of Physical Chemistry, 2014, 65, 557-581.	4.8	218
595	Small molecule BODIPY dyes as non-fullerene acceptors in bulk heterojunction organic photovoltaics. Chemical Communications, 2014, 50, 2913-2915.	2.2	79
596	Unambiguous determination of molecular packing in crystalline donor domains of small molecule solution processed solar cell devices using routine X-ray diffraction techniques. Journal of Materials Chemistry A, 2014, 2, 3536.	5.2	29
597	Identifying the Impact of Surface Recombination at Electrodes in Organic Solar Cells by Means of Electroluminescence and Modeling. Advanced Energy Materials, 2014, 4, 1400081.	10.2	73
598	Water soluble amino grafted silicon nanoparticles and their use in polymer solar cells. Chinese Journal of Polymer Science (English Edition), 2014, 32, 395-401.	2.0	8
599	Influence of morphology of PCDTBT:PC71BM on the performance of solar cells. Applied Physics A: Materials Science and Processing, 2014, 114, 1361-1368.	1.1	13

#	Article	IF	CITATIONS
600	Synthesis and photovoltaic properties of benzo[1,2-b:3,4-b′]thiophene-based conjugated copolymers with a pendent acceptor. Journal of Materials Science: Materials in Electronics, 2014, 25, 1639-1646.	1.1	5
601	Investigation of the effects of MoO3 buffer layer on charge carrier injection and extraction by capacitance–voltage measurement. Science Bulletin, 2014, 59, 747-753.	1.7	1
602	Crystal growth and characterization of fluorinated perylene diimides. Chemical Research in Chinese Universities, 2014, 30, 63-67.	1.3	4
603	Molecular Materials for Organic Photovoltaics: Small is Beautiful. Advanced Materials, 2014, 26, 3821-3838.	11.1	534
604	Small Molecular Donors for Organic Solar Cells Obtained by Simple and Clean Synthesis. ChemSusChem, 2014, 7, 1046-1050.	3.6	21
605	Influences of Alq3 as electron extraction layer instead of Ca on the photo-stability of organic solar cells. Journal of Power Sources, 2014, 250, 105-109.	4.0	15
606	Quantification of Nano―and Mesoscale Phase Separation and Relation to Donor and Acceptor Quantum Efficiency, <i>J</i> _{sc} , and FF in Polymer:Fullerene Solar Cells. Advanced Materials, 2014, 26, 4234-4241.	11.1	127
607	8.9% Singleâ€Stack Inverted Polymer Solar Cells with Electronâ€Rich Polymer Nanolayerâ€Modified Inorganic Electronâ€Collecting Buffer Layers. Advanced Energy Materials, 2014, 4, 1301692.	10.2	218
608	Twisted but Conjugated: Building Blocks for Low Bandgap Polymers. Angewandte Chemie - International Edition, 2014, 53, 3996-4000.	7.2	45
609	Charge Transport Anisotropy in Highly Oriented Thin Films of the Acceptor Polymer P(NDI2ODâ€₹2). Advanced Energy Materials, 2014, 4, 1301659.	10.2	116
610	A futuristic approach towards interface layer modifications for improved efficiency in inverted organic solar cells. Applied Physics Letters, 2014, 104, 041114.	1.5	10
611	Layerâ€byâ€Layer Solutionâ€Processed Lowâ€Bandgap Polymerâ€PC ₆₁ BM Solar Cells with High Efficiency. Advanced Energy Materials, 2014, 4, 1301349.	10.2	57
612	Organic materials for photovoltaic applications: Review and mechanism. Synthetic Metals, 2014, 190, 20-26.	2.1	139
613	Molecular Structureâ€Dependent Charge Injection and Doping Efficiencies of Organic Semiconductors: Impact of Side Chain Substitution. Advanced Materials Interfaces, 2014, 1, 1300128.	1.9	22
614	Fullerene Nucleating Agents: A Route Towards Thermally Stable Photovoltaic Blends. Advanced Energy Materials, 2014, 4, 1301437.	10.2	65
615	Highly Efficient Inverted Organic Solar Cells Through Material and Interfacial Engineering of Indacenodithieno[3,2â€∢i>b]thiopheneâ€Based Polymers and Devices. Advanced Functional Materials, 2014, 24, 1465-1473.	7.8	132
616	Suppression of Timeâ€Dependent Donor/Acceptor Interface Degradation by Redistributing Donor Charge Density. Advanced Materials Interfaces, 2014, 1, 1300082.	1.9	8
617	A General Route to Enhance Polymer Solar Cell Performance using Plasmonic Nanoprisms. Advanced Energy Materials, 2014, 4, 1400206.	10.2	118

#	Article	IF	CITATIONS
618	Charge Carrier Dynamics of Polymer:Fullerene Blends: From Geminate to Nonâ€Geminate Recombination. Advanced Energy Materials, 2014, 4, 1301706.	10.2	17
619	High open-circuit voltage of the solution-processed organic solar cells based on benzothiadiazole–triphenylamine small molecules incorporating π-linkage. Organic Electronics, 2014, 15, 1138-1148.	1.4	26
620	Fluorene-based cathode interlayer polymers for high performance solution processed organic optoelectronic devices. Organic Electronics, 2014, 15, 1244-1253.	1.4	33
621	How High Local Charge Carrier Mobility and an Energy Cascade in a Threeâ€Phase Bulk Heterojunction Enable >90% Quantum Efficiency. Advanced Materials, 2014, 26, 1923-1928.	11.1	247
622	Enhanced Light Harvesting in Organic Solar Cells Featuring a Biomimetic Active Layer and a Selfâ€Cleaning Antireflective Coating. Advanced Energy Materials, 2014, 4, 1301777.	10.2	104
623	Enhanced photovoltaic performance of inverted organic solar cells with In-doped ZnO as an electron extraction layer. Renewable Energy, 2014, 66, 433-442.	4.3	36
624	Effects of Solvent Additives on Morphology, Charge Generation, Transport, and Recombination in Solutionâ€Processed Smallâ€Molecule Solar Cells. Advanced Energy Materials, 2014, 4, 1301469.	10.2	194
625	Enhanced Power Conversion Efficiency of Low Bandâ€Gap Polymer Solar Cells by Insertion of Optimized Binary Processing Additives. Advanced Energy Materials, 2014, 4, 1300835.	10.2	40
626	Recent Advances in Polymer Solar Cells: Realization of High Device Performance by Incorporating Water/Alcoholâ€Soluble Conjugated Polymers as Electrode Buffer Layer. Advanced Materials, 2014, 26, 1006-1024.	11.1	231
627	Plasmonâ€Enhanced Polymer Photovoltaic Device Performance Using Different Patterned Ag/PVP Electrospun Nanofibers. Advanced Energy Materials, 2014, 4, 1301665.	10.2	46
628	A New Architecture for Printable Photovoltaics Overcoming Conventional Module Limits. Advanced Materials, 2014, 26, 1602-1606.	11.1	11
629	Solution-processed bulk heterojunction solar cells based on a porphyrin small molecule with 7% power conversion efficiency. Energy and Environmental Science, 2014, 7, 1397-1401.	15.6	200
630	Replacing the metal oxide layer with a polymer surface modifier for high-performance inverted polymer solar cells. RSC Advances, 2014, 4, 4791-4795.	1.7	34
631	Fabricating the solution-processable inverted photovoltaic devices by the dip-coating method. Organic Electronics, 2014, 15, 984-990.	1.4	2
632	An Alternative Hole Transport Layer for Both ITO―and Grapheneâ€Based Organic Solar Cells. Advanced Energy Materials, 2014, 4, 1301280.	10.2	29
633	Environmentally Printing Efficient Organic Tandem Solar Cells with High Fill Factors: A Guideline Towards 20% Power Conversion Efficiency. Advanced Energy Materials, 2014, 4, 1400084.	10.2	116
634	Understanding the Morphology of PTB7:PCBM Blends in Organic Photovoltaics. Advanced Energy Materials, 2014, 4, 1301377.	10.2	203
635	Fine tuning of frontier orbital energy levels in dithieno[3,2-b:2′,3′-d]silole-based copolymers based on the substituent effect of phenyl pendants. Polymer, 2014, 55, 2139-2145.	1.8	7
#	Article	IF	CITATIONS
-----	--	------	-----------
636	8.91% Power Conversion Efficiency for Polymer Tandem Solar Cells. Advanced Functional Materials, 2014, 24, 2240-2247.	7.8	46
637	Solution processed n-type mixed metal oxide layer for electron extraction in inverted polymer solar cells. Solar Energy Materials and Solar Cells, 2014, 125, 276-282.	3.0	6
638	Understanding Low Bandgap Polymer PTB7 and Optimizing Polymer Solar Cells Based on It. Advanced Materials, 2014, 26, 4413-4430.	11.1	461
639	Improvement of organic solar cells with ammonium salt, tetrabutylammonium tetraphenylborate, as cathode buffer layer. Synthetic Metals, 2014, 191, 36-40.	2.1	4
640	Improved charge transport in P3HT:PCBM bulk heterojunction PV cell under ambient environment. Physica B: Condensed Matter, 2014, 437, 63-66.	1.3	3
641	Towards optimization of functionalized single-walled carbon nanotubes adhering with poly(3-hexylthiophene) for highly efficient polymer solar cells. Diamond and Related Materials, 2014, 41, 79-83.	1.8	18
642	Efficient inverted organic solar cells using Zn-doped titanium oxide films as electron transport layers. Electrochimica Acta, 2014, 116, 442-446.	2.6	16
643	Thermal ageing of bulk heterojunction polymer solar cells investigated by electric noise analysis. Solar Energy Materials and Solar Cells, 2014, 122, 40-45.	3.0	28
644	Increased performance of inverted organic photovoltaic cells using a cationically functionalized fullerene interfacial layer. Solar Energy Materials and Solar Cells, 2014, 129, 90-94.	3.0	6
645	Near-infrared-sensitive bulk heterojunction solar cells using nanostructured hybrid composites of HgTe quantum dots and a low-bandgap polymer. Solar Energy Materials and Solar Cells, 2014, 126, 163-169.	3.0	20
646	Photocurrent Enhancement in Diketopyrrolopyrrole Solar Cells by Manipulating Dipolar Anchoring Terminals on Alkylâ€Chain Spacers. Chemistry - an Asian Journal, 2014, 9, 883-892.	1.7	17
647	Correlated Donor/Acceptor Crystal Orientation Controls Photocurrent Generation in Allâ€Polymer Solar Cells. Advanced Functional Materials, 2014, 24, 4068-4081.	7.8	144
648	Hybrid Grapheneâ€Metal Oxide Solution Processed Electron Transport Layers for Large Area Highâ€Performance Organic Photovoltaics. Advanced Materials, 2014, 26, 2078-2083.	11.1	86
649	Near-edge X-ray absorption fine-structure spectroscopy of naphthalene diimide-thiophene co-polymers. Journal of Chemical Physics, 2014, 140, 164710.	1.2	27
650	Enhanced Electron Injection into Inverted Polymer Lightâ€Emitting Diodes by Combined Solutionâ€Processed Zinc Oxide/Polyethylenimine Interlayers. Advanced Materials, 2014, 26, 2750-2754.	11.1	147
651	Contact Doping with Subâ€Monolayers of Strong Polyelectrolytes for Organic Photovoltaics. Advanced Energy Materials, 2014, 4, 1400439.	10.2	25
652	A work-function tunable polyelectrolyte complex (PEI:PSS) as a cathode interfacial layer for inverted organic solar cells. Journal of Materials Chemistry A, 2014, 2, 7788-7794.	5.2	49
653	Solution-Processed and Low-Temperature Annealed CrO _{<i>x</i>} as Anode Buffer Layer for Efficient Polymer Solar Cells. Journal of Physical Chemistry C, 2014, 118, 9309-9317.	1.5	29

#	Article	IF	CITATIONS
654	4% Efficient Polymer Solar Cells on Paper Substrates. Journal of Physical Chemistry C, 2014, 118, 16813-16817.	1.5	85
655	Chemically Controlled Reversible and Irreversible Extraction Barriers Via Stable Interface Modification of Zinc Oxide Electron Collection Layer in Polycarbazoleâ€based Organic Solar Cells. Advanced Functional Materials, 2014, 24, 4671-4680.	7.8	76
656	Highâ€Efficiency Inverted Polymer Photovoltaics via Spectrally Tuned Absorption Enhancement. Advanced Energy Materials, 2014, 4, 1301938.	10.2	36
657	Efficient hybrid inorganic/organic tandem solar cells with tailored recombination contacts. Solar Energy Materials and Solar Cells, 2014, 127, 157-162.	3.0	22
658	Influence of bias voltage and temperature on charge transfer states in organic photovoltaic and electroluminescent integrated device. Applied Physics Letters, 2014, 104, 203301.	1.5	11
659	Photovoltaic performance enhancement of P3HT/PCBM solar cells driven by incorporation of conjugated liquid crystalline rod-coil block copolymers. Journal of Materials Chemistry C, 2014, 2, 3835-3845.	2.7	43
660	Decacyclene Triimides: Paving the Road to Universal Nonâ€Fullerene Acceptors for Organic Photovoltaics. Advanced Energy Materials, 2014, 4, 1301007.	10.2	57
661	Triazine-Bridged Porphyrin Triad as Electron Donor for Solution-Processed Bulk Hetero-Junction Organic Solar Cells. Journal of Physical Chemistry C, 2014, 118, 5968-5977.	1.5	50
662	Electron Collection as a Limit to Polymer:PCBM Solar Cell Efficiency: Effect of Blend Microstructure on Carrier Mobility and Device Performance in PTB7:PCBM. Advanced Energy Materials, 2014, 4, 1400311.	10.2	151
663	Solution-Processed Copper Iodide as an Inexpensive and Effective Anode Buffer Layer for Polymer Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16806-16812.	1.5	84
664	Printable Highly Conductive Conjugated Polymer Sensitized ZnO NCs as Cathode Interfacial Layer for Efficient Polymer Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 8237-8245.	4.0	46
665	Optimization of absorption bands of dye-sensitized and perovskite tandem solar cells based on loss-in-potential values. Physical Chemistry Chemical Physics, 2014, 16, 14116-14126.	1.3	14
666	Workâ€Functionâ€Tunable Chlorinated Graphene Oxide as an Anode Interface Layer in Highâ€Efficiency Polymer Solar Cells. Advanced Energy Materials, 2014, 4, 1400591.	10.2	85
667	Comparing the Device Physics and Morphology of Polymer Solar Cells Employing Fullerenes and Nonâ€Fullerene Acceptors. Advanced Energy Materials, 2014, 4, 1301426.	10.2	90
668	Improved Performance in Bulk Heterojunction Organic Solar Cells with a Solâ€Gel MgZnO Electronâ€Collecting Layer. Advanced Energy Materials, 2014, 4, 1400073.	10.2	22
669	Molecular Design and Morphology Control Towards Efficient Polymer Solar Cells Processed using Nonâ€aromatic and Nonâ€chlorinated Solvents. Advanced Materials, 2014, 26, 2744-2749.	11.1	95
670	Polymer Solar Cells with Diketopyrrolopyrrole Conjugated Polymers as the Electron Donor and Electron Acceptor. Advanced Materials, 2014, 26, 3304-3309.	11.1	245
671	Polymer solar cells with electrodeposited CuSCN nanowires as new efficient hole transporting layer. Solar Energy Materials and Solar Cells, 2014, 120, 163-167.	3.0	46

ARTICLE IF CITATIONS Titanium oxide:fullerene composite films as electron collector layer in organic solar cells and the 672 1.7 11 use of an easy-deposition cathode. Optical Materials, 2014, 36, 1336-1341. Origin of the fill factor loss in bulk-heterojunction organic solar cells. Applied Physics Letters, 2014, 1.5 104, . Enhanced open-circuit voltage in polymer solar cells by dithieno[3,2-b:2â€²,3â€²-d]pyrrole N-acylation. 674 5.233 Journal of Materials Chemistry A, 2014, 2, 7535-7545. Tailored Donor–Acceptor Polymers with an A–D1–A–D2 Structure: Controlling Intermolecular Interactions to Enable Enhanced Polymer Photovoltaic Devices. Journal of the American Chemical 186 Society, 2014, 136, 6049-6055. Interface limited charge extraction and recombination in organic photovoltaics. Energy and 676 15.6 33 Environmental Science, 2014, 7, 2227. Improving the Stability of Bulk Heterojunction Solar Cells by Incorporating pH-Neutral PEDOT:PSS as the Hole Transport Layer. ACS Applied Materials & amp; Interfaces, 2014, 6, 5122-5129. 4.0 Universal and Versatile MoO₃-Based Hole Transport Layers for Efficient and Stable 678 1.5 53 Polymer Solar Cells. Journal of Physical Chemistry C, 2014, 118, 9930-9938. Acceptor–acceptor conjugated copolymers based on perylenediimide and benzothiadiazole for 2.5 34 allâ€polymer solar cells. Journal of Polymer Science Part A, 2014, 52, 1200-1215. Synthesis of phenanthro[1,10,9,8-<i>cdefg</i>carbazole-based conjugated polymers for organic solar 680 2.5 13 cell applications. Journal of Polymer Science Part A, 2014, 52, 796-803. Templating Effects in Molecular Growth of Blended Films for Efficient Small-Molecule Photovoltaics. ACS Applied Materials & amp; Interfaces, 2014, 6, 6369-6377. Chain length and torsional dependence of exciton binding energies in P3HT and PTB7 conjugated 682 1.8 52 polymers: A first-principles study. Polymer, 2014, 55, 2667-2672. Graphene synthesis and application for solar cells. Journal of Materials Research, 2014, 29, 299-319. 1.2 High-Performance Inverted Solar Cells Based on Blend Films of ZnO Naoparticles and TiO₂ 684 4.0 19 Nanorods as a Cathode Buffer Layer. ACS Applied Materials & amp; Interfaces, 2014, 6, 4074-4080. [6,6]-Phenyl-C₆₁-butyric Acid 2-((2-(Dimethylamino)ethyl)(methyl)amino)-ethyl Ester as an Acceptor and Cathode Interfacial Material in Polymer Solar Cells. ACS Applied Materials & Amp; 4.0 Interfaces, 2014, 6, 5844-5851. Influence of Molybdenum Oxide Interface Solvent Sensitivity on Charge Trapping in Bilayer Cyanine 686 19 1.5 Solar Cells. Journal of Physical Chemistry C, 2014, 118, 17036-17045. Assessing the origin of the S-shaped lâ \in V curve in organic solar cells: An improved equivalent circuit model. Solar Energy Materials and Solar Cells, 2014, 122, 88-93. Benzo[1,2-b:4,5-bâ€2]dithiophene and benzotriazole based small molecule for solution-processed organic 688 1.4 42 solar cells. Organic Electronics, 2014, 15, 405-413. Highly efficient and high transmittance semitransparent polymer solar cells with one-dimensional 689 1.4 photónic crystals as distributed Bragg reflectors. Organic Electronics, 2014, 15, 470-477.

#	Article	IF	CITATIONS
690	Efficient polymer solar cells with a solution-processed and thermal annealing-free RuO ₂ anode buffer layer. Journal of Materials Chemistry A, 2014, 2, 1318-1324.	5.2	64
691	Thiazolyl substituted benzodithiophene copolymers: synthesis, properties and photovoltaic applications. Journal of Materials Chemistry C, 2014, 2, 1306-1313.	2.7	25
692	A novel complementary absorbing donor–acceptor pair in block copolymers based on single material organic photovoltaics. Journal of Materials Chemistry A, 2014, 2, 2993-2998.	5.2	17
693	Bilayer polymer/fullerene solar cells with a liquid crystal. Thin Solid Films, 2014, 560, 71-76.	0.8	15
694	Bay-linked perylene bisimides as promising non-fullerene acceptors for organic solar cells. Chemical Communications, 2014, 50, 1024-1026.	2.2	290
695	Efficient all polymer solar cells from layer-evolved processing of a bilayer inverted structure. Journal of Materials Chemistry C, 2014, 2, 416-420.	2.7	37
696	Computational modelling of donor–acceptor conjugated polymers through engineered backbone manipulations based on a thiophene–quinoxaline alternating copolymer. Journal of Materials Chemistry A, 2014, 2, 2202-2212.	5.2	24
697	Benzo[1,2-b:4,5-bâ€2]dithiophene-fumaronitrile-based D-A type copolymers with different Ï€-bridges: Synthesis, characterization and photovoltaic properties. Synthetic Metals, 2014, 188, 57-65.	2.1	9
698	Effect of end-groups on the photovoltaic property of diphenyl substituted diketopyrrolopyrrole derivatives. Synthetic Metals, 2014, 188, 66-71.	2.1	16
699	Synergetic plasmonic effect of Al and Au nanoparticles for efficiency enhancement of air processed organic photovoltaic devices. Chemical Communications, 2014, 50, 5285-5287.	2.2	43
700	Effective light trapping enhanced near-UV/blue light absorption in inverted polymer solar cells via sol–gel textured Al-doped ZnO buffer layer. Solar Energy Materials and Solar Cells, 2014, 121, 28-34.	3.0	39
701	Semitransparent Polymer Solar Cells with 5% Power Conversion Efficiency Using Photonic Crystal Reflector. ACS Applied Materials & Interfaces, 2014, 6, 599-605.	4.0	66
702	Tungsten oxide/PEDOT:PSS hybrid cascade hole extraction layer for polymer solar cells with enhanced long-term stability and power conversion efficiency. Solar Energy Materials and Solar Cells, 2014, 122, 24-30.	3.0	20
703	A cost-effective commercial soluble oxide cluster for highly efficient and stable organic solar cells. Journal of Materials Chemistry A, 2014, 2, 1436-1442.	5.2	86
704	Structure–property relationships of oligothiophene–isoindigo polymers for efficient bulk-heterojunction solar cells. Energy and Environmental Science, 2014, 7, 361-369.	15.6	108
705	Preparation and characterization of MoO3 hole-injection layer for organic solar cell fabrication and optimization. Solar Energy Materials and Solar Cells, 2014, 120, 603-609.	3.0	46
706	Charge generation and transport in efficient organic bulk heterojunction solar cells with a perylene acceptor. Energy and Environmental Science, 2014, 7, 435-441.	15.6	219
707	Molecular design of donor–acceptor conjugated copolymers based on C-, Si- and N-bridged dithiophene and thienopyrroledione derivatives units for organic solar cells. Journal of Power Sources, 2014, 245, 217-223.	4.0	28

ARTICLE IF CITATIONS # Three pyrido[2,3,4,5-lmn]phenanthridine derivatives and their large band gap copolymers for organic 708 5.2 26 solar cells. Journal of Materials Chemistry A, 2014, 2, 321-325. Binary additives synergistically boost the efficiency of all-polymer solar cells up to 3.45%. Energy and 15.6 224 Envirónmental Science, 2014, 7, 1351-1356. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide 710 15.6 965 hybrid solar cells. Energy and Environmental Science, 2014, 7, 399-407. Lowâ€Bandgap Donor/Acceptor Polymer Blend Solar Cells with Efficiency Exceeding 4%. Advanced Energy Materials, 2014, 4, 1301006. Morphologyâ€Performance Relationships in Highâ€Efficiency Allâ€Polymer Solar Cells. Advanced Energy 712 10.2 227 Materials, 2014, 4, 1300785. Low-temperature solution-processed ZnO nanocrystalline interfacial layer with antireflective effect for efficient inverted polymer solar cells. Physica B: Condensed Matter, 2014, 432, 1-4. 1.3 Impact of fluorinated end groups on the properties of acceptor–donor–acceptor type oligothiophenes for solution-processed photovoltaic cells. Journal of Materials Chemistry C, 2014, 2, 714 2.7 19 1337-1345. Charge Separation Pathways in a Highly Efficient Polymer: Fullerene Solar Cell Material. Journal of the American Chemical Society, 2014, 136, 1472-1482. 6.6 Highly Efficient Organic Photovoltaics via Incorporation of Solution-Processed Cesium Stearate as 716 4.0 12 the Cathode Interfacial Layer. ACS Applied Materials & amp; Interfaces, 2014, 6, 833-838. Multi-wall carbon nanotube coating of fluorine-doped tin oxide as an electrode surface modifier for 24 polymer solar cells. Solar Energy Materials and Solar Cells, 2014, 122, 297-302. Synthesis and photovoltaic properties of solution-processable star-shaped small molecules with triphenylamine as the core and alkyl cyanoacetate or 3-ethylrhodanine as the end-group. RSC 718 1.7 24 Advances, 2014, 4, 5591. An efficient selenophene-containing conjugated copolymer for organic solar cells. RSC Advances, 719 2014, 4, 5085. Insights into solvent vapor annealing on the performance of bulk heterojunction solar cells by a 720 1.7 27 quantitative nanomorphology study. RSC Advances, 2014, 4, 6246. Enhanced inverted organic solar cell performance by post-treatments of solution-processed ZnO buffer layers. RSC Advances, 2014, 4, 6646. 1.7 Influence of Solvent and Solvent Additive on the Morphology of PTB7 Films Probed via X-ray 722 1.2 57 Scattering. Journal of Physical Chemistry B, 2014, 118, 344-350. Dynamics of Charge Generation and Transport in Polymer-Fullerene Blends Elucidated Using a PhotoFET Architecture. ACS Photonics, 2014, 1, 114-120. Effect of Molecular Order on the Performance of Naphthobisthiadiazoleâ€Based Polymer Solar Cells. 724 10.2 22 Advanced Energy Materials, 2014, 4, 1301601. Bandgap Tunable Zn_{1â€<i>x</i>}Mg_{<i>x</i>}O Thin Films as Highly Transparent Cathode Buffer Layers for Highâ€Performance Inverted Polymer Solar Cells. Advanced Energy Materials, 2014, 4, 1301404.

#	Article	IF	CITATIONS
726	Enhancement of the power conversion efficiency of polymer solar cells by functionalized single-walled carbon nanotubes decorated with CdSe/ZnS core–shell colloidal quantum dots. Journal of Materials Science, 2014, 49, 2571-2577.	1.7	9
727	Influence of the molecular orientation of oligothiophene derivatives in vacuum-evaporated thin films on photovoltaic properties. Dyes and Pigments, 2014, 100, 158-161.	2.0	4
728	Noise-induced quantum coherence drives photo-carrier generation dynamics at polymeric semiconductor heterojunctions. Nature Communications, 2014, 5, 3119.	5.8	111
729	Scattering or Photoluminescence? Major Mechanism Exploration on Performance Enhancement in P3HTâ€Based Polymer Solar Cells with NaYF ₄ :2% Er ³⁺ , 18% Yb ³⁺ Upconverting Nanocrystals. Advanced Optical Materials, 2014, 2, 442-449.	3.6	16
730	Protonation process of conjugated polyelectrolytes on enhanced power conversion efficiency in the inverted polymer solar cells. Journal of Photonics for Energy, 2014, 4, 043099.	0.8	7
731	Linkage position influences of anthracene and tricyanovinyl groups on the opto-electrical and photovoltaic properties of anthracene-based organic small molecules. Tetrahedron, 2014, 70, 1176-1186.	1.0	8
732	Donor–spacer–acceptor monodisperse conjugated co-oligomers for efficient single-molecule photovoltaic cells based on non-fullerene acceptors. Journal of Materials Chemistry A, 2014, 2, 3632.	5.2	40
733	Omnidirectional and polarization-insensitive light absorption enhancement in an organic photovoltaic device using a one-dimensional nanograting. Journal of Modern Optics, 2014, 61, 1714-1722.	0.6	11
734	Influence of the Position of the Side Chain on Crystallization and Solar Cell Performance of DPP-Based Small Molecules. Chemistry of Materials, 2014, 26, 916-926.	3.2	113
735	Role of Electron- and Hole-Collecting Buffer Layers on the Stability of Inverted Polymer: Fullerene Photovoltaic Devices. IEEE Journal of Photovoltaics, 2014, 4, 265-270.	1.5	11
736	Towards large-scale production of solution-processed organic tandem modules based on ternary composites: Design of the intermediate layer, device optimization and laser based module processing. Solar Energy Materials and Solar Cells, 2014, 120, 701-708.	3.0	30
737	All-plastic solar cells with a high photovoltaic dynamic range. Journal of Materials Chemistry A, 2014, 2, 3492.	5.2	97
738	From lab to fab: how must the polymer solar cell materials design change? – an industrial perspective. Energy and Environmental Science, 2014, 7, 925.	15.6	303
739	Organic photovoltaic devices incorporating a molybdenum oxide hole-extraction layer deposited by spray-coating from an ammonium molybdate tetrahydrate precursor. Organic Electronics, 2014, 15, 692-700.	1.4	26
740	Efficient recyclable organic solar cells on cellulose nanocrystal substrates with a conducting polymer top electrode deposited by film-transfer lamination. Organic Electronics, 2014, 15, 661-666.	1.4	108
741	Using ultra-high molecular weight hydrophilic polymer as cathode interlayer for inverted polymer solar cells: Enhanced efficiency and excellent air-stability. Solar Energy Materials and Solar Cells, 2014, 123, 104-111.	3.0	18
742	Improving Efficiency by Hybrid TiO ₂ Nanorods with 1,10-Phenanthroline as A Cathode Buffer Layer for Inverted Organic Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 739-744.	4.0	33
743	Roles of Interfacial Modifiers in Hybrid Solar Cells: Inorganic/Polymer Bilayer vs Inorganic/Polymer:Fullerene Bulk Heterojunction. ACS Applied Materials & Interfaces, 2014, 6, 803-810.	4.0	29

#	Article	IF	CITATIONS
744	Enhanced intrinsic stability of the bulk heterojunction active layer blend of polymer solar cells by varying the polymer side chain pattern. Organic Electronics, 2014, 15, 549-562.	1.4	39
745	Conjugated polymers based on benzodithiophene and fluorinated quinoxaline for bulk heterojunction solar cells: thiophene versus thieno[3,2-b]thiophene as π-conjugated spacers. Polymer Chemistry, 2014, 5, 2083.	1.9	68
746	Hyperconjugated side chained benzodithiophene and 4,7-di-2-thienyl-2,1,3-benzothiadiazole based polymer for solar cells. Polymer Chemistry, 2014, 5, 2076.	1.9	39
747	Influence of the backbone conformation of conjugated polymers on morphology and photovoltaic properties. Polymer Chemistry, 2014, 5, 1976-1981.	1.9	48
748	A chlorinated phenazine-based donor–acceptor copolymer with enhanced photovoltaic performance. Polymer Chemistry, 2014, 5, 1848.	1.9	33
749	Dependence of the performance of inverted polymer solar cells on thickness of an electron selective ZnO layer deposited by magnetron sputtering. Thin Solid Films, 2014, 551, 131-135.	0.8	19
750	Recent advances of non-fullerene, small molecular acceptors for solution processed bulk heterojunction solar cells. Journal of Materials Chemistry A, 2014, 2, 1201-1213.	5.2	361
752	Chloroboron subphthalocyanine/C60 planar heterojunction organic solar cell with N,N-dicarbazolyl-3,5-benzene blocking layer. Solar Energy Materials and Solar Cells, 2014, 122, 264-270.	3.0	33
753	Enhanced performance in bulk heterojunction solar cells with alkylidene fluorene donor by introducing modified PFN-OH/Al bilayer cathode. RSC Advances, 2014, 4, 6776.	1.7	6
754	Annealing-free P3HT:PCBM-based organic solar cells via two halohydrocarbons additives with similar boiling points. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 180, 7-11.	1.7	9
755	Self-Organization of Amine-Based Cathode Interfacial Materials in Inverted Polymer Solar Cells. ACS Nano, 2014, 8, 1601-1608.	7.3	72
756	Highly efficient thieno[3,4-c]pyrrole-4,6-dione-based solar cells processed from non-chlorinated solvent. Organic Electronics, 2014, 15, 543-548.	1.4	40
757	Charge Photogeneration in Neat Conjugated Polymers. Chemistry of Materials, 2014, 26, 561-575.	3.2	118
758	A new solution-processed diketopyrrolopyrrole donor for non-fullerene small-molecule solar cells. Journal of Materials Chemistry A, 2014, 2, 1869-1876.	5.2	28
759	Graphene oxide derivatives as hole- and electron-extraction layers for high-performance polymer solar cells. Energy and Environmental Science, 2014, 7, 1297-1306.	15.6	180
760	Benzodithiopheneâ€based poly(aryleneethynylene)s: Synthesis, optical properties, and applications in organic solar cells. Journal of Polymer Science Part A, 2014, 52, 208-215.	2.5	20
761	Synthesis of an H-aggregated thiophene–phthalimide based small molecule via microwave assisted direct arylation coupling reactions. Dyes and Pigments, 2014, 102, 204-209.	2.0	23
762	Computational comparison of conventional and inverted organic photovoltaic performance parameters with varying metal electrode surface workfunction. Solar Energy Materials and Solar Cells, 2014, 120, 572-583.	3.0	25

#	Article	IF	CITATIONS
763	ITO-free laminated concept for flexible organic solar cells. Solar Energy Materials and Solar Cells, 2014, 120, 449-453.	3.0	19
764	A bipolar small molecule based on indacenodithiophene and diketopyrrolopyrrole for solution processed organic solar cells. Journal of Materials Chemistry A, 2014, 2, 778-784.	5.2	87
765	Design and synthesis of triazoloquinoxaline polymers with positioning alkyl or alkoxyl chains for organic photovoltaics cells. Polymer Chemistry, 2014, 5, 1163-1172.	1.9	21
766	Improved power conversion efficiency by insertion of RGO–TiO2 composite layer as optical spacer in polymer bulk heterojunction solar cells. Organic Electronics, 2014, 15, 348-355.	1.4	21
767	Hole-Transporting Spirothioxanthene Derivatives as Donor Materials for Efficient Small-Molecule-Based Organic Photovoltaic Devices. Chemistry of Materials, 2014, 26, 6585-6594.	3.2	42
768	Amorphous Thieno[3,2- <i>b</i>]thiophene and Benzothiadiazole Based Copolymers for Organic Photovoltaics. ACS Applied Materials & Interfaces, 2014, 6, 20510-20518.	4.0	18
769	Highâ€Efficiency Allâ€Polymer Solar Cells Based on a Pair of Crystalline Lowâ€Bandgap Polymers. Advanced Materials, 2014, 26, 7224-7230.	11.1	228
770	Fullâ€Solution Processed Flexible Organic Solar Cells Using Lowâ€Cost Printable Copper Electrodes. Advanced Materials, 2014, 26, 7271-7278.	11.1	67
771	Quasiparticle and optical properties of polythiophene-derived polymers. Physical Review B, 2014, 90, .	1.1	18
772	Neat C ₇₀ -Based Bulk-Heterojunction Polymer Solar Cells with Excellent Acceptor Dispersion. ACS Applied Materials & Interfaces, 2014, 6, 21416-21425.	4.0	28
773	Tetrathienodibenzocarbazole Based Donor–Acceptor Type Wide Band-Gap Copolymers for Polymer Solar Cell Applications. Macromolecules, 2014, 47, 7407-7415.	2.2	17
774	Light trapping design for low band-gap polymer solar cells. Optics Express, 2014, 22, A465.	1.7	11
775	Synthesis, characterization and photovoltaic properties of benzo[1,2-b:4,5-b′]dithiophene-bridged molecules. RSC Advances, 2014, 4, 63260-63267.	1.7	11
776	Efficient Organic Solar Cells with Star-Shaped Small Molecules Comprising of Planar Donating Core and Accepting Edges. Journal of Physical Chemistry C, 2014, 118, 27193-27200.	1.5	18
777	N-phenyl[60]fulleropyrrolidines: alternative acceptor materials to PC ₆₁ BM for high performance organic photovoltaic cells. Journal of Materials Chemistry A, 2014, 2, 20889-20895.	5.2	28
778	Fullerene mixtures enhance the thermal stability of a non-crystalline polymer solar cell blend. Applied Physics Letters, 2014, 104, .	1.5	47
779	Rationalization of the Selectivity in the Optimization of Processing Conditions for High-Performance Polymer Solar Cells Based on the Polymer Self-Assembly Ability. Journal of Physical Chemistry C, 2014, 118, 29473-29481.	1.5	7
780	Dielectric Interface Effects on Surface Charge Accumulation and Collection towards High-Efficiency Organic Solar Cells. Journal of Applied Physics, 2014, 115, 154506.	1.1	19

#	Article	IF	CITATIONS
781	Impact of the Electronâ€Transport Layer on the Performance of Solutionâ€Processed Smallâ€Molecule Organic Solar Cells. ChemSusChem, 2014, 7, 2358-2364.	3.6	40
782	New Benzo[1,2â€ <i>b</i> :4,5â€ <i>b′</i>]dithiopheneâ€Based Small Molecules Containing Alkoxyphenyl Side Chains for High Efficiency Solutionâ€Processed Organic Solar Cells. ChemSusChem, 2014, 7, 3319-3327.	3.6	18
783	Highly flexible and transparent conducting silver nanowire/ZnO composite film for organic solar cells. Nano Research, 2014, 7, 1370-1379.	5.8	96
784	Optical Engineering of Uniformly Decorated Graphene Oxide Nanoflakes via in Situ Growth of Silver Nanoparticles with Enhanced Plasmonic Resonance. ACS Applied Materials & Interfaces, 2014, 6, 21069-21077.	4.0	23
785	Triphenylamineâ€Substituted Metalloporphyrins for Solutionâ€Processed Bulk Heterojunction Solar Cells: The Effect of the Central Metal Ion on Device Performance. European Journal of Inorganic Chemistry, 2014, 2014, 4852-4857.	1.0	7
786	Determining Optimal Crystallinity of Diketopyrrolopyrrole-Based Terpolymers for Highly Efficient Polymer Solar Cells and Transistors. Chemistry of Materials, 2014, 26, 6963-6970.	3.2	130
787	Structural influences on charge carrier dynamics for small-molecule organic photovoltaics. Journal of Applied Physics, 2014, 116, 013105.	1.1	6
788	Improved Efficiency and Stability of Polymer Solar Cells Utilizing Two-Dimensional Reduced Graphene Oxide: Graphene Oxide Nanocomposites as Hole-Collection Material. ACS Applied Materials & Interfaces, 2014, 6, 22334-22342.	4.0	42
789	A Solutionâ€Processed Smallâ€Molecule Diketopyrrolopyrrole Dimer for Organic Solar Cells. Asian Journal of Organic Chemistry, 2014, 3, 948-952.	1.3	6
790	The proton dissociation constant of additive effect on self-assembly of poly(3-hexyl-thiophene) for organic solar cells. Electronic Materials Letters, 2014, 10, 767-773.	1.0	11
791	Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nature Communications, 2014, 5, 5293.	5.8	2,854
792	Extending π-Conjugation System with Benzene: An Effective Method To Improve the Properties of Benzodithiophene-Based Polymer for Highly Efficient Organic Solar Cells. Macromolecules, 2014, 47, 7823-7830.	2.2	94
793	Stabilizing polymer-based bulk heterojunction solar cells via crosslinking. Polymer International, 2014, 63, 1346-1361.	1.6	89
794	Simple solution-processed titanium oxide electron transport layer for efficient inverted polymer solar cells. Thin Solid Films, 2014, 573, 134-139.	0.8	9
795	Nanowire-based multifunctional antireflection coatings for solar cells. Nanoscale, 2014, 6, 14555-14562.	2.8	42
796	Solution-Processed Organic Solar Cells Based on Dialkylthiol-Substituted Benzodithiophene Unit with Efficiency near 10%. Journal of the American Chemical Society, 2014, 136, 15529-15532.	6.6	670
797	Synthesis, Spectroscopic Properties, and Photoconductivity of Black Absorbers Consisting of Pt(Bipyridine)(Dithiolate) Charge Transfer Complexes in the Presence and Absence of Nitrofluorenone Acceptors. Journal of the American Chemical Society, 2014, 136, 16185-16200.	6.6	37
798	Tuning of HOMO energy levels and open circuit voltages in solar cells based on statistical copolymers prepared by ADMET polymerization. Polymer Chemistry, 2014, 5, 6287-6294.	1.9	12

#	Article	IF	CITATIONS
799	Efficient inverted quasi-bilayer organic solar cells fabricated by using non-halogenated solvent processes. Journal of Materials Chemistry A, 2014, 2, 13398-13406.	5.2	39
800	Highly efficient hybrid solar cells with tunable dipole at the donor–acceptor interface. Nanoscale, 2014, 6, 10545-10550.	2.8	20
801	High performance asymmetrical push–pull small molecules end-capped with cyanophenyl for solution-processed solar cells. Chemical Communications, 2014, 50, 10251-10254.	2.2	61
802	Structural tuning of quinoxaline-benzodithiophene copolymers via alkyl side chain manipulation: synthesis, characterization and photovoltaic properties. Journal of Materials Chemistry A, 2014, 2, 11162-11170.	5.2	37
803	Benzothiadiazole[1,2-b:4,3-b′]dithiophene, a new ladder-type multifused block: Synthesis and photovoltaic application. Organic Electronics, 2014, 15, 3601-3608.	1.4	16
804	Zwitterionic ammonium and neutral amino molecules as cathode interlayer for inverted polymer solar cells. Organic Electronics, 2014, 15, 3632-3638.	1.4	12
805	Benzodithiophene-based polymers containing novel electron accepting selenophene-incorporated pyrrolo[3,4-c]pyrrole-1,3-dione units for highly efficient thin film transistors and polymer solar cells. Synthetic Metals, 2014, 198, 230-238.	2.1	25
806	Carbazole linked phenylquinoline-based fullerene derivatives as acceptors for bulk heterojunction polymer solar cells: effect of interfacial contacts on device performance. Journal of Materials Chemistry A, 2014, 2, 6916.	5.2	21
807	Manipulating the horizontal morphology and vertical distribution of the active layer in BHJ-PSC with a multi-functional solid organic additive. Journal of Materials Chemistry A, 2014, 2, 5295-5303.	5.2	40
808	A non-fullerene acceptor with all "A―units realizing high open-circuit voltage solution-processed organic photovoltaics. Journal of Materials Chemistry A, 2014, 2, 2657.	5.2	21
809	Charge generation in polymer–fullerene bulk-heterojunction solar cells. Physical Chemistry Chemical Physics, 2014, 16, 20291-20304.	1.3	190
810	Strong addition effect of charge-bridging polymer in polymer:fullerene solar cells with low fullerene content. RSC Advances, 2014, 4, 24914-24921.	1.7	4
811	Fluorinated low band gap copolymer based on dithienosilole–benzothiadiazole for high-performance photovoltaic device. Polymer Chemistry, 2014, 5, 6279-6286.	1.9	16
812	Self-assembled buffer layer from conjugated diblock copolymers with ethyleneoxide side chains for high efficiency polymer solar cells. Journal of Materials Chemistry C, 2014, 2, 8054-8064.	2.7	15
813	A water-soluble metallophthalocyanine derivative as a cathode interlayer for highly efficient polymer solar cells. Journal of Materials Chemistry A, 2014, 2, 12484-12491.	5.2	54
814	Sub-glass transition annealing enhances polymer solar cell performance. Journal of Materials Chemistry A, 2014, 2, 6146-6152.	5.2	48
815	Nanostructured hybrid ZnO@CdS nanowalls grown in situ for inverted polymer solar cells. Journal of Materials Chemistry C, 2014, 2, 1018-1027.	2.7	51
816	Polythiophenoazomethines – alternate photoactive materials for organic photovoltaics. Journal of Materials Chemistry A, 2014, 2, 15620-15626.	5.2	14

#	Article	IF	CITATIONS
817	A new two-dimensional donor/acceptor copolymer based on 4,8-bis(2′-ethylhexylthiophene)thieno[2,3-f]benzofuran for high-performance polymer solar cells. Journal of Materials Chemistry C, 2014, 2, 5651.	2.7	38
818	Two-dimensional benzodithiophene and benzothiadiazole based solution-processed small molecular organic field-effect transistors & solar cells. Journal of Materials Chemistry C, 2014, 2, 3921.	2.7	41
819	Photochemical stability of high efficiency PTB7:PC ₇₀ BM solar cell blends. Journal of Materials Chemistry A, 2014, 2, 20189-20195.	5.2	134
820	Improving Cathodes with a Polymer Interlayer in Reversed Organic Solar Cells. Advanced Energy Materials, 2014, 4, 1400643.	10.2	43
821	Large-Scale Flexible and Highly Conductive Carbon Transparent Electrodes via Roll-to-Roll Process and Its High Performance Lab-Scale Indium Tin Oxide-Free Polymer Solar Cells. Chemistry of Materials, 2014, 26, 6293-6302.	3.2	83
822	A high-performance solution-processed small molecule: alkylselenophene-substituted benzodithiophene organic solar cell. Journal of Materials Chemistry C, 2014, 2, 4937-4946.	2.7	34
823	Development of bulk heterojunction morphology by the difference of intermolecular interaction behaviors. Organic Electronics, 2014, 15, 3558-3567.	1.4	8
824	Effect of processing additive on morphology and charge extraction in bulk-heterojunction solar cells. Journal of Materials Chemistry A, 2014, 2, 15052-15057.	5.2	39
825	Flexible silver grid/PEDOT:PSS hybrid electrodes for large area inverted polymer solar cells. Nano Energy, 2014, 10, 259-267.	8.2	111
826	Determination of the optical constants of bulk heterojunction active layers from standard solar cell measurements. Organic Electronics, 2014, 15, 3584-3589.	1.4	3
827	Third-generation solar cells: a review and comparison of polymer:fullerene, hybrid polymer and perovskite solar cells. RSC Advances, 2014, 4, 43286-43314.	1.7	238
828	Impact of dithienyl or thienothiophene units on the optoelectronic and photovoltaic properties of benzo[1,2,5]thiadiazole based donor–acceptor copolymers for organic solar cell devices. RSC Advances, 2014, 4, 43142-43149.	1.7	13
829	Improve the Operational Stability of the Inverted Organic Solar Cells Using Bilayer Metal Oxide Structure. ACS Applied Materials & Interfaces, 2014, 6, 18861-18867.	4.0	18
830	Quantifying Charge Recombination in Solar Cells Based on Donor–Acceptor P3HT Analogues. Journal of Physical Chemistry C, 2014, 118, 6650-6660.	1.5	6
831	Trapping Light with a Nanostructured CeO _x /Al Back Electrode for Highâ€Performance Polymer Solar Cells. Advanced Materials Interfaces, 2014, 1, 1400197.	1.9	33
832	Investigation into the optical characteristics of the top-illuminated organic solar cells with graphene electrode. Journal of Modern Optics, 2014, 61, 943-953.	0.6	2
833	Tandem small molecule organic photovoltaic cells with broad spectral response up to $1 \hat{l}^1/4$ m and a high open-circuit voltage. Organic Electronics, 2014, 15, 3024-3030.	1.4	12
834	Naphthobisthiazole diimide-based n-type polymer semiconductors: synthesis, π-stacking, field-effect charge transport, and all-polymer solar cells. Polymer Chemistry, 2014, 5, 5707.	1.9	25

#	Article	IF	CITATIONS
835	Double junction polymer solar cells. Journal of Materials Chemistry A, 2014, 2, 10331-10349.	5.2	18
836	Charge transfer highways in polymer solar cells embedded with imprinted PEDOT:PSS gratings. RSC Advances, 2014, 4, 58342-58348.	1.7	6
837	Engineering crystalline structures of two-dimensional MoS ₂ sheets for high-performance organic solar cells. Journal of Materials Chemistry A, 2014, 2, 7727-7733.	5.2	142
838	Morphology, molecular stacking, dynamics and device performance correlations of vacuum-deposited small-molecule organic solar cells. Physical Chemistry Chemical Physics, 2014, 16, 8852-8864.	1.3	23
839	Plasma treatment of ITO cathode to fabricate free electron selective layer in inverted polymer solar cells. Journal of Materials Chemistry C, 2014, 2, 8715-8722.	2.7	35
840	High efficiency P3HT:PCBM solar cells with an inserted PCBM layer. Journal of Materials Chemistry C, 2014, 2, 4383.	2.7	97
841	Effects of ultraviolet soaking on surface electronic structures of solution processed ZnO nanoparticle films in polymer solar cells. Journal of Materials Chemistry A, 2014, 2, 17676-17682.	5.2	48
842	Enhanced power conversion efficiency of inverted organic solar cells by using solution processed Sn-doped TiO2 as an electron transport layer. Journal of Materials Chemistry A, 2014, 2, 11426.	5.2	20
843	Synthesis of 6H-benzo[c]chromene as a new electron-rich building block of conjugated alternating copolymers and its application to polymer solar cells. Journal of Materials Chemistry A, 2014, 2, 14146-14153.	5.2	12
844	Ultrafast charge separation and nongeminate electron–hole recombination in organic photovoltaics. Physical Chemistry Chemical Physics, 2014, 16, 20305-20309.	1.3	31
845	Solution-processed, indacenodithiophene-based, small-molecule organic field-effect transistors and solar cells. Journal of Materials Chemistry C, 2014, 2, 7523.	2.7	39
846	Carrier motion in as-spun and annealed P3HT:PCBM blends revealed by ultrafast optical electric field probing and Monte Carlo simulations. Physical Chemistry Chemical Physics, 2014, 16, 2686.	1.3	25
847	Enhancement of photovoltaic efficiency by insertion of a polyoxometalate layer at the anode of an organic solar cell. Inorganic Chemistry Frontiers, 2014, 1, 682-688.	3.0	39
848	Nanoscale phase separation in the bulk heterojunction structure of perylene bisimide and porphyrin by controlling intermolecular interactions. RSC Advances, 2014, 4, 35072-35076.	1.7	1
849	Rhodanine dye-based small molecule acceptors for organic photovoltaic cells. Chemical Communications, 2014, 50, 8235-8238.	2.2	121
850	The effect of DIO additive on performance improvement of polymer solar cells. Science Bulletin, 2014, 59, 3227-3231.	1.7	7
851	Organic photovoltaics: key photophysical, device and design aspects. Journal of Modern Optics, 2014, 61, 1703-1713.	0.6	3
852	Benzochalcogenodiazoleâ€Based Donor–Acceptor–Acceptor Molecular Donors for Organic Solar Cells. ChemSusChem, 2014, 7, 457-465.	3.6	34

#	Article	IF	CITATIONS
853	Enhanced Performance and Stability of Polymer BHJ Photovoltaic Devices from Dry Transfer of PEDOT:PSS. ChemSusChem, 2014, 7, 1957-1963.	3.6	23
854	Highly efficient inverted polymer solar cells using fullerene derivative modified TiO2 nanorods as the buffer layer. RSC Advances, 2014, 4, 19529.	1.7	15
855	Influence of moiety sequence on the performance of small molecular photovoltaic materials. Journal of Materials Chemistry A, 2014, 2, 15396-15405.	5.2	33
856	New conjugated molecular scaffolds based on [2,2]paracyclophane as electron acceptors for organic photovoltaic cells. Chemical Communications, 2014, 50, 9939-9942.	2.2	40
857	The application of a magnetic field to improve polymer: Fullerence solar cell performance. , 2014, , .		0
858	Effect of thermal annealing on active layer morphology and performance for small molecule bulk heterojunction organic solar cells. Journal of Materials Chemistry C, 2014, 2, 7247-7255.	2.7	70
859	n-Type small aromatic core diimides flanked with electron donating thienylethyl moieties and electrical responses in organic devices. RSC Advances, 2014, 4, 41476-41482.	1.7	4
860	Easily-accessible fullerenol as a cathode buffer layer for inverted organic photovoltaic devices. RSC Advances, 2014, 4, 25886.	1.7	20
861	An electrochemically deposited film as an interface layer to improve the performance of polymer light-emitting diodes. Journal of Materials Chemistry C, 2014, 2, 4117-4120.	2.7	13
862	Conjugated Phosphonic Acid Modified Zinc Oxide Electron Transport Layers for Improved Performance in Organic Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 19229-19234.	4.0	29
863	Self n-doped [6,6]-phenyl-C61-butyric acid 2-((2-(trimethylammonium)ethyl)-(dimethyl)ammonium) ethyl ester diiodides as a cathode interlayer for inverted polymer solar cells. Journal of Materials Chemistry A, 2014, 2, 14720-14728.	5.2	41
864	A Green Approach to Organic Thin-Film Electronic Devices: Recycling Electrodes Composed of Indium Tin Oxide (ITO). ACS Sustainable Chemistry and Engineering, 2014, 2, 2715-2721.	3.2	15
865	Polymer nanofibers: preserving nanomorphology in ternary blend organic photovoltaics. Physical Chemistry Chemical Physics, 2014, 16, 23829-23836.	1.3	9
866	Employing the plasmonic effect of the Ag–graphene composite for enhancing light harvesting and photoluminescence quenching efficiency of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene]. Physical Chemistry Chemical Physics, 2014, 16, 4561.	1.3	11
867	Built-in potential shift and Schottky-barrier narrowing in organic solar cells with UV-sensitive electron transport layers. Physical Chemistry Chemical Physics, 2014, 16, 12131-12136.	1.3	11
868	Roll-coating fabrication of flexible large area small molecule solar cells with power conversion efficiency exceeding 1%. Journal of Materials Chemistry A, 2014, 2, 19809-19814.	5.2	44
869	A dual-functional additive improves the performance of molecular bulk heterojunction photovoltaic cells. RSC Advances, 2014, 4, 9401.	1.7	22
870	Design and control of organic semiconductors and their nanostructures for polymer–fullerene-based photovoltaic devices. Journal of Materials Chemistry A, 2014, 2, 11545-11560.	5.2	67

#	Article	IF	CITATIONS
871	The role of solvent vapor annealing in highly efficient air-processed small molecule solar cells. Journal of Materials Chemistry A, 2014, 2, 9048.	5.2	133
872	A new class of three-dimensional, p-type, spirobifluorene-modified perylene diimide derivatives for small molecular-based bulk heterojunction organic photovoltaic devices. Journal of Materials Chemistry C, 2014, 2, 7656.	2.7	18
873	How disorder controls the kinetics of triplet charge recombination in semiconducting organic polymer photovoltaics. Physical Chemistry Chemical Physics, 2014, 16, 20321-20328.	1.3	37
874	High efficiency solution-processed two-dimensional small molecule organic solar cells obtained via low-temperature thermal annealing. Journal of Materials Chemistry A, 2014, 2, 15904-15911.	5.2	48
875	Indacenodithiophene core-based small molecules with tunable side chains for solution-processed bulk heterojunction solar cells. Journal of Materials Chemistry A, 2014, 2, 4004.	5.2	32
876	Solution processed and self-assembled polymerizable fullerenes/metal oxide as an interlayer for high efficient inverted polymer solar cells. Journal of Materials Chemistry C, 2014, 2, 10282-10290.	2.7	12
877	The role of emissive charge transfer states in two polymer–fullerene organic photovoltaic blends: tuning charge photogeneration through the use of processing additives. Journal of Materials Chemistry A, 2014, 2, 12583-12593.	5.2	13
878	Property modulation of benzodithiophene-based polymers via the incorporation of a covalently bonded novel 2,1,3-benzothiadiazole-1,2,4-oxadiazole derivative in their main chain for polymer solar cells. Journal of Materials Chemistry C, 2014, 2, 8515-8524.	2.7	13
879	High-efficiency inverted organic solar cells with polyethylene oxide-modified Zn-doped TiO2as an interfacial electron transport layer. Nanoscale, 2014, 6, 8585.	2.8	28
880	The effect of branched versus linear alkyl side chains on the bulk heterojunction photovoltaic performance of small molecules containing both benzodithiophene and thienopyrroledione. Physical Chemistry Chemical Physics, 2014, 16, 19874-19883.	1.3	34
881	Efficient preparation of ultralarge graphene oxide using a PEDOT:PSS/GO composite layer as hole transport layer in polymer-based optoelectronic devices. RSC Advances, 2014, 4, 55067-55076.	1.7	69
882	Oligothiophene-modified silver/silica core–shell nanoparticles for inhibiting open-circuit voltage drop and aggregation in polymer solar cells. Journal of Materials Chemistry A, 2014, 2, 15357-15364.	5.2	11
883	New solution processed bulk-heterojunction organic solar cells based on a triazine-bridged porphyrin dyad as electron donor. RSC Advances, 2014, 4, 50819-50827.	1.7	14
884	Doping Poly(3-hexylthiophene) Nanowires with Selenophene Increases the Performance of Polymer-Nanowire Solar Cells. Chemistry of Materials, 2014, 26, 4605-4611.	3.2	51
885	Benzotrithiophene polymers with tuneable bandgap for photovoltaic applications. RSC Advances, 2014, 4, 53939-53945.	1.7	10
886	Recombination pathways in polymer:fullerene photovoltaics observed through spin polarization measurements. Applied Physics Letters, 2014, 104, .	1.5	26
887	Role of Domain Size and Phase Purity on Charge Carrier Density, Mobility, and Recombination in Poly(3-hexylthiophene):Phenyl-C61-butyric Acid Methyl Ester Devices. Journal of Physical Chemistry C, 2014, 118, 3968-3975.	1.5	20
888	Roles of Quinoidal Character and Regioregularity in Determining the Optoelectronic and Photovoltaic Properties of Conjugated Copolymers. Macromolecules, 2014, 47, 6252-6259.	2.2	40

#	Article	IF	CITATIONS
889	Plasmonic nanostructures for light trapping in organic photovoltaic devices. Nanoscale, 2014, 6, 8444.	2.8	150
890	Boosting photovoltaic performance of a benzobisthiazole based copolymer: a device approach using a zinc oxide electron transport layer. Journal of Materials Chemistry A, 2014, 2, 6075-6080.	5.2	27
891	Optoelectronic simulation and thickness optimization of energetically disordered organic solar cells. Journal of Computational Electronics, 2014, 13, 933-942.	1.3	28
892	Sideâ€Chain Engineering of Benzodithiopheneâ€Fluorinated Quinoxaline Lowâ€Bandâ€Gap Coâ€polymers for Highâ€Performance Polymer Solar Cells. Chemistry - A European Journal, 2014, 20, 13259-13271.	1.7	44
893	Application of Biuret, Dicyandiamide, or Urea as a Cathode Buffer Layer toward the Efficiency Enhancement of Polymer Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 4329-4337.	4.0	29
894	Versatile Electron-Collecting Interfacial Layer by in Situ Growth of Silver Nanoparticles in Nonconjugated Polyelectrolyte Aqueous Solution for Polymer Solar Cells. Journal of Physical Chemistry B, 2014, 118, 11563-11572.	1.2	17
895	Beyond Fullerenes: Design of Nonfullerene Acceptors for Efficient Organic Photovoltaics. Journal of the American Chemical Society, 2014, 136, 14589-14597.	6.6	213
896	Efficient spectral conversion from visible to near-infrared in transparent glass ceramics containing Ce ³⁺ –Yb ³⁺ codoped Y ₃ Al ₅ O ₁₂ nanocrystals. Journal of Materials Chemistry C, 2014, 2, 2204-2211.	2.7	59
897	Performance Improvements in Polymer Nanofiber/Fullerene Solar Cells with External Electric Field Treatment. Journal of Physical Chemistry C, 2014, 118, 11285-11291.	1.5	26
898	New low band gap 2-(4-(trifluoromethyl)phenyl)-1H-benzo[d]imidazole and benzo[1,2-c;4,5-c′]bis[1,2,5]thiadiazole based conjugated polymers for organic photovoltaics. RSC Advances, 2014, 4, 44902-44910.	1.7	22
899	Optimizing the Performance of Conjugated Polymers in Organic Photovoltaic Cells by Traversing Group 16. Macromolecules, 2014, 47, 7253-7271.	2.2	162
900	A New Tetracyclic Lactam Building Block for Thick, Broad-Bandgap Photovoltaics. Journal of the American Chemical Society, 2014, 136, 11578-11581.	6.6	73
901	Chain Length Dependence of the Photovoltaic Properties of Monodisperse Donor–Acceptor Oligomers as Model Compounds of Polydisperse Low Band Gap Polymers. Advanced Functional Materials, 2014, 24, 7538-7547.	7.8	58
902	Elevenâ€Membered Fusedâ€Ring Low Bandâ€Gap Polymer with Enhanced Charge Carrier Mobility and Photovoltaic Performance. Advanced Functional Materials, 2014, 24, 3631-3638.	7.8	99
903	Efficient polymer solar cells based on terpolymers with a broad absorption range of 300–900 nm. Journal of Materials Chemistry A, 2014, 2, 5218-5223.	5.2	46
904	Perylene diimides: a thickness-insensitive cathode interlayer for high performance polymer solar cells. Energy and Environmental Science, 2014, 7, 1966.	15.6	672
905	Tailoring Electronâ€Transfer Barriers for Zinc Oxide/C ₆₀ Fullerene Interfaces. Advanced Functional Materials, 2014, 24, 7381-7389.	7.8	54
906	Diindenocarbazole-based large bandgap copolymers for high-performance organic solar cells with large open circuit voltages. Polymer Chemistry, 2014, 5, 6847-6856.	1.9	22

ARTICLE IF CITATIONS Review on the Recent Progress in Low Band Gap Conjugated Polymers for Bulk Heteroâ€iunction 907 0.8 66 Polymer Solar Cells. Journal of the Chinese Chemical Society, 2014, 61, 115-126. Triphenylamine modified bis-diketopyrrolopyrrole molecular donor materials with extended conjugation for bulk heterojunction solar cells. Organic Electronics, 2014, 15, 2575-2586. 908 1.4 Annealing-induced phase separation in small-molecular bulk heterojunctions. Organic Electronics, 909 1.4 3 2014, 15, 2810-2816. Trapâ€Assisted Recombination via Integer Charge Transfer States in Organic Bulk Heterojunction Photovoltaics. Advanced Functional Materials, 2014, 24, 6309-6316. HATCN-based Charge Recombination Layers as Effective Interconnectors for Tandem Organic Solar 911 4.0 12 Cells. ACS Applied Materials & amp; Interfaces, 2014, 6, 15604-15609. Air-processed inverted organic solar cells utilizing a 2-aminoethanol-stabilized ZnO nanoparticle electron transport layer that requires no thermal annealing. Journal of Materials Chemistry A, 2014, 5.2 2, 18754-18760. Side chain engineering of n-type conjugated polymer enhances photocurrent and efficiency of 913 2.2 62 all-polymer solar cells. Chemical Communications, 2014, 50, 10801. Evidence for the Rapid Conversion of Primary Photoexcitations to Triplet States in Seleno- and 914 1.2 46 Telluro- Analogues of Poly(3-hexylthiophene). Journal of Physical Chemistry B, 2014, 118, 2589-2597. Synthesis and properties of low bandgap star molecules TPA-[DTS-PyBTTh3]3 and 915 DMM-TPA[DTS-PyBTTh3]3 for solution-processed bulk heterojunction organic solar cells. Journal of 2.7 19 Materials Chemistry C, 2014, 2, 8412-8422. Synthesis and photovoltaic properties of new donor–acceptor (D–A) copolymers based on benzo[1,2-b:3,4-bâ€2:6,5-bâ€2â€2] trithiophene donor and different acceptor units (P1 and P2). RSC Advances, 201.4, 4, 53531-53542. 9-Arylidene-9<i>H</i>-Fluorene-Containing Polymers for High Efficiency Polymer Solar Cells. ACS 917 31 4.0Applied Materials & amp; Interfaces, 2014, 6, 1601-1607. Stable and Controllable Polymer/Fullerene Composite Nanofibers through Cooperative Noncovalent 3.2 Interactions for Organic Photovoltaics. Chemistry of Materials, 2014, 26, 3747-3756. Au nanoparticles on ultrathin MoS₂sheets for plasmonic organic solar cells. Journal of 919 5.2 110 Materials Chemistry A, 2014, 2, 14798-14806. Solution phase n-doping of C₆₀and PCBM using tetrabutylammonium fluoride. Journal of Materials Chemistry A, 2014, 2, 303-307. 5.2 Synthesis of poly(5,6-difluoro-2,1,3-benzothiadiazole-<i>alt</i>-9,9-dioctyl-fluorene) via direct 921 2.531 arylation polycondensation. Journal of Polymer Science Part A, 2014, 52, 2367-2374. A high-performance photovoltaic small molecule developed by modifying the chemical structure and optimizing the morphology of the active layer. RSC Advances, 2014, 4, 31977-31980. 54 The effects of P3HT crystallinity in bilayer structure organic solar cells. Current Applied Physics, 923 1.1 4 2014, 14, 1369-1373. Advantage of suppressed non-Langevin recombination in low mobility organic solar cells. Applied 924 1.5 Physics Letters, 2014, 105, .

#	Article	IF	CITATIONS
925	Crystallinity Effects in Sequentially Processed and Blend-Cast Bulk-Heterojunction Polymer/Fullerene Photovoltaics. Journal of Physical Chemistry C, 2014, 118, 18424-18435.	1.5	46
926	Sideâ€Chain Tunability via Triple Component Random Copolymerization for Better Photovoltaic Polymers. Advanced Energy Materials, 2014, 4, 1300864.	10.2	81
927	Linkage effects of linear D–π–A–π–D type diketopyrrolopyrrole-triphenylamine based solution-processable organic small molecule photovoltaic materials. Journal of Materials Chemistry C, 2014, 2, 4019.	2.7	34
928	High Polymer/Fullerene Ratio Realized in Efficient Polymer Solar Cells by Tailoring of the Polymer Sideâ€Chains. Advanced Materials, 2014, 26, 3624-3630.	11.1	62
929	Effect of Fluorination on Electronic Properties of Polythienothiophene- <i>co</i> -benzodithiophenes and Their Fullerene Complexes. ACS Applied Materials & Interfaces, 2014, 6, 15889-15896.	4.0	13
930	Systematic Investigation of Sideâ€Chain Branching Position Effect on Electron Carrier Mobility in Conjugated Polymers. Advanced Functional Materials, 2014, 24, 6270-6278.	7.8	116
931	Plasmonic-enhanced polymer photovoltaic cells based on Au nanoparticles with wide absorption spectra of 300–1000 nm. Journal of Materials Chemistry C, 2014, 2, 9303-9310.	2.7	18
932	Organometallic Approaches to Conjugated Polymers for Plastic Solar Cells: From Laboratory Synthesis to Industrial Production. European Journal of Organic Chemistry, 2014, 2014, 6583-6614.	1.2	63
933	Flexible polymer solar cell modules with patterned vanadium suboxide layers deposited by an electro-spray printing method. Solar Energy Materials and Solar Cells, 2014, 130, 555-560.	3.0	17
934	ï€ â€Extended Narrowâ€Bandgap Diketopyrrolopyrroleâ€Based Oligomers for Solutionâ€Processed Inverted Organic Solar Cells. Advanced Energy Materials, 2014, 4, 1400879.	10.2	47
935	NIR-Absorbing Merocyanine Dyes for BHJ Solar Cells. Chemistry of Materials, 2014, 26, 4856-4866.	3.2	53
936	Optimization of the Power Conversion Efficiency of Room Temperatureâ€Fabricated Polymer Solar Cells Utilizing Solution Processed Tungsten Oxide and Conjugated Polyelectrolyte as Electrode Interlayer. Advanced Functional Materials, 2014, 24, 3986-3995.	7.8	41
937	Solvents Induced ZnO Nanoparticles Aggregation Associated with Their Interfacial Effect on Organic Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 18172-18179.	4.0	35
938	High-Performance NiO/Ag/NiO Transparent Electrodes for Flexible Organic Photovoltaic Cells. ACS Applied Materials & Interfaces, 2014, 6, 16403-16408.	4.0	91
939	In Situ Fabricating One-Dimensional Donor–Acceptor Core–Shell Hybrid Nanobeams Network Driven by Self-Assembly of Diblock Copolythiophenes. Macromolecules, 2014, 47, 1757-1767.	2.2	13
940	Simultaneous Enhancement of Solar Cell Efficiency and Photostability via Chemical Tuning of Electron Donating Units in Diketopyrrolopyrrole-Based Push–Pull Type Polymers. Macromolecules, 2014, 47, 6270-6280.	2.2	37
941	Match the Interfacial Energy Levels between Hole Transport Layer and Donor Polymer To Achieve High Solar Cell Performance. Journal of Physical Chemistry C, 2014, 118, 22834-22839.	1.5	26
942	Imide- and Amide-Functionalized Polymer Semiconductors. Chemical Reviews, 2014, 114, 8943-9021.	23.0	874

#	Article	IF	CITATIONS
943	The influence of microstructure on charge separation dynamics in organic bulk heterojunction materials for solar cell applications. Journal of Materials Chemistry A, 2014, 2, 6218-6230.	5.2	48
944	An azafullerene acceptor for organic solar cells. RSC Advances, 2014, 4, 24029.	1.7	15
945	Aqueous Solution Processed, Ultrathin ZnO Film with Low Conversion Temperature as the Electron Transport Layer in the Inverted Polymer Solar Cells. Journal of Physical Chemistry C, 2014, 118, 21819-21825.	1.5	13
946	MoO3/Ag/MoO3 top anode structure for semitransparent inverted organic solar cells. Current Applied Physics, 2014, 14, 1144-1148.	1.1	36
947	Enhanced performance of polymer solar cells by dipole-assisted hole extraction. Solar Energy Materials and Solar Cells, 2014, 130, 15-19.	3.0	16
948	High-efficiency inverted polymer solar cells via dual effects of introducing the high boiling point solvent and the high conductive PEDOT:PSS layer. Organic Electronics, 2014, 15, 2059-2067.	1.4	7
949	Effect of Nanocrystalline Domains in Photovoltaic Devices with Benzodithiophene-Based Donor–Acceptor Copolymers. Journal of Physical Chemistry C, 2014, 118, 17351-17361.	1.5	8
950	Indium Tin Oxide-Free Tandem Polymer Solar Cells on Opaque Substrates with Top Illumination. ACS Applied Materials & Interfaces, 2014, 6, 13937-13944.	4.0	14
951	New Molecular Donors with Dithienopyrrole as the Electron-Donating Group for Efficient Small-Molecule Organic Solar Cells. Chemistry of Materials, 2014, 26, 4361-4367.	3.2	54
952	Azulene Methacrylate Polymers: Synthesis, Electronic Properties, and Solar Cell Fabrication. Journal of the American Chemical Society, 2014, 136, 11043-11049.	6.6	96
953	Study of the Nanoscale Morphology of Polythiophene Fibrils and a Fullerene Derivative. ACS Applied Materials & Interfaces, 2014, 6, 11965-11972.	4.0	9
954	Benzodithiophene homopolymers synthesized by Grignard metathesis (GRIM) and Stille coupling polymerizations. Journal of Materials Chemistry A, 2014, 2, 8773-8781.	5.2	14
955	Open-circuit voltage up to 1.07V for solution processed small molecule based organic solar cells. Organic Electronics, 2014, 15, 2285-2294.	1.4	32
956	Stability study of quinoxaline and pyrido pyrazine based co-polymers for solar cell applications. Solar Energy Materials and Solar Cells, 2014, 130, 138-143.	3.0	24
957	Towards high-efficiency non-fullerene organic solar cells: Matching small molecule/polymer donor/acceptor. Organic Electronics, 2014, 15, 2270-2276.	1.4	53
958	Synthesis and characterizations of poly(3,6-thienophenanthrene) and poly(2,7-thienophenanthrene) and their applications in polymer light-emitting devices and solar cells. Organic Electronics, 2014, 15, 2311-2321.	1.4	6
959	A Bifunctional Copolymer Additive to Utilize Photoenergy Transfer and To Improve Hole Mobility for Organic Ternary Bulk-Heterojunction Solar Cell. ACS Applied Materials & Interfaces, 2014, 6, 12119-12125.	4.0	35
960	Organic solar cells based on conjugated polymers : History and recent advances. Korean Journal of Chemical Engineering, 2014, 31, 1095-1104.	1.2	67

#	Article	IF	CITATIONS
961	Junction capacitance and donor-acceptor interface of organic photovoltaics. Applied Physics Letters, 2014, 105, 063302.	1.5	20
962	Self-Assembled Conjugated Polyelectrolyte–Ionic Liquid Crystal Complex as an Interlayer for Polymer Solar Cells: Achieving Performance Enhancement via Rapid Liquid Crystal-Induced Dipole Orientation. Macromolecules, 2014, 47, 1623-1632.	2.2	42
963	Polymer-based parallel tandem solar cells with a transparent ferroelectric interconnecting layer. Applied Physics Letters, 2014, 104, 083302.	1.5	7
964	Microcavityâ€Enhanced Lightâ€Trapping for Highly Efficient Organic Parallel Tandem Solar Cells. Advanced Materials, 2014, 26, 6778-6784.	11.1	89
965	Low operational voltage and high performance organic field effect memory transistor with solution processed graphene oxide charge storage media. Organic Electronics, 2014, 15, 2775-2782.	1.4	13
966	Rational design on D–A conjugated P(BDT–DTBT) polymers for polymer solar cells. Polymer Chemistry, 2014, 5, 5200-5210.	1.9	94
967	High efficiency inverted polymer solar cells with room-temperature titanium oxide/polyethylenimine films as electron transport layers. Journal of Materials Chemistry A, 2014, 2, 17281-17285.	5.2	66
968	Highly efficient charge-carrier generation and collection in polymer/polymer blend solar cells with a power conversion efficiency of 5.7%. Energy and Environmental Science, 2014, 7, 2939.	15.6	265
969	Semi-crystalline photovoltaic polymers with efficiency exceeding 9% in a â^¼300 nm thick conventional single-cell device. Energy and Environmental Science, 2014, 7, 3040-3051.	15.6	600
970	Design Considerations for Electrode Buffer Layer Materials in Polymer Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 14964-14974.	4.0	42
971	Gold(III) Corroles for High Performance Organic Solar Cells. Advanced Functional Materials, 2014, 24, 4655-4665.	7.8	48
972	The Role of Photon Energy in Free Charge Generation in Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2014, 4, 1400416.	10.2	12
973	Germanium―and Silicon‧ubstituted Donor–Acceptor Type Copolymers: Effect of the Bridging Heteroatom on Molecular Packing and Photovoltaic Device Performance. Advanced Energy Materials, 2014, 4, 1400527.	10.2	46
974	Iron-Oxide-Supported Nanocarbon in Lithium-Ion Batteries, Medical, Catalytic, and Environmental Applications. ACS Nano, 2014, 8, 7571-7612.	7.3	157
975	Graphene Oxide-Based Carbon Interconnecting Layer for Polymer Tandem Solar Cells. Nano Letters, 2014, 14, 1467-1471.	4.5	56
976	Synthetically controlling the optoelectronic properties of dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene-alt-diketopyrrolopyrrole-conjugated polymers for efficient solar cells. Journal of Materials Chemistry A, 2014, 2, 15316-15325.	015.2	46
977	High efficiency single-junction semitransparent perovskite solar cells. Energy and Environmental Science, 2014, 7, 2968-2973.	15.6	266
978	Effect of alkyl chain length on the photovoltaic performance of oligothiophene-based small molecules. Solar Energy Materials and Solar Cells, 2014, 130, 336-346.	3.0	17

#	Article	IF	CITATIONS
979	Suppressed Charge Recombination in Inverted Organic Photovoltaics via Enhanced Charge Extraction by Using a Conductive Fullerene Electron Transport Layer. Advanced Materials, 2014, 26, 6262-6267.	11.1	206
980	Thermal Stabilisation of Polymer–Fullerene Bulk Heterojunction Morphology for Efficient Photovoltaic Solar Cells. Advanced Materials, 2014, 26, 5831-5838.	11.1	149
981	Recent Advances in Transition Metal Complexes and Lightâ€Management Engineering in Organic Optoelectronic Devices. Advanced Materials, 2014, 26, 5368-5399.	11.1	266
982	Batchâ€ŧoâ€Batch Variation of Polymeric Photovoltaic Materials: its Origin and Impacts on Charge Carrier Transport and Device Performances. Advanced Energy Materials, 2014, 4, 1400768.	10.2	72
983	Topâ€Down Approach for Nanophase Reconstruction in Bulk Heterojunction Solar Cells. Advanced Materials, 2014, 26, 6275-6283.	11.1	122
984	Fine Tuning of Polymer Properties by Incorporating Strongly Electron-Donating 3-Hexyloxythiophene Units into Random and Semi-random Copolymers. Macromolecules, 2014, 47, 5029-5039.	2.2	27
985	Understanding the Apparent Charge Density Dependence of Mobility and Lifetime in Organic Bulk Heterojunction Solar Cells. Journal of Physical Chemistry C, 2014, 118, 8837-8842.	1.5	57
986	Towards industrialization of polymer solar cells: material processing for upscaling. Journal of Materials Chemistry A, 2014, 2, 17711-17722.	5.2	98
987	Function of CH ₂ Addends on 54Ï€ Fullerene Acceptors. Asian Journal of Organic Chemistry, 2014, 3, 936-939.	1.3	5
988	Small-Bandgap Semiconducting Polymers with High Near-Infrared Photoresponse. Journal of the American Chemical Society, 2014, 136, 12130-12136.	6.6	259
989	Interplay of Optical, Morphological, and Electronic Effects of ZnO Optical Spacers in Highly Efficient Polymer Solar Cells. Advanced Energy Materials, 2014, 4, 1400805.	10.2	78
990	Indolo[3,2-b]carbazole and benzofurazan based narrow band-gap polymers for photovoltaic cells. New Journal of Chemistry, 2014, 38, 4587-4593.	1.4	19
991	Synthesis and characterization of isoindigo-based polymers using CH-arylation polycondensation reactions for organic photovoltaics. Journal of Polymer Science Part A, 2014, 52, 2926-2933.	2.5	21
992	Investigations of the Conjugated Polymers Based on Dithienogermole (DTG) Units for Photovoltaic Applications. Macromolecules, 2014, 47, 5558-5565.	2.2	34
993	Study of resonance energy transfer between MEH-PPV and CuFeS2 nanoparticle and their application in energy harvesting device. Journal of Alloys and Compounds, 2014, 613, 364-369.	2.8	25
994	Inverted organic solar cells based on Cd-doped TiO2 as an electron extraction layer. Superlattices and Microstructures, 2014, 74, 114-122.	1.4	15
995	Solutionâ€Processed, Molecular Photovoltaics that Exploit Hole Transfer from Nonâ€Fullerene, nâ€Type Materials. Advanced Materials, 2014, 26, 4313-4319.	11.1	76
996	A Benzodithiophene-Based Novel Electron Transport Layer for a Highly Efficient Polymer Solar Cell. ACS Applied Materials & Interfaces, 2014, 6, 15875-15880.	4.0	33

#	Article	IF	CITATIONS
997	Composition tuning of a mixture of thienothiophene-based polymer (PTB7) and PC 70 BM using a novel additive, tetrabromothiophene (Br-ADD). Organic Electronics, 2014, 15, 3268-3273.	1.4	11
998	Manipulating backbone structure with various conjugated spacers to enhance photovoltaic performance of D–A-type two-dimensional copolymers. Organic Electronics, 2014, 15, 2876-2884.	1.4	40
999	Manipulating the charge transfer at CuPc/graphene interface by O ₂ plasma treatments. Nanoscale, 2014, 6, 8149-8154.	2.8	15
1000	Electronic Excited States in Amorphous MEH-PPV Polymers from Large-Scale First Principles Calculations. Journal of Chemical Theory and Computation, 2014, 10, 1272-1282.	2.3	30
1001	Phosphonate-Functionalized Donor Polymer as an Underlying Interlayer To Improve Active Layer Morphology in Polymer Solar Cells. Macromolecules, 2014, 47, 6246-6251.	2.2	42
1002	Synthesis, characterization and photovoltaic properties of two-dimensional conjugated polybenzodithiophene derivatives appending diketopyrrolopyrrole units as side chain. Polymer, 2014, 55, 4857-4864.	1.8	11
1003	Effect of electrode geometry on photovoltaic performance of polymer solar cells. Journal Physics D: Applied Physics, 2014, 47, 435104.	1.3	2
1004	Highly efficient imide functionalized pyrrolo[3,4-c]pyrrole-1,3-dione-based random copolymer containing thieno[3,4-c]pyrrole-4,6-dione and benzodithiophene for simple structured polymer solar cells. Journal of Materials Chemistry A, 2014, 2, 20126-20132.	5.2	40
1005	High Performance Organic Photovoltaics with Plasmonic-Coupled Metal Nanoparticle Clusters. ACS Nano, 2014, 8, 10305-10312.	7.3	85
1006	Highly efficient inverted organic solar cells using amino acid modified indium tin oxide as cathode. Applied Physics Letters, 2014, 104, .	1.5	28
1007	Efficient Organic Solar Cells with Helical Perylene Diimide Electron Acceptors. Journal of the American Chemical Society, 2014, 136, 15215-15221.	6.6	414
1008	Ternary blend polymer solar cells with enhanced power conversion efficiency. Nature Photonics, 2014, 8, 716-722.	15.6	601
1009	Open-circuit voltage shifted by the bending effect for flexible organic solar cells. Journal of Materials Chemistry A, 2014, 2, 15781-15787.	5.2	3
1010	Effects of Alkyl Chain Length and Substituent Pattern of Fullerene Bis-Adducts on Film Structures and Photovoltaic Properties of Bulk Heterojunction Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 17313-17322.	4.0	45
1011	Fluorination of Benzothiadiazole–Benzobisthiazole Copolymer Leads to Additive-Free Processing with Meliorated Solar Cell Performance. ACS Sustainable Chemistry and Engineering, 2014, 2, 2613-2622.	3.2	21
1012	High efficiency organic/a-Si hybrid tandem solar cells with complementary light absorption. Journal of Materials Chemistry A, 2014, 2, 15303.	5.2	18
1013	Sodium bromide electron-extraction layers for polymer bulk-heterojunction solar cells. Applied Physics Letters, 2014, 104, 103301.	1.5	2
1014	A low-temperature processed environment-friendly full-organic carrier collection layer for polymer solar cells. Applied Physics Letters, 2014, 105, 053305.	1.5	5

#	Article	IF	CITATIONS
1015	Inverted organic solar cells employing RGO/TiO x composite films as electron transport layers. Electrochimica Acta, 2014, 143, 18-22.	2.6	14
1016	Performance improvement of inverted polymer solar cells thermally evaporating CuI as an anode buffer layer. Synthetic Metals, 2014, 198, 1-5.	2.1	15
1017	Flexible Graphene Electrode-Based Organic Photovoltaics with Record-High Efficiency. Nano Letters, 2014, 14, 5148-5154.	4.5	213
1018	Preparation and properties of water-soluble conjugated polyelectrolyte. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 854-857.	0.4	0
1019	Effect of ZnO:Cs2CO3 on the performance of organic photovoltaics. Nanoscale Research Letters, 2014, 9, 323.	3.1	23
1020	Finding the Lost Open-Circuit Voltage in Polymer Solar Cells by UV-Ozone Treatment of the Nickel Acetate Anode Buffer Layer. ACS Applied Materials & Interfaces, 2014, 6, 9458-9465.	4.0	34
1021	Enhanced efficiency of polymer solar cells by incorporated Ag–SiO ₂ core–shell nanoparticles in the active layer. RSC Advances, 2014, 4, 4379-4386.	1.7	45
1022	Conventional polymer solar cells with power conversion efficiencies increased to >9% by a combination of methanol treatment and an anionic conjugated polyelectrolyte interface layer. RSC Advances, 2014, 4, 50988-50992.	1.7	14
1023	Effects of side chain isomerism on the physical and photovoltaic properties of indacenodithieno[3,2- <i>b</i>]thiophene–quinoxaline copolymers: toward a side chain design for enhanced photovoltaic performance. Journal of Materials Chemistry A, 2014, 2, 18988-18997.	5.2	45
1024	A non-fullerene electron acceptor based on fluorene and diketopyrrolopyrrole building blocks for solution-processable organic solar cells with an impressive open-circuit voltage. Physical Chemistry Chemical Physics, 2014, 16, 23837-23842.	1.3	63
1025	Electronic structure of fullerene derivatives in organic photovoltaics. Organic Electronics, 2014, 15, 2912-2921.	1.4	33
1026	The influence of binary processing additives on the performance of polymer solar cells. Nanoscale, 2014, 6, 14297-14304.	2.8	51
1027	Organic photoelectrochemical cells with quantitative photocarrier conversion. Energy and Environmental Science, 2014, 7, 3666-3673.	15.6	55
1028	Fulleropyrrolidine interlayers: Tailoring electrodes to raise organic solar cell efficiency. Science, 2014, 346, 441-444.	6.0	266
1029	Efficient Polymer Solar Cells Fabricated on Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate)-Etched Old Indium Tin Oxide Substrates. ACS Applied Materials & Interfaces, 2014, 6, 12196-12202.	4.0	12
1030	A novel carbazole–phenothiazine dyad small molecule as a non-fullerene electron acceptor for polymer bulk heterojunction solar cells. RSC Advances, 2014, 4, 33279-33285.	1.7	28
1031	Flexible organic tandem solar modules with 6% efficiency: combining roll-to-roll compatible processing with high geometric fill factors. Energy and Environmental Science, 2014, 7, 3284-3290.	15.6	75
1032	Effect of Extended ï€â€€onjugation Structure of Donor–Acceptor Conjugated Copolymers on the Photoelectronic Properties. Chemistry - an Asian Journal, 2014, 9, 2961-2969.	1.7	9

#	Article	IF	CITATIONS
1033	Perovskite photovoltaics: a high-efficiency newcomer to the solar cell family. Nanoscale, 2014, 6, 12287-12297.	2.8	120
1034	Development of New Twoâ€Dimensional Small Molecules Based on Benzodifuran for Efficient Organic Solar Cells. Chemistry - an Asian Journal, 2014, 9, 2621-2627.	1.7	16
1035	Efficiency Enhancement of Inverted Polymer Solar Cells Using Ionic Liquid-functionalized Carbon Nanoparticles-modified ZnO as Electron Selective Layer. Nano-Micro Letters, 2014, 6, 24-29.	14.4	17
1036	All-Polymer Solar Cell with High Near-Infrared Response Based on a Naphthodithiophene Diimide (NDTI) Copolymer. ACS Macro Letters, 2014, 3, 872-875.	2.3	110
1037	Donor–acceptor copolymers based on benzo[1,2- b :4,5- b ′]dithiophene and pyrene-fused phenazine for high-performance polymer solar cells. Organic Electronics, 2014, 15, 3375-3383.	1.4	44
1038	Donor–Acceptorâ€Type Copolymers Based on a Naphtho[1,2â€c:5,6â€c]bis(1,2,5â€thiadiazole) Scaffold for Highâ€Efficiency Polymer Solar Cells. Chemistry - an Asian Journal, 2014, 9, 2104-2112.	1.7	13
1039	Comprehensive study of medium-bandgap conjugated polymer merging a fluorinated quinoxaline with branched side chains for highly efficient and air-stable polymer solar cells. Journal of Materials Chemistry A, 2014, 2, 20203-20212.	5.2	17
1040	Comparison of additive amount used in spin-coated and roll-coated organic solar cells. Journal of Materials Chemistry A, 2014, 2, 19542-19549.	5.2	36
1041	Highly efficient fullerene/perovskite planar heterojunction solar cells via cathode modification with an amino-functionalized polymer interlayer. Journal of Materials Chemistry A, 2014, 2, 19598-19603.	5.2	186
1042	Selective Growth and Integration of Silver Nanoparticles on Silver Nanowires at Room Conditions for Transparent Nano-Network Electrode. ACS Nano, 2014, 8, 10980-10987.	7.3	119
1043	Light-harvesting capabilities of low band gap donor–acceptor polymers. Physical Chemistry Chemical Physics, 2014, 16, 24853-24865.	1.3	28
1044	Synthesis and photovoltaic properties of conjugated D-A copolymers based on thienyl substituted pyrene and diketopyrrolopyrrole for polymer solar cells. Journal of Polymer Science Part A, 2014, 52, 3198-3204.	2.5	12
1045	Synthesis and photovoltaic properties of star-shaped triphenylamine molecules with donor–acceptor unit as core. Journal of Materials Science: Materials in Electronics, 2014, 25, 3559-3565.	1.1	4
1046	Surface-charge accumulation effects on open-circuit voltage in organic solar cells based on photoinduced impedance analysis. Physical Chemistry Chemical Physics, 2014, 16, 4971-4976.	1.3	31
1047	Vacuum processable donor material based on dithieno[3,2-b:2′,3′-d]thiophene and pyrene for efficient organic solar cells. RSC Advances, 2014, 4, 24453-24457.	1.7	6
1048	Highly Efficient 2D-Conjugated Benzodithiophene-Based Photovoltaic Polymer with Linear Alkylthio Side Chain. Chemistry of Materials, 2014, 26, 3603-3605.	3.2	531
1049	Quantum Efficiency of Organic Solar Cells: Electro-Optical Cavity Considerations. ACS Photonics, 2014, 1, 173-181.	3.2	137
1050	Enhanced absorbance and electron collection in inverted organic solar cells: Optical admittance and transient photocurrent analyses. Organic Electronics, 2014, 15, 1306-1311.	1.4	31

#	Article	IF	CITATIONS
1051	Influence of Fluorination and Molecular Weight on the Morphology and Performance of PTB7:PC ₇₁ BM Solar Cells. Journal of Physical Chemistry C, 2014, 118, 9918-9929.	1.5	43
1052	Synthesis of a Waterâ€Soluble Conjugated Polymer Based on Thiophene for an Aqueousâ€Processed Hybrid Photovoltaic and Photodetector Device. Advanced Materials, 2014, 26, 3655-3661.	11.1	35
1053	The Active Layer Morphology of Organic Solar Cells Probed with Grazing Incidence Scattering Techniques. Advanced Materials, 2014, 26, 7692-7709.	11.1	555
1054	Interfacial Engineering of P3HT/ZnO Hybrid Solar Cells Using Phthalocyanines: A Joint Theoretical and Experimental Investigation. Advanced Energy Materials, 2014, 4, 1301694.	10.2	42
1055	Solution-processed annealing-free ZnO nanoparticles for stable inverted organic solar cells. Organic Electronics, 2014, 15, 1035-1042.	1.4	27
1056	Phosphor-doping enhanced efficiency in bilayer organic solar cells due to longer exciton diffusion length. Journal of Luminescence, 2014, 151, 193-196.	1.5	15
1057	Quantifying Charge Extraction in Organic Solar Cells: The Case of Fluorinated PCPDTBT. Journal of Physical Chemistry Letters, 2014, 5, 1131-1138.	2.1	88
1058	Performance enhancement of inverted polymer solar cells with fullerene ester derivant-modified ZnO film as cathode buffer layer. Solar Energy Materials and Solar Cells, 2014, 126, 36-41.	3.0	30
1059	Effect of Fluorine Content in Thienothiophene-Benzodithiophene Copolymers on the Morphology and Performance of Polymer Solar Cells. Chemistry of Materials, 2014, 26, 3009-3017.	3.2	136
1060	Improved Performances in Polymer BHJ Solar Cells Through Frontier Orbital Tuning of Small Molecule Additives in Ternary Blends. ACS Applied Materials & Interfaces, 2014, 6, 9920-9924.	4.0	24
1061	Multi-film roll transferring (MRT) process using highly conductive and solution-processed silver solution for fully solution-processed polymer solar cells. Energy and Environmental Science, 2014, 7, 2764-2770.	15.6	24
1062	Work-function tuneable and aqueous solution-processed Cs2CO3 for high-performance polymer solar cells. Journal of Materials Chemistry A, 2014, 2, 9400.	5.2	16
1063	Graphene in photovoltaic applications: organic photovoltaic cells (OPVs) and dye-sensitized solar cells (DSSCs). Journal of Materials Chemistry A, 2014, 2, 12136.	5.2	107
1064	Applications of ytterbium in inverted organic photovoltaic cells as high-performance and stable electron transport layers. Journal of Materials Chemistry A, 2014, 2, 10131-10136.	5.2	12
1065	A Soluble Ladder onjugated Starâ€5haped Oligomer Composed of Four Perylene Diimide Branches and a Fluorene Core: Synthesis and Properties. Chemistry - A European Journal, 2014, 20, 10170-10178.	1.7	30
1066	Strategy to Modulate the Electron-Rich Units in Donor–Acceptor Copolymers for Improvements of Organic Photovoltaics. Journal of Physical Chemistry C, 2014, 118, 17266-17278.	1.5	69
1067	Organic photovoltaic performance improvement using atomic layer deposited ZnO electron-collecting layers. Solid-State Electronics, 2014, 101, 50-56.	0.8	8
1068	The study of solvent additive effects in efficient polymer photovoltaics via impedance spectroscopy. Solar Energy Materials and Solar Cells, 2014, 130, 20-26.	3.0	75

#	Article	IF	CITATIONS
1069	Synthesis, optical and electrochemical properties of small molecules DMM-TPA[DTS(FBTTh3)3] and TPA[DTS(FBTTh3)3], and their application as donors for bulk heterojunction solar cells. Journal of Materials Chemistry A, 2014, 2, 12368-12379.	5.2	16
1070	Comparing Matched Polymer:Fullerene Solar Cells Made by Solution-Sequential Processing and Traditional Blend Casting: Nanoscale Structure and Device Performance. Journal of Physical Chemistry C, 2014, 118, 17413-17425.	1.5	50
1071	Theoretical and experimental studies on photophysical characteristics of low bandgap polymers. Chemical Research in Chinese Universities, 2014, 30, 513-517.	1.3	1
1072	A new method to disperse CdS quantum dot-sensitized TiO2 nanotube arrays into P3HT:PCBM layer for the improvement of efficiency of inverted polymer solar cells. Nanoscale Research Letters, 2014, 9, 240.	3.1	9
1073	Ternary blends for polymer bulk heterojunction solar cells. Polymer International, 2014, 63, 1362-1367.	1.6	32
1074	Synthesis and photovoltaic properties of D–A–D type small molecules containing diketopyrrolopyrrole (DPP) acceptor central unit with different donor terminal units. Organic Electronics, 2014, 15, 2116-2125.	1.4	20
1075	High-Performance Organic Solar Cells with Efficient Semiconducting Small Molecules Containing an Electron-Rich Benzodithiophene Derivative. Chemistry of Materials, 2014, 26, 2283-2288.	3.2	63
1076	Molecular Design toward Highly Efficient Photovoltaic Polymers Based on Two-Dimensional Conjugated Benzodithiophene. Accounts of Chemical Research, 2014, 47, 1595-1603.	7.6	667
1077	Interface Design to Improve the Performance and Stability of Solutionâ€Processed Smallâ€Molecule Conventional Solar Cells. Advanced Energy Materials, 2014, 4, 1400816.	10.2	76
1078	Performance evaluation of two solar photovoltaic technologies under atmospheric exposure using artificial neural network models. Solar Energy, 2014, 107, 260-271.	2.9	24
1079	Quadrites and Crossed-Chain Crystal Structures in Polymer Semiconductors. Nano Letters, 2014, 14, 3096-3101.	4.5	19
1080	Rational Design of Ternary-Phase Polymer Solar Cells by Controlling Polymer Phase Separation. Journal of Physical Chemistry C, 2014, 118, 10552-10559.	1.5	16
1081	Highly Efficient Inverted Polymer Solar Cells Based on a Cross-linkable Water-/Alcohol-Soluble Conjugated Polymer Interlayer. ACS Applied Materials & Interfaces, 2014, 6, 10429-10435.	4.0	155
1082	Light trapping in thin film organic solar cells. Materials Today, 2014, 17, 389-396.	8.3	138
1083	The emerging multiple metal nanostructures for enhancing the light trapping of thin film organic photovoltaic cells. Chemical Communications, 2014, 50, 11984-11993.	2.2	45
1084	Efficient Zinc Phthalocyanine/C ₆₀ Heterojunction Photovoltaic Devices Employing Tetracene Anode Interfacial Layers. ACS Applied Materials & Interfaces, 2014, 6, 7254-7259.	4.0	21
1085	Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution. Energy and Environmental Science, 2014, 7, 2276-2284.	15.6	493
1086	Series vs parallel connected organic tandem solar cells: Cell performance and impact on the design and operation of functional modules. Solar Energy Materials and Solar Cells, 2014, 130, 495-504.	3.0	23

#	Article	IF	Citations
1087	Effects of Cyano-Substituents on the Molecular Packing Structures of Conjugated Polymers for Bulk-Heterojunction Solar Cells. ACS Applied Materials & amp; Interfaces, 2014, 6, 15774-15782.	4.0	33
1088	Synthesis and photovoltaic properties of thieno[3,2-b]thiophenyl substituted benzo[1,2-b:4,5-b′]dithiophene copolymers. Polymer Chemistry, 2014, 5, 6710-6717.	1.9	10
1089	Efficient ternary blend polymer solar cells with indene-C60 bisadduct as an electron-cascade acceptor. Energy and Environmental Science, 2014, 7, 2005.	15.6	275
1090	Morphological Effects on the Small-Molecule-Based Solution-Processed Organic Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 15767-15773.	4.0	15
1091	PEDOT:PSS top electrode prepared by transfer lamination using plastic wrap as the transfer medium for organic solar cells. Organic Electronics, 2014, 15, 2593-2598.	1.4	33
1092	Dibenzothiophene- S,S -dioxide based medium-band-gap polymers for efficient bulk heterojunction solar cells. Organic Electronics, 2014, 15, 2950-2958.	1.4	8
1093	Semi-random vs Well-Defined Alternating Donor–Acceptor Copolymers. ACS Macro Letters, 2014, 3, 622-627.	2.3	27
1094	Homocoupling Defects in Diketopyrrolopyrrole-Based Copolymers and Their Effect on Photovoltaic Performance. Journal of the American Chemical Society, 2014, 136, 11128-11133.	6.6	174
1095	Effect of temperature on carrier formation efficiency in organic photovoltaic cells. Applied Physics Letters, 2014, 105, .	1.5	9
1096	Design and Computational Characterization of Non-Fullerene Acceptors for Use in Solution-Processable Solar Cells. Journal of Physical Chemistry A, 2014, 118, 7939-7951.	1.1	37
1097	Solution-processed inverted solar cells using an inorganic bulk heterojunction of iron pyrite nanocrystals and cadmium selenide quantum dots with a polymeric hole-transport medium. Journal of Materials Chemistry A, 2014, 2, 9758.	5.2	7
1098	Optimization of molecular organization and nanoscale morphology for high performance low bandgap polymer solar cells. Nanoscale, 2014, 6, 3984.	2.8	42
1099	Tailoring of the plasmonic and waveguide effect in bulk-heterojunction photovoltaic devices with ordered, nanopatterned structures. Organic Electronics, 2014, 15, 3120-3126.	1.4	3
1100	An Efficient Tripleâ€Junction Polymer Solar Cell Having a Power Conversion Efficiency Exceeding 11%. Advanced Materials, 2014, 26, 5670-5677.	11.1	752
1101	Organic bulk heterojunction photovoltaic structures: design, morphology and properties. Russian Chemical Reviews, 2014, 83, 575-599.	2.5	37
1102	Importance of the Donor:Fullerene Intermolecular Arrangement for High-Efficiency Organic Photovoltaics. Journal of the American Chemical Society, 2014, 136, 9608-9618.	6.6	302
1103	Self-Assembled, Aligned ZnO Nanorod Buffer Layers for High-Current-Density, Inverted Organic Photovoltaics. ACS Applied Materials & Interfaces, 2014, 6, 16792-16799.	4.0	19
1104	Inverted vs standard PTB7:PC70BM organic photovoltaic devices. The benefit of highly selective and extracting contacts in device performance. Organic Electronics, 2014, 15, 2756-2762.	1.4	46

#	Article	IF	CITATIONS
1105	High efficient ITO free inverted organic solar cells based on ultrathin Ca modified AZO cathode and their light soaking issue. Organic Electronics, 2014, 15, 3006-3015.	1.4	19
1106	Flexible polymer solar cells with power conversion efficiency of 8.7%. Journal of Materials Chemistry C, 2014, 2, 5077-5082.	2.7	76
1107	Small molecules incorporating regioregular oligothiophenes and fluorinated benzothiadiazole groups for solution-processed organic solar cells. Journal of Materials Chemistry C, 2014, 2, 5842-5849.	2.7	19
1108	Non-zero output from a symmetrical organic photovoltaic device. Synthetic Metals, 2014, 197, 75-79.	2.1	3
1109	Density Relaxation in Time-Dependent Density Functional Theory: Combining Relaxed Density Natural Orbitals and Multireference Perturbation Theories for an Improved Description of Excited States. Journal of Chemical Theory and Computation, 2014, 10, 4014-4024.	2.3	41
1110	Comparative Degradation and Regeneration of Polymer Solar Cells with Different Cathodes. ACS Applied Materials & Interfaces, 2014, 6, 5281-5289.	4.0	17
1111	New Insights into Morphology of High Performance BHJ Photovoltaics Revealed by High Resolution AFM. Nano Letters, 2014, 14, 5727-5732.	4.5	45
1112	Bulk Heterojunction Solar Cells: Morphology and Performance Relationships. Chemical Reviews, 2014, 114, 7006-7043.	23.0	1,115
1113	Simultaneous Enhancement of Electron Injection and Air Stability in N-Type Organic Field-Effect Transistors by Water-Soluble Polyfluorene Interlayers. ACS Applied Materials & Interfaces, 2014, 6, 8108-8114.	4.0	18
1114	New small molecules with thiazolothiazole and benzothiadiazole acceptors for solution-processed organic solar cells. New Journal of Chemistry, 2014, 38, 1559.	1.4	21
1115	Porphyrinâ€Incorporated 2D D–A Polymers with Over 8.5% Polymer Solar Cell Efficiency. Advanced Materials, 2014, 26, 5205-5210.	11.1	112
1116	General Strategy for Self-Assembly of Highly Oriented Nanocrystalline Semiconducting Polymers with High Mobility. Nano Letters, 2014, 14, 2764-2771.	4.5	416
1117	Improving the photovoltaic parameters of organic solar cell using soluble copper phthalocyanine nanoparticles as a buffer layer. Japanese Journal of Applied Physics, 2014, 53, 01AB06.	0.8	6
1118	Thermodynamic Stability of [60]Fullerene and γ-Cyclodextrin Complex in Aqueous Solution: Free Energy Simulation. Journal of Physical Chemistry C, 2014, 118, 12555-12561.	1.5	19
1119	Ultra‣ow Work Function Transparent Electrodes Achieved by Naturally Occurring Biomaterials for Organic Optoelectronic Devices. Advanced Materials Interfaces, 2014, 1, 1400215.	1.9	40
1120	Bis-lactam-based donor polymers for organic solar cells: Evolution by design. Thin Solid Films, 2014, 560, 82-85.	0.8	3
1121	High open-circuit voltage polymer solar cells based on D–A copolymer of indacenodithiophene and fluorine-substituted benzotriazole. Organic Electronics, 2014, 15, 818-823.	1.4	16
1122	Synthesis and photovoltaic characterization of thiadiazole based low bandgap polymers. Thin Solid Films, 2014, 562, 75-83.	0.8	15

#	Article	IF	Citations
1123	High-density organic photovoltaic modules: Mask-free fabrication using nozzle jet printing and oblique deposition. Solar Energy Materials and Solar Cells, 2014, 120, 561-565.	3.0	7
1124	Improved photovoltaic performance of two-dimensional low band-gap conjugated polymers with thieno[3,2-b]thiophene and diketopyrrolopyrrole units by altering pendent position of conjugated side chain. Dyes and Pigments, 2014, 109, 6-12.	2.0	19
1125	Near-infrared response thienoisoindigo-based small molecule for solution-processed bulk-heterojunction solar cells. Synthetic Metals, 2014, 187, 24-29.	2.1	20
1126	Inverted bulk-heterojunction solar cell with cross-linked hole-blocking layer. Organic Electronics, 2014, 15, 997-1001.	1.4	41
1127	Enhancement of ternary blend organic solar cell efficiency using PTB7 as a sensitizer. Synthetic Metals, 2014, 192, 113-118.	2.1	38
1128	Bis-adducts of benzocyclopentane- and acenaphthene-C60 superior to mono-adducts as electron acceptors in polymer solar cells. Solar Energy Materials and Solar Cells, 2014, 125, 198-205.	3.0	12
1129	Synthesis and photovoltaic properties of an alternating polymer based on benzo[1,2-b:4,5-bâ€2]dithiophene and fluorine substituted 4,7-dithiophene-2-yl-2,1,3-benzothiadiazole. Synthetic Metals, 2014, 192, 82-86.	2.1	3
1130	D–A–Ar-type small molecules with enlarged π-system of phenanthrene at terminal for high-performance solution processed organic solar cells. Organic Electronics, 2014, 15, 1173-1183.	1.4	38
1131	Hybrid inorganic–organic tandem solar cells for broad absorption of the solar spectrum. Physical Chemistry Chemical Physics, 2014, 16, 7672-7676.	1.3	19
1132	Ultraflexible Polymer Solar Cells Using Amorphous Zincâ^'Indiumâ^'Tin Oxide Transparent Electrodes. Advanced Materials, 2014, 26, 1098-1104.	11.1	70
1133	Microcavityâ€Embedded, Colourâ€Tuneable, Transparent Organic Solar Cells. Advanced Materials, 2014, 26, 1129-1134.	11.1	95
1134	Effect of the Fibrillar Microstructure on the Efficiency of High Molecular Weight Diketopyrrolopyrroleâ€Based Polymer Solar Cells. Advanced Materials, 2014, 26, 1565-1570.	11.1	207
1135	25th Anniversary Article: Isoindigoâ€Based Polymers and Small Molecules for Bulk Heterojunction Solar Cells and Field Effect Transistors. Advanced Materials, 2014, 26, 1801-1826.	11.1	330
1136	Transient Photocurrent Response of Smallâ€Molecule Bulk Heterojunction Solar Cells. Advanced Materials, 2014, 26, 2486-2493.	11.1	62
1137	An Easy and Effective Method to Modulate Molecular Energy Level of the Polymer Based on Benzodithiophene for the Application in Polymer Solar Cells. Advanced Materials, 2014, 26, 2089-2095.	11.1	137
1138	Vapor Coating Method Using Small-Molecule Organic Surface Modifiers to Replace N-Type Metal Oxide Layers in Inverted Polymer Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 6504-6509.	4.0	4
1139	Improved homogeneity and surface coverage of graphene oxide layers fabricated by horizontal-dip-coating for solution-processable organic semiconducting devices. Journal of Materials Chemistry C, 2014, 2, 2622.	2.7	29
1140	Nanomorphology Evolution of P3HT/PCBM Blends during Solution-Processing from Coarse-Grained Molecular Simulations. Journal of Physical Chemistry C, 2014, 118, 11224-11233.	1.5	59

ARTICLE IF CITATIONS Universal Formation of Compositionally Graded Bulk Heterojunction for Efficiency Enhancement in 1141 11.1 139 Organic Photovoltaics. Advanced Materials, 2014, 26, 3068-3075. Enhanced Photovoltaic Performance of Indacenodithiopheneâ€Quinoxaline Copolymers by Sideâ€Chain 1142 10.2 134 Modulation. Advanced Energy Materials, 2014, 4, 1400680. Low bandâ€gap D–A conjugated copolymers based on anthradithiophene and diketopyrrolopyrrole for 1143 2.5 12 polymer solar cells and fieldâ€effect transistors. Journal of Polymer Science Part A, 2014, 52, 1652-1661. Poly(3,4-ethylenedioxyselenophene) and Its Derivatives: Novel Organic Electronic Materials. Accounts 1144 131 of Chemical Research, 2014, 47, 1465-1474. Factors Affecting the Performance of Bifacial Inverted Polymer Solar Cells with a Thick Photoactive 1145 1.5 7 Layer. Journal of Physical Chemistry C, 2014, 118, 4050-4055. 4,5â€Ethyleneâ€2,7â€Carbazoleâ€Based Mediumâ€Bandgap Conjugated Polymers with Lowâ€Lying HOMO Levels Toward Efficient Polymer Solar Cells with High Openâ€Circuit Voltage. Macromolecular Chemistry and 1.1 Physics, 2014, 215, 1052-1059. Interface Modification of ZnO-Based Inverted PTB7:PC₇₁BM Organic Solar Cells by Cesium 1147 Stearate and Simultaneous Enhancement of Device Parameters. ACS Sustainable Chemistry and 3.2 57 Engineering, 2014, 2, 1331-1337. Comparative Studies on Optical, Redox, and Photovoltaic Properties of a Series of D–A–D and 1148 7.8 Analogous D–A Chromophores. Advanced Functional Materials, 2014, 24, 4645-4653. Oligothiophene Semiconductors: Synthesis, Characterization, and Applications for Organic Devices. 1149 4.0 193 ACS Applied Materials & amp; Interfaces, 2014, 6, 5327-5343. Nanoscopic Management of Molecular Packing and Orientation of Small Molecules by a Combination of Linear and Branched Alkyl Side Chains. ACS Nano, 2014, 8, 5988-6003. Interfacial Engineering of Ultrathin Metal Film Transparent Electrode for Flexible Organic 1151 11.1 178 Photovoltaic Cells. Advanced Materials, 2014, 26, 3618-3623. Efficient light-trapping in inverted polymer solar cells based on textured FTO transparent electrodes. 1.3 Materials Letters, 2014, 130, 75-78. Dimeric naphthalene diimide based small molecule acceptors: Âsynthesis, characterization, and 1153 1.0 32 photovoltaic properties. Tetrahedron, 2014, 70, 4726-4731. An ESR study on superoxide radical anion generation and its involvement in the photooxidative degradation of poly-3-hexylthiophene in chlorobenzene solution. Chemical Physics Letters, 2014, 1154 1.2 16 605-606, 98-102. The stability of normal vs. inverted organic solar cells under highly damp conditions: Comparison 1155 3.0 29 with the same interfacial layers. Solar Energy Materials and Solar Cells, 2014, 128, 41-47. Vacuum-deposited interconnection layers for tandem solar cells. Organic Electronics, 2014, 15, 1.4 1828-1835. Ternary Bulk Heterojunction Solar Cells: Addition of Soluble NIR Dyes for Photocurrent Generation 1157 4.0 55 beyond 800 nm. ACS Applied Materials & amp; Interfaces, 2014, 6, 6905-6913. Solution-processed bulk-heterojunction organic solar cells employing Ir complexes as electron 5.2 donors. Journal of Materials Chemistry A, 2014, 2, 12390.

#	Article	IF	CITATIONS
1159	Impact of Acceptor Crystallinity on the Photophysics of Nonfullerene Blends for Organic Solar Cells. Journal of Physical Chemistry C, 2014, 118, 13460-13466.	1.5	11
1160	Novel Donor–Acceptor Polymer Containing 4,7â€Bis(thiophenâ€2â€yl)benzo[c][1,2,5]thiadiazole for Polymer Solar Cells with Power Conversion Efficiency of 6.21%. Macromolecular Rapid Communications, 2014, 35, 1153-1157.	2.0	33
1161	Enhanced efficiency in organic solar cells via in situ fabricated p-type copper sulfide as the hole transporting layer. Solar Energy Materials and Solar Cells, 2014, 128, 77-84.	3.0	52
1162	Efficiency boosting of inverted polymer solar cells with a polyvinylpyrrolidone-modified Al-doped ZnO electron transport layer. Solar Energy Materials and Solar Cells, 2014, 128, 307-312.	3.0	14
1163	Highly efficient ITO-free polymer solar cells based on metal resonant microcavity using WO3/Au/WO3 as transparent electrodes. Organic Electronics, 2014, 15, 1545-1551.	1.4	23
1164	Enhanced photovoltaic properties of the terpolymer containing diketopyrrolopyrrole and benzothiadiazole side chain. European Polymer Journal, 2014, 57, 83-90.	2.6	4
1165	Cyanine dye polyelectrolytes for organic bilayer solar cells. Polymer, 2014, 55, 3195-3201.	1.8	7
1166	Large active area inverted tandem polymer solar cell with high performance via alcohol treatment on the surface of bottom active layer P3HT:ICBA. Solar Energy Materials and Solar Cells, 2014, 128, 240-247.	3.0	8
1167	Simple formation method of vanadium oxide films with gap states for application in organic optoelectronics. Organic Electronics, 2014, 15, 2038-2042.	1.4	8
1168	Two step sintering process and metal grid design optimization for highly efficient ITO free organic photovoltaics. Solar Energy Materials and Solar Cells, 2014, 122, 1-7.	3.0	30
1169	Progress of nanoscience in China. Frontiers of Physics, 2014, 9, 257-288.	2.4	20
1170	Organic Solar Cells Based on PTB7:PC71BM with Cs2CO3 as a Cathode Buffer Layer. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2014, 27, 577-581.	0.1	2
1172	Synthesis of Thienothiadiazole–Benzothiadiazole Alternating Copolymers and Their Application to Bulk Heterojunction Solar Cells. Chemistry Letters, 2014, 43, 1876-1878.	0.7	5
1174	Ternary blend all-polymer solar cells: enhanced performance and evidence of parallel-like bulk heterojunction mechanism. MRS Communications, 2015, 5, 229-234.	0.8	27
1175	Functional semiconductors targeting copolymer architectures and hybrid nanostructures. MRS Communications, 2015, 5, 365-382.	0.8	5
1176	A Thieno[3,2â€ <i>b</i>][1]benzothiophene Isoindigo Building Block for Additive―and Annealingâ€Free Highâ€Performance Polymer Solar Cells. Advanced Materials, 2015, 27, 4702-4707.	11.1	120
1177	Photochemical Solar Energy Conversion. , 2015, , 20-29.		0
1178	Understanding the Impact of Hierarchical Nanostructure in Ternary Organic Solar Cells. Advanced Science, 2015, 2, 1500250.	5.6	43

#	Article	IF	CITATIONS
1179	Morphology Evolution in Highâ€Performance Polymer Solar Cells Processed from Nonhalogenated Solvent. Advanced Science, 2015, 2, 1500095.	5.6	60
1181	Interfacial energy level alignments between low-band-gap polymer PTB7 and indium zinc oxide anode. Applied Physics Express, 2015, 8, 095701.	1.1	19
1182	Quantifying Losses in Open-Circuit Voltage in Solution-Processable Solar Cells. Physical Review Applied, 2015, 4, .	1.5	500
1183	Phonon-assisted ultrafast charge separation in the PCBM band structure. Physical Review B, 2015, 91, .	1.1	34
1184	An efficient descriptor model for designing materials for solar cells. Npj Computational Materials, 2015, 1, .	3.5	39
1185	Power generating reflective-type liquid crystal displays using a reflective polariser and a polymer solar cell. Scientific Reports, 2015, 5, 11558.	1.6	2
1186	Toward Improved Lifetimes of Organic Solar Cells under Thermal Stress: Substrate-Dependent Morphological Stability of PCDTBT:PCBM Films and Devices. Scientific Reports, 2015, 5, 15149.	1.6	51
1187	Electron-accepting π-Conjugated Systems Based on Cyclic Imide and Cyano-substituted Benzothiadiazole for Non-fullerene Organic Photovoltaics. Chemistry Letters, 2015, 44, 694-696.	0.7	7
1188	Charge transport studies in donor-acceptor block copolymer PDPP-TNT and PC71BM based inverted organic photovoltaic devices processed in room conditions. AIP Advances, 2015, 5, .	0.6	11
1189	Photochemical charges separation and photoelectric properties of flexible solar cells with two types of heterostructures. Applied Physics Letters, 2015, 107, 243901.	1.5	3
1190	Bulk-Heterojunction Organic Solar Cells Based on Benzobisthiadiazole Semiconducting Polymers. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2015, 28, 385-391.	0.1	9
1191	Density of organic thin films in organic photovoltaics. Journal of Applied Physics, 2015, 118, 044510.	1.1	14
1192	Alcohol-soluble Star-shaped Oligofluorenes as Interlayer for High Performance Polymer Solar Cells. Scientific Reports, 2015, 5, 17329.	1.6	6
1193	Illumination angle and layer thickness influence on the photo current generation in organic solar cells: A combined simulative and experimental study. AlP Advances, 2015, 5, .	0.6	16
1194	Derivatization and diffusive motion of molecular fullerenes: <i>Ab initio</i> and atomistic simulations. Journal of Applied Physics, 2015, 118, .	1.1	2
1195	Understanding defect distributions in polythiophenes via comparison of regioregular and regiorandom species. Journal of Applied Physics, 2015, 118, .	1.1	19
1196	Efficient all polymer solar cells employing donor polymer based on benzo[1,2-b:4,5-b']dithiophene unit. AlP Advances, 2015, 5, 117126.	0.6	5
1197	Versatile MoS2 Nanosheets in ITO-Free and Semi-transparent Polymer Power-generating Glass. Scientific Reports, 2015, 5, 12161.	1.6	19

#	Article	IF	CITATIONS
1198	Linking the HOMO-LUMO gap to torsional disorder in P3HT/PCBM blends. Journal of Chemical Physics, 2015, 143, 224704.	1.2	17
1199	Low Work-function Poly(3,4-ethylenedioxylenethiophene): Poly(styrene sulfonate) as Electron-transport Layer for High-efficient and Stable Polymer Solar Cells. Scientific Reports, 2015, 5, 12839.	1.6	44
1200	Carrier density effect on recombination in PTB7-based solar cell. Scientific Reports, 2015, 5, 13648.	1.6	6
1201	Temperature effects on carrier formation dynamics in organic heterojunction solar cell. Applied Physics Letters, 2015, 107, 133903.	1.5	2
1202	Dithienopyrrole Based Small Molecule with Low Band Gap for Organic Solar Cells. Chinese Journal of Chemistry, 2015, 33, 852-858.	2.6	15
1203	Ternary Organic Solar Cells with Reduced Graphene Oxide–Sb ₂ S ₃ Hybrid Nanosheets as the Cascade Material. ChemNanoMat, 2015, 1, 346-352.	1.5	28
1204	A New D-A conjugated polymer P(PTQD-BDT) with PTQD acceptor and BDT donor units for BHJ polymer solar cells application. Journal of Polymer Science Part A, 2015, 53, 2390-2398.	2.5	10
1205	Locally Welded Silver Nanoâ€Network Transparent Electrodes with High Operational Stability by a Simple Alcoholâ€Based Chemical Approach. Advanced Functional Materials, 2015, 25, 4211-4218.	7.8	131
1206	Angularâ€Shaped 4,9â€Dialkyl α―and βâ€Naphthodithiopheneâ€Based Donor–Acceptor Copolymers: Investi of Isomeric Structural Effects on Molecular Properties and Performance of Fieldâ€Effect Transistors and Photovoltaics. Advanced Functional Materials, 2015, 25, 6131-6143.	igation 7.8	49
1207	7.7% Efficient Allâ€Polymer Solar Cells. Advanced Materials, 2015, 27, 4578-4584.	11.1	414
1208	Subtle Balance Between Length Scale of Phase Separation and Domain Purification in Smallâ€Molecule Bulkâ€Heterojunction Blends under Solvent Vapor Treatment. Advanced Materials, 2015, 27, 6296-6302.	11.1	159
1209	Radical Cation–Anion Couplingâ€Induced Work Function Tunability in Anionic Conjugated Polyelectrolytes. Advanced Energy Materials, 2015, 5, 1501292.	10.2	39
1211	Measurement of the Charge Carrier Mobility Distribution in Bulk Heterojunction Solar Cells. Advanced Materials, 2015, 27, 4989-4996.	11.1	27
1212	Influence of Processing Parameters and Molecular Weight on the Morphology and Properties of Highâ€Performance PffBT4Tâ€⊋OD:PC ₇₁ BM Organic Solar Cells. Advanced Energy Materials, 2015, 5, 1501400.	10.2	166
1213	Continuous Flow Polymer Synthesis toward Reproducible Largeâ€Scale Production for Efficient Bulk Heterojunction Organic Solar Cells. ChemSusChem, 2015, 8, 3228-3233.	3.6	48
1214	Linking Group Influences Charge Separation and Recombination in All onjugated Block Copolymer Photovoltaics. Advanced Functional Materials, 2015, 25, 5578-5585.	7.8	38
1215	Printed Smart Photovoltaic Window Integrated with an Energyâ€Saving Thermochromic Layer. Advanced Optical Materials, 2015, 3, 1524-1529.	3.6	43
1216	Chargeâ€Carrier Mobility Requirements for Bulk Heterojunction Solar Cells with High Fill Factor and External Quantum Efficiency >90%. Advanced Energy Materials, 2015, 5, 1500577.	10.2	214

#	Article	IF	CITATIONS
1217	Finely Tuned Polymer Interlayers Enhance Solar Cell Efficiency. Angewandte Chemie - International Edition, 2015, 54, 11485-11489.	7.2	107
1218	A Solutionâ€Processable Molecule using Thieno[3,2â€ <i>b</i>]thiophene as Building Block for Efficient Organic Solar Cells. Chemistry - an Asian Journal, 2015, 10, 1791-1798.	1.7	16
1219	A New Interconnecting Layer of Metal Oxide/Dipole Layer/Metal Oxide for Efficient Tandem Organic Solar Cells. Advanced Energy Materials, 2015, 5, 1500631.	10.2	37
1220	Flexible organic light emitting diodes fabricated on biocompatible silk fibroin substrate. Semiconductor Science and Technology, 2015, 30, 104004.	1.0	38
1221	Systematic Analysis of Polymer Molecular Weight Influence on the Organic Photovoltaic Performance. Macromolecular Rapid Communications, 2015, 36, 1778-1797.	2.0	49
1222	Enhancement of light absorption by using light scattering and emitting dyes in organic photovoltaics. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2326-2331.	0.8	2
1223	Rational Design of Small Molecular Donor for Solutionâ€Processed Organic Photovoltaics with 8.1% Efficiency and High Fill Factor via Multiple Fluorine Substituents and Thiophene Bridge. Advanced Functional Materials, 2015, 25, 3514-3523.	7.8	114
1224	The Evidence for Fullerene Aggregation in Highâ€Performance Smallâ€Molecule Solar Cells by Molecular Dynamics Simulation. Advanced Electronic Materials, 2015, 1, 1500217.	2.6	18
1225	Dual Functional Zwitterionic Fullerene Interlayer for Efficient Inverted Polymer Solar Cells. Advanced Energy Materials, 2015, 5, 1500405.	10.2	39
1226	Inverted Bulkâ€Heterojunction Solar Cells using Polyethylenimineâ€Ethoxylated Processed from a Fully Aqueous Dispersion as Electronâ€Transport Layer. Energy Technology, 2015, 3, 1152-1158.	1.8	3
1227	In Situ Photocatalytically Heterostructured ZnOAg Nanoparticle Composites as Effective Cathodeâ€Modifying Layers for Airâ€Processed Polymer Solar Cells. Chemistry - A European Journal, 2015, 21, 11899-11906.	1.7	6
1228	Elucidating the Role of Conjugated Polyelectrolyte Interlayers for Highâ€Efficiency Organic Photovoltaics. ChemSusChem, 2015, 8, 3062-3068.	3.6	27
1229	Formation of charge-transfer complexes significantly improves the performance of polymer solar cells based on PBDTTT-C-T: PC71 BM. Progress in Photovoltaics: Research and Applications, 2015, 23, 783-792.	4.4	6
1230	Optimizing Lightâ€Harvesting Polymers via Side Chain Engineering. Advanced Functional Materials, 2015, 25, 6458-6469.	7.8	33
1231	Wideâ€Bandgap Benzodithiophene–Benzothiadiazole Copolymers for Highly Efficient Multijunction Polymer Solar Cells. Advanced Materials, 2015, 27, 4461-4468.	11.1	99
1232	A Largeâ€Bandgap Conjugated Polymer for Versatile Photovoltaic Applications with High Performance. Advanced Materials, 2015, 27, 4655-4660.	11.1	882
1233	Highâ€Performance Nonâ€Fullerene Polymer Solar Cells Based on a Pair of Donor–Acceptor Materials with Complementary Absorption Properties. Advanced Materials, 2015, 27, 7299-7304.	11.1	230
1234	Tin Oxide (SnO <i>_x</i>) as Universal "Lightâ€Soaking―Free Electron Extraction Material for Organic Solar Cells. Advanced Energy Materials, 2015, 5, 1500277.	10.2	82

#	Article	IF	CITATIONS
1235	Efficient Lowâ€Bandgap Polymer Solar Cells with High Openâ€Circuit Voltage and Good Stability. Advanced Energy Materials, 2015, 5, 1501282.	10.2	76
1236	Polymer Solar Cells Based on the Copolymers of Naphtho[1,2â€ <i>c</i> :5,6â€ <i>c</i>]bis(1,2,5â€thiadiazole) and Alkoxylphenyl Substituted Benzodithiophene with High Openâ€Circuit Voltages. Chinese Journal of Chemistry, 2015, 33, 902-908.	2.6	12
1237	Enhanced Thermal Stability of Inverted Polymer Solar Cells with Pentacene. Israel Journal of Chemistry, 2015, 55, 1028-1033.	1.0	4
1238	A Roundabout Approach to Control Morphological Orientation and Solarâ€Cell Performance by Modulating Sideâ€Chain Branching Position in Benzodithiopheneâ€Based Polymers. ChemPhysChem, 2015, 16, 1305-1314.	1.0	15
1239	Orderly Nanopatterned Indium Tin Oxide Electrode Combined with Atomicâ€Layerâ€Deposited Metal Oxide Interlayer for Inverted Organic Solar Cells. Energy Technology, 2015, 3, 906-912.	1.8	4
1240	Highâ€resolution MALDIâ€TOF MS study on analysis of lowâ€molecularâ€weight products from photoâ€oxidation of poly(3â€hexylthiophene). Journal of Mass Spectrometry, 2015, 50, 1006-1012.	0.7	10
1241	Thieno, Furo, and Selenopheno[3,4â€ <i>c</i>]pyrroleâ€4,6â€dione Copolymers: Airâ€Processed Polymer Solar Cells with Power Conversion Efficiency up to 7.1%. Advanced Energy Materials, 2015, 5, 1501213.	10.2	20
1242	Hydrophilic Conjugated Polymers with Large Bandgaps and Deep‣ying HOMO Levels as an Efficient Cathode Interlayer in Inverted Polymer Solar Cells. Macromolecular Rapid Communications, 2015, 36, 1393-1401.	2.0	8
1243	Recently Advanced Polymer Materials Containing Dithieno[3,2â€ <i>b</i> :2′,3′â€ <i>d</i>]phosphole Oxide Efficient Charge Transfer in Highâ€Performance Solar Cells. Advanced Functional Materials, 2015, 25, 3991-3997.	for 7.8	56
1244	The Effect of Processing Additives on Energetic Disorder in Highly Efficient Organic Photovoltaics: A Case Study on PBDTTTâ€Câ€T:PC ₇₁ BM. Advanced Materials, 2015, 27, 3868-3873.	11.1	46
1245	Amineâ€Based Interfacial Molecules for Inverted Polymerâ€Based Optoelectronic Devices. Advanced Materials, 2015, 27, 3553-3559.	11.1	77
1246	Polymer–Polymer Förster Resonance Energy Transfer Significantly Boosts the Power Conversion Efficiency of Bulkâ€Heterojunction Solar Cells. Advanced Materials, 2015, 27, 4398-4404.	11.1	201
1247	Oligomeric Donor Material for Highâ€Efficiency Organic Solar Cells: Breaking Down a Polymer. Advanced Materials, 2015, 27, 4229-4233.	11.1	74
1248	Toward Highly Sensitive Polymer Photodetectors by Molecular Engineering. Advanced Materials, 2015, 27, 6496-6503.	11.1	136
1249	Toward Highly Efficient Largeâ€Area ITOâ€Free Organic Solar Cells with a Conductanceâ€Gradient Transparent Electrode. Advanced Materials, 2015, 27, 6983-6989.	11.1	67
1250	Highâ€Performance Organic Solar Cells Based on a Small Molecule with Alkylthioâ€Thienylâ€Conjugated Side Chains without Extra Treatments. Advanced Materials, 2015, 27, 7469-7475.	11.1	186
1251	10.4% Power Conversion Efficiency of ITOâ€Free Organic Photovoltaics Through Enhanced Light Trapping Configuration. Advanced Energy Materials, 2015, 5, 1500406.	10.2	154
1252	16.1% Efficient Hysteresisâ€Free Mesostructured Perovskite Solar Cells Based on Synergistically Improved ZnO Nanorod Arrays. Advanced Energy Materials, 2015, 5, 1500568.	10.2	222

#	Article	IF	CITATIONS
1253	Understanding the External Quantum Efficiency of Organic Homoâ€Tandem Solar Cells Utilizing a Threeâ€Terminal Device Architecture. Advanced Energy Materials, 2015, 5, 1501019.	10.2	30
1254	Synthesis of Alternating Lowâ€Bandgap Conjugated Polymers Based on Dithieno[2,3â€ <i>d</i> :2′,3′â€ <i>d</i> ′]naphtho[1,2â€ <i>b</i> :3,4â€ <i>b</i> ′]dithiophene and Enl Photovoltaic Properties with Solvent Additives. Macromolecular Chemistry and Physics, 2015, 216, 733-741.	nancemen 1.1	t of
1255	Influence of side groups on the performance of infrared absorbing azaâ€BODIPY organic solar cells. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2747-2753.	0.8	35
1256	Synthesis of Photochromic Oligophenylenimines: Optical and Computational Studies. Molecules, 2015, 20, 5440-5455.	1.7	3
1257	Enhancing Solar Cell Efficiency Using Photon Upconversion Materials. Nanomaterials, 2015, 5, 1782-1809.	1.9	142
1258	Substrate Temperature Effect on Charge Transport Performance of ZnO Electron Transport Layer Prepared by a Facile Ultrasonic Spray Pyrolysis in Polymer Solar Cells. International Journal of Photoenergy, 2015, 2015, 1-8.	1.4	14
1259	Investigation of Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Hole Transport Layer for Solution-Processed Polymer Solar Cells. International Journal of Photoenergy, 2015, 2015, 1-7.	1.4	3
1260	Structural Dependence of Electronic Properties in A-A-D-A-A-Type Organic Solar Cell Material. International Journal of Photoenergy, 2015, 2015, 1-7.	1.4	3
1261	Characterization of Organic Thin Film Solar Cells of PCDTBT : PC ₇₁ BM Prepared by Different Mixing Ratio and Effect of Hole Transport Layer. International Journal of Photoenergy, 2015, 2015, 1-8.	1.4	11
1263	Efficient Inverted Polymer Solar Cells Through Modified Electron Extraction Layer. IEEE Journal of Photovoltaics, 2015, 5, 912-916.	1.5	7
1264	Wide bandgap OPV polymers based on pyridinonedithiophene unit with efficiency >5%. Chemical Science, 2015, 6, 4860-4866.	3.7	35
1265	Morphology and local electrical properties of PTB7:PC ₇₁ BM blends. Journal of Materials Chemistry A, 2015, 3, 8706-8714.	5.2	18
1266	Solution-Processed Diketopyrrolopyrrole-Containing Small-Molecule Organic Solar Cells with 7.0% Efficiency: In-Depth Investigation on the Effects of Structure Modification and Solvent Vapor Annealing. Chemistry of Materials, 2015, 27, 4338-4348.	3.2	104
1267	Molecular-Level Details of Morphology-Dependent Exciton Migration in Poly(3-hexylthiophene) Nanostructures. Journal of Physical Chemistry C, 2015, 119, 7047-7059.	1.5	29
1268	Aggregation Behaviors of Ladder-Type Poly(<i>p</i> -phenylene) in Dilute Solutions and Spin-Coated Films. Journal of Physical Chemistry C, 2015, 119, 11833-11838.	1.5	10
1269	Molecular Design for Tuning Work Functions of Transparent Conducting Electrodes. Journal of Physical Chemistry Letters, 2015, 6, 2269-2276.	2.1	30
1270	Simultaneous Enhancement of Solar Cell Efficiency and Stability by Reducing the Side Chain Density on Fluorinated PCPDTQx Copolymers. Macromolecules, 2015, 48, 3873-3882.	2.2	22
1271	Solution-Processed Zinc Oxide/Polyethylenimine Nanocomposites as Tunable Electron Transport Layers for Highly Efficient Bulk Heterojunction Polymer Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 6273-6281.	4.0	120

#	Article	IF	CITATIONS
1272	In-Depth Understanding of the Morphology–Performance Relationship in Polymer Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 14026-14034.	4.0	36
1273	Effect of Solvent Additive on Generation, Recombination, and Extraction in PTB7:PCBM Solar Cells: A Conclusive Experimental and Numerical Simulation Study. Journal of Physical Chemistry C, 2015, 119, 8310-8320.	1.5	96
1275	PV glazing technologies. Renewable and Sustainable Energy Reviews, 2015, 49, 306-322.	8.2	137
1276	Sequential Processing for Organic Photovoltaics: Design Rules for Morphology Control by Tailored Semiâ€Orthogonal Solvent Blends. Advanced Energy Materials, 2015, 5, 1402020.	10.2	82
1277	Novel medium band gap conjugated polymers based on naphtho[1,2-c:5,6-c]bis[1,2,3]triazole for polymer solar cells. Polymer, 2015, 67, 40-46.	1.8	22
1278	Enhanced Performance of Inverted Organic Solar Cells by Introducing a Phosphorescence-Doped Electron Extraction Layer. IEEE Journal of Photovoltaics, 2015, 5, 885-888.	1.5	6
1279	Efficiency enhancement in solution-processed organic small molecule: Fullerene solar cells via solvent vapor annealing. Applied Physics Letters, 2015, 106, .	1.5	48
1280	A low bandgap carbazole based small molecule for organic solar cells. Organic Electronics, 2015, 24, 89-95.	1.4	16
1281	Efficient inverted polymer solar cells employing favourable molecular orientation. Nature Photonics, 2015, 9, 403-408.	15.6	769
1282	Pressure-Dependent Relaxation Dynamics of Excitons in Conjugated Polymer Film. Journal of Physical Chemistry C, 2015, 119, 13194-13199.	1.5	8
1283	A mono(carboxy)porphyrin-triazine-(bodipy) ₂ triad as a donor for bulk heterojunction organic solar cells. Journal of Materials Chemistry C, 2015, 3, 6209-6217.	2.7	29
1284	A perylene diimide (PDI)-based small molecule with tetrahedral configuration as a non-fullerene acceptor for organic solar cells. Journal of Materials Chemistry C, 2015, 3, 4698-4705.	2.7	180
1285	Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chemical Reviews, 2015, 115, 4744-4822.	23.0	1,519
1286	Molecular Design and Application of a Photovoltaic Polymer with Improved Optical Properties and Molecular Energy Levels. Macromolecules, 2015, 48, 3493-3499.	2.2	52
1287	Optimizing the fabrication process and interplay of device components of polymer solar cells using a field-based multiscale solar-cell algorithm. Journal of Chemical Physics, 2015, 142, 184902.	1.2	2
1288	A lactam building block for efficient polymer solar cells. Chemical Communications, 2015, 51, 11830-11833.	2.2	69
1289	Perylene bisimide as the cathode modifier in organic photovoltaics: the role of aggregation morphology on the interlayer performance. RSC Advances, 2015, 5, 39973-39977.	1.7	9
1290	Electrospun nanofibers with dual plasmonic-enhanced luminescent solar concentrator effects for high-performance organic photovoltaic cells. Journal of Materials Chemistry A, 2015, 3, 15039-15048.	5.2	30
#	Article	IF	CITATIONS
------	--	-----	-----------
1291	Theoretical Strategy To Design Novel n-Type Copolymers Based on Anthracene Diimide and Pyrido[2,3- <i>g</i>]quinoline Diimide for Organic Solar Cells. Journal of Physical Chemistry A, 2015, 119, 6884-6896.	1.1	13
1292	Vertical phase separation and light-soaking effect improvements by photoactive layer spin coating initiation time control in air-processed inverted organic solar cells. Solar Energy Materials and Solar Cells, 2015, 140, 335-343.	3.0	26
1293	Highly Stable Polymer Solar Cells Based on Poly(dithienobenzodithiophene- <i>co</i> -thienothiophene). Macromolecules, 2015, 48, 3890-3899.	2.2	27
1294	Asymmetric Electron-Donating 4-Alkyl-8-alkoxybenzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene Unit for Use in High-Efficiency Bulk Heterojunction Polymer Solar Cells. Macromolecules, 2015, 48, 3918-3927.	2.2	39
1295	Utilizing alkoxyphenyl substituents for side-chain engineering of efficient benzo[1,2-b:4,5-bâ€2]dithiophene-based small molecule organic solar cells. Physical Chemistry Chemical Physics, 2015, 17, 17391-17398.	1.3	24
1296	High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes. Nature Communications, 2015, 6, 7327.	5.8	422
1297	Effects of Fluorination and Side Chain Branching on Molecular Conformation and Photovoltaic Performance of Donor–Acceptor Copolymers. Chemistry of Materials, 2015, 27, 4196-4204.	3.2	41
1298	Organic Optoelectronic Materials. Lecture Notes in Quantum Chemistry II, 2015, , .	0.3	33
1299	Organometallic Versus Organic Molecules for Energy Conversion in Organic Light-Emitting Diodes and Solar Cells. Green Chemistry and Sustainable Technology, 2015, , 1-28.	0.4	0
1300	A new unsymmetrical near-IR small molecule with squaraine chromophore for solution processed bulk heterojunction solar cells. Journal of Materials Chemistry C, 2015, 3, 7029-7037.	2.7	16
1301	Influence of donor–acceptor materials on the photovoltaic parameters of conjugated polymer/fullerene solar cells. Journal of Materials Science: Materials in Electronics, 2015, 26, 6212-6217.	1.1	5
1302	Efficiency improved for inverted polymer solar cells with electrostatically self-assembled BenMelm-Cl ionic liquid layer as cathode interface layer. Nano Energy, 2015, 13, 275-282.	8.2	74
1303	Application of a water-soluble metallophthalocyanine derivative as a cathode interlayer for the polymer solar cells. Solar Energy Materials and Solar Cells, 2015, 141, 93-100.	3.0	19
1304	Influence of Regio- and Chemoselectivity on the Properties of Fluoro-Substituted Thienothiophene and Benzodithiophene Copolymers. Journal of the American Chemical Society, 2015, 137, 7616-7619.	6.6	89
1305	Origin of high fill factor in polymer solar cells from semiconducting polymer with moderate charge carrier mobility. Organic Electronics, 2015, 24, 125-130.	1.4	31
1306	Interfacial Layer Engineering for Performance Enhancement in Polymer Solar Cells. Polymers, 2015, 7, 333-372.	2.0	86
1307	Improved Carrier Dynamics and High Solar Cell Performance in Postadditive-Soaked PTB7:PC71BM Bulk Heterojunction Materials. Journal of Physical Chemistry C, 2015, 119, 12896-12903.	1.5	13
1308	Versatility and robustness of ZnO:Cs electron transporting layer for printable organic solar cells. RSC Advances, 2015, 5, 49369-49375.	1.7	12

#	ARTICLE	IF	CITATIONS
1309	Reducing optical losses in organic solar cells using microlens arrays: theoretical and experimental	1.3	25
1310	Non-fullerene acceptors: exciton dissociation with PTCDA versus C ₆₀ . Physical Chemistry Chemical Physics, 2015, 17, 15953-15962.	1.3	9
1311	Efficient Small-Molecule-Based Inverted Organic Solar Cells With Conjugated Polyelectrolyte as a Cathode Interlayer. IEEE Journal of Photovoltaics, 2015, 5, 1118-1124.	1.5	5
1312	Synthesis of a low bandgap polymer based on thieno[3,2-b]thiophene and fluorinated quinoxaline derivatives and its application in bulk heterojunction solar cells. Synthetic Metals, 2015, 206, 66-71.	2.1	5
1313	Dramatic performance enhancement for large bandgap thick-film polymer solar cells introduced by a difluorinated donor unit. Nano Energy, 2015, 15, 607-615.	8.2	93
1314	Two new D–A conjugated polymers P(PTQD-Th) and P(PTQD-2Th) with same 9-(2-octyldodecyl)-8 H -pyrrolo[3,4- b]bisthieno[2,3- f :3â€2,2â€2- h]quinoxaline-8,10(9 H)-dione acceptor and different donor units for BHJ polymer solar cells application. Organic Electronics, 2015, 24, 137-146.	1.4	6
1315	Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing. Chemical Society Reviews, 2015, 44, 5638-5679.	18.7	283
1316	Characterization of Interfaces Between Contacts and Active Layer in Organic Photovoltaics Using Impedance Spectroscopy and Equivalent Circuit Model. IEEE Journal of Photovoltaics, 2015, 5, 903-911.	1.5	2
1317	Conjugated Polymer Photovoltaic Materials. Lecture Notes in Quantum Chemistry II, 2015, , 195-239.	0.3	3
1318	Variations in spectral response behaviour in single layer organic solar cells with active layer thickness and bias. , 2015, , .		3
1319	Low band gap polymer consisting of quinacridone and diketopyrrolopyrrole and isoindigo units: correlation of ordered structure and intramolecular charge transfer properties. Synthetic Metals, 2015, 210, 304-313.	2.1	8
1320	Temperature- and Energy-Dependent Separation of Charge-Transfer States in PTB7-Based Organic Solar Cells. Journal of Physical Chemistry C, 2015, 119, 28309-28318.	1.5	35
1321	Organic–Inorganic Hybrid Ternary Bulk Heterojunction of Nanostructured Perovskite–Low Bandgap Polymer–PCBM for Improved Efficiency of Organic Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 28459-28465.	4.0	9
1322	Organic/Organic Cathode Bi-Interlayers Based on a Water-Soluble Nonconjugated Polymer and an Alcohol-Soluble Conjugated Polymer for High Efficiency Inverted Polymer Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 27871-27877.	4.0	21
1323	High-efficiency polymer solar cells with small photon energy loss. Nature Communications, 2015, 6, 10085.	5.8	358
1324	Pyrenyl-Capped Benzofiurene Derivatives: Synthesis, Characterization, and the Effects of Flexible Side Chains on Modulating the Optoelectronic Properties. Journal of Physical Chemistry C, 2015, 119, 28117-28126.	1.5	18
1325	Dithiol treatments enhancing the efficiency of hybrid solar cells based on PTB7 and CdSe nanorods. Nano Research, 2015, 8, 3045-3053.	5.8	5
1326	The role of structural fluctuations and environmental noise in the electron/hole separation kinetics at organic polymer bulk-heterojunction interfaces. Physical Chemistry Chemical Physics, 2015, 17, 28853-28859.	1.3	13

#	Article	IF	CITATIONS
1327	Lanthanum Hexaboride As Novel Interlayer for Improving the Thermal Stability of P3HT:PCBM Organic Solar Cells. ACS Applied Materials & amp; Interfaces, 2015, 7, 25334-25340.	4.0	15
1328	Polyethylenimine Interfacial Layers in Inverted Organic Photovoltaic Devices: Effects of Ethoxylation and Molecular Weight on Efficiency and Temporal Stability. ACS Applied Materials & (Interfaces, 2015, 7, 26167-26175.	4.0	70
1329	Investigation of the enhanced performance and lifetime of organic solar cells using solution-processed carbon dots as the electron transport layers. Journal of Materials Chemistry C, 2015, 3, 12403-12409.	2.7	28
1331	Improved work function of preferentially oriented indium oxide films induced by the plasma exposure technique. Electronic Materials Letters, 2015, 11, 938-943.	1.0	5
1332	Influences of thermal annealing on P3HT/PCBM interfacial properties and charge dynamics in polymer solar cells. Japanese Journal of Applied Physics, 2015, 54, 122301.	0.8	10
1333	Challenges and opportunities for graphene as transparent conductors in optoelectronics. Nano Today, 2015, 10, 681-700.	6.2	73
1334	The preparation of a Eu ³⁺ -doped ZnO bi-functional layer and its application in organic photovoltaics. Materials Research Express, 2015, 2, 125901.	0.8	14
1335	Synthesis and photovoltaic properties of A–D–A type non-fullerene acceptors containing isoindigo terminal units. RSC Advances, 2015, 5, 107566-107574.	1.7	19
1336	Solution-Processed NiO Layers for PTB7: PC71BM Organic Solar Cells. Molecular Crystals and Liquid Crystals, 2015, 620, 38-44.	0.4	2
1337	Isoindigo-based low bandgap conjugated polymer for o-xylene processed efficient polymer solar cells with thick active layers. Journal of Materials Chemistry A, 2015, 3, 19928-19935.	5.2	19
1338	A high efficiency UV-VIS organic photodetector by an invertedPTB7: PC71BM bulk heterojunction structure. , 2015, , .		0
1339	Silicon nanocrystals synthesized using very high frequency non-thermal plasma and their application in photovoltaics. Journal Physics D: Applied Physics, 2015, 48, 314011.	1.3	3
1340	Improving the performance of inverted organic solar cells by adjusting the concentration of precursor solution of Al-doped ZnO. Optoelectronics Letters, 2015, 11, 329-332.	0.4	3
1341	Influence of Surface Recombination on Charge-Carrier Kinetics in Organic Bulk Heterojunction Solar Cells with Nickel Oxide Interlayers. Physical Review Applied, 2015, 4, .	1.5	87
1342	Oriented Thin Films of the Low-Band-Gap Polymer PTB7 by Friction Transfer Method. Molecular Crystals and Liquid Crystals, 2015, 621, 118-123.	0.4	3
1343	A Simple and Universal Method to Increase Light Absorption in Ternary Blend Polymer Solar Cells Based on Ladderâ€Type Polymers. Advanced Optical Materials, 2015, 3, 321-327.	3.6	27
1344	Structural and morphological tuning of dithienobenzodithiophene-core small molecules for efficient solution processed organic solar cells. Dyes and Pigments, 2015, 115, 23-34.	2.0	22
1345	Toward Large Scale Rollâ€toâ€Roll Production of Fully Printed Perovskite Solar Cells. Advanced Materials, 2015, 27, 1241-1247.	11.1	785

#	Article	IF	CITATIONS
1346	Addressing dynamic photovoltaic processes at electrode:active layer and donor:acceptor interfaces in organic solar cells under device-operating conditions. Science China Chemistry, 2015, 58, 239-247.	4.2	5
1347	An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells. Advanced Materials, 2015, 27, 1170-1174.	11.1	3,365
1348	New generation solar cells: concepts, trends and perspectives. Chemical Communications, 2015, 51, 3957-3972.	2.2	170
1349	Low band-gap benzodithiophene-thienothiophenecopolymers: the effect of dual two-dimensional substitutions on optoelectronic properties. Science China Chemistry, 2015, 58, 267-275.	4.2	8
1350	Colloidal Quantum Dot Solar Cells Exploiting Hierarchical Structuring. Nano Letters, 2015, 15, 1101-1108.	4.5	137
1351	Efficient strategies to improve photovoltaic performance of linear-shape molecules by introducing large planar aryls in molecular center and terminals. Organic Electronics, 2015, 17, 198-207.	1.4	18
1352	Synthesis and photovoltaic properties of conjugated polymers with an asymmetric 4-(2-ethylhexyloxy)-8-(2-ethylhexylthio)benzo[1,2-b:4,5-bâ€2]dithiophene unit. Dyes and Pigments, 2015, 115, 58-66.	2.0	9
1353	Digital fabrication of organic solar cells by Inkjet printing using non-halogenated solvents. Solar Energy Materials and Solar Cells, 2015, 134, 364-372.	3.0	74
1354	Fine-tuning of polymer photovoltaic properties by the length of alkyl side chains. Chinese Journal of Polymer Science (English Edition), 2015, 33, 490-498.	2.0	17
1355	Efficient Annealing-Free P3HT:PC 61 BM-Based Organic Solar Cells by Using a Novel Solvent Additive without a Halogen or Sulphur Atom. Chinese Physics Letters, 2015, 32, 028802.	1.3	3
1356	A small molecule with selenophene as the central block for high performance solution-processed organic solar cells. Organic Electronics, 2015, 19, 98-104.	1.4	13
1357	Sub-bandgap photon harvesting for organic solar cells via integrating up-conversion nanophosphors. Organic Electronics, 2015, 19, 113-119.	1.4	13
1358	Synthesis and characterization of π-conjugated copolymers with thieno-imidazole units in the main chain: application for bulk heterojunction polymer solar cells. Physical Chemistry Chemical Physics, 2015, 17, 7888-7897.	1.3	6
1359	D–A ₁ –D–A ₂ Copolymers with Extended Donor Segments for Efficient Polymer Solar Cells. Macromolecules, 2015, 48, 1009-1016.	2.2	82
1360	Single-junction polymer solar cells with high efficiency and photovoltage. Nature Photonics, 2015, 9, 174-179.	15.6	1,595
1361	Enhanced Performance Using an SU-8 Dielectric Interlayer in a Bulk Heterojunction Organic Solar Cell. ACS Applied Materials & amp; Interfaces, 2015, 7, 5219-5225.	4.0	11
1362	Enhanced stability in semi-transparent PTB7/PC71BM photovoltaic cells. Solar Energy Materials and Solar Cells, 2015, 137, 44-49.	3.0	43
1363	Polymer/small-molecule parallel tandem organic solar cells based on MoOx–Ag–MoOx intermediate electrodes. Solar Energy Materials and Solar Cells, 2015, 137, 34-43.	3.0	18

#	Article	IF	CITATIONS
1364	Synthesis of dithieno[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene -alt-isoindigo conjugated polyr enhancement of photovoltaic property with diphenyl sulfide additives. Journal of Polymer Research, 2015, 22, 1.	ner and 1.2	12
1365	Donor–acceptor–΀–acceptor based charge transfer chromophore as electron donors for solution processed small molecule organic bulk heterojunction solar cells. Organic Electronics, 2015, 19, 76-82.	1.4	27
1366	Modification of a donor-acceptor photovoltaic polymer by integration of optoelectronic moieties into its side chains. Polymer, 2015, 59, 57-66.	1.8	6
1367	Dip-coating of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) anodes for efficient polymer solar cells. Thin Solid Films, 2015, 578, 161-166.	0.8	19
1368	Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy and Environmental Science, 2015, 8, 1160-1189.	15.6	725
1369	Dynamic Coupling between Electrode Interface and Donor/Acceptor Interface via Charge Dissociation in Organic Solar Cells at Device-Operating Condition. Journal of Physical Chemistry C, 2015, 119, 2727-2732.	1.5	10
1370	Unravelling the Photodegradation Mechanisms of a Low Bandgap Polymer by Combining Experimental and Modeling Approaches. Journal of Physical Chemistry C, 2015, 119, 2166-2176.	1.5	36
1371	The effect of interfacial diffusion on device performance of polymer solar cells: a quantitative view by active-layer doping. Science China Chemistry, 2015, 58, 317-322.	4.2	8
1372	Energy-Cascade Organic Photovoltaic Devices Incorporating a Host–Guest Architecture. ACS Applied Materials & Interfaces, 2015, 7, 2912-2918.	4.0	29
1373	An alcohol-soluble perylene diimide derivative as cathode interfacial layer for PDI-based nonfullerene organic solar cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 469, 326-332.	2.3	21
1374	Linear and propeller-like fluoro-isoindigo based donor–acceptor small molecules for organic solar cells. Organic Electronics, 2015, 20, 76-88.	1.4	16
1375	Organic photovoltaic initial stage degradation analysis using impedance spectroscopy. Synthetic Metals, 2015, 202, 63-67.	2.1	6
1376	Methods for Improving the Lifetime Performance of Organic Photovoltaics with Lowâ€Costing Encapsulation. ChemPhysChem, 2015, 16, 1134-1154.	1.0	72
1377	Single-Junction Polymer Solar Cells with Over 10% Efficiency by a Novel Two-Dimensional Donor–Acceptor Conjugated Copolymer. ACS Applied Materials & Interfaces, 2015, 7, 4928-4935.	4.0	256
1378	Effect of Alcohol Treatment on the Performance of PTB7:PC ₇₁ BM Bulk Heterojunction Solar Cells. ACS Applied Materials & amp; Interfaces, 2015, 7, 4641-4649.	4.0	100
1379	Alternative Carrier Injection/Extraction Inspired by Electrode Interlayers Based on Peripheral Modification of the Electron-Rich Skeleton. ACS Applied Materials & Interfaces, 2015, 7, 3133-3141.	4.0	4
1380	A Selenophene Containing Benzodithiophene- <i>alt</i> -thienothiophene Polymer for Additive-Free High Performance Solar Cell. Macromolecules, 2015, 48, 562-568.	2.2	59
1381	Solution-processable polymeric solar cells: A review on materials, strategies and cell architectures to overcome 10%. Organic Electronics, 2015, 19, 34-60.	1.4	216

#	Article	IF	CITATIONS
1382	Benzo[1,2-b:4,5-bâ€2]dithiophene (BDT)-based small molecules for solution processed organic solar cells. Journal of Materials Chemistry A, 2015, 3, 4765-4776.	5.2	117
1383	The enhanced performance of fluorinated quinoxaline-containing polymers by replacing carbon with silicon bridging atoms on the dithiophene donor skeleton. Polymer Chemistry, 2015, 6, 2337-2347.	1.9	21
1384	Efficient inverted polymer solar cells based on surface modified FTO transparent electrodes. Solar Energy Materials and Solar Cells, 2015, 136, 142-147.	3.0	11
1385	N-acyl-dithieno[3,2-b:2',3'-d]pyrrole-based low bandgap copolymers affording improved open-circuit voltages and efficiencies in polymer solar cells. Solar Energy Materials and Solar Cells, 2015, 136, 70-77.	3.0	13
1386	Enhanced Organic Solar Cell Stability by Polymer (PCPDTBT) Side Chain Functionalization. Chemistry of Materials, 2015, 27, 1332-1341.	3.2	70
1387	Efficient organic Schottky junction solar cells with a platinum chloride-treated PEDOT:PSS interfacial layer. Semiconductor Science and Technology, 2015, 30, 015014.	1.0	2
1388	Effect of molecular weight on the properties and organic solar cell device performance of a donor–acceptor conjugated polymer. Polymer Chemistry, 2015, 6, 2312-2318.	1.9	70
1389	Organic photovoltaic greenhouses: a unique application for semi-transparent PV?. Energy and Environmental Science, 2015, 8, 1317-1328.	15.6	222
1390	Synthesis of two-dimensional π-conjugated polymers pendent with benzothiadiazole and naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole moieties for polymer solar cells. Science China Chemistry, 2015, 58, 257-266.	4.2	29
1391	An alkylthieno-2-yl flanked dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene-based low band gap conjugated polymer for high performance photovoltaic solar cells. RSC Advances, 2015, 5, 12879-12885.	1.7	24
1392	Towards organic solar cells without the hole transporting layer on the plasmonâ€enhanced ITO electrode. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 867-876.	0.8	2
1393	Recent advances in plasmonic organic photovoltaics. Science China Chemistry, 2015, 58, 210-220.	4.2	18
1394	Nanoscale phase separation control in rationally designed conjugated polymer solar cells processed using co-additives. RSC Advances, 2015, 5, 16234-16238.	1.7	3
1395	Organic Donor Materials Based on Bis(arylene ethynylene)s for Bulk Heterojunction Organic Solar Cells with High <i>V</i> _{oc} Values. Chemistry - an Asian Journal, 2015, 10, 1017-1024.	1.7	9
1396	A real-time study of the benefits of co-solvents in polymer solar cell processing. Nature Communications, 2015, 6, 6229.	5.8	287
1397	Fast Singlet Exciton Decay in Push–Pull Molecules Containing Oxidized Thiophenes. Journal of Physical Chemistry B, 2015, 119, 7644-7650.	1.2	34
1398	Highly Thermal Stable and Efficient Organic Photovoltaic Cells with Crosslinked Networks Appending Open age Fullerenes as Additives. Advanced Functional Materials, 2015, 25, 207-213.	7.8	46
1399	Polymer solar cells based on P3HT:PC71BM doped at different concentrations of isocyanate-treated graphene. Synthetic Metals, 2015, 200, 91-98.	2.1	24

#	Article	IF	CITATIONS
1400	Influence of the fused hetero-aromatic centers on molecular conformation and photovoltaic performance of solution-processed organic solar cells. New Journal of Chemistry, 2015, 39, 2224-2232.	1.4	4
1401	A–D–A small molecules for solution-processed organic photovoltaic cells. Chemical Communications, 2015, 51, 4936-4950.	2.2	188
1402	High efficiency PTB7-based inverted organic photovoltaics on nano-ridged and planar zinc oxide electron transport layers. Journal of Materials Chemistry A, 2015, 3, 5563-5571.	5.2	32
1403	4H-1,2,6-Thiadiazin-4-one-containing small molecule donors and additive effects on their performance in solution-processed organic solar cells. Journal of Materials Chemistry C, 2015, 3, 2358-2365.	2.7	29
1404	Enhancement of Organic Photovoltaic Efficiency via Nanomorphology Control using Conjugated Polymers Incorporating Fullerene Compatible Side-Chains. Macromolecules, 2015, 48, 337-345.	2.2	10
1405	Uncovering the role of cathode buffer layer in organic solar cells. Scientific Reports, 2015, 5, 7803.	1.6	58
1406	Molecular engineering of donor–acceptor co-polymers for bulk heterojunction solar cells. Computational and Theoretical Chemistry, 2015, 1055, 15-24.	1.1	8
1407	Multilayered MoS2 nanoflakes bound to carbon nanotubes as electron acceptors in bulk heterojunction inverted organic solar cells. Organic Electronics, 2015, 17, 275-280.	1.4	21
1408	Synthesis and photovoltaic properties of naphthobisthiadiazole-triphenylamine-based donor–acceptor π-conjugated polymer. Polymer, 2015, 58, 139-145.	1.8	16
1409	Simple and Versatile Molecular Donors for Organic Photovoltaics Prepared by Metalâ€Free Synthesis. Chemistry - A European Journal, 2015, 21, 1598-1608.	1.7	25
1410	Highly efficient polymer solar cells based on a universal cathode interlayer composed of metallophthalocyanine derivative with good film-forming property. Journal of Materials Chemistry A, 2015, 3, 4547-4554.	5.2	37
1411	Organic Photovoltaic Cells: From Performance Improvement to Manufacturing Processes. Small, 2015, 11, 2228-2246.	5.2	65
1412	Novel photovoltaic donor 1–acceptor–donor 2–acceptor terpolymers with tunable energy levels based on a difluorinated benzothiadiazole acceptor. RSC Advances, 2015, 5, 12087-12093.	1.7	12
1413	Polymorphisms and morphological studies of a difluorobenzothiadiazole conjugated copolymer with 7.8% polymer solar cell efficiency. Journal of Materials Chemistry A, 2015, 3, 3968-3974.	5.2	18
1414	Hydrophilic poly-ether side-chained benzodithiophene-based homopolymer for solar cells and field-effect transistors. Journal of Materials Science, 2015, 50, 2263-2271.	1.7	4
1415	Toward efficient non-fullerene polymer solar cells: Selection of donor polymers. Organic Electronics, 2015, 17, 295-303.	1.4	41
1416	"All That Glisters Is Not Gold†An Analysis of the Synthetic Complexity of Efficient Polymer Donors for Polymer Solar Cells. Macromolecules, 2015, 48, 453-461.	2.2	268
1417	Chalcogenophene Comonomer Comparison in Small Band Gap Diketopyrrolopyrrole-Based Conjugated Polymers for High-Performing Field-Effect Transistors and Organic Solar Cells. Journal of the American Chemical Society, 2015, 137, 1314-1321.	6.6	363

#	Article	IF	Citations
1418	Improving the Conductivity of PEDOT:PSS Hole Transport Layer in Polymer Solar Cells via Copper(II) Bromide Salt Doping. ACS Applied Materials & Interfaces, 2015, 7, 1439-1448.	4.0	76
1419	Suppressed charge recombination in polymer solar cells based on perylene diimide derivative acceptors via solvent vapor annealing. Organic Electronics, 2015, 18, 24-31.	1.4	12
1420	A molecular nematic liquid crystalline material for high-performance organic photovoltaics. Nature Communications, 2015, 6, 6013.	5.8	541
1421	Benzodithiophene-thiophene-based photovoltaic polymers with different side-chains. Journal of Polymer Science Part A, 2015, 53, 854-862.	2.5	15
1422	Synthesis of star-shaped small molecules carrying peripheral 1,8-naphthalimide functional groups and their applications in organicÂsolar cells. Dyes and Pigments, 2015, 115, 181-189.	2.0	30
1423	Realizing over 10% efficiency in polymer solar cell by device optimization. Science China Chemistry, 2015, 58, 248-256.	4.2	311
1424	High-Efficiency Large-Bandgap Material for Polymer Solar Cells. Macromolecular Rapid Communications, 2015, 36, 84-89.	2.0	19
1425	Alcohol/water-soluble porphyrins as cathode interlayers in high-performance polymer solar cells. Science China Chemistry, 2015, 58, 323-330.	4.2	10
1426	Solutionâ€Grown Organic Singleâ€Crystalline Donor–Acceptor Heterojunctions for Photovoltaics. Angewandte Chemie, 2015, 127, 970-974.	1.6	11
1427	Enhanced Light Scattering and Trapping Effect of Ag Nanowire Mesh Electrode for High Efficient Flexible Organic Solar Cell. Small, 2015, 11, 1905-1911.	5.2	78
1428	Plasmonically sensitized metal-oxide electron extraction layers for organic solar cells. Scientific Reports, 2015, 5, 7765.	1.6	39
1429	Water/alcohol soluble conjugated polymers for the interface engineering of highly efficient polymer light-emitting diodes and polymer solar cells. Chemical Communications, 2015, 51, 5572-5585.	2.2	156
1430	Designing a thiophene-fused DPP unit to build an A–D–A molecule for solution-processed solar cells. Journal of Materials Chemistry A, 2015, 3, 6894-6900.	5.2	28
1431	Constructing vertical phase separation of polymer blends via mixed solvents to enhance their photovoltaic performance. Science China Chemistry, 2015, 58, 309-316.	4.2	16
1432	High efficiency inverted polymer solar cells with solution-processed ZnO buffer layer. Journal of Sol-Gel Science and Technology, 2015, 73, 550-556.	1.1	13
1433	Highâ€Performance Allâ€Polymer Solar Cells Via Sideâ€Chain Engineering of the Polymer Acceptor: The Importance of the Polymer Packing Structure and the Nanoscale Blend Morphology. Advanced Materials, 2015, 27, 2466-2471.	11.1	279
1434	10.5% efficient polymer and amorphous silicon hybrid tandem photovoltaic cell. Nature Communications, 2015, 6, 6391.	5.8	45
1435	Sub-ns triplet state formation by non-geminate recombination in PSBTBT:PC ₇₀ BM and PCPDTBT:PC ₆₀ BM organic solar cells. Energy and Environmental Science, 2015, 8, 1511-1522.	15.6	67

#	Article	IF	CITATIONS
1436	Efficient inverted polymer solar cells based on conjugated polyelectrolyte and zinc oxide modified ITO electrode. Applied Physics Letters, 2015, 106, 083302.	1.5	12
1437	Electroluminescence from Organometallic Lead Halide Perovskiteâ€Conjugated Polymer Diodes. Advanced Electronic Materials, 2015, 1, 1500008.	2.6	62
1438	Enhanced photon harvesting in OPV using optical reflective surface. Applied Physics A: Materials Science and Processing, 2015, 118, 425-429.	1.1	8
1439	A new oligobenzodithiophene end-capped with 3-ethyl-rhodanine groups for organic solar cells with high open-circuit voltage. Science China Chemistry, 2015, 58, 339-346.	4.2	23
1440	A new anodic buffer layer material for non-mixed planar heterojunction chloroboron subphthalocyanine organic photovoltaic achieving 96% internal quantum efficiency. Solar Energy Materials and Solar Cells, 2015, 137, 138-145.	3.0	10
1441	Thin Films Formed from Conjugated Polymers with Ionic, Water-Soluble Backbones. ACS Applied Materials & Interfaces, 2015, 7, 28006-28012.	4.0	9
1442	2,7-Carbazole and thieno[3,4-c]pyrrole-4,6-dione based copolymers with deep highest occupied molecular orbital for photovoltaic cells. Current Applied Physics, 2015, 15, 654-661.	1.1	4
1443	Conflicted Effects of a Solvent Additive on PTB7:PC ₇₁ BM Bulk Heterojunction Solar Cells. Journal of Physical Chemistry C, 2015, 119, 5954-5961.	1.5	155
1444	In-situ modification of PEDOT:PSS work function using alkyl alcohols as secondary processing solvents and their impact on merocyanine based bulk heterojunction solar cells. Organic Electronics, 2015, 21, 171-176.	1.4	28
1445	Hole-selective and impedance characteristics of an aqueous solution-processable MoO3 layer for solution-processable organic semiconducting devices. Journal of the Korean Physical Society, 2015, 66, 635-645.	0.3	1
1446	Investigating the reduction in the absorption intensity of <scp>P</scp> 3 <scp>HT</scp> in polymer/fullerene "bilayers―coated using orthogonal solvents. Journal of Applied Polymer Science, 2015, 132, .	1.3	10
1447	Effect of halogen-terminated additives on the performance and the nanostructure of all-polymer solar cells. Journal of the Korean Physical Society, 2015, 66, 521-525.	0.3	4
1448	In operando morphology investigation of inverted bulk heterojunction organic solar cells by GISAXS. Journal of Materials Chemistry A, 2015, 3, 8324-8331.	5.2	54
1449	Polymer/Polymer Blend Solar Cells Using Tetraazabenzodifluoranthene Diimide Conjugated Polymers as Electron Acceptors. Macromolecules, 2015, 48, 1759-1766.	2.2	39
1450	Decreased domain size and improved crystallinity by adjusting solvent–polymer interaction parameters in allâ€polymer solar cells. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 288-296.	2.4	13
1451	Robust Wide Visible-Light-Responsive Photoactivity for H ₂ Production over a Polymer/Polymer Heterojunction Photocatalyst: The Significance of Sacrificial Reagent. ACS Sustainable Chemistry and Engineering, 2015, 3, 1501-1509.	3.2	119
1452	Zinc oxide: Conjugated polymer nanocomposite as cathode buffer layer for solution processed inverted organic solar cells. Solar Energy Materials and Solar Cells, 2015, 141, 248-259.	3.0	63
1453	Improvement in polymer solar cell performance and eliminating light soaking effect via UV-light treatment on conjugated polyelectrolyte interlayer. Organic Electronics, 2015, 25, 105-111.	1.4	4

#	Article	IF	CITATIONS
1454	Scalability of multi-junction organic solar cells for large area organic solar modules. Applied Physics Letters, 2015, 106, .	1.5	19
1455	Performance evaluation of PTB7 : PC ₇₁ BM based organic solar cells fabricated by spray coating method using chlorine free solvent. RSC Advances, 2015, 5, 56262-56269.	1.7	21
1456	Direct and Dry Deposited Single-Walled Carbon Nanotube Films Doped with MoO _{<i>x</i>} as Electron-Blocking Transparent Electrodes for Flexible Organic Solar Cells. Journal of the American Chemical Society, 2015, 137, 7982-7985.	6.6	150
1457	Benzodithiophene-based low band-gap polymers with deep HOMO levels: synthesis, characterization, and photovoltaic performance. Polymer Journal, 2015, 47, 617-623.	1.3	6
1458	Side chain modification: an effective approach to modulate the energy level of benzodithiophene based polymers for high-performance solar cells. Journal of Materials Chemistry A, 2015, 3, 18115-18126.	5.2	40
1459	A two-step strategy to clarify the roles of a solution processed PFN interfacial layer in highly efficient polymer solar cells. Journal of Materials Chemistry A, 2015, 3, 18432-18441.	5.2	79
1460	First-principles investigation of organic photovoltaic materials <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mtext>C</mml:mtext><mml:mn>60<!--<br-->and bis-<mml:math xmlns:mml="h. Physical Review B, 2015, 91, .</td><td>mtal:mn></td><td>⟨⁄₂nıml:msub></td></mml:mn></mml:msub></mml:math 	m tal: mn>	⟨ ⁄₂nı ml:msub>
1461	Thienyl-BOPHY dyes as promising templates for bulk heterojunction solar cells. Chemical Communications, 2015, 51, 14742-14745.	2.2	42
1462	Morphology construction of vertical phase separation for large-area polymer solar cells. Organic Electronics, 2015, 26, 48-54.	1.4	23
1463	A graphene oxide/oxygen deficient molybdenum oxide nanosheet bilayer as a hole transport layer for efficient polymer solar cells. Journal of Materials Chemistry A, 2015, 3, 18380-18383.	5.2	28
1464	Synthesis of statistical carbazole–fluorene–thiophene–benzothiadiazole copolymers and their investigation in organic solar cells. Mendeleev Communications, 2015, 25, 277-279.	0.6	14
1465	Highly efficient organic solar cells based on a robust room-temperature solution-processed copper iodide hole transporter. Nano Energy, 2015, 16, 458-469.	8.2	41
1466	Panchromatic polymer–polymer ternary solar cells enhanced by Förster resonance energy transfer and solvent vapor annealing. Journal of Materials Chemistry A, 2015, 3, 18611-18621.	5.2	55
1467	Morphology-performance relationships in polymer/fullerene blends probed by complementary characterisation techniques – effects of nanowire formation and subsequent thermal annealing. Journal of Materials Chemistry C, 2015, 3, 9224-9232.	2.7	10
1468	Ambient stable large-area flexible organic solar cells using silver grid hybrid with vapor phase polymerized poly(3,4-Ethylenedioxythiophene) cathode. Solar Energy Materials and Solar Cells, 2015, 143, 354-359.	3.0	22
1469	Efficient and low-temperature processed perovskite solar cells based on a cross-linkable hybrid interlayer. Journal of Materials Chemistry A, 2015, 3, 18483-18491.	5.2	55
1470	Stability enhancement of normal-geometry organic solar cells in a highly damp condition: A study on the effect of top electrodes. Organic Electronics, 2015, 25, 31-36.	1.4	6
1471	Understanding the role of organic polar solvent induced nanoscale morphology and electrical evolutions of P3HT:PCBM composite film. Organic Electronics, 2015, 25, 50-56.	1.4	9

ARTICLE IF CITATIONS Synthesis of copolymers based on benzo[1,2-b:4,5-bâ€2]difuran and fluorinated guinoxaline derivatives 1472 14 1.8 and their photovoltaic properties. Polymer, 2015, 67, 55-62. Recent Advances in Bulk Heterojunction Polymer Solar Cells. Chemical Reviews, 2015, 115, 12666-12731. 1473 23.0 2,308 Rational Design of Thermally Stable, Bicontinuous Donor/Acceptor Morphologies with Conjugated 1474 2.3 30 Block Copolymer Additives. ACS Macro Letters, 2015, 4, 867-871. Direct arylation polycondensation for efficient synthesis of narrow-bandgap alternating Dâ€"A 1475 1.9 copolymers consisting of naphthalene diimide as an acceptor. Polymer Chemistry, 2015, 6, 6836-6844. ESR study of singlet oxygen generation and its behavior during the photo-oxidation of P3HT in 1476 1.2 35 solution. Chemical Physics Letters, 2015, 624, 87-92. Improved Performance for Inverted Organic Photovoltaics via Spacer between Benzodithiophene and Benzothiazole in Polymers. Journal of Physical Chemistry C, 2015, 119, 18992-19000. 1477 1.5 16 HOMO energy level regulation of novel conjugated copolymers for polymer solar cells. New Journal 1478 1.4 3 of Chemistry, 2015, 39, 6548-6554. A new V-shaped triphenylamine/diketopyrrolopyrrole containing donor material for small molecule 1479 1.7 16 organic solar cells. RSC Ádvances, 2015, 5, 68192-68199. Interface engineering for high-performance perovskite hybrid solar cells. Journal of Materials 1480 5.2 145 Chemistry A, 2015, 3, 19205-19217. Low-temperature solution-processed flexible organic solar cells with PFN/AgNWs cathode. Nano 1481 8.2 Energy, 2015, 16, 122-129. Monitoring the dynamics of miscible P3HT:PCBM blends: A quasi elastic neutron scattering study of 1482 19 1.8 organic photovoltaic active layers. Polymer, 2015, 61, 155-162. Diketopyrrolopyrrole-based conjugated polymers containing alkyl and aryl side-chains for bulk 2.1 heterojunction solar cells. Synthetic Metals, 2015, 203, 221-227. A unique concept of copolymer composed of main chain donor and side chain acceptor for promising 1484 2.1 4 bulk heterojunction solar cells. Synthetic Metals, 2015, 205, 195-200. Nanostructured Electron-Selective Interlayer for Efficient Inverted Organic Solar Cells. ACS Applied Materials & amp; Interfaces, 2015, 7, 18460-18466. 1485 4.0 High efficiency air stable organic photovoltaics with an aqueous inorganic contact. Nanoscale, 2015, 1486 2.8 9 7, 14241-14247. Nanohybrid conjugated polyelectrolytes: highly photostable and ultrabright nanoparticles. 1487 Nanosćale, 2015, 7, 15149-15158. Polyelectrolyte based hole-transporting materials for high performance solution processed planar 1488 5.2107 perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 15024-15029. Enhancement of light absorption in polyazomethines due to plasmon excitation on randomly 1489 distributed metal nanoparticles. Proceedings of SPIE, 2015, , .

#	Article	IF	CITATIONS
1490	Homogeneous phase separation in polymer:fullerene bulk heterojunction organic solar cells. Organic Electronics, 2015, 25, 266-274.	1.4	33
1491	High performance airbrush spray coated organic solar cells via tuning the surface tension and saturated vapor pressure of different ternary solvent systems. Organic Electronics, 2015, 25, 275-282.	1.4	14
1492	In Situ Formation of ZnO in Graphene: A Facile Way To Produce a Smooth and Highly Conductive Electron Transport Layer for Polymer Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 16078-16085.	4.0	28
1493	Recent advances in flexible perovskite solar cells. Chemical Communications, 2015, 51, 14696-14707.	2.2	78
1494	Solvent-treated PEDOT:PSS on the improvement PTB7 based on polymer solar cells performance. Applied Surface Science, 2015, 353, 1253-1259.	3.1	13
1495	Effect of chain curvature on the performance of diketopyrrolopyrrole-based polymer solar cells. Polymer Chemistry, 2015, 6, 6637-6643.	1.9	13
1496	Investigation of the effect of large aromatic fusion in the small molecule backbone on the solar cell device fill factor. Journal of Materials Chemistry A, 2015, 3, 16679-16687.	5.2	26
1497	A facile approach to alleviate photochemical degradation in high efficiency polymer solar cells. Journal of Materials Chemistry A, 2015, 3, 16313-16319.	5.2	38
1498	Effect of different solvents on the performance of ternary polymer solar cells based on PTB7 : PC ₇₁ BM : F8BT. Journal Physics D: Applied Physics, 2015, 48, 295105.	1.3	12
1499	Enhanced Lifetime of Polymer Solar Cells by Surface Passivation of Metal Oxide Buffer Layers. ACS Applied Materials & Interfaces, 2015, 7, 16093-16100.	4.0	57
1500	Self-assembled perylene bisimide J-aggregates as promising cathode modifiers for highly efficient inverted polymer solar cells. Materials Horizons, 2015, 2, 514-518.	6.4	33
1501	High electron mobility ZnO film for high-performance inverted polymer solar cells. Applied Physics Letters, 2015, 106, .	1.5	15
1502	Improving the efficiency of subphthalocyanine based planar organic solar cells through the use of MoO3/Cul double anode buffer layer. Solar Energy Materials and Solar Cells, 2015, 141, 429-435.	3.0	36
1503	Importance of Electron Transport Ability in Naphthalene Diimide-Based Polymer Acceptors for High-Performance, Additive-Free, All-Polymer Solar Cells. Chemistry of Materials, 2015, 27, 5230-5237.	3.2	131
1504	Atmospheric and Aqueous Deposition of Polycrystalline Metal Oxides Using Mist-CVD for Highly Efficient Inverted Polymer Solar Cells. Nano Letters, 2015, 15, 4948-4954.	4.5	9
1505	Al2O3:Cr3+/tellurite glass composites: An efficient light converter for silicon solar cell. Ceramics International, 2015, 41, 12267-12272.	2.3	15
1506	Semi-transparent polymer solar cells. Journal of Photonics for Energy, 2015, 5, 057212.	0.8	22
1507	Quantitative Characterization and Mechanism of Formation of Multilength-scale Bulk Heterojunction Structures in Highly Efficient Solution-Processed Small-Molecule Organic Solar Cells. Journal of Physical Chemistry C. 2015, 119, 16507-16517.	1.5	8

#	Article	IF	Citations
1508	Controlling Exciton Diffusion and Fullerene Distribution in Photovoltaic Blends by Side Chain Modification. Journal of Physical Chemistry Letters, 2015, 6, 3054-3060.	2.1	26
1509	Evidences of photocurrent generation by hole–exciton interaction at organic semiconductor interfaces. Organic Electronics, 2015, 26, 75-80.	1.4	3
1510	Enhanced performance of layer-evolved bulk-heterojunction solar cells with Ag nanoparticles by sequential deposition. Organic Electronics, 2015, 24, 325-329.	1.4	8
1511	A Combined Theoretical and Experimental Study of Dissociation of Charge Transfer States at the Donor–Acceptor Interface of Organic Solar Cells. Journal of Physical Chemistry B, 2015, 119, 10359-10371.	1.2	48
1512	Efficient polymer solar cells employing a non-conjugated small-molecule electrolyte. Nature Photonics, 2015, 9, 520-524.	15.6	412
1513	Correlating high power conversion efficiency of PTB7:PC ₇₁ BM inverted organic solar cells with nanoscale structures. Nanoscale, 2015, 7, 15576-15583.	2.8	54
1514	Efficient solution processed D1-A-D2-A-D1 small molecules bulk heterojunction solar cells based on alkoxy triphenylamine and benzo[1,2-b:4,5-b′]thiophene units. Organic Electronics, 2015, 26, 36-47.	1.4	17
1515	Synthesis of a benzotriazole bearing alternating copolymer for organic photovoltaic applications. New Journal of Chemistry, 2015, 39, 6623-6630.	1.4	19
1516	A dual ternary system for highly efficient ITO-free inverted polymer solar cells. Journal of Materials Chemistry A, 2015, 3, 18365-18371.	5.2	23
1517	Graphene oxide hole injection layer for high-efficiency polymer light-emitting diodes by using electrophoretic deposition and electrical reduction. Carbon, 2015, 94, 633-640.	5.4	11
1518	Photoelectric Memory Effect in an Organic Bulk Heterojunction Device. Journal of Physical Chemistry C, 2015, 119, 17253-17259.	1.5	5
1519	Stability of graphene-based heterojunction solar cells. RSC Advances, 2015, 5, 73575-73600.	1.7	75
1520	Quantitative o perando visualization of the energy band depth profile in solar cells. Nature Communications, 2015, 6, 7745.	5.8	57
1521	Interfacial modification for improving inverted organic solar cells by poly(N-vinylpyrrolidone). RSC Advances, 2015, 5, 58966-58972.	1.7	9
1522	Solution-processed interlayer of n-type small molecules for organic photovoltaic devices: Enhancement of the fill factor due to ordered orientation. Solar Energy Materials and Solar Cells, 2015, 141, 232-239.	3.0	13
1523	Predicting thermal stability of organic solar cells through an easy and fast capacitance measurement. Solar Energy Materials and Solar Cells, 2015, 141, 240-247.	3.0	42
1524	Inducting effects of ionic liquid crystal modified-PEDOT:PSS on the performance of bulk heterojunction polymer solar cells. RSC Advances, 2015, 5, 52874-52881.	1.7	16
1525	Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7897-7902.	3.3	41

ARTICLE IF CITATIONS Device characterization and optimization of small molecule organic solar cells assisted by modelling simulation of the current–voltage characteristics. Physical Chemistry Chemical Physics, 2015, 17, 1526 1.3 2 19261-19267. Pickering Emulsion Polymerization., 2015, , 1634-1639. Highly efficient photovoltaics and field-effect transistors based on copolymers of mono-fluorinated 1528 benzothiadiazole and quaterthiophene: synthesis and effect of the molecular weight on device 1.9 15 performance. Polymer Chemistry, 2015, 6, 6050-6057. $A\hat{a}\in \hat{I}\hat{a}\in \hat{I}\hat{a}\in \hat{I}\hat{a}\in \hat{I}\hat{a}$ based porphyrin for solution processed small molecule bulk heterojunction solar cells. Journal of Materials Chemistry A, 2015, 3, 16287-16301. 5.2 Enhanced performance of bulk heterojunction solar cells using double layers deposition of 1530 2.1 4 polymer:fullerene derivatives. Synthetic Metals, 2015, 207, 72-78. Efficiency Improvement of Inverted Organic Solar Cells via Introducing a Series of Polyfluorene Dots in Electron Transport Layer. Journal of Physical Chemistry C, 2015, 119, 16462-16467. 1.5 Design and characteration of planar star-shaped oligomer electron donors for organic solar cells: a 1532 0.6 4 DFT study. Canadian Journal of Chemistry, 2015, 93, 1181-1190. Polymer Flocculants., 2015, , 1884-1892. 1533 Linkedâ€Acceptor Type Conjugated Polymer for High Performance Organic Photovoltaics with an 1534 20 5.6 Openâ€Circuit Voltáge Exceeding 1 V. Ádvanced Science, 2015, 2, 1500021. Enhancing the performance of polymer solar cells using CuPc nanocrystals as additives. 1.3 Nanotechnology, 2015, 26, 204001. Tuning Non-Langevin Recombination in an Organic Photovoltaic Blend Using a Processing Additive. 1536 1.5 14 Journal of Physical Chemistry C, 2015, 119, 7016-7021. Molar Mass versus Polymer Solar Cell Performance: Highlighting the Role of Homocouplings. 3.2 79 Chemistry of Materials, 2015, 27, 3726-3732. Phenanthrodithiopheneâ€"Isoindigo Copolymers: Effect of Side Chains on Their Molecular Order and 1538 2.2 33 Solar Cell Performance. Macromolecules, 2015, 48, 2875-2885. Enhanced efficiency of inverted polymer solar cells using surface modified Cs-doped ZnO as electron transporting layer. Synthetic Metals, 2015, 205, 164-168. 1539 2.1 Efficient polymer:fullerene bulk heterojunction solar cells with n-type doped titanium oxide as an 1540 0.8 8 electron transport layer. Thin Solid Films, 2015, 583, 86-90. The Impact of Driving Force on Electron Transfer Rates in Photovoltaic Donor–Acceptor Blends. 1541 11.1 Advanced Materials, 2015, 27, 2496-2500. Rational design of diketopyrrolopyrrole-based oligomers for high performance small molecular 1542 photovoltaic materials via an extended framework and multiple fluorine substitution. Journal of 5.237 Materials Chemistry A, 2015, 3, 11575-11586. MoOx and V2Ox as hole and electron transport layers through functionalized intercalation in 1543 normal and inverted organic optoelectronic devices. Light: Science and Applications, 2015, 4, e273-e273.

#	Article	IF	CITATIONS
1544	The effect of polymer solubilizing side-chains on solar cell stability. Physical Chemistry Chemical Physics, 2015, 17, 11884-11897.	1.3	41
1545	A spiro-bifluorene based 3D electron acceptor with dicyanovinylene substitution for solution-processed non-fullerene organic solar cells. Journal of Materials Chemistry A, 2015, 3, 11086-11092.	5.2	34
1546	Aluminium nanoparticles synthesized by a novel wet chemical method and used to enhance the performance of polymer solar cells by the plasmonic effect. Journal of Materials Chemistry C, 2015, 3, 4099-4103.	2.7	20
1547	New D-A-D-A-D push–pull organic semiconductors with different benzo[1,2-b:4, 5-b′] dithiophene cores for solution processed bulk heterojunction solar cells. Dyes and Pigments, 2015, 120, 126-135.	2.0	23
1548	Determination of Solvent Systems for Blade Coating Thin Film Photovoltaics. Advanced Functional Materials, 2015, 25, 3393-3398.	7.8	57
1549	Benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene and Thieno[3,4- <i>c</i>]pyrrole-4,6-dione Based Donor-l€-Acceptor Conjugated Polymers for High Performance Solar Cells by Rational Structure Modulation. Macromolecules, 2015, 48, 2948-2957.	2.2	60
1550	Using pyridal[2,1,3]thiadiazole as an acceptor unit in a low band-gap copolymer for photovoltaic applications. Organic Electronics, 2015, 23, 171-178.	1.4	5
1551	Efficiency enhancement from [60]fulleropyrrolidine-based polymer solar cells through N-substitution manipulation. Carbon, 2015, 92, 185-192.	5.4	10
1552	Organic photovoltaic devices with enhanced efficiency processed from non-halogenated binary solvent blends. Organic Electronics, 2015, 21, 216-222.	1.4	37
1553	Synthesis and photovoltaic properties of the acceptor pended push–pull conjugated polymers incorporating thieno[3,2–b] thiophene in the backbone chain or side chains. Dyes and Pigments, 2015, 120, 44-51.	2.0	14
1554	A Versatile Buffer Layer for Polymer Solar Cells: Rendering Surface Potential by Regulating Dipole. Advanced Functional Materials, 2015, 25, 3164-3171.	7.8	11
1555	A multifunctional fullerene interlayer in colloidal quantum dot-based hybrid solar cells. Journal of Materials Chemistry A, 2015, 3, 10585-10591.	5.2	9
1556	Spray Coating for Polymer Solar Cells: An Upâ€ŧoâ€Đate Overview. Energy Technology, 2015, 3, 385-406.	1.8	69
1557	Printed Nanostructures for Organic Photovoltaic Cells and Solutionâ€Processed Polymer Lightâ€Emitting Diodes. Energy Technology, 2015, 3, 340-350.	1.8	22
1558	An N-ethylated barbituric acid end-capped bithiophene as an electron-acceptor material in fullerene-free organic photovoltaics. Chemical Communications, 2015, 51, 6222-6225.	2.2	20
1559	Synthesis and characterization of two new benzothiadiazole- andÂfused bithiophene based low band-gap D–A copolymers: Application as donor bulk heterojunction polymer solar cells. Polymer, 2015, 65, 193-201.	1.8	16
1560	Aryl end-capped quaterthiophenes applied as anode interfacial layers in inverted organic solar cells. Thin Solid Films, 2015, 574, 196-206.	0.8	6
1561	Polymer Solar Cells with Efficiency >10% Enabled via a Facile Solutionâ€Processed Alâ€Doped ZnO Electron Transporting Layer. Advanced Energy Materials, 2015, 5, 1500204.	10.2	142

#	Article	IF	CITATIONS
1562	NDIâ€Based Small Molecule as Promising Nonfullerene Acceptor for Solutionâ€Processed Organic Photovoltaics. Advanced Energy Materials, 2015, 5, 1500195.	10.2	94
1563	Emissive Nanoclusters Based on Subnanometerâ€Sized Au38 Cores for Boosting the Performance of Inverted Organic Photovoltaic Cells. Advanced Energy Materials, 2015, 5, 1500393.	10.2	31
1564	Opto-electrical, charge transport and photovoltaic property modulation of 2,5-di(2-thienyl)pyrrole-based polymers via the incorporation of alkyl, aryl and cyano groups on the pyrrole unit. Polymer Bulletin, 2015, 72, 1899-1919.	1.7	3
1565	Fine tuning of terpolymer properties by incorporating electron-accepting difluorobenzene and diketopyrrolopyrrole units. Journal of Materials Science, 2015, 50, 5363-5370.	1.7	4
1566	Narrow Bandgap Platinum(II)-Containing Polyynes with Diketopyrrolopyrrole and Isoindigo Spacers. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 159-168.	1.9	16
1567	Evaluating the photovoltaic properties of two conjugated polymers synthesized by Suzuki polycondensation and direct C-H activation. Science China Chemistry, 2015, 58, 286-293.	4.2	16
1568	Metallated conjugation in small-sized-molecular donors for solution-processed organic solar cells. Science China Chemistry, 2015, 58, 347-356.	4.2	12
1569	Structure Evolution of Fluorinated Conjugated Polymers Based on Benzodithiophene and Benzothiadiazole for Photovoltaics. Journal of Physical Chemistry C, 2015, 119, 8038-8045.	1.5	5
1570	Direct C–H arylation synthesis of (DD′AD′DA′)-constituted alternating polymers with low bandgaps an their photovoltaic performance. New Journal of Chemistry, 2015, 39, 4957-4964.	d 1.4	15
1571	An extremely thin and robust interconnecting layer providing 76% fill factor in a tandem polymer solar cell architecture. Journal of Materials Chemistry A, 2015, 3, 10681-10686.	5.2	25
1572	Mapping fullerene crystallization in a photovoltaic blend: an electron tomography study. Nanoscale, 2015, 7, 8451-8456.	2.8	14
1573	The Role of Exciton Ionization Processes in Bulk Heterojunction Organic Photovoltaic Cells. Advanced Energy Materials, 2015, 5, 1500019.	10.2	18
1574	Top illuminated organic photodetectors with dielectric/metal/dielectric transparent anode. Organic Electronics, 2015, 20, 103-111.	1.4	27
1575	Device Stability and Light-Soaking Characteristics of High-Efficiency Benzodithiophene–Thienothiophene Copolymer-Based Inverted Organic Solar Cells with F-TiO _{<i>×</i>} Electron-Transport Layer. ACS Applied Materials & Interfaces, 2015, 7, 12119-12127.	4.0	49
1576	Polymer:fullerene solar cells: materials, processing issues, and cell layouts to reach power conversion efficiency over 10%, a review. Journal of Photonics for Energy, 2015, 5, 057214.	0.8	63
1577	Functionalized Graphene as an Electronâ€Cascade Acceptor for Airâ€Processed Organic Ternary Solar Cells. Advanced Functional Materials, 2015, 25, 3870-3880.	7.8	67
1578	Neutral amine based alcohol-soluble interface materials for inverted polymer solar cells: realizing high performance and overcoming solvent erosion. Chemical Communications, 2015, 51, 10182-10185.	2.2	23
1579	Performance Enhancement of Polymer Solar Cells by Using Two Polymer Donors with Complementary Absorption Spectra. Macromolecular Rapid Communications, 2015, 36, 1348-1353.	2.0	12

#	Article	IF	CITATIONS
1580	Diketopyrrolopyrrole-based narrow band gap donors for efficient solution-processed organic solar cells. Chemical Physics Letters, 2015, 630, 37-43.	1.2	8
1581	Integrating theory, synthesis, spectroscopy and device efficiency to design and characterize donor materials for organic photovoltaics: a case study including 12 donors. Journal of Materials Chemistry A, 2015, 3, 9777-9788.	5.2	15
1582	Three-fold improvement in the performance of all-polymer photovoltaic devices with graphene. Materials Letters, 2015, 156, 161-164.	1.3	7
1583	Enhanced efficiency of organic and perovskite photovoltaics from shape-dependent broadband plasmonic effects of silver nanoplates. Solar Energy Materials and Solar Cells, 2015, 140, 224-231.	3.0	77
1584	Effect of Crystallinity of Fullerene Derivatives on Doping Density in the Organic Bulk Heterojunction Layer in Polymer Solar Cells. Chinese Physics Letters, 2015, 32, 056801.	1.3	2
1585	Understanding Device-Structure-Induced Variations in Open-Circuit Voltage for Organic Photovoltaics. ACS Applied Materials & Interfaces, 2015, 7, 10814-10822.	4.0	2
1586	Plasmonic electrodes for bulk-heterojunction organic photovoltaics: a review. Journal of Photonics for Energy, 2015, 5, 057002.	0.8	40
1587	Organic and Excitonic Solar Cells. Springer Series in Materials Science, 2015, , 81-125.	0.4	1
1588	Enhanced Charge Separation in Ternary P3HT/PCBM/CuInS2 Nanocrystals Hybrid Solar Cells. Scientific Reports, 2015, 5, 7768.	1.6	74
1589	Solution-Processed MoO ₃ :PEDOT:PSS Hybrid Hole Transporting Layer for Inverted Polymer Solar Cells. ACS Applied Materials & amp; Interfaces, 2015, 7, 7170-7179.	4.0	83
1590	n-Type Semiconducting Naphthalene Diimide-Perylene Diimide Copolymers: Controlling Crystallinity, Blend Morphology, and Compatibility Toward High-Performance All-Polymer Solar Cells. Journal of the American Chemical Society, 2015, 137, 4424-4434.	6.6	374
1591	A Series of Simple Oligomer-like Small Molecules Based on Oligothiophenes for Solution-Processed Solar Cells with High Efficiency. Journal of the American Chemical Society, 2015, 137, 3886-3893.	6.6	788
1592	Enhanced efficiency of polymer solar cells by adding a high-mobility conjugated polymer. Energy and Environmental Science, 2015, 8, 1463-1470.	15.6	216
1593	A new highly conjugated crossed benzodithiophene and its donor–acceptor copolymers for high open circuit voltages polymer solar cells. Polymer Chemistry, 2015, 6, 3398-3406.	1.9	21
1594	Inverted perovskite solar cells with inserted cross-linked electron-blocking interlayers for performance enhancement. Journal of Materials Chemistry A, 2015, 3, 9291-9297.	5.2	45
1595	The Effect of Diiodooctane on the Charge Carrier Generation in Organic Solar Cells Based on the Copolymer PBDTTT-C. Scientific Reports, 2015, 5, 8286.	1.6	72
1596	Crown-ether functionalized fullerene as a solution-processable cathode buffer layer for high performance perovskite and polymer solar cells. Journal of Materials Chemistry A, 2015, 3, 9278-9284.	5.2	61
1597	Fluorene-centered perylene monoimides as potential non-fullerene acceptor in organic solar cells. Organic Electronics, 2015, 21, 184-191.	1.4	39

#	Article	IF	CITATIONS
1598	Effect of solution processed and thermally evaporated interlayers on the performance of backgrated polymer solar cells. Thin Solid Films, 2015, 591, 159-163.	0.8	0
1599	Efficient Organic Photovoltaics Utilizing Nanoscale Heterojunctions in Sequentially Deposited Polymer/fullerene Bilayer. Scientific Reports, 2015, 5, 8373.	1.6	49
1600	Completely Transparent Conducting Oxide-Free and Flexible Dye-Sensitized Solar Cells Fabricated on Plastic Substrates. ACS Nano, 2015, 9, 3760-3771.	7.3	100
1601	Organic polymeric semiconductor materials for applications inÂphotovoltaic cells. , 2015, , 85-119.		1
1602	An organic photovoltaic featuring graphene nanoribbons. Chemical Communications, 2015, 51, 9185-9188.	2.2	17
1603	Highâ€Performance Planar Perovskite Optoelectronic Devices: A Morphological and Interfacial Control by Polar Solvent Treatment. Advanced Materials, 2015, 27, 3492-3500.	11.1	205
1604	Tandem Solar Cell—Concept and Practice in Organic Solar Cells. Topics in Applied Physics, 2015, , 315-346.	0.4	8
1605	Dramatic Enhancement of Power Conversion Efficiency in Polymer Solar Cells by Conjugating Very Low Ratio of Triplet Iridium Complexes to PTB7. Advanced Materials, 2015, 27, 3546-3552.	11.1	70
1606	Singleâ€Junction Organic Solar Cells Based on a Novel Wideâ€Bandgap Polymer with Efficiency of 9.7%. Advanced Materials, 2015, 27, 2938-2944.	11.1	487
1607	Improvement of Conversion Efficiency of Inverted Organic Photovoltaic With PEDOT: PSS:WO <italic>x </italic> by Thermal Annealing. IEEE Journal of Photovoltaics, 2015, 5, 897-902.	1.5	6
1608	Competition between recombination and extraction of free charges determines the fill factor of organic solar cells. Nature Communications, 2015, 6, 7083.	5.8	517
1609	High-performance inverted PThTPTI:PC71BM solar cells. Nano Energy, 2015, 15, 125-134.	8.2	63
1610	Side Chain Influence on the Morphology and Photovoltaic Performance of 5-Fluoro-6-alkyloxybenzothiadiazole and Benzodithiophene Based Conjugated Polymers. ACS Applied Materials & Interfaces, 2015, 7, 10710-10717.	4.0	38
1611	Porphyrinâ€Based Bulk Heterojunction Organic Photovoltaics: The Rise of the Colors of Life. Advanced Energy Materials, 2015, 5, 1500218.	10.2	167
1612	Design of a versatile interconnecting layer for highly efficient series-connected polymer tandem solar cells. Energy and Environmental Science, 2015, 8, 1712-1718.	15.6	101
1613	Triarylamine-based crosslinked hole-transporting material with an ionic dopant for high-performance PEDOT:PSS-free polymer solar cells. Journal of Materials Chemistry C, 2015, 3, 6158-6165.	2.7	24
1614	A Facile Approach To Fabricate High-Performance Polymer Solar Cells with an Annealing-Free and Simple Device of Three Layers. Journal of Physical Chemistry C, 2015, 119, 11619-11624.	1.5	4
1615	Symmetric naphthalenediimidequaterthiophenes for electropolymerized electrochromic thin films. Journal of Materials Chemistry C, 2015, 3, 5985-5994.	2.7	27

#	Article	IF	CITATIONS
1616	In situ studies of the molecular packing dynamics of bulk-heterojunction solar cells induced by the processing additive 1-chloronaphthalene. Journal of Materials Chemistry A, 2015, 3, 7719-7726.	5.2	24
1617	Effective regulation of the micro-structure of thick P3HT:PC ₇₁ BM film by the incorporation of ethyl benzenecarboxylate in toluene solution. RSC Advances, 2015, 5, 47451-47457.	1.7	14
1618	A universal halogen-free solvent system for highly efficient polymer solar cells. Journal of Materials Chemistry A, 2015, 3, 12723-12729.	5.2	97
1619	Ultrasensitive solution-processed perovskite hybrid photodetectors. Journal of Materials Chemistry C, 2015, 3, 6600-6606.	2.7	104
1620	4,7-Di-2-thienyl-2,1,3-benzothiadiazole with hexylthiophene side chains and a benzodithiophene based copolymer for efficient organic solar cells. Polymer Chemistry, 2015, 6, 4415-4423.	1.9	25
1621	Plasmonic Bulk Heterojunction Solar Cells: The Role of Nanoparticle Ligand Coating. ACS Photonics, 2015, 2, 714-723.	3.2	51
1622	Unsymmetrical Donor–Acceptor–Acceptorâ~"π–Donor Type Benzothiadiazole-Based Small Molecule for a Solution Processed Bulk Heterojunction Organic Solar Cell. ACS Applied Materials & Interfaces, 2015, 7, 10283-10292.	4.0	79
1623	Effect of thermal annealing on the performance of ternary organic photovoltaics based on PTB7:PC71BM:F8BT. Journal of Materials Science: Materials in Electronics, 2015, 26, 5708-5714.	1.1	3
1624	A water/alcohol-soluble copolymer based on fluorene and perylene diimide as a cathode interlayer for inverted polymer solar cells. Journal of Materials Chemistry C, 2015, 3, 4515-4521.	2.7	28
1625	High performance of inverted polymer solar cells with cobalt oxide as hole-transporting layer. Semiconductor Science and Technology, 2015, 30, 055001.	1.0	5
1626	Simple O ₂ Plasma-Processed V ₂ O ₅ as an Anode Buffer Layer for High-Performance Polymer Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 7613-7618.	4.0	43
1627	Interface engineering for efficient fullerene-free organic solar cells. Applied Physics Letters, 2015, 106,	1.5	24
1628	Beyond Langevin Recombination: How Equilibrium Between Free Carriers and Charge Transfer States Determines the Open ircuit Voltage of Organic Solar Cells. Advanced Energy Materials, 2015, 5, 1500123.	10.2	354
1629	Efficient bulk heterojunction solar cells based on solution processed small molecules based on the same benzo[1,2-b:4, 5-bâ€2]thiophene unit as core donor and different terminal units. Nanoscale, 2015, 7, 7692-7703.	2.8	18
1630	Mechanistic Investigation into the Light Soaking Effect Observed in Inverted Polymer Solar Cells Containing Chemical Bath Deposited Titanium Oxide. Journal of Physical Chemistry C, 2015, 119, 5274-5280.	1.5	21
1631	â€~Blocky' donor–acceptor polymers containing selenophene, benzodithiophene and thienothiophene for improved molecular ordering. Polymer Chemistry, 2015, 6, 3353-3360.	1.9	21
1632	Solution stability of active materials for organic photovoltaics. Solar Energy, 2015, 113, 181-188.	2.9	11
1633	Synthesis, Characterization and Photovoltaic Properties of Polycarbazole Derived Random Copolymers With Enhanced Light Absorption. Journal of Macromolecular Science - Pure and Applied Chemistry, 2015, 52, 155-161.	1.2	7

#	Article	IF	CITATIONS
1634	Synthesis and photovoltaic properties of the copolymers based on 3-ethylrhodanine side group. European Polymer Journal, 2015, 67, 31-39.	2.6	7
1635	Influences of the backbone randomness on the properties, morphology and performances of the fluorinated benzoselenadiazole–benzothiadiazole based random copolymers. Polymer Chemistry, 2015, 6, 3728-3736.	1.9	16
1636	Donor–Acceptor Small Molecules for Organic Photovoltaics: Single-Atom Substitution (Se or S). ACS Applied Materials & Interfaces, 2015, 7, 8188-8199.	4.0	38
1637	Dâ€i€â€A Conjugated Molecules for Optoelectronic Applications. Macromolecular Rapid Communications, 2015, 36, 943-958.	2.0	85
1638	Tailoring π-conjugated dithienosilole–benzothiadiazole oligomers for organic solar cells. New Journal of Chemistry, 2015, 39, 3658-3664.	1.4	7
1639	Study of spatial inhomogeneity in inverted all-polymer solar cells: Effect of solvent and annealing. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 804-813.	2.4	2
1640	Device Performance of Small-Molecule Azomethine-Based Bulk Heterojunction Solar Cells. Chemistry of Materials, 2015, 27, 2990-2997.	3.2	45
1641	Angular-Shaped 4,9-Dialkylnaphthodithiophene-Based Donor–Acceptor Copolymers for Efficient Polymer Solar Cells and High-Mobility Field-Effect Transistors. Macromolecules, 2015, 48, 2030-2038.	2.2	30
1642	Influence of the alkyl substitution position on photovoltaic properties of 2D-BDT-based conjugated polymers. Science China Materials, 2015, 58, 213-222.	3.5	21
1643	An alcohol soluble amino-functionalized organoplatinum(<scp>ii</scp>) complex as the cathode interlayer for highly efficient polymer solar cells. Journal of Materials Chemistry C, 2015, 3, 4372-4379.	2.7	28
1644	Computation of full polymer-based photovoltaic nanodevices using a parametrized field-based multiscale solar-cell approach. Organic Electronics, 2015, 22, 216-228.	1.4	2
1645	Role of crystallinity of non-fullerene acceptors in bulk heterojunctions. Journal of Materials Chemistry A, 2015, 3, 9989-9998.	5.2	18
1646	Current improvement in hybrid quantum dot sensitized solar cells by increased light-scattering with a polymer layer. RSC Advances, 2015, 5, 36140-36148.	1.7	18
1647	Solution-processed cathode interfacial layer materials for high-efficiency polymer solar cells. Materials Today, 2015, 18, 385-394.	8.3	71
1648	Charge carrier mobility of the organic photovoltaic materials PTB7 and PC71BM and its influence on device performance. Organic Electronics, 2015, 22, 62-68.	1.4	149
1649	Postâ€treatmentâ€Free Solutionâ€Processed Nonâ€stoichiometric NiO <i>_x</i> Nanoparticles for Efficient Holeâ€Transport Layers of Organic Optoelectronic Devices. Advanced Materials, 2015, 27, 2930-2937.	11.1	300
1650	Band-gap modulation of two-dimensional saturable absorbers for solid-state lasers. Photonics Research, 2015, 3, A10.	3.4	23
1651	Influence of 4â€fluorophenyl pendants in thieno[3,4â€b]thiopheneâ€benzo[1,2â€b:4,5â€bâ€2]dithiopheneâ€bas polymers on the performance of photovoltaics. Journal of Polymer Science Part A, 2015, 53, 1586-1593.	sed 2.5	3

#	Article	IF	CITATIONS
1652	Increased Efficiency in Small Molecule Organic Solar Cells Through the Use of a 56-ï€ Electron Acceptor – Methano Indene Fullerene. Scientific Reports, 2015, 5, 8319.	1.6	31
1653	Modulation of the properties of pyrrolo[3,4-c]pyrrole-1,4-dione based polymers containing 2,5-di(2-thienyl)pyrrole derivatives with different substitutions on the pyrrole unit. New Journal of Chemistry, 2015, 39, 4658-4669.	1.4	8
1654	Exciton blocking and dissociation by a p-type anode buffer in small molecule bulk heterojunction organic photovoltaic with small ratio donor of phosphorescent material. Organic Electronics, 2015, 23, 11-16.	1.4	8
1655	Efficiency exceeding 10% for inverted polymer solar cells with a ZnO/ionic liquid combined cathode interfacial layer. Journal of Materials Chemistry A, 2015, 3, 10660-10665.	5.2	169
1656	Fullerene mixing effect on carrier formation in bulk-hetero organic solar cell. Scientific Reports, 2015, 5, 9483.	1.6	29
1657	Efficiency Enhancement in Polymer Solar Cells With a Polar Small Molecule Both at Interface and in the Bulk Heterojunction Layer. IEEE Journal of Photovoltaics, 2015, 5, 1408-1413.	1.5	5
1658	Influence of Solid-State Packing of Dipolar Merocyanine Dyes on Transistor and Solar Cell Performances. Journal of the American Chemical Society, 2015, 137, 13524-13534.	6.6	68
1659	Pivotal factors in solution-processed, non-fullerene, all small-molecule organic solar cell device optimization. Organic Electronics, 2015, 27, 197-201.	1.4	11
1660	One-Dimensional Photonic Crystals for Light Management in Organic Solar Cells. , 2015, , 303-320.		2
1661	Organic solar cells as high-speed data detectors for visible light communication. Optica, 2015, 2, 607.	4.8	72
1662	Polyhedral Oligomeric Silsesquioxanes (POSS). , 2015, , 1835-1841.		0
1663	Polymer design for solar cell – Current trend and future scenario. European Polymer Journal, 2015, 72, 309-340.	2.6	24
1664	Highly efficient exciton harvesting and charge transport in ternary blend solar cells based on wide- and low-bandgap polymers. Physical Chemistry Chemical Physics, 2015, 17, 27217-27224.	1.3	22
1665	ZnO cathode buffer layers for inverted polymer solar cells. Energy and Environmental Science, 2015, 8, 3442-3476.	15.6	279
1666	Efficient ternary organic photovoltaics incorporating a graphene-based porphyrin molecule as a universal electron cascade material. Nanoscale, 2015, 7, 17827-17835.	2.8	42
1667	Development of a donor polymer using a B ↕N unit for suitable LUMO/HOMO energy levels and improved photovoltaic performance. Polymer Chemistry, 2015, 6, 8029-8035.	1.9	31
1668	Polymer-Based Sensors. , 2015, , 1938-1944.		0
1669	Enhancement in Photovoltaic Properties of Plasmonic Nanostructures Incorporated Organic Solar Cells Processed in Air Using P3HT:PCBM as a Model Active Layer. Organic Photonics and Photovoltaics, 2015, 3, .	1.3	16

#	Article	IF	CITATIONS
1670	Marked Consequences of Systematic Oligothiophene Catenation in Thieno[3,4-c]pyrrole-4,6-dione and Bithiopheneimide Photovoltaic Copolymers. Journal of the American Chemical Society, 2015, 137, 12565-12579.	6.6	89
1671	Near-infrared down-conversion and energy transfer mechanism in Yb ³⁺ -doped Ba ₂ LaV ₃ O ₁₁ phosphors. Physical Chemistry Chemical Physics, 2015, 17, 26330-26337.	1.3	43
1672	Large active layer thickness toleration of high-efficiency small molecule solar cells. Journal of Materials Chemistry A, 2015, 3, 22274-22279.	5.2	19
1673	Optical memory effect in ZnO nanowire based organic bulk heterojunction devices. , 2015, , .		0
1674	Synthesis of regular D–A1–D–A2 copolymers via direct arylation polycondensation and application in solar cells. Synthetic Metals, 2015, 209, 412-418.	2.1	10
1675	ITO surface modification for inverted organic photovoltaics. Frontiers of Optoelectronics, 2015, 8, 269-273.	1.9	5
1676	Atomic layer deposition of NiO hole-transporting layers for polymer solar cells. Nanotechnology, 2015, 26, 385201.	1.3	31
1677	Triple-stacked hole-selective layers for efficient solution-processable organic semiconducting devices. Optics Express, 2015, 23, A625.	1.7	10
1678	In Situ Probing of the Charge Transport Process at the Polymer/Fullerene Heterojunction Interface. Journal of Physical Chemistry C, 2015, 119, 25598-25605.	1.5	5
1679	Interface Modification of Inverted Structure PSBTBT:PC ₇₀ BM Solar Cells for Improved Performance. IEEE Journal of Photovoltaics, 2015, 5, 1659-1664.	1.5	8
1680	N-Type Alcohol-Soluble Small Molecules as an Interfacial Layer for Efficient and Stable Polymer Solar Cells. Journal of Physical Chemistry C, 2015, 119, 25887-25897.	1.5	28
1681	Donor/Acceptor Molecular Orientation-Dependent Photovoltaic Performance in All-Polymer Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 25352-25361.	4.0	78
1682	Performance improvement of organic solar cells with the introduction of branched zinc oxide nanorods. Micro and Nano Letters, 2015, 10, 292-295.	0.6	0
1683	Competition between phase separation and structure confinement in P3HT/PCDTBT heterojunctions: Influence on nanoscale charge transport. Polymer, 2015, 77, 70-78.	1.8	11
1684	Temperature-independent carrier formation dynamics in bulk heterojunction. Applied Physics Express, 2015, 8, 112301.	1.1	2
1685	Poly(Arylene Ethynylene)s. , 2015, , 1658-1664.		124
1686	Study of Optical Properties and Molecular Aggregation of Conjugated Low Band Gap Copolymers: PTB7 and PTB7-Th. Journal of Physical Chemistry C, 2015, 119, 24643-24648.	1.5	87
1687	Efficiency enhancement of polymer solar cells via zwitterion doping in PEDOT:PSS hole transport layer. Organic Electronics, 2015, 27, 232-239.	1.4	15

#	Article	IF	CITATIONS
1688	The effect of residual palladium catalyst on the performance and stability of PCDTBT:PC70BM organic solar cells. Organic Electronics, 2015, 27, 266-273.	1.4	46
1689	Pushing efficiency limits for semitransparent perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 24071-24081.	5.2	95
1690	Charge versus Energy Transfer Effects in High-Performance Perylene Diimide Photovoltaic Blend Films. ACS Applied Materials & Interfaces, 2015, 7, 24876-24886.	4.0	28
1691	Extensive Penetration of Evaporated Electrode Metals into Fullerene Films: Intercalated Metal Nanostructures and Influence on Device Architecture. ACS Applied Materials & Interfaces, 2015, 7, 25247-25258.	4.0	40
1692	Neutral-Color Semitransparent Organic Solar Cells with All-Graphene Electrodes. ACS Nano, 2015, 9, 12026-12034.	7.3	132
1693	Terthiophene-Based D–A Polymer with an Asymmetric Arrangement of Alkyl Chains That Enables Efficient Polymer Solar Cells. Journal of the American Chemical Society, 2015, 137, 14149-14157.	6.6	386
1694	Alcohol-Soluble n-Type Conjugated Polyelectrolyte as Electron Transport Layer for Polymer Solar Cells. Macromolecules, 2015, 48, 5578-5586.	2.2	97
1695	4-Terminal Tandem Photovoltaic Cell Using Two Layers of PTB7:PC ₇₁ BM for Optimal Light Absorption. ACS Applied Materials & Interfaces, 2015, 7, 18435-18440.	4.0	9
1696	The photoirradiation induced p–n junction in naphthylamine-based organic photovoltaic cells. Nanoscale, 2015, 7, 14612-14617.	2.8	8
1697	Vacuum-free and metal electrode-free organic tandem solar cells. Applied Physics Letters, 2015, 106, .	1.5	17
1698	Electric-field dependence of photocarrier generation efficiency of organic photoconductors. Journal of Applied Physics, 2015, 117, .	1.1	3
1698 1699	Electric-field dependence of photocarrier generation efficiency of organic photoconductors. Journal of Applied Physics, 2015, 117, . Carrier injection dynamics in heterojunction solar cells with bipolar molecule. Applied Physics Letters, 2015, 106, .	1.1 1.5	3
1698 1699 1700	Electric-field dependence of photocarrier generation efficiency of organic photoconductors. Journal of Applied Physics, 2015, 117, . Carrier injection dynamics in heterojunction solar cells with bipolar molecule. Applied Physics Letters, 2015, 106, . Understanding the Halogenation Effects in Diketopyrrolopyrrole-Based Small Molecule Photovoltaics. ACS Applied Materials & amp; Interfaces, 2015, 7, 19914-19922.	1.1 1.5 4.0	3 3 37
1698 1699 1700 1701	Electric-field dependence of photocarrier generation efficiency of organic photoconductors. Journal of Applied Physics, 2015, 117, . Carrier injection dynamics in heterojunction solar cells with bipolar molecule. Applied Physics Letters, 2015, 106, . Understanding the Halogenation Effects in Diketopyrrolopyrrole-Based Small Molecule Photovoltaics. ACS Applied Materials & amp; Interfaces, 2015, 7, 19914-19922. Frontiers of photovoltaic technology: A review. , 2015, , .	1.1 1.5 4.0	3 3 37 11
1698 1699 1700 1701 1702	Electric-field dependence of photocarrier generation efficiency of organic photoconductors. Journal of Applied Physics, 2015, 117, .Carrier injection dynamics in heterojunction solar cells with bipolar molecule. Applied Physics Letters, 2015, 106, .Understanding the Halogenation Effects in Diketopyrrolopyrrole-Based Small Molecule Photovoltaics. ACS Applied Materials & amp; Interfaces, 2015, 7, 19914-19922.Frontiers of photovoltaic technology: A review. , 2015, , .Effect of Valence Band Tail Width on the Open Circuit Voltage of P3HT:PCBM Bulk Heterojunction Solar Cell: AMPS-1D Simulation Study. Chinese Physics Letters, 2015, 32, 088801.	1.1 1.5 4.0 1.3	3 3 37 11 12
1698 1699 1700 1701 1702 1703	Electric-field dependence of photocarrier generation efficiency of organic photoconductors. Journal of Applied Physics, 2015, 117, . Carrier injection dynamics in heterojunction solar cells with bipolar molecule. Applied Physics Letters, 2015, 106, . Understanding the Halogenation Effects in Diketopyrrolopyrrole-Based Small Molecule Photovoltaics. ACS Applied Materials & amp; Interfaces, 2015, 7, 19914-19922. Frontiers of photovoltaic technology: A review. , 2015, , . Effect of Valence Band Tail Width on the Open Circuit Voltage of P3HT:PCBM Bulk Heterojunction Solar Cell: AMPS-1D Simulation Study. Chinese Physics Letters, 2015, 32, 088801. Absorption-induced scattering and surface plasmon out-coupling from absorber-coated plasmonic metasurfaces. Nature Communications, 2015, 6, 7899.	1.1 1.5 4.0 1.3 5.8	3 3 37 11 12 48
1698 1699 1700 1701 1702 1703 1704	Electric-field dependence of photocarrier generation efficiency of organic photoconductors. Journal of Applied Physics, 2015, 117, .Carrier injection dynamics in heterojunction solar cells with bipolar molecule. Applied Physics Letters, 2015, 106, .Understanding the Halogenation Effects in Diketopyrrolopyrrole-Based Small Molecule Photovoltaics. ACS Applied Materials & amp; Interfaces, 2015, 7, 19914-19922.Frontiers of photovoltaic technology: A review. , 2015, , .Effect of Valence Band Tail Width on the Open Circuit Voltage of P3HT:PCBM Bulk Heterojunction Solar Cell: AMPS-1D Simulation Study. Chinese Physics Letters, 2015, 32, 088801.Absorption-induced scattering and surface plasmon out-coupling from absorber-coated plasmonic metasurfaces. Nature Communications, 2015, 6, 7899.The operation mechanism of poly(9,9-dioctylfluorenyl-2,7-diyl) dots in high efficiency polymer solar cells. Applied Physics Letters, 2015, 106, .	1.1 1.5 4.0 1.3 5.8 1.5	 3 3 37 11 12 48 4

#	Article	IF	CITATIONS
1706	Combinative Effect of Additive and Thermal Annealing Processes Delivers High Efficiency All-Polymer Solar Cells. Journal of Physical Chemistry C, 2015, 119, 25298-25306.	1.5	41
1707	Naphthalene diimide and benzothiadiazole copolymer acceptor for all-polymer solar cells with improved open-circuit voltage and morphology. RSC Advances, 2015, 5, 92151-92158.	1.7	15
1708	Effect of side chain conjugation lengths on photovoltaic performance of twoâ€dimensional conjugated copolymers that contain diketopyrrolopyrrole and thiophene with side chains. Journal of Polymer Science Part A, 2015, 53, 2878-2889.	2.5	11
1709	Pyrene terminal functionalized perylene diimide as non-fullerene acceptors for bulk heterojunction solar cells. RSC Advances, 2015, 5, 83155-83163.	1.7	22
1710	Ternary morphology facilitated thick-film organic solar cell. RSC Advances, 2015, 5, 88500-88507.	1.7	27
1711	High-Performance Small Molecule/Polymer Ternary Organic Solar Cells Based on a Layer-By-Layer Process. ACS Applied Materials & Interfaces, 2015, 7, 23190-23196.	4.0	43
1712	Effect of aggregation behavior and phenolic hydroxyl group content on the performance of lignosulfonate doped PEDOT as a hole extraction layer in polymer solar cells. RSC Advances, 2015, 5, 90913-90921.	1.7	18
1713	Synthesis and photovoltaic properties of two-dimensional benzodithiophene-thiophene copolymers with pendent rational naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole side chains. Journal of Materials Chemistry A, 2015, 3, 23149-23161.	5.2	31
1714	Calcium Thin Film Growth on Phenyl-C ₆₁ -Butyric Acid Methyl Ester (PCBM): Interface Structure and Energetics. Journal of Physical Chemistry C, 2015, 119, 18444-18451.	1.5	13
1715	Schematic Studies on the Structural Properties and Device Physics of All Small Molecule Ternary Photovoltaic Cells. ACS Applied Materials & amp; Interfaces, 2015, 7, 21423-21432.	4.0	8
1716	High-Efficiency Small Molecule-Based Bulk-Heterojunction Solar Cells Enhanced by Additive Annealing. ACS Applied Materials & amp; Interfaces, 2015, 7, 21495-21502.	4.0	35
1717	The role of photonics in energy. Journal of Photonics for Energy, 2015, 5, 050997.	0.8	18
1718	Optimization of organic photovoltaic device performance via exciton generation profile adjustment. Journal of Photonics for Energy, 2015, 5, 052098.	0.8	4
1719	Open-Circuit Voltage Losses in Selenium-Substituted Organic Photovoltaic Devices from Increased Density of Charge-Transfer States. Chemistry of Materials, 2015, 27, 6583-6591.	3.2	42
1720	Improved Device Performance of Polymer Solar Cells by Using a Thin Light-harvesting-Complex Modified ZnO Film as the Cathode Interlayer. ACS Applied Materials & Interfaces, 2015, 7, 18904-18908.	4.0	26
1721	Transparent conductive ZnO layers on polymer substrates: Thin film deposition and application in organic solar cells. Thin Solid Films, 2015, 591, 97-104.	0.8	38
1722	Simultaneous spin-coating and solvent annealing: manipulating the active layer morphology to a power conversion efficiency of 9.6% in polymer solar cells. Materials Horizons, 2015, 2, 592-597.	6.4	32
1723	Enhancing the performance of polymer solar cells by tuning the drying process of blend films via changing side chains and using solvent additives. Journal of Materials Chemistry C, 2015, 3, 9670-9677.	2.7	7

#	Article	IF	CITATIONS
1724	Polyacrylonitrile (PAN). , 2015, , 1745-1750.		8
1725	Low-Bandgap Near-IR Conjugated Polymers/Molecules for Organic Electronics. Chemical Reviews, 2015, 115, 12633-12665.	23.0	1,029
1726	Enhanced Power-Conversion Efficiency in Inverted Bulk Heterojunction Solar Cells using Liquid-Crystal-Conjugated Polyelectrolyte Interlayer. ACS Applied Materials & Interfaces, 2015, 7, 19024-19033.	4.0	39
1727	Synergetic enhancement of organic solar cell thermal stability by wire bar coating and light processing. Journal of Materials Chemistry C, 2015, 3, 9551-9558.	2.7	13
1728	Collection-limited theory interprets the extraordinary response of single semiconductor organic solar cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11193-11198.	3.3	24
1729	Fully understanding the positive roles of plasmonic nanoparticles in ameliorating the efficiency of organic solar cells. Nanoscale, 2015, 7, 15251-15257.	2.8	34
1730	Effects of dynamic 3D-volume of side chains in conjugated polymers on nano-scale morphology and solar cell properties. Dyes and Pigments, 2015, 123, 323-330.	2.0	3
1731	Solvent Annealing Control of Bulk Heterojunction Organic Solar Cells with 6.6% Efficiency Based on a Benzodithiophene Donor Core and Dicyano Acceptor Units. Journal of Physical Chemistry C, 2015, 119, 20871-20879.	1.5	35
1732	Enhancing the Photovoltaic Performance by Tuning the Morphology of Polymer:PC ₇₁ BM Blends with a Commercially Available Nucleating Agent. ACS Applied Materials & Interfaces, 2015, 7, 18924-18929.	4.0	8
1733	Hexagonal columnar liquid crystals as a processing additive to a P3HT:PCBM photoactive layer. New Journal of Chemistry, 2015, 39, 8439-8445.	1.4	8
1734	Layered bismuth selenide utilized as hole transporting layer for highly stable organic photovoltaics. Organic Electronics, 2015, 26, 327-333.	1.4	12
1735	Enhanced cell performance by controlling the surface morphology of ZnO buffer layers in organic photovoltaic cells. Solar Energy, 2015, 120, 363-369.	2.9	6
1736	Benzothiadiazole based conjugated polymers for high performance polymer solar cells. Journal of Materials Chemistry A, 2015, 3, 20195-20200.	5.2	52
1737	Two-dimensional quinoxaline based low bandgap conjugated polymers for bulk-heterojunction solar cells. Polymer Chemistry, 2015, 6, 7436-7446.	1.9	9
1738	Enhancement of Performance and Mechanism Studies of All-Solution Processed Small-Molecule based Solar Cells with an Inverted Structure. ACS Applied Materials & amp; Interfaces, 2015, 7, 21245-21253.	4.0	12
1739	Improved performances of PCDTBT:PC ₇₁ BM BHJ solar cells through incorporating small molecule donor. Physical Chemistry Chemical Physics, 2015, 17, 26777-26782.	1.3	20
1740	Elastic perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 21070-21076.	5.2	74
1741	In-situ synthesis of metal nanoparticle-polymer composites and their application as efficient interfacial materials for both polymer and planar heterojunction perovskite solar cells. Organic Electronics, 2015, 27, 46-52.	1.4	23

#	Article	IF	CITATIONS
1742	Improving power conversion efficiency of polymer solar cells by doping copper phthalocyanine. Electrochimica Acta, 2015, 180, 645-650.	2.6	11
1743	Hybrid tandem solar cells with depleted-heterojunction quantum dot and polymer bulk heterojunction subcells. Nano Energy, 2015, 17, 196-205.	8.2	43
1744	Tin-Free Synthesis of a Ternary Random Copolymer for BHJ Solar Cells: Direct (Hetero)arylation versus Stille Polymerization. Macromolecules, 2015, 48, 7039-7048.	2.2	36
1745	Ladder-type tetra-p-phenylene-based copolymers for efficient polymer solar cells with open-circuit voltages approaching 1.1 V. Journal of Materials Chemistry A, 2015, 3, 21672-21681.	5.2	11
1746	Controlled integration of oligo- and polythiophenes at the molecular scale. Physical Chemistry Chemical Physics, 2015, 17, 26525-26529.	1.3	3
1747	Synthesis and characterization of alternating and random conjugated polymers derived from dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene and 2,1,3-benzothiadiazole derivatives. Polymer Journal, 2015, 47, 803-809.	r 1.3	8
1748	Surface-initiated polymerization of A–A/B–B type conjugated monomers by palladium-catalyzed Stille polycondensation: towards low band gap polymer brushes. RSC Advances, 2015, 5, 78436-78440.	1.7	7
1749	Thermal Annealing Effect on Active Layer Structure in All-Polymer Organic Solar Cells. Applied Mechanics and Materials, 0, 792, 640-644.	0.2	2
1750	Facile synthesis of isomeric fullerene derivatives as acceptors for high performance organic photovoltaic. Tetrahedron, 2015, 71, 7998-8002.	1.0	8
1751	Beyond Fullerenes: Designing Alternative Molecular Electron Acceptors for Solution-Processable Bulk Heterojunction Organic Photovoltaics. Journal of Physical Chemistry Letters, 2015, 6, 3770-3780.	2.1	132
1752	Improving the efficiency of polymer solar cells based on furan-flanked diketopyrrolopyrrole copolymer via solvent additive and methanol treatment. Nanoscale, 2015, 7, 15945-15952.	2.8	24
1753	Dithieno[3,2-b:2′,3′-d]pyridin-5(4H)-one-based polymers with a bandgap up to 2.02 eV for high performance field-effect transistors and polymer solar cells with an open-circuit voltage up to 0.98 V and an efficiency up to 6.84%. Journal of Materials Chemistry A, 2015, 3, 20516-20526.	5.2	33
1754	Overview of high-efficiency organic photovoltaic materials and devices. Renewable and Sustainable Energy Reviews, 2015, 52, 1527-1538.	8.2	70
1755	Correlation between blend morphology and recombination dynamics in additive-added P3HT:PCBM solar cells. Physical Chemistry Chemical Physics, 2015, 17, 26111-26120.	1.3	15
1756	Suppression of dark current through barrier engineer for solution-processed colloidal quantum-dots infrared photodetectors. Applied Physics Letters, 2015, 107, .	1.5	8
1757	The effect of molecular geometry on the polymer/fullerene ratio in polymer solar cells. Polymer Chemistry, 2015, 6, 7550-7557.	1.9	5
1758	D–A copolymers containing lactam moieties for polymer solar cells. Polymer Chemistry, 2015, 6, 7373-7376.	1.9	13
1759	One-step coating inverted polymer solar cells using a conjugated polymer as an electron extraction additive. Journal of Materials Chemistry A, 2015, 3, 20500-20507.	5.2	23

#	Article	IF	CITATIONS
1760	Insertion effects of interlayers for efficient polymer-based organic solar cells. Japanese Journal of Applied Physics, 2015, 54, 08KF05.	0.8	1
1761	Metal oxide nanostructures-containing organic polymer hybrid solar cells: Optimization of processing parameters on cell performance. Applied Surface Science, 2015, 355, 484-494.	3.1	7
1762	Morphologically controlled ZnO nanostructures as electron transport materials in polymer-based organic solar cells. Electrochimica Acta, 2015, 180, 435-441.	2.6	14
1763	Factors affecting the photovoltaic behavior of inverted polymer solar cells using various indium tin oxide electrodes modified by amines with simple chemical structures. Thin Solid Films, 2015, 591, 49-54.	0.8	7
1764	Bulk heterojunction organic solar cells based on carbazole–BODIPY conjugate small molecules as donors with high open circuit voltage. Physical Chemistry Chemical Physics, 2015, 17, 26580-26588.	1.3	53
1765	Naphthodithiophene-Based Conjugated Polymer with Linear, Planar Backbone Conformation and Strong Intermolecular Packing for Efficient Organic Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 21159-21169.	4.0	43
1766	Enhancing the photovoltaic performance of quinoxalino[2,3-b′]porphyrinatozinc-based donor–acceptor copolymers by using 4,4′-bipyridine as a linear bidentate ligand additive. Journal of Materials Chemistry A, 2015, 3, 21460-21470.	5.2	5
1767	Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells. Nature Communications, 2015, 6, 8242.	5.8	525
1768	Polymer Catalysts. , 2015, , 1864-1871.		2
1769	Semitransparent inverted organic solar cell with improved absorption and reasonable transparency perception based on the nanopatterned MoO 3 / Ag / MoO 3 anode. Journal of Nanophotonics, 2015, 9, 093043.	0.4	13
1770	Photocurrent enhancement of an efficient large band gap polymer incorporating benzodithiophene and weak electron accepting pyrrolo[3,4â^'c]pyrroleâ^'1,3â^'dione derivatives via the insertion of a strong electron accepting thieno[3,4â^'b]thiophene unit. Polymer, 2015, 80, 95-103.	1.8	8
1771	Small Molecules Based on Alkyl/Alkylthio-thieno[3,2- <i>b</i>]thiophene-Substituted Benzo[1,2- <i>b</i> :4,5-b′]dithiophene for Solution-Processed Solar Cells with High Performance. Chemistry of Materials, 2015, 27, 8414-8423.	3.2	71
1772	Charge Transport without Recombination in Organic Solar Cells and Photodiodes. Journal of Physical Chemistry C, 2015, 119, 26866-26874.	1.5	28
1773	Solution-processable metal oxides/chelates as electrode buffer layers for efficient and stable polymer solar cells. Energy and Environmental Science, 2015, 8, 1059-1091.	15.6	265
1774	The Effect of Fluorination in Manipulating the Nanomorphology in PTB7:PC ₇₁ BM Bulk Heterojunction Systems. Advanced Energy Materials, 2015, 5, 1401315.	10.2	68
1775	Synergistic Concurrent Enhancement of Charge Generation, Dissociation, and Transport in Organic Solar Cells with Plasmonic Metal–Carbon Nanotube Hybrids. Advanced Materials, 2015, 27, 1519-1525.	11.1	85
1776	Synthesis of two Dâ€ĩ€â€A polymers l̈€â€bridged by different blocks and investigation of their photovoltaic property. Journal of Applied Polymer Science, 2015, 132, .	1.3	0
1777	Sequential Deposition: Optimization of Solvent Swelling for High-Performance Polymer Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 653-661.	4.0	45

#	Article	IF	CITATIONS
1778	Effect of Pendant Functionality in Thieno[3,4- <i>b</i>]thiophene- <i>alt</i> -benzodithiophene Polymers for OPVs. Chemistry of Materials, 2015, 27, 443-449.	3.2	22
1779	Synthesis and characterization of low band gap random copolymers based on cyclopentadithiophene and thiophene carboxylates for photovoltaic applications. Journal of Materials Science, 2015, 50, 555-562.	1.7	6
1780	An efficient photovoltaic device based on novel D–A–D solution-processable small molecules. Journal of Materials Science, 2015, 50, 937-947.	1.7	11
1781	Optimal top electrodes for inverted polymer solar cells. Physical Chemistry Chemical Physics, 2015, 17, 2152-2159.	1.3	27
1782	Improved Thermal Stability of Polymer Solar Cells by Incorporating Porphyrins. Advanced Functional Materials, 2015, 25, 748-757.	7.8	41
1783	Synergistic Effect of Polymer and Small Molecules for Highâ€Performance Ternary Organic Solar Cells. Advanced Materials, 2015, 27, 1071-1076.	11.1	192
1784	Light Manipulation for Organic Optoelectronics Using Bio-inspired Moth's Eye Nanostructures. Scientific Reports, 2014, 4, 4040.	1.6	119
1785	Decoupling the optical and electrical properties of subphthalocyanine/C ₇₀ bi-layer organic photovoltaic devices: improved photocurrent while maintaining a high open-circuit voltage and fill factor. RSC Advances, 2015, 5, 5617-5626.	1.7	9
1786	A silole copolymer containing a ladder-type heptacylic arene and naphthobisoxadiazole moieties for highly efficient polymer solar cells. Energy and Environmental Science, 2015, 8, 552-557.	15.6	61
1787	A versatile strategy to directly synthesize 4,8-functionalized benzo[1,2-b:4,5-bâ€2]difurans for organic electronics. Journal of Materials Chemistry A, 2015, 3, 1920-1924.	5.2	20
1788	2,1,3â€Benzothiadiazoleâ€5,6â€Dicarboxylic Imide – A Versatile Building Block for Additive―and Annealingâ€ Processing of Organic Solar Cells with Efficiencies Exceeding 8%. Advanced Materials, 2015, 27, 948-953.	Free 11.1	88
1789	A solution-processable bipolar diketopyrrolopyrrole molecule used as both electron donor and acceptor for efficient organic solar cells. Journal of Materials Chemistry A, 2015, 3, 1902-1905.	5.2	79
1790	Isobenzofulvene-fullerene mono-adducts for organic photovoltaic applications. Journal of Materials Chemistry C, 2015, 3, 977-980.	2.7	11
1791	Poly(sulfobetaine methacrylate)s as Electrode Modifiers for Inverted Organic Electronics. Journal of the American Chemical Society, 2015, 137, 540-549.	6.6	62
1792	The Next Breakthrough for Organic Photovoltaics?. Journal of Physical Chemistry Letters, 2015, 6, 77-84.	2.1	126
1793	Tuning the viscosity of halogen free bulk heterojunction inks for inkjet printed organic solar cells. Organic Electronics, 2015, 17, 107-114.	1.4	25
1794	8.7% Power conversion efficiency polymer solar cell realized with non-chlorinated solvents. Solar Energy Materials and Solar Cells, 2015, 134, 194-198.	3.0	42
1795	Coevaporated Bisquaraine Inverted Solar Cells: Enhancement Due to Energy Transfer and Open Circuit Voltage Control. ACS Photonics, 2015, 2, 86-95.	3.2	47

#	Article	IF	CITATIONS
1796	Solutionâ€Processable Donorâ€Acceptorâ€Donor Oligomers with Crossâ€Linkable Functionality. Macromolecular Chemistry and Physics, 2015, 216, 519-529.	1.1	3
1797	Development of the Morphology during Functional Stack Build-up of P3HT:PCBM Bulk Heterojunction Solar Cells with Inverted Geometry. ACS Applied Materials & Interfaces, 2015, 7, 602-610.	4.0	25
1798	Simplified Tandem Polymer Solar Cells with an Ideal Selfâ€Organized Recombination Layer. Advanced Materials, 2015, 27, 1408-1413.	11.1	111
1799	Unraveling the Morphology of High Efficiency Polymer Solar Cells Based on the Donor Polymer PBDTTTâ€EFT. Advanced Energy Materials, 2015, 5, 1401259.	10.2	100
1800	Well-Defined Star-Shaped Conjugated Macroelectrolytes as Efficient Electron-Collecting Interlayer for Inverted Polymer Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 452-459.	4.0	38
1801	Efficient polymer solar cells based on a new benzo[1,2-b:4,5-bâ€2]dithiophene derivative with fluorinated alkoxyphenyl side chain. Journal of Materials Chemistry A, 2015, 3, 3130-3135.	5.2	44
1802	High-performance fullerene-free polymer solar cells with 6.31% efficiency. Energy and Environmental Science, 2015, 8, 610-616.	15.6	587
1803	Semitransparent Polymer-Based Solar Cells with Aluminum-Doped Zinc Oxide Electrodes. ACS Applied Materials & Interfaces, 2015, 7, 287-300.	4.0	36
1804	Performance Evaluation of an Organic Thin-Film Solar Cell of PTB7:PC ₇₁ BM with an Alcohol-Soluble Polyelectrolyte Interlayer Prepared Using the Spray-Coating Method. Industrial & Engineering Chemistry Research, 2015, 54, 181-187.	1.8	17
1805	Synthesis, optical and electrochemical properties new donor–acceptor (D–A) copolymers based on benzo[1,2-b:3,4-b′:6,5-b″] trithiophene donor and different acceptor units: Application as donor for photovoltaic devices. Organic Electronics, 2015, 17, 167-177.	1.4	9
1806	Effect of PEI cathode interlayer on work function and interface resistance of ITO electrode in the inverted polymer solar cells. Organic Electronics, 2015, 17, 94-101.	1.4	76
1807	Synthesis and photovoltaic performance of a low bandgap fluorinated phenanthrenequnioxaline-based conjugated polymer. Synthetic Metals, 2015, 199, 329-334.	2.1	4
1808	Nanostructured photoelectrochemical solar cells with polyaniline nanobelts acting as hole conductors. Ionics, 2015, 21, 1781-1786.	1.2	7
1809	Improving photovoltaic properties of linear small molecules with TPA–DPP segment by tuning their frameworks. Synthetic Metals, 2015, 199, 400-407.	2.1	10
1810	Highly Efficient Tandem Polymer Solar Cells with a Photovoltaic Response in the Visible Light Range. Advanced Materials, 2015, 27, 1189-1194.	11.1	130
1811	Interface modification of organic photovoltaics by combining molybdenum oxide (MoOx) and molecular template layer. Thin Solid Films, 2015, 574, 146-151.	0.8	13
1812	Effective side chain selection for enhanced open circuit voltage of polymer solar cells based on 2D-conjugated anthracene derivatives. Dyes and Pigments, 2015, 115, 73-80.	2.0	9
1813	Removal of organic contaminants from the surface of ZnO nanorods for organic/inorganic hybrid photovoltaics by using photocatalytic reaction. RSC Advances, 2015, 5, 6232-6237.	1.7	5

#	Article	IF	CITATIONS
1814	Low bandgap conjugated polymers based on mono-fluorinated isoindigo for efficient bulk heterojunction polymer solar cells processed with non-chlorinated solvents. Energy and Environmental Science, 2015, 8, 585-591.	15.6	70
1815	Alternative alcohol-soluble conjugated small molecule electrolytes for high-efficiency inverted polymer solar cells. Physical Chemistry Chemical Physics, 2015, 17, 3637-3646.	1.3	8
1816	A nanoscale study of charge extraction in organic solar cells: the impact of interfacial molecular configurations. Nanoscale, 2015, 7, 104-112.	2.8	13
1817	The side chain effect on difluoro-substituted dibenzo[a,c]phenazine based conjugated polymers as donor materials for high efficiency polymer solar cells. Polymer Chemistry, 2015, 6, 1613-1618.	1.9	17
1818	Tuning the energy gap of conjugated polymer zwitterions for efficient interlayers and solar cells. Journal of Polymer Science Part A, 2015, 53, 327-336.	2.5	20
1819	Doped-carbazolocarbazoles as hole transporting materials in small molecule solar cells with different architectures. Organic Electronics, 2015, 17, 28-32.	1.4	6
1820	Band gap tunable benzodithiophene-based donor-rich semi-random D–A copolymers with active layer thickness tolerance for organic solar cells. Solar Energy Materials and Solar Cells, 2015, 134, 148-156.	3.0	9
1821	A strong influence of the positions of solubilizing alkyl side chains on optoelectronic and photovoltaic properties of TTBTBTT-based conjugated polymers. Journal of Materials Chemistry C, 2015, 3, 1497-1506.	2.7	27
1822	Fluorination as an effective tool to increase the open-circuit voltage and charge carrier mobility of organic solar cells based on poly(cyclopenta[2,1-b:3,4-bâ€2]dithiophene-alt-quinoxaline) copolymers. Journal of Materials Chemistry A, 2015, 3, 2960-2970.	5.2	32
1823	Self-Assembled TiO ₂ Nanorods as Electron Extraction Layer for High-Performance Inverted Polymer Solar Cells. Chemistry of Materials, 2015, 27, 44-52.	3.2	33
1824	Triisopropylsilylethynyl substituted benzodithiophene copolymers: synthesis, properties and photovoltaic characterization. Journal of Materials Chemistry C, 2015, 3, 1595-1603.	2.7	17
1825	Triple-Junction Hybrid Tandem Solar Cells with Amorphous Silicon and Polymer-Fullerene Blends. Scientific Reports, 2014, 4, 7154.	1.6	19
1826	TPD wide-bandgap polymers for solar cell application and their sensitization with small molecule dyes. Synthetic Metals, 2015, 199, 93-104.	2.1	6
1827	Study of perovskite solar cells synthesized under ambient conditions and of the performance of small cell modules. Solar Energy Materials and Solar Cells, 2015, 134, 60-63.	3.0	49
1828	A molecular breakwater-like tetrapod for organic solar cells. Journal of Materials Chemistry A, 2015, 3, 2108-2119.	5.2	6
1829	Critical role of the external bias in improving the performance of polymer solar cells with a small molecule electrolyte interlayer. Journal of Materials Chemistry A, 2015, 3, 504-508.	5.2	15
1830	Photochemical Synthesis of Solutionâ€Processable Graphene Derivatives with Tunable Bandgaps for Organic Solar Cells. Advanced Optical Materials, 2015, 3, 658-666.	3.6	41
1831	Poly(3-butylthiophene) nanowires inducing crystallization of poly(3-hexylthiophene) for enhanced photovoltaic performance, lournal of Materials Chemistry C, 2015, 3, 809-819.	2.7	23

#	Article	IF	Citations
1832	Improved performance of organic solar cells by incorporating silica-coated silver nanoparticles in the buffer layer. Journal of Materials Chemistry C, 2015, 3, 1082-1090.	2.7	50
1833	Toward reliable and accurate evaluation of polymer solar cells based on low band gap polymers. Journal of Materials Chemistry C, 2015, 3, 564-569.	2.7	32
1834	A Tetraphenylethylene Coreâ€Based 3D Structure Small Molecular Acceptor Enabling Efficient Nonâ€Fullerene Organic Solar Cells. Advanced Materials, 2015, 27, 1015-1020.	11.1	362
1835	Organic Solar Cells Using a Highâ€Molecularâ€Weight Benzodithiophene–Benzothiadiazole Copolymer with an Efficiency of 9.4%. Advanced Materials, 2015, 27, 702-705.	11.1	188
1836	Tunable size and sensitization of ZnO nanoarrays as electron transport layers for enhancing photocurrent of photovoltaic devices. Journal of Materials Chemistry C, 2015, 3, 828-835.	2.7	12
1837	Singleâ€Junction Polymer Solar Cells Exceeding 10% Power Conversion Efficiency. Advanced Materials, 2015, 27, 1035-1041.	11.1	1,004
1838	Small-molecule solar cells with efficiency over 9%. Nature Photonics, 2015, 9, 35-41.	15.6	769
1839	Nanoscale mapping by electron energy-loss spectroscopy reveals evolution of organic solar cell contact selectivity. Organic Electronics, 2015, 16, 227-233.	1.4	25
1840	Synthesis of four-armed triphenylamine-based molecules and their applications in organic solar cells. New Journal of Chemistry, 2015, 39, 994-1000.	1.4	9
1841	Solutionâ€Grown Organic Singleâ€Crystalline Donor–Acceptor Heterojunctions for Photovoltaics. Angewandte Chemie - International Edition, 2015, 54, 956-960.	7.2	65
1842	Improved performance and life time of inverted organic photovoltaics by using polymer interfacial materials. Solar Energy Materials and Solar Cells, 2015, 133, 99-104.	3.0	10
1843	Levelised cost of electricity for organic photovoltaics. Solar Energy Materials and Solar Cells, 2015, 133, 26-31.	3.0	63
1844	Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells. Scientific Reports, 2014, 4, 4306.	1.6	83
1845	Printable solar cells. Wiley Interdisciplinary Reviews: Energy and Environment, 2015, 4, 51-73.	1.9	10
1846	Improved Performance in Polymer Solar Cells Using Mixed PC ₆₁ BM/PC ₇₁ BM Acceptors. Advanced Energy Materials, 2015, 5, 1401687.	10.2	63
1847	A Comparison of Five Experimental Techniques to Measure Charge Carrier Lifetime in Polymer/Fullerene Solar Cells. Advanced Energy Materials, 2015, 5, 1401345.	10.2	115
1848	Synthesis of triphenylamine-based molecules with cyan terminals and their application for organic solar cells. Synthetic Metals, 2015, 199, 14-20.	2.1	5
1849	Theoretical design of multi-colored semi-transparent organic solar cells with both efficient color filtering and light harvesting. Scientific Reports, 2015, 4, 7036.	1.6	39

#	Article	IF	CITATIONS
1850	Significantly improved photovoltaic performance of the triangular-spiral TPA(DPP–PN) ₃ by appending planar phenanthrene units into the molecular terminals. Journal of Materials Chemistry A, 2015, 3, 886-893.	5.2	47
1851	3D Printer Based Slotâ€Die Coater as a Labâ€toâ€Fab Translation Tool for Solutionâ€Processed Solar Cells. Advanced Energy Materials, 2015, 5, 1401539.	10.2	196
1852	A Hybrid Copper:Tungsten Suboxide Window Electrode for Organic Photovoltaics. Advanced Materials, 2015, 27, 326-331.	11.1	30
1853	Breaking the Space Charge Limit in Organic Solar Cells by a Novel Plasmonic-Electrical Concept. Scientific Reports, 2014, 4, 6236.	1.6	62
1854	Solution-processed copper nanowire flexible transparent electrodes with PEDOT:PSS as binder, protector and oxide-layer scavenger for polymer solar cells. Nano Research, 2015, 8, 1017-1025.	5.8	79
1855	Novel dipolar 5,5,10,10-tetraphenyl-5,10-dihydroindeno[2,1-a]-indene derivatives for SM-OPV: A combined theoretical and experimental study. Organic Electronics, 2015, 16, 54-70.	1.4	9
1856	First principles study of structural, optical, and electronic properties of zinc mercury chalcogenides. Materials Science in Semiconductor Processing, 2015, 30, 462-468.	1.9	33
1857	Omnidirectional and broadband optical absorption enhancement in small molecule organic solar cells by a patterned MoO3/Ag/MoO3 transparent anode. Optics Communications, 2015, 338, 226-232.	1.0	13
1858	Solution-derived poly(ethylene glycol)-TiO x nanocomposite film as a universal cathode buffer layer for enhancing efficiency and stability of polymer solar cells. Nano Research, 2015, 8, 456-468.	5.8	38
1859	A bridged low band gap A–D–A quaterthiophene as efficient donor for organic solar cells. Journal of Materials Chemistry C, 2015, 3, 390-398.	2.7	13
1860	Low temperature efficient interconnecting layer for tandem polymer solar cells. Nano Energy, 2015, 11, 56-63.	8.2	40
1861	Photochemical upconversion: present status and prospects for its application to solar energy conversion. Energy and Environmental Science, 2015, 8, 103-125.	15.6	471
1862	Enhanced Fill Factor of Tandem Organic Solar Cells Incorporating a Diketopyrrolopyrroleâ€Based Lowâ€Bandgap Polymer and Optimized Interlayer. ChemSusChem, 2015, 8, 331-336.	3.6	8
1863	Synthesis, optical and electrochemical properties of the A–π-D–π-A porphyrin and its application as an electron donor in efficient solution processed bulk heterojunction solar cells. Nanoscale, 2015, 7, 179-189.	2.8	48
1864	Single Junction Inverted Polymer Solar Cell Reaching Power Conversion Efficiency 10.31% by Employing Dual-Doped Zinc Oxide Nano-Film as Cathode Interlayer. Scientific Reports, 2014, 4, 6813.	1.6	474
1865	ITO-free highly bendable and efficient organic solar cells with Ag nanomesh/ZnO hybrid electrodes. Journal of Materials Chemistry A, 2015, 3, 65-70.	5.2	55
1866	High-efficiency non-fullerene organic solar cells enabled by a difluorobenzothiadiazole-based donor polymer combined with a properly matched small molecule acceptor. Energy and Environmental Science, 2015, 8, 520-525.	15.6	379
1867	A high efficiency solution processed polymer inverted triple-junction solar cell exhibiting a power conversion efficiency of 11.83%. Energy and Environmental Science, 2015, 8, 303-316.	15.6	351

#	Article	IF	CITATIONS
1868	Photovoltaic analysis of the effects of PEDOT:PSS-additives hole selective contacts on the efficiency and lifetime performance of inverted organic solar cells. Solar Energy Materials and Solar Cells, 2015, 132, 507-514.	3.0	59
1869	Donor–acceptor block copolymers carrying pendant PC ₇₁ BM fullerenes with an ordered nanoscale morphology. Polymer Chemistry, 2015, 6, 813-826.	1.9	21
1870	The future of organic photovoltaics. Chemical Society Reviews, 2015, 44, 78-90.	18.7	655
1871	Understanding Triplet Formation Pathways in Bulk Heterojunction Polymer:Fullerene Photovoltaic Devices. Advanced Energy Materials, 2015, 5, 1401109.	10.2	23
1872	Photochemical Transformations in Fullerene and Molybdenum Oxide Affect the Stability of Bilayer Organic Solar Cells. Advanced Energy Materials, 2015, 5, 1400734.	10.2	55
1873	From spin coating to doctor blading: A systematic study on the photovoltaic performance of an isoindigo-based polymer. Solar Energy Materials and Solar Cells, 2015, 132, 252-259.	3.0	41
1874	Highâ€Performance Solutionâ€Processed Smallâ€Molecule Solar Cells Based on a Dithienogermoleâ€Containing Molecular Donor. Advanced Energy Materials, 2015, 5, 1400987.	10.2	45
1875	A new small molecule with indolone chromophore as the electron accepting unit for efficient organic solar cells. Dyes and Pigments, 2015, 113, 458-464.	2.0	18
1876	Enhanced photovoltaic properties of di(dodecylthiophene)-alt-2,3-di(3-octoxylphenyl)-5,8-dithieno[3,2-b]thiophene 6,7-difluoroquinoxaline copolymer by fluorination. Dyes and Pigments, 2015, 113, 312-317.	2.0	5
1877	Donor–acceptor conjugated polymers based on multifused ladder-type arenes for organic solar cells. Chemical Society Reviews, 2015, 44, 1113-1154.	18.7	543
1878	Solution-processed interlayer of discotic-based small molecules for organic photovoltaic devices: Enhancement of both the open-circuit voltage and the fill factor. Dyes and Pigments, 2015, 113, 210-218.	2.0	16
1879	Soluble Dicyanodistyrylbenzeneâ€Based Nonâ€Fullerene Electron Acceptors with Optimized Aggregation Behavior for Highâ€Efficiency Organic Solar Cells. Advanced Energy Materials, 2015, 5, 1400929.	10.2	72
1880	Molecular Packing and Electronic Processes in Amorphous-like Polymer Bulk Heterojunction Solar Cells with Fullerene Intercalation. Scientific Reports, 2014, 4, 5211.	1.6	32
1881	Increasing thiophene spacers between thieno[3,2-b]thiophene and benzothiadiazole units in backbone to enhance photovoltaic performance for their 2-D polymers. Dyes and Pigments, 2015, 112, 99-104.	2.0	20
1882	Ultrathin Polyaniline-based Buffer Layer for Highly Efficient Polymer Solar Cells with Wide Applicability. Scientific Reports, 2014, 4, 6570.	1.6	69
1883	High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer. Scientific Reports, 2014, 4, 4691.	1.6	165
1884	Phosphonated conjugated polymers for polymer solar cells with a non-halogenated solvent process. Polymer Chemistry, 2015, 6, 805-812.	1.9	26
1885	Lowering the Work Function of ITO by Covalent Surface Grafting of Aziridine: Application in Inverted Polymer Solar Cells. Advanced Materials Interfaces, 2015, 2, 1400397.	1.9	18

	CITATION	REPORT	
# 1886	ARTICLE Scientometric overview regarding the nanobiomaterials in antimicrobial therapy. , 2016, , 511-535.	IF	CITATIONS
1888	Fabrication and Properties of Inverted Organic Thin Film Solar Cells on Grating-structured Electrode by Nanoimprinting Technique. IEEJ Transactions on Fundamentals and Materials, 2016, 136, 690-696.	0.2	0
1889	Inverted Bulk-Heterojunction Solar Cells on a PEDOT:PSS-Coated PEN Substrate with PFN as a Cathode Buffer Layer. IEICE Transactions on Electronics, 2016, E99.C, 555-558.	0.3	0
1890	Scientometric overview regarding the surface chemistry of nanobiomaterials. , 2016, , 463-486.		6
1891	Solar Energy Conversion $\hat{a} \in $ Natural to Artificial. , 2016, , .		0
1892	Emerging Photovoltaics: Organic, Copper Zinc Tin Sulphide, and Perovskite-Based Solar Cells. Hindawi Journal of Chemistry, 2016, 2016, 1-12.	1.6	21
1893	Fabrication and Optimization of Polymer Solar Cells Based on P3HT:PC70BM System. International Journal of Photoenergy, 2016, 2016, 1-8.	1.4	9
1894	Stable Inverted Low-Bandgap Polymer Solar Cells with Aqueous Solution Processed Low-Temperature ZnO Buffer Layers. International Journal of Photoenergy, 2016, 2016, 1-7.	1.4	2
1895	Carrier Formation Dynamics in Prototypical Organic Solar Cells as Investigated by Transient Absorption Spectroscopy. International Journal of Photoenergy, 2016, 2016, 1-17.	1.4	6
1896	Synthesis and characterization of benzodithiophene and benzotriazole-based polymers for photovoltaic applications. Beilstein Journal of Organic Chemistry, 2016, 12, 1629-1637.	1.3	18
1897	Scientometric overview regarding the nanobiomaterials in dentistry. , 2016, , 425-453.		6
1898	Scientometric Overview inÂNanobiodrugs. , 2016, , 405-428.		4
1899	Integrated Effects of Two Additives on the Enhanced Performance of PTB7:PC71BM Polymer Solar Cells. Materials, 2016, 9, 171.	1.3	16
1900	Homogeneous PCBM layers fabricated by horizontal-dip coating for efficient bilayer heterojunction organic photovoltaic cells. Optics Express, 2016, 24, A1321.	1.7	10
1901	Effect of annealing-induced oxidation of molybdenum oxide on organic photovoltaic device performance. Organic Electronics, 2016, 37, 126-133.	1.4	10
1902	Fine Control of Side Chains in Random π onjugated Terpolymers for Organic Photovoltaics. Macromolecular Chemistry and Physics, 2016, 217, 1513-1520.	1.1	6
1903	Characterizing Electric Field Exposed P3HT Thin Films Using Polarizedâ€Light Spectroscopies. Macromolecular Chemistry and Physics, 2016, 217, 1801-1809.	1.1	3
1904	Recent Advances in Organic Photovoltaics: Device Structure and Optical Engineering Optimization on the Nanoscale. Small, 2016, 12, 1547-1571.	5.2	77

#	Article	IF	CITATIONS
1905	High Sensitivity Polymer Visibleâ€Near Infrared Photodetectors via an Inverted Device Structure and Manipulation of Injection Barrier Height. Small, 2016, 12, 3374-3380.	5.2	50
1906	Impact of the Nature of the Sideâ€Chains on the Polymerâ€Fullerene Packing in the Mixed Regions of Bulk Heterojunction Solar Cells. Advanced Functional Materials, 2016, 26, 5913-5921.	7.8	45
1907	Fullereneâ€Free Polymer Solar Cells with Openâ€Circuit Voltage above 1.2 V: Tuning Phase Separation Behavior with Oligomer to Replace Polymer Acceptor. Advanced Functional Materials, 2016, 26, 5922-5929.	7.8	35
1908	Highâ€Performance Polymer Solar Cells with PCE of 10.42% via Alâ€Doped ZnO Cathode Interlayer. Advanced Materials, 2016, 28, 7405-7412.	11.1	138
1909	Indiumâ€Free Inverted Organic Solar Cells Using Niobiumâ€Doped Titanium Oxide with Integrated Dual Function of Transparent Electrode and Electron Transport Layer. Advanced Electronic Materials, 2016, 2, 1500341.	2.6	8
1910	Controllable ZnMgO Electronâ€Transporting Layers for Longâ€Term Stable Organic Solar Cells with 8.06% Efficiency after Oneâ€Year Storage. Advanced Energy Materials, 2016, 6, 1501493.	10.2	72
1911	Loss Mechanisms in High Efficiency Polymer Solar Cells. Advanced Energy Materials, 2016, 6, 1501742.	10.2	37
1912	Avoiding Photoinduced Shunts in Organic Solar Cells by the Use of Tin Oxide (SnO _x) as Electron Extraction Material Instead of ZnO. Advanced Energy Materials, 2016, 6, 1600347.	10.2	63
1913	A Wide Bandgap Polymer with Strong π–π Interaction for Efficient Fullereneâ€Free Polymer Solar Cells. Advanced Energy Materials, 2016, 6, 1600742.	10.2	76
1914	Effectively Improving Extinction Coefficient of Benzodithiophene and Benzodithiophenedioneâ€based Photovoltaic Polymer by Grafting Alkylthio Functional Groups. Chemistry - an Asian Journal, 2016, 11, 2650-2655.	1.7	11
1915	Multi-channel interface dipole of hyperbranched polymers with quasi-immovable hydrion to modification of cathode interface for high-efficiency polymer solar cells. Progress in Photovoltaics: Research and Applications, 2016, 24, 1044-1054.	4.4	9
1916	Synthesis and photovoltaic properties of 2,6â€bis(2â€thienyl) benzobisazole and 4,8â€bis(thienyl)â€benzo[1,2â€ <i>B</i> :4,5â€ <i>B′</i>]dithiophene copolymers. Journal of Polymer Science P 2016, 54, 316-324.	a¤t.#A,	12
1917	Graphene-based materials for polymer solar cells. Chinese Chemical Letters, 2016, 27, 1259-1270.	4.8	34
1918	Solution-processed pH-neutral conjugated polyelectrolytes with one-atom variation (O, S, Se) as a novel hole-collecting layer in organic photovoltaics. Solar Energy Materials and Solar Cells, 2016, 155, 243-252.	3.0	17
1919	Colorful semitransparent polymer solar cells employing a bottom periodic one-dimensional photonic crystal and a top conductive PEDOT:PSS layer. Journal of Materials Chemistry A, 2016, 4, 11821-11828.	5.2	53
1920	The Study of Optical and Electrical Properties of Short-Pitch Plasmonic Solar Cells. IEEE Photonics Journal, 2016, 8, 1-9.	1.0	7
1921	Random poly(3â€hexylthiophene―co â€3•yanothiophene―co â€3â€(2â€ethylhexyl)thiophene) copolymers open•ircuit voltage in polymer solar cells. Journal of Polymer Science Part A, 2016, 54, 1526-1536.	with high 2.5	10
1922	A Bifunctional Interlayer Material for Modifying Both the Anode and Cathode in Highly Efficient	11.1	85

#	Article	IF	CITATIONS
1923	Homoâ€Tandem Polymer Solar Cells with <i>V</i> _{OC} >1.8 V for Efficient PVâ€Driven Water Splitting. Advanced Materials, 2016, 28, 3366-3373.	11.1	57
1924	Bulkâ€Heterojunction Organic Solar Cells: Five Core Technologies for Their Commercialization. Advanced Materials, 2016, 28, 7821-7861.	11.1	404
1925	Oxidative Chemical Vapor Deposition of Neutral Hole Transporting Polymer for Enhanced Solar Cell Efficiency and Lifetime. Advanced Materials, 2016, 28, 6399-6404.	11.1	23
1926	The Structural Origin of Electron Injection Enhancements with Fulleropyrrolidine Interlayers. Advanced Materials Interfaces, 2016, 3, 1500852.	1.9	10
1927	Compatibility of PTB7 and [70]PCBM as a Key Factor for the Stability of PTB7:[70]PCBM Solar Cells. Advanced Energy Materials, 2016, 6, 1502338.	10.2	35
1928	A Series of Pyrene‧ubstituted Silicon Phthalocyanines as Nearâ€IR Sensitizers in Organic Ternary Solar Cells. Advanced Energy Materials, 2016, 6, 1502355.	10.2	59
1929	Perylene Diimide Trimers Based Bulk Heterojunction Organic Solar Cells with Efficiency over 7%. Advanced Energy Materials, 2016, 6, 1600060.	10.2	111
1930	An Electronâ€Deficient Building Block Based on the Bâ†N Unit: An Electron Acceptor for Allâ€Polymer Solar Cells. Angewandte Chemie, 2016, 128, 1458-1462.	1.6	54
1931	Molecular Lock: A Versatile Key to Enhance Efficiency and Stability of Organic Solar Cells. Advanced Materials, 2016, 28, 5822-5829.	11.1	134
1932	Aqueous Solution Processed Photoconductive Cathode Interlayer for High Performance Polymer Solar Cells with Thick Interlayer and Thick Active Layer. Advanced Materials, 2016, 28, 7521-7526.	11.1	102
1933	Breaking the 10% Efficiency Barrier in Organic Photovoltaics: Morphology and Device Optimization of Wellâ€Known PBDTTT Polymers. Advanced Energy Materials, 2016, 6, 1502529.	10.2	285
1934	Polymer Acceptor Based on Bâ†N Units with Enhanced Electron Mobility for Efficient Allâ€Polymer Solar Cells. Angewandte Chemie - International Edition, 2016, 55, 5313-5317.	7.2	218
#	Article	IF	CITATIONS
------	--	----------------	-----------
1941	Criteria for validating polaron pair dissociation in polymer-fullerene bulk heterojunction solar cells. Journal of Applied Physics, 2016, 119, 154504.	1.1	4
1942	Tuning back contact property via artificial interface dipoles in Si/organic hybrid solar cells. Applied Physics Letters, 2016, 109, .	1.5	26
1943	Quantitative Fermi level tuning in amorphous organic semiconductor by molecular doping: Toward full understanding of the doping mechanism. Applied Physics Letters, 2016, 109, .	1.5	12
1944	Comparative investigation of molecular orientation and charge collection in highly efficient mixed heterojunctions based on three planar-shaped donors and C ₇₀ . Journal Physics D: Applied Physics, 2016, 49, 465106.	1.3	4
1945	Is organic photovoltaics promising for indoor applications?. Applied Physics Letters, 2016, 108, .	1.5	166
1946	Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells. Nature Communications, 2016, 7, 13740.	5.8	549
1947	Influence of the amorphous phase and preceding solution processing on the eutectic behaviour in the state diagram of P3HT : PC ₆₁ BM determined by rapid heat–cool calorimetry. RSC Advand 2016, 6, 92981-92988.	ce s, 7	6
1948	Competition between deformability and charge transport in semiconducting polymers for flexible and stretchable electronics. Applied Physics Reviews, 2016, 3, 021302.	5.5	88
1949	Understanding coupled electro-thermal processes in the catastrophic failure of organic electronic devices. Organic Electronics, 2016, 39, 354-360.	1.4	5
1950	Correlation between Hierarchical Structure and Processing Control of Large-area Spray-coated Polymer Solar Cells toward High Performance. Scientific Reports, 2016, 6, 20062.	1.6	18
1951	Medium-Bandgap Conjugated Polymers Containing Fused Dithienobenzochalcogenadiazoles: Chalcogen Atom Effects on Organic Photovoltaics. Macromolecules, 2016, 49, 9358-9370.	2.2	40
1952	Solution-processed image sensors on flexible substrates. Flexible and Printed Electronics, 2016, 1, 043001.	1.5	45
1953	Significant Lowering Optical Loss of Electrodes via using Conjugated Polyelectrolytes Interlayer for Organic Laser in Electrically Driven Device Configuration. Scientific Reports, 2016, 6, 25810.	1.6	8
1954	Multi-objective Optimization Operation Considering Environment Benefits and Economy Based on Ant Colony Optimization for Isolated Micro-grids. Energy Procedia, 2016, 104, 21-26.	1.8	10
1955	Charge carrier recombination dynamics in perovskite and polymer solar cells. Applied Physics Letters, 2016, 108, .	1.5	42
1956	Self-assembled oleamide layer applied for cathode buffer layer of bulk heterojunction solar cells based on PTB7:PC71BM. Japanese Journal of Applied Physics, 2016, 55, 02BF02.	0.8	2
1957	ZnO photoluminescent quantum dots with down-shifting effect applied in solar cells Journal of Physics: Conference Series, 2016, 773, 012036.	0.3	3
1958	An organic water-gated ambipolar transistor with a bulk heterojunction active layer for stable and tunable photodetection. Applied Physics Letters, 2016, 109, .	1.5	7

	CITATION REPO	ORT	
Article	I	F	CITATIONS
Direct observation of UV-induced charge accumulation in inverted-type polymer solar cells with a TiO <i>x</i> layer: Microscopic elucidation of the light-soaking phenomenon. Applied Physics Letters 2016, 109, .	3, I	1.5	32
Inverted polymer solar cells with enhanced fill factor by inserting the potassium stearate interfacial modification layer. Applied Physics Letters, 2016, 108, 181602.		1.5	17
Optical and electrical properties of short-pitch plasmonic solar cells with oblique incidence. , 2016, ,	,.		0
Influence of organic active layer morphology on plasmonic light-trapping. , 2016, , .			2
Blade-coated sol-gel indium-gallium-zinc-oxide for inverted polymer solar cell. AIP Advances, 2016, 6), . (0.6	12
Semiconducting Carbon Nanotubes for Improved Efficiency and Thermal Stability of Polymer–Fullerene Solar Cells. Advanced Functional Materials, 2016, 26, 51-65.		7.8	54
A self-powered photodetector based on a CH ₃ NH ₃ PbI ₃ singl crystal with asymmetric electrodes. CrystEngComm, 2016, 18, 4405-4411.	e .	1.3	95
Polypyridyl complexes as electron transporting materials for inverted bulk heterojunction solar cells: the metal center effect. Journal of Materials Chemistry C, 2016, 4, 4634-4639.		2.7	8
Donor-acceptor polymers based on 5,6-difluoro-benzo[1,2,5]thiadiazole for high performance solar cells. Organic Electronics, 2016, 33, 187-193.	:	1.4	5
Solution-Processed 8-Hydroquinolatolithium as Effective Cathode Interlayer for High-Performance Polymer Solar Cells. ACS Applied Materials & amp; Interfaces, 2016, 8, 9254-9261.		4.0	37
Naphthodithieno[3,2-b]thiophene-based donor-acceptor copolymers: Synthesis, characterization, and their photovoltaic and charge transport properties. Dyes and Pigments, 2016, 131, 1-8.	nd :	2.0	8
Polymeric materials for longâ€ŧerm durability of photovoltaic systems. Journal of Applied Polymer Science, 2016, 133, .		1.3	36
Analyses of Thiophene-Based Donor–Acceptor Semiconducting Polymers toward Designing Optic and Conductive Properties: A Theoretical Perspective. Journal of Physical Chemistry C, 2016, 120, 8305-8314.	al :	1.5	17
A review of recent plasmonic nanoparticles incorporated P3HT: PCBM organic thin film solar cells. Organic Electronics, 2016, 36, 12-28.		1.4	84
Improvement of Charge Collection and Performance Reproducibility in Inverted Organic Solar Cells by Suppression of ZnO Subgap States. ACS Applied Materials & Interfaces, 2016, 8, 14717-147	724. '	4.0	54
Interfacial modification layers based on carbon dots for efficient inverted polymer solar cells exceeding 10% power conversion efficiency. Nano Energy, 2016, 26, 216-223.		8.2	83
Solar Cell Manufacturing Method with the Structure of the Bulk Heterojunction Based on Organic Semiconductors with a Direct Architecture. Materials Science Forum, 2016, 845, 224-227.	(0.3	3

1976	Improving the efficiency of polymer solar cells via a treatment of methanol : water on the active layers. Journal of Materials Chemistry A, 2016, 4, 9644-9652.	5.2	23
------	--	-----	----

#

#	Article	IF	Citations
1977	An organosilane self-assembled monolayer incorporated into polymer solar cells enabling interfacial coherence to improve charge transport. Physical Chemistry Chemical Physics, 2016, 18, 16005-16012.	1.3	5
1978	Synthesis, characterization and photovoltaic performance of novel glass-forming perylenediimide derivatives. Organic Electronics, 2016, 34, 146-156.	1.4	20
1979	Nanostructured Cathode Buffer Layers for Inverted Polymer Solar Cells. Nanoscience and Technology, 2016, , 95-158.	1.5	0
1980	Photon energy transfer by quantum dots in organic–inorganic hybrid solar cells through FRET. Journal of Materials Chemistry A, 2016, 4, 10444-10453.	5.2	24
1981	Recent progress towards fluorinated copolymers for efficient photovoltaic applications. Chinese Chemical Letters, 2016, 27, 1241-1249.	4.8	56
1982	Structure–Property Relationships Directing Transport and Charge Separation in Isoindigo Polymers. Macromolecules, 2016, 49, 4008-4022.	2.2	38
1983	High Efficiency Inverted Organic Solar Cells with a Neutral Fulleropyrrolidine Electron-Collecting Interlayer. ACS Applied Materials & Interfaces, 2016, 8, 14293-14300.	4.0	40
1984	Solution-processed, inverted organic solar cells with bilayered inorganic/organic electron extraction layers. RSC Advances, 2016, 6, 36561-36567.	1.7	6
1985	Non-conjugated water/alcohol soluble polymers with different oxidation states of sulfide as cathode interlayers for high-performance polymer solar cells. Journal of Materials Chemistry C, 2016, 4, 4288-4295.	2.7	16
1986	High-Permittivity Conjugated Polyelectrolyte Interlayers for High-Performance Bulk Heterojunction Organic Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 6309-6314.	4.0	37
1987	Roll to roll compatible fabrication of inverted organic solar cells with a self-organized charge selective cathode interfacial layer. Journal of Materials Chemistry A, 2016, 4, 5032-5038.	5.2	49
1988	Al-doping effects on the photovoltaic performance of inverted polymer solar cells. Optoelectronics Letters, 2016, 12, 106-109.	0.4	2
1989	A Fluorinated Polythiophene Derivative with Stabilized Backbone Conformation for Highly Efficient Fullerene and Non-Fullerene Polymer Solar Cells. Macromolecules, 2016, 49, 2993-3000.	2.2	141
1990	New alternating D–A ₁ –D–A ₂ copolymer containing two electronâ€deficient moieties based on benzothiadiazole and 9â€(2â€Octyldodecyl)â€8 <i>H</i> â€pyrrolo[3,4â€ <i>b</i>]bisthieno[2,3â€ <i>f</i> ;2'â€ <i>h</i>]quinoxalineâ for efficient polymer solar cells Journal of Polymer Science Part A 2016 54 155-168	à€ 8; 10(9<	i> ¹⁰ /i>)â€d
1991	Nonfullerene Polymer Solar Cells with 8.5% Efficiency Enabled by a New Highly Twisted Electron Acceptor Dimer. Advanced Materials, 2016, 28, 124-131.	11.1	250
1992	Ultrafast Spectroscopic Study of Donor–Acceptor Benzodithiophene Light Harvesting Organic Conjugated Polymers. Journal of Physical Chemistry C, 2016, 120, 9088-9096.	1.5	26
1993	Polyfluorene Electrolytes Interfacial Layer for Efficient Polymer Solar Cells: Controllably Interfacial Dipoles by Regulation of Polar Groups. ACS Applied Materials & Interfaces, 2016, 8, 9821-9828.	4.0	32
1994	Efficient solar cells are more stable: the impact of polymer molecular weight on performance of organic photovoltaics. Journal of Materials Chemistry A, 2016, 4, 7274-7280.	5.2	66

#	Article	IF	CITATIONS
1995	Sulfonate anionic small molecule as a cathode interfacial material for highly efficient polymer solar cells. RSC Advances, 2016, 6, 33523-33528.	1.7	6
1996	Benzo[1,2-b:4,5-bâ€2]dithiophene-based conjugated polyelectrolyte for the cathode modification of inverted polymer solar cells. Journal of Macromolecular Science - Pure and Applied Chemistry, 2016, 53, 290-296.	1.2	5
1997	Influence of Ambient Humidity on the Conductivity Enhancement of PEDOT:PSS Films during the Acetic Acid Treatment. ECS Journal of Solid State Science and Technology, 2016, 5, Q171-Q175.	0.9	2
1998	Elucidating the origin of the improved current output in inverted polymer solar cells. Solar Energy Materials and Solar Cells, 2016, 152, 51-58.	3.0	18
1999	Structure and Conductivity of Semiconducting Polymer Hydrogels. Journal of Physical Chemistry B, 2016, 120, 6215-6224.	1.2	14
2000	Solution-processed MoS _x thin-films as hole-transport layers for efficient polymer solar cells. RSC Advances, 2016, 6, 39137-39143.	1.7	8
2001	Enhanced electron extraction capability of polymer solar cells via modifying the cathode buffer layer with inorganic quantum dots. Physical Chemistry Chemical Physics, 2016, 18, 11435-11442.	1.3	9
2002	An ethanolamine-functionalized fullerene as an efficient electron transport layer for high-efficiency inverted polymer solar cells. Journal of Materials Chemistry A, 2016, 4, 8072-8079.	5.2	47
2003	Inverted organic photovoltaic cells. Chemical Society Reviews, 2016, 45, 2937-2975.	18.7	185
2004	A D–π–A1–π–A2 push–pull small molecule donor for solution processed bulk heterojunction organic solar cells. Physical Chemistry Chemical Physics, 2016, 18, 13918-13926.	1.3	12
2005	Synthesis and properties of a novel narrow band gap oligomeric diketopyrrolopyrrole-based organic semiconductor. Dyes and Pigments, 2016, 131, 160-167.	2.0	8
2006	Further exploration of photovoltaic performance of polythiophene-co-polyaniline–Ti copolymer composites PV system. Materials and Design, 2016, 101, 294-300.	3.3	2
2007	Graphene and transition metal dichalcogenide nanosheets as charge transport layers for solution processed solar cells. Materials Today, 2016, 19, 580-594.	8.3	79
2008	Two-dimensional conjugated copolymers composed of diketopyrrolopyrrole, thiophene, and thiophene with side chains for binary and ternary polymer solar cells. Organic Electronics, 2016, 33, 213-220.	1.4	9
2009	Synthesis of alternating D–A1–D–A2 terpolymers comprising two electron-deficient moieties, quinoxaline and benzothiadiazole units for photovoltaic applications. Polymer Chemistry, 2016, 7, 4025-4035.	1.9	11
2010	10.20% Efficiency polymer solar cells via employing bilaterally hole-cascade diazaphenanthrobisthiadiazole polymer donors and electron-cascade indene-C70 bisadduct acceptor. Nano Energy, 2016, 25, 170-183.	8.2	68
2011	Periodically arranged colloidal gold nanoparticles for enhanced light harvesting in organic solar cells. , 2016, , .		3
2012	Influence of a π-bridge dependent molecular configuration on the optical and electrical characteristics of organic solar cells. Journal of Materials Chemistry A, 2016, 4, 8784-8792.	5.2	18

#	Article	IF	CITATIONS
2013	Donor–acceptor conjugated polymers based on thieno[3,2-b]indole (TI) and 2,1,3-benzothiadiazole (BT) for high efficiency polymer solar cells. Journal of Materials Chemistry C, 2016, 4, 5448-5460.	2.7	32
2014	Solution-Processable Small Molecules for High-Performance Organic Solar Cells with Rigidly Fluorinated 2,2′-Bithiophene Central Cores. ACS Applied Materials & Interfaces, 2016, 8, 11639-11648.	4.0	46
2015	Effects of the charge-transfer reorganization energy on the open-circuit voltage in small-molecular bilayer organic photovoltaic devices: comparison of the influence of deposition rates of the donor. Physical Chemistry Chemical Physics, 2016, 18, 12651-12661.	1.3	5
2016	Self-assembled tri-, tetra- and penta-ethylene glycols as easy, expedited and universal interfacial cathode-modifiers for inverted polymer solar cells. Journal of Materials Chemistry A, 2016, 4, 8707-8715.	5.2	15
2017	Metalloporphyrins in Solar Energy Conversion. , 2016, , 171-262.		9
2018	Photo-physics of PTB7, PCBM and ICBA based ternary solar cells. Organic Electronics, 2016, 34, 111-117.	1.4	46
2019	Influence of Blend Ratio and Processing Additive on Free Carrier Yield and Mobility in PTB7:PC ₇₁ BM Photovoltaic Solar Cells. Journal of Physical Chemistry C, 2016, 120, 9588-9594.	1.5	17
2020	Enhancement of Photovoltaic Performance by Utilizing Readily Accessible Hole Transporting Layer of Vanadium(V) Oxide Hydrate in a Polymer–Fullerene Blend Solar Cell. ACS Applied Materials & Interfaces, 2016, 8, 11658-11666.	4.0	37
2021	A simple structured and efficient triazine-based molecule as an interfacial layer for high performance organic electronics. Energy and Environmental Science, 2016, 9, 2595-2602.	15.6	45
2022	ITO-free flexible organic photovoltaics with multilayer MoO ₃ /LiF/MoO ₃ /Ag/MoO ₃ as the transparent electrode. Semiconductor Science and Technology, 2016, 31, 055013.	1.0	10
2023	Host sensitized near-infrared emission in Nd3+-Yb3+ Co-doped Na2GdMg2V3O12 phosphor. Ceramics International, 2016, 42, 12988-12994.	2.3	26
2024	Spectroscopic Investigations of Three-Phase Morphology Evolution in Polymer: Fullerene Solar Cell Blends. Journal of Physical Chemistry C, 2016, 120, 10806-10814.	1.5	41
2025	Solvent-resistant ITO work function tuning by an acridine derivative enables high performance inverted polymer solar cells. Organic Electronics, 2016, 35, 6-11.	1.4	12
2026	Efficiently-designed hybrid tandem photovoltaic with organic and inorganic single cells. Journal of the Korean Physical Society, 2016, 68, 1094-1098.	0.3	3
2027	High-Performance Field-Effect Transistors Fabricated with Donor–Acceptor Copolymers Containing SA·A·A•O Conformational Locks Supplied by Diethoxydithiophenethenes. Macromolecules, 2016, 49, 6401-6410.	2.2	43
2028	Effect of Molecular Packing and Charge Delocalization on the Nonradiative Recombination of Chargeâ€Transfer States in Organic Solar Cells. Advanced Energy Materials, 2016, 6, 1601325.	10.2	103
2029	A water/alcohol-soluble conjugated porphyrin small molecule as a cathode interfacial layer for efficient organic photovoltaics. Journal of Materials Chemistry A, 2016, 4, 15156-15161.	5.2	36
2030	Thin indium tin oxide nanoparticle films as hole transport layer in inverted organic solar cells. Thin Solid Films, 2016, 616, 419-424.	0.8	6

#	Article	IF	CITATIONS
2031	Solvent effects on the morphology and stability of PTB7:PCBM based solar cells. Solar Energy, 2016, 137, 490-499.	2.9	31
2032	Versatile dual organic interface layer for performance enhancement of polymer solar cells. Journal of Power Sources, 2016, 333, 99-106.	4.0	17
2033	Photoluminescence quenching of poly(octylfluorenylbenzothiadiazole) luminophore by n-type cobalt(II) salicylaldimine metallodendrimer. Synthetic Metals, 2016, 220, 114-122.	2.1	4
2034	Effects of solvent-vapor annealing on bulk-heterojunction morphology of photoactive layers prepared by electrostatic spray deposition. Thin Solid Films, 2016, 615, 385-390.	0.8	5
2035	Improving optical absorption bandwidth using bi-layer bulkheterojunction organic photoactive medium. Journal of Materials Science: Materials in Electronics, 2016, 27, 11628-11633.	1.1	9
2036	High performance polymer solar cells employing a low-temperature solution-processed organic–inorganic hybrid electron transport layer. Journal of Materials Chemistry A, 2016, 4, 16612-16618.	5.2	12
2037	A bi-continuous network structure of p-DTS(FBTTh ₂) ₂ /EP-PDI via selective solvent vapor annealing. Journal of Materials Chemistry C, 2016, 4, 10095-10104.	2.7	7
2038	Low-bandgap polymer electron acceptors based on double B ↕N bridged bipyridine (BNBP) and diketopyrrolopyrrole (DPP) units for all-polymer solar cells. Journal of Materials Chemistry C, 2016, 4, 9961-9967.	2.7	46
2039	Physical characterizations of direct and inverted solution-processed organic light-emitting diodes. Proceedings of SPIE, 2016, , .	0.8	3
2040	Design and synthesis of the polymers based on alkylthiophenyl side chains and variant acceptor moieties for polymer solar cells. RSC Advances, 2016, 6, 95306-95313.	1.7	4
2041	Achieving 10.5% efficiency for inverted polymer solar cells by modifying the ZnO cathode interlayer with phenols. Journal of Materials Chemistry A, 2016, 4, 16824-16829.	5.2	39
2042	Fluoro-substituted low band gap polymers based on isoindigo for air-stable polymer solar cells with high open circuit voltages. Organic Electronics, 2016, 39, 85-90.	1.4	11
2043	Semiconductor Polymer/Top Electrode Interface Generated by Two Deposition Methods and Its Influence on Organic Solar Cell Performance. ACS Applied Materials & Interfaces, 2016, 8, 28763-28770.	4.0	17
2044	Polarized Thin Layer Deposited Electrochemically on Aluminum-Doped Zinc Oxide as a Cathode Interlayer for Highly Efficient Organic Electronics. ACS Applied Materials & Interfaces, 2016, 8, 26463-26469.	4.0	13
2045	Direct Hydrogen Evolution from Saline Water Reduction at Neutral pH using Organic Photocathodes. ChemSusChem, 2016, 9, 3062-3066.	3.6	16
2046	Interface Engineering of Metal Oxides using Ammonium Anthracene in Inverted Organic Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 29866-29871.	4.0	20
2047	A two-dimension medium band gap conjugated polymer based on 5,10-bis(alkylthien-2-yl)dithieno[3,2- <i>d</i> :3′,2′- <i>d</i> ′]benzo[1,2- <i>b</i> :4,5-b′]dithiophene: S and photovoltaic application. Journal of Macromolecular Science - Pure and Applied Chemistry, 2016, 53, 538-545	nthesis	7
2048	Modeling the Free Carrier Recombination Kinetics in PTB7:PCBM Organic Photovoltaics. Journal of Physical Chemistry C, 2016, 120, 24597-24604.	1.5	11

#	Article	IF	CITATIONS
2049	Properties of inverted polymer solar cells based on novel small molecular electrolytes as the cathode buffer layer. Organic Electronics, 2016, 39, 163-167.	1.4	15
2050	Recent Development of Transparent Conducting Oxideâ€Free Flexible Thinâ€Film Solar Cells. Advanced Functional Materials, 2016, 26, 8855-8884.	7.8	82
2051	Impact of environmentally friendly processing on polymer solar cells: Performance, thermal stability and morphological study by imaging techniques. Solar Energy Materials and Solar Cells, 2016, 155, 436-445.	3.0	24
2052	Solar Cells Incorporating Water/Alcohol-Soluble Electron-Extracting DNA Nanolayers. ACS Energy Letters, 2016, 1, 510-515.	8.8	36
2053	Morphology changes upon scaling a high-efficiency, solution-processed solar cell. Energy and Environmental Science, 2016, 9, 2835-2846.	15.6	170
2054	Irradiation-induced degradation of PTB7 investigated by valence band and S 2 <i>p</i> photoelectron spectroscopy. Nanotechnology, 2016, 27, 324005.	1.3	8
2055	Simple Bar oating Process for Fabrication of Flexible Topâ€Illuminated Polymer Solar Cells on Metallic Substrate. Advanced Materials Technologies, 2016, 1, 1600128.	3.0	3
2056	Polymeric Photoinitiators: A New Search toward High Performance Visible Light Photoinitiating Systems. Macromolecular Chemistry and Physics, 2016, 217, 2145-2153.	1.1	21
2057	Counterion induced facile self-doping and tunable interfacial dipoles of small molecular electrolytes for efficient polymer solar cells. Nano Energy, 2016, 27, 492-498.	8.2	48
2058	Polymer-coated graphene films as anti-reflective transparent electrodes for Schottky junction solar cells. Journal of Materials Chemistry A, 2016, 4, 13795-13802.	5.2	44
2059	Extracting Information about the Electronic Quality of Organic Solar-Cell Absorbers from Fill Factor and Thickness. Physical Review Applied, 2016, 6, .	1.5	50
2060	A Vinyleneâ€Bridged Perylenediimideâ€Based Polymeric Acceptor Enabling Efficient Allâ€Polymer Solar Cells Processed under Ambient Conditions. Advanced Materials, 2016, 28, 8483-8489.	11.1	222
2061	Highâ€Performance Photovoltaic Polymers Employing Symmetryâ€Breaking Building Blocks. Advanced Materials, 2016, 28, 8490-8498.	11.1	98
2062	Trap-limited bimolecular recombination in poly(3-hexylthiophene): Fullerene blend films. Organic Electronics, 2016, 38, 8-14.	1.4	10
2063	High molecular weight broad band-gap polymers based on indolo[3,2-b]carbazole and thiazolo[5,4-d]thiazole derivatives for solar cells. Polymer Science - Series B, 2016, 58, 587-593.	0.3	3
2064	Reduced Intramolecular Twisting Improves the Performance of 3D Molecular Acceptors in Nonâ€Fullerene Organic Solar Cells. Advanced Materials, 2016, 28, 8546-8551.	11.1	161
2065	Highly-efficient polymer solar cells realized by tailoring conjugated skeleton of alcohol-soluble conjugated electrolytes. Solar Energy Materials and Solar Cells, 2016, 157, 644-651.	3.0	3
2066	Understanding Morphology Compatibility for High-Performance Ternary Organic Solar Cells. Chemistry of Materials, 2016, 28, 6186-6195.	3.2	150

#	Article	IF	CITATIONS
2067	High performance alternating polymers based on two-dimensional conjugated benzo[1,2-b:4,5-b′]dithiophene and fluorinated dithienylbenzothiadiazole for solar cells. RSC Advances, 2016, 6, 77525-77534.	1.7	9
2068	Quaternary Organic Solar Cells Enhanced by Cocrystalline Squaraines with Power Conversion Efficiencies >10%. Advanced Energy Materials, 2016, 6, 1600660.	10.2	46
2069	A Molecular Tetrapod for Organic Photovoltaics. ACS Applied Materials & Interfaces, 2016, 8, 22392-22401.	4.0	2
2070	Poly(3,4-ethylenedioxythiophene):sulfonated acetone-formaldehyde: preparation, characterization and performance as a hole injection material. Journal of Materials Chemistry C, 2016, 4, 8077-8085.	2.7	14
2071	Understanding the Light Soaking Effects in Inverted Organic Solar Cells Functionalized with Conjugated Macroelectrolyte Electronâ€Collecting Interlayers. Advanced Science, 2016, 3, 1500245.	5.6	35
2072	Synthesis of Thieno[3,4- <i>b</i>]thiophene-Based Donor Molecules with Phenyl Ester Pendants for Organic Solar Cells: Control of Photovoltaic Properties via Single Substituent Replacement. ChemistrySelect, 2016, 1, 703-709.	0.7	9
2073	Improved photovoltaic properties of the copolymers based on diketopyrrolopyrrole with broad absorption and high open-circuit voltage. Dyes and Pigments, 2016, 133, 16-24.	2.0	6
2074	Comprehensive Insights into Charge Dynamics and Improved Photoelectric Properties of Well-Designed Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 20701-20709.	4.0	5
2075	High performance bifunctional electrocatalytic activity of a reduced graphene oxide–molybdenum oxide hybrid catalyst. Journal of Materials Chemistry A, 2016, 4, 13271-13279.	5.2	62
2076	Charge Funneling through Metal Electrode Structuring for Highâ€Efficiency Gains in Polymer Solar Cells. Advanced Electronic Materials, 2016, 2, 1600049.	2.6	3
2077	Synthesis of carbon quantum dots by chemical vapor deposition approach for use in polymer solar cell as the electrode buffer layer. Carbon, 2016, 109, 598-607.	5.4	70
2078	A low-cost and low-temperature processable zinc oxide-polyethylenimine (ZnO:PEI) nano-composite as cathode buffer layer for organic and perovskite solar cells. Organic Electronics, 2016, 38, 150-157.	1.4	45
2079	Understanding How Polymer Properties Control OPV Device Performance: Regioregularity, Swelling, and Morphology Optimization Using Random Poly(3-butylthiophene- <i>co</i> -3-octylthiophene) Polymers. Journal of Physical Chemistry C, 2016, 120, 22115-22125.	1.5	14
2080	Optimization of PDTS-DTffBT-Based Solar Cell Performance through Control of Polymer Molecular Weight. Journal of Physical Chemistry C, 2016, 120, 19513-19520.	1.5	8
2081	Comparison of the Morphology Development of Polymer–Fullerene and Polymer–Polymer Solar Cells during Solution‧hearing Blade Coating. Advanced Energy Materials, 2016, 6, 1601225.	10.2	79
2082	Interpenetrating heterojunction photovoltaic cells based on C60 nano-crystallized thin films. Organic Electronics, 2016, 38, 107-114.	1.4	4
2083	Parallel bulk heterojunction photovoltaics based on all-conjugated block copolymer additives. Journal of Materials Chemistry A, 2016, 4, 14804-14813.	5.2	21
2084	A homogeneous ethanedithiol doped ZnO electron transporting layer for polymer solar cells. Journal of Materials Chemistry C, 2016, 4, 8738-8744.	2.7	15

ARTICLE IF CITATIONS Improved impedance characteristics of all-water-processable triple-stacked hole-selective layers in 2085 1.7 7 solution-processed OLEDs. Optics Express, 2016, 24, A846. Theoretical Investigations on Naphthodithiophene Diimideâ€Based Copolymers as Acceptor for 2086 Allâ€Polymer Solar Cell Applications. ChemistrySelect, 2016, 1, 1662-1673. Toward Practical Useful Polymers for Highly Efficient Solar Cells via a Random Copolymer Approach. 2087 101 6.6 Journal of the American Chemical Society, 2016, 138, 10782-10785. Light Manipulation in Organic Photovoltaics. Advanced Science, 2016, 3, 1600123. 2088 Interface modification for organic and perovskite solar cells. Science China Materials, 2016, 59, 2089 3.5 23 743-756. Facile solution processed MoO₃ thin film as hole transportation layer for polymer solar 0.8 cells. Proceedings of SPIE, 2016, , . Highly efficient polymer solar cells using a non-conjugated small-molecule zwitterion with 2092 enhancement of electron transfer and collection. Journal of Materials Chemistry A, 2016, 4, 5.2 21 14944-14948. Connecting charge transfer kinetics to device parameters of a narrow-bandgap polymer-based solar 1.3 cell. Physical Chemistry Chemical Physics, 2016, 18, 26550-26561. A Novel Naphtho[1,2â€<i>c</i>:5,6â€<i>c′</i>]Bis([1,2,5]Thiadiazole)â€Based Narrowâ€Bandgap Ï€â€Conjugated 2094 230 Polymer with Power Conversion Efficiency Over 10%. Advanced Materials, 2016, 28, 9811-9818. MoS₂ Quantum Dots with a Tunable Work Function for High-Performance Organic Solar 2095 Cells. ACS Applied Materials & amp; Interfaces, 2016, 8, 26916-26923. Synthesis, Self-Assembly, and Solar Cell Performance of N-Annulated Perylene Diimide Non-Fullerene 2096 211 3.2 Acceptors. Chemistry of Materials, 2016, 28, 7098-7109. Headâ€toâ€Head Linkage Containing Bithiopheneâ€Based Polymeric Semiconductors for Highly Efficient 11.1 Polymer Solar Cells. Advanced Materials, 2016, 28, 9969-9977 Hybrid photovoltaic structures based on amorphous silicon and P3HT:PCBM/PEDOT:PSS polymer 2098 1.4 9 sémiconductors. Organic Electronics, 2016, 38, 271-277. Following the TRMC Trail: Optimization of Photovoltaic Efficiency and Structureâ€"Property 2099 4.0 Correlation of Thiophene Oligomers. ACS Applied Materials & amp; Interfaces, 2016, 8, 25396-25404. On describing the optoelectronic characteristics of poly(benzodithiophene-co-quinoxaline)â€"fullerene complexes: the influence of optimally tuned density 2100 1.3 7 functionals. Physical Chemistry Chemical Physics, 2016, 18, 27654-27670. The use of an n-type macromolecular additive as a simple yet effective tool for improving and stabilizing the performance of organic solar cells. Energy and Environmental Science, 2016, 9, 99 3464-3471. One-pot synthesis of poly-(3-hexylthiophene) with variable degrees of molar mass and regioregularity. 2102 1.2 6 Journal of Polymer Research, 2016, 23, 1. Electric field assisted spray deposited MoO3 thin films as a hole transport layer for organic solar cells. Solar Energy, 2016, 137, 379-384.

#	Article	IF	CITATIONS
2104	Optimization and Analysis of Conjugated Polymer Side Chains for Highâ€Performance Organic Photovoltaic Cells. Advanced Functional Materials, 2016, 26, 1517-1525.	7.8	67
2105	Side Chain Optimization of Naphthalenediimide–Bithiopheneâ€Based Polymers to Enhance the Electron Mobility and the Performance in Allâ€Polymer Solar Cells. Advanced Functional Materials, 2016, 26, 1543-1553.	7.8	155
2106	Structure-induced resonant tail-state regime absorption in polymer: fullerene bulk-heterojunction solar cells. Physical Review B, 2016, 93, .	1.1	2
2107	Facile preparation of small molecules for bulk heterojunction solar cells. RSC Advances, 2016, 6, 59218-59225.	1.7	4
2108	Interfacial Materials for Organic Solar Cells: Recent Advances and Perspectives. Advanced Science, 2016, 3, 1500362.	5.6	389
2109	Solar Trees: First Largeâ€5cale Demonstration of Fully Solution Coated, Semitransparent, Flexible Organic Photovoltaic Modules. Advanced Science, 2016, 3, 1500342.	5.6	204
2110	Interface engineering in efficient vacuum deposited perovskite solar cells. Organic Electronics, 2016, 37, 396-401.	1.4	19
2111	Comparison of 3D non-fullerene acceptors for organic photovoltaics based on naphthalene diimide and perylene diimide-substituted 9,9′-bifluorenylidene. RSC Advances, 2016, 6, 70493-70500.	1.7	27
2112	Efficient ternary organic photovoltaic cells with better trade-off photon harvesting and phase separation by doping DIB-SQ. Journal of Materials Chemistry C, 2016, 4, 7809-7816.	2.7	12
2113	Stability of Polymer Interlayer Modified ITO Electrodes for Organic Solar Cells. Australian Journal of Chemistry, 2016, 69, 735.	0.5	8
2114	Quantitative Analyses of Competing Photocurrent Generation Mechanisms in Fullerene-Based Organic Photovoltaics. Journal of Physical Chemistry C, 2016, 120, 16470-16477.	1.5	15
2115	Simultaneous enhancement of performance and insensitivity to active layer thickness for OPVs by functionalizing π-spacer's side chain. Polymer Chemistry, 2016, 7, 5366-5374.	1.9	13
2117	Phenylquinoline Derivatives as Efficient Interfacial Layer Materials for Highâ€Performance Organic Electronic Devices. Advanced Electronic Materials, 2016, 2, 1600086.	2.6	13
2118	Morphological engineering via processing additive in thin film bulk-heterojunction photovoltaic cells: A systematic understanding of crystal size and charge transport. Current Applied Physics, 2016, 16, 1424-1430.	1.1	8
2119	Suppression of Polyfluorene Photo-Oxidative Degradation via Encapsulation of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry Letters, 2016, 7, 4223-4229.	2.1	8
2120	A Simple Approach to Fabricate an Efficient Inverted Polymer Solar Cell with a Novel Small Molecular Electrolyte as the Cathode Buffer Layer. ACS Applied Materials & Interfaces, 2016, 8, 32992-32997.	4.0	21
2121	A ternary blend of a polymer, fullerene, and insulating self-assembling triptycene molecules for organic photovolatics. Journal of Materials Chemistry A, 2016, 4, 18490-18498.	5.2	21
2122	Insights into the working mechanism of cathode interlayers in polymer solar cells via [(C ₈ H ₁₇) ₄ N] ₄ [SiW ₁₂ O ₄₀]. Journal of Materials Chemistry A, 2016, 4, 19189-19196.	5.2	42

#	ARTICLE	IF	CITATIONS
2123	Bulk-Heterojunction Organic Solar Cells. Journal of the American Chemical Society, 2016, 138, 15523-15526.	6.6	286
2124	Tin-Free Direct C–H Arylation Polymerization for High Photovoltaic Efficiency Conjugated Copolymers. Journal of the American Chemical Society, 2016, 138, 15699-15709.	6.6	156
2125	Semiconductor Nanowires for Energy Harvesting. Semiconductors and Semimetals, 2016, 94, 297-368.	0.4	9
2126	Donor–Acceptor Interfaces by Engineered Nanoparticles Assemblies for Enhanced Efficiency in Plastic Planar Heterojunction Solar Cells. Journal of Physical Chemistry C, 2016, 120, 26588-26599.	1.5	9
2127	Triazine-core-containing star-shaped compounds as cathode interlayers for efficient inverted polymer solar cells. Journal of Materials Chemistry C, 2016, 4, 11278-11283.	2.7	9
2128	Donor polymer design enables efficient non-fullerene organic solar cells. Nature Communications, 2016, 7, 13094.	5.8	328
2129	Achieving a solar power conversion efficiency exceeding 9% by modifying the structure of a simple, inexpensive and highly scalable polymer. Journal of Materials Chemistry A, 2016, 4, 18585-18597.	5.2	32
2130	Efficient and ultraviolet durable inverted polymer solar cells using thermal stable GZO-AgTi-GZO multilayers as a transparent electrode. Organic Electronics, 2016, 39, 177-183.	1.4	12
2131	Inverted polymer solar cells using CdS fabricated by thermal decomposition of cadmium xanthate precursor as electron transporting layer. Solar Energy, 2016, 139, 770-775.	2.9	3
2132	Mutual Photoluminescence Quenching and Photovoltaic Effect in Large-Area Single-Layer MoS ₂ –Polymer Heterojunctions. ACS Nano, 2016, 10, 10573-10579.	7.3	99
2133	High performance ternary solar cells based on P3HT:PCBM and ZnPc-hybrids. RSC Advances, 2016, 6, 93453-93462.	1.7	33
2134	DFT and TD-DFT calculation of new thienopyrazine-based small molecules for organic solar cells. Chemistry Central Journal, 2016, 10, 67.	2.6	97
2135	Toward Scalable Flexible Nanomanufacturing for Photonic Structures and Devices. Advanced Materials, 2016, 28, 10353-10380.	11.1	76
2136	Tunnel electroresistance through organic ferroelectrics. Nature Communications, 2016, 7, 11502.	5.8	104
2137	Enhanced light harvesting in flexible polymer solar cells: synergistic simulation of a plasmonic meta-mirror and a transparent silver mesowire electrode. Journal of Materials Chemistry A, 2016, 4, 18952-18962.	5.2	37
2138	High-efficiency polymer solar cells employing solution-processible and thickness-independent gallium-doped zinc oxide nanoparticles as cathode buffer layers. Journal of Materials Chemistry C, 2016, 4, 10820-10826.	2.7	15
2139	Organic Solar Cells. , 2016, , 73-136.		1
2140	How to Prevent Degradation in Organic Solar Cells. , 2016, , 243-267.		0

	CITATION R	CITATION REPORT	
# 2141	ARTICLE Indolo-naphthyridine-6,13-dione Thiophene Building Block for Conjugated Polymer Electronics: Molecular Origin of Ultrahigh n-Type Mobility, Chemistry of Materials, 2016, 28, 8366-8378,	IF 3.2	Citations
2142	Efficient organic solar cells processed from hydrocarbon solvents. Nature Energy, 2016, 1, .	19.8	2,129
2143	High efficiency all-polymer tandem solar cells. Scientific Reports, 2016, 6, 26459.	1.6	57
2144	Influence of molecular designs on polaronic and vibrational transitions in a conjugated push-pull copolymer. Scientific Reports, 2016, 6, 35096.	1.6	14
2145	Nanoscale Morphology of PTB7 Based Organic Photovoltaics as a Function of Fullerene Size. Scientific Reports, 2016, 6, 30915.	1.6	25
2146	>10% Efficiency Polymer:Fullerene Solar Cells with Polyacetyleneâ€Based Polyelectrolyte Interlayers. Advanced Materials Interfaces, 2016, 3, 1600415.	1.9	35
2147	Photophysical and Electrochemical Characterization of BODIPY-Containing Dyads Comparing the Influence of an A–D–A versus D–A Motif on Excited-State Photophysics. Journal of Physical Chemistry A, 2016, 120, 8794-8803.	1.1	16
2148	Laser-Induced Periodic Surface Structures on P3HT and on Its Photovoltaic Blend with PC ₇₁ BM. ACS Applied Materials & Interfaces, 2016, 8, 31894-31901.	4.0	34
2149	Thickness dependent charge transfer states and dark carriers density in vacuum deposited small molecule organic photocell. Journal of Applied Physics, 2016, 120, .	1.1	6
2150	Charge carrier dynamics in PDPP-F/PCBM heterojunction solar cells. Chemical Research in Chinese Universities, 2016, 32, 1034-1037.	1.3	0
2151	Fully polymeric solar cells: a real-time study of active-layer structure formation. Nanotechnologies in Russia, 2016, 11, 776-781.	0.7	0
2152	Polymers for application in organic solar cells: Bithiophene can work better than thienothiophene when coupled to benzodithiophene. Journal of Polymer Science Part A, 2016, 54, 1603-1614.	2.5	5
2153	Solutionâ€Processable Ultrathin Black Phosphorus as an Effective Electron Transport Layer in Organic Photovoltaics. Advanced Functional Materials, 2016, 26, 864-871.	7.8	187
2154	Polymer Solar Cells Exceeding 10% Efficiency Enabled via a Facile Starâ€Shaped Molecular Cathode Interlayer with Variable Counterions. Advanced Functional Materials, 2016, 26, 4643-4652.	7.8	67
2155	Lowâ€Temperature Solutionâ€Processed Electron Transport Layers for Inverted Polymer Solar Cells. Advanced Electronic Materials, 2016, 2, 1600008.	2.6	11
2156	Highâ€Efficiency Polymer Solar Cells Enabled by Environmentâ€Friendly Singleâ€ S olvent Processing. Advanced Energy Materials, 2016, 6, 1502177.	10.2	91
2157	PEDOT Dispersed With Sulfobutylated Phenol Formaldehyde Resin: A Highlyâ€Efficient Hole Transport Material in Polymer Solar Cells. Macromolecular Materials and Engineering, 2016, 301, 133-140.	1.7	22
2158	A Versatile Selfâ€Organization Printing Method for Simplified Tandem Organic Photovoltaics. Advanced Functional Materials, 2016, 26, 3563-3569.	7.8	24

		CITATION REPORT		
#	Article		IF	CITATIONS
2159	Dual Effect of ITOâ€Interlayer on Inverted Topâ€Illuminated Polymer Solar Cells: Wettin Polyelectrolyte and Tuning of Cavity. Advanced Functional Materials, 2016, 26, 5437-5	ոց of 446.	7.8	13
2160	Electronic Structure and Properties of Organic Bulkâ€Heterojunction Interfaces. Advan 2016, 28, 3814-3830.	ced Materials,	11.1	74
2161	Influence of Electron Extracting Interface Layers in Organic Bulkâ€Heterojunction Solar Advanced Materials Interfaces, 2016, 3, 1500422.	· Cells.	1.9	8
2162	Highâ€Performance Small Molecule via Tailoring Intermolecular Interactions and its Ap Largeâ€Area Organic Photovoltaic Modules. Advanced Energy Materials, 2016, 6, 1600	plication in 228.	10.2	69
2163	Polymer Acceptor Based on Bâ†N Units with Enhanced Electron Mobility for Efficient Al Cells. Angewandte Chemie, 2016, 128, 5399-5403.	lâ€Polymer Solar	1.6	57
2164	An Electronâ€Deficient Building Block Based on the Bâ†N Unit: An Electron Acceptor fo Cells. Angewandte Chemie - International Edition, 2016, 55, 1436-1440.	or Allâ€Polymer Solar	7.2	235
2165	Dithieno[2,3â€d:2′,3′â€d′]naphtho[2,1â€b:3,4â€b′]dithiophene based me photovoltaic applications. Journal of Applied Polymer Science, 2016, 133, .	dium bandgap conjugated	polymers 1.3	for
2166	Theoretical Investigation of Donor–Acceptor Copolymers Based on C-, Si-, and Ge-Bri Thieno[3,2-b]dithiophene for Organic Solar Cell Applications. Journal of Electronic Mate 45, 5427-5435.	dged erials, 2016,	1.0	0
2167	Efficient inverted polymer solar cells employing an aqueous processing RbF cathode int RSC Advances, 2016, 6, 47454-47458.	erfacial layer.	1.7	1
2168	Deep blue energy harvest photovoltaic switching by heptazole-based organic Schottky NPG Asia Materials, 2016, 8, e278-e278.	diode circuits.	3.8	7
2169	Organic and perovskite solar modules innovated by adhesive top electrode and depth-r patterning. Energy and Environmental Science, 2016, 9, 2302-2313.	esolved laser	15.6	64
2170	The impact of regiochemistry of conjugated molecules on the performance of organic e devices. Chinese Chemical Letters, 2016, 27, 1357-1366.	electronic	4.8	13
2171	Straight chain D–A copolymers based on thienothiophene and benzothiadiazole for e field effect transistors and photovoltaic cells. Polymer Chemistry, 2016, 7, 4638-4646.	efficient polymer	1.9	29
2172	TPD-based polythiophene derivatives with higher V _{oc} for polymer solar cell Advances, 2016, 6, 63338-63346.	ls. RSC	1.7	10
2173	Amphiphilic fullerene derivative as effective interfacial layer for inverted polymer solar c Organic Electronics, 2016, 37, 35-41.	ells.	1.4	13
2174	Cantilever Ringdown Dissipation Imaging for the Study of Loss Processes in Polymer/Fu Cells. Journal of Physical Chemistry C, 2016, 120, 12369-12376.	Illerene Solar	1.5	4
2175	Development of polymer–fullerene solar cells. National Science Review, 2016, 3, 222	-239.	4.6	78
2176	Broadband Scattering With Strong Electric Field Coupling Between Metal Nanostructu Simulation: Role of Different Organic Environments. IEEE Journal of Photovoltaics, 2016	res Using DDA 6, 6, 940-951.	1.5	5

#	Article	IF	CITATIONS
2177	Quinoxaline–thiophene based thick photovoltaic devices with an efficiency of â^1⁄48%. Journal of Materials Chemistry A, 2016, 4, 9967-9976.	5.2	49
2178	Fluorene-based conjugated polymer as an interfacial layer for organic photovoltaic cells. Polymer Bulletin, 2016, 73, 2393-2399.	1.7	3
2179	Synthesis and properties of novel polymers based on PD electron-withdrawing unit. Chinese Journal of Polymer Science (English Edition), 2016, 34, 34-43.	2.0	1
2180	New Electron Acceptor Derived from Fluorene: Synthesis and Its Photovoltaic Properties. Journal of Physical Chemistry C, 2016, 120, 13390-13397.	1.5	19
2181	Anisotropic surface hole-transport property of triphenylamine-derivative single crystal prepared by solution method. Applied Surface Science, 2016, 388, 109-113.	3.1	9
2182	Molecular Design of Benzodithiophene-Based Organic Photovoltaic Materials. Chemical Reviews, 2016, 116, 7397-7457.	23.0	998
2183	Low temperature aqueous solution-processed Li doped ZnO buffer layers for high performance inverted organic solar cells. Journal of Materials Chemistry C, 2016, 4, 6169-6175.	2.7	45
2184	Development of intrinsically fullerene-compatible polymers: Strategy for developing high performance organic solar cells using a non-halogenated solvent. Dyes and Pigments, 2016, 132, 103-109.	2.0	5
2185	Utilizing intermixing of conjugated polymer and fullerene from sequential solution processing for efficient polymer solar cells. Organic Electronics, 2016, 36, 82-88.	1.4	9
2186	Theoretical characterization on photovoltaic properties of PC61BM-PTDPPTFT4 system with a molecular model. Computational and Theoretical Chemistry, 2016, 1089, 6-12.	1.1	0
2187	Enhancement in performance of polymer solar cells by introducing solution-processed dipole interlayer. Journal of Industrial and Engineering Chemistry, 2016, 36, 44-48.	2.9	10
2188	A polymer acceptor with an optimal LUMO energy level for all-polymer solar cells. Chemical Science, 2016, 7, 6197-6202.	3.7	98
2189	CuSCN as selective contact in solution-processed small-molecule organic solar cells leads to over 7% efficient porphyrin-based device. Journal of Materials Chemistry A, 2016, 4, 11009-11022.	5.2	39
2190	Charge Carrier Generation and Extraction in Hybrid Polymer/Quantum Dot Solar Cells. Journal of Physical Chemistry C, 2016, 120, 14356-14364.	1.5	5
2191	Isoindigo-based polymer photovoltaics: modifying polymer molecular structures to control the nanostructural packing motif. Physical Chemistry Chemical Physics, 2016, 18, 17957-17964.	1.3	3
2192	Revealing optically induced dipole-dipole interaction effects on charge dissociation at donor:acceptor interfaces in organic solar cells under device-operating condition. Nano Energy, 2016, 26, 595-602.	8.2	18
2193	Development of Photovoltaic Devices Based on Near Infrared Quantum Dots and Conjugated Polymers. ChemNanoMat, 2016, 2, 601-615.	1.5	6
2194	Detrimental <scp>N</scp> i(0) transfer in <scp>K</scp> umada catalyst transfer polycondensation of benzo[2,1â€ <scp><i>b</i></scp> ']dithiophene. Journal of Polymer Science Part A, 2016, 54, 1706-1712.	2.5	7

#	Article	IF	CITATIONS
2195	1,3,5â€ŧriazine crosslinked 2,5â€dibromohydroquinone as new holeâ€ŧransport material in polymer lightâ€emitting diodes. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 429-435.	0.8	9
2196	On the Efficiency Limit of Conjugated Polymer:Fullereneâ€Based Bulk Heterojunction Solar Cells. Advanced Materials, 2016, 28, 1994-2001.	11.1	176
2197	Polymer Acceptor Based on Double Bâ†N Bridged Bipyridine (BNBP) Unit for Highâ€Efficiency Allâ€Polymer Solar Cells. Advanced Materials, 2016, 28, 6504-6508.	11.1	298
2198	Enhancement of Openâ€Circuit Voltage by Using the 58â€ï€ Silylmethyl Fullerenes in Smallâ€Molecule Organic Solar Cells. Chemistry - an Asian Journal, 2016, 11, 1268-1272.	1.7	12
2199	Molecular design and theoretical investigation on the thieno[3,2-b]thienobis(silolothiophene)-based low band gap donor polymers for efficient polymer solar cell. Molecular Simulation, 2016, 42, 47-55.	0.9	3
2200	Improving Organic Solar Cells Efficiency Through a Two-Step Method Consisting of Solvent Vapor Annealing and Thermal Annealing. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 66-72.	1.9	15
2201	Morphology control for highly efficient organic–inorganic bulk heterojunction solar cell based on Ti-alkoxide. Thin Solid Films, 2016, 600, 98-102.	0.8	6
2202	Effects of spin-coating speed on the morphology and photovoltaic performance of the diketopyrrolopyrrole-based terpolymer. Science China Chemistry, 2016, 59, 466-471.	4.2	2
2203	N-type cathode interlayer based on dicyanomethylenated quinacridone derivative for high-performance polymer solar cells. Journal of Materials Chemistry A, 2016, 4, 2169-2177.	5.2	24
2204	Efficient polymer solar cells based on the synergy effect of a novel non-conjugated small-molecule electrolyte and polar solvent. Journal of Materials Chemistry A, 2016, 4, 2530-2536.	5.2	46
2205	Critical light instability in CB/DIO processed PBDTTT-EFT:PC 71 BM organic photovoltaic devices. Organic Electronics, 2016, 30, 225-236.	1.4	87
2206	Novel Surface Passivation Technique for Low-Temperature Solution-Processed Perovskite PV Cells. ACS Applied Materials & Interfaces, 2016, 8, 4644-4650.	4.0	83
2207	Stereomeric effects of bisPC71BM on polymer solar cell performance. Science Bulletin, 2016, 61, 132-138.	4.3	27
2208	High-performance polymer solar cells based on a 2D-conjugated polymer with an alkylthio side-chain. Energy and Environmental Science, 2016, 9, 885-891.	15.6	165
2209	Insertion of interlayers in efficient polymer-based organic solar cells for control of phase separation. Japanese Journal of Applied Physics, 2016, 55, 02BF03.	0.8	2
2210	Au/Ag core–shell nanocuboids for high-efficiency organic solar cells with broadband plasmonic enhancement. Energy and Environmental Science, 2016, 9, 898-905.	15.6	127
2211	Synthesis and characterization of 5,6-bis(n-octyloxy)[2,1,3] selenadiazole-based polymers for photovoltaic applications. Polymer Bulletin, 2016, 73, 385-398.	1.7	5
2212	Highly Efficient and Air Stable Inverted Polymer Solar Cells Using LiF-Modified ITO Cathode and MoO ₃ /AgAl Alloy Anode. ACS Applied Materials & Interfaces, 2016, 8, 3792-3799.	4.0	45

#	Article	IF	CITATIONS
2213	Highly Efficient LiYF ₄ :Yb ³⁺ , Er ³⁺ Upconversion Single Crystal under Solar Cell Spectrum Excitation and Photovoltaic Application. ACS Applied Materials & Interfaces, 2016, 8, 9071-9079.	4.0	151
2214	Enhanced Performance of Inverted Polymer Solar Cells by Combining ZnO Nanoparticles and Poly[(9,9-bis(3′-(<i>N</i> , <i>N</i> -dimethylamino)propyl)-2,7-fluorene)- <i>alt</i> -2,7-(9,9-dioctyfluorene)] as Electron Transport Layer. ACS Applied Materials & Interfaces, 2016, 8, 3301-3307.	4.0	43
2215	Hetero aromatic donors as effective terminal groups for DPP based organic solar cells. RSC Advances, 2016, 6, 9023-9036.	1.7	6
2216	Functionalized graphene quantum dots as a novel cathode interlayer of polymer solar cells. Journal of Materials Chemistry A, 2016, 4, 2413-2418.	5.2	52
2217	High-Performance Polymer Solar Cells with Zinc Sulfide-Phenanthroline Derivatives as the Hybrid Cathode Interlayers. ACS Applied Materials & Interfaces, 2016, 8, 2688-2693.	4.0	11
2218	Enhanced efficiency of polymer solar cells by structure-differentiated silver nano-dopants in solution-processed tungsten oxide layer. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 206, 61-68.	1.7	17
2219	In-depth considerations for better polyelectrolytes as interfacial materials in polymer solar cells. Nano Energy, 2016, 21, 26-38.	8.2	56
2220	Thickness-dependence of S-shaped J–V curves of planar heterojunction organic solar cells containing NTCDA interlayer: Impedance–potential measurement and underlying mechanism. Solar Energy Materials and Solar Cells, 2016, 148, 39-43.	3.0	2
2221	The Effects of Improved Photoelectric Properties of PEDOT:PSS by Two-Step Treatments on the Performance of Polymer Solar Cells Based on PTB7-Th:PC ₇₁ BM. ACS Applied Materials & Interfaces, 2016, 8, 547-552.	4.0	19
2222	High-Performance Solution-Processed Non-Fullerene Organic Solar Cells Based on Selenophene-Containing Perylene Bisimide Acceptor. Journal of the American Chemical Society, 2016, 138, 375-380.	6.6	643
2223	Highly efficient inverted bulk-heterojunction solar cells with a gradiently-doped ZnO layer. Energy and Environmental Science, 2016, 9, 240-246.	15.6	93
2224	Progress in emerging solution-processed thin film solar cells – Part I: Polymer solar cells. Renewable and Sustainable Energy Reviews, 2016, 56, 347-361.	8.2	116
2225	Enhanced photovoltaic performance of inverted polymer solar cells utilizing versatile chemically functionalized ZnO@graphene quantum dot monolayer. Nano Energy, 2016, 20, 221-232.	8.2	44
2226	Self-healing polymer sealant for encapsulating flexible solar cells. Solar Energy Materials and Solar Cells, 2016, 145, 418-422.	3.0	45
2227	High-performance ternary blend all-polymer solar cells with complementary absorption bands from visible to near-infrared wavelengths. Energy and Environmental Science, 2016, 9, 135-140.	15.6	157
2228	Manipulation of optical field distribution in ITO-free micro-cavity polymer tandem solar cells via the out-of-cell capping layer for high photovoltaic performance. Journal of Materials Chemistry A, 2016, 4, 961-968.	5.2	16
2229	Graphene and Graphene-like Molecules: Prospects in Solar Cells. Journal of the American Chemical Society, 2016, 138, 1095-1102.	6.6	115
2230	Side chain effect on poly(beznodithiophene-co-dithienobenzoquinoxaline) and their applications for polymer solar cells. Polymer, 2016, 82, 228-237.	1.8	19

#	Article	IF	CITATIONS
2231	Random terpolymer with a cost-effective monomer and comparable efficiency to PTB7-Th for bulk-heterojunction polymer solar cells. Polymer Chemistry, 2016, 7, 926-932.	1.9	43
2232	Room-Temperature Solution-Processed n-Doped Zirconium Oxide Cathode Buffer Layer for Efficient and Stable Organic and Hybrid Perovskite Solar Cells. Chemistry of Materials, 2016, 28, 242-251.	3.2	53
2233	Preparation and employment of carbon nanodots to improve electron extraction capacity of polyethylenimine interfacial layer for polymer solar cells. Organic Electronics, 2016, 33, 62-70.	1.4	13
2234	High performance inverted polymer solar cells with solution processed metal oxides as electron transport layers: A comparative study. Thin Solid Films, 2016, 617, 126-132.	0.8	7
2235	Syntheses, Charge Separation, and Inverted Bulk Heterojunction Solar Cell Application of Phenothiazine–Fullerene Dyads. ACS Applied Materials & Interfaces, 2016, 8, 8481-8490.	4.0	42
2236	1,1,4,4-Tetracyanobuta-1,3-diene Substituted Diketopyrrolopyrroles: An Acceptor for Solution Processable Organic Bulk Heterojunction Solar Cells. Journal of Physical Chemistry C, 2016, 120, 6324-6335.	1.5	61
2237	Structural engineering of porphyrin-based small molecules as donors for efficient organic solar cells. Chemical Science, 2016, 7, 4301-4307.	3.7	72
2238	Influence of fluorination on the properties and performance of isoindigo–quaterthiophene-based polymers. Journal of Materials Chemistry A, 2016, 4, 5039-5043.	5.2	35
2239	Investigations of a New High-Performance Low-Band-Gap Photovoltaic Polymer Semiconductor. IEEE Journal of Photovoltaics, 2016, 6, 696-704.	1.5	7
2240	Energyâ€Level Alignment at the Organic/Electrode Interface in Organic Optoelectronic Devices. Advanced Functional Materials, 2016, 26, 129-136.	7.8	60
2241	Regioregular and Random Difluorobenzothiadiazole Electron Donor–Acceptor Polymer Semiconductors for Thin-Film Transistors and Polymer Solar Cells. Macromolecules, 2016, 49, 2541-2548.	2.2	30
2242	Relaxation and Conductivity in P3HT/PC ₇₁ BM Blends As Revealed by Dielectric Spectroscopy. Macromolecules, 2016, 49, 2709-2717.	2.2	22
2243	Photoprecursor Approach Enables Preparation of Well-Performing Bulk-Heterojunction Layers Comprising a Highly Aggregating Molecular Semiconductor. ACS Applied Materials & Interfaces, 2016, 8, 8644-8651.	4.0	11
2244	Triphenylamine and benzothiadiazole-based D-A-A' and A'-A-D-D-A-A' type small molecules for solution-processed organic solar cells. Macromolecular Research, 2016, 24, 226-234.	1.0	20
2245	Variable-range electron hopping, conductivity cross-over and space-charge relaxation in C 60 Br 6. Synthetic Metals, 2016, 217, 123-128.	2.1	5
2246	Synthesis and characterization of three thienopyridazine-based copolymers and their application in OFET. Tetrahedron Letters, 2016, 57, 1523-1527.	0.7	12
2247	All-in-one solar cell: Stable, light-soaking free, solution processed and efficient diketopyrrolopyrrole based small molecule inverted organic solar cells. Solar Energy Materials and Solar Cells, 2016, 150, 19-31.	3.0	17
2248	Ultrafast laser-assisted synthesis of hydrogenated molybdenum oxides for flexible organic solar cells. Journal of Materials Chemistry A, 2016, 4, 4755-4762.	5.2	38

#	Article	IF	CITATIONS
2249	Dicyanoquinodimethane-substituted benzothiadiazole for efficient small-molecule solar cells. Physical Chemistry Chemical Physics, 2016, 18, 7235-7241.	1.3	22
2250	A benzodithiophene–thienothiophene derivative with cyano acrylate side chain: A novel donor polymer with deep HOMO level for p–n heterojunction solar cells. Thin Solid Films, 2016, 603, 165-172.	0.8	5
2251	Transparent ultraviolet photovoltaic cells. Optics Letters, 2016, 41, 685.	1.7	11
2252	Synthesis and characterization of two fluorenone-based conjugated polymers and their application in solar cells and thin film transistors. Tetrahedron Letters, 2016, 57, 1430-1434.	0.7	6
2253	Self-Assembling Tripodal Small-Molecule Donors for Bulk Heterojunction Solar Cells. Journal of Physical Chemistry C, 2016, 120, 3602-3611.	1.5	22
2254	Molecular Structure Controlled Transitions between Free-Charge Generation and Trap Formation in a Conjugated Copolymer Series. Journal of Physical Chemistry C, 2016, 120, 4189-4198.	1.5	9
2255	Solution processed reduced graphene oxide electrodes for organic photovoltaics. Nanoscale Horizons, 2016, 1, 375-382.	4.1	43
2256	Compact Roll-to-Roll Coater for in Situ X-ray Diffraction Characterization of Organic Electronics Printing. ACS Applied Materials & Interfaces, 2016, 8, 1687-1694.	4.0	35
2257	Tuning Energy Levels and Film Morphology in Benzodithiophene–Thienopyrrolodione Copolymers via Nitrogen Substitutions. Macromolecules, 2016, 49, 1648-1654.	2.2	21
2258	Design of three-component randomly incorporated copolymers as non-fullerene acceptors for all-polymer solar cells. Polymer Chemistry, 2016, 7, 2230-2238.	1.9	32
2259	Enhanced organic solar cells efficiency through electronic and electro-optic effects resulting from charge transfers in polymer hole transport blends. Journal of Materials Chemistry A, 2016, 4, 4252-4263.	5.2	24
2260	Visualisation of charge-transfer excitations in donor–acceptor molecules using the particle–hole map: a case study. Molecular Physics, 2016, 114, 1365-1373.	0.8	6
2261	Plasmonic nanostructures for organic photovoltaic devices. Journal of Optics (United Kingdom), 2016, 18, 033001.	1.0	38
2262	Organic Photovoltaics for Energy Efficiency in Buildings. , 2016, , 321-355.		2
2263	Graphene-based materials with tailored nanostructures for energy conversion and storage. Materials Science and Engineering Reports, 2016, 102, 1-72.	14.8	221
2264	Ideal rear contact formed via employing a conjugated polymer for Si/PEDOT:PSS hybrid solar cells. RSC Advances, 2016, 6, 16010-16017.	1.7	35
2265	Factors affecting the polarity and magnitude of photoresponse of transient photodetectors. Physical Chemistry Chemical Physics, 2016, 18, 6821-6830.	1.3	7
2266	Comparing the degradation of organic photovoltaic devices under ISOS testing protocols. Solar Energy Materials and Solar Cells, 2016, 149, 179-186.	3.0	18

#	Article	IF	CITATIONS
2267	Medium bandgap copolymers based on carbazole and quinoxaline exceeding 1.0 V open-circuit voltages. RSC Advances, 2016, 6, 17624-17631.	1.7	5
2268	Controlling the morphology and hole mobility of terpolymers for polymer solar cells. RSC Advances, 2016, 6, 13177-13184.	1.7	15
2269	Intrinsic Properties of Two Benzodithiophene-Based Donor–Acceptor Copolymers Used in Organic Solar Cells: A Quantum-Chemical Approach. Journal of Physical Chemistry A, 2016, 120, 1051-1064.	1.1	8
2270	Solution-processed VO _x prepared using a novel synthetic method as the hole extraction layer for polymer solar cells. Journal of Materials Chemistry C, 2016, 4, 1953-1958.	2.7	14
2271	Recent progress in high efficiency polymer solar cells by rational design and energy level tuning of low bandgap copolymers with various electron-withdrawing units. Organic Electronics, 2016, 31, 149-170.	1.4	103
2272	Investigation of morphological degradation of P3HT:PCBM bulk heterojunction films exposed to long-term host solvent vapor. Journal of Materials Chemistry A, 2016, 4, 3743-3753.	5.2	51
2273	The end-capped group effect on dithienosilole trimer based small molecules for efficient organic photovoltaics. Journal of Materials Chemistry C, 2016, 4, 1972-1978.	2.7	17
2274	Heterojunction Solar Cells Based on Silicon and Composite Films of Polyaniline and Carbon Nanotubes. IEEE Journal of Photovoltaics, 2016, 6, 688-695.	1.5	18
2275	Toward n-type analogues to poly(3-alkylthiophene)s: influence of side-chain variation on bulk-morphology and electron transport characteristics of head-to-tail regioregular poly(4-alkylthiazole)s. Journal of Materials Chemistry C, 2016, 4, 2587-2597.	2.7	7
2276	Demonstration of the portability of porous microstructure architecture to indium-doped ZnO electron selective layer for enhanced light scattering in inverted organic photovoltaics. Journal of Sol-Gel Science and Technology, 2016, 78, 613-620.	1.1	7
2277	The effect of thermal annealing on dopant site choice in conjugated polymers. Organic Electronics, 2016, 33, 23-31.	1.4	54
2278	Improving the Photovoltaic Performance of Polymer Solar Cells Based on Furan-Flanked Diketopyrrolopyrrole Copolymers via Tuning the Alkyl Side Chain. Journal of Physical Chemistry C, 2016, 120, 4824-4832.	1.5	15
2279	Long-Term Stable Recombination Layer for Tandem Polymer Solar Cells Using Self-Doped Conducting Polymers. ACS Applied Materials & Interfaces, 2016, 8, 6144-6151.	4.0	34
2280	Interfacial behavior of resistive switching in ITO–PVK–Al WORM memory devices. Journal Physics D: Applied Physics, 2016, 49, 075104.	1.3	11
2281	Synthesis and characterization of D-A-A type regular terpolymers with narrowed band-gap and their application in high performance polymer solar cells. Organic Electronics, 2016, 32, 237-243.	1.4	25
2282	A pentacyclic building block containing an azepine-2,7-dione moiety for polymer solar cells. Polymer Chemistry, 2016, 7, 2329-2332.	1.9	24
2283	Photovoltaic poly(rod-coil) polymers based on benzodithiophene-centred A–D–A type conjugated segments and dicarboxylate-linked alkyl non-conjugated segments. RSC Advances, 2016, 6, 23300-23309.	1.7	9
2284	Adjusting acceptor redistribution for highly efficient solvent additive-free polymer solar cells. Journal of Materials Chemistry C, 2016, 4, 3202-3208.	2.7	8

# 2285	ARTICLE Structures and photoelectric properties of five benzotrithiophene isomers-based donor–acceptor copolymers. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 159, 262-268.	IF 2.0	Citations
2286	Efficient polymer solar cells employing pure ZnO cathode interlayers without thickness-dependent and light-soaking effect and negligible electrode selection. RSC Advances, 2016, 6, 25744-25750.	1.7	5
2287	Donor–Acceptor Random versus Alternating Copolymers for Efficient Polymer Solar Cells: Importance of Optimal Composition in Random Copolymers. Macromolecules, 2016, 49, 2096-2105.	2.2	40
2288	(<i>Z</i>)-(Thienylmethylene)oxindole-Based Polymers for High-Performance Solar Cells. Macromolecules, 2016, 49, 2145-2152.	2.2	25
2289	The effect of acceptor end groups on the physical and photovoltaic properties of A–π–D–π–A type oligomers with same S, N-heteropentacene central electron donor unit for solution processed organic solar cells. Dyes and Pigments, 2016, 129, 209-219.	2.0	23
2290	Improving Efficiency of Blue Organic Light-Emitting Diode with Sulfobutylated Lignin Doped PEDOT as Anode Buffer Layer. ACS Sustainable Chemistry and Engineering, 2016, 4, 2004-2011.	3.2	13
2291	Improved performance of polymer solar cells using PBDTT-F-TT:PC 71 BM blend film as active layer. Applied Surface Science, 2016, 376, 138-144.	3.1	12
2292	Syntheses, crystal structures and third-order nonlinear optical properties of two series of Zn(II) complexes using the thiophene-based terpyridine ligands. Dyes and Pigments, 2016, 130, 216-225.	2.0	31
2293	Synthesis and photovoltaic properties of D-A copolymers based on alkylthio-thiophene or alkylthio-selenophene-BDT donor unit and DPP acceptor unit. Organic Electronics, 2016, 33, 15-22.	1.4	14
2294	Cyanine tandem and triple-junction solar cells. Organic Electronics, 2016, 30, 191-199.	1.4	15
2295	Degradation analysis of PCDTBT:PC71BM organic solar cells-an insight. Current Applied Physics, 2016, 16, 273-277.	1.1	4
2296	Optimization of the Energy Level Alignment between the Photoactive Layer and the Cathode Contact Utilizing Solution-Processed Hafnium Acetylacetonate as Buffer Layer for Efficient Polymer Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 432-441.	4.0	24
2297	Porphyrin small molecules containing furan- and selenophene-substituted diketopyrrolopyrrole for bulk heterojunction organic solar cells. Organic Electronics, 2016, 29, 127-134.	1.4	36
2298	A series connection architecture for large-area organic photovoltaic modules with a 7.5% module efficiency. Nature Communications, 2016, 7, 10279.	5.8	98
2299	Enhanced Ultraviolet Stability of Air-Processed Polymer Solar Cells by Al Doping of the ZnO Interlayer. ACS Applied Materials & Interfaces, 2016, 8, 1635-1643.	4.0	74
2300	Dual-function optoelectronic polymer device for photoelectric conversion and electroluminescence. Journal of Materials Chemistry C, 2016, 4, 1144-1148.	2.7	6
2301	Double-parallel-junction hybrid solar cells based on silicon nanocrystals. Organic Electronics, 2016, 30, 99-104.	1.4	9
2302	Photoinduced charge generation rates in soluble P3HT : PCBM nano-aggregates predict the solvent-dependent film morphology. Nanoscale, 2016, 8, 2768-2777.	2.8	17

#	Article	IF	CITATIONS
2303	Improved performance of inverted polymer solar cells by utilizing alcohol-soluble oligofluorenes as efficient cathode interlayers. Organic Electronics, 2016, 30, 182-190.	1.4	8
2304	Improved photon-to-electron response of ternary blend organic solar cells with a low band gap polymer sensitizer and interfacial modification. Journal of Materials Chemistry A, 2016, 4, 1702-1707.	5.2	45
2305	Management of the light distribution within the photoactive layer for high performance conventional and inverted polymer solar cells. Journal of Materials Chemistry A, 2016, 4, 1915-1922.	5.2	12
2306	D-A-D-A-D push pull organic small molecules based on 5,10-dihydroindolo[3,2-b]indole (DINI) central core donor for solution processed bulk heterojunction solar cells. Organic Electronics, 2016, 30, 122-130.	1.4	28
2307	Theoretical investigations on enhancing the performance of terminally diketopyrrolopyrrole-based small-molecular donors in organic solar cell applications. Journal of Molecular Modeling, 2016, 22, 15.	0.8	11
2308	Tandem Solar Cells from Accessible Low Band-Gap Polymers Using an Efficient Interconnecting Layer. ACS Applied Materials & Interfaces, 2016, 8, 16-19.	4.0	14
2309	Electron-transporting third component modifying cathode for simplified inverted ternary blend solar cells. Journal of Materials Chemistry C, 2016, 4, 1051-1056.	2.7	20
2310	All-Polymer Solar Cells with Bulk Heterojunction Films Containing Electron-Accepting Triple Bond-Conjugated Perylene Diimide Polymer. ACS Sustainable Chemistry and Engineering, 2016, 4, 767-774.	3.2	29
2311	An organic–inorganic hybrid interlayer for improved electron extraction in inverted polymer solar cells. Journal of Materials Chemistry C, 2016, 4, 2463-2469.	2.7	59
2312	Low bandgap semiconducting polymers for polymeric photovoltaics. Chemical Society Reviews, 2016, 45, 4825-4846.	18.7	461
2313	CdS–phenanthroline derivative hybrid cathode interlayers for high performance inverted organic solar cells. Journal of Materials Chemistry A, 2016, 4, 297-302.	5.2	7
2314	Enhanced carrier dynamics of PTB7:PC 71 BM based bulk heterojunction organic solar cells by the incorporation of formic acid. Organic Electronics, 2016, 28, 275-280.	1.4	11
2315	Combining Printing, Coating, and Vacuum Deposition on the Roll-to-Roll Scale: A Hybrid Organic Photovoltaics Fabrication. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 112-125.	1.9	36
2317	Enhanced performance of P3HT/(PCBM:ZnO:TiO 2) blend based hybrid organic solar cells. Materials Research Bulletin, 2016, 75, 35-40.	2.7	35
2318	Structure property relationship for carbazole and benzothiadiazole based conjugated polymers. Solar Energy Materials and Solar Cells, 2016, 145, 412-417.	3.0	17
2319	Induced photodegradation of quinoxaline based copolymers for photovoltaic applications. Solar Energy Materials and Solar Cells, 2016, 144, 150-158.	3.0	25
2320	Squaraine based solution processed inverted bulk heterojunction solar cells processed in air. Physical Chemistry Chemical Physics, 2016, 18, 3438-3443.	1.3	13
2321	Organic Photovoltaics. Springer Series in Materials Science, 2016, , 169-196.	0.4	4

#	Article	IF	CITATIONS
2322	Study on the internal conversion dynamics following different electron transfer at a donor/acceptor polymer heterointerface. Organic Electronics, 2016, 28, 73-81.	1.4	12
2323	Systematic Study of the PCE and Device Operation of Organic Tandem Solar Cells. IEEE Journal of Photovoltaics, 2016, 6, 202-210.	1.5	15
2324	Beyond PCBM: methoxylated 1,4-bisbenzyl[60]fullerene adducts for efficient organic solar cells. Journal of Materials Chemistry A, 2016, 4, 416-424.	5.2	34
2325	Monitoring degradation mechanisms in PTB7:PC71BM photovoltaic cells by means of impedance spectroscopy. Solar Energy Materials and Solar Cells, 2016, 144, 422-428.	3.0	54
2326	Implementation of photothermal annealing on ZnO electron transporting layer for high performance inverted polymer solar cells. Materials Letters, 2016, 163, 69-71.	1.3	6
2327	Semiconductor Materials for Solar Photovoltaic Cells. Springer Series in Materials Science, 2016, , .	0.4	29
2328	Perovskite as an effective V oc switcher for high efficiency polymer solar cells. Nano Energy, 2016, 20, 126-133.	8.2	22
2329	Near-Infrared Down-Conversion and Energy Transfer Mechanism of Ce3+-Yb3+Co-Doped Ba2Y(BO3)2Cl Phosphors. ECS Journal of Solid State Science and Technology, 2016, 5, R3055-R3058.	0.9	8
2330	Nanophase Engineering of Organic Semiconductor-Based Solar Cells. Springer Series in Materials Science, 2016, , 197-228.	0.4	3
2331	Dielectric Antireflection Fiber Arrays for Absorption Enhancement in Thin-Film Organic Tandem Solar Cells. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 1-6.	1.9	198
2332	Enhanced high-open circuit voltage in fluorinated benzoselenadiazole-based polymer solar cells. High Performance Polymers, 2016, 28, 401-410.	0.8	2
2333	Improving stability of organic devices: a time/space resolved structural monitoring approach applied to plasmonic photovoltaics. Solar Energy Materials and Solar Cells, 2017, 159, 617-624.	3.0	20
2334	Synthesis of planar fluorenimine derivative-based broad band-gap polymers for bulk heterojunction polymer solar cells. Materials Technology, 2017, 32, 16-21.	1.5	0
2335	Defining donor and acceptor strength in conjugated copolymers. Molecular Physics, 2017, 115, 485-496.	0.8	14
2336	Long-term efficient organic photovoltaics based on quaternary bulk heterojunctions. Nature Communications, 2017, 8, 14068.	5.8	71
2337	Realizing Small Energy Loss of 0.55 eV, High Openâ€Circuit Voltage >1 V and High Efficiency >10% in Fullereneâ€Free Polymer Solar Cells via Energy Driver. Advanced Materials, 2017, 29, 1605216.	11.1	230
2338	Transparent high-performance SiOxNy/SiOx barrier films for organic photovoltaic cells with high durability. Nano Energy, 2017, 33, 12-20.	8.2	8
2339	Development of quinoxaline based polymers for photovoltaic applications. Journal of Materials Chemistry C, 2017, 5, 1858-1879.	2.7	103

#	Article	IF	CITATIONS
2340	Synthesis and photovoltaic properties of three different types of terpolymers. Materials Chemistry Frontiers, 2017, 1, 1147-1155.	3.2	6
2341	An easily prepared carbon quantum dots and employment for inverted organic photovoltaic devices. Chemical Engineering Journal, 2017, 315, 621-629.	6.6	33
2342	Characterization of spray-coated ZnO buffer layer for inverted polymer solar cells. Materials Research Bulletin, 2017, 96, 47-52.	2.7	4
2343	Strong Enhancement of Photoelectric Conversion Efficiency of Co-hybridized Polymer Solar Cell by Silver Nanoplates and Core–Shell Nanoparticles. ACS Applied Materials & Interfaces, 2017, 9, 5358-5365.	4.0	22
2344	A simple synthesis method to prepare a molybdenum oxide hole-transporting layer for efficient polymer solar cells. RSC Advances, 2017, 7, 7890-7900.	1.7	44
2345	Highly efficient perovskite solar cells with crosslinked PCBM interlayers. Journal of Materials Chemistry A, 2017, 5, 2466-2472.	5.2	49
2346	Flexible photovoltaic power systems: integration opportunities, challenges and advances. Flexible and Printed Electronics, 2017, 2, 013001.	1.5	41
2347	Synthesis and charge transport properties of new methanofullerenes. New Journal of Chemistry, 2017, 41, 1933-1939.	1.4	9
2348	Efficient P3HT:PC61BM solar cells employing 1,2,4-trichlorobenzene as the processing additives. Chinese Journal of Polymer Science (English Edition), 2017, 35, 302-308.	2.0	5
2349	Donor–Acceptor Interface Stabilizer Based on Fullerene Derivatives toward Efficient and Thermal Stable Organic Photovoltaics. ACS Applied Materials & Interfaces, 2017, 9, 6615-6623.	4.0	20
2350	<i>In situ</i> space-resolved X-ray diffraction and time-resolved EDXD on efficient polymer-based photovoltaic devices: Microstructural properties and aging effects. Journal of Materials Research, 2017, 32, 1969-1981.	1.2	1
2351	Development of Spiro[cyclopenta[1,2- <i>b</i> :5,4- <i>b</i> â€2]dithiophene-4,9â€2-fluorene]-Based A-ï€-D-ï€-A Small Molecules with Different Acceptor Units for Efficient Organic Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 4614-4625.	4.0	49
2352	Preparation of Reduced Graphene Oxide:ZnO Hybrid Cathode Interlayer Using In Situ Thermal Reduction/Annealing for Interconnecting Nanostructure and Its Effect on Organic Solar Cell. ACS Applied Materials & Interfaces, 2017, 9, 4898-4907.	4.0	45
2353	Enhanced charge carrier transport in spray-cast organic solar cells using solution processed MoO ₃ micro arrays. RSC Advances, 2017, 7, 3059-3065.	1.7	18
2354	2,2′-Bis(1,3,4-thiadiazole)-Based π-Conjugated Copolymers for Organic Photovoltaics with Exceeding 8% and Its Molecular Weight Dependence of Device Performance. Macromolecules, 2017, 50, 891-899.	2.2	32
2355	Efficient Polymer Solar Cells by Lithium Sulfonated Polystyrene as a Charge Transport Interfacial Layer. ACS Applied Materials & amp; Interfaces, 2017, 9, 5348-5357.	4.0	33
2356	Flexible large-area organic tandem solar cells with high defect tolerance and device yield. Journal of Materials Chemistry A, 2017, 5, 3186-3192.	5.2	51
2357	Surprising Effects upon Inserting Benzene Units into a Quaterthiopheneâ€Based Dâ€A Polymer–Improving Nonâ€Fullerene Organic Solar Cells via Donor Polymer Design. Advanced Energy Materials, 2017, 7, 1602304.	10.2	57

#	Article	IF	CITATIONS
2358	Photocurrent imaging of phase segregation in a ternary polymer blend induced via a non-solvent route. Journal of Polymer Research, 2017, 24, 1.	1.2	2
2359	Copper(II) chloride doped graphene oxides as efficient hole transport layer for high-performance polymer solar cells. Organic Electronics, 2017, 44, 176-182.	1.4	20
2360	Efficient Organic Photovoltaics with Improved Charge Extraction and High Short-Circuit Current. Journal of Physical Chemistry C, 2017, 121, 5523-5530.	1.5	26
2361	Mixing Behavior in Small Molecule:Fullerene Organic Photovoltaics. Chemistry of Materials, 2017, 29, 3062-3069.	3.2	94
2362	Electrolytes as Cathode Interlayers in Inverted Organic Solar Cells: Influence of the Cations on Bias-Dependent Performance. ACS Applied Materials & Interfaces, 2017, 9, 8426-8431.	4.0	10
2363	The marriage of AIE and interface engineering: convenient synthesis and enhanced photovoltaic performance. Chemical Science, 2017, 8, 3750-3758.	3.7	41
2364	Boosted Electron Transport and Enlarged Built-In Potential by Eliminating the Interface Barrier in Organic Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 8830-8837.	4.0	25
2365	Preparation of electron buffer layer with crystalline ZnO nanoparticles in inverted organic photovoltaic cells. Journal of Physics and Chemistry of Solids, 2017, 105, 66-71.	1.9	11
2366	Observing Ion Motion in Conjugated Polyelectrolytes with Kelvin Probe Force Microscopy. Advanced Electronic Materials, 2017, 3, 1700005.	2.6	19
2367	Effects of alkyl chains on intermolecular packing and device performance in small molecule based organic solar cells. Dyes and Pigments, 2017, 141, 262-268.	2.0	11
2368	Chlorination of Low-Band-Gap Polymers: Toward High-Performance Polymer Solar Cells. Chemistry of Materials, 2017, 29, 2819-2830.	3.2	112
2369	A New Function of N719: N719 Based Solutionâ€Processible Binary Cathode Buffer Layer Enables Highâ€Efficiency Singleâ€Junction Polymer Solar Cells. Solar Rrl, 2017, 1, 1700014.	3.1	24
2370	Boosting Up Performance of Inverted Photovoltaic Cells from Bis(alkylthien-2-yl)dithieno[2,3- <i>d</i> :2′,3′- <i>d</i> ′]benzo[1,2- <i>b</i> :4′,5′- <i>b</i> à€²]di thi Copolymers by Advantageous Vertical Phase Separation. ACS Applied Materials & Interfaces, 2017, 9, 10937-10945	ophene-Ba 4.0	ased 25
2371	Random D–A1–D–A2terpolymers based on benzodithiophene, thiadiazole[3,4-e]isoindole-5,7-dione and thieno[3,4-c]pyrrole-4,6-dione for efficient polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 6638-6647.	5.2	21
2372	Colloidal metal oxide nanocrystals as charge transporting layers for solution-processed light-emitting diodes and solar cells. Chemical Society Reviews, 2017, 46, 1730-1759.	18.7	99
2373	Molecular Origin of Donor- and Acceptor-Rich Domain Formation in Bulk-Heterojunction Solar Cells with an Enhanced Charge Transport Efficiency. Journal of Physical Chemistry C, 2017, 121, 5864-5870.	1.5	18
2374	Recent development and understanding of polymer–nanocrystal hybrid solar cells. Materials Chemistry Frontiers, 2017, 1, 1502-1513.	3.2	23
2375	Degradation of PEIE interlayer in PTB7:[70]PCBM based solar cells characterized by impedance spectroscopy. Solar Energy, 2017, 144, 105-110.	2.9	19

#	Article	IF	CITATIONS
2376	Precise control over reduction potential of fulleropyrrolidines for organic photovoltaic materials. RSC Advances, 2017, 7, 7122-7129.	1.7	9
2377	A Green Route to Conjugated Polyelectrolyte Interlayers for Highâ€Performance Solar Cells. Angewandte Chemie, 2017, 129, 8551-8554.	1.6	10
2378	A Green Route to Conjugated Polyelectrolyte Interlayers for Highâ€Performance Solar Cells. Angewandte Chemie - International Edition, 2017, 56, 8431-8434.	7.2	37
2379	Semi-crystalline photovoltaic polymers with siloxane-terminated hybrid side-chains. Science China Chemistry, 2017, 60, 528-536.	4.2	3
2380	Hybrid Photoconductive Cathode Interlayer Materials Composed of Perylene Bisimide Photosensitizers and Zinc Oxide for High Performance Polymer Solar Cells. Advanced Energy Materials, 2017, 7, 1602573.	10.2	43
2381	Nanomaterials: Solar Energy Conversion. , 2017, , 1-33.		2
2382	Poly(4-vinylpyridine): A New Interface Layer for Organic Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 10929-10936.	4.0	38
2383	Highâ€Performance Colorful Semitransparent Polymer Solar Cells with Ultrathin Hybridâ€Metal Electrodes and Fine‶uned Dielectric Mirrors. Advanced Functional Materials, 2017, 27, 1605908.	7.8	157
2384	Identifying Atomic Scale Structure in Undoped/Doped Semicrystalline P3HT Using Inelastic Neutron Scattering. Macromolecules, 2017, 50, 2424-2435.	2.2	52
2385	Large branched alkylthienyl bridged naphtho[1,2- <i>c</i> :5,6- <i>c</i> ′]bis[1,2,5]thiadiazole-containing low bandgap copolymers: Synthesis and photovoltaic application. Journal of Macromolecular Science - Pure and Applied Chemistry, 2017, 54, 176-185.	1.2	22
2386	Tuning the work function of indium-tin-oxide electrodes for low-temperature-processed, titanium-oxide-free perovskite solar cells. Organic Electronics, 2017, 44, 120-125.	1.4	25
2387	Orthogonal solubility in fully conjugated donor-acceptor block copolymers: Compatibilizers for polymer/fullerene bulk-heterojunction solar cells. Chinese Journal of Polymer Science (English) Tj ETQq1 1 0.7843	1 4.1 gBT /C)væ#lock 101
2388	Hydroxyl-Terminated CuInS ₂ -Based Quantum Dots: Potential Cathode Interfacial Modifiers for Efficient Inverted Polymer Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 7362-7367.	4.0	20
2389	Enhanced Efficiency and Stability of Perovskite Solar Cells via Anti-Solvent Treatment in Two-Step Deposition Method. ACS Applied Materials & Interfaces, 2017, 9, 7224-7231.	4.0	97
2390	Fine-tuning solid state packing and significantly improving photovoltaic performance of conjugated polymers through side chain engineering via random polymerization. Journal of Materials Chemistry A, 2017, 5, 5585-5593.	5.2	20
2391	A-D-A small molecule donors based on pyrene and diketopyrrolopyrrole for organic solar cells. Science China Chemistry, 2017, 60, 561-569.	4.2	15
2392	Insights into the Morphological Instability of Bulk Heterojunction PTB7-Th/PCBM Solar Cells upon High-Temperature Aging. ACS Applied Materials & Interfaces, 2017, 9, 14808-14816.	4.0	44
2393	Energy-level modulation of non-fullerene acceptors to achieve high-efficiency polymer solar cells at a diminished energy offset. Journal of Materials Chemistry A, 2017, 5, 9649-9654.	5.2	83

#	Article	IF	CITATIONS
2394	Mechanical Properties of Polymer–Fullerene Bulk Heterojunction Films: Role of Nanomorphology of Composite Films. Chemistry of Materials, 2017, 29, 3954-3961.	3.2	50
2395	Suppressing Energy Loss due to Triplet Exciton Formation in Organic Solar Cells: The Role of Chemical Structures and Molecular Packing. Advanced Energy Materials, 2017, 7, 1602713.	10.2	28
2396	Regular Organic Solar Cells with Efficiency over 10% and Promoted Stability by Ligand―and Thermal Annealingâ€Free Alâ€Đoped ZnO Cathode Interlayer. Advanced Science, 2017, 4, 1700053.	5.6	60
2397	Determining Material-Specific Morphology of Bulk-Heterojunction Organic Solar Cells Using AFM Phase Imaging. Journal of Physical Chemistry C, 2017, 121, 9173-9180.	1.5	16
2398	Performance enhancement of polymer solar cells by incorporating Ag nanoparticles at an indium tin oxide/MoO ₃ buffer layer interface. Semiconductor Science and Technology, 2017, 32, 065010.	1.0	7
2399	Density Functional Study on A-Units Based on Thieno[3,4-c]pyrrole-4,6-dione for Organic Solar Cells. Journal of Electronic Materials, 2017, 46, 4825-4834.	1.0	1
2400	Novel cross-linked films from epoxy-functionalized conjugated polymer and amine based small molecule for the interface engineering of high-efficiency inverted polymer solar cells. Solar Energy Materials and Solar Cells, 2017, 168, 22-29.	3.0	12
2401	Roles of electrode interface on the performance of organic photodetectors. Synthetic Metals, 2017, 227, 163-169.	2.1	17
2402	Effects of the Wrinkle Structure and Flat Structure Formed During Static Low-Temperature Annealing of ZnO on the Performance of Inverted Polymer Solar Cells. Journal of Physical Chemistry C, 2017, 121, 9191-9201.	1.5	25
2403	Electrically and thermally conductive thin elastic polymer foils containing SiC nanofibers. Composites Science and Technology, 2017, 146, 20-25.	3.8	13
2404	Dual Förster resonance energy transfer effects in non-fullerene ternary organic solar cells with the third component embedded in the donor and acceptor. Journal of Materials Chemistry A, 2017, 5, 12120-12130.	5.2	102
2405	Optimal extent of fluorination enabling strong temperature-dependent aggregation, favorable blend morphology and high-efficiency polymer solar cells. Science China Chemistry, 2017, 60, 545-551.	4.2	23
2406	ZnO-morphology-dependent effects on the photovoltaic performance for inverted polymer solar cells. Solar Energy Materials and Solar Cells, 2017, 169, 28-32.	3.0	27
2407	Layer-by-Layer-Processed Ternary Organic Solar Cells Using Perylene Bisimide as a Morphology-Inducing Component. ACS Applied Materials & Interfaces, 2017, 9, 17265-17270.	4.0	21
2408	Molecular design of interfacial layers based on conjugated polythiophenes for polymer and hybrid solar cells. Polymer International, 2017, 66, 1333-1348.	1.6	18
2409	Efficient Organic Solar Cells with Polymer-Small Molecule: Fullerene Ternary Active Layers. ACS Omega, 2017, 2, 1786-1794.	1.6	11
2410	Self-Organization of Polymer Additive, Poly(2-vinylpyridine) via One-Step Solution Processing to Enhance the Efficiency and Stability of Polymer Solar Cells. Advanced Energy Materials, 2017, 7, 1602812.	10.2	29
2411	Vinylidenedithiophenmethyleneoxindole-based donor-acceptor copolymers with 1D and 2D conjugated backbones: Synthesis, characterization, and their photovoltaic properties. Dyes and Pigments, 2017, 144, 1-8.	2.0	4

#	Article	IF	CITATIONS
2412	Regular terpolymers with benzothiadiazole side groups for improving the performances of polymer solar cells. Dyes and Pigments, 2017, 143, 261-269.	2.0	6
2413	Densely Packed Random Quarterpolymers Containing Two Donor and Two Acceptor Units: Controlling Absorption Ability and Molecular Interaction to Enable Enhanced Polymer Photovoltaic Devices. Advanced Energy Materials, 2017, 7, 1700349.	10.2	22
2414	Photovoltaic contribution of photo-generated excitons in acceptor material of organic solar cells. Journal of Materials Science: Materials in Electronics, 2017, 28, 7070-7076.	1.1	10
2415	Interfacial engineering of electron transport layer using Caesium Iodide for efficient and stable organic solar cells. Applied Surface Science, 2017, 416, 834-844.	3.1	30
2416	Bright and efficient inverted organic light-emitting diodes with improved solution-processed electron-transport interlayers. Organic Electronics, 2017, 48, 377-381.	1.4	15
2417	Improved Performance of Allâ€Polymer Solar Cells Enabled by Naphthodiperylenetetraimideâ€Based Polymer Acceptor. Advanced Materials, 2017, 29, 1700309.	11.1	306
2418	High-performance all-polymer nonfullerene solar cells by employing an efficient polymer-small molecule acceptor alloy strategy. Nano Energy, 2017, 36, 356-365.	8.2	58
2419	Small Molecule Acceptor and Polymer Donor Crystallinity and Aggregation Effects on Microstructure Templating: Understanding Photovoltaic Response in Fullerene-Free Solar Cells. Chemistry of Materials, 2017, 29, 4432-4444.	3.2	67
2420	High performance thermal-treatment-free tandem polymer solar cells with high fill factors. Organic Electronics, 2017, 47, 79-84.	1.4	14
2421	Dissociation of charge transfer excitons at the donor–acceptor interface in bulk heterojunction organic solar cells. Journal of Materials Science: Materials in Electronics, 2017, 28, 7095-7099.	1.1	24
2422	Naphthalene diimide-based small molecule acceptors for fullerene-free organic solar cells. Solar Energy, 2017, 150, 90-95.	2.9	30
2423	A Wide-Bandgap Donor Polymer for Highly Efficient Non-fullerene Organic Solar Cells with a Small Voltage Loss. Journal of the American Chemical Society, 2017, 139, 6298-6301.	6.6	327
2424	Mechanism of Light-Soaking Effect in Inverted Polymer Solar Cells with Open-Circuit Voltage Increase. ACS Omega, 2017, 2, 1617-1624.	1.6	10
2425	Anthracene-based perylene diimide electron-acceptor for fullerene-free organic solar cells. Dyes and Pigments, 2017, 143, 301-307.	2.0	14
2426	Stability study of high efficiency polymer solar cells using TiOx as electron transport layer. Solar Energy, 2017, 150, 147-155.	2.9	45
2427	Improved hydrogenated amorphous silicon thin-film solar cells realized by replacing n-type Si layer with PFN interfacial layer. Synthetic Metals, 2017, 228, 91-98.	2.1	7
2428	Solution processed cathode and interconnecting layer of silver nanowires in an efficient inverted tandem organic solar cells. Solar Energy Materials and Solar Cells, 2017, 160, 494-502.	3.0	24
2429	Panchromatic ternary/quaternary polymer/fullerene BHJ solar cells based on novel silicon naphthalocyanine and silicon phthalocyanine dye sensitizers. Journal of Materials Chemistry A, 2017, 5, 2550-2562.	5.2	32

#	Article	IF	Citations
2430	Ethylenediamine functionalized fullerene nanoparticles as independent electron transport layers for high-efficiency inverted polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 947-951.	5.2	17
2431	Efficient ternary organic solar cells based on immiscible blends. Organic Electronics, 2017, 41, 130-136.	1.4	6
2432	Poly(3,4â€Ethylenedioxythiophene): Methylnaphthalene Sulfonate Formaldehyde Condensate: The Effect of Work Function and Structural Homogeneity on Hole Injection/Extraction Properties. Advanced Energy Materials, 2017, 7, 1601499.	10.2	50
2433	Recent progress in two-dimensional COFs for energy-related applications. Journal of Materials Chemistry A, 2017, 5, 14463-14479.	5.2	243
2434	Organic solar cells based on a polymer acceptor and a small molecule donor with a high open-circuit voltage. Journal of Materials Chemistry C, 2017, 5, 6812-6819.	2.7	24
2435	Naphtho[1,2-c:5,6-câ€2]bis[1,2,5]thiadiazole-based conjugated polymers consisting of oligothiophenes for efficient polymer solar cells. Polymer, 2017, 121, 183-195.	1.8	40
2436	Asymmetric 2D benzodithiophene and quinoxaline copolymer for photovoltaic applications. Journal of Materials Chemistry C, 2017, 5, 6798-6804.	2.7	10
2437	Ethanol-Processable, Highly Crystalline Conjugated Polymers for Eco-Friendly Fabrication of Organic Transistors and Solar Cells. Macromolecules, 2017, 50, 4415-4424.	2.2	63
2438	An acrylated fullerene derivative for efficient and thermally stable polymer solar cells. Tetrahedron Letters, 2017, 58, 2695-2699.	0.7	4
2439	Naphthalene diimide-based small molecule acceptors for organic solar cells. Journal of Materials Chemistry A, 2017, 5, 12266-12277.	5.2	41
2440	Improvement of both efficiency and stability in organic photovoltaics by using water-soluble anionic conjugated polyelectrolyte interlayer. Materials Today Energy, 2017, 5, 66-71.	2.5	8
2441	Crossâ€Linkable and Dual Functional Hybrid Polymeric Electron Transporting Layer for Highâ€Performance Inverted Polymer Solar Cells. Advanced Materials, 2017, 29, 1701507.	11.1	38
2442	Enhancing the Performance of Polymer Solar Cells by Using Donor Polymers Carrying Discretely Distributed Side Chains. ACS Applied Materials & amp; Interfaces, 2017, 9, 24020-24026.	4.0	14
2443	Relating polymer chemical structure to the stability of polymer:fullerene solar cells. Journal of Materials Chemistry C, 2017, 5, 6611-6619.	2.7	41
2444	A universal rollâ€ŧoâ€ŧoll slotâ€die coating approach towards highâ€efficiency organic photovoltaics. Progress in Photovoltaics: Research and Applications, 2017, 25, 928-935.	4.4	34
2445	Highly Anisotropic Conjugated Polymer Aggregates: Preparation and Quantification of Physical and Optical Anisotropy. Journal of Physical Chemistry C, 2017, 121, 13854-13862.	1.5	18
2446	A hybrid organic–inorganic three-dimensional cathode interfacial material for organic solar cells. RSC Advances, 2017, 7, 28513-28519.	1.7	8
2447	Visualizing nanoscale phase morphology for understanding photovoltaic performance of PTB7: PC71BM solar cell. Applied Surface Science, 2017, 422, 509-517.	3.1	16

#	Article	IF	CITATIONS
2448	Facile synthesis of a narrow-bandgap strong-donor-alt-strong-acceptor copolymer of poly(5,6-difluorobenzo-[c][1,2,5]-thiadiazole-alt-5H-dithieno[3,2-b:2′,3'-d]pyran) via direct C-H arylation polymerization. Dyes and Pigments, 2017, 145, 331-338.	2.0	8
2449	Inverted polymer solar cells with Zn 2 SnO 4 nanoparticles as the electron extraction layer. Chinese Chemical Letters, 2017, 28, 1755-1759.	4.8	3
2450	The Photoelectric Properties of Polymer Acceptors Containing Oxadiazole and Thiadiazole. Macromolecular Chemistry and Physics, 2017, 218, 1700094.	1.1	11
2451	Light-trapping Al-doped ZnO thin films for organic solar cells. Solar Energy, 2017, 153, 96-103.	2.9	30
2452	Effect of ultraviolet irradiation on poly(3,4-ethylenedioxythiophene) doped with ClO4thin films using electropolymerization. Japanese Journal of Applied Physics, 2017, 56, 06GJ03.	0.8	3
2453	Improved performance of organic photovoltaic cells with PTB7-Th:PC71 BM by optimized solvent evaporation time in electrospray deposition. Organic Electronics, 2017, 48, 96-105.	1.4	21
2454	Electronic Structures of Nucleosides as Promising Functional Materials for Electronic Devices. Journal of Physical Chemistry C, 2017, 121, 12750-12756.	1.5	6
2455	A New Electronâ€Rich Unit for Polymer Electron Acceptors: 4,4â€Difluoroâ€4 <i>H</i> â€cyclopenta[2,1â€b:3,4â€bâ€2]dithiophene. Chemistry - A European Journal, 2017, 23 9486-9490.	,1.7	23
2456	n-Type conjugated electrolytes cathode interlayer with thickness-insensitivity for highly efficient organic solar cells. Journal of Materials Chemistry A, 2017, 5, 13807-13816.	5.2	39
2457	Interfacial Reaction of Fulleropyrrolidines Affecting Organic Photovoltaic Performance. ACS Applied Materials & Interfaces, 2017, 9, 21338-21345.	4.0	10
2458	Hybrid tandem quantum dot/organic photovoltaic cells with complementary near infrared absorption. Applied Physics Letters, 2017, 110, 223903.	1.5	23
2459	Polymer with conjugated alkylthiophenylthienyl side chains for efficient photovoltaic cells. Organic Electronics, 2017, 48, 298-307.	1.4	5
2460	Promoting Morphology with a Favorable Density of States Using Diiodooctane to Improve Organic Photovoltaic Device Efficiency and Charge Carrier Lifetimes. ACS Energy Letters, 2017, 2, 1556-1563.	8.8	20
2461	Effect of methanol treatment on the performance of P3HT:PC71BM bulk heterojunction solar cells with various cathodes. Journal of Materials Science: Materials in Electronics, 2017, 28, 12909-12915.	1.1	5
2462	Novel wide band gap copolymers featuring excellent comprehensive performance towards the practical application for organic solar cells. Polymer Chemistry, 2017, 8, 4332-4338.	1.9	11
2463	Hybrid Solar Cells from Aqueous Polymers and Colloidal Nanocrystals. Chinese Journal of Chemistry, 2017, 35, 551-561.	2.6	10
2464	Influence of the Hole Transporting Layer on the Thermal Stability of Inverted Organic Photovoltaics Using Accelerated-Heat Lifetime Protocols. ACS Applied Materials & Interfaces, 2017, 9, 14136-14144.	4.0	43
2465	Numerical simulation of metal subwavelength nanogeometries in organic media using DDA technique: a coupled broadband resonant near electric field perspective. Journal of Optics (India), 2017, 46, 132-142.	0.8	0

#	Article	IF	CITATIONS
2466	N-annulated perylene diimide dimers: the effect of thiophene bridges on physical, electronic, optical, and photovoltaic properties. Sustainable Energy and Fuels, 2017, 1, 1137-1147.	2.5	36
2467	Effect of illumination on the dielectrical properties of P3HT:PC70BM nanocomposites. Materials Research Express, 2017, 4, 055003.	0.8	8
2468	Optical properties of donor–acceptor conjugated copolymers: A computational study. Chemical Physics Letters, 2017, 678, 9-16.	1.2	8
2469	Direct arylation polymerization toward a narrow bandgap donor–acceptor conjugated polymer of alternating 5,6â€difluoroâ€2,1,3â€benzothiadiazole and alkylâ€quarternarythiophene: From synthesis, optoelectronic properties to devices. Journal of Polymer Science Part A, 2017, 55, 1869-1879.	2.5	19
2470	Large area flexible polymer solar cells with high efficiency enabled by imprinted Ag grid and modified buffer layer. Acta Materialia, 2017, 130, 208-214.	3.8	25
2471	Recent advances in high performance donor-acceptor polymers for organic photovoltaics. Progress in Polymer Science, 2017, 70, 34-51.	11.8	217
2472	Functional solid additive modified PEDOT:PSS as an anode buffer layer for enhanced photovoltaic performance and stability in polymer solar cells. Scientific Reports, 2017, 7, 45079.	1.6	98
2473	Ligand-free rutile and anatase TiO ₂ nanocrystals as electron extraction layers for high performance inverted polymer solar cells. RSC Advances, 2017, 7, 20084-20092.	1.7	135
2474	Effects of including electron-withdrawing atoms on the physical and photovoltaic properties of indacenodithieno[3,2-b]thiophene-based donor–acceptor polymers: towards an acceptor design for efficient polymer solar cells. RSC Advances, 2017, 7, 20440-20450.	1.7	18
2475	ESR spin trapping determination of the hydroperoxide concentration in polyethylene oxide (PEO) in aqueous solution. Polymer Degradation and Stability, 2017, 139, 89-96.	2.7	13
2476	Highâ€Performance Nonâ€Fullerene Polymer Solar Cells Based on Fluorine Substituted Wide Bandgap Copolymers Without Extra Treatments. Solar Rrl, 2017, 1, 1700020.	3.1	107
2477	Perovskite hybrid solar cells with a fullerene derivative electron extraction layer. Journal of Materials Chemistry C, 2017, 5, 4190-4197.	2.7	24
2478	Effect of Blend Composition on Bulk Heterojunction Organic Solar Cells: A Review. Solar Rrl, 2017, 1, 1700035.	3.1	29
2479	Synthesis and optical and electrochemical properties of a bispyrimidinium-dibenzothiophene- S , S -dioxide - based cationic conjugated polymer. Tetrahedron, 2017, 73, 2649-2655.	1.0	2
2480	Efficient Polymer Solar Cells with High Open-Circuit Voltage Containing Diketopyrrolopyrrole-Based Non-Fullerene Acceptor Core End-Capped with Rhodanine Units. ACS Applied Materials & Interfaces, 2017, 9, 11739-11748.	4.0	43
2481	Simple planar heterojunction fullerene-free organic photovoltaic cell with high open-circuit voltages above 1.4AV. Journal of Materials Science: Materials in Electronics, 2017, 28, 9167-9173.	1.1	3
2482	Recent progress of interconnecting layer for tandem organic solar cells. Science China Chemistry, 2017, 60, 460-471.	4.2	21
2483	Poly(3-Hexylthiophene) (P3HT), Poly(Gamma-Benzyl-I-Glutamate) (PBLG) and Poly(Methyl Methacrylate) (PMMA) as Energy Harvesting Materials. Springer Series on Polymer and Composite Materials, 2017, , 95-118.	0.5	5

#	Article	IF	CITATIONS
2484	Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope. Ultramicroscopy, 2017, 176, 23-30.	0.8	4
2485	An Allâ€Solution Processed Recombination Layer with Mild Postâ€Treatment Enabling Efficient Homoâ€Tandem Nonâ€fullerene Organic Solar Cells. Advanced Materials, 2017, 29, 1604231.	11.1	68
2486	Light Harvesting for Organic Photovoltaics. Chemical Reviews, 2017, 117, 796-837.	23.0	457
2487	Developing high-performance small molecule organic solar cells via a large planar structure and an electron-withdrawing central unit. Chemical Communications, 2017, 53, 451-454.	2.2	22
2488	Synthesis and Characterization of Diketopyrrolopyrroleâ€based Dâ€Ï€â€Aâ€Ï€â€D Small Molecules for Organic Solar Cell Applications. Journal of Heterocyclic Chemistry, 2017, 54, 1983-1994.	1.4	5
2489	Polymer solar cells with open-circuit voltage of 1.3 V using polymer electron acceptor with high LUMO level. Nano Energy, 2017, 32, 216-224.	8.2	50
2490	Fluorene Conjugated Polymer/Nickel Oxide Nanocomposite Hole Transport Layer Enhances the Efficiency of Organic Photovoltaic Devices. ACS Applied Materials & Interfaces, 2017, 9, 2232-2239.	4.0	20
2491	High-Performance Solution-Processed Single-Junction Polymer Solar Cell Achievable by Post-Treatment of PEDOT:PSS Layer with Water-Containing Methanol. ACS Applied Materials & Interfaces, 2017, 9, 1446-1452.	4.0	37
2492	Critical Role of Pendant Group Substitution on the Performance of Efficient All-Polymer Solar Cells. Chemistry of Materials, 2017, 29, 804-816.	3.2	41
2493	An alternating polymer of two building blocks based on Bâ†N unit: Non-fullerene acceptor for organic photovoltaics. Chinese Journal of Polymer Science (English Edition), 2017, 35, 198-206.	2.0	72
2494	All-polymer solar cells with perylenediimide polymer acceptors. Chinese Journal of Polymer Science (English Edition), 2017, 35, 293-301.	2.0	30
2495	Luminance enhancement in quantum dot light-emitting diodes fabricated with Field's metal as the cathode. Journal Physics D: Applied Physics, 2017, 50, 095106.	1.3	1
2496	Furan-containing conjugated polymers for organic solar cells. Chinese Journal of Polymer Science (English Edition), 2017, 35, 171-183.	2.0	29
2497	Polymeric morphologies and fluorescence of poly(p-phenylene) films by self-assembly. Synthetic Metals, 2017, 223, 58-66.	2.1	3
2498	Ionic liquids with variable cations as cathode interlayer for conventional polymer solar cells. Organic Electronics, 2017, 42, 387-392.	1.4	18
2499	Water-borne foldable polymer solar cells: one-step transferring free-standing polymer films onto woven fabric electrodes. Journal of Materials Chemistry A, 2017, 5, 782-788.	5.2	30
2500	Stability and reliability of P3HT:PC61BM inverted organic solar cells. Solar Energy Materials and Solar Cells, 2017, 161, 407-415.	3.0	31
2501	Ultraviolet-ozone anode surface treatment and its effect on organic solar cells. Thin Solid Films, 2017, 623, 72-83.	0.8	11

#	Article	IF	CITATIONS
2502	Low Density of Conduction and Valence Band States Contribute to the High Open-Circuit Voltage in Perovskite Solar Cells. Journal of Physical Chemistry C, 2017, 121, 1455-1462.	1.5	57
2503	Indolo[3,2- <i>b</i>]indole-Containing Donor–Acceptor Copolymers for High-Efficiency Organic Solar Cells. Chemistry of Materials, 2017, 29, 2135-2140.	3.2	40
2504	High sensitivity, fast response and low operating voltage organic photodetectors by incorporating a water/alcohol soluble conjugated polymer anode buffer layer. RSC Advances, 2017, 7, 1743-1748.	1.7	31
2505	A PTB7-based narrow band-gap conjugated polyelectrolyte as an efficient cathode interlayer in PTB7-based polymer solar cells. Chemical Communications, 2017, 53, 2005-2008.	2.2	25
2506	Interfacial engineering for highly efficient organic solar cells. Current Applied Physics, 2017, 17, 370-391.	1.1	47
2507	Enhanced performance in inverted polymer solar cells employing microwave-annealed sol-gel ZnO as electron transport layers. Organic Electronics, 2017, 42, 107-114.	1.4	11
2508	Ambipolar tetrafluorodiphenylethene-based donor–acceptor copolymers: synthesis, properties, backbone conformation and fluorine-induced conformational locks. Polymer Chemistry, 2017, 8, 879-889.	1.9	12
2509	Elementary Processes in Organic Photovoltaics. Advances in Polymer Science, 2017, , .	0.4	15
2510	Inverted organic solar cells enhanced by grating-coupled surface plasmons and waveguide modes. Physical Chemistry Chemical Physics, 2017, 19, 2791-2796.	1.3	21
2511	Charge Carrier Generation, Recombination, and Extraction in Polymer–Fullerene Bulk Heterojunction Organic Solar Cells. Advances in Polymer Science, 2017, , 267-291.	0.4	20
2512	Controlling the Electronic Interface Properties in Polymer–Fullerene Bulk Heterojunction Solar Cells. Advances in Polymer Science, 2017, , 293-310.	0.4	1
2513	Interplay Between Microscopic Structure and Intermolecular Charge-Transfer Processes in Polymer–Fullerene Bulk Heterojunctions. Advances in Polymer Science, 2017, , 139-155.	0.4	2
2514	Donor–Acceptor Dyes for Organic Photovoltaics. Advances in Polymer Science, 2017, , 193-214.	0.4	21
2515	Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope. Ultramicroscopy, 2017, 173, 16-23.	0.8	0
2516	A-D-A-type small molecular acceptor with one hexyl-substituted thiophene as π bridge for fullerene-free organic solar cells. Science China Materials, 2017, 60, 49-56.	3.5	10
2517	Doping Versatile n-Type Organic Semiconductors via Room Temperature Solution-Processable Anionic Dopants. ACS Applied Materials & Interfaces, 2017, 9, 1136-1144.	4.0	35
2518	Synthesis of fluorinated benzotriazole (BTZ)- and benzodithiophene (BDT)-based low-bandgap conjugated polymers for solar cell applications. Dyes and Pigments, 2017, 139, 349-360.	2.0	16
2519	Thiophene-Based Organic Semiconductors. Topics in Current Chemistry, 2017, 375, 84.	3.0	88

\sim			Deed	
		(ΛN)		דער
<u> </u>	$\square \land \square$		IVE F	

#	Article	IF	CITATIONS
2520	Conjugated ionic (co)polythiophene-based cathode interlayers for bulk heterojunction organic solar cells. European Polymer Journal, 2017, 97, 49-56.	2.6	6
2521	Evolving molecular architectures of donor–acceptor conjugated polymers for photovoltaic applications: from one-dimensional to branched to two-dimensional structures. Journal of Materials Chemistry A, 2017, 5, 24051-24075.	5.2	97
2522	A Solid-State Intrinsically Stretchable Polymer Solar Cell. ACS Applied Materials & Interfaces, 2017, 9, 40523-40532.	4.0	45
2523	Cooptimization of Adhesion and Power Conversion Efficiency of Organic Solar Cells by Controlling Surface Energy of Buffer Layers. ACS Applied Materials & Interfaces, 2017, 9, 37395-37401.	4.0	20
2524	Annealing-Free ZnO:PEI Composite Cathode Interfacial Layer for Efficient Organic Solar Cells. ACS Photonics, 2017, 4, 2952-2958.	3.2	32
2525	Oleylamine-functionalized graphene oxide as an electron block layer towards high-performance and photostable fullerene-free polymer solar cells. Nanoscale, 2017, 9, 16293-16304.	2.8	18
2526	Charge Carrier Mobilities and Singlet Fission Dynamics in Thienoquinoidal Compounds. Journal of Physical Chemistry C, 2017, 121, 22587-22596.	1.5	10
2527	Self-Assembly of 1-Pyrenemethanol on ZnO Surface toward Combined Cathode Buffer Layers for Inverted Polymer Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 36082-36089.	4.0	19
2528	Increasing the fill factor of inverted polymer bulk heterojunction solar cells by doping PVP modified NaYF4nanoparticles. Integrated Ferroelectrics, 2017, 180, 168-174.	0.3	0
2529	In Situ GIWAXS Analysis of Solvent and Additive Effects on PTB7 Thin Film Microstructure Evolution during Spin Coating. Advanced Materials, 2017, 29, 1703933.	11.1	80
2530	A random donor polymer based on an asymmetric building block to tune the morphology of non-fullerene organic solar cells. Journal of Materials Chemistry A, 2017, 5, 22480-22488.	5.2	12
2531	A universal approach to improve electron mobility without significant enlarging phase separation in IDT-based non-fullerene acceptor organic solar cells. Nano Energy, 2017, 41, 609-617.	8.2	49
2532	Importance of 2D Conjugated Side Chains of Benzodithiophene-Based Polymers in Controlling Polymer Packing, Interfacial Ordering, and Composition Variations of All-Polymer Solar Cells. Chemistry of Materials, 2017, 29, 9407-9415.	3.2	67
2533	Integration of Energy Harvesting and Electrochemical Storage Devices. Advanced Materials Technologies, 2017, 2, 1700182.	3.0	78
2534	Inverted organic solar cells integrated with room temperature solution-processed bismuth sulfide electron selective layer. Solar Energy, 2017, 157, 1108-1113.	2.9	5
2535	Air exposure induced recombination in PTB7:PC ₇₁ BM solar cells. Journal of Materials Chemistry A, 2017, 5, 21926-21935.	5.2	8
2536	Junction diodes in organic solar cells. Nano Energy, 2017, 41, 717-730.	8.2	20
2537	Dissymmetrization of Benzothiadiazole by Direct C–H Arylation: A Way to Symmetrical and Unsymmetrical Elongated π onjugated Molecules. European Journal of Organic Chemistry, 2017, 2017, 6872-6877.	1.2	3

#	Article	IF	CITATIONS
2538	Barrierless Slow Dissociation of Photogenerated Charge Pairs in High-Performance Polymer–Fullerene Solar Cells. Journal of Physical Chemistry C, 2017, 121, 14060-14065.	1.5	11
2539	Orienting the Microstructure Evolution of Copper Phthalocyanine as an Anode Interlayer in Inverted Polymer Solar Cells for High Performance. ACS Applied Materials & Interfaces, 2017, 9, 32044-32053.	4.0	6
2540	Improved interface control for high-performance graphene-based organic solar cells. 2D Materials, 2017, 4, 045004.	2.0	20
2541	Tuning Color Temperature of White OLEDs in Parallel Tandems. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700283.	0.8	6
2542	Indium tin oxide-free inverted polymer solar cells with ultrathin metal transparent electrodes. Frontiers of Optoelectronics, 2017, 10, 402-408.	1.9	0
2543	Surface engineering of the electron collecting layers for high performance organic photovoltaic cells. Current Applied Physics, 2017, 17, 1476-1482.	1.1	1
2545	An A-D-A Type Small-Molecule Electron Acceptor with End-Extended Conjugation for High Performance Organic Solar Cells. Chemistry of Materials, 2017, 29, 7908-7917.	3.2	139
2546	Sexithiophene-Based Photovoltaic Cells with High Light Absorption Coefficient via Crystalline Polymorph Control. Journal of Physical Chemistry C, 2017, 121, 19699-19704.	1.5	16
2547	Highly Sensitive Graphene–Semiconducting Polymer Hybrid Photodetectors with Millisecond Response Time. ACS Photonics, 2017, 4, 2335-2344.	3.2	25
2548	Improved longtime stability of highly efficient polymer solar cells by accurately self-formed metal oxide interlayer at metal electrode. Solar Energy, 2017, 157, 811-817.	2.9	8
2549	Design of Donor Polymers with Strong Temperature-Dependent Aggregation Property for Efficient Organic Photovoltaics. Accounts of Chemical Research, 2017, 50, 2519-2528.	7.6	222
2550	Improved Performance in nâ€Type Organic Fieldâ€Effect Transistors via Polyelectrolyteâ€Mediated Interfacial Doping. Advanced Electronic Materials, 2017, 3, 1700184.	2.6	20
2551	Novel brominated compounds using in binary additives based organic solar cells to achieve high efficiency over 10.3%. Organic Electronics, 2017, 50, 507-514.	1.4	8
2552	Black Phosphorus Quantum Dots Used for Boosting Light Harvesting in Organic Photovoltaics. Angewandte Chemie - International Edition, 2017, 56, 13717-13721.	7.2	113
2553	Enhancing the Performance of Inverted Organic Photovoltaics Using Cathode Interlayers Based on Solutionâ€Processable Tetrabutylammonium Halides. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1700250.	1.2	3
2554	Solutionâ€Processed Organic Solar Cells Using New Electron Acceptor Derived from Naphthalene and Fluorene Unit. ChemistrySelect, 2017, 2, 7913-7917.	0.7	4
2555	Study of thin film coating technique parameters for low cost organic solar cells fabrication. Materials Today: Proceedings, 2017, 4, 6626-6632.	0.9	13
2556	Black Phosphorus Quantum Dots Used for Boosting Light Harvesting in Organic Photovoltaics. Angewandte Chemie, 2017, 129, 13905-13909.	1.6	12

#	Article	IF	CITATIONS
2557	Chalcogenâ€Atomâ€Annulated Perylene Diimide Trimers for Highly Efficient Nonfullerene Polymer Solar Cells. Macromolecular Rapid Communications, 2017, 38, 1700405.	2.0	23
2558	Highâ€Efficiency Organic Tandem Solar Cells With Effective Transition Metal Chelates Interconnecting Layer. Solar Rrl, 2017, 1, 1700139.	3.1	19
2559	Energy band alignment in operando inverted structure P3HT:PCBM organic solar cells. Nano Energy, 2017, 40, 454-461.	8.2	23
2560	Effect of titanium dioxide (TiO2) with different crystal forms and surface modifications on cooling property and surface wettability of cool roofing materials. Solar Energy Materials and Solar Cells, 2017, 172, 34-43.	3.0	65
2561	Photon Harvesting in Conjugated Polymer-Based Functional Nanoparticles. Journal of Physical Chemistry Letters, 2017, 8, 4608-4620.	2.1	31
2562	Versatile Device Architectures for High-Performing Light-Soaking-Free Inverted Polymer Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 32678-32687.	4.0	18
2563	Multiple electron transporting layers and their excellent properties based on organic solar cell. Scientific Reports, 2017, 7, 9571.	1.6	20
2564	Single-junction fullerene solar cells with 10% efficiency and high open-circuit voltage approaching 1 V. Nano Energy, 2017, 40, 495-503.	8.2	27
2565	Impedance investigation of the highly efficient polymer solar cells with composite CuBr ₂ /MoO ₃ hole transport layer. Physical Chemistry Chemical Physics, 2017, 19, 20839-20846.	1.3	25
2566	Ternary organic solar cells incorporating zinc phthalocyanine with improved performance exceeding 8.5%. Dyes and Pigments, 2017, 146, 408-413.	2.0	23
2567	Molecular-Shape-Induced Efficiency Enhancement in PC ₆₁ BM and PC ₇₁ BM Based Ternary Blend Organic Solar Cells. Journal of Physical Chemistry C, 2017, 121, 17104-17111.	1.5	15
2568	Graphene Oxide by UV-Ozone Treatment as an Efficient Hole Extraction Layer for Highly Efficient and Stable Polymer Solar Cells. ACS Applied Materials & amp; Interfaces, 2017, 9, 26252-26256.	4.0	23
2569	Isolating and quantifying the impact of domain purity on the performance of bulk heterojunction solar cells. Energy and Environmental Science, 2017, 10, 1843-1853.	15.6	31
2570	Constructing D–A copolymers based on thiophene-fused benzotriazole units containing different alkyl side-chains for non-fullerene polymer solar cells. Journal of Materials Chemistry C, 2017, 5, 8179-8186.	2.7	19
2571	Small compounds based on 2,7-silafluorene and 4,7-di (2′-thienyl) for heterojunction organic solar cells: DFT study. Journal of the Iranian Chemical Society, 2017, 14, 2167-2176.	1.2	2
2572	Two Regioisomeric Ï€â€Conjugated Small Molecules: Synthesis, Photophysical, Packing, and Optoelectronic Properties. Advanced Functional Materials, 2017, 27, 1701942.	7.8	27
2573	Doping Ba into strontium titanate for enhanced photocatalytic oxygen evolution over its supported Au-based catalysts. Catalysis Communications, 2017, 99, 127-130.	1.6	7
2574	Effect of ZnO-processing methods on device performance and stability of effective inverted solar cells. Applied Physics Letters, 2017, 111, 033302.	1.5	5

#	Article	IF	CITATIONS
2575	Dependence of Exciton Diffusion Length and Diffusion Coefficient on Photophysical Parameters in Bulk Heterojunction Organic Solar Cells. Journal of Electronic Materials, 2017, 46, 6451-6460.	1.0	21
2576	Low-bandgap conjugated polymers enabling solution-processable tandem solar cells. Nature Reviews Materials, 2017, 2, .	23.3	284
2577	Highâ€Efficiency Nonfullerene Organic Solar Cells with a Parallel Tandem Configuration. Advanced Materials, 2017, 29, 1702547.	11.1	68
2578	Thiophene Rings Improve the Device Performance of Conjugated Polymers in Polymer Solar Cells with Thick Active Layers. Advanced Energy Materials, 2017, 7, 1700519.	10.2	49
2579	Alternating polymers based on fluorinated alkoxyphenyl-substituted benzo[1,2-b:4,5-bâ€2]dithiophene and isoindigo derivatives for polymer solar cells. Dyes and Pigments, 2017, 146, 529-536.	2.0	11
2580	Development of a conjugated donor-acceptor polyelectrolyte with high work function and conductivity for organic solar cells. Organic Electronics, 2017, 50, 1-6.	1.4	8
2581	High-Performance Polymer Solar Cells Employing Rhodamines as Cathode Interfacial Layers. ACS Applied Materials & Interfaces, 2017, 9, 27083-27089.	4.0	17
2582	Morphology Control for Fully Printable Organic–Inorganic Bulk-heterojunction Solar Cells Based on a Ti-alkoxide and Semiconducting Polymer. Journal of Visualized Experiments, 2017, , .	0.2	1
2583	Low-temperature dynamic vacuum annealing of ZnO thin film for improved inverted polymer solar cells. RSC Advances, 2017, 7, 29357-29363.	1.7	8
2584	Rhodanine side-chained thiophene and indacenodithiophene copolymer for solar cell applications. Materials Today Energy, 2017, 5, 287-292.	2.5	7
2585	High-performance nonfullerene polymer solar cells with open-circuit voltage over 1 V and energy loss as low as 0.54 eV. Nano Energy, 2017, 40, 20-26.	8.2	70
2586	Improved performance for polymer solar cells using CTAB-modified MoO3 as an anode buffer layer. Solar Energy Materials and Solar Cells, 2017, 171, 72-84.	3.0	27
2587	Self-doped n-type small molecular electron transport materials for high-performance organic solar cells. Science China Chemistry, 2017, 60, 1136-1144.	4.2	45
2588	Role of fullerene electron transport layer on the morphology and optoelectronic properties of perovskite solar cells. Organic Electronics, 2017, 50, 279-289.	1.4	34
2589	A Switchable Interconnecting Layer for High Performance Tandem Organic Solar Cell. Advanced Energy Materials, 2017, 7, 1701164.	10.2	29
2590	The influence of electrical effects on device performance of organic solar cells with nano-structured electrodes. Scientific Reports, 2017, 7, 5300.	1.6	26
2591	Non-fullerene polymer solar cells with V _{OC} > 1 V based on fluorinated quinoxaline unit conjugated polymers. Journal of Materials Chemistry C, 2017, 5, 8774-8781.	2.7	29
2592	A theoretical exploration of the effect of fluorine and cyano substitutions in diketopyrrolopyrrole-based polymer donor for organic solar cells. Journal of Molecular Graphics and Modelling, 2017, 77, 9-16.	1.3	12
#	Article	IF	CITATIONS
------	---	------	-----------
2593	Effect of Optical Microcavity on Absorption Behavior of Homo-Tandem Organic Solar Cells. Chinese Physics Letters, 2017, 34, 118801.	1.3	0
2594	Dual Function of UV/Ozone Plasma-Treated Polymer in Polymer/Metal Hybrid Electrodes and Semitransparent Polymer Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 44656-44666.	4.0	25
2595	Fabrication of n-buffer layers in organic devices by friction-transfer method. Molecular Crystals and Liquid Crystals, 2017, 653, 144-150.	0.4	1
2596	A novel hole extraction layer to enhance the performance of inverted organic solar cells. Journal of Materials Chemistry A, 2017, 5, 25385-25390.	5.2	7
2597	Influence of annealing temperature for ZnO layer on photoconversion efficiency of organic devices. Molecular Crystals and Liquid Crystals, 2017, 653, 182-187.	0.4	1
2598	Coating ZnO nanoparticle films with DNA nanolayers for enhancing the electron extracting properties and performance of polymer solar cells. Nanoscale, 2017, 9, 19031-19038.	2.8	39
2599	A silver nanowire mesh overcoated protection layer with graphene oxide as a transparent electrode for flexible organic solar cells. RSC Advances, 2017, 7, 52914-52922.	1.7	46
2600	Novel 4,8-benzobisthiazole copolymers and their field-effect transistor and photovoltaic applications. Journal of Materials Chemistry C, 2017, 5, 11927-11936.	2.7	23
2601	Efficacious engineering on charge extraction for realizing highly efficient perovskite solar cells. Energy and Environmental Science, 2017, 10, 2570-2578.	15.6	155
2602	Investigation of the effect of 2,6-pyridinedimethanol as the cathode buffer layer on the photovoltaic properties. Molecular Crystals and Liquid Crystals, 2017, 653, 44-49.	0.4	1
2603	Highly improved lifetimes of solar cells comprising post-additive-soaked PTB7-F20:PC 71 BM bulk heterojunction materials. Chemical Physics Letters, 2017, 690, 42-46.	1.2	0
2604	Interfacial electronic structure of Cl ₆ SubPc non-fullerene acceptors in organic photovoltaics using soft X-ray spectroscopies. Physical Chemistry Chemical Physics, 2017, 19, 31628-31633.	1.3	11
2605	Tailoring properties of the photoactive layer through blending polymers with different functional groups. Synthetic Metals, 2017, 230, 113-119.	2.1	1
2606	Amplitude-Mode Spectroscopy of Charge Excitations in PTB7 <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:miow> <mml:mi>i€</mml:mi> -Conjugated Donor-Accentor Copolymer for Photovoltaic Applications, Physical Review Applied, 2017, 7, .</mml:miow></mml:math 	1.5	7
2607	Electron-transporting small molecule/o-xylene hybrid additives to boost the performance of simplified inverted polymer solar cells. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	1
2608	Synthesis and photovoltaic properties of new ruthenium(II)-bis(aryleneethynylene) complexes. Journal of Organometallic Chemistry, 2017, 846, 277-286.	0.8	7
2609	Prolonged lifetime of polymer solar cells with amphiphilic monolayers modified cathodes. Organic Electronics, 2017, 49, 368-374.	1.4	1
2610	Determining the True Optical Gap in a High-Performance Organic Photovoltaic Polymer Using Single-Molecule Spectroscopy. Journal of Physical Chemistry Letters, 2017, 8, 3494-3499.	2.1	12

#		IF	CITATIONS
π	Poly(3-hexylthiophene)-based non-fullerene solar cells achieve high photovoltaic performance with		07
2611	smáll energy loss. Journal of Materials Chemistry A, 2017, 5, 16573-16579.	5.2	37
2612	Quantifying local thickness and composition in thin films of organic photovoltaic blends by Raman scattering. Journal of Materials Chemistry C, 2017, 5, 7270-7282.	2.7	22
2613	Degradation Analysis of Encapsulated and Nonencapsulated TiO ₂ /PTB7:PC ₇₀ BM/V ₂ O ₅ Solar Cells under Ambient Conditions via Impedance Spectroscopy. ACS Omega, 2017, 2, 3091-3097.	1.6	24
2614	Magnetic field enhancement of organic photovoltaic cells performance. Scientific Reports, 2017, 7, 4297.	1.6	16
2615	Effect of alkyl chain length of the ammonium groups in SEPC-CIL on the performance of polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 15294-15301.	5.2	11
2616	Study of series-connected polymer tandem solar cells based on a highly efficient donor material of PTB7-Th. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	2
2617	Over 10% efficiency in single-junction polymer solar cells developed from easily accessible random terpolymers. Nano Energy, 2017, 39, 229-237.	8.2	44
2618	Properties of functional layers in inverted thin film organic solar cells. Solar Energy Materials and Solar Cells, 2017, 160, 241-256.	3.0	50
2619	High performance ternary organic solar cells using two miscible donor molecules based on PTB7-Th and DR3TBDTT. Organic Electronics, 2017, 41, 209-214.	1.4	7
2620	Converting sunlight into red light in fluorosilicate glass for amorphous silicon solar cells. Journal of Luminescence, 2017, 183, 433-436.	1.5	7
2621	Blends of poly(3-alkylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester for organic photovoltaic cell applications: Multi-scale modeling approach. Computational Materials Science, 2017, 126, 299-307.	1.4	2
2622	Lightâ€Soakingâ€Free Inverted Polymer Solar Cells with an Efficiency of 10.5% by Compositional and Surface Modifications to a Lowâ€Temperatureâ€Processed TiO ₂ Electronâ€Transport Layer. Advanced Materials, 2017, 29, 1604044.	11.1	68
2623	Bulk-heterojunction solar cells with enriched polymer contents. Organic Electronics, 2017, 40, 1-7.	1.4	18
2624	High efficiency polymer solar cells based on alkylthio substituted benzothiadiazole-quaterthiophene alternating conjugated polymers. Organic Electronics, 2017, 40, 36-41.	1.4	16
2625	PTB7:PC\$_{ext{71}}\$BM-Based Solar Cells Fabricated With the Eutectic Alloy Field's Metal as an Alternative Cathode and the Influence of an Electron Extraction Layer. IEEE Journal of Photovoltaics, 2017, 7, 191-198.	1.5	28
2626	Toward Highâ€Temperature Stability of PTB7â€Based Bulk Heterojunction Solar Cells: Impact of Fullerene Size and Solvent Additive. Advanced Energy Materials, 2017, 7, 1601486.	10.2	53
2627	Design of charge transporting grids for efficient ITO-free flexible up-scaled organic photovoltaics. Materials Chemistry Frontiers, 2017, 1, 304-309.	3.2	18
2628	Novel donor–acceptor type conjugated polymers based on quinoxalino[6,5-f]quinoxaline for photovoltaic applications. Materials Chemistry Frontiers, 2017, 1, 499-506.	3.2	28

#	Article	IF	CITATIONS
2629	Toward Solution-Processed High-Performance Polymer Solar Cells: from Material Design to Device Engineering. Chemistry of Materials, 2017, 29, 141-148.	3.2	122
2630	Semi-crystalline A1–D–A2-type copolymers for efficient polymer solar cells. Polymer Journal, 2017, 49, 141-148.	1.3	6
2631	Effect of Processing Additives on Organic Photovoltaics: Recent Progress and Future Prospects. Advanced Energy Materials, 2017, 7, 1601496.	10.2	71
2632	Using <i>o</i> â€Chlorobenzaldehyde as a Fast Removable Solvent Additive during Spinâ€Coating PTB7â€Based Active Layers: High Efficiency Thickâ€Film Polymer Solar Cells. Advanced Energy Materials, 2017, 7, 1601344.	10.2	45
2633	Correlation between the performance of organic bulkâ€heterojunction solar cells and the molecular structures of alcohol solvents. Journal of Applied Polymer Science, 2017, 134, .	1.3	3
2634	A double Bâ†N bridged bipyridine (BNBP)-based polymer electron acceptor: all-polymer solar cells with a high donor : acceptor blend ratio. Materials Chemistry Frontiers, 2017, 1, 852-858.	3.2	27
2635	Decahedral gold nanoparticles for enhancing performance of polymer solar cells. Dyes and Pigments, 2017, 138, 83-89.	2.0	11
2636	A wide band gap polymer based on indacenodithieno[3,2-b]thiophene for high-performance bulk heterojunction polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 712-719.	5.2	16
2637	Carbon Dangling Bonds in Photodegraded Polymer:Fullerene Solar Cells. Advanced Energy Materials, 2017, 7, 1601420.	10.2	15
2638	Fullerene Derivatives for the Applications as Acceptor and Cathode Buffer Layer Materials for Organic and Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1601251.	10.2	152
2639	Toward High Efficiency Polymer Solar Cells: Influence of Local Chemical Environment and Morphology. Advanced Energy Materials, 2017, 7, 1601081.	10.2	43
2640	Automatic High-Throughput Screening Scheme for Organic Photovoltaics: Estimating the Orbital Energies of Polymers from Oligomers and Evaluating the Photovoltaic Characteristics. Journal of Physical Chemistry C, 2017, 121, 28275-28286.	1.5	20
2641	S-Shaped \${I}\$ – \${V}\$ Characteristics of Organic Solar Cells: Solving Mazhari's Lumped-Parameter Equivalent Circuit Model. IEEE Transactions on Electron Devices, 2017, 64, 4622-4627.	1.6	22
2642	Efficient Inverted Organic Solar Cells Based on a Fullerene Derivative-Modified Transparent Cathode. Materials, 2017, 10, 1064.	1.3	11
2643	Acceptor Side-Chain Effects on the Excited State Dynamics of Two-Dimensional-Like Conjugated Copolymers in Solution. Molecules, 2017, 22, 1398.	1.7	0
2644	Highly Efficient and Stable Organic Solar Cells via Interface Engineering with a Nanostructured ITR-GO/PFN Bilayer Cathode Interlayer. Nanomaterials, 2017, 7, 233.	1.9	6
2645	Recent Development on Narrow Bandgap Conjugated Polymers for Polymer Solar Cells. Polymers, 2017, 9, 39.	2.0	44
2646	The Effect of Donor and Nonfullerene Acceptor Inhomogeneous Distribution within the Photoactive Layer on the Performance of Polymer Solar Cells with Different Device Structures. Polymers, 2017, 9, 571.	2.0	18

#	Article	IF	Citations
2647	Organic Solar Cell by Inkjet Printing—An Overview. Technologies, 2017, 5, 53.	3.0	43
2648	Plasmonic Study of Nanoparticles in Organic Photovoltic Cells: A Review. Journal of Organic & Inorganic Chemistry, 2017, 3, .	0.0	0
2649	Knowledge Domain and Emerging Trends in Organic Photovoltaic Technology: A Scientometric Review Based on CiteSpace Analysis. Frontiers in Chemistry, 2017, 5, 67.	1.8	80
2650	Enhanced Efficiency of PTB7 : PC ₆₁ BM Organic Solar Cells by Adding a Low Efficient Polymer Donor. International Journal of Photoenergy, 2017, 2017, 1-8.	1.4	11
2651	Efficient Inverted ITO-Free Organic Solar Cells Based on Transparent Silver Electrode with Aqueous Solution-Processed ZnO Interlayer. International Journal of Photoenergy, 2017, 2017, 1-6.	1.4	0
2652	Organic solar cell by inkjet printing $\hat{a} \in \mathcal{C}$ An overview. , 2017, , .		0
2653	Tandem polymer solar cells: simulation and optimization through a multiscale scheme. Beilstein Journal of Nanotechnology, 2017, 8, 123-133.	1.5	9
2654	5-nm LiF as an Efficient Cathode Buffer Layer in Polymer Solar Cells Through Simply Introducing a C60 Interlayer. Nanoscale Research Letters, 2017, 12, 543.	3.1	15
2655	Benzodichalcogenophene-based Conjugated Polymers as Photo-voltaic Materials. International Journal of Electrochemical Science, 2017, , 6315-6339.	0.5	6
2656	Scientometric overview regarding water nanopurification. , 2017, , 693-716.		3
2657	Survey of Mechanical Durability of PV Backsheets. , 2017, , .		9
2658	Redoxâ€5tability of Alkoxyâ€BDT Copolymers and their Use for Organic Bioelectronic Devices. Advanced Functional Materials, 2018, 28, 1706325.	7.8	77
2659	Correlation of Device Performance and Fermi Level Shift in the Emitting Layer of Organic Light-Emitting Diodes with Amine-Based Electron Injection Layers. ACS Applied Materials & Interfaces, 2018, 10, 8877-8884.	4.0	6
2660	N-Type Self-Doped Water/Alcohol-Soluble Conjugated Polymers with Tailored Energy Levels for High-Performance Polymer Solar Cells. Macromolecules, 2018, 51, 2195-2202.	2.2	33
2661	Mapping nanoscale effects of localized noise-source activities on photoconductive charge transports in polymer-blend films. Nanotechnology, 2018, 29, 205204.	1.3	3
2662	Performance enhancement in organic photovoltaic solar cells using iridium (Ir) ultra-thin surface modifier (USM). Applied Surface Science, 2018, 444, 97-104.	3.1	11
2663	Next-generation organic photovoltaics based on non-fullerene acceptors. Nature Photonics, 2018, 12, 131-142.	15.6	1,535
2664	Anthracene-Based Organic Small-Molecule Electron-Injecting Material for Inverted Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 11810-11817.	4.0	9

#	Article	IF	CITATIONS
2665	A Nonconjugated Zwitterionic Polymer: Cathode Interfacial Layer Comparable with PFN for Narrowâ€Bandgap Polymer Solar Cells. Macromolecular Rapid Communications, 2018, 39, e1700828.	2.0	14
2666	Oriented thin films of mixture of a low-bandgap polymer and a fullerene derivative prepared by friction-transfer method. Japanese Journal of Applied Physics, 2018, 57, 02CA06.	0.8	2
2667	Construction of Layered Structure of Anion–Cations To Tune the Work Function of Aluminum-Doped Zinc Oxide for Inverted Polymer Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 10513-10519.	4.0	16
2668	Highly efficient non-fullerene polymer solar cells enabled by novel non-conjugated small-molecule cathode interlayers. Journal of Materials Chemistry A, 2018, 6, 6327-6334.	5.2	42
2669	Combined Ultramicrotomy and Atomic Force Microscopy Study of the Structure of a Bulk Heterojunction in Polymer Solar Cells. Semiconductors, 2018, 52, 105-111.	0.2	0
2670	Figures of Merit Guiding Research on Organic Solar Cells. Journal of Physical Chemistry C, 2018, 122, 5829-5843.	1.5	34
2672	Triptycenylâ€phenazinoâ€ŧhiadiazole as acceptor in organic bulk-heterojunction solar cells. Organic Electronics, 2018, 57, 285-291.	1.4	16
2673	Hydroelectric power plant on a paper strip. Lab on A Chip, 2018, 18, 1560-1568.	3.1	31
2674	Recent advances in semi-transparent polymer and perovskite solar cells for power generating window applications. Energy and Environmental Science, 2018, 11, 1688-1709.	15.6	266
2675	Sol–gel synthesis of DyCrO ₃ and 10% Fe-doped DyCrO ₃ nanoparticles with enhanced photocatalytic hydrogen production abilities. RSC Advances, 2018, 8, 14258-14267.	1.7	24
2676	Low Work Function Surface Modifiers for Solutionâ€Processed Electronics: A Review. Advanced Materials Interfaces, 2018, 5, 1701404.	1.9	56
2677	Fabrication of Flexible and Semitransparent PTB7:PC ₇₁ BM Organic Solar Cells. Materials Science Forum, 0, 916, 212-216.	0.3	3
2678	Thermal Conductivity of Polymers and Their Nanocomposites. Advanced Materials, 2018, 30, e1705544.	11.1	442
2679	Chlorine substituted 2D-conjugated polymer for high-performance polymer solar cells with 13.1% efficiency via toluene processing. Nano Energy, 2018, 48, 413-420.	8.2	257
2680	A Highly Planar Nonfullerene Acceptor with Multiple Noncovalent Conformational Locks for Efficient Organic Solar Cells. Small Methods, 2018, 2, 1700330.	4.6	35
2681	Designing a ternary photovoltaic cell for indoor light harvesting with a power conversion efficiency exceeding 20%. Journal of Materials Chemistry A, 2018, 6, 8579-8585.	5.2	124
2682	A Donor Polymer Based on a Difluorinated Pentathiophene Unit Enabling Enhanced Performance for Nonfullerene Organic Solar Cells. Small Methods, 2018, 2, 1700415.	4.6	13
2683	Optimization of Bulk Heterojunction Organic Photovoltaic Devices. , 2018, , 1-36.		1

#	Article	IF	CITATIONS
2684	Perylene Diimide-Based Zwitterion as the Cathode Interlayer for High-Performance Nonfullerene Polymer Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 14986-14992.	4.0	35
2685	Synthesis and Photovoltaic Properties of the Copolymers Based on Carbazole with Tetrathiophene Porphyrin Side Chains Linked by a Flexible Alkylâ€interval. Chinese Journal of Chemistry, 2018, 36, 599-604.	2.6	5
2686	Effect of electron-withdrawing terminal group on BDT-based donor materials for organic solar cells: a theoretical investigation. Theoretical Chemistry Accounts, 2018, 137, 1.	0.5	17
2687	Low-Temperature Solution-Processed Mg:SnO ₂ Nanoparticles as an Effective Cathode Interfacial Layer for Inverted Polymer Solar Cell. ACS Sustainable Chemistry and Engineering, 2018, 6, 6702-6710.	3.2	25
2688	Fabrication and Characterization of Hybrid Organic–Inorganic Electron Extraction Layers for Polymer Solar Cells toward Improved Processing Robustness and Air Stability. ACS Applied Materials & Interfaces, 2018, 10, 17309-17317.	4.0	11
2689	Impact of inkjet printed ZnO electron transport layer on the characteristics of polymer solar cells. RSC Advances, 2018, 8, 13094-13102.	1.7	41
2690	The efficient n-doping of [6,6]-phenyl C61-butyric acid methyl ester by leuco-crystal violet to enhance the performance of inverted organic solar cells. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	3
2692	Recent developments of truly stretchable thin film electronic and optoelectronic devices. Nanoscale, 2018, 10, 5764-5792.	2.8	91
2693	Improvement of inverted organic solar cells using acetic acid as an additive for ZnO layer processing. AIP Advances, 2018, 8, .	0.6	2
2694	High-efficiency solution-processed CdTe nanocrystal solar cells incorporating a novel crosslinkable conjugated polymer as the hole transport layer. Nano Energy, 2018, 46, 150-157.	8.2	31
2695	Conjugated Polymers for Flexible Energy Harvesting and Storage. Advanced Materials, 2018, 30, e1704261.	11.1	161
2696	Self-Adaptive Switch Enabling Complete Charge Separation in Molecular-Based Optoelectronic Conversion. Journal of Physical Chemistry Letters, 2018, 9, 837-843.	2.1	11
2697	Simulating Phase Separation during Spin Coating of a Polymer–Fullerene Blend: A Joint Computational and Experimental Investigation. ACS Applied Energy Materials, 2018, 1, 725-735.	2.5	34
2698	Highly loaded PbS/Mn-doped CdS quantum dots for dual application in solar-to-electrical and solar-to-chemical energy conversion. Applied Catalysis B: Environmental, 2018, 227, 409-417.	10.8	59
2699	Interface engineering through electron transport layer modification for high efficiency organic solar cells. RSC Advances, 2018, 8, 5984-5991.	1.7	24
2700	High-Performance Inverted Polymer Solar Cells: Study and Analysis of Different Cathode Buffer Layers. IEEE Journal of Photovoltaics, 2018, 8, 505-511.	1.5	12
2701	Small Molecule Interlayers in Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1702730.	10.2	60
2702	Efficient carbazole-based small-molecule organic solar cells with an improved fill factor. RSC Advances, 2018, 8, 4867-4871.	1.7	11

#	Article	IF	CITATIONS
2703	Recent Advances of Flexible Data Storage Devices Based on Organic Nanoscaled Materials. Small, 2018, 14, 1703126.	5.2	135
2704	Interfacial Modification Using Hydrogenated TiO ₂ Electronâ€Selective Layers for Highâ€Efficiency and Lightâ€Soakingâ€Free Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1703064.	10.2	23
2705	Toward a universal polymeric material for electrode buffer layers in organic and perovskite solar cells and organic light-emitting diodes. Energy and Environmental Science, 2018, 11, 682-691.	15.6	19
2706	Selfâ€Doping Fullerene Electrolyteâ€Based Electron Transport Layer for Allâ€Roomâ€Temperatureâ€Processed Highâ€Performance Flexible Polymer Solar Cells. Advanced Functional Materials, 2018, 28, 1705847.	7.8	54
2707	Interfacial engineering of printable bottom back metal electrodes for full-solution processed flexible organic solar cells. Journal of Semiconductors, 2018, 39, 014002.	2.0	11
2708	Fabrication of a Combustion-Reacted High-Performance ZnO Electron Transport Layer with Silver Nanowire Electrodes for Organic Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 7214-7222.	4.0	15
2709	Origin of Reduced Open-Circuit Voltage in Highly Efficient Small-Molecule-Based Solar Cells upon Solvent Vapor Annealing. ACS Applied Materials & Interfaces, 2018, 10, 8141-8147.	4.0	26
2710	Polymer Solar Cells with 90% External Quantum Efficiency Featuring an Ideal Light―and Chargeâ€Manipulation Layer. Advanced Materials, 2018, 30, e1706083.	11.1	76
2711	Effect of trifluoroacetic acid treatment of PEDOT:PSS layers on the performance and stability of organic solar cells. Journal of Materials Science: Materials in Electronics, 2018, 29, 6607-6618.	1.1	9
2712	Highly efficient polymer solar cells with a thienopyrroledione and benzodithiophene containing planar random copolymer. Polymer Chemistry, 2018, 9, 1216-1222.	1.9	19
2713	Hole transport layer based on conjugated polyelectrolytes for polymer solar cells. Journal of Colloid and Interface Science, 2018, 518, 21-26.	5.0	18
2714	Printed Nonfullerene Organic Solar Cells with the Highest Efficiency of 9.5%. Advanced Energy Materials, 2018, 8, 1701942.	10.2	99
2715	Plasmonic Organic Photovoltaics: Unraveling Plasmonic Enhancement for Realistic Cell Geometries. ACS Photonics, 2018, 5, 1440-1452.	3.2	27
2716	Oxide Layers in Organic Solar Cells for an Optimal Photon Management. , 2018, , 481-499.		0
2717	Substituent position engineering of phosphine oxide functionalized triazine-based cathode interfacial materials for flexible organic and perovskite solar cells. Organic Electronics, 2018, 54, 54-63.	1.4	9
2718	Green synthesis of zin tin oxide (ZnSnO3) nanoparticles using Aspalathus Linearis natural extracts: Structural, morphological, optical and electrochemistry study. Applied Surface Science, 2018, 446, 250-257.	3.1	67
2719	Investigating coating method induced vertical phase distribution in polymer-fullerene organic solar cells. Solar Energy Materials and Solar Cells, 2018, 179, 241-246.	3.0	7
2720	Organic solar cells on Al electroded opaque substrates: Assessing the need of ZnO as electron transport layer. Solar Energy, 2018, 160, 396-403.	2.9	16

#	Article	IF	CITATIONS
2721	Voltage Losses in Organic Solar Cells: Understanding the Contributions of Intramolecular Vibrations to Nonradiative Recombinations. Advanced Energy Materials, 2018, 8, 1702227.	10.2	47
2722	Unique cohesive nature of the l² ₁ -isomer of [70]PCBM fullerene on structures and photovoltaic performances of bulk heterojunction films with PffBT4T-2OD polymers. Chemical Communications, 2018, 54, 405-408.	2.2	24
2723	Facile embedding of gold nanostructures in the hole transporting layer for efficient polymer solar cells. Organic Electronics, 2018, 54, 148-153.	1.4	7
2724	Increased omnidirectional light absorbance by using hollow silica nanoparticles in an anti-reflective pattern for efficient organic photovoltaic devices. Organic Electronics, 2018, 53, 315-319.	1.4	1
2725	Mechanically robust, stretchable organic solar cells via buckle-on-elastomer strategy. Organic Electronics, 2018, 53, 339-345.	1.4	32
2726	Low-temperature solution-processed ionic liquid modified SnO2 as an excellent electron transport layer for inverted organic solar cells. Solar Energy Materials and Solar Cells, 2018, 179, 260-269.	3.0	33
2727	A silanol-functionalized polyoxometalate with excellent electron transfer mediating behavior to ZnO and TiO ₂ cathode interlayers for highly efficient and extremely stable polymer solar cells. Journal of Materials Chemistry C, 2018, 6, 1459-1469.	2.7	25
2728	Controlling aggregate formation in conjugated polymers by spin oating below the critical temperature of the disorder–order transition. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 532-542.	2.4	34
2729	Reinforcing the Builtâ€In Field for Efficient Charge Collection in Polymer Solar Cells. Advanced Functional Materials, 2018, 28, 1705079.	7.8	23
2730	Oxygen Contribution for Uniform Formation of Crystalline Zinc Oxide/Polyethylenimine Interfaces to Boost Charge Generation/Transport in Inverted Organic Solar Cells. Journal of Industrial and Engineering Chemistry, 2018, 61, 314-320.	2.9	2
2731	Alkyl Chain Regiochemistry of Benzotriazoleâ€Based Donor Polymers Influencing Morphology and Performances of Nonâ€Fullerene Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1702427.	10.2	36
2732	Fully Solutionâ€Processed Semiâ€Transparent Perovskite Solar Cells With Inkâ€Jet Printed Silver Nanowires Top Electrode. Solar Rrl, 2018, 2, 1700184.	3.1	66
2733	2D expanded conjugated polymers with non-fullerene acceptors for efficient polymer solar cells. Journal of Materials Chemistry C, 2018, 6, 1753-1758.	2.7	11
2734	Raman study of bulk-heterojunction morphology in photoactive layers treated with solvent-vapor annealing. Japanese Journal of Applied Physics, 2018, 57, 03EC01.	0.8	1
2735	Alkali Salt-Doped Highly Transparent and Thickness-Insensitive Electron-Transport Layer for High-Performance Polymer Solar Cell. ACS Applied Materials & Interfaces, 2018, 10, 1939-1947.	4.0	18
2736	Semiconducting silicon-tin alloy nanocrystals with direct bandgap behavior for photovoltaic devices. Materials Today Energy, 2018, 7, 87-97.	2.5	15
2737	Hybrid Tandem Quantum Dot/Organic Solar Cells with Enhanced Photocurrent and Efficiency via Ink and Interlayer Engineering. ACS Energy Letters, 2018, 3, 1307-1314.	8.8	40
2738	Introducing paired electric dipole layers for efficient and reproducible perovskite solar cells. Energy and Environmental Science, 2018, 11, 1742-1751.	15.6	76

#	Article	IF	CITATIONS
2739	Absence of Mixed Phase in Organic Photovoltaic Active Layers Facilitates Use of Green Solvent Processing. Journal of Physical Chemistry C, 2018, 122, 11136-11144.	1.5	10
2740	Novel small-molecule zwitterionic electrolyte with ultralow work function as cathode modifier for inverted polymer solar cells. Organic Electronics, 2018, 59, 15-20.	1.4	14
2741	Controllable Spatial Configuration on Cathode Interface for Enhanced Photovoltaic Performance and Device Stability. ACS Applied Materials & amp; Interfaces, 2018, 10, 17401-17408.	4.0	11
2742	2D/2D vanadyl phosphate (VP) on reduced graphene oxide as a hole transporting layer for efficient organic solar cells. Organic Electronics, 2018, 59, 92-98.	1.4	13
2743	Photocrosslinking of low band-gap conjugated polymers using alkyl chloride sidechains: Toward high-efficiency, thermally stable polymer solar cells. Journal of Materials Research, 2018, 33, 1879-1890.	1.2	5
2744	In Situ Passivation for Efficient PbS Quantum Dot Solar Cells by Precursor Engineering. Advanced Materials, 2018, 30, e1704871.	11.1	125
2745	Recombination Losses Above and Below the Transport Percolation Threshold in Bulk Heterojunction Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1703339.	10.2	16
2746	Advances in Polymer-Based Photovoltaic Cells: Review of Pioneering Materials, Design, and Device Physics. , 2018, , 1-48.		1
2747	Analyzing p-type Conjugated Conducting Poly (diaminonaphthalene) Doped Poly (vinyl alcohol) Bulk Hetrojunction Film for Organic Solar Cells. Materials Today: Proceedings, 2018, 5, 1673-1678.	0.9	4
2748	Stability study in organic solar cells based on PTB7:PC71BM and the scaling effect of the active layer. Solar Energy, 2018, 163, 510-518.	2.9	32
2749	Hole Extraction Enhancement for Efficient Polymer Solar Cells with Boronic Acid Functionalized Carbon Nanotubes doped Hole Transport Layers. ACS Sustainable Chemistry and Engineering, 2018, 6, 5122-5131.	3.2	20
2750	Benefits of fullerene/SnO 2 bilayers as electron transport layer for efficient planar perovskite solar cells. Organic Electronics, 2018, 58, 294-300.	1.4	26
2751	Enhanced photovoltaic performance of polymer solar cells through design of a fused dithienosilolodithiophene structure with an enlarged π-conjugated system. Journal of Materials Chemistry C, 2018, 6, 4208-4216.	2.7	11
2752	Synergy of a titanium chelate electron collection layer and a vertical phase separated photoactive layer for efficient inverted polymer solar cells. Journal of Materials Chemistry A, 2018, 6, 7257-7264.	5.2	20
2753	Kelvin Probe Force Microscopy Characterization of Organic and Hybrid Perovskite Solar Cells. Springer Series in Surface Sciences, 2018, , 331-365.	0.3	7
2754	Edge-functionalized graphene quantum dots as a thickness-insensitive cathode interlayer for polymer solar cells. Nano Research, 2018, 11, 4293-4301.	5.8	22
2755	Tackling Energy Loss for Highâ€Efficiency Organic Solar Cells with Integrated Multiple Strategies. Advanced Materials, 2018, 30, e1706816.	11.1	92
2756	Morphological study of an intrinsically stretchable photovoltaic bulk heterojunction. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 814-820.	2.4	8

#	Article	IF	CITATIONS
2757	Finely Tuned Composition in Conjugated Polyelectrolytes for Interfacial Engineering of Efficient Polymer Solar Cells. Small Methods, 2018, 2, 1700407.	4.6	24
2758	Optical, film surface and photovoltaic properties of PTB7-Fx-based polymer-organic solar cells prepared in ambient conditions. Chemical Papers, 2018, 72, 1669-1676.	1.0	2
2759	Effects of doping of mercury atom(s) on optoelectronic properties of binary zinc chalcogenides - A first principle based theoretical investigation. Journal of Alloys and Compounds, 2018, 748, 446-463.	2.8	14
2760	Efficient cascade multiple heterojunction organic solar cells with inverted structure. Superlattices and Microstructures, 2018, 117, 215-219.	1.4	3
2761	Nanodiamond: a multitalented material for cutting edge solar cell application. Materials Research Innovations, 2018, 22, 302-314.	1.0	19
2762	Thermal stability of low-bandgap copolymers PTB7 and PTB7-Th and their bulk heterojunction composites. Polymer Bulletin, 2018, 75, 515-532.	1.7	26
2763	Plasmonic organic bulk–heterojunction solar cells based on hydrophobic gold nanorod insertion into active layers. Journal of Applied Polymer Science, 2018, 135, 45920.	1.3	8
2764	Influence of Donor Polymer on the Molecular Ordering of Small Molecular Acceptors in Nonfullerene Polymer Solar Cells. Advanced Energy Materials, 2018, 8, 1701674.	10.2	60
2765	Facile preparation and characterization of ZnCdS nanocrystals for interfacial applications in photovoltaic devices. Journal of Colloid and Interface Science, 2018, 512, 353-360.	5.0	36
2766	The electronic structures and optical properties of fullerene derivatives for organic solar cells: The number and size effects of fullerene-cage. Materials Chemistry and Physics, 2018, 204, 95-104.	2.0	14
2767	Processability Issue in Inverted Organic Solar Cells. , 2018, , 405-420.		1
2768	A Facile Method to Fine‶une Polymer Aggregation Properties and Blend Morphology of Polymer Solar Cells Using Donor Polymers with Randomly Distributed Alkyl Chains. Advanced Energy Materials, 2018, 8, 1701895.	10.2	62
2769	New application of AIEgens realized in photodetectors: reduced work function of transparent electrodes and much improved performance. Materials Chemistry Frontiers, 2018, 2, 264-269.	3.2	23
2770	Medium band gap conjugated polymers from thienoacene derivatives and pentacyclic aromatic lactam as promising alternatives of poly(3â€hexylthiophene) in photovoltaic application. Journal of Polymer Science Part A, 2018, 56, 85-95.	2.5	30
2771	Semi-transparent polymer solar cells with all-copper nanowire electrodes. Nano Research, 2018, 11, 1956-1966.	5.8	23
2772	Hybrid Solar Cells: Effects of the Incorporation of Inorganic Nanoparticles into Bulk Heterojunction Organic Solar Cells. , 2018, , 1-68.		3
2773	Polymer Solar Cells. Green Chemistry and Sustainable Technology, 2018, , 45-108.	0.4	1
2774	Improving the performance of polymer solar cells by efficient optimizing the hole transport layer-graphene oxide. Journal of Solid State Electrochemistry, 2018, 22, 317-329.	1.2	6

#	Article	IF	CITATIONS
2775	Role of organic interfacial modifiers in inverted polymers solar cells: An in-depth analysis of perylene vs fullerene organic modifiers. Applied Surface Science, 2018, 435, 855-862.	3.1	7
2776	Semiconducting Copolymers Based on <i>meso</i> â€Substituted BODIPY for Inverted Organic Solar Cells and Fieldâ€Effect Transistors. Advanced Electronic Materials, 2018, 4, 1700354.	2.6	18
2777	Highly efficient polyacetylene–based polyelectrolytes as cathode interfacial layers for organic solar cell applications. Organic Electronics, 2018, 53, 265-272.	1.4	35
2778	Boosting Electron Extraction in Polymer Solar Cells by Introducing a N-Type Organic Semiconductor Interface Layer. Journal of Physical Chemistry C, 2018, 122, 207-215.	1.5	8
2779	Patterning Conjugated Polymers by Laser: Synergy of Nanostructure Formation in the All-Polymer Heterojunction P3HT/PCDTBT. Langmuir, 2018, 34, 115-125.	1.6	12
2780	Efficient Large Area Organic Solar Cells Processed by Blade oating With Single omponent Green Solvent. Solar Rrl, 2018, 2, 1700169.	3.1	79
2781	A solution-processed binary cathode interfacial layer facilitates electron extraction for inverted polymer solar cells. Journal of Colloid and Interface Science, 2018, 514, 328-337.	5.0	6
2782	Effect of titanium chelate as a function of thickness on the electron mobility and electron transport and collection efficiency. Solar Energy, 2018, 159, 458-464.	2.9	5
2783	Impact of side chain placement on thermal stability of solar cells in thiophene–thiazolothiazole polymers. Journal of Materials Chemistry C, 2018, 6, 3668-3674.	2.7	15
2784	Fluorine-induced self-doping and spatial conformation in alcohol-soluble interlayers for highly-efficient polymer solar cells. Journal of Materials Chemistry A, 2018, 6, 423-433.	5.2	23
2785	Revealing the Working Mechanisms of Planar Perovskite Solar Cells With Cross-Sectional Surface Potential Profiling. IEEE Journal of Photovoltaics, 2018, 8, 125-131.	1.5	20
2786	Progress Toward Diamond Power Fieldâ€Effect Transistors. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800681.	0.8	50
2787	Light-soaking free organic photovoltaic devices with sol–gel deposited ZnO and AZO electron transport layers. RSC Advances, 2018, 8, 36542-36548.	1.7	29
2788	Improvement in interlayer structure of p–i–n-type organic solar cells with the use of fullerene-linked tetrabenzoporphyrin as additive. RSC Advances, 2018, 8, 35237-35245.	1.7	2
2789	Effects of 1,8-diiodooctane on domain nanostructure and charge separation dynamics in PC ₇₁ BM-based bulk heterojunction solar cells. Journal of Materials Chemistry A, 2018, 6, 23805-23818.	5.2	16
2790	A bright outlook on organic photoelectrochemical cells for water splitting. Journal of Materials Chemistry A, 2018, 6, 21809-21826.	5.2	53
2791	Donor polymer based on alkylthiophene side chains for efficient non-fullerene organic solar cells: insights into fluorination and side chain effects on polymer aggregation and blend morphology. Journal of Materials Chemistry A, 2018, 6, 23270-23277.	5.2	16
2792	Super-connected graphenic nanosheets via well-oriented bridges of naphthothiadiazole and benzodithiophene-containing donor–acceptors and photovoltaic applications thereof. New Journal of Chemistry, 2018, 42, 20041-20048.	1.4	5

#	Article	IF	CITATIONS
2793	New iridium-containing conjugated polymers for polymer solar cell applications. New Journal of Chemistry, 2018, 42, 17296-17302.	1.4	9
2794	Micro-Segregated Liquid Crystal Haze Films for Photovoltaic Applications: A Novel Strategy to Fabricate Haze Films Employing Liquid Crystal Technology. Materials, 2018, 11, 2188.	1.3	4
2795	Improved charge transport via WSe ₂ -mediated hole transporting layer toward efficient organic solar cells. Semiconductor Science and Technology, 2018, 33, 125020.	1.0	11
2796	New 2D-Conjugated Polymer for Non-Halogenated and Halogenated Solvents Processed Organic Solar Cells. Macromolecular Research, 2018, 26, 1276-1279.	1.0	9
2797	Transparent Conductive Oxide Materials. Springer Series in Optical Sciences, 2018, , 523-563.	0.5	3
2798	Modified SnO ₂ with Alkali Carbonates as Robust Electron-Transport Layers for Inverted Organic Solar Cells. ACS Omega, 2018, 3, 18398-18410.	1.6	28
2799	Recent Developments in the Optimization of the Bulk Heterojunction Morphology of Polymer: Fullerene Solar Cells. Materials, 2018, 11, 2560.	1.3	63
2800	Alcohol-Soluble Cross-Linked Poly(<i>n</i> BA) _{<i>n</i>} - <i>b</i> Poly(NVTri) _{<i>m</i>} Block Copolymer and Its Applications in Organic Photovoltaic Cells for Improved Stability. ACS Applied Materials & amp; Interfaces 2018 10 44741-44750	4.0	10
2801	Research Progress in Organic Photomultiplication Photodetectors. Nanomaterials, 2018, 8, 713.	1.9	44
2802	Recent Progress in Fused-Ring Based Nonfullerene Acceptors for Polymer Solar Cells. Frontiers in Chemistry, 2018, 6, 404.	1.8	24
2803	Synthesis and Characterization of Thiopheneâ€Endcapped 3,7â€Diphenyl Dipyrrolo[2,3â€ <i>b</i> : 2′,3′â€ <i>e</i>]pyrazineâ€2,6(1 <i>H</i> ,5 <i>H</i>)â€diones as Nonâ€ Materials for Organic Solar Cells. Asian Journal of Organic Chemistry, 2018, 7, 2105-2112.	Fullørene /	Acteptor
2804	Efficient dual cathode interfacial layer for high performance organic and perovskite solar cells. Organic Electronics, 2018, 63, 222-230.	1.4	11
2805	Rational synthesis of a polymerizable fullerene–aniline derivative: study of photophysical, morphological and photovoltaic properties \$\$^{S }\$\$ §. Journal of Chemical Sciences, 2018, 130, 1.	0.7	1
2806	Efficient Nonfullerene Organic Solar Cells with Small Driving Forces for Both Hole and Electron Transfer. Advanced Materials, 2018, 30, e1804215.	11.1	161
2807	Magnetic fields: a tool for the study of organic solar cells. European Physical Journal: Special Topics, 2018, 227, 259-268.	1.2	6
2808	Distinctive Nanocrater Structures in Hybrid Electronâ€Collecting Buffer Layers for High Efficiency Polymer:Nonfullerene Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800912.	1.9	5
2809	Hole transport layer free bulk heterojunction organic solar cells with high work function ITO anodes. AIP Advances, 2018, 8, 095027.	0.6	2
2810	Theoretical Approach Towards Rational Design and Characterization of Benzo[1,2-b:5-B']dithiophene (BDT)-Based (A-D-A) Small Molecules of Relevance for High Performance Solar Cells. Journal of Material Science & Engineering, 2018, 07, .	0.2	0

# 2811	ARTICLE Interlayer Modification Using Eco-friendly Glucose-Based Natural Polymers in Polymer Solar Cells. ACS Sustainable Chemistry and Engineering, 2018, 6, 14621-14630.	IF 3.2	Citations 33
2812	Bio-Inspired Catecholamine-Derived Surface Modifier for Graphene-Based Organic Solar Cells. ACS Applied Energy Materials, 2018, 1, 6463-6468.	2.5	12
2813	Toward Efficient Carbon-Dots-Based Electron-Extraction Layer Through Surface Charge Engineering. ACS Applied Materials & Interfaces, 2018, 10, 40255-40264.	4.0	12
2814	Study of interface chemistry between the carrier-transporting layers and their influences on the stability and performance of organic solar cells. Applied Nanoscience (Switzerland), 2018, 8, 1325-1341.	1.6	9
2815	Facile Synthesis of an Efficient and Robust Cathode Interface Material for Polymer Solar Cells. ACS Applied Energy Materials, 2018, 1, 7130-7139.	2.5	16
2816	Chalcogenophene-Sensitive Charge Carrier Transport Properties in A–D–A′′–D Type NBDO-Based Copolymers for Flexible Field-Effect Transistors. Macromolecules, 2018, 51, 8662-8671.	2.2	12
2817	Hybrid, Multi-Source, and Integrated Energy Harvesters. Frontiers in Materials, 2018, 5, .	1.2	33
2818	High-performance and long-term stable inverted ternary solar cells based on PTB7-Th/N2200/PC71BM blends. Solar Energy, 2018, 176, 170-177.	2.9	13
2819	A Brief Study of Organic & Perovskite-Type Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
2820	Efficient CdTe Nanocrystal/TiO2 Hetero-Junction Solar Cells with Open Circuit Voltage Breaking 0.8 V by Incorporating A Thin Layer of CdS Nanocrystal. Nanomaterials, 2018, 8, 614.	1.9	7
2821	Physicochemical Studies on Nafion® Modified ZnO Interlayers for Enhanced Electron Transport in the Inverted Polymer Solar Cells. ChemistrySelect, 2018, 3, 9995-10001.	0.7	2
2822	High-efficiency organic solar cells based on a halide salt and polyfluorene polymer with a high alignment-level of the cathode selective contact. Journal of Materials Chemistry A, 2018, 6, 22534-22544.	5.2	32
2823	Enhancing the Photovoltaic Performance of Nonfullerene Acceptors via Conjugated Rotatable End Groups. Advanced Energy Materials, 2018, 8, 1802131.	10.2	24
2824	An alternative hole extraction layer for inverted organic solar cells. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	3
2825	Passivation effect of composite organic interlayer on polymer solar cells. Organic Electronics, 2018, 63, 129-136.	1.4	4
2826	Relationship between cis-trans isomerism and optical and electrical properties based on benzidiimidazole-thiophene copolymer. Synthetic Metals, 2018, 245, 175-181.	2.1	4
2827	Balance Between Light Absorption and Recombination Losses in Solutionâ€Processed Small Molecule Solar Cells with Normal or Inverted Structures. Advanced Energy Materials, 2018, 8, 1801807.	10.2	17
2828	An experimental and computational study of donor–linker–acceptor block copolymers for organic photovoltaics. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1135-1143.	2.4	4

# 2829	ARTICLE Facile integration of low-cost black phosphorus in solution-processed organic solar cells with improved fill factor and device efficiency. Nano Energy, 2018, 53, 345-353.	IF 8.2	Citations 39
2830	Effect of cathode interface thickness on the photovoltaic parameters of bulk heterojunction organic solar cells. Materials Research Express, 2018, 5, 116203.	0.8	2
2831	An extremely narrow band gap conjugated polymer for photovoltaic devices covering UV to near-infrared light. Dyes and Pigments, 2018, 158, 319-325.	2.0	11
2832	Enhancement of the air-stability and optimization of VOC by changing molecular conformation of polyelectrolytes. Journal of Industrial and Engineering Chemistry, 2018, 63, 426-436.	2.9	1
2833	The Impact of Device Polarity on the Performance of Polymer–Fullerene Solar Cells. Advanced Energy Materials, 2018, 8, 1800550.	10.2	25
2834	Key Tradeoffs Limiting the Performance of Organic Photovoltaics. Advanced Energy Materials, 2018, 8, 1703551.	10.2	71
2835	Toward ultra-low reflectance semi-transparent organic photovoltaic cells with biomimetic nanostructured transparent electrode. Organic Electronics, 2018, 60, 38-44.	1.4	15
2836	11% Organic Photovoltaic Devices Based on PTB7â€Th: PC ₇₁ BM Photoactive Layers and Irradiationâ€Assisted ZnO Electron Transport Layers. Advanced Science, 2018, 5, 1700858.	5.6	42
2837	Progress in organic molecular/ferromagnet spinterfaces: towards molecular spintronics. Journal of Materials Chemistry C, 2018, 6, 6619-6636.	2.7	40
2838	Electronic structure and nonlinear optical properties of organic photovoltaic systems with potential applications on solar cell devices: a DFT approach. Theoretical Chemistry Accounts, 2018, 137, 1.	0.5	17
2839	Eliminating light soaking effect of inverted polymer solar cells functionalized with a conjugated macroelectrolyte electron-collecting interlayer. Electrochimica Acta, 2018, 281, 218-226.	2.6	3
2840	Stepwise heating in Stille polycondensation toward no batch-to-batch variations in polymer solar cell performance. Nature Communications, 2018, 9, 1867.	5.8	60
2841	The effect of alcohol solvent treatment on the performance of inverted polymer solar cells. Journal of Materials Science: Materials in Electronics, 2018, 29, 11672-11678.	1.1	3
2842	Effect of Active Layer Thickness on the Performance of Polymer Solar Cells Based on a Highly Efficient Donor Material of PTB7-Th. Journal of Physical Chemistry C, 2018, 122, 16532-16539.	1.5	37
2843	Quantitative Determination of Contribution by Enhanced Local Electric Field, Antennaâ€Amplified Light Scattering, and Surface Energy Transfer to the Performance of Plasmonic Organic Solar Cells. Small, 2018, 14, e1800870.	5.2	20
2844	Influence of side chains on low optical bandgap copolymers based on 2,1,3-benzoxadiazole for polymer solar cells. Organic Electronics, 2018, 61, 261-265.	1.4	4
2845	Effect of fullerene acceptor on the performance of solar cells based on PffBT4T-2OD. Physical Chemistry Chemical Physics, 2018, 20, 19023-19029.	1.3	14
2846	Simultaneously improving efficiency and transparency of semitransparent organic solar cells by constructing semitransparent microcavity. Optik, 2018, 171, 706-714.	1.4	13

#	Article	IF	CITATIONS
2847	Correlating Nanoscale Morphology with Device Performance in Conventional and Inverted PffBT4T-2OD:PC ₇₁ BM Polymer Solar Cells. ACS Applied Energy Materials, 2018, 1, 3505-3512.	2.5	7
2848	Recent advances in copper complexes for electrical/light energy conversion. Coordination Chemistry Reviews, 2018, 375, 514-557.	9.5	159
2849	Crystal structure oriented carrier transport characteristic of triphenylamine derivative single crystal. AIP Advances, 2018, 8, .	0.6	7
2850	Assessment of the performance of four dispersion-corrected DFT methods using optoelectronic properties and binding energies of organic monomer/fullerene pairs. Computational and Theoretical Chemistry, 2018, 1139, 15-26.	1.1	10
2851	Insights into the passivation effect of atomic layer deposited hafnium oxide for efficiency and stability enhancement in organic solar cells. Journal of Materials Chemistry C, 2018, 6, 8051-8059.	2.7	20
2852	The influence of ionic radius of interfacial molecule on device performances of polymer solar cells. Solar Energy, 2018, 170, 906-912.	2.9	4
2853	Improvement of MoO3/Ag/MoO3 multilayer transparent electrodes for organic solar cells by using UV–ozone treated MoO3 layer. Solar Energy Materials and Solar Cells, 2018, 186, 131-141.	3.0	37
2854	Metal Ion/Dendrimer Complexes with Tunable Work Functions in a Wide Range and Their Application as Electron―and Holeâ€Transport Materials of Nonâ€Fullerene Organic Solar Cells. Advanced Functional Materials, 2018, 28, 1802554.	7.8	13
2855	Efficient Inverted Polymer Solar Cells with ITO Cathode Modified by Zinc Oxide and Polyethylene Oxide Bilayers. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800113.	0.8	2
2856	Quantum Simulations of Charge Separation at a Model Donor-Acceptor Interface: Role of Delocalization and Local Packing. Advances in Condensed Matter Physics, 2018, 2018, 1-10.	0.4	3
2857	Dynamic Evolution from Chain Disorder to Order of PTB7 Condensed State Structures under External Fields. ACS Applied Materials & Interfaces, 2018, 10, 28093-28102.	4.0	11
2858	Highly efficient polymer solar cells <i>via</i> multiple cascade energy level engineering. Journal of Materials Chemistry C, 2018, 6, 9119-9129.	2.7	16
2859	Trifluoromethyl-Substituted Large Band-Gap Polytriphenylamines for Polymer Solar Cells with High Open-Circuit Voltages. Polymers, 2018, 10, 52.	2.0	1
2860	Fluorination Triggered New Small Molecule Donor Materials for Efficient As ast Organic Solar Cells. Small, 2018, 14, e1801542.	5.2	22
2861	Improving Ambipolar Semiconducting Properties of Thiazole-Flanked Diketopyrrolopyrrole-Based Terpolymers by Incorporating Urea Groups in the Side-Chains. Macromolecules, 2018, 51, 6003-6010.	2.2	30
2862	Effect of Ringâ€Fusion on Miscibility and Domain Purity: Key Factors Determining the Performance of PDIâ€Based Nonfullerene Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1800234.	10.2	75
2863	Optical Gaps of Organic Solar Cells as a Reference for Comparing Voltage Losses. Advanced Energy Materials, 2018, 8, 1801352.	10.2	319
2864	An Improved Organic Solar Cell Lumped-Parameter Equivalent Circuit Model. Crystals, 2018, 8, 277.	1.0	8

#	Article	IF	CITATIONS
2865	Synergistic Effects of Fluorination and Alkylthiolation on the Photovoltaic Performance of the Poly(benzodithiophene-benzothiadiazole) Copolymers. ACS Applied Energy Materials, 2018, 1, 4686-4694.	2.5	9
2866	p-Type CuCrO ₂ particulate films as the hole transporting layer for CH ₃ NH ₃ Pbl ₃ perovskite solar cells. RSC Advances, 2018, 8, 27956-27962.	1.7	48
2867	Effects of alkyl side chain length of low bandgap naphtho[1,2â€ <i>c</i> :5,6â€ <i>c</i> ′]bis[1,2,5]thiadiazoleâ€based copolymers on the optoelectronic propert of polymer solar cells. Journal of Polymer Science Part A, 2018, 56, 2059-2071.	i e s5	20
2868	Improved photomultiplication in inverted-structure organic photodetectors via interfacial engineering. Applied Physics Letters, 2018, 113, .	1.5	19
2869	11.2% Allâ€Polymer Tandem Solar Cells with Simultaneously Improved Efficiency and Stability. Advanced Materials, 2018, 30, e1803166.	11.1	92
2870	[60]Fullereneâ€quinoxaline, benzothiadiazole and benzoselenadiazole based dyads for thermally stable polymer solar cells: anchoring of substituent on fullerene with a poly(3â€hexylthiophene) polymer chain. Polymer International, 2018, 67, 1555-1562.	1.6	2
2871	Conjugated ionic porphyrins as the cathode interlayer materials in organic solar cells. Organic Electronics, 2018, 62, 107-113.	1.4	7
2872	Physical Properties of Organic Fullerene Cocrystals. Frontiers in Materials, 2018, 4, .	1.2	12
2873	Operando Direct Observation of Charge Accumulation and the Correlation with Performance Deterioration in PTB7 Polymer Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 26434-26442.	4.0	23
2874	Emergence of White Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence. Applied Sciences (Switzerland), 2018, 8, 299.	1.3	34
2876	Understanding the Enhanced Open-Circuit Voltage of Polymer Solar Cells Based on a Diketopyrrolopyrrole Small Molecular Acceptor. ACS Applied Materials & Interfaces, 2018, 10, 25589-25593.	4.0	8
2877	Over 100â€nmâ€Thick MoO <i>_x</i> Films with Superior Hole Collection and Transport Properties for Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1800698.	10.2	38
2878	Performance evaluation of environmentally benign nonionic biosurfactant for enhanced oil recovery. Fuel, 2018, 234, 48-55.	3.4	61
2879	Recent Development in ITO-free Flexible Polymer Solar Cells. Polymers, 2018, 10, 5.	2.0	57
2880	Inverted Organic Solar Cells with Low-Temperature Al-Doped-ZnO Electron Transport Layer Processed from Aqueous Solution. Polymers, 2018, 10, 127.	2.0	23
2881	Polymeric Materials for Conversion of Electromagnetic Waves from the Sun to Electric Power. Polymers, 2018, 10, 307.	2.0	9
2882	Optimizing the performance of the bulk heterojunction organic solar cells based on DFT simulations of their interfacial properties. Materials and Design, 2018, 156, 558-569.	3.3	13
2883	A Highly Efficient Nonâ€Fullerene Organic Solar Cell with a Fill Factor over 0.80 Enabled by a Fineâ€Tuned Holeâ€Transporting Layer. Advanced Materials, 2018, 30, e1801801.	11.1	360

#	Article	IF	Citations
2884	Improving the exciton dissociation of polymer/fullerene interfaces with a minimal loading amount of energy cascading molecular dopant. Journal of Materials Chemistry A, 2018, 6, 15977-15984.	5.2	17
2885	Noncovalent phosphorylation of graphene oxide with improved hole transport in high-efficiency polymer solar cells. Nanoscale, 2018, 10, 14840-14846.	2.8	14
2886	Recent Advance in Solutionâ€Processed Organic Interlayers for Highâ€Performance Planar Perovskite Solar Cells. Advanced Science, 2018, 5, 1800159.	5.6	84
2887	Photovoltaic Performance of Inverted Polymer Solar Cells Using Hybrid Carbon Quantum Dots and Absorption Polymer Materials. Electronic Materials Letters, 2018, 14, 581-586.	1.0	12
2888	Does the Electron-Donating Polymer Design Criteria Hold True for the Non-Fullerene Bulk Heterojunction Electron Acceptor Boron Subphthalocyanine? Yes. ACS Applied Energy Materials, 2018, 1, 2490-2501.	2.5	8
2889	Polyelectrolyte interlayers with a broad processing window for high efficiency inverted organic solar cells towards mass production. Journal of Materials Chemistry A, 2018, 6, 17662-17670.	5.2	13
2890	An easily prepared self-assembled interface layer upon active layer doping facilitates charge transfer in polymer solar cells. Electrochimica Acta, 2018, 285, 365-372.	2.6	5
2891	Charge carrier dynamics in PffBT4T-2OD: PCBM organic solar cells. Organic Electronics, 2018, 62, 441-447.	1.4	14
2892	Plasmonic effect of different nanoarchitectures in the efficiency enhancement of polymer based solar cells: A review. Solar Energy, 2018, 173, 905-919.	2.9	40
2893	Mercury ion–DNA specificity triggers a distinctive photoluminescence depression in organic semiconductor probes guided with a thymine-rich oligonucleotide sequence. Nanoscale, 2018, 10, 17540-17545.	2.8	8
2894	Enhanced electron transport enables over 12% efficiency by interface engineering of non-fullerene organic solar cells. Solar Energy Materials and Solar Cells, 2018, 187, 273-282.	3.0	35
2895	High-efficiency polymer solar cells with low temperature solution-processed SnO ₂ /PFN as a dual-function electron transporting layer. Journal of Materials Chemistry A, 2018, 6, 17401-17408.	5.2	33
2896	A propeller-shaped perylene diimide hexamer as a nonfullerene acceptor for organic solar cells. Journal of Materials Chemistry C, 2018, 6, 9336-9340.	2.7	28
2897	Amino-fulleropyrrolidines as electrotropic additives to enhance organic photovoltaics. Sustainable Energy and Fuels, 2018, 2, 2143-2147.	2.5	9
2898	Carboxylate substitution position influencing polymer properties and enabling non-fullerene organic solar cells with high open circuit voltage and low voltage loss. Journal of Materials Chemistry A, 2018, 6, 16874-16881.	5.2	15
2899	An Analytical Solution to Lumped Parameter Equivalent Circuit Model of Organic Solar Cells. Crystals, 2018, 8, 224.	1.0	10
2900	Recent advances in electron acceptors with ladder-type backbone for organic solar cells. Journal of Materials Chemistry A, 2018, 6, 17256-17287.	5.2	54
2901	Hot slot die coating for additive-free fabrication of high performance roll-to-roll processed polymer solar cells. Energy and Environmental Science, 2018, 11, 3248-3255.	15.6	85

#	Article	IF	CITATIONS
2902	Fabrication of Red-Light Emitting Organic Semiconductor Nanoparticles via Guidance of DNAs and Surfactants. Macromolecular Research, 2018, 26, 1099-1102.	1.0	6
2903	Electrosprayed Polymer-Hybridized Multidoped ZnO Mesoscopic Nanocrystals Yield Highly Efficient and Stable Perovskite Solar Cells. ACS Omega, 2018, 3, 9648-9657.	1.6	17
2904	Semitransparent organic solar cells based on the gasochromism of WO3. AIP Advances, 2018, 8, 085314.	0.6	1
2905	Functional Scanning Force Microscopy for Energy Nanodevices. Advanced Materials, 2018, 30, e1802490.	11.1	32
2906	Realization of Intrinsically Stretchable Organic Solar Cells Enabled by Charge-Extraction Layer and Photoactive Material Engineering. ACS Applied Materials & Interfaces, 2018, 10, 21712-21720.	4.0	52
2907	A helical perylene diimide-based acceptor for non-fullerene organic solar cells: synthesis, morphology and exciton dynamics. Royal Society Open Science, 2018, 5, 172041.	1.1	5
2908	Above 10% efficiency earth-abundant Cu2ZnSn(S,Se)4 solar cells by introducing alkali metal fluoride nanolayers as electron-selective contacts. Nano Energy, 2018, 51, 597-603.	8.2	21
2909	Improved charge balance in phosphorescent organic light-emitting diodes by different ultraviolet ozone treatments on indium tin oxide. Organic Electronics, 2018, 61, 343-350.	1.4	11
2910	Work Function Modification via Combined Chargeâ€Based Throughâ€Space Interaction and Surface Interaction. Advanced Materials Interfaces, 2018, 5, 1800471.	1.9	4
2911	Near-infrared and ultraviolet to visible photon conversion for full spectrum response perovskite solar cells. Nano Energy, 2018, 50, 699-709.	8.2	71
2912	Processing Methods for Obtaining a Face-On Crystalline Domain Orientation in Conjugated Polymer-Based Photovoltaics. Journal of Physical Chemistry C, 2018, 122, 15078-15089.	1.5	14
2913	Relating open-circuit voltage losses to the active layer morphology and contact selectivity in organic solar cells. Journal of Materials Chemistry A, 2018, 6, 12574-12581.	5.2	65
2914	The effect of the functionalization of multiple carrier transporting interlayers on the performance and stability of bulk heterojunction organic solar cells. Journal of Materials Science: Materials in Electronics, 2018, 29, 13561-13576.	1.1	3
2915	Metal Oxide-Based Charge Extraction and Recombination Layers for Organic Solar Cells. , 2018, , 159-181.		2
2916	Up-conversion processes in Ln(III)-doped luminescent materials for photovoltaics and photocatalysis. , 2018, , 291-333.		1
2917	Thieno[3,2-b]indole (TI) bridged A-ï€â^'D-ï€â^'A small molecules: Synthesis, characterizations and organic solar cell applications. Dyes and Pigments, 2019, 160, 16-24.	2.0	16
2918	Indoloindole-based small molecule bulk heterojunction small molecule solar cells. Dyes and Pigments, 2019, 161, 419-426.	2.0	6
2919	An Oligothiophene–Fullerene Molecule with a Balanced Donor–Acceptor Backbone for Highâ€Performance Singleâ€Component Organic Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 14556-14561.	7.2	62

# 2920	ARTICLE Molecular Tuning of Titanium Complexes with Controllable Work Function for Efficient Organic Photovoltaics. Journal of Physical Chemistry C, 2019, 123, 20800-20807.	lF 1.5	Citations
2921	Organic Photovoltaics: Toward Self-Powered Wearable Electronics. Proceedings of the IEEE, 2019, 107, 2137-2154.	16.4	56
2922	An Oligothiophene–Fullerene Molecule with a Balanced Donor–Acceptor Backbone for Highâ€Performance Singleâ€Component Organic Solar Cells. Angewandte Chemie, 2019, 131, 14698-14703.	1.6	6
2923	Revealing the Position Effect of an Alkylthio Side Chain in Phenyl-Substituted Benzodithiophene-Based Donor Polymers on the Photovoltaic Performance of Non-Fullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 33173-33178.	4.0	65
2924	Charge transport and extraction of PTB7:PC ₇₁ BM organic solar cells: effect of film thickness and thermal-annealing. RSC Advances, 2019, 9, 24895-24903.	1.7	23
2925	Energy Scavenging and Powering E-Skin Functional Devices. Proceedings of the IEEE, 2019, 107, 2118-2136.	16.4	34
2926	Synthesis and Characterization of Benzothiadiazole and Dicyanovinylindandione Based Small-Molecular Conjugated Materials and Their Photovoltaic Properties. Macromolecular Research, 2019, 27, 1261-1267.	1.0	7
2927	Stability of push–pull small molecule donors for organic photovoltaics: spectroscopic degradation of acceptor endcaps on benzo[1,2- <i>b</i> :4,5- <i>b</i> à€²]dithiophene cores. Journal of Materials Chemistry A, 2019, 7, 19984-19995.	5.2	4
2928	Förster resonance energy transfer and improved charge mobility for high performance and low-cost ternary polymer solar cells. Solar Energy, 2019, 189, 186-193.	2.9	10
2929	13.9%â€Efficiency and Ecoâ€Friendly Nonfullerene Polymer Solar Cells Obtained by Balancing Molecular Weight and Solubility in Chlorinated Thiopheneâ€Based Polymer Backbones. Small, 2019, 15, e1902598.	5.2	42
2930	Effect of counter-ions on the properties and performance of non-conjugated polyelectrolyte interlayers in solar cell and transistor devices. RSC Advances, 2019, 9, 20670-20676.	1.7	16
2931	Hydrothermal growth of Bi2Ti2O7/TiO2 and Bi4Ti3O12/TiO2 heterostructures on highly ordered TiO2-nanotube arrays for dye-sensitized solar cells. Ceramics International, 2019, 45, 20750-20757.	2.3	18
2932	Semitransparent organic solar cells based on PffBT4T-2OD with a thick active layer and near neutral colour perception for window applications. Sustainable Energy and Fuels, 2019, 3, 2456-2463.	2.5	24
2933	A Particle-Swarm-Optimization-Based Parameter Extraction Routine for Three-Diode Lumped Parameter Model of Organic Solar Cells. IEEE Electron Device Letters, 2019, 40, 1511-1514.	2.2	33
2934	A new dibenzo[g.p]chrysene derivative as an efficient anode buffer for inverted polymer solar cells. Organic Electronics, 2019, 74, 269-275.	1.4	10
2935	ZnO nanorod arrays modified with Bi2S3 nanoparticles as cathode for efficient polymer solar cells. Organic Electronics, 2019, 75, 105369.	1.4	8
2936	Graphene oxide-molybdenum oxide composite with improved hole transport in bulk heterojunction solar cells. AIP Advances, 2019, 9, 075215.	0.6	10
2937	WWMOD? What would metal oxides do?: Redefining their applicability in today's energy technologies. Polyhedron, 2019, 170, 334-358.	1.0	8

#	Article	IF	CITATIONS
2938	Perylene diimide-based cathode interfacial materials: adjustable molecular structures and conformation, optimized film morphology, and much improved performance of non-fullerene polymer solar cells. Materials Chemistry Frontiers, 2019, 3, 1840-1848.	3.2	28
2939	Effect of PQT-12 interface layer on the performance of PCDTBT: PCBM bulk heterojunction solar cells. Materials Research Express, 2019, 6, 115514.	0.8	13
2940	Exploring a Fused 2-(Thiophen-2-yl)thieno[3,2- <i>b</i>]thiophene (T-TT) Building Block to Construct n-Type Polymer for High-Performance All-Polymer Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 42412-42419.	4.0	13
2941	Improving Performance of Nonfullerene Organic Solar Cells over 13% by Employing Silver Nanowires-Doped PEDOT:PSS Composite Interface. ACS Applied Materials & Interfaces, 2019, 11, 42447-42454.	4.0	30
2942	17% Efficient Organic Solar Cells Based on Liquid Exfoliated WS ₂ as a Replacement for PEDOT:PSS. Advanced Materials, 2019, 31, e1902965.	11.1	500
2943	Donor Polymer Can Assist Electron Transport in Bulk Heterojunction Blends with Small Energetic Offsets. Advanced Materials, 2019, 31, e1903998.	11.1	49
2944	Processing-Friendly Slot-Die-Cast Nonfullerene Organic Solar Cells with Optimized Morphology. ACS Applied Materials & Interfaces, 2019, 11, 42392-42402.	4.0	29
2945	A Review on Improving the Quality of Perovskite Films in Perovskite Solar Cells via the Weak Forces Induced by Additives. Applied Sciences (Switzerland), 2019, 9, 4393.	1.3	24
2946	New Antimony-Based Organic–Inorganic Hybrid Material as Electron Extraction Layer for Efficient and Stable Polymer Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 44820-44828.	4.0	6
2947	Design of parallel-connected polymer tandem solar cells using efficient low bandgap PTB7-Th:PC71BM blend. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	2
2948	Functionalized Truxene Scaffold: A Promising Advanced Organic Material for Digital Era. ChemistrySelect, 2019, 4, 12272-12288.	0.7	23
2949	Molecular Engineering on Bis(benzothiophene- <i>S</i> , <i>S</i> -dioxide)-Based Large-Band Gap Polymers for Interfacial Modifications in Polymer Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 45969-45978.	4.0	9
2950	Electrode buffer layers via networks of polythiophene/polyaniline bottlebrushes and carbon nanotubes in organic solar cells. Journal of Materials Science: Materials in Electronics, 2019, 30, 21117-21125.	1.1	6
2951	A Double-modulation Effect Detected in a Double-mode High-amplitude δScuti Star: KIC 10284901. Astrophysical Journal, 2019, 879, 59.	1.6	7
2952	High Performance Thickâ€Film Nonfullerene Organic Solar Cells with Efficiency over 10% and Active Layer Thickness of 600 nm. Advanced Energy Materials, 2019, 9, 1902688.	10.2	69
2953	Recent advances in molecular design of functional conjugated polymers for high-performance polymer solar cells. Progress in Polymer Science, 2019, 99, 101175.	11.8	140
2954	High Efficient Inverted Polymer Solar Cells with Solution-Processed Electron Transport Layer. , 2019, ,		0
2955	Hydrothermal synthesis of transition metal sulfides/MWCNT nanocomposites for high-performance asymmetric electrochemical capacitors. Electrochimica Acta, 2019, 322, 134738.	2.6	14

#	Article	IF	CITATIONS
2956	Polydopamine/ZnO electron transport layers enhance charge extraction in inverted non-fullerene organic solar cells. Journal of Materials Chemistry C, 2019, 7, 10795-10801.	2.7	38
2957	Enhanced Electron Transportation by Dye Doping in Very Low-Temperature (<130 °C)-Processed Sol–Gel ZnO toward Flexible Organic Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 34151-34157.	4.0	21
2958	Low-temperature solution-processed hybrid interconnecting layer with bulk/interfacial synergistic effect in symmetric tandem organic solar cells. Organic Electronics, 2019, 75, 105423.	1.4	10
2959	Revealing working mechanisms of PFN as a cathode interlayer in conventional and inverted polymer solar cells. Physical Chemistry Chemical Physics, 2019, 21, 20065-20072.	1.3	8
2960	Effect of ZnO Electron Extraction Layer on Charge Recombination and Collection Properties in Organic Solar Cells. ACS Applied Energy Materials, 2019, 2, 7385-7392.	2.5	26
2961	Charge transport effect and photovoltaic conversion of two-dimensional CdSeS quantum dot monolayers in inverted polymer solar cells. Journal of Materials Chemistry C, 2019, 7, 11797-11805.	2.7	7
2962	Monocrystalline perovskite wafers/thin films for photovoltaic and transistor applications. Journal of Materials Chemistry A, 2019, 7, 24661-24690.	5.2	27
2963	Systematically investigating the influence of inserting alkylthiophene spacers on the aggregation, photo-stability and optoelectronic properties of copolymers from dithieno[2,3- <i>d</i> 2 $\hat{a}\in^2$,3 $\hat{a}\in^2$ - <i>d</i> 2 $\hat{a}\in^2$]benzo[1,2- <i>b</i> 2,4,5- <i>b</i> 2]dithiophene and benzothiadiaze derivatives. Polymer Chemistry, 2019, 10, 972-982.	1.9 ole	10
2964	Self-assembling supramolecular polymer membranes for highly effective filtration of water-soluble fluorescent dyes. Polymer Chemistry, 2019, 10, 827-834.	1.9	7
2965	Conjugated materials containing dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]pyrrole and its derivatives for organic and hybrid solar cell applications. Journal of Materials Chemistry A, 2019, 7, 64-96.	5.2	133
2966	Cesium-functionalized pectin as a cathode interlayer for polymer solar cells. Journal of Materials Chemistry C, 2019, 7, 1592-1596.	2.7	10
2967	Study of energy level alignment at weakly interacting small organic molecular thin film interfaces: The validity of classical model from inorganics. Journal of Applied Physics, 2019, 125, 035301.	1.1	2
2968	Theoretical Study of the Charge Transfer Exciton Binding Energy in Semiconductor Materials for Polymer:Fullerene-Based Bulk Heterojunction Solar Cells. Journal of Physical Chemistry A, 2019, 123, 1233-1242.	1.1	12
2969	Ultra-thick semi-crystalline photoactive donor polymer for efficient indoor organic photovoltaics. Nano Energy, 2019, 58, 466-475.	8.2	79
2970	Highly efficient polymer solar cells based on low-temperature processed ZnO: application of a bifunctional Au@CNTs nanocomposite. Journal of Materials Chemistry C, 2019, 7, 2676-2685.	2.7	9
2971	Lithium Doping of ZnO for High Efficiency and Stability Fullerene and Non-fullerene Organic Solar Cells. ACS Applied Energy Materials, 2019, 2, 1663-1675.	2.5	52
2972	Simplified synthetic routes for low cost and high photovoltaic performance n-type organic semiconductor acceptors. Nature Communications, 2019, 10, 519.	5.8	231
2973	The effect of alkylthio substituents on the photovoltaic properties of conjugated polymers. Organic Electronics, 2019, 68, 50-55.	1.4	7

#	Article	IF	CITATIONS
2974	Tweaking the Molecular Geometry of a Tetraperylenediimide Acceptor. ACS Applied Materials & Interfaces, 2019, 11, 6970-6977.	4.0	20
2975	Zwitterions for Organic/Perovskite Solar Cells, Lightâ€Emitting Devices, and Lithium Ion Batteries: Recent Progress and Perspectives. Advanced Energy Materials, 2019, 9, 1803354.	10.2	68
2976	New roles of fused-ring electron acceptors in organic solar cells. Journal of Materials Chemistry A, 2019, 7, 4766-4770.	5.2	5
2977	Improving the performance of inverted polymer solar cells through modification of compact TiO2 layer by different boronic acid functionalized self-assembled monolayers. Applied Surface Science, 2019, 479, 177-184.	3.1	17
2978	Spirobifluorene based small molecules as an alternative to traditional fullerene acceptors for organic solar cells. Materials Science in Semiconductor Processing, 2019, 94, 97-106.	1.9	58
2979	The Applications of Polymers in Solar Cells: A Review. Polymers, 2019, 11, 143.	2.0	146
2980	Solution processed hybrid Graphene-MoO3 hole transport layers for improved performance of organic solar cells. Organic Electronics, 2019, 67, 95-100.	1.4	18
2981	Towards all-solution-processed top-illuminated flexible organic solar cells using ultrathin Ag-modified graphite-coated poly(ethylene terephthalate) substrates. Nanophotonics, 2019, 8, 297-306.	2.9	22
2982	Understanding charge carrier dynamics in a P3HT:FLR blend. Physical Chemistry Chemical Physics, 2019, 21, 2771-2782.	1.3	7
2983	Understanding the loss mechanisms in high-performance solution-processed small molecule bulk heterojunction solar cells doped with a PFN impurity. Physical Chemistry Chemical Physics, 2019, 21, 13176-13185.	1.3	3
2984	One‣tep Bladeâ€Coated Highly Efficient Nonfullerene Organic Solar Cells with a Selfâ€Assembled Interfacial Layer Enabled by Solvent Vapor Annealing. Solar Rrl, 2019, 3, 1900179.	3.1	19
2985	Polymer nanocomposites for solar cells: research trends and perspectives. , 2019, , 557-600.		2
2986	Graphene and carbon nanotube-based solar cells. , 2019, , 603-660.		2
2987	Influences of Non-fullerene Acceptor Fluorination on Three-Dimensional Morphology and Photovoltaic Properties of Organic Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 26194-26203.	4.0	57
2988	Building an Organic Solar Cell: Fundamental Procedures for Device Fabrication. Energies, 2019, 12, 2188.	1.6	20
2989	Delicate Energy-Level Adjustment and Interfacial Defect Passivation of ZnO Electron Transport Layers in Organic Solar Cells by Constructing ZnO/In Nanojunctions. Journal of Physical Chemistry C, 2019, 123, 16546-16555.	1.5	16
2990	Testing organic photovoltaic modules for application as greenhouse cover or shading element. Biosystems Engineering, 2019, 184, 24-36.	1.9	36
2991	High-Performance Hybrid Photovoltaics with Efficient Interfacial Contacts between Vertically Aligned ZnO Nanowire Arrays and Organic Semiconductors. ACS Omega, 2019, 4, 9996-10002.	1.6	13

#	Article	IF	CITATIONS
2992	A combined transient photovoltage and impedance spectroscopy approach for a comprehensive study of interlayer degradation in non-fullerene acceptor organic solar cells. Nanoscale, 2019, 11, 10872-10883.	2.8	32
2993	Developing near-infrared quantum-dot light-emitting diodes to mimic synaptic plasticity. Science China Materials, 2019, 62, 1470-1478.	3.5	31
2994	Development of fullerene free acceptors molecules for organic solar cells: A step way forward toward efficient organic solar cells. Computational and Theoretical Chemistry, 2019, 1161, 26-38.	1.1	65
2995	Influence of traces of oxidized polymer on the performances of bulk heterojunction solar cells. Materials Chemistry Frontiers, 2019, 3, 1632-1641.	3.2	13
2996	Charge transfer dynamics in conjugated polymer/MoS ₂ organic/2D heterojunctions. Molecular Systems Design and Engineering, 2019, 4, 929-938.	1.7	18
2997	Specific interaction between fluorine atoms and thiol groups accounting for higher domain purity and photostability in narrowband BHJ systems. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 941-951.	2.4	1
2998	Stable Postfullerene Solar Cells via Direct C–H Arylation Polymerization. Morphology–Performance Relationships. Chemistry of Materials, 2019, 31, 4313-4321.	3.2	31
2999	Tailoring optical properties and stimulated emission in nanostructured polythiophene. Scientific Reports, 2019, 9, 7370.	1.6	10
3000	Design, Synthesis, and Postvapor Treatment of Neutral Fulleropyrrolidine Electron-Collecting Interlayers for High-Efficiency Inverted Polymer Solar Cells. ACS Applied Electronic Materials, 2019, 1, 854-861.	2.0	18
3001	Dual-interface modification effect of Carbon Quantum Dots on the performance of Polymer Solar Cells. Journal of Materials Science: Materials in Electronics, 2019, 30, 11063-11069.	1.1	2
3002	Studies on P3HT: PCBM organic solar cell with an additional PC70BM small molecule active layer at optimum thickness: A numerical simulation approach. AIP Conference Proceedings, 2019, , .	0.3	0
3003	Synthesis, characterization and photovoltaic properties of platinum-containing poly(aryleneethynylene) polymers with electron-deficient diketopyrrolopyrrole unit. Journal of Organometallic Chemistry, 2019, 894, 1-9.	0.8	15
3004	The modified PEDOT:PSS as cathode interfacial layer for scalable organic solar cells. Organic Electronics, 2019, 71, 143-149.	1.4	7
3005	Effect of polymer molecular weight on J51 based organic solar cells. RSC Advances, 2019, 9, 14657-14661.	1.7	7
3006	Effect of annealing parameters on optoelectronic properties of highly ordered ZnO thin films. Materials Science in Semiconductor Processing, 2019, 100, 200-213.	1.9	64
3007	Improvement of inverted structure organic solar cells by Ar plasma treatment on P3HT:PC61BM active layer. Sustainable Energy Technologies and Assessments, 2019, 34, 43-48.	1.7	14
3008	An efficient binary cathode interlayer for large-bandgap non-fullerene organic solar cells. Journal of Materials Chemistry A, 2019, 7, 12426-12433.	5.2	26
3009	Amine-Based Interfacial Engineering in Solution-Processed Organic and Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 16785-16794.	4.0	12

#	Article	IF	CITATIONS
3010	Introduction of co-additives to form well dispersed photoactive layer to improve performance and stability of organic solar cells. Solar Energy, 2019, 185, 1-12.	2.9	14
3011	Combined effect of ZnO nanoripples and solvent additive on the nanomorphology and performance of PTB7-Th: PC ₇₁ BM organic solar cells. Nanotechnology, 2019, 30, 385204.	1.3	14
3012	Chlorine Effects of Heterocyclic Ringâ€Based Donor Polymer for Lowâ€Cost and Highâ€Performance Nonfullerene Polymer Solar Cells. Solar Rrl, 2019, 3, 1900094.	3.1	31
3013	Nanomaterials for Polymer and Perovskite Light-Emitting Diodes. , 2019, , 371-421.		0
3014	Random Copolymers Outperform Gradient and Block Copolymers in Stabilizing Organic Photovoltaics. Advanced Functional Materials, 2019, 29, 1900467.	7.8	6
3015	Ternary blend organic solar cells with improved morphological stability. Journal of Materials Chemistry A, 2019, 7, 9698-9707.	5.2	37
3016	Lowâ€Threshold Organic Semiconductor Lasers with the Aid of Phosphorescent Ir(III) Complexes as Triplet Sensitizers. Advanced Functional Materials, 2019, 29, 1806719.	7.8	52
3017	Thick polyfluorene-based polyelectrolytes realized by regulation of conjugated backbone as cathode interface layers for efficient polymer solar cells. Journal of Power Sources, 2019, 423, 26-33.	4.0	7
3018	Factors Controlling Open-Circuit Voltage Losses in Organic Solar Cells. Trends in Chemistry, 2019, 1, 49-62.	4.4	117
3019	Impedance spectroscopy of PTB7-Fx:PC70BM bulk heterojunction solar cells prepared in ambient environment. AIP Conference Proceedings, 2019, , .	0.3	0
3020	Structural dependence of the optical properties of narrow band gap thiophene–thiadiazoloquinoxaline derivatives and their application in organic photovoltaic cells. New Journal of Chemistry, 2019, 43, 5202-5213.	1.4	11
3021	Vivid-colored silicon solar panels with high efficiency and non-iridescent appearance. Nanoscale Horizons, 2019, 4, 874-880.	4.1	44
3023	Visible to Nearâ€Infrared Photodetection Based on Ternary Organic Heterojunctions. Advanced Functional Materials, 2019, 29, 1808948.	7.8	95
3024	Intrinsic measurements of exciton transport in photovoltaic cells. Nature Communications, 2019, 10, 1156.	5.8	28
3025	Improving Active Layer Morphology of All-Polymer Solar Cells by Dissolving the Two Polymers Individually. Macromolecules, 2019, 52, 2402-2410.	2.2	49
3026	Amino functionalized carbon nanotubes as hole transport layer for high performance polymer solar cells. Inorganic Chemistry Communication, 2019, 103, 142-148.	1.8	6
3027	Enhanced efficiency of polymer solar cells by improving molecular aggregation and broadening the absorption spectra. Dyes and Pigments, 2019, 166, 42-48.	2.0	39
3028	Limitations and Perspectives on Tripletâ€Materialâ€Based Organic Photovoltaic Devices. Advanced Materials, 2019, 31, e1900690	11.1	50

#	Article	IF	CITATIONS
3029	Synthesis of a Rod-rod Diblock Copolymer, Poly(3-hexylthiophene)-block-poly(furfuryl isocyanate), through the Anionic Polymerization with an Oxyanionic Macroinitiator. Chinese Journal of Polymer Science (English Edition), 2019, 37, 866-874.	2.0	1
3030	Ordered orientation and compact molecule packing due to coplanar backbone structure of interlayer: Improvement in fill factor for photovoltaic device. European Polymer Journal, 2019, 116, 330-335.	2.6	5
3031	Tunable photoluminescence from interconnected graphene network with potential to enhance the efficiency of a hybrid Si nanowire solar cell. Physical Chemistry Chemical Physics, 2019, 21, 9564-9573.	1.3	3
3032	Advances in Polymer-Based Photovoltaic Cells: Review of Pioneering Materials, Design, and Device Physics. , 2019, , 1055-1101.		3
3033	Highly efficient photocatalytic hydrogen evolution from water-soluble conjugated polyelectrolytes. Nano Energy, 2019, 60, 775-783.	8.2	82
3034	Surface modification of ZnO electron transport layers with glycine for efficient inverted non-fullerene polymer solar cells. Organic Electronics, 2019, 70, 25-31.	1.4	41
3035	A novel alcohol-soluble squaraine dye as an interfacial layer for efficient polymer solar cells. Organic Electronics, 2019, 69, 241-247.	1.4	7
3036	Photocatalytic effect of ZnO on the stability of nonfullerene acceptors and its mitigation by SnO ₂ for nonfullerene organic solar cells. Materials Horizons, 2019, 6, 1438-1443.	6.4	182
3037	Sulfur vs. tellurium: the heteroatom effects on the nonfullerene acceptors. Science China Chemistry, 2019, 62, 897-903.	4.2	10
3038	Minimizing geminate recombination losses in small-molecule-based organic solar cells. Journal of Materials Chemistry C, 2019, 7, 6641-6648.	2.7	5
3039	Photovoltaic Materials. , 2019, , 1033-1054.		0
3040	Effects of metal-decorated nanocomposite on inverted thin film organic solar cell. Journal of Physics and Chemistry of Solids, 2019, 130, 120-126.	1.9	15
3041	Photovoltaic donor-acceptor conjugated polymers with minimally substituted acceptor moieties. Organic Electronics, 2019, 68, 280-284.	1.4	12
3042	Synthesis and photovoltaic investigation of dithieno[2,3â \in xi>d:2â \in 2â \in xi>dà \in xi <d< i="">à\inxi<d< i="">à xi<d< i="">à \inxi<d< i="">à xi<</d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<>	thiophene	â€based cor
3043	A Lumped-Parameter Equivalent Circuit Modeling for S-Shaped I–V Kinks of Organic Solar Cells. Crystals, 2019, 9, 80.	1.0	1
3044	Facilitating electron extraction of inverted polymer solar cells by using organic/inorganic/organic composite buffer layer. Organic Electronics, 2019, 68, 187-192.	1.4	7
3045	Synthesis and Band Gap Analysis of Designed Porphyrin Derivatives Containing Electron Donating and Accepting Group. Bulletin of the Korean Chemical Society, 2019, 40, 173-179.	1.0	3
3046	Current status, challenges and future outlook of high performance polymer semiconductors for organic photovoltaics modules. Progress in Polymer Science, 2019, 91, 51-79	11.8	36

#	Article	IF	CITATIONS
3047	Intermolecular n-Doping Nonconjugated Polymer Cathode Interfacial Materials for Organic Solar Cells. ACS Applied Energy Materials, 2019, 2, 2238-2245.	2.5	15
3048	Enhanced Photovoltaic Performance in D-ï€-A Copolymers Containing Triisopropylsilylethynyl-Substituted Dithienobenzodithiophene by Modulating the Electron-Deficient Units. Polymers, 2019, 11, 12.	2.0	28
3049	Alcohol-soluble anode modifier for highly efficient inverted solar cells with oligo-oxyethylene chains. Organic Electronics, 2019, 68, 200-204.	1.4	6
3050	Molecular packing control enables excellent performance and mechanical property of blade-cast all-polymer solar cells. Nano Energy, 2019, 59, 277-284.	8.2	47
3051	Polymer Solar Cells—Interfacial Processes Related to Performance Issues. Frontiers in Chemistry, 2019, 7, 61.	1.8	57
3052	Air Environment Degradation of a High-Performance Inverted PTB7-Th:PC ₇₀ BM Solar Cell. IEEE Journal of Photovoltaics, 2019, 9, 464-468.	1.5	7
3053	A Comparative Study on Low-Temperature Sol-Gel Ga-Doped Zinc Oxide Inverted PSCs. International Journal of Electrochemical Science, 2019, , 10281-10288.	0.5	4
3054	Numerical Optimization of Organic and Hybrid Multijunction Solar Cells. , 2019, , .		2
3055	Numerical Simulations to Understand the Role of DIO Additive in PTB7:PC71BM Solar Cell. , 2019, , .		0
3056	Mapping hole mobility in PTB7 films at nanoscale. IOP Conference Series: Materials Science and Engineering, 2019, 699, 012001.	0.3	0
3057	Three-Dimensional Printing of a LiFePO4/Graphite Battery Cell via Fused Deposition Modeling. Scientific Reports, 2019, 9, 18031.	1.6	98
3058	Syntheses and Characterization of Benzotriazole, Thienopyrroledione, and Benzodithiophene Containing Conjugated Random Terpolymers for Organic Solar Cells. Journal of the Electrochemical Society, 2019, 166, H849-H859.	1.3	5
3060	UV–Vis Absorption Properties of New Aromatic Imines and Their Compositions with Poly({4,8-bis[(2-Ethylhexyl)oxy]Benzo[1,2-b:4,5-b′]Dithiophene-2,6-diyl}{3-Fluoro-2-[(2-Ethylhexyl)Carbonyl]T Materials, 2019, 12, 4191.	hieræ[3,4-	b]IIIniophene
3061	Enhancement of the Power Conversion Efficiency of Organic Solar Cells by Surface Patterning of Azobenzene Thin Films. ACS Omega, 2019, 4, 21862-21872.	1.6	10
3062	Synthesis and application of amine-containing conjugated small molecules for the automatic formation of an electron transporting layer <i>via</i> spontaneous phase separation from the bulk-heterojunction layer. RSC Advances, 2019, 9, 31867-31876.	1.7	2
3063	Strontium Fluoride and Zinc Oxide Stacked Structure as an Interlayer in High-Performance Inverted Polymer Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 2149-2158.	4.0	18
3064	Optimization of PFN thickness in inverted high-performance PTB7:PC70BM solar cells. Solid-State Electronics, 2019, 153, 33-36.	0.8	8
3065	High-efficiency non-fullerene polymer solar cell fabricated by a simple process using new conjugated terpolymers. Journal of Materials Chemistry C, 2019, 7, 111-118.	2.7	21

#	Article	IF	CITATIONS
3066	Controllable phase transformation of titanium dioxide for the high performance polymer solar cells. Solar Energy Materials and Solar Cells, 2019, 192, 88-93.	3.0	2
3067	Opto-electronic properties of non-fullerene fused-undecacyclic electron acceptors for organic solar cells. Computational Materials Science, 2019, 159, 150-159.	1.4	102
3068	Numerical analysis with experimental verification to predict outdoor power conversion efficiency of inverted organic solar devices. Renewable Energy, 2019, 135, 589-596.	4.3	7
3069	A crucial factor affecting the power conversion efficiency of oxide/metal/oxide-based organic photovoltaics: Optical cavity versus transmittance. Applied Energy, 2019, 235, 1505-1513.	5.1	5
3070	Nature of Defect States within Amorphous NPB Investigated through Drive-Level Capacitance Profiling. Journal of Physical Chemistry C, 2019, 123, 165-174.	1.5	8
3071	Photovoltaic applications: Status and manufacturing prospects. Renewable and Sustainable Energy Reviews, 2019, 102, 318-332.	8.2	86
3072	A study about lifetime of photovoltaic fibers. Solar Energy Materials and Solar Cells, 2019, 192, 52-56.	3.0	5
3073	Simply tuning the electron deficient units to achieve P and N-type conjugated polymers for organic solar cells. Dyes and Pigments, 2019, 162, 728-733.	2.0	1
3074	Stability and Reliability of PTB7:PC71BM and PTB7:PC61BM Inverted Organic Solar Cells: A Comparative Study. IEEE Journal of Photovoltaics, 2019, 9, 183-193.	1.5	13
3075	PEIE doped ZnO as a tunable cathode interlayer for efficient polymer solar cells. Applied Surface Science, 2019, 470, 318-330.	3.1	35
3076	High-Performance Fullerene-Free Polymer Solar Cells Featuring Efficient Photocurrent Generation from Dual Pathways and Low Nonradiative Recombination Loss. ACS Energy Letters, 2019, 4, 8-16.	8.8	62
3077	Highâ€Performance Largeâ€Area Organic Solar Cells Enabled by Sequential Bilayer Processing via Nonhalogenated Solvents. Advanced Energy Materials, 2019, 9, 1802832.	10.2	152
3078	Core–shell super-structures via smart deposition of naphthothiadiazole and benzodithiophene-possessing polymer backbones onto carbon nanotubes and photovoltaic applications thereof. Journal of Materials Science: Materials in Electronics, 2019, 30, 832-841.	1.1	5
3079	Organic Photovoltaics with Multiple Donor–Acceptor Pairs. Advanced Materials, 2019, 31, e1804762.	11.1	106
3080	Beyond Metal Oxides: Introducing Lowâ€Temperature Solutionâ€Processed Ultrathin Layered Double Hydroxide Nanosheets into Polymer Solar Cells Toward Improved Electron Transport. Solar Rrl, 2019, 3, 1800299.	3.1	5
3081	Improving the performance of inverted polymer solar cells by the efficiently doping and modification of electron transport layer-ZnO. Organic Electronics, 2019, 65, 311-320.	1.4	25
3082	Quaternary indoor organic photovoltaic device demonstrating panchromatic absorption and power conversion efficiency of 10%. Dyes and Pigments, 2019, 163, 48-54.	2.0	35
3083	A new 2D-naphtho[1,2-b:5,6-b']dithiophene based donor small molecules for bulk-heterojunction organic solar cells. Dyes and Pigments, 2019, 163, 30-39.	2.0	9

#	Article	IF	CITATIONS
3084	Effects of thermally cross-linkable polymeric additive in the photoactive layer of polymer solar cells. Organic Electronics, 2019, 67, 128-135.	1.4	3
3085	In-Operando Study of the Effects of Solvent Additives on the Stability of Organic Solar Cells Based on PTB7-Th:PC ₇₁ BM. ACS Energy Letters, 2019, 4, 464-470.	8.8	60
3086	Efficient All-Polymer Solar Cells based on a New Polymer Acceptor Achieving 10.3% Power Conversion Efficiency. ACS Energy Letters, 2019, 4, 417-422.	8.8	196
3087	Steady Enhancement in Photovoltaic Properties of Fluorine Functionalized Quinoxaline-Based Narrow Bandgap Polymer. Molecules, 2019, 24, 54.	1.7	4
3088	Airâ€Processed, Stable Organic Solar Cells with High Power Conversion Efficiency of 7.41%. Small, 2019, 15, e1804671.	5.2	19
3089	Achieving High Doping Concentration by Dopant Vapor Deposition in Organic Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 4178-4184.	4.0	17
3090	Lithiumâ€Ionâ€Based Conjugated Polyelectrolyte as an Interface Material for Efficient and Stable Nonâ€Fullerene Organic Solar Cells. ChemSusChem, 2019, 12, 1401-1409.	3.6	15
3091	Effects of the Reduction and/or Fluorination of the TTâ€Units in BDTâ€TT Polymers on the Photostability of Polymer:Fullerene Solar Cells. Solar Rrl, 2019, 3, 1800301.	3.1	9
3092	Fluorinated polyethylene glycol as cathode interlayer with enhanced dipole strength for efficient organic solar cells. Solar Energy, 2019, 180, 57-62.	2.9	12
3093	Poly(<i>N</i> -isopropylacrylamide- <i>co</i> -methacrylic acid) Interfacial Layer for Efficient and Stable Inverted Organic Solar Cells. Journal of Physical Chemistry C, 2019, 123, 2755-2765.	1.5	6
3094	Binary Nonchlorinated and Nonaromatic Solvent-Processed PTB7:PC ₇₁ BM and PTB7-Th:PC ₇₁ BM Active Layers Showing Efficiency Comparable to that of Chlorobenzene in Organic Solar Cells. Journal of Physical Chemistry C, 2019, 123, 2105-2113.	1.5	10
3095	Work-function-controlled operation mode transition between photodiode and photoconductor modes in organic photodetectors. Organic Electronics, 2019, 64, 138-145.	1.4	14
3096	A near-infrared small molecule acceptor based on the quinoidal form for organic solar cells. Functional Materials Letters, 2019, 12, 1950003.	0.7	0
3097	Capacitance methodology for investigating defect states in energy gap of organic semiconductor. Organic Electronics, 2019, 65, 275-299.	1.4	26
3098	A bifunctional conjugated polyelectrolyte for the interfacial engineering of polymer solar cells. Journal of Colloid and Interface Science, 2019, 538, 611-619.	5.0	14
3099	Solution-dispersed copper iodide anode buffer layer gives P3HT:PCBM-based organic solar cells an efficiency boost. Journal of Materials Science: Materials in Electronics, 2019, 30, 2726-2731.	1.1	8
3100	Emerging Trends in the Industrial Production of Chemical Products by Microorganisms. , 2019, , 107-125.		21
3101	Largeâ€Area Organic Solar Cells: Material Requirements, Modular Designs, and Printing Methods. Advanced Materials, 2019, 31, e1805089.	11.1	246

#	Article	IF	CITATIONS
3102	Factors influencing the efficiency of photovoltaic system. Renewable and Sustainable Energy Reviews, 2019, 101, 376-394.	8.2	94
3103	The effect of one- or two-dimensional conjugated benzodithiophene in polymeric donors on the device performance of non-fullerene organic solar cells. Dyes and Pigments, 2019, 163, 221-226.	2.0	2
3104	Enhancing the performance of polymer solar cells using solution-processed copper doped nickel oxide nanoparticles as hole transport layer. Journal of Colloid and Interface Science, 2019, 535, 308-317.	5.0	39
3105	Effect of Thermal Annealing on the Electrical Properties of Inverted Organic Solar Cells Based on PCDTBT: PC70BM Nanocomposites. Journal of Electronic Materials, 2019, 48, 352-357.	1.0	6
3106	Oligo(ethylene oxide) chains in fluorene bridge units of perylenediimide dimers as an efficient strategy for improving the photovoltaic performance in organic solar cells. Dyes and Pigments, 2019, 161, 188-196.	2.0	9
3107	Enhanced photostability in polymer solar cells achieved with modified electron transport layer. Thin Solid Films, 2019, 669, 42-48.	0.8	14
3108	Efficiency enhancement of organic solar cells enabled by interface engineering of sol-gel zinc oxide with an oxadiazole-based material. Organic Electronics, 2020, 76, 105483.	1.4	20
3109	Nonfullerene acceptors with an N-annulated perylene core and two perylene diimide units for efficient organic solar cells. Dyes and Pigments, 2020, 173, 107970.	2.0	9
3110	Effects of Shortâ€Axis Alkoxy Substituents on Molecular Selfâ€Assembly and Photovoltaic Performance of Indacenodithiopheneâ€Based Acceptors. Advanced Functional Materials, 2020, 30, 1906855.	7.8	50
3111	Functionalization of fullerene by polyethylene glycol toward promoted electron transport in inverted polymer solar cells. Organic Electronics, 2020, 77, 105502.	1.4	3
3112	Significant influence of doping effect on photovoltaic performance of efficient fullerene-free polymer solar cells. Journal of Energy Chemistry, 2020, 43, 40-46.	7.1	43
3113	Influences of Orthoâ€Fluoroazobenzenes on Liquid Crystalline Phase Stability and 2D (Planar) Actuation Properties of Liquid Crystalline Elastomers. Macromolecular Chemistry and Physics, 2020, 221, 1900265.	1.1	11
3115	Efficient Allâ€Solutionâ€Processed Perovskite Lightâ€Emitting Diodes Enabled by Smallâ€Molecule Doped Electron Injection Layers. Advanced Optical Materials, 2020, 8, 1900567.	3.6	25
3116	Diketopyrrolopyrrole/perylene-diimide and thiophene based D-ï€-A low bandgap polymer sensitizers for application in dye sensitized solar cells. Dyes and Pigments, 2020, 174, 108032.	2.0	14
3117	Impact of alkyl side chain on the photostability and optoelectronic properties of indacenodithieno[3,2― b]thiophene―alt â€naphtho[1,2―c :5,6―c ′]bis[1,2,5]thiadiazole medium bandgap copolymers. Polymer International, 2020, 69, 192-205.	1.6	11
3118	Emphasizing the Operational Role of a Novel Graphene-Based Ink into High Performance Ternary Organic Solar Cells. Nanomaterials, 2020, 10, 89.	1.9	9
3119	Molecular Engineering in Hole Transport π onjugated Polymers to Enable High Efficiency Colloidal Quantum Dot Solar Cells. Advanced Energy Materials, 2020, 10, 1902933.	10.2	36
3120	Impact of Noncovalent Sulfur–Fluorine Interaction Position on Properties, Structures, and Photovoltaic Performance in Naphthobisthiadiazoleâ€Based Semiconducting Polymers. Advanced Energy Materials, 2020, 10, 1903278.	10.2	39

#	Article	IF	CITATIONS
3121	Highly Conductive and Wettable PEDOT:PSS for Simple and Efficient Organic/c‧i Planar Heterojunction Solar Cells. Solar Rrl, 2020, 4, 1900513.	3.1	22
3122	Challenges to the Stability of Active Layer Materials in Organic Solar Cells. Macromolecular Rapid Communications, 2020, 41, e1900437.	2.0	55
3123	An environmentally friendly natural polymer as a universal interfacial modifier for fullerene and non-fullerene polymer solar cells. Sustainable Energy and Fuels, 2020, 4, 1234-1241.	2.5	6
3124	Side-chain engineering of medium bandgap polymer donors for efficient polymer solar cells. Organic Electronics, 2020, 78, 105603.	1.4	5
3125	Tailoring and Modifying an Organic Electron Acceptor toward the Cathode Interlayer for Highly Efficient Organic Solar Cells. Advanced Materials, 2020, 32, e1906557.	11.1	109
3126	Molecular origin of photostability for fluorene-based donor–acceptor type photovoltaic polymers. Japanese Journal of Applied Physics, 2020, 59, SDDA11.	0.8	1
3127	ZnO/Ag/ZnO multilayer transparent electrode for highly-efficient ITO-Free polymer solar cells. Current Applied Physics, 2020, 20, 425-430.	1.1	16
3128	Influence of Substituent Groups on Chemical Reactivity Kinetics of Nonfullerene Acceptors. Journal of Physical Chemistry C, 2020, 124, 2307-2312.	1.5	29
3129	Hybrid ZnO Electron Transport Layer by Down Conversion Complexes for Dual Improvements of Photovoltaic and Stable Performances in Polymer Solar Cells. Nanomaterials, 2020, 10, 80.	1.9	17
3130	Efficient inverted organic solar cells with a thin natural biomaterial l-Arginine as electron transport layer. Solar Energy, 2020, 196, 168-176.	2.9	51
3131	A critical review on the efficiency improvement of upconversion assisted solar cells. Journal of Alloys and Compounds, 2020, 821, 153214.	2.8	44
3132	Nickel sulphide nano-composite assisted hole transport in thin film polymer solar cells. Solar Energy, 2020, 195, 310-317.	2.9	39
3133	Enhancing the power conversion efficiency of organic solar cells. Optik, 2020, 208, 164093.	1.4	12
3134	Enhanced Organic and Perovskite Solar Cell Performance through Modification of the Electron-Selective Contact with a Bodipy–Porphyrin Dyad. ACS Applied Materials & Interfaces, 2020, 12, 1120-1131.	4.0	27
3135	Following in Situ the Deposition of Gold Electrodes on Low Band Gap Polymer Films. ACS Applied Materials & Interfaces, 2020, 12, 1132-1141.	4.0	10
3136	Interface passivation and electron transport improvement via employing calcium fluoride for polymer solar cells. Journal of Colloid and Interface Science, 2020, 562, 142-148.	5.0	5
3137	Comparative study on the effects of alkylsilyl and alkylthio side chains on the performance of fullerene and non-fullerene polymer solar cells. Organic Electronics, 2020, 77, 105572.	1.4	6
3138	Formation of Needle-like Poly(3-hexylthiophene) Crystals from Metastable Solutions. Macromolecules, 2020, 53, 8303-8312.	2.2	14

ARTICLE IF CITATIONS # Inverting the organic solar cell. IOP Conference Series: Materials Science and Engineering, 2020, 872, 3139 0.3 2 012007. Highâ€Efficiency Nonfullerene Organic Solar Cells Enabled by Atomic Layer Deposited Zirconiumâ€Doped 3140 3.1 Zinc Oxide. Solár Rrl, 2020, 4, 2000241. Organic solid-state lasers: a materials view and future development. Chemical Society Reviews, 2020, 3141 18.7 250 49, 5885-5944. Significantly Sensitized Ternary Blend Polymer Solar Cells with a Very Small Content of the Narrow-Band Gap Third Component That Utilizes Optical Interference. Macromolecules, 2020, 53, 3142 10623-10635. A high-efficiency bioinspired photoelectric-electromechanical integrated nanogenerator. Nature 3143 5.8 47 Communications, 2020, 11, 6158. Fine-tuning HOMO energy levels between PM6 and PBDB-T polymer donors via ternary 3144 4.2 copolymerization. Science China Chemistry, 2020, 63, 1256-1261. Evaporated MoOx as General Back-Side Hole Collector for Solar Cells. Coatings, 2020, 10, 763. 3145 1.2 11 Thienoquinolinone as a new building block for wide bandgap semiconducting polymer donors for 2.7 3146 organic solar cells. Journal of Materials Chemistry C, 2020, 8, 12265-12271. Nanoscale mobility mapping in semiconducting polymer films. Ultramicroscopy, 2020, 218, 113081. 3147 0.8 4 Improving Both Electron and Hole Mobilities of an Ambipolar Polymer by Integrating Sodium 3148 2.6 Sulfonateâ€Tethered Alkyl Side Chains â€. Chinese Journal of Chemistry, 2020, 38, 1663-1670. Highly efficient inverted polymer solar cells based on ethanolamine-treated indium tin oxide as 3149 1.4 0 cathode. Organic Electronics, 2020, 85, 105896. Allâ€Polymer Solar Cells with over 12% Efficiency and a Small Voltage Loss Enabled by a Polymer 3150 10.2 Acceptor Based on an Extended Fused Ring Coré. Advanced Energy Materials, 2020, 10, 2001408. Unveiling Photovoltaic Performance Enhancement Mechanism of Polymer Solar Cells via Synergistic 3151 3.1 4 Effect of Binary Solvent Additives. Solar Rrl, 2020, 4, 2000239. Hole (donor) and electron (acceptor) transporting organic semiconductors for bulk-heterojunction 10.1 solar cells. EnergyChem, 2020, 2, 100042. $ilde{\mathsf{F}} ext{-Conjugated}$ polymers and molecules enabling small photon energy loss simultaneously with high 3153 5.234 efficiency in organic photovoltaics. Journal of Materials Chemistry A, 2020, 8, 20213-20237. Simultaneously enhancing the dielectric constant, photo-response and deepening HOMO levels of benzo[1,2-b;4,5-b']dithiophene derivatives-based conjugated polymers. Dyes and Pigments, 2020, 177, 3154 2.0 108263 Following <i>In Situ</i> the Evolution of Morphology and Optical Properties during Printing of Thin 3155 Films for Application in Non-Fullerene Acceptor Based Organic Solar Cells. ACS Applied Materials 4.0 14 & Interfaces, 2020, 12, 40381-40392. Sn–N/Sn–O interaction improving electron collection in non-fullerene organic solar cells. Journal of Materials Chemistry C, 2020, 8, 12218-12223.

#	Article	IF	CITATIONS
3157	Effect of metalation on some graphene nanoribbons for potential application as donor in organic photovoltaic cells. Journal of Materials Science: Materials in Electronics, 2020, 31, 21923-21933.	1.1	5
3158	Correlation of Nanomorphology with Structural and Spectroscopic Studies in Organic Solar Cells. ACS Applied Nano Materials, 2020, 3, 11080-11089.	2.4	7
3159	Bending Sensors Based on Thin Films of Semitransparent Bithiopheneâ€Fulleropyrrolidine Bisadducts. ChemPlusChem, 2020, 85, 2455-2464.	1.3	3
3160	Two Birds with One Stone: High Efficiency and Low Synthetic Cost for Benzotriazoleâ€Based Polymer Solar Cells by a Simple Chemical Approach. Advanced Energy Materials, 2020, 10, 2002142.	10.2	26
3161	Interfacial Dipole in Organic and Perovskite Solar Cells. Journal of the American Chemical Society, 2020, 142, 18281-18292.	6.6	182
3162	Small molecular electrolytes as the interlayer for enhanced performance of organic solar cellsExperimental. Molecular Crystals and Liquid Crystals, 2020, 705, 22-27.	0.4	0
3163	A Low-Temperature Solution-Processed CuSCN/Polymer Hole Transporting Layer Enables High Efficiency for Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 46373-46380.	4.0	19
3164	Investigation of Molecular Dynamics of a PTB7:PCBM Polymer Blend with Quasi-Elastic Neutron Scattering. ACS Applied Polymer Materials, 2020, 2, 3797-3804.	2.0	8
3165	Enhancing Charge Separation through Oxygen Vacancyâ€Mediated Reverse Regulation Strategy Using Porphyrins as Model Molecules. Small, 2020, 16, e2001752.	5.2	10
3166	Switchable Crystal Phase and Orientation of Evaporated Zinc Phthalocyanine Films for Efficient Organic Photovoltaics. Journal of Physical Chemistry C, 2020, 124, 21338-21345.	1.5	7
3167	Work-Function-Tunable Electron Transport Layer of Molecule-Capped Metal Oxide for a High-Efficiency and Stable p–i–n Perovskite Solar Cell. ACS Applied Materials & Interfaces, 2020, 12, 45936-45949.	4.0	23
3168	Hot Hydrocarbonâ€5olvent Slotâ€Die Coating Enables Highâ€Efficiency Organic Solar Cells with Temperatureâ€Dependent Aggregation Behavior. Advanced Materials, 2020, 32, e2002302.	11.1	139
3169	Orthogonal Printable Reduced Graphene Oxide 2D Materials as Hole Transport Layers for High-Performance Inverted Polymer Solar Cells: Sheet Size Effect on Photovoltaic Properties. ACS Applied Materials & Interfaces, 2020, 12, 42811-42820.	4.0	14
3170	Two-Dimensional Direct Semiconductor Boron Monochalcogenide Î ³ -BTe: Room-Temperature Single-Bound Exciton and Novel Donor Material in Excitonic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 58349-58359.	4.0	7
3171	Dipolar self-assembled monolayers grafted on ZnO for the tuning of electronic properties of the poly (3-hexylthiophène)- [6,6]-phenyl C61-butyric acid methylester blend. Thin Solid Films, 2020, 714, 138296.	0.8	4
3172	Dibenzothiophene- <i>S</i> , <i>S</i> -dioxide-bispyridinium-fluorene-based polyelectrolytes for cathode buffer layers of polymer solar cells. Polymer Chemistry, 2020, 11, 3605-3614.	1.9	3
3173	Dopamine Semiquinone Radical Doped PEDOT:PSS: Enhanced Conductivity, Work Function and Performance in Organic Solar Cells. Advanced Energy Materials, 2020, 10, 2000743.	10.2	97
3174	A cathode interface engineering approach for the comprehensive study of indoor performance enhancement in organic photovoltaics. Sustainable Energy and Fuels, 2020, 4, 3378-3387.	2.5	29

#	Article	IF	CITATIONS
3175	Direct Correlation of Nanoscale Morphology and Device Performance to Study Photocurrent Generation in Donor-Enriched Phases of Polymer Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 28404-28415.	4.0	7
3176	Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells. Nature Communications, 2020, 11, 2726.	5.8	467
3177	Semitransparent Flexible Organic Solar Cells. Chemical Research in Chinese Universities, 2020, 36, 343-350.	1.3	18
3178	Inverted Polymer Solar Cells Using Inkjet Printed ZnO as Electron Transport Layer: Characterization and Degradation Study. IEEE Journal of the Electron Devices Society, 2020, 8, 413-420.	1.2	9
3179	Study of the Degradation of PTB7-Th:PC70BM-based Solar Cells using TiOx as Electron Transport Layers under Ambient Environment. , 2020, , .		3
3180	A self-powered, flexible photodetector based on perovskite nanowires with Ni-Al electrodes. Journal of Alloys and Compounds, 2020, 845, 155311.	2.8	23
3181	Characterization and simulation study of organic solar cells based on donor–acceptor (D–π–A) molecular materials. RSC Advances, 2020, 10, 18816-18823.	1.7	4
3182	Following in Operando the Structure Evolutionâ€Induced Degradation in Printed Organic Solar Cells with Nonfullerene Small Molecule Acceptor. Solar Rrl, 2020, 4, 2000251.	3.1	14
3183	Balancing the pre-aggregation and crystallization kinetics enables high efficiency slot-die coated organic solar cells with reduced non-radiative recombination losses. Energy and Environmental Science, 2020, 13, 2467-2479.	15.6	69
3184	Charge transfer characteristics of fullerene-free polymer solar cells <i>via</i> multi-state electronic coupling treatment. Sustainable Energy and Fuels, 2020, 4, 4137-4157.	2.5	2
3185	Improved Performance of Ternary Solar Cells by Using BODIPY Triads. Materials, 2020, 13, 2723.	1.3	4
3186	The asymmetric relationship between financial development, trade openness, foreign capital flows, and renewable energy consumption: Fresh evidence from panel NARDL investigation. Renewable Energy, 2020, 159, 827-842.	4.3	165
3187	Light formation mechanisms induced by well-aligned sub-20-nm Ag quantum dots produced alongside patterned porous Si walls and bottoms. Optik, 2020, 207, 164480.	1.4	1
3188	Black phosphorous quantum dots as an effective interlayer modifier in polymer solar cells. Solar Energy, 2020, 206, 670-676.	2.9	23
3189	Solid-State Synthesized BiFeO ₃ Perovskite-Based Fast-Response White-Light Photodetector. IEEE Electron Device Letters, 2020, 41, 1225-1228.	2.2	22
3190	Optogenetic brain neuromodulation by stray magnetic field via flash-enhanced magneto-mechano-triboelectric nanogenerator. Nano Energy, 2020, 75, 104951.	8.2	54
3191	Facile Method of Solvent-Flushing To Building Component Distribution within Photoactive Layers for High-Performance Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 31459-31466.	4.0	10
3192	Organic tandem solar cells under indoor light illumination. Progress in Photovoltaics: Research and Applications, 2020, 28, 946-955.	4.4	18

#	Article	IF	CITATIONS
3193	Employing a Narrow-Band-Gap Mediator in Ternary Solar Cells for Enhanced Photovoltaic Performance. ACS Applied Materials & Interfaces, 2020, 12, 16387-16393.	4.0	22
3194	Recent Progress on Indoor Organic Photovoltaics: From Molecular Design to Production Scale. ACS Energy Letters, 2020, 5, 1186-1197.	8.8	131
3195	Solution-processable porous organic polymer for tailoring the charge transport property of planar perovskite solar cells. Dyes and Pigments, 2020, 178, 108332.	2.0	6
3196	Unraveling the Lithium Bis(trifluoromethanesulfonyl)imide (LiTFSI) Doping Mechanism of Regioregular Poly(3-hexylthiophene): Experimental and Theoretical Study. Journal of Physical Chemistry C, 2020, 124, 7061-7070.	1.5	14
3197	Unraveling the Dual-Functional Mechanism of Light Absorption and Hole Transport of Cu ₂ Cd <i>_x</i> Zn _{1–<i>x</i>Sub>SnS₄ for Achieving Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 17509-17518.}	4.0	17
3198	High-Sensitivity Visible–Near Infrared Organic Photodetectors Based on Non-Fullerene Acceptors. ACS Applied Materials & Interfaces, 2020, 12, 17769-17775.	4.0	44
3199	Energy band and optical modeling of charge transport mechanism and photo-distribution of MoO3/Al-doped MoO3 in organic tandem cells. Functional Materials Letters, 2020, 13, 2051003.	0.7	3
3200	Hybrid Lead-Halide Polyelectrolytes as Interfacial Electron Extraction Layers in Inverted Organic Solar Cells. Polymers, 2020, 12, 743.	2.0	11
3201	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	3.2	117
3202	Organic Solar Cells' Efficiency Enhanced by Perylene Monoimide Phosphorus Salt Cathode Interfacial Layer. Energy Technology, 2020, 8, 2000072.	1.8	8
3203	Progress of the key materials for organic solar cells. Science China Chemistry, 2020, 63, 758-765.	4.2	158
3204	Tuning the optoelectronic properties of Benzo Thiophene (BT-CIC) based non-fullerene acceptor organic solar cell. Journal of Theoretical and Computational Chemistry, 2020, 19, 2050003.	1.8	23
3205	Synergistic Reinforcement of Builtâ€in Electric Fields for Highly Efficient and Stable Perovskite Photovoltaics. Advanced Functional Materials, 2020, 30, 1909755.	7.8	47
3206	Development of InP Quantum Dot-Based Light-Emitting Diodes. ACS Energy Letters, 2020, 5, 1095-1106.	8.8	115
3207	Roll-to-roll printing of polymer and perovskite solar cells: compatible materials and processes. Journal of Materials Science, 2020, 55, 13490-13542.	1.7	23
3208	Cationic polyelectrolytes as convenient electron extraction layers in perovskite solar cells. Dyes and Pigments, 2020, 182, 108634.	2.0	9
3209	Synthesis and organic solar cell application of RNA-nucleobase-complexed CdS nanowires. Solar Energy, 2020, 206, 287-293.	2.9	10
3210	PDI-based heteroacenes as acceptors for fullerene-free solar cells: importance of their twisted geometry. New Journal of Chemistry, 2020, 44, 13093-13099.	1.4	6

#	Article	IF	CITATIONS
3211	Photocatalytic activity enhanced via surface hybridization. , 2020, 2, 308-349.		68
3212	Improved performance in inverted organic solar cell using two p-doped layers to modify the interface between anode and photoactive layer. Thin Solid Films, 2020, 697, 137836.	0.8	2
3213	Surface modification on nanoripple-like ZnO nanorod arrays using two-dimensional (2D) Bi2OS2 to fabricate high-performance inverted polymer solar cells. Applied Surface Science, 2020, 513, 145874.	3.1	7
3214	Organic solar cells based on non-fullerene acceptors of nine fused-ring by modifying end groups. Organic Electronics, 2020, 81, 105662.	1.4	9
3215	Polymer design to promote low work function surfaces in organic electronics. Progress in Polymer Science, 2020, 103, 101222.	11.8	48
3216	Degradation study under air environment of inverted polymer solar cells using polyfluorene and halide salt as electron transport layers. Solar Energy, 2020, 198, 419-426.	2.9	9
3217	Organic solar cells based on cellulose nanopaper from agroforestry residues with an efficiency of over 16% and effectively wide-angle light capturing. Journal of Materials Chemistry A, 2020, 8, 5442-5448.	5.2	44
3218	Conjugated Random Terpolymer Donors towards <scp>Highâ€Efficiency</scp> Polymer Solar Cells. Chinese Journal of Chemistry, 2020, 38, 601-624.	2.6	23
3219	Polyolefin Elastomer as the Anode Interfacial Layer for Improved Mechanical and Air Stabilities in Nonfullerene Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 10706-10716.	4.0	24
3220	A photovoltaic textile design with a stainless steel mesh fabric. Journal of Industrial Textiles, 2022, 51, 1527-1538.	1.1	7
3221	Efficient top illuminated microcavity organic solar cells using air stable composite semitransparent electrodes. Organic Electronics, 2020, 79, 105636.	1.4	9
3222	Solution-Processed Transparent Electrodes for Emerging Thin-Film Solar Cells. Chemical Reviews, 2020, 120, 2049-2122.	23.0	152
3223	2D Conjugated Polyelectrolytes Possessing Identical Backbone with Activeâ€Layer Polymer as Cathode Interlayer for Organic Solar Cells. Macromolecular Rapid Communications, 2020, 41, 1900624.	2.0	3
3224	Enhanced Vertical Charge Transport of Homo―and Blended Semiconducting Polymers by Nanoconfinement. Advanced Materials, 2020, 32, 1908087.	11.1	22
3225	Effect of Polymer Morphology on Dilute Donor Organic Solar Cells. Journal of Physical Chemistry C, 2020, 124, 3517-3528.	1.5	13
3226	N-doping of fullerene using 1,3,5-trimethylhexahydro-1,3,5-triazine as an electron transport layer for nonfullerene organic solar cells. Sustainable Energy and Fuels, 2020, 4, 1984-1990.	2.5	6
3227	Passivating Surface Defects of <i>n</i> ‧nO ₂ Electron Transporting Layer by InP/ZnS Quantum Dots: Toward Efficient and Stable Organic Solar Cells. Advanced Electronic Materials, 2020, 6, 1901245.	2.6	35
3228	Effects of Annealing Temperature on the Performance of Organic Solar Cells Based on Polymer: Non-Fullerene Using V ₂ O ₅ as HTL. IEEE Journal of the Electron Devices Society, 2020, 8, 421-428.	1.2	9

#	Article	IF	CITATIONS
3229	Dithieno[3,2â€ <i>b</i> :2ʹ,3ʹâ€ <i>d</i>]pyrrolâ€Fused Asymmetrical Electron Acceptors: A Study into the Effects of Nitrogenâ€Functionalization on Reducing Nonradiative Recombination Loss and Dipole Moment on Morphology. Advanced Science, 2020, 7, 1902657.	5.6	51
3230	Effect of fused triphenylamine core in star-shaped donor-ï€-acceptor molecules on their physicochemical properties and performance in bulk heterojunction organic solar cells. Dyes and Pigments, 2020, 177, 108260.	2.0	18
3231	Perylene Diimideâ€Based Conjugated Polymers for Allâ€Polymer Solar Cells. Chemistry - A European Journal, 2020, 26, 12510-12522.	1.7	29
3232	Bicontinuous network of electron donor-acceptor composites achieved by additive-free sequential deposition for efficient polymer solar cells. Current Applied Physics, 2020, 20, 760-764.	1.1	4
3233	Understanding the mechanisms of a conjugated polymer electrolyte for interfacial modification in solution-processed organic-inorganic hybrid perovskite photodetectors. Organic Electronics, 2020, 83, 105729.	1.4	7
3234	Thickness dependence of solar cell efficiency in transition metal dichalcogenides MX2 (M: Mo, W; X: S,) Tj ETQq1	1,0,78431 3.0	l4rgBT /Ov
3235	Selective UV Absorbance of Copper Chalcogenide Nanoparticles for Enhanced Illumination Durability in Perovskite Photovoltaics. ACS Sustainable Chemistry and Engineering, 2020, 8, 7617-7627.	3.2	6
3236	Case Study on the Correlation between Crystal Packing and Miscibility of Chlorinated Thiophene–Based Donor Polymers for Nonfullerene Organic Solar Cells with Long Shelf Life. Solar Rrl, 2020, 4, 2000074.	3.1	13
3237	Light trapping using copper decorated nano-composite in the hole transport layer of organic solar cell. Solar Energy, 2020, 203, 83-90.	2.9	23
3238	Progress in Stability of Organic Solar Cells. Advanced Science, 2020, 7, 1903259.	5.6	308
3239	Developing low boiling point solvent additives directly based on non-fullerene based active layer: Higher efficiency and better thickness tolerance. Organic Electronics, 2020, 83, 105762.	1.4	9
3240	A 3D nonfullerene electron acceptor with a 9,9′-bicarbazole backbone for high-efficiency organic solar cells. Organic Electronics, 2020, 84, 105784.	1.4	5
3241	Thin-Film Tandem Organic Solar Cells With Improved Efficiency. IEEE Access, 2020, 8, 74093-74100.	2.6	12
3242	Highly efficient inverted polymer solar cells by using solution processed MgO/ZnO composite interfacial layers. Journal of Colloid and Interface Science, 2021, 583, 178-187.	5.0	20
3243	Enhancing Longâ€Term Thermal Stability of Nonâ€Fullerene Organic Solar Cells Using Selfâ€Assembly Amphiphilic Dendritic Block Copolymer Interlayers. Advanced Functional Materials, 2021, 31, 2005753.	7.8	25
3244	Understanding the Work Function Modification by a Selfâ€assembled Polyvinylpyrrolidone Layer in Inverted Organic Solar Cells. Solar Rrl, 2021, 5, 2000575.	3.1	8
3245	Recent advances in stability of organic solar cells. EnergyChem, 2021, 3, 100046.	10.1	50
3246	Molecular Design of Efficient Chlorine―and Carboxylateâ€Functionalized Donor Polymers for Nonfullerene Organic Solar Cells Enabling Processing with Ecoâ€Friendly Solvent in Air. Solar Rrl, 2021, 5, 2000608.	3.1	8
#	Article	IF	CITATIONS
------	--	------	-----------
3247	Wide bandgap polymer donors for high efficiency non-fullerene acceptor based organic solar cells. Materials Advances, 2021, 2, 115-145.	2.6	47
3248	Sn-doped nickel sulfide (Ni3S2) derived from bimetallic MOF with ultra high capacitance. Journal of Alloys and Compounds, 2021, 859, 157798.	2.8	25
3249	Temperature and Light Modulated Openâ€Circuit Voltage in Nonfullerene Organic Solar Cells with Different Effective Bandgaps. Advanced Energy Materials, 2021, 11, 2003091.	10.2	23
3250	Asymmetric Acceptors Enabling Organic Solar Cells to Achieve an over 17% Efficiency: Conformation Effects on Regulating Molecular Properties and Suppressing Nonradiative Energy Loss. Advanced Energy Materials, 2021, 11, 2003177.	10.2	114
3251	Progress and prospects of thick-film organic solar cells. Journal of Materials Chemistry A, 2021, 9, 3125-3150.	5.2	53
3252	Hydrothermal synthesis of $\hat{l}\pm$ -SnWO4: Application to lithium-ion battery and photocatalytic activity. Ceramics International, 2021, 47, 10242-10249.	2.3	19
3253	Nonylbisoxazole-based donor–acceptor copolymers for polymer solar cells. New Journal of Chemistry, 2021, 45, 2710-2714.	1.4	2
3254	Electronic effects of nano-confinement in functional organic and inorganic materials for optoelectronics. Chemical Society Reviews, 2021, 50, 3585-3628.	18.7	32
3255	Ground- and excited-state characteristics in photovoltaic polymer N2200. RSC Advances, 2021, 11, 20191-20199.	1.7	15
3256	High performance tandem organic solar cells via a strongly infrared-absorbing narrow bandgap acceptor. Nature Communications, 2021, 12, 178.	5.8	122
3257	Top transparent electrodes for fabricating semitransparent organic and perovskite solar cells. Journal of Materials Chemistry C, 2021, 9, 9102-9123.	2.7	17
3258	Inverted organic photovoltaics with a solution-processed ZnO/MgO electron transport bilayer. Journal of Materials Chemistry C, 2021, 9, 3901-3910.	2.7	8
3259	Implications of relaxation dynamics of collapsed conjugated polymeric nanoparticles for light-harvesting applications. Physical Chemistry Chemical Physics, 2021, 23, 14549-14563.	1.3	6
3260	The impact of TiO2 nanostructures on the physical properties and electrical performance of organic solar cells based on PTB7:PC71BM bulk heterojunctions. Materials Today: Proceedings, 2021, 42, 1921-1927.	0.9	3
3261	Highly Efficient Inverted Polymer Solar Cells Using an Indium Gallium Zinc Oxide Interfacial Layer. Solar Rrl, 2021, 5, 2000673.	3.1	8
3262	Structural, Electronic and Optical properties of (P3HT)n in context of Organic Solar Cells: DFT Based Approach. , 2021, , .		3
3263	From Fiber to Fabric: Progress Towards Photovoltaic Energy Textile. Advanced Fiber Materials, 2021, 3, 76-106.	7.9	36
3264	Layerâ€by‣ayer Processed Ternary Organic Photovoltaics with Efficiency over 18%. Advanced Materials, 2021, 33, e2007231.	11.1	438

#	Article	IF	CITATIONS
3265	Sulfonate-Conjugated Polyelectrolytes as Anode Interfacial Layers in Inverted Organic Solar Cells. Molecules, 2021, 26, 763.	1.7	7
3266	Formation Mechanism of PFN Dipole Interlayer in Organic Solar Cells. Solar Rrl, 2021, 5, 2000753.	3.1	34
3267	Alcohol-Soluble Zwitterionic 4-(Dimethyl(pyridin-2-yl)ammonio)butane-1-sulfonate Small Molecule as a Cathode Modifier for Nonfullerene Acceptor-Based Organic Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 10222-10230.	4.0	13
3268	Sequentially Solution-Deposited Active Layer: Ideal Organic Photovoltaic Device Architecture for Boron Subphthalocyanine as a Nonfullerene Acceptor. ACS Applied Energy Materials, 2021, 4, 1237-1249.	2.5	10
3269	Role of the Interface and Extraction Layer Energetics in Organic Solar Cells. Journal of Physical Chemistry C, 2021, 125, 5447-5457.	1.5	3
3270	Phase Diagrams of Ternary π-Conjugated Polymer Solutions for Organic Photovoltaics. Polymers, 2021, 13, 983.	2.0	10
3271	Significant Enhancement of Illumination Stability of Nonfullerene Organic Solar Cells via an Aqueous Polyethylenimine Modification. Journal of Physical Chemistry Letters, 2021, 12, 2607-2614.	2.1	41
3273	Recent progress of PM6:Y6-based high efficiency organic solar cells. Surfaces and Interfaces, 2021, 23, 100921.	1.5	50
3274	Synthesis and photovoltaic performance of a non-fullerene acceptor comprising siloxane-terminated alkoxyl side chain. Organic Electronics, 2021, 91, 106087.	1.4	13
3275	Microfluidics for flexible electronics. Materials Today, 2021, 44, 105-135.	8.3	65
3276	Stability Enhancement of High-Performance Inverted Polymer Solar Cells Using ZnO Electron Interfacial Layer Deposited by Intermittent Spray Pyrolysis Approach. ACS Applied Energy Materials, 2021, 4, 4099-4111.	2.5	16
3277	Mechanism of the Alcohol-Soluble Ionic Organic Interlayer in Organic Solar Cells. Langmuir, 2021, 37, 4347-4354.	1.6	9
3278	Toward Real Setting Applications of Organic and Perovskite Solar Cells: A Comparative Review. Energy Technology, 2021, 9, 2000901.	1.8	33
3279	Backbone regulation of a bithiazole-based wide bandgap polymer donor by introducing thiophene bridges towards efficient polymer solar cells. Organic Electronics, 2021, 92, 106130.	1.4	2
3280	Near-infrared absorbing non-fullerene acceptors with unfused D-A-D core for efficient organic solar cells. Organic Electronics, 2021, 92, 106131.	1.4	5
3281	A highly crystalline non-fullerene acceptor enabling efficient indoor organic photovoltaics with high EQE and fill factor. Joule, 2021, 5, 1231-1245.	11.7	95
3282	Subphthalocyanineâ€Diketopyrrolopyrrole Conjugates: 3D Starâ€Shaped Systems as Nonâ€Fullerene Acceptors in Polymer Solar Cells with High Openâ€Circuit Voltage. ChemPlusChem, 2021, 86, 1366-1373.	1.3	5
3283	The Influence of the Blend Ratio, Solvent Additive, and Post-production Treatment on the Polymer Dynamics in PTB7:PCBM Blend Films. Macromolecules, 2021, 54, 6534-6542.	2.2	3

#	Article	IF	CITATIONS
3284	Indoor Organic Photovoltaics for Selfâ€ s ustaining IoT Devices: Progress, Challenges and Practicalization. ChemSusChem, 2021, 14, 3449-3474.	3.6	41
3285	Slotâ€Die Coating of All Organic/Polymer Layers for Largeâ€Area Flexible OLEDs: Improved Device Performance with Interlayer Modification. Advanced Materials Technologies, 2021, 6, 2100264.	3.0	18
3286	Anthraceneâ€Assisted Morphology Optimization in Photoactive Layer for Highâ€Efficiency Polymer Solar Cells. Advanced Functional Materials, 2021, 31, 2103944.	7.8	51
3287	Fully automated spectroscopic ellipsometry analyses: Application to MoO <i>x</i> thin films. Journal of Applied Physics, 2021, 129, .	1.1	5
3288	Modulate the work function of Nb2CTx MXene as the hole transport layer for perovskite solar cells. Applied Physics Letters, 2021, 119, .	1.5	24
3290	Silicon Naphthalocyanine Tetraimides: Cathode Interlayer Materials for Highly Efficient Organic Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 19053-19057.	7.2	43
3291	Layer-by-layer slot-die coated high-efficiency organic solar cells processed using twin boiling point solvents under ambient condition. Nano Research, 2021, 14, 4236-4242.	5.8	28
3292	Silicon Naphthalocyanine Tetraimides: Cathode Interlayer Materials for Highly Efficient Organic Solar Cells. Angewandte Chemie, 2021, 133, 19201-19205.	1.6	2
3293	Hotspots, frontiers, and emerging trends of tandem solar cell research: A comprehensive review. International Journal of Energy Research, 2022, 46, 104-123.	2.2	12
3294	Efficient wide-band-gap copolymer donors for organic solar cells with perpendicularly placed benzodithiophene units. Journal of Power Sources, 2021, 499, 229961.	4.0	6
3295	A Solution-Processed Cathode Interfacial Layer Facilitates Efficient Energy Level Alignment in Organic Photovoltaics. Journal of Physical Chemistry C, 2021, 125, 20067-20075.	1.5	1
3296	Photovoltaic behavior of polymerizable ionic liquid based fixed-junction light-emitting electrochemical cells. Journal of Applied Physics, 2021, 130, .	1.1	1
3297	Surface Ohmic Conductivity on a Mott Insulator Based on a Oneâ€dimensional Bromideâ€bridged Nickel(III) Complex. Chemistry - an Asian Journal, 2021, 16, 2947-2951.	1.7	5
3298	Characterization of atmospheric-pressure spark generated atomic silver and gold clusters by time-of-flight mass spectrometry. Journal of Aerosol Science, 2021, 156, 105780.	1.8	4
3299	Progress in Organic Solar Cells: Materials, Physics and Device Engineering. Chinese Journal of Chemistry, 2021, 39, 2607-2625.	2.6	62
3300	A scientometric review of trends in solar photovoltaic waste management research. Solar Energy, 2021, 224, 545-562.	2.9	28
3301	Stability, encapsulation and large-area fabrication of organic photovoltaics. Science China Chemistry, 2021, 64, 1441-1459.	4.2	11
3302	Non-planar tetrathiafulvalene derivative modified hole transporting layer for efficient organic solar cells with improved fill factor. Solar Energy, 2021, 224, 883-888.	2.9	5

#	Article	IF	CITATIONS
3303	Effect of fluorine atoms on optoelectronic, aggregation and dielectric constants of 2,1,3-benzothiadiazole-based alternating conjugated polymers. Dyes and Pigments, 2021, 193, 109486.	2.0	18
3304	A pHâ€Neutral Polyelectrolyte Hole Transport Layer for Improved Energy Band Structure at the Anode/PTB7 Junction and Improved Solar Cell Performance. Solar Rrl, 2021, 5, 2100521.	3.1	4
3305	Static, Dynamic, Dielectric, and Magnetic Investigations on AnE-PVstat: PCBM Polymer Solar Cells under Open-Circuit Conditions. Journal of Physical Chemistry C, 2021, 125, 20706-20716.	1.5	5
3306	Contrasting Effect of Sideâ€Chain Placement on Photovoltaic Performance of Binary and Ternary Blend Organic Solar Cells in Benzodithiopheneâ€Thiazolothiazole Polymers. ChemSusChem, 2021, 14, 5032-5041.	3.6	9
3307	Organic Thinâ€film Solar Cells Using Benzotrithiophene Derivatives Bearing Acceptor Units as Nonâ€Fullerene Acceptors. European Journal of Organic Chemistry, 2021, 2021, 4620-4629.	1.2	3
3308	Piezophototronic Effect Enhanced Perovskite Solar Cell Based on P(VDFâ€TrFE). Solar Rrl, 2021, 5, 2100692.	3.1	8
3309	Interconnecting layers for tandem organic solar cells. Materials Today Energy, 2021, 21, 100707.	2.5	12
3310	Melamine-Doped Cathode Interlayer Enables High-Efficiency Organic Solar Cells. ACS Energy Letters, 2021, 6, 3582-3589.	8.8	45
3311	Fullerene-Functionalized Poly(3-hexylthiophene) Additive Stabilizes Conjugated Polymer–Fullerene Blend Morphologies. ACS Applied Polymer Materials, 0, , .	2.0	2
3312	Annealing-free alcohol-processable MoO anode interlayer enables efficient light utilization in organic photovoltaics. Journal of Energy Chemistry, 2021, 61, 141-146.	7.1	8
3313	Theoretical exploration of optoelectronic performance of PM6:Y6 series-based organic solar cells. Surfaces and Interfaces, 2021, 26, 101385.	1.5	15
3314	Fabrication and characterization of Cesium-doped Tungstate nanorods for Near-Infrared light absorption in dye sensitized solar cells. Results in Physics, 2021, 29, 104804.	2.0	18
3315	A simple and low-cost surface treatment to facilitate charge extraction and eliminate light soaking of polymer solar cells. Applied Surface Science, 2021, 564, 150425.	3.1	0
3316	Insight into the electronic, optical and transport nature of Al2CdX4 (X = S, Se and Te) employing the accurate mBJ approach: Novel materials for opto-electronic devices. Materials Science in Semiconductor Processing, 2021, 135, 106098.	1.9	13
3317	Theoretical study of the impact of the D/A system polymer and anodic interfacial layer on inverted organic solar cells (BHJ) performance. Optical Materials, 2021, 121, 111588.	1.7	9
3318	Utilizing the unique charge extraction properties of antimony tin oxide nanoparticles for efficient and stable organic photovoltaics. Nano Energy, 2021, 89, 106373.	8.2	8
3319	Performance efficiency of an organic solar cell FTO:PTB7:PC70BM free of ITO and its degradation. Optik, 2021, 247, 167961.	1.4	2
3320	Tuning the optoelectronic properties of naphthodithiophene (NDT) for designing of A-D-A type photovoltaic materials. Optik, 2021, 247, 167892.	1.4	21

#	Article	IF	CITATIONS
3321	ZnO nanoparticles modified with biomaterial GHK-Cu as electron transport layer to fabricate highly efficient inverted polymer solar cells. Chemical Engineering Journal, 2022, 428, 131366.	6.6	17
3322	Spectral response and quantum efficiency evaluation of solar cells: a review. , 2021, , 525-566.		3
3323	Steric effect of benzodifuran based polymers via alkyl side chain manipulation: a simple approach for enhancing the photovoltaic performance. New Journal of Chemistry, 0, , .	1.4	2
3324	A metal chelation strategy suppressing chemical reduction between PEDOT and polyethylenimine for a printable low-work function electrode in organic solar cells. Journal of Materials Chemistry A, 2021, 9, 3918-3924.	5.2	9
3325	Interlayers for non-fullerene based polymer solar cells: distinctive features and challenges. Energy and Environmental Science, 2021, 14, 180-223.	15.6	165
3328	Inverted Organic Solar Cells (OSCs). , 2014, , 215-242.		2
3329	Charge-Transporting Polymers. , 2015, , 360-369.		1
3330	Interfacial Materials for Organic Solar Cells. Energy, Environment, and Sustainability, 2020, , 373-423.	0.6	3
3331	Excitonic Processes in Organic Semiconductors and Their Applications in Organic Photovoltaic and Light Emitting Devices. Springer Series in Materials Science, 2015, , 229-251.	0.4	6
3332	Chlorophytum rhizosphere, a suitable environment for electroactive biofilm development. Biomass Conversion and Biorefinery, 0, , 1.	2.9	6
3333	The Scientometric Overview in Cancer Targeting. , 2016, , 871-895.		5
3334	Unraveling optimal interfacial conditions for highly efficient and reproducible organic photovoltaics under low light levels. Applied Surface Science, 2020, 526, 146632.	3.1	13
3335	Facile preparation of a polymer-ZnO composite colloid as an electron transport layer and its effects on inverted polymer solar cells. Journal of Physics and Chemistry of Solids, 2020, 145, 109538.	1.9	6
3336	Contributions of poly(3-hexylthiophene) nanowires to alteration of vertical inhomogeneity of bulk-heterojunction active layers and improvements of light-harvesting and power-conversion efficiency of organic solar cells. Organic Electronics, 2017, 42, 372-378.	1.4	5
3337	Performance improvement of organic bulk-heterojunction solar cells using complementary plasmonic gold nanorods. Organic Electronics, 2020, 84, 105802.	1.4	7
3338	Homoleptic Tris-Cyclometalated Iridium Complexes with Substituted <i>o</i> -Carboranes: Green Phosphorescent Emitters for Highly Efficient Solution-Processed Organic Light-Emitting Diodes. Inorganic Chemistry, 2016, 55, 909-917.	1.9	63
3339	Burn-In Degradation Mechanism Identified for Small Molecular Acceptor-Based High-Efficiency Nonfullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 27433-27442.	4.0	38
3340	Boosting Perovskite Light-Emitting Diode Performance via Tailoring Interfacial Contact. ACS Applied Materials & Ma	4.0	96

	CITATION	N REPORT	
#	Article	IF	Citations
3341	Revealing the correlation between charge carrier recombination and extraction in an organic solar cell under varying illumination intensity. Physical Chemistry Chemical Physics, 2017, 19, 26169-26178.	1.3	13
3342	An efficient star-shaped fused-ring electron acceptor with <i>C</i> _{3h} -symmetric core <i>via</i> thieno[3,2- <i>b</i>]thiophene extending conjugation strategy. Materials Chemistry Frontiers, 2020, 4, 3328-3337.	3.2	10
3343	Improvement of hole mobility in PTB7 polymer film with a low temperature electric field treatment. Journal of Applied Physics, 2020, 128, 215501.	1.1	1
3344	Understanding morphology-mobility dependence in PEDOT:Tos. Physical Review Materials, 2018, 2, .	0.9	52
3345	How solar cell efficiency is governed by the Î \pm μτ product. Physical Review Research, 2020, 2, .	1.3	17
3346	Full-spectrum solar energy allocation for efficient space-based photovoltaic–thermoelectric energy conversion. Journal of Photonics for Energy, 2019, 9, 1.	0.8	6
3347	Solution-Processed Donors. , 2014, , 3-69.		3
3348	Strong enhanced efficiency of natural alginate for polymer solar cells through modification of the ZnO cathode buffer layer. Applied Optics, 2020, 59, 9042.	0.9	4
3349	Light trapping plasmonic butterfly-wing-shaped nanostructures for enhanced absorption and efficiency in organic solar cells. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 978.	0.9	14
3350	ZnO-free Inverted Polymer Solar Cells Based on New Viologen Derivative as a Cathode Buffer Layer. Applied Chemistry for Engineering, 2016, 27, 512-515.	0.2	3
3351	Electroabsorption Study of Charge-Transfer Excited State in Donor-Acceptor-Type Polymer. Transactions of the Materials Research Society of Japan, 2014, 39, 217-219.	0.2	2
3352	Application to Organic Photovoltaic Cells. Journal of the Institute of Electrical Engineers of Japan, 2016, 136, 86-89.	0.0	1
3353	Spectroscopic Study of Electric Field Induced Optical Second Harmonic Generation from PCPDTBT and PC ₇₁ BM Thin Films. IEICE Transactions on Electronics, 2019, E102.C, 119-124.	0.3	1
3355	Equivalent Circuit Modification for Organic Solar Cells. Circuits and Systems, 2015, 06, 153-160.	0.1	5
3356	Thiadiazoloquinoxaline-Based Narrow Energy Gap Molecules for Small Molecule Solar Cell Applications. Bulletin of the Korean Chemical Society, 2013, 34, 661-664.	1.0	2
3357	Synthesis and Characterization of Phenanthrene-substituted Fullerene Derivatives as Electron Acceptors for P3HT-based Polymer Solar Cells. Bulletin of the Korean Chemical Society, 2014, 35, 1647-1653.	1.0	6
3358	Enhancement of performance of P3HT:PCBM based polymer solar cell by Ag2O/PEDOT:PSS composite buffer layer. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 068402.	0.2	6
3359	Effect of ZnO electron-transport layer on light-soaking issue in inverted polymer solar cells. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 088401.	0.2	3

** ARTICLE IF CTAR 3341 Efficiency in Bulk Heterogunction Polymer Solar Cells. ACS Applied Energy Materials, 2021, 4, 11480-11487. 2.5 6 3342 Utgnts Stability Free Solution Polymer Solar Cells. ACS Applied Energy Materials, 2021, 4, 11480-11487. 2.6 6 3343 Efficiency and Stability Improvement of Organic Solar Cells Based on PTB7; PCBM Through 1.0 5 3344 Efficiency and Stability Improvement of Organic Solar Cells Based on PTB7; PCBM Through 0.2 6 3345 Efficiency and Stability Improvement of Organic Solar Cells Based on PTB7; PCBM Through 0.2 6 3346 Progress in the blend stacked structure of organic solar cells. Wull Xuebao/Acta Physical Sinica, 2013, 0.2 0.2 6 3346 Efficiency and Stability of Organic Solar Cells (OSCs), 2014, 243-274. 0.2 0 3347 Stability of Organic Solar Cells (OSCs), 2014, 243-274. 0.2 0 3348 Efficiency Improvement in organic solar cells by doping cholesteric liquid crystal. Wull Xuebao/Acta 0.2 0 3349 Efficiency Improvement in organic solar cells to doping cholesteric liquid crystal. Wull Xuebao/Acta 0.2 0 3340 Research Progress and Manufacturing Techniques for Large-Area Polymer Solar Cells, 20
3301A Light Soaking Free Solution Processable Metal Oxide Cathode Interfacial Layer Enables High Efficiency in Bulk Heterojunction Polymer Solar Cells. ACS Applied Energy Materials, 2021, 4, Commic Solar Cells Revealed by two Dimensional Intrared Spectroscopy. Journal of Physical Commic Solar Cells Revealed by two Dimensional Intrared Spectroscopy. Journal of Physical2.563302Efficiency and Stability Improvement of Organic Solar Cells Based on PTB7: PCBM Through Hot Substrate Coating. Journal of Electronic Materials, 2021, 50, 6828-6835.1.053304Progress in the blend stacked structure of organic solar cells. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 027201.0.263305Thiadiazoloquinoxaline-Based Low Band Cap Polymer for Solar Cell Applications. Bulletin of the Korean Chemical Society, 2013, 34, 2835-2838.003306Efficiency improvement in organic solar cells by doping cholesteric liquid crystal. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 248403.0.203307Research Progress and Manufacturing Techniques for Large-Area Polymer Solar Cells., 2014, .275-300.0.203308Interface Functional Materials for Improving the Performance and Stability of Organic Solar Cell.0.203309Interface Functional Materials for Improving the Performance and Stability of Organic Solar Cell.0.203317Interface Innetword Materials for Improving the Performance and Stability of Organic Solar Cell.0.203329Interface Functional Materials for Improving the Performance and Stability of Organic Solar Cell.0.203320Interface Functional Materials for Improving the Performa
StateUltrafast Structure and Wbrational Dynamics of a Cyano-Containing Non-Fullerene Acceptor for Organic Solar Cells Revealed by Two-Dimensional Infrared Spectroscopy. Journal of Physical fifteiency and Stability Improvement of Organic Solar Cells Based on PTB7: PCBM Through Het Substrate Coating. Journal of Electronic Materials, 2021, 50, 6828-6835.1.02.03366Efficiency and Stability Improvement of Organic Solar Cells Based on PTB7: PCBM Through Het Substrate Coating. Journal of Electronic Materials, 2021, 50, 6828-6835.0.00.20.03366Thiadiazoloquinoxaline-Based Low Band Gap Polymer for Solar Cell Applications. Bulletin of the Korean Chemical Society, 2013, 34, 2835-2838.0.00.03366Efficiency improvement in organic solar cells by doping cholesteric liquid crystal. Wuli Xuebao/Acta Physica Sinca, 2014, 63, 24803.0.20.23369Efficiency improvement in organic solar cells optimer LEDs. Green Energy and Technology, 2014, 0.30.40.23370Research Progress and Manufacturing Techniques for Large-Area Polymer Solar Cells., 2014, 275-300.0.20.23371Astudy of tandem structure organic solar cells composed of polymer and small molecular sub-cells.0.20.23372Interface Functional Materials for Improving the Performance and Stability of Organic Solar Cell.0.20.23373Theoretical Modeling for Electron Transfer in Organic Materials, 2014, 2
33361Efficiency and Stability Improvement of Organic Solar Cells Based on PTB7: PCBM Through hot's Substrate Coating. Journal of Electronic Materials, 2021, 50, 6828-6835.1.05.13346Progress in the blend stacked structure of organic solar cells. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 027201.0.26.23366Thiadiazoloquinoxaline-Based Low Band Cap Polymer for Solar Cell Applications. Bulletin of the Korean Chemical Society, 2013, 34, 2835-2838.1.00.23367Stability of Organic Solar Cells (OSCs)., 2014, , 243-274.0.20.23368Efficiency improvement in organic solar cells by doping cholesteric liquid crystal. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 248403.0.20.23370Research Progress and Manufacturing Techniques for Large-Area Polymer Solar Cells., 2014, , 275-300.0.20.23371A Study of tandem structure organic solar cells composed of polymer and small molecular sub-cells.0.20.23372Interface Functional Materials for Improving the Performance and Stability of Organic Solar Cell.0.20.23372Interface Functional Materials for Improving the Performance and Stability of Organic Solar Cell.0.20.23373Interface Functional Materials for Improving the Performance and Stability of Organic Solar Cell.0.20.23374Efficient Inverted Polymer Solar Cells with self-assembled Ionic Liquid Layer as a Cathode Buffer1
3364Progress in the blend stacked structure of organic solar cells. Wuli Xuebao/Acta Physica Sinica, 2013, 62,027201.0.263366Thiadiazoloquinoxaline-Based Low Band Gap Polymer for Solar Cell Applications. Bulletin of the Korean Chemical Society, 2013, 34, 2835-2838.1.003367Stability of Organic Solar Cells (OSCs)., 2014, 243-274.03368Efficiency improvement in organic solar cells by doping cholesteric liquid crystal. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 248403.0.203369Low-Cost Fabrication of Organic Photovoltaics and Polymer LEDs. Green Energy and Technology, 2014.0.403370Research Progress and Manufacturing Techniques for Large-Area Polymer Solar Cells., 2014, 275-300.003371A Strudy of tandem structure organic solar cells composed of polymer and small molecular sub-cells. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 218801.0.203372Interface Functional Materials for Improving the Performance and Stability of Organic Solar Cell. Applied Chemistry for Engineering, 2014, 25, 447-454.0.203373- Theoretical Modeling for Electron Transfer in Organic Materials., 2014, , 20-51.03374Efficient Inverted Polymer Solar Cells with self-assembled Ionic Liquid Layer as a Cathode Buffer Layer., 2015,1
3366Thiadiazoloquinoxaline-Based Low Band Cap Polymer for Solar Cell Applications. Bulletin of the Korean Chemical Society, 2013, 34, 2835-2838.1.003367Stability of Organic Solar Cells (OSCs)., 2014, , 243-274.03368Efficiency improvement in organic solar cells by doping cholesteric liquid crystal. Wuli Xuebao/Acta0.203369Low-Cost Fabrication of Organic Photovoltaics and Polymer LEDs. Green Energy and Technology, 2014, , 277-265.0.403370Research Progress and Manufacturing Techniques for Large-Area Polymer Solar Cells., 2014, , 275-300.003371AStudy of tandem structure organic solar cells composed of polymer and small molecular sub-cells.0.203372Interface Functional Materials for Improving the Performance and Stability of Organic Solar Cell.0.203373• Theoretical Modeling for Electron Transfer in Organic Materials., 2014, 20-51.03374Efficient Inverted Polymer Solar Cells with self-assembled Ionic Liquid Layer as a Cathode Buffer1
3367Stability of Organic Solar Cells (OSCs)., 2014,, 243-274.o3368Efficiency improvement in organic solar cells by doping cholesteric liquid crystal. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 248403.o.2o3369Low-Cost Fabrication of Organic Photovoltaics and Polymer LEDs. Green Energy and Technology, 2014, , 227-265.o.4o3370Research Progress and Manufacturing Techniques for Large-Area Polymer Solar Cells., 2014,, 275-300.o3371AStudy of tandem structure organic solar cells composed of polymer and small molecular sub-cells. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 218801.o.223372Interface Functional Materials for Improving the Performance and Stability of Organic Solar Cell. Applied Chemistry for Engineering, 2014, 25, 447-454.oo3373-Theoretical Modeling for Electron Transfer in Organic Materials., 2014, 20-51.o3374Efficient Inverted Polymer Solar Cells with self-assembled Ionic Liquid Layer as a Cathode Buffer Layer., 2015,1
3368Efficiency improvement in organic solar cells by doping cholesteric liquid crystal. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 248403.0.20.23369Low-Cost Fabrication of Organic Photovoltaics and Polymer LEDs. Green Energy and Technology, 2014, , 227-265.0.403370Research Progress and Manufacturing Techniques for Large-Area Polymer Solar Cells., 2014, , 275-300.03371A Study of tandem structure organic solar cells composed of polymer and small molecular sub-cells. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 218801.0.223372Interface Functional Materials for Improving the Performance and Stability of Organic Solar Cell. Applied Chemistry for Engineering, 2014, 25, 447-454.0.203373- Theoretical Modeling for Electron Transfer in Organic Materials., 2014, 20-51.03374Efficient Inverted Polymer Solar Cells with self-assembled Ionic Liquid Layer as a Cathode Buffer Layer., 2015,1
3369Low-Cost Fabrication of Organic Photovoltaics and Polymer LEDs. Green Energy and Technology, 2014, , 227-265.0.403370Research Progress and Manufacturing Techniques for Large-Area Polymer Solar Cells., 2014, , 275-300.03371A Study of tandem structure organic solar cells composed of polymer and small molecular sub-cells. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 218801.0.223372Interface Functional Materials for Improving the Performance and Stability of Organic Solar Cell. Applied Chemistry for Engineering, 2014, 25, 447-454.0.203373- Theoretical Modeling for Electron Transfer in Organic Materials., 2014, 20-51.03374Efficient Inverted Polymer Solar Cells with self-assembled Ionic Liquid Layer as a Cathode Buffer Layer., 2015,1
3370Research Progress and Manufacturing Techniques for Large-Area Polymer Solar Cells. , 2014, , 275-300.03371A Study of tandem structure organic solar cells composed of polymer and small molecular sub-cells. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 218801.0.223372Interface Functional Materials for Improving the Performance and Stability of Organic Solar Cell. Applied Chemistry for Engineering, 2014, 25, 447-454.0.203373- Theoretical Modeling for Electron Transfer in Organic Materials. , 2014, , 20-51.03374Efficient Inverted Polymer Solar Cells with self-assembled Ionic Liquid Layer as a Cathode Buffer Layer. , 2015, , .1
3371A Study of tandem structure organic solar cells composed of polymer and small molecular sub-cells. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 218801.0.223372Interface Functional Materials for Improving the Performance and Stability of Organic Solar Cell. Applied Chemistry for Engineering, 2014, 25, 447-454.0.203373- Theoretical Modeling for Electron Transfer in Organic Materials. , 2014, , 20-51.03374Efficient Inverted Polymer Solar Cells with self-assembled Ionic Liquid Layer as a Cathode Buffer Layer. , 2015, , .1
3372Interface Functional Materials for Improving the Performance and Stability of Organic Solar Cell.0.203373- Theoretical Modeling for Electron Transfer in Organic Materials., 2014, 20-51.03374Efficient Inverted Polymer Solar Cells with self-assembled Ionic Liquid Layer as a Cathode Buffer1
3373- Theoretical Modeling for Electron Transfer in Organic Materials. , 2014, , 20-51.03374Efficient Inverted Polymer Solar Cells with self-assembled Ionic Liquid Layer as a Cathode Buffer Layer. , 2015, , .1
³³⁷⁴ Efficient Inverted Polymer Solar Cells with self-assembled Ionic Liquid Layer as a Cathode Buffer 1 Layer. , 2015, , .
3375 Polymers for Solar Cells. , 2015, , 2013-2020. 0
3376 NANOMATERIAIS: CONVERSÃFO DE ENERGIA SOLAR. , 2015, , 1-40. 0
Influence of PTCBI as cathode modification on the performances of Rubrene/C70 based organic solar 0.2 1 cells. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 208801.
All-Polymer Solar Cells Based on Organometallic Polymers. Green Chemistry and Sustainable 0.4 0 Technology, 2015, , 115-135.
Recent progress in graphene and its derivatives as interfacial layers in organic solar cells. Wuli 0.2 4 Xuebao/Acta Physica Sinica, 2015, 64, 038103.

#	Article	IF	CITATIONS
3380	Effects of bathocuproine/Ag composite anode on the performances of stability polymer photovoltaic devices. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 108801.	0.2	0
3383	First-principle study of the optical absorption spectra of chalcogen on D-A and DA copolymers. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 103101.	0.2	1
3384	Ultrafast intramolecular charge transfer dynamics in low band gap Isoindigo based copolymers. , 2016, , .		0
3385	Efficiency Improvement of Organic Solar Cells Using Two-step Annealing Technique. Transactions on Electrical and Electronic Materials, 2016, 17, 134-138.	1.0	0
3386	Interfacial Engineering Strategies for Third-Generation Photovoltaics. Current Photovoltaic Research, 2016, 4, 98-107.	0.0	0
3387	Morphology Control by the Centrifugation Method for Bulk Heterojunction Solar Cells. International Journal of Chemical Engineering and Applications (IJCEA), 2016, 7, 309-313.	0.3	0
3388	Dynamic Response of Charge Recombination from Post-Annealing Process in Organic Solar Cell Using Intensity Modulated Photovoltage Spectroscopy. Journal of the Chosun Natural Science, 2016, 9, 275-280.	0.0	0
3389	Study of Molybdenum Trioxide as a P-Type Dopant in Organic Semiconductors: The Influence of Density of Gap States on Their N-/P- Type Characteristics. , 2017, , .		0
3390	Plasmon enhanced power conversion efficiency in inverted bulk heterojunction organic solar cell. , 2017, , .		0
3391	Synthesis and Optoelectronic Studies of Low Band Gap Polymers and Their Role in Highly Efficient Solar Cells: An Overview. Springer Proceedings in Energy, 2018, , 179-185.	0.2	0
3392	Photovoltaic Materials. , 2018, , 1-22.		0
3393	Enhanced light absorption and device performances of organic photovoltaic devices with Au tetrahedra nanoparticles. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 247201.	0.2	1
3394	Study of Electron Transport Layer in Organic Photovoltaic Cell on Flexible Substrate. IEEJ Transactions on Fundamentals and Materials, 2018, 138, 428-434.	0.2	0
3395	Interchain and intrachain triplets in poly(3-thienylene vinylene) derivatives. Journal of Photonics for Energy, 2018, 8, 1.	0.8	0
3398	Air-Stable Optoelectronic Devices with Metal Oxide Cathodes. , 2019, , 413-422.		1
3399	Optimization of Bulk Heterojunction Organic Photovoltaic Devices. , 2019, , 1103-1138.		1
3400	Enhancing performance of inverted organic solar cells by nano-imprinting the active layer with a PDMS template. , 2019, , .		0
3401	Highly dendritic polythiophene/silver (PT/Ag) nanocomposite for solar energy applications. Egyptian Journal of Chemistry, 2019, .	0.1	0

#	Article	IF	CITATIONS
3402	Effective Strategy to Improve Contact Selectivity in Organic Solar Cells. ACS Applied Energy Materials, 0, , .	2.5	1
3403	Enhanced open-circuit voltages and efficiencies: the role of oxidation state of molybdenum oxide buffer layer in polymer solar cells. RSC Advances, 2021, 11, 35141-35146.	1.7	2
3404	Efficient near-infrared luminescence and energy transfer mechanism in Ca3Al2O6: Ce3+, Yb3+ phosphors. Journal of Luminescence, 2022, 241, 118511.	1.5	7
3405	Comparison of DSSC efficiencies in a series of D-ï€-A systems having heterocyclic based anchoring group. Materials Today: Proceedings, 2020, 33, 1257-1262.	0.9	1
3406	Evaluating technology innovation capabilities of companies based on entropy- TOPSIS: the case of solar cell companies. Information Technology and Management, 2022, 23, 65-76.	1.4	8
3407	Asymmetric Non-Fullerene Small-Molecule Acceptors toward High-Performance Organic Solar Cells. ACS Central Science, 2021, 7, 1787-1797.	5.3	58
3408	Development of MoO ₃ /Au/MoO ₃ Top Transparent Conducting Electrode for Organic Solar Cells on Opaque Substrates. Energy Technology, 2022, 10, 2100689.	1.8	7
3409	Enhanced Performance of PTB7:PC ₇₁ BM Based Organic Solar Cells by Incorporating a Nano-Layered Electron Transport of Titanium Oxide. ECS Journal of Solid State Science and Technology, 2020, 9, 105003.	0.9	8
3410	Ternary organic photovoltaics with good thickness tolerance by NC70BA as the third component. Organic Electronics, 2022, 100, 106397.	1.4	1
3411	Pronounced Backbone Coplanarization by π-Extension in a Sterically Hindered Conjugated Polymer System Leads to Higher Photovoltaic Performance in Non-Fullerene Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 56420-56429.	4.0	11
3412	Optimized Thin-Film Organic Solar Cell with Enhanced Efficiency. Sustainability, 2021, 13, 13087.	1.6	2
3413	Nearâ€Infrared Absorbing Nonfullerene Acceptors for Organic Solar Cells. Solar Rrl, 2022, 6, 2100868.	3.1	16
3414	Dual Interface Protection for High Performance and Excellent Long-Term Stability of Organic Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 57664-57672.	4.0	7
3415	Reducing energy loss via adjusting the anode work function and perovskite layer morphology for the efficient and stable hole transporting layer-free perovskite solar cells. Chemical Engineering Journal, 2022, 431, 133948.	6.6	17
3416	Achieving efficient organic solar cells <i>via</i> synergistically doping active layers and interfaces by a conjugated macrocycle. Journal of Materials Chemistry A, 2021, 9, 25629-25640.	5.2	10
3417	Electronic Doping Strategy in Perovskite Solar Cells. , 2021, , 1-56.		1
3418	Stable dinitrile end-capped closed-shell non-quinodimethane as a donor, an acceptor and an additive for organic solar cells. Materials Advances, 2022, 3, 1759-1766.	2.6	1
3419	Impact of charge generation and extraction on photovoltaic performances of spin- and blade-as well as spray-coated organic solar cells. Organic Electronics, 2022, 101, 106423.	1.4	4

#	Article	IF	CITATIONS
3422	Review on Y6-Based Semiconductor Materials and Their Future Development via Machine Learning. Crystals, 2022, 12, 168.	1.0	20
3423	Revival of Insulating Polyethylenimine by Creatively Carbonizing with Perylene into Highly Crystallized Carbon Dots as the Cathode Interlayer for High-Performance Organic Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 1280-1289.	4.0	19
3424	Highly Sensitive UV–Visâ€toâ€Nearâ€Infrared Organic Photodetectors Employing ZnO: Polyethylenimine Ethoxylated Composite as Holeâ€Blocking Layer. Advanced Photonics Research, 0, , 2100269.	1.7	10
3425	Structure, morphology, and photoresponse characteristics dependence on substrate nature of grown π-SnS films using chemical bath deposition. Optical Materials, 2022, 123, 111910.	1.7	9
3426	Efficient interface modification <i>via</i> multi-site coordination for improved efficiency and stability in organic solar cells. Energy and Environmental Science, 2022, 15, 822-829.	15.6	49
3427	Advanced nanomaterials utilized as top transparent electrodes in semi-transparent photovoltaic. Colloids and Interface Science Communications, 2022, 46, 100563.	2.0	16
3428	Efficiency Measurement of Organic Solar Cells: Step-by-Step Protocol to be Followed. Mapan - Journal of Metrology Society of India, 0, , 1.	1.0	1
3429	Simulation of the performance of organic solar cells based on D1-BT-EDOT-BT-D2-A/PCBM structures. E3S Web of Conferences, 2022, 336, 00063.	0.2	1
3430	Organic electronics: an overview of key materials, processes, and devices. , 2022, , 3-71.		4
3431	Solvent Tuning of the Active Layer Morphology of Nonâ€Fullerene Based Organic Solar Cells. Solar Rrl, 2022, 6, .	3.1	4
3432	Review—Conjugated Polymer Photovoltaic Materials: Performance and Applications of Organic Semiconductors in Photovoltaics. ECS Journal of Solid State Science and Technology, 2022, 11, 035001.	0.9	3
3433	Mechanical strain, thermal and pressure effects on the absorption edge of an organic charge-transfer polymer for flexible photovoltaics and sensors. Materials Advances, 2022, 3, 2697-2705.	2.6	5
3434	On the interface reactions and stability of nonfullerene organic solar cells. Chemical Science, 2022, 13, 4714-4739.	3.7	32
3435	Donor–acceptor π-conjugated polymers based on terthiophene-3,4-dicarboxylate, dithienopyrrolobenzothiadiazole and thieno[3,4- <i>c</i>]pyrrole-4,6-dione units and their hole mobility. New Journal of Chemistry, 2022, 46, 8601-8610.	1.4	2
3436	Numerical Simulation of S-Shaped Current–Voltage Curves Induced by Electron Traps in Inverted Organic Photovoltaics. International Journal of Molecular Sciences, 2022, 23, 2039.	1.8	1
3438	Wrapping BiVO4 with chlorophyll for greatly improved photoelectrochemical performance and stability. Science China Materials, 2022, 65, 1512-1521.	3.5	3
3440	Thermally Activated Delayed Fluorescent Gain Materials: Harvesting Triplet Excitons for Lasing. Advanced Science, 2022, 9, e2200525.	5.6	30
3441	Nonâ€Fullereneâ€Based Inverted Organic Photovoltaic Device with <scp>Longâ€Term</scp> Stability. Energy and Environmental Materials, 2023, 6, .	7.3	5

#	Article	IF	Citations
3442	Influence of Peripheral Modification of Electron Acceptors in Nonfullerene (O-IDTBR1)-Based Derivatives on Nonlinear Optical Response: DFT/TDDFT Study. ACS Omega, 2022, 7, 11631-11642.	1.6	14
3443	Li-Doped ZnO Electron Transport Layer for Improved Performance and Photostability of Organic Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 12450-12460.	4.0	21
3444	Recent Progress in Organic Solar Cells: A Review on Materials from Acceptor to Donor. Molecules, 2022, 27, 1800.	1.7	59
3445	Fullerene-free, MoTe2 atomic layer blended bulk heterojunctions for improved organic solar cell and photodetector performance. Journal of Materials Research and Technology, 2022, 17, 2875-2887.	2.6	5
3446	Reducing Photovoltaic Property Loss of Organic Solar Cells in Blade oating by Optimizing Microâ€Nanomorphology via Nonhalogenated Solvent. Advanced Energy Materials, 2022, 12, .	10.2	45
3447	Terminal alkyl chain tuning of small molecule donor enables optimized morphology and efficient all-small-molecule organic solar cells. Dyes and Pigments, 2022, 200, 110147.	2.0	1
3448	Suppressed oxidation in organic photovoltaics via hydrogen-bonded polyurethane acrylate resin encapsulation. Journal of Power Sources, 2022, 528, 231206.	4.0	2
3449	Solvent influenced morphology control of hole transport layer of CuSCN on performance of organic solar cells. Materials Chemistry and Physics, 2022, 282, 125898.	2.0	11
3450	Recent advances on visible light Thiophene-based photoinitiators of polymerization. European Polymer Journal, 2022, 169, 111120.	2.6	15
3451	Non-intrusive movable energy harvesting devices: Materials, designs, and their prospective uses on transportation infrastructures. Renewable and Sustainable Energy Reviews, 2022, 160, 112340.	8.2	8
3452	Effects of vertically aligned ZnO nanorods surface morphology on the ambient-atmosphere fabricated organic solar cells. Results in Materials, 2022, 14, 100271.	0.9	8
3453	Role of Electronic States and Their Coupling on Radiative Losses of Open-Circuit Voltage in Organic Photovoltaics. ACS Applied Materials & Interfaces, 2021, 13, 60279-60287.	4.0	6
3454	3D Nanoscale Morphology Characterization of Ternary Organic Solar Cells. Small Methods, 2022, 6, e2100916.	4.6	9
3455	Direct Evidence of the Internal Deterioration Mechanism due to Molecular Chain Ends in Polymer Solar Cells by Operando Spin Detection. ACS Applied Polymer Materials, 2022, 4, 607-617.	2.0	6
3456	High-Performance Near-Infrared Photodetectors Based on the Synergy Effect of Short Wavelength Light Filter and Long Wavelength Response of a Perovskite/Polymer Hybrid Structure. ACS Applied Materials & Interfaces, 2021, 13, 61818-61826.	4.0	7
3457	Simultaneous measurement of photocurrent and recombination emission in organic solar cell. Japanese Journal of Applied Physics, 2022, 61, 011001.	0.8	0
3458	Recent progress in organic solar cells (Part I material science). Science China Chemistry, 2022, 65, 224-268.	4.2	349
3460	Perylenetetracarboxylic acid nanosheets with internal electric fields and anisotropic charge migration for photocatalytic hydrogen evolution. Nature Communications. 2022. 13. 2067.	5.8	99

#	Article	IF	CITATIONS
3461	CHAPTER 3. High-performance Organic Photovoltaic Donor Polymers. RSC Nanoscience and Nanotechnology, 0, , 69-108.	0.2	0
3465	Overall Enhanced Performance of Polymer Photodetectors by Coâ€Modifying ITO with PEIE and ZnO. Physica Status Solidi - Rapid Research Letters, 2022, 16, .	1.2	3
3466	Bay Position Substituted Perylene Diimide Derivatives as Cathode Interface Materials for High-Efficient Nonfullerene and Fullerene Organic Photovoltaics. ACS Applied Energy Materials, 2022, 5, 6423-6431.	2.5	12
3467	Improving Thermal and Photostability of Polymer Solar Cells by Robust Interface Engineering. Small, 2022, 18, e2107834.	5.2	8
3468	Elevated barrier height originated from electric dipole effect and improved breakdown characteristics in PtO _x /l²-Ga ₂ O ₃ Schottky barrier diodes. Journal Physics D: Applied Physics, 2022, 55, 304003.	1.3	7
3470	Enhancing the organic solar cells performances by elevating cesium carboxylate content of graphene oxide based cathode interface layer. Surfaces and Interfaces, 2022, 31, 102068.	1.5	1
3471	PTB7 and PTB7-Th as universal polymers to evaluate materials development aspects of organic solar cells including interfacial layers, new fullerenes, and non-fullerene electron acceptors. Synthetic Metals, 2022, 287, 117088.	2.1	6
3472	Fully solution-processed organic RRAM device with highly stable butterfly-shaped hysteresis. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 282, 115784.	1.7	9
3474	Linear polyurethane ionenes for stable interlayer of organic photovoltaics. Journal of Power Sources, 2022, 542, 231772.	4.0	3
3475	Rationally regulating the terminal unit and copolymerization spacer of polymerized small-molecule acceptors for all-polymer solar cells with high open-circuit voltage over 1.10 V. Journal of Materials Chemistry A, 0, , .	5.2	6
3476	Revealing the Unusual Efficiency Enhancement of Organic Solar Cells with Polymer-Donor-Treated Cathode Contacts. Chinese Journal of Polymer Science (English Edition), 2022, 40, 937-943.	2.0	3
3477	Achieving over 18 % Efficiency Organic Solar Cell Enabled by a ZnOâ€Based Hybrid Electron Transport Layer with an Operational Lifetime up to 5â€Years. Angewandte Chemie - International Edition, 2022, 61, .	7.2	36
3478	Achieving over 18 % Efficiency Organic Solar Cell Enabled by a ZnOâ€Based Hybrid Electron Transport Layer with an Operational Lifetime up to 5â€Years. Angewandte Chemie, 2022, 134, .	1.6	10
3479	Perovskite and Polymeric Solar Cells: A Comparison of Advances and Key Challenges. Energy Technology, 2022, 10, .	1.8	1
3480	Bulk Restructure of Perovskite Films via Surface Passivation for Highâ€Performance Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	32
3481	An overview of photovoltaic performance of organic solar cells using PCDTBT:PCBM and PTB7:PCBM active-layer materials. , 2022, , .		0
3482	Water/Alcohol-Soluble Conjugated Polymers Based on Cyclopentadithiophene and Fluorene as Cathode Interlayers Elevate the Stability and Efficiency in Organic Solar Cells. ACS Applied Energy Materials, 2022, 5, 9495-9502.	2.5	4
3483	Photoâ€induced energy and charge transfer dynamics in Y6 dimers. Journal of the Chinese Chemical Society, 2023, 70, 625-636.	0.8	4

#	Article	IF	CITATIONS
3484	Large-area Flexible Organic Solar Cells: Printing Technologies and Modular Design. Chinese Journal of Polymer Science (English Edition), 2022, 40, 1522-1566.	2.0	27
3485	Recent Progress in Holeâ€Transporting Layers of Conventional Organic Solar Cells with p–i–n Structure. Advanced Functional Materials, 2022, 32, .	7.8	32
3486	Influence of Cathode Materials on the Efficiency of PTB7:PC ₇₀ BM Bulk Heterojunction Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	0.8	2
3487	Flexible solar and thermal energy conversion devices: Organic photovoltaics (OPVs), organic thermoelectric generators (OTEGs) and hybrid PV-TEG systems. Applied Materials Today, 2022, 29, 101614.	2.3	16
3488	Matrix dominated positive/negative piezoresistance in conducting polymer nanocomposites reinforced by CNT foam. Polymer, 2022, 257, 125288.	1.8	11
3489	Physics and Technology of Carrier Selective Contact Based Heterojunction Silicon Solar Cells. Engergy Systems in Electrical Engineering, 2022, , 61-95.	0.5	Ο
3490	The Effect of Silicon Substitution in Indacenodithiopheneâ€Based A ₂ â€A ₁ â€Dâ€A ₁ â€A ₁ â€A ₂ â€Type Nonfullerene Acceptors on the Performance of Highâ€Voltage Organic Solar Cells. Solar Rrl, 2022, 6, .	3.1	1
3491	Electron Transport Layer Optimization for Efficient PTB7:PC70BM Bulk-Heterojunction Solar Cells. Polymers, 2022, 14, 3610.	2.0	10
3492	Molecular engineering of Yâ€series acceptors for nonfullerene organic solar cells. SusMat, 2022, 2, 591-606.	7.8	21
3493	Coexisting Glassy Phases with Different Compositions in NFA-Based Bulk Heterojunctions. , 2022, 4, 2125-2133.		2
3494	Controlling the Surface Morphology of ZnO Nano-Thin Film Using the Spin Coating Technique. Materials, 2022, 15, 6178.	1.3	6
3495	Simultaneous improvement of efficiency and stability of inverted organic solar cell <i>via</i> composite hole transport layer. Journal of Materials Chemistry A, 2022, 10, 23973-23981.	5.2	13
3496	Organic Photovoltaic Devices. , 2022, , 131-176.		0
3497	Modeling, Numerical Simulation and Performance Optimization of P3HT:PC ₇₀ BM Based Bulk Hetero Junction Organic Solar Cells. Journal of Nanoelectronics and Optoelectronics, 2022, 17, 579-587.	0.1	2
3498	Analysis and Optimization of Organic Tandem Solar Cells by Full Opto-Electronic Simulation. Frontiers in Photonics, 0, 3, .	1.1	9
3499	Passivating the Defects and Modulating the Surface Energy of ZnO Cathode Interlayer for Efficient Nonfullerene Organic Solar Cells. Solar Rrl, 2022, 6, .	3.1	3
3500	Improved Power Conversion Efficiencies of Dye apped and Sensitized ZnO Solar Cells. ChemistrySelect, 2022, 7, .	0.7	0
3501	Efficient Cathode Buffer Material Based on Dibenzothiophene- <i>S</i> , <i>S</i> ,dioxide for Both Conventional and Inverted Organic Solar Cells. ACS Omega, 2022, 7, 38613-38621.	1.6	0

#	Article	IF	CITATIONS
3502	Benzothiadiazole-based push-pull copolymers – Balancing synthetic complexity against organic solar cell efficiency. Organic Electronics, 2022, 111, 106667.	1.4	3
3503	Solution-processed and thickness-insensitive hole transport layer for high efficiency organic solar cells. Journal of Materials Chemistry C, 0, , .	2.7	0
3504	Zinc acetylacetonate doping for enhanced cathode interface layer in organic solar cells. Materials Chemistry Frontiers, 2023, 7, 287-293.	3.2	2
3505	Analytical study of hybrid PEDOT:PSS/Si/PFN heterojunction interfaces for doping-free applications. Materials Science in Semiconductor Processing, 2023, 155, 107240.	1.9	0
3506	Versatile nonplanar perylene diimide-based acceptor for inverted organic solar cells and photodetectors with modified ZnO buffer layers. Synthetic Metals, 2023, 293, 117245.	2.1	3
3507	Evaluation of the impact of trivalent metal doping on the performance of titanium dioxide as an electron transport layer of Inverted-Structured organic solar cells. Applied Surface Science, 2023, 613, 156052.	3.1	3
3509	Buried Interface Regulation by Bioâ€Functional Molecules for Efficient and Stable Planar Perovskite Solar Cells. Chemistry - A European Journal, 2023, 29, .	1.7	4
3510	Improving morphology of P3HT:PCBM bulk heterojunction solar cells with anisotropic shaped silica nanoparticles. Materials Today: Proceedings, 2023, 76, 263-270.	0.9	1
3511	Highâ€Performance Green Thickâ€Film Ternary Organic Solar Cells Enabled by Crystallinity Regulation. Advanced Functional Materials, 2023, 33, .	7.8	15
3512	Benzodithiophene unit copolymerization to improve the stability of thiophene-based organic solar cells. Journal Physics D: Applied Physics, 2023, 56, 044007.	1.3	1
3513	An nâ€n Heterojunction Configuration for Efficient Electron Transport in Organic Photovoltaic Devices. Advanced Functional Materials, 2023, 33, .	7.8	7
3514	Investigating the Role of Cathode Buffer Layers Based on Zinc Oxide with Surfaceâ€Rich Graded Fullerene Isomers in Tuning the Interfacial Properties of Organic Solar Cells. Solar Rrl, 0, , 2200797.	3.1	Ο
3515	Effects of alkyl chains of benzothiadiazole-based conjugated polymers on the photovoltaic performance of non-fullerene organic solar cells. Polymer Chemistry, 2023, 14, 616-622.	1.9	5
3516	Compatible Solutionâ€Processed Interface Materials for Improved Efficiency of Polymer Solar Cells. Advanced Materials Interfaces, 2023, 10, .	1.9	4
3517	Terminal Groups of Nonfullerene Acceptors: Design and Application. Chemistry of Materials, 2023, 35, 807-821.	3.2	11
3518	Applying l-cystine as an electron transport layer toward efficient organic solar cells. Optical Materials, 2023, 136, 113404.	1.7	10
3519	Efficient carrier-filtering performance probing of oxide buffer-layers in organic solar cell at nanoscale. Organic Electronics, 2023, 114, 106728.	1.4	1
3520	Efficiency Improvement of Semitransparent Polymer Solar Cells with Invariable Color Render Index. Journal of Electronic Materials, 0, , .	1.0	0

#	Article	IF	CITATIONS
3521	Natural Materials for Sustainable Organic Solar Cells: Status and Challenge. Advanced Functional Materials, 2023, 33, .	7.8	8
3522	Organic Solar Cells. , 2023, , 118-138.		Ο
3523	Efficient side-chain engineering of thieno-imidazole salt-based molecule to boost the optoelectronic attributes of organic solar cells: A DFT approach. Journal of Molecular Graphics and Modelling, 2023, 121, 108428.	1.3	11
3524	Full Optoelectronic Simulation of Lead-Free Perovskite/Organic Tandem Solar Cells. Polymers, 2023, 15, 784.	2.0	9
3525	Accessing Deep Traps Distribution in FeS ₂ â€Đoped Organic Photovoltaics. Energy Technology, 2023, 11, .	1.8	0
3526	Novel Alcohol-Soluble Nitroxide Radical Conjugated Polymer for Cathode Modifier of Efficient Organic Solar Cells with Enhanced Stability. ACS Applied Materials & Interfaces, 2023, 15, 9773-9783.	4.0	2
3527	Suppressing Nonradiative Recombination by Electron-Donating Substituents in 2D Conjugated Triphenylamine Polymers toward Efficient Perovskite Optoelectronics. Nano Letters, 2023, 23, 1954-1960.	4.5	7
3528	A Review on Fullerene Derivatives with Reduced Electron Affinity as Acceptor Materials for Organic Solar Cells. Energies, 2023, 16, 1924.	1.6	9
3529	Effect of the Electron Transport Layer Thickness on <i>I</i> – <i>V</i> Characteristics of the S-Shaped Kinks in Perovskite Solar Cells. IEEE Transactions on Electron Devices, 2023, 70, 1823-1828.	1.6	0
3530	Facile Approach for Efficient Non-Fullerene-Based Binary and Ternary Organic Solar Cells Using Hydrated Vanadium Pentoxide as a Hole Transport Layer. ACS Applied Energy Materials, 2023, 6, 3442-3451.	2.5	3
3531	Interface Engineering for Highly Efficient Organic Solar Cells. Advanced Materials, 0, , .	11.1	40
3532	Lifetime over 10000 hours for organic solar cells with Ir/IrOx electron-transporting layer. Nature Communications, 2023, 14, .	5.8	32
3533	Robust and hydrophobic interlayer material for efficient and highly stable organic solar cells. Joule, 2023, 7, 545-557.	11.7	21
3534	A Nitroxide Radical Conjugated Polymer as an Additive to Reduce Nonradiative Energy Loss in Organic Solar Cells. Advanced Materials, 2023, 35, .	11.1	10
3535	Introduction to advanced electronic materials for clean energy applications. , 2023, , 3-26.		2
3536	Side Chain Engineering of Two-Dimensional Polymeric Donors for High-Efficiency Organic Solar Cells. Energy & Fuels, 2023, 37, 6122-6128.	2.5	4
3542	Graphene-based Smart Energy Materials for Fuel and Solar Cell Applications. , 2023, , 136-167.		0
3544	Study of Energy Capture with Photovoltaic Cell in Zinc Tile. , 2023, , .		0

		ITATION REPORT	N KEPORT	
#	Article	IF	Citations	
3545	Perovskite Solar Cells with an SbX ₃ (X = Cl, I) Interface Dipole Layer. , 2023, 5, 1962-19	968.	1	
3551	Recent Progress in Interfacial Dipole Engineering for Perovskite Solar Cells. Nano-Micro Letters, 202 15, .	8, 14.4	10	
3555	Applications of Upconversion Nanoparticles for Solar Cells. Progress in Optical Science and Photonics, 2023, , 339-367.	0.3	1	
3564	Cross-linking strategies for efficient and highly stable perovskite solar cells. Journal of Materials Chemistry C, 0, , .	2.7	0	
3565	Organic Solar Cells. , 2023, , 101-130.		0	
3574	Recent Progress in High-Performance Organic Photovoltaic Devices. , 2024, , .		0	