Conversion of biomass to selected chemical products

Chemical Society Reviews 41, 1538-1558 DOI: 10.1039/c1cs15147a

Citation Report

#	Article	IF	CITATIONS
1	Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic aldehydes. RSC Advances, 2012, 2, 11184.	1.7	329
2	Eugenol as a renewable feedstock for the production of polyfunctional alkenes via olefin cross-metathesis. RSC Advances, 2012, 2, 9584.	1.7	65
3	Mechanistic Insights into the Kinetic and Regiochemical Control of the Thiol-Promoted Catalytic Synthesis of Diphenolic Acid. ACS Catalysis, 2012, 2, 2700-2704.	5.5	38
4	Furfuryl aryl(alkyl) ketones: preparation and synthetic potential (review). Chemistry of Heterocyclic Compounds, 2012, 48, 1281-1296.	0.6	4
5	Heterogeneous Catalysis: A Key Tool toward Sustainability. ChemCatChem, 2012, 4, 1897-1906.	1.8	81
6	Oxidations by the system â€`hydrogen peroxide–[Mn2L2O3]2+ (L =) Tj ETQq1 1 0.784314 rgBT /Overlock 10	Tf 50 542 1.0	Td (1,4,7-tri
7	Valorization of Biomass: Deriving More Value from Waste. Science, 2012, 337, 695-699.	6.0	1,791
8	A sulfuric acid management strategy for the production of liquid hydrocarbon fuels via catalytic conversion of biomass-derived levulinic acid. Energy and Environmental Science, 2012, 5, 9690.	15.6	72
9	Process synthesis for addressing the sustainable energy systems and environmental issues. AICHE Journal, 2012, 58, 3370-3389.	1.8	49
10	Composite Metal–Oxide Nanocatalysts. ChemCatChem, 2012, 4, 1462-1484.	1.8	65
11	Dehydration of Carbohydrates to 5â€Hydroxymethylfurfural in Ionic Liquids Catalyzed by Hexachlorotriphosphazene. Chinese Journal of Chemistry, 2012, 30, 2079-2084.	2.6	13
12	Development of Heterogeneous Catalysts for the Conversion of Levulinic Acid to γâ€Valerolactone. ChemSusChem, 2012, 5, 1657-1667.	3.6	456
13	Methyl Ricinoleate as Platform Chemical for Simultaneous Production of Fine Chemicals and Polymer Precursors. ChemSusChem, 2012, 5, 2249-2254.	3.6	28
14	Selective Synthesis of 1â€ <i>O</i> â€Alkyl(poly)glycerol Ethers by Catalytic Reductive Alkylation of Carboxylic Acids with a Recyclable Catalytic System. ChemSusChem, 2012, 5, 2397-2409.	3.6	41
15	Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biotechnology for Biofuels, 2012, 5, 48.	6.2	186
16	CHAPTER 7. Biofuels and High Value Added Chemicals from Biomass Using Sustainably Prepared Metallic and Bimetallic Nanoparticles. RSC Green Chemistry, 2012, , 157-189.	0.0	0
17	Production of high quality fuels from lignocellulose-derived chemicals: a convenient C–C bond formation of furfural, 5-methylfurfural and aromatic aldehyde. RSC Advances, 2012, 2, 11211.	1.7	68
18	Entrainer-intensified vacuum reactive distillation process for the separation of 5-hydroxylmethylfurfural from the dehydration of carbohydrates catalyzed by a metal salt–ionic liquid. Green Chemistry. 2012. 14. 1220.	4.6	66

#	Article	IF	CITATIONS
19	An integrated process for the production of platform chemicals and diesel miscible fuels by acid-catalyzed hydrolysis and downstream upgrading of the acid hydrolysis residues with thermal and catalytic pyrolysis. Bioresource Technology, 2012, 126, 92-100.	4.8	25
20	1,4:3,6-Dianhydrohexitols: Original platform for the design of biobased polymers using robust, efficient, and orthogonal chemistry. Pure and Applied Chemistry, 2012, 85, 511-520.	0.9	17

Thiol-promoted catalytic synthesis of diphenolic acid with sulfonated hyperbranched poly(arylene) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 $\frac{21}{64}$

22	Designing bimetallic catalysts for a green and sustainable future. Chemical Society Reviews, 2012, 41, 8099.	18.7	971
23	Combination of ball-milling and non-thermal atmospheric plasma as physical treatments for the saccharification of microcrystalline cellulose. Green Chemistry, 2012, 14, 2212.	4.6	59
24	Direct Conversion of Cellulose to Glycolic Acid with a Phosphomolybdic Acid Catalyst in a Water Medium. ACS Catalysis, 2012, 2, 1698-1702.	5.5	126
25	From biomass to medicines. A simple synthesis of indolo[3,2-c]quinolines, antimalarial alkaloid isocryptolepine, and its derivatives. Organic and Biomolecular Chemistry, 2012, 10, 7262.	1.5	60
26	Heterogeneous Bifunctional Metal/Acid Catalysts for Selective Chemical Processes. European Journal of Inorganic Chemistry, 2012, 2012, 3807-3823.	1.0	65
27	Fast and Selective Sugar Conversion to Alkyl Lactate and Lactic Acid with Bifunctional Carbon–Silica Catalysts. Journal of the American Chemical Society, 2012, 134, 10089-10101.	6.6	337
29	Deoxygenation of Biomassâ€Derived Feedstocks: Oxorheniumâ€Catalyzed Deoxydehydration of Sugars and Sugar Alcohols. Angewandte Chemie - International Edition, 2012, 51, 8082-8086.	7.2	220
31	Tuning the Acid/Metal Balance of Carbon Nanofiber‣upported Nickel Catalysts for Hydrolytic Hydrogenation of Cellulose. ChemSusChem, 2012, 5, 1549-1558.	3.6	131
32	Selective Oxidative Decarboxylation of Amino Acids to Produce Industrially Relevant Nitriles by Vanadium Chloroperoxidase. ChemSusChem, 2012, 5, 1199-1202.	3.6	58
33	Continuous <scp>D</scp> â€Fructose Dehydration to 5―Hydroxymethylfurfural Under Mild Conditions. ChemSusChem, 2012, 5, 1737-1742.	3.6	101
34	An Integrated Approach for the Production and Isolation of 5â€Hydroxymethylfurfural from Carbohydrates. ChemSusChem, 2012, 5, 1388-1391.	3.6	83
35	A Bifunctional Copper Catalyst for the One Pot-One Step EsterificationÂ+ÂHydrogenation of Tall Oil Fatty Acids. Topics in Catalysis, 2012, 55, 631-636.	1.3	9
36	Selective aqueous phase oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Pt/C catalysts: influence of the base and effect of bismuth promotion. Green Chemistry, 2013, 15, 2240.	4.6	220
37	Catalytic Transformation of CO2 to Fuels and Chemicals, with Reference to Biorefineries. , 2013, , 529-555.		10
38	Single pot conversion of furfuryl alcohol to levulinic esters and Î ³ -valerolactone in the presence of sulfonic acid functionalized ILs and metal catalysts. Green Chemistry, 2013, 15, 254 <u>0.</u>	4.6	104

ARTICLE IF CITATIONS # Conversion of glucose and cellulose into value-added products in water and ionic liquids. Green 39 4.6 256 Chemistry, 2013, 15, 2619. Recycling of bioplastics, their blends and biocomposites: A review. European Polymer Journal, 2013, 49, 2.6 332 2839-2858. Graphene oxide as a facile acid catalyst for the one-pot conversion of carbohydrates into 41 4.6 150 5-ethoxymethylfurfural. Green Chemistry, 2013, 15, 2379. Conversion of Levulinate into Succinate through Catalytic Oxidative CarbonCarbon Bond Cleavage 24 with Dioxygen. ChemSusChem, 2013, 6, 2255-2258. In situ ATR-IR study on aqueous phase reforming reactions of glycerol over a Pt/\hat{I}^3 -Al2O3 catalyst. 43 2.2 34 Catalysis Today, 2013, 205, 49-59. Green Carbon Science: Scientific Basis for Integrating Carbon Resource Processing, Utilization, and Recycling. Angewandte Chemie - International Edition, 2013, 52, 9620-9633. 750 Trends and Challenges in Catalytic Biomass Conversion., 2013, , 73-89. 45 3 Metal Catalysts for the Conversion of Biomass to Chemicals., 2013, , 1-27. 46 47 Emerging Catalysis for 5-HMF Formation from Cellulosic Carbohydrates., 2013, 53-71. 4 A mild entry to isoindolinones from furfural as renewable resource. New Journal of Chemistry, 2013, 1.4 37, 1195. Vanadium-catalyzed deoxydehydration of glycols. Chemical Communications, 2013, 49, 8199. 49 2.2 84 Catalytic Deoxydehydration of Glycols with Alcohol Reductants. ChemSusChem, 2013, 6, 597-599. 50 3.6 Conversion of fructose into 5-hydroxymethylfurfural and alkyl levulinates catalyzed by sulfonic 51 4.6 188 acid-functionalized carbon materials. Green Chemistry, 2013, 15, 2895. Catalytic conversion of biomass-derived levulinic acid to valerate esters as oxygenated fuels using 4.6 supported ruthenium catalysts. Green Chemistry, 2013, 15, 2967. Highly Efficient and Robust Au/MgCuCr₂O₄ Catalyst for Gas-Phase Oxidation 53 6.6 456 of Ethanol to Acetaldehyde. Journal of the American Chemical Society, 2013, 135, 14032-14035. HMF derivatives as platform molecules: aqueous Baylisâ€"Hillman reaction of 54 23 glucosyloxymethyl-furfural towards new biobased acrylates. RSC Advances, 2013, 3, 17649. 55 Renewable polymeric materials from vegetable oils: a perspective. Materials Today, 2013, 16, 337-343. 8.3 434 Conversion of Microalgae under Hydrothermal Conditions. Advanced Materials Research, 0, 860-863, 501-505.

#	Article	IF	CITATIONS
57	Mechanism of the Methyltrioxorhenium atalyzed Deoxydehydration of Polyols: A New Pathway Revealed. Chemistry - A European Journal, 2013, 19, 3827-3832.	1.7	71
58	Ruthenium nanoparticles supported on zeolite Y as an efficient catalyst for selective hydrogenation of xylose to xylitol. Journal of Molecular Catalysis A, 2013, 376, 63-70.	4.8	94
59	Transition metal-free one-pot cascade synthesis of 7-oxa-2-azatricyclo[7.4.0.02,6]trideca-1(9),10,12-trien-3-ones from biomass-derived levulinic acid under mild conditions. Organic and Biomolecular Chemistry, 2013, 11, 7559.	1.5	12
60	Mechanocatalytic Deconstruction of Cellulose: An Emerging Entry into Biorefinery. ChemSusChem, 2013, 6, 2042-2044.	3.6	71
61	Brönsted Acid-Catalyzed One-Pot Synthesis of Indoles from o-Aminobenzyl Alcohols and Furans. Journal of Organic Chemistry, 2013, 78, 12144-12153.	1.7	44
62	Concurrent formation of furan-2,5- and furan-2,4-dicarboxylic acid: unexpected aspects of the Henkel reaction. RSC Advances, 2013, 3, 15678-15686.	1.7	53
63	Efficient catalytic system for the conversion of fructose into 5-ethoxymethylfurfural. Bioresource Technology, 2013, 136, 394-400.	4.8	119
64	Sodium Ion Interactions with Aqueous Glucose: Insights from Quantum Mechanics, Molecular Dynamics, and Experiment. Journal of Physical Chemistry B, 2014, 118, 1990-2000.	1.2	49
65	Efficient dehydration of carbohydrates to 5-hydroxymethylfurfural in ionic liquids catalyzed by tin(IV) phosphonate and zirconium phosphonate. Science China Chemistry, 2013, 56, 1578-1585.	4.2	10
66	Valorisation of food waste in biotechnological processes. Sustainable Chemical Processes, 2013, 1, .	2.3	79
67	Selective conversion of glucose into lactic acid and acetic acid with copper oxide under hydrothermal conditions. AICHE Journal, 2013, 59, 2096-2104.	1.8	61
68	Aliphatic/aromatic copolyesters containing biobased ï‰-hydroxyfatty acids: Synthesis and structure–property relationships. Polymer, 2013, 54, 3774-3783.	1.8	23
69	Conversion of carbohydrates to 5-hydroxymethylfurfural: the nature of the observed selectivity decrease and microwave radiation effect. Russian Chemical Bulletin, 2013, 62, 830-835.	0.4	10
70	Recent Advances in Catalytic Conversion of Glycerol. Catalysis Reviews - Science and Engineering, 2013, 55, 369-453.	5.7	167
72	Bio-based solvents: an emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry. Chemical Society Reviews, 2013, 42, 9550.	18.7	509
73	Efficient Sustainable Tool for Monitoring Chemical Reactions and Structure Determination in Ionic Liquids by ESIâ€MS. ChemistryOpen, 2013, 2, 208-214.	0.9	6
74	Surface Interactions of Glycerol with Acidic and Basic Metal Oxides. Journal of Physical Chemistry C, 2013, 117, 21413-21425.	1.5	88
75	Identification of "hot spots―of the science of catalysis: bibliometric and thematic analysis of nowaday reviews and monographs. Russian Chemical Bulletin, 2013, 62, 2266-2278.	0.4	6

#	Article	IF	CITATIONS
76	Enantioselectivity of (321) chiral noble metal surfaces: A density functional theory study of lactate adsorption. Journal of Chemical Physics, 2013, 139, 224709.	1.2	5
77	Pd/TOMPP-catalysed telomerisation of 1,3-butadiene with lignin-type phenols and thermal Claisen rearrangement of linear telomers. Catalysis Science and Technology, 2013, 3, 1215-1223.	2.1	19
78	Highly efficient production of lactic acid from cellulose using lanthanide triflate catalysts. Green Chemistry, 2013, 15, 2091.	4.6	142
79	Revisiting the BrÃ,nsted acid catalysed hydrolysis kinetics of polymeric carbohydrates in ionic liquids by in situ ATR-FTIR spectroscopy. Green Chemistry, 2013, 15, 2843.	4.6	31
80	Efficient conversion of glucose and cellulose to 5-hydroxymethylfurfural in DBU-based ionic liquids. RSC Advances, 2013, 3, 20085.	1.7	22
81	Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chemistry, 2013, 15, 584.	4.6	868
82	Analytical approaches to characterizing pyrolysis oil from biomass. TrAC - Trends in Analytical Chemistry, 2013, 42, 125-136.	5.8	67
83	A kinetic study of acid catalysed hydrolysis of sugar cane bagasse to levulinic acid. Chemical Engineering Journal, 2013, 217, 61-70.	6.6	153
84	Iridium-Catalyzed Hydrosilylative Reduction of Glucose to Hexane(s). Journal of the American Chemical Society, 2013, 135, 1225-1227.	6.6	76
85	Hierarchical porous materials: catalytic applications. Chemical Society Reviews, 2013, 42, 3876-3893.	18.7	828
86	Conversion of (Ligno)Cellulose Feeds to Isosorbide with Heteropoly Acids and Ru on Carbon. ChemSusChem, 2013, 6, 199-208.	3.6	108
87	Progress in Renewable Polymers from Natural Terpenes, Terpenoids, and Rosin. Macromolecular Rapid Communications, 2013, 34, 8-37.	2.0	553
88	d-Xylose detection in Escherichia coli by a xylose binding protein-dependent response. Journal of Biotechnology, 2013, 168, 440-445.	1.9	8
89	Mechanism of Sulfite-Driven, MeReO ₃ -Catalyzed Deoxydehydration of Glycols. Organometallics, 2013, 32, 1821-1831.	1.1	40
90	Electricity Storage in Biofuels: Selective Electrocatalytic Reduction of Levulinic Acid to Valeric Acid or γâ€Valerolactone. ChemSusChem, 2013, 6, 674-686.	3.6	107
91	Polymeric triglyceride analogs prepared by enzyme-catalyzed condensation polymerization. European Polymer Journal, 2013, 49, 793-803.	2.6	45
92	Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran on supported Ru catalysts. Journal of Catalysis, 2013, 301, 83-91.	3.1	195
93	Green chemistry and the ocean-based biorefinery. Green Chemistry, 2013, 15, 860.	4.6	214

#	Article	IF	CITATIONS
94	Successive C–C Coupling of Dienes to Vicinally Dioxygenated Hydrocarbons: Ruthenium Catalyzed [4 + 2] Cycloaddition across the Diol, Hydroxycarbonyl, or Dione Oxidation Levels. Journal of the American Chemical Society, 2013, 135, 3796-3799.	6.6	81
95	Controlled Polymerization of Next-Generation Renewable Monomers and Beyond. Macromolecules, 2013, 46, 1689-1712.	2.2	437
96	Cellulose conversion in the presence of catalysts based on Sn(<scp>iv</scp>). Catalysis Science and Technology, 2013, 3, 673-678.	2.1	28
97	Production of Hybrid Diesel Fuel Precursors from Carbohydrates and Petrochemicals Using Formic Acid as a Reactive Solvent. ChemSusChem, 2013, 6, 383-388.	3.6	41
98	High-Yielding One-Pot Synthesis of Glucose from Cellulose Using Simple Activated Carbons and Trace Hydrochloric Acid. ACS Catalysis, 2013, 3, 581-587.	5.5	198
99	Fructose dehydration to 5-hydroxymethylfurfural: Remarkable solvent influence on recyclability of Amberlyst-15 catalyst and regeneration studies. Catalysis Communications, 2013, 37, 41-44.	1.6	67
100	Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis. Energy and Environmental Science, 2013, 6, 1415.	15.6	651
101	Chemical Conversion of Sugars to Lactic Acid by Alkaline Hydrothermal Processes. ChemSusChem, 2013, 6, 989-992.	3.6	107
102	Catalytic etherification of glycerol with short chain alkyl alcohols in the presence of Lewis acids. Green Chemistry, 2013, 15, 901.	4.6	56
103	Nanocomposite Catalyst with Palladium Nanoparticles Encapsulated in a Polymeric Acid: A Model for Tandem Environmental Catalysis. ACS Sustainable Chemistry and Engineering, 2013, 1, 381-388.	3.2	16
104	Poly(butylene 2,5-furan dicarboxylate), a Biobased Alternative to PBT: Synthesis, Physical Properties, and Crystal Structure. Macromolecules, 2013, 46, 796-804.	2.2	265
105	Emerging catalytic processes for the production of adipic acid. Catalysis Science and Technology, 2013, 3, 1465-1479.	2.1	266
106	Sulfonated surfactants obtained from furfural. Green Chemistry, 2013, 15, 1558.	4.6	24
108	Highly Active and Recyclable Snâ€MWW Zeolite Catalyst for Sugar Conversion to Methyl Lactate and Lactic Acid. ChemSusChem, 2013, 6, 1352-1356.	3.6	140
109	Catalytic Activation of Carbohydrates as Formaldehyde Equivalents for Stetter Reaction with Enones. Journal of the American Chemical Society, 2013, 135, 8113-8116.	6.6	112
110	Advances in selective catalytic transformation of ployols to value-added chemicals. Chinese Journal of Catalysis, 2013, 34, 492-507.	6.9	53
111	Mechanism of MTO-Catalyzed Deoxydehydration of Diols to Alkenes Using Sacrificial Alcohols. Organometallics, 2013, 32, 3210-3219.	1.1	69
112	Highly efficient transformation of levulinic acid into pyrrolidinones by iridium catalysed transfer hydrogenation. Chemical Communications, 2013, 49, 5408.	2.2	122

		CITATION REPORT	
# 113	ARTICLE The State of the Art of Polymers from RenewableÂResources. , 2013, , 71-85.	IF	CITATIONS
114	Phthalocyanine Metal Complexes in Catalysis. Chemical Reviews, 2013, 113, 8152-8191.	23.0	821
115	Nafionâ€Resinâ€Modified Mesocellular Silica Foam Catalyst for 5â€Hydroxymethylfurfural Production from <scp>D</scp> â€Fructose. ChemSusChem, 2013, 6, 1063-1069.	3.6	66
116	Conversion of furfural into cyclopentanone over Ni–Cu bimetallic catalysts. Green Chemistry, 2013, 15, 1932.	4.6	294
117	Heterogeneous Palladium Catalysts for Decarbonylation of Biomassâ€Đerived Molecules under Mild Conditions. ChemSusChem, 2013, 6, 1348-1351.	3.6	66
118	Cellulose-derived superparamagnetic carbonaceous solid acid catalyst for cellulose hydrolysis in an ionic liquid or aqueous reaction system. Green Chemistry, 2013, 15, 2167.	4.6	133
119	Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass. Green Chemistry, 2013, 15, 1740.	4.6	419
120	Schiff base polymers derived from 2,5-diformylfuran. Polymer International, 2013, 62, 1517-1523.	1.6	70
121	Phosphorylated mesoporous carbon as effective catalyst for the selective fructose dehydration to HMF. Journal of Energy Chemistry, 2013, 22, 305-311.	7.1	44
122	Preparation of biomass hydrochar derived sulfonated catalysts and their catalytic effects for 5-hydroxymethylfurfural production. RSC Advances, 2013, 3, 7360.	1.7	91
123	Conversion of Carbohydrate Biomass to γâ€Valerolactone by using Waterâ€5oluble and Reusable Iridium Complexes in Acidic Aqueous Media. ChemSusChem, 2013, 6, 1163-1167.	3.6	115
124	Enhanced performance of nano-crystalline ZSM-5 in acetone to gasoline (ATG) reaction. Fuel, 2013, 105, 490-495.	3.4	27
125	Atom Economical Aqueous-Phase Conversion (APC) of Biopolyols to Lactic Acid, Glycols, and Linear Alcohols Using Supported Metal Catalysts. ACS Sustainable Chemistry and Engineering, 2013, 1, 1453-1462.	3.2	59
126	Surface Interactions of C ₂ and C ₃ Polyols with γ-Al ₂ O ₃ and the Role of Coadsorbed Water. Langmuir, 2013, 29, 581-593.	1.6	66
128	Adsorption of lactic acid on chiral Pt surfaces—A density functional theory study. Journal of Chemical Physics, 2013, 138, 084705.	1.2	13
129	Recalcitrance of Nature: Chemocatalysis for the Production of Biomassâ€Based Building Blocks. ChemSusChem, 2013, 6, 1559-1563.	3.6	9
130	Conversion of Glucose to 5-Hydroxymethylfurfural Catalyzed by Metal Halide in N,N-Dimethylacetamide. BioResources, 2013, 8, .	0.5	6
132	Patrimoines productifs collectifs versus Âexploration/exploitation. Revue Economique, 2014, Vol. 65, 957-987.	0.1	14

#	Article	IF	CITATIONS
133	Hydrolysis in Near- and SupercriticalÂWater for Biomass Conversion andÂMaterial Recycling. , 2014, , 139-156.		8
134	Conversion of Cellulose to 5-Hydroxymethylfurfural in Water-Tetrahydrofuran and Byproducts Identification. Chinese Journal of Chemical Physics, 2014, 27, 711-717.	0.6	10
135	Synthesis of Nanoparticles for Biomass Conversion Processes. ACS Symposium Series, 2014, , 219-246.	0.5	1
136	Perspectives for the Brazilian residual biomass in renewable chemistry. Pure and Applied Chemistry, 2014, 86, 833-842.	0.9	5
137	Ruthenium catalyzed ethenolysis of renewable oleonitrile. European Journal of Lipid Science and Technology, 2014, 116, 1583-1589.	1.0	19
138	Hydrothermal treatment of microcrystalline cellulose under mild conditions: characterization of solid and liquid-phase products. Cellulose, 2014, 21, 4483-4495.	2.4	13
139	Lignocellulose-Based Chemical Products. , 2014, , 277-313.		44
140	Optimization of Furfural Production from Xylose by RSM Using Chromium Sulfate as Catalyst. Advanced Materials Research, 2014, 881-883, 29-34.	0.3	0
141	Oxidative Degradation of Chitosan to the Low Molecular Water-Soluble Chitosan over Peroxotungstate as Chemical Scissors. PLoS ONE, 2014, 9, e100743.	1.1	29
142	Current Challenges in Commercially Producing Biofuels from Lignocellulosic Biomass. ISRN Biotechnology, 2014, 2014, 1-31.	1.9	355
143	Renewable resources from the oceans: Adding value to the by-products of the aquaculture and fishing industries. , 2014, , .		4
145	Ring-Opening and Oxidation Pathways of Furanic Oxygenates on Oxygen-Precovered Pd(111). Journal of Physical Chemistry C, 2014, 118, 27933-27943.	1.5	20
146	Direct conversion of <scp>CO₂</scp> with diols, aminoalcohols and diamines to cyclic carbonates, cyclic carbamates and cyclic ureas using heterogeneous catalysts. Journal of Chemical Technology and Biotechnology, 2014, 89, 19-33.	1.6	135
147	Integrated, Cascading Enzyme″Chemocatalytic Cellulose Conversion using Catalysts based on Mesoporous Silica Nanoparticles. ChemSusChem, 2014, 7, 3241-3246.	3.6	106
148	Comparison of cellobiose and glucose transformation to ethylene glycol. Chinese Journal of Catalysis, 2014, 35, 1811-1817.	6.9	25
149	One‣tep Approach to 2,5â€Diformylfuran from Fructose by Proton―and Vanadium ontaining Graphitic Carbon Nitride. ChemCatChem, 2014, 6, 3174-3181.	1.8	74
150	Robust Heterogeneous Nickel Catalysts with Tailored Porosity for the Selective Hydrogenolysis of Aryl Ethers. ChemCatChem, 2014, 6, 91-95.	1.8	84
151	Synthesis of Bioâ€Based Methacrylic Acid by Decarboxylation of Itaconic Acid and Citric Acid Catalyzed by Solid Transitionâ€Metal Catalysts. ChemSusChem, 2014, 7, 2712-2720.	3.6	57

#	Article	IF	CITATIONS
152	Transformations of Bjorkman lignin from European spruce (Picea abies) in superacidic media. Mendeleev Communications, 2014, 24, 353-354.	0.6	3
153	Metalâ€Free Deoxygenation of Carbohydrates. Angewandte Chemie - International Edition, 2014, 53, 1646-1649.	7.2	98
154	Diester monomers from methyl oleate and proline via tandem hydroaminomethylationâ€esterification sequence with homogeneous catalyst recycling using TMSâ€ŧechnique. European Journal of Lipid Science and Technology, 2014, 116, 477-485.	1.0	34
155	Combined Experimental and Computational Studies on the Physical and Chemical Properties of the Renewable Amide, 3â€Acetamidoâ€5â€acetylfuran. ChemPhysChem, 2014, 15, 4087-4094.	1.0	28
156	Biorefining of wheat straw: accounting for the distribution of mineral elements in pretreated biomass by an extended pretreatment-severity equation. Biotechnology for Biofuels, 2014, 7, 141.	6.2	16
157	Valorization of Carbon Dioxide to Organic Products with Organocatalysts. Green Chemistry and Sustainable Technology, 2014, , 3-37.	0.4	2
158	Visible Light-Accelerated Depolymerisation of Starch Under Fenton Conditions and Preparation of Calcium Sequestering Compounds. Catalysis Letters, 2014, 144, 1674-1680.	1.4	2
159	Preparation of Lactic Acid by Polymer-Catalyzed Conversion of Maltose in Aqueous Alkaline Media. Advanced Materials Research, 2014, 1004-1005, 947-953.	0.3	0
160	Aqueous phase hydrogenation of acetic acid to ethanol over Ir-MoOx/SiO2 catalyst. Catalysis Communications, 2014, 43, 38-41.	1.6	57
161	Catalytic dehydration of lactic acid to acrylic acid over dibarium pyrophosphate. Catalysis Communications, 2014, 43, 231-234.	1.6	50
162	Catalytic conversion of carbohydrates to 5-hydroxymethylfurfural promoted by metal halides. Chinese Journal of Catalysis, 2014, 35, 496-500.	6.9	9
163	Mechanocatalytic depolymerization of cellulose and raw biomass and downstream processing of the products. Catalysis Today, 2014, 234, 24-30.	2.2	91
164	Kinetics of high temperature conversion of furfuryl alcohol in water. Journal of Industrial and Engineering Chemistry, 2014, 20, 650-655.	2.9	52
165	Transformation of Biomass into Commodity Chemicals Using Enzymes or Cells. Chemical Reviews, 2014, 114, 1871-1908.	23.0	365
166	One-pot selective conversion of furfural into 1,5-pentanediol over a Pd-added Ir–ReO _x /SiO ₂ bifunctional catalyst. Green Chemistry, 2014, 16, 617-626.	4.6	215
167	Niobium(v) chloride and imidazolium bromides as efficient dual catalyst systems for the cycloaddition of carbon dioxide and propylene oxide. Catalysis Science and Technology, 2014, 4, 1638-1643.	2.1	59
168	Bio(chemo)technological strategies for biomass conversion into bioethanol and key carboxylic acids. Green Chemistry, 2014, 16, 2386.	4.6	62
169	Synthesis of Indoles by Domino Reaction of 2â€(Tosylamino)benzyl Alcohols with Furfurylamines: Two Opposite Reactivity Modes of the αâ€Carbon of the Furan Ring in One Process. European Journal of Organic Chemistry, 2014, 2014, 2508-2515.	1.2	18

#	Article	IF	CITATIONS
170	Synthesis of diesel range alkanes with 2-methylfuran and mesityl oxide from lignocellulose. Catalysis Today, 2014, 234, 91-99.	2.2	39
171	Multicomponent reactions: advanced tools for sustainable organic synthesis. Green Chemistry, 2014, 16, 2958-2975.	4.6	989
172	Hydrolysis of cellulose to produce glucose with solid acid catalysts in 1-butyl-3-methyl-imidazolium chloride ([bmlm][Cl]) with sequential water addition. Biomass Conversion and Biorefinery, 2014, 4, 323-331.	2.9	12
173	Selective Glycerol Oxidation by Electrocatalytic Dehydrogenation. ChemSusChem, 2014, 7, 1051-1056.	3.6	62
174	Control of selectivity, activity and durability of simple supported nickel catalysts for hydrolytic hydrogenation of cellulose. Green Chemistry, 2014, 16, 637-644.	4.6	70
176	Aerobic oxidation of isosorbide and isomannide employing TEMPO/laccase. Green Chemistry, 2014, 16, 2117-2121.	4.6	36
177	Selective Conversion of Biorefinery Lignin into Dicarboxylic Acids. ChemSusChem, 2014, 7, 412-415.	3.6	120
178	Catalytic transformations of cellulose and cellulose-derived carbohydrates into organic acids. Catalysis Today, 2014, 234, 31-41.	2.2	147
179	Liquid phase hydrogenation of methyl levulinate over the mixture of supported ruthenium catalyst and zeolite in water. Applied Catalysis A: General, 2014, 470, 215-220.	2.2	45
180	Biomass into chemicals: One-pot production of furan-based diols from carbohydrates via tandem reactions. Catalysis Today, 2014, 234, 59-65.	2.2	107
181	Application of Hydrothermal Reactions to Biomass Conversion. Green Chemistry and Sustainable Technology, 2014, , .	0.4	24
182	Pt nanoparticles over TiO2–ZrO2 mixed oxide as multifunctional catalysts for an integrated conversion of furfural to 1,4-butanediol. Applied Catalysis A: General, 2014, 478, 252-258.	2.2	41
183	Exploring the reaction conditions for Ru/C catalyzed selective hydrogenolysis of xylitol alkaline aqueous solutions to glycols in a trickle-bed reactor. Catalysis Today, 2014, 234, 100-106.	2.2	19
184	Reaction network analysis and continuous production of isosorbide tert-butyl ethers. Catalysis Today, 2014, 234, 113-118.	2.2	5
185	Integrated Catalytic Process to Directly Convert Furfural to Levulinate Ester with High Selectivity. ChemSusChem, 2014, 7, 202-209.	3.6	62
186	Selective Catalysis for Cellulose Conversion to Lactic Acid and Other α-Hydroxy Acids. Topics in Current Chemistry, 2014, 353, 85-125.	4.0	54
187	Top Chemical Opportunities from Carbohydrate Biomass: A Chemist's View of the Biorefinery. Topics in Current Chemistry, 2014, 353, 1-40.	4.0	125
188	Aqueous phase hydrogenation of levulinic acid to 1,4-pentanediol. Chemical Communications, 2014, 50, 1414.	2.2	136

#	Article	IF	CITATIONS
189	Acrylic acid synthesis from lactic acid over hydroxyapatite catalysts with various cations and anions. Catalysis Today, 2014, 226, 192-197.	2.2	52
190	A new bi-modular endo-β-1,4-xylanase KRICT PX-3 from whole genome sequence of Paenibacillus terrae HPL-003. Enzyme and Microbial Technology, 2014, 54, 1-7.	1.6	26
191	The Alpha–Bet(a) of Glucose Pyrolysis: Computational and Experimental Investigations of 5-Hydroxymethylfurfural and Levoglucosan Formation Reveal Implications for Cellulose Pyrolysis. ACS Sustainable Chemistry and Engineering, 2014, 2, 1461-1473.	3.2	113
192	One-pot catalytic conversion of cellulose to ethylene glycol and other chemicals: From fundamental discovery to potential commercialization. Chinese Journal of Catalysis, 2014, 35, 602-613.	6.9	72
193	Enhanced Conversion of Carbohydrates to the Platform Chemical 5â€Hydroxymethylfurfural Using Designer Ionic Liquids. ChemSusChem, 2014, 7, 1647-1654.	3.6	65
194	Hydrolysis of dilute acid-pretreated cellulose under mild hydrothermal conditions. Carbohydrate Polymers, 2014, 111, 116-124.	5.1	48
195	Identification and analysis of synthesis routes in complex catalytic reaction networks for biomass upgrading. Applied Catalysis B: Environmental, 2014, 145, 149-160.	10.8	16
196	One-Pot Hydrothermal Conversion of Cellulose into Organic Acids with CuO as an Oxidant. Industrial & Engineering Chemistry Research, 2014, 53, 7939-7946.	1.8	35
197	Biphasic Catalytic Conversion of Fructose by Continuous Hydrogenation of HMF over a Hydrophobic Ruthenium Catalyst. ChemSusChem, 2014, 7, 1352-1356.	3.6	54
198	Single-Pot Formation of THFAL via Catalytic Hydrogenation of FFR Over Pd/MFI Catalyst. ACS Sustainable Chemistry and Engineering, 2014, 2, 272-281.	3.2	91
199	Comparative study of the pyrolysis of lignocellulose and its major components: Characterization and overall distribution of their biochars and volatiles. Bioresource Technology, 2014, 155, 21-27.	4.8	85
200	Production of Lactic Acid/Lactates from Biomass and Their Catalytic Transformations to Commodities. Chemical Reviews, 2014, 114, 1909-1971.	23.0	367
201	Catalyst-free transformation of levulinic acid into pyrrolidinones with formic acid. Green Chemistry, 2014, 16, 1093-1096.	4.6	75
202	Rapid Ether and Alcohol C–O Bond Hydrogenolysis Catalyzed by Tandem High-Valent Metal Triflate + Supported Pd Catalysts. Journal of the American Chemical Society, 2014, 136, 104-107.	6.6	123
203	Synergy effect between solid acid catalysts and concentrated carboxylic acids solutions for efficient furfural production from xylose. Catalysis Today, 2014, 226, 176-184.	2.2	25
204	Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds. Chemical Society Reviews, 2014, 43, 765-778.	18.7	539
205	Efficient and selective alcoholysis of furfuryl alcohol to alkyl levulinates catalyzed by double SO ₃ H-functionalized ionic liquids. Green Chemistry, 2014, 16, 1436-1443.	4.6	117
206	Renewable production of phthalic anhydride from biomass-derived furan and maleic anhydride. Green Chemistry, 2014, 16, 167-175.	4.6	114

#	Article	IF	CITATIONS
207	In silico design of bio-based commodity chemicals: application to itaconic acid based solvents. Green Chemistry, 2014, 16, 146-160.	4.6	35
208	Conversion of Biomass into Chemicals over Metal Catalysts. Chemical Reviews, 2014, 114, 1827-1870.	23.0	1,504
209	Process Synthesis of Biorefineries: Optimization of Biomass Conversion to Fuels and Chemicals. Industrial & Engineering Chemistry Research, 2014, 53, 5261-5273.	1.8	76
210	Promises in direct conversion of cellulose and lignocellulosic biomass to chemicals and fuels: Combined solvent–nanocatalysis approach for biorefinary. Biomass and Bioenergy, 2014, 62, 182-197.	2.9	73
211	Selective Conversion of Levulinic and Formic Acids to Î ³ -Valerolactone with the Shvo Catalyst. Organometallics, 2014, 33, 181-187.	1.1	128
212	Bifunctional SO ₄ /ZrO ₂ catalysts for 5-hydroxymethylfufural (5-HMF) production from glucose. Catalysis Science and Technology, 2014, 4, 333-342.	2.1	153
213	Dealuminated Beta zeolite as effective bifunctional catalyst for direct transformation of glucose to 5-hydroxymethylfurfural. Applied Catalysis A: General, 2014, 470, 318-326.	2.2	135
214	Synthesis of renewable diesel range alkanes by hydrodeoxygenation of furans over Ni/Hβ under mild conditions. Green Chemistry, 2014, 16, 594-599.	4.6	79
215	Catalytic conversion of starch into valuable furan derivatives using supported metal nanoparticles on mesoporous aluminosilicate materials. Catalysis Science and Technology, 2014, 4, 428-434.	2.1	25
216	A Formal, One-Pot Î ² -Chlorination of Primary Alcohols and Its Utilization in the Transformation of Terpene Feedstock and the Synthesis of a <i>C</i> ₂ -Symmetrical Terminal Bis-Epoxide. Journal of Organic Chemistry, 2014, 79, 976-983.	1.7	22
217	One-pot synthesis of furfural derivatives from pentoses using solid acid and base catalysts. Catalysis Science and Technology, 2014, 4, 971-978.	2.1	37
218	Review: Oxidation of Lignin Using Ionic Liquids—An Innovative Strategy To Produce Renewable Chemicals. ACS Sustainable Chemistry and Engineering, 2014, 2, 322-339.	3.2	290
219	Conversion of fructose into 5-hydroxymethylfurfural catalyzed by recyclable sulfonic acid-functionalized metal–organic frameworks. Green Chemistry, 2014, 16, 2490-2499.	4.6	267
220	Review of analytical strategies in the production and upgrading of bio-oils derived from lignocellulosic biomass. Journal of Analytical and Applied Pyrolysis, 2014, 105, 55-74.	2.6	179
221	Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chemistry, 2014, 16, 950-963.	4.6	1,323
222	Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms. Carbohydrate Research, 2014, 385, 45-57.	1.1	288
223	Organocatalysis in biorefining for biomass conversion and upgrading. Green Chemistry, 2014, 16, 964-981.	4.6	92
224	Hydration Control of the Mechanical and Dynamical Properties of Cellulose. Biomacromolecules, 2014, 15, 4152-4159.	2.6	44

#	Article	IF	CITATIONS
225	Supported Rh-phosphine complex catalysts for continuous gas-phase decarbonylation of aldehydes. Dalton Transactions, 2014, 43, 17230-17235.	1.6	10
226	Intercalationâ€Controlled Cyclodehydration of Sorbitol in Water over Layeredâ€Niobiumâ€Molybdate Solid Acid. ChemSusChem, 2014, 7, 748-752.	3.6	35
227	NaBr/DMSOâ€Induced Synthesis of 2,5â€Diformylfuran from Fructose or 5â€(Hydroxymethyl)furfural. ChemCatChem, 2014, 6, 1195-1198.	1.8	39
228	Catalytic chemical processes for biomass conversion: Prospects for future biorefineries. Pure and Applied Chemistry, 2014, 86, 843-857.	0.9	11
229	Polymerization of Nonfood Biomass-Derived Monomers to Sustainable Polymers. Topics in Current Chemistry, 2014, 353, 185-227.	4.0	10
230	Entropically Favored Adsorption of Cellulosic Molecules onto Carbon Materials through Hydrophobic Functionalities. ChemSusChem, 2014, 7, 1443-1450.	3.6	91
231	Synthesis of renewable high-density fuels using cyclopentanone derived from lignocellulose. Chemical Communications, 2014, 50, 2572.	2.2	143
232	One-pot formal synthesis of biorenewable terephthalic acid from methyl coumalate and methyl pyruvate. Green Chemistry, 2014, 16, 2111-2116.	4.6	39
233	Numerical analysis of anion-exchange membrane direct glycerol fuel cells under steady state and dynamic operations. International Journal of Hydrogen Energy, 2014, 39, 19767-19779.	3.8	34
234	(Co)Polymerization of vinyl levulinate by cobalt-mediated radical polymerization and functionalization by ketoxime click chemistry. Polymer Chemistry, 2014, 5, 2973-2979.	1.9	35
235	One-step production of long-chain hydrocarbons from waste-biomass-derived chemicals using bi-functional heterogeneous catalysts. Physical Chemistry Chemical Physics, 2014, 16, 3047.	1.3	31
236	One-pot transformation of polysaccharides via multi-catalytic processes. Catalysis Science and Technology, 2014, 4, 4138-4168.	2.1	68
237	Upgrading malic acid to bio-based benzoates via a Diels–Alder-initiated sequence with the methyl coumalate platform. RSC Advances, 2014, 4, 45657-45664.	1.7	31
238	Facile and Efficient Synthesis of Cyclic Anhydrides from Dicarboxylic Acids. ACS Catalysis, 2014, 4, 3586-3589.	5.5	36
239	Catalytic Alkylation of Furans by π-Activated Alcohols (Review). Chemistry of Heterocyclic Compounds, 2014, 50, 791-806.	0.6	10
240	Triazaheterocyclic compound as an efficient catalyst for dehydration of fructose into 5-hydroxymethylfurfural. RSC Advances, 2014, 4, 13434.	1.7	14
241	Quantitative evaluation of ball-milling effects on the hydrolysis of cellulose catalysed by activated carbon. Catalysis Science and Technology, 2014, 4, 2312-2317.	2.1	90
242	Oneâ€Step Approach to 2,5â€Diformylfuran from Fructose by Using a Bifunctional and Recyclable Acidic Polyoxometalate Catalyst. ChemPlusChem, 2014, 79, 1448-1454.	1.3	69

#	Article	IF	CITATIONS
243	Substrate and product role in the Shvo's catalyzed selective hydrogenation of the platform bio-based chemical 5-hydroxymethylfurfural. Dalton Transactions, 2014, 43, 10224-10234.	1.6	60
244	Advanced magnetic resonance strategies for the elucidation of nanostructured soft matter. Physical Chemistry Chemical Physics, 2014, 16, 9700.	1.3	15
245	Zirconium phosphate combined with Ru/C as a highly efficient catalyst for the direct transformation of cellulose to C ₆ alditols. Green Chemistry, 2014, 16, 3305-3312.	4.6	99
246	Zirconium–Beta zeolite as a robust catalyst for the transformation of levulinic acid to γ-valerolactone via Meerwein–Ponndorf–Verley reduction. RSC Advances, 2014, 4, 13481-13489.	1.7	167
247	Combination of Pd/C and Amberlyst-15 in a single reactor for the acid/hydrogenating catalytic conversion of carbohydrates to 5-hydroxy-2,5-hexanedione. Green Chemistry, 2014, 16, 4110-4114.	4.6	98
248	Transition of cellulose crystalline structure in biodegradable mixtures of renewably-sourced levulinate alkyl ammonium ionic liquids, Î ³ -valerolactone and water. Green Chemistry, 2014, 16, 2463-2471.	4.6	52
249	Production of platform molecules from sweet sorghum. RSC Advances, 2014, 4, 2081-2088.	1.7	27
250	Practical access to spiroacetal enol ethers via nucleophilic dearomatization of 2-furylmethylenepalladium halides generated by Pd-catalyzed coupling of furfural tosylhydrazones with aryl halides. Chemical Communications, 2014, 50, 8113.	2.2	38
251	Simultaneous dehydration of biomass-derived sugars to 5-hydroxymethyl furfural (HMF) and reduction of graphene oxide in ethyl lactate: one pot dual chemistry. RSC Advances, 2014, 4, 29834-29839.	1.7	31
252	Role of MoO ₃ on a Rhodium Catalyst in the Selective Hydrogenolysis of Biomass-Derived Tetrahydrofurfuryl Alcohol into 1,5-Pentanediol. Journal of Physical Chemistry C, 2014, 118, 25555-25566.	1.5	63
253	8.10 Reduction of Carboxylic Acids and their Derivatives to Alcohols, Ethers, and Amines. , 2014, , 368-409.		3
254	Sonochemistry: What Potential for Conversion of Lignocellulosic Biomass into Platform Chemicals?. ChemSusChem, 2014, 7, 2774-2787.	3.6	64
255	Effects of acid impregnated steam explosion process on xylose recovery and enzymatic conversion of cellulose in corncob. Carbohydrate Polymers, 2014, 114, 21-26.	5.1	36
256	Selective Conversion of Furfural to Cyclopentanone with CuZnAl Catalysts. ACS Sustainable Chemistry and Engineering, 2014, 2, 2259-2266.	3.2	134
257	Catalytic Conversion of Biomass by Natural Gas for Oil Quality Upgrading. Industrial & Engineering Chemistry Research, 2014, 53, 15862-15870.	1.8	34
258	Analytical techniques for the chemical analysis of plant biomass and biomass products. Analytical Methods, 2014, 6, 8094-8105.	1.3	23
259	One-Pot Conversion of Cellulose into <i>n</i> -Hexane over the Ir-ReO _{<i>x</i>} /SiO ₂ Catalyst Combined with HZSM-5. ACS Sustainable Chemistry and Engineering, 2014, 2, 1819-1827.	3.2	140
260	Hydrogenation of succinic acid to γ-butyrolactone and 1,4-butanediol over mesoporous rhenium–copper–carbon composite catalyst. Journal of Molecular Catalysis A, 2014, 395, 234-242.	4.8	34

#	Article	IF	CITATIONS
261	Synthesis of Diesel or Jet Fuel Range Cycloalkanes with 2-Methylfuran and Cyclopentanone from Lignocellulose. Energy & Fuels, 2014, 28, 5112-5118.	2.5	104
262	Recent advances in the production of polyols from lignocellulosic biomass and biomass-derived compounds. RSC Advances, 2014, 4, 49501-49520.	1.7	84
263	Production of Î ³ -valerolactone from biomass-derived compounds using formic acid as a hydrogen source over supported metal catalysts in water solvent. RSC Advances, 2014, 4, 10525.	1.7	105
264	Selective glycerol transformations to high value-added products catalysed by aluminosilicate-supported iron oxide nanoparticles. Catalysis Science and Technology, 2014, 4, 4242-4249.	2.1	50
265	Comparative Assessment of Internal Standards for Quantitative Analysis of Bio-oil Compounds by Gas Chromatography/Mass Spectrometry Using Statistical Criteria. Energy & Fuels, 2014, 28, 3908-3915.	2.5	22
266	Efficient Conversion of α-Angelica Lactone into γ-Valerolactone with Ionic Liquids at Room Temperature. ACS Sustainable Chemistry and Engineering, 2014, 2, 902-909.	3.2	31
267	Mesoporous zirconia-based mixed oxides as versatile acid catalysts for producing bio-additives from furfuryl alcohol and glycerol. Applied Catalysis A: General, 2014, 487, 148-157.	2.2	31
268	Deoxygenation of glycolaldehyde and furfural on Mo2C/Mo(100). Surface Science, 2014, 630, 16-21.	0.8	42
269	Dealing with the surplus of glycerol production from biodiesel industry through catalytic upgrading to polyglycerols and other value-added products. Renewable and Sustainable Energy Reviews, 2014, 39, 327-341.	8.2	135
270	Efficient catalytic conversion of the fructose into 5-hydroxymethylfurfural by heteropolyacids in the ionic liquid of 1-butyl-3-methyl imidazolium chloride. Applied Catalysis A: General, 2014, 484, 74-78.	2.2	44
271	Sulfated Mesoporous Niobium Oxide Catalyzed 5-Hydroxymethylfurfural Formation from Sugars. Industrial & Engineering Chemistry Research, 2014, 53, 14225-14233.	1.8	85
272	Analysis of Kinetics and Reaction Pathways in the Aqueous-Phase Hydrogenation of Levulinic Acid To Form Î ³ -Valerolactone over Ru/C. ACS Catalysis, 2014, 4, 1171-1181.	5.5	265
273	Tungsten-Promoted Mesoporous Group 4 (Ti, Zr, and Hf) Transition-Metal Oxides for Room-Temperature Solvent-Free Acetalization and Ketalization Reactions. Chemistry of Materials, 2014, 26, 2803-2813.	3.2	47
274	Biobased building blocks for the rational design of renewable block polymers. Soft Matter, 2014, 10, 7405-7424.	1.2	136
275	Selective Hydrogenolysis of Xylitol to Ethylene Glycol and Propylene Glycol over Silica Dispersed Copper Catalysts Prepared by a Precipitation–Gel Method. ChemCatChem, 2014, 6, 2918-2928.	1.8	37
276	Photocatalytic Decarboxylative Reduction of Carboxylic Acids and Its Application in Asymmetric Synthesis. Organic Letters, 2014, 16, 4228-4231.	2.4	146
277	Transformation of Cellulose and its Derived Carbohydrates into Formic and Lactic Acids Catalyzed by Vanadyl Cations. ChemSusChem, 2014, 7, 1557-1567.	3.6	148
278	Synthesis and characterization of novel vinylester prepolymers from cardanol. European Journal of Lipid Science and Technology, 2014, 116, n/a-n/a.	1.0	28

#	Article	IF	CITATIONS
279	Efficient hydrogenolysis of cellulose into sorbitol catalyzed by a bifunctional catalyst. Green Chemistry, 2014, 16, 1534.	4.6	81
280	Will Zeoliteâ€Based Catalysis be as Relevant in Future Biorefineries as in Crude Oil Refineries?. Angewandte Chemie - International Edition, 2014, 53, 8621-8626.	7.2	132
281	Green synthesis from biomass. Chemical and Biological Technologies in Agriculture, 2014, 1, .	1.9	28
282	A renewable chemistry linked to the Brazilian biofuel production. Chemical and Biological Technologies in Agriculture, 2014, 1, .	1.9	8
283	Optimizing the distribution of aromatic products from catalytic fast pyrolysis of cellulose by ZSM-5 modification with boron and co-feeding of low-density polyethylene. Applied Catalysis A: General, 2014, 487, 45-53.	2.2	74
284	Analysis of the Reaction Mechanism and Catalytic Activity of Metal-Substituted Beta Zeolite for the Isomerization of Glucose to Fructose. ACS Catalysis, 2014, 4, 1537-1545.	5.5	148
285	Synthesis of diesel and jet fuel range alkanes with furfural and ketones from lignocellulose under solvent free conditions. Green Chemistry, 2014, 16, 4879-4884.	4.6	97
286	Conversion of wheat straw to furfural and levulinic acid in a concentrated aqueous solution of betaÃ ⁻ ne hydrochloride. RSC Advances, 2014, 4, 28836.	1.7	20
287	Decarbonylation of Lactic Acid to Acetaldehyde over Aluminum Sulfate Catalyst. Industrial & Engineering Chemistry Research, 2014, 53, 10318-10327.	1.8	41
288	Biosourced Polymetallic Catalysts: An Efficient Means To Synthesize Underexploited Platform Molecules from Carbohydrates. ChemSusChem, 2014, 7, 1915-1923.	3.6	46
289	Performance and characterization of rhenium-modified Rh–Ir alloy catalyst for one-pot conversion of furfural into 1,5-pentanediol. Catalysis Science and Technology, 2014, 4, 2535-2549.	2.1	140
290	Liquid Biofuels: Emergence, Development and Prospects. Lecture Notes in Energy, 2014, , .	0.2	1
291	A core–shell–satellite structured Fe ₃ O ₄ @MS–NH ₂ @Pd nanocomposite: a magnetically recyclable multifunctional catalyst for one-pot multistep cascade reaction sequences. Nanoscale, 2014, 6, 442-448.	2.8	47
292	Arene Activation at Iridium Facilitates C–O Bond Cleavage of Aryl Ethers. Organometallics, 2014, 33, 1245-1252.	1.1	19
293	Chemoselective Hydrogenation of Biomass-Derived 5-Hydroxymethylfurfural into the Liquid Biofuel 2,5-Dimethylfuran. Industrial & Engineering Chemistry Research, 2014, 53, 9969-9978.	1.8	128
294	Heterogeneous Catalysis and the Challenges of Powering the Planet, Securing Chemicals for Civilised Life, and Clean Efficient Utilization of Renewable Feedstocks. ChemSusChem, 2014, 7, 1801-1832.	3.6	50
295	Recyclability of an ionic liquid for biomass pretreatment. Bioresource Technology, 2014, 169, 336-343.	4.8	79
296	Catalytic processes and catalyst development in biorefining. , 2014, , 152-198.		18

#	Article	IF	CITATIONS
297	Tunable Catalysts for Solvent-Free Biphasic Systems: Pickering Interfacial Catalysts over Amphiphilic Silica Nanoparticles. Journal of the American Chemical Society, 2014, 136, 4869-4872.	6.6	147
299	Kinetic study of retroâ€aldol condensation of glucose to glycolaldehyde with ammonium metatungstate as the catalyst. AICHE Journal, 2014, 60, 3804-3813.	1.8	74
300	Synthesis and Applications of Alkyl Levulinates. ACS Sustainable Chemistry and Engineering, 2014, 2, 1338-1352.	3.2	360
301	Biobased vinyl levulinate as styrene replacement for unsaturated polyester resins. Journal of Polymer Science Part A, 2014, 52, 3356-3364.	2.5	46
302	An improved catalytic system for the reduction of levulinic acid to Î ³ -valerolactone. Catalysis Science and Technology, 2014, 4, 2908-2912.	2.1	72
303	Titanium hydrogenphosphate: An efficient dual acidic catalyst for 5-hydroxymethylfurfural (HMF) production. Applied Catalysis A: General, 2014, 486, 42-48.	2.2	64
304	Efficient production of 5-hydroxymethylfurfural and alkyl levulinate from biomass carbohydrate using ionic liquid-based polyoxometalate salts. RSC Advances, 2014, 4, 4194-4202.	1.7	63
305	Highly selective rearrangement of furfuryl alcohol to cyclopentanone. Applied Catalysis B: Environmental, 2014, 154-155, 294-300.	10.8	75
306	Densification of biorefinery schemes by H-transfer with Raney Ni and 2-propanol: A case study of a potential avenue for valorization of alkyl levulinates to alkyl γ-hydroxypentanoates and γ-valerolactone. Journal of Molecular Catalysis A, 2014, 388-389, 106-115.	4.8	50
307	Acid hydrolysis of Curcuma longa residue for ethanol and lactic acid fermentation. Bioresource Technology, 2014, 151, 227-235.	4.8	29
308	Selective hydrogenation of D-glucose to D-sorbitol over Ru/ZSM-5 catalysts. Chinese Journal of Catalysis, 2014, 35, 733-740.	6.9	41
309	Selective electro-oxidation of glycerol to tartronate or mesoxalate on Au nanoparticle catalyst via electrode potential tuning in anion-exchange membrane electro-catalytic flow reactor. Applied Catalysis B: Environmental, 2014, 147, 871-878.	10.8	66
310	Electrocatalytic hydrogenation of furfural to furfuryl alcohol using platinum supported on activated carbon fibers. Electrochimica Acta, 2014, 135, 139-146.	2.6	98
311	Glucose esters as biobased PVC plasticizers. European Polymer Journal, 2014, 58, 34-40.	2.6	33
312	Lignol Cleavage by Pd/C Under Mild Conditions and Without Hydrogen: A Role for Benzylic CH Activation?. ChemSusChem, 2014, 7, 1623-1626.	3.6	59
313	Molybdenum Carbide as a Highly Selective Deoxygenation Catalyst for Converting Furfural to 2â€Methylfuran. ChemSusChem, 2014, 7, 2146-2149.	3.6	105
314	CO ₂ Recycling: A Key Strategy to Introduce Green Energy in the Chemical Production Chain. ChemSusChem, 2014, 7, 1274-1282.	3.6	196
315	Integrated Catalytic Process for Biomass Conversion and Upgrading to C ₁₂ Furoin and Alkane Fuel. ACS Catalysis, 2014, 4, 1302-1310.	5.5	94

#	Article	IF	CITATIONS
316	Toxicity of Ionic Liquids: Eco(cyto)activity as Complicated, but Unavoidable Parameter for Task‧pecific Optimization. ChemSusChem, 2014, 7, 336-360.	3.6	377
317	Process development of short-chain polyols synthesis from corn stover by combination of enzymatic hydrolysis and catalytic hydrogenolysis. Biotechnology Reports (Amsterdam, Netherlands), 2014, 3, 15-20.	2.1	10
318	Enhancing the production of renewable petrochemicals by co-feeding of biomass with plastics in catalytic fast pyrolysis with ZSM-5 zeolites. Applied Catalysis A: General, 2014, 481, 173-182.	2.2	169
319	Acid-treatment of C5 and C6 sugar monomers/oligomers: Insight into their interactions. Fuel Processing Technology, 2014, 126, 315-323.	3.7	31
320	Naturally occurring phenolic sources: monomers and polymers. RSC Advances, 2014, 4, 21712-21752.	1.7	226
321	Catalytic conversion of glucose in dimethylsulfoxide/water binary mix with chromium trichloride: Role of water on the product distribution. Chemical Engineering Journal, 2014, 254, 333-339.	6.6	71
322	A novel platinum nanocatalyst for the oxidation of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic acid under mild conditions. Journal of Catalysis, 2014, 315, 67-74.	3.1	224
323	Mesoporous Nb2O5 as solid acid catalyst for dehydration of d-xylose into furfural. Catalysis Today, 2014, 234, 119-124.	2.2	62
324	Wetting, Solubility and Chemical Characteristics of Plasma-Polymerized 1-Isopropyl-4-Methyl-1,4-Cyclohexadiene Thin Films. Coatings, 2014, 4, 527-552.	1.2	28
325	Biocatalytic Synthesis of Polymers: A Contribution to Green Chemistry. , 2014, , 1137-1162.		0
327	Vinylsulfideâ€Containing Polyesters and Copolyesters from Fatty Acids: Thiolâ€yne Monomer Synthesis and Thiolâ€ene Functionalization. Macromolecular Chemistry and Physics, 2014, 215, 2248-2259.	1.1	10
328	Sustainable Synthesis of Chiral Tetrahydrofurans through the Selective Dehydration of Pentoses. Chemistry - A European Journal, 2015, 21, 15947-15950.	1.7	14
330	Flash Chemistry Using Trichlorovinyllithium: Switching the Reaction Pathways by High-resolution Reaction Time Control. Chemistry Letters, 2015, 44, 214-216.	0.7	18
331	Selective Oxidation of 1,6â€Hexanediol to 6â€Hydroxycaproic Acid over Reusable Hydrotalcite‧upported Au–Pd Bimetallic Catalysts. ChemSusChem, 2015, 8, 1862-1866.	3.6	16
332	Direct Ruthenium atalyzed Hydrogenation of Carboxylic Acids to Alcohols. Angewandte Chemie - International Edition, 2015, 54, 10596-10599.	7.2	100
333	Visibleâ€Lightâ€Induced Decarboxylative Functionalization of Carboxylic Acids and Their Derivatives. Angewandte Chemie - International Edition, 2015, 54, 15632-15641.	7.2	655
334	Challenges and opportunities for microalgaeâ€mediated CO ₂ capture and biorefinery. Biotechnology and Bioengineering, 2015, 112, 1281-1296.	1.7	51
335	Highly Selective Copper Catalyst Supported on Mesoporous Carbon for the Dehydrogenation of Ethanol to Acetaldehyde. ChemCatChem, 2015, 7, 2846-2852.	1.8	70

#	Article	IF	CITATIONS
336	Role of Exposed Surfaces on Zinc Oxide Nanostructures in the Catalytic Ethanol Transformation. ChemSusChem, 2015, 8, 2223-2230.	3.6	17
338	Glycerol/Dodecanol Double Pickering Emulsions Stabilized by Polystyreneâ€Grafted Silica Nanoparticles for Interfacial Catalysis. ChemCatChem, 2015, 7, 3229-3233.	1.8	21
339	Theoretical Explanation for How SO ₃ Hâ€Functionalized Ionic Liquids Promote the Conversion of Cellulose to Glucose. ChemPhysChem, 2015, 16, 3044-3048.	1.0	15
340	Metalloâ€Deuteroporphyrin as a Biomimetic Catalyst for the Catalytic Oxidation of Lignin to Aromatics. ChemSusChem, 2015, 8, 1768-1778.	3.6	41
341	Recent Progress in Sustainable Polymers Obtained from Cyclic Terpenes: Synthesis, Properties, and Application Potential. ChemSusChem, 2015, 8, 2455-2471.	3.6	138
342	Synthesis of a Sulfonated Twoâ€Dimensional Covalent Organic Framework as an Efficient Solid Acid Catalyst for Biobased Chemical Conversion. ChemSusChem, 2015, 8, 3208-3212.	3.6	163
343	Nonâ€Oxidative Dehydrogenation Pathways for the Conversion of C ₂ –C ₄ Alcohols to Carbonyl Compounds. ChemSusChem, 2015, 8, 3959-3962.	3.6	11
344	Catalytic effect of MgCl ₂ on cotton stalk pyrolysis for chemical production at low temperature. Canadian Journal of Chemical Engineering, 2015, 93, 1343-1348.	0.9	13
345	Bicomponent Assembly of VO ₂ and Polyanilineâ€Functionalized Carbon Nanotubes for the Selective Oxidation of Biomassâ€Based 5â€Hydroxymethylfurfural to 2,5â€Diformylfuran. ChemPlusChem, 2015, 80, 1760-1768.	1.3	34
346	Efficient Epimerization of Aldoses Using Layered Niobium Molybdates. ChemSusChem, 2015, 8, 3769-3772.	3.6	24
348	Direct Production of Ethyl Levulinate from Carbohydrates Catalyzed by H-ZSM-5 Supported Phosphotungstic Acid. BioResources, 2015, 10, .	0.5	31
349	A Simple and Fast Kinetic Assay for the Determination of Fructan Exohydrolase Activity in Perennial Ryegrass (Lolium perenne L.). Frontiers in Plant Science, 2015, 6, 1154.	1.7	9
350	Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources. International Journal of Molecular Sciences, 2015, 16, 17101-17159.	1.8	177
351	Microwave-Assisted Green Production of Furfural from D-xylose of Sugarcane Bagasse. BioResources, 2015, 10, .	0.5	4
352	Superhydrophobicity, Microwave Absorbing Property of NiFe2O4/Wood Hybrids under Harsh Conditions. Journal of Nanomaterials, 2015, 2015, 1-8.	1.5	1
353	Conversion of Glucose to Valuable Platform Chemicals over Graphene Solid Acid Catalyst. Chinese Journal of Chemical Physics, 2015, 28, 230-234.	0.6	1
354	Characteristics and Kinetics of the Aldonic Acids Production using Whole-cell catalysis of Gluconobacter oxydans. BioResources, 2015, 10, .	0.5	6
355	Conversion of saccharides into formic acid using hydrogen peroxide and a recyclable palladium(<scp>ii</scp>) catalyst in aqueous alkaline media at ambient temperatures. Green Chemistry, 2015, 17, 2736-2740.	4.6	17

# 356	ARTICLE Synthesis and Characterization of Poly(ethylene terephthalate) from Biomass-Based Ethylene Glycol: Effects of Miscellaneous Diols. Industrial & Engineering Chemistry Research, 2015, 54, 5862-5869.	IF 1.8	CITATIONS
357	Dehydration of cellulose to levoglucosenone using polar aprotic solvents. Energy and Environmental Science, 2015, 8, 1808-1815.	15.6	167
358	Conversion of Chitosan into 5-Hydroxymethylfurfural via Hydrothermal Synthesis. Advanced Materials Research, 0, 1095, 411-414.	0.3	11
359	Synthesis of biologically active natural products, aspergillides A and B, entirely from biomass derived platform chemicals. Green Chemistry, 2015, 17, 3746-3750.	4.6	29
360	Poly(α-methylene-γ-valerolactone) 1. Sustainable monomer synthesis and radical polymerization studies. Polymer, 2015, 74, 262-271.	1.8	27
361	Selective transformation of glucose into propylene glycol on Ru/C catalysts combined with ZnO under low hydrogen pressures. Applied Catalysis A: General, 2015, 502, 1-7.	2.2	32
362	Arylsulfonic acid functionalized hollow mesoporous carbon spheres for efficient conversion of levulinic acid or furfuryl alcohol to ethyl levulinate. Applied Catalysis B: Environmental, 2015, 179, 445-457.	10.8	126
363	Chemical investigation of barks from broad-leaved tree species using EGA-MS and GC/MS. Journal of Analytical and Applied Pyrolysis, 2015, 114, 235-242.	2.6	13
364	Selective liquid phase hydrogenation of furfural to furfuryl alcohol by Ru/Zr-MOFs. Journal of Molecular Catalysis A, 2015, 406, 58-64.	4.8	154
365	Why Is Ruthenium an Efficient Catalyst for the Aqueous-Phase Hydrogenation of Biosourced Carbonyl Compounds?. ACS Catalysis, 2015, 5, 4130-4132.	5.5	158
366	Selective Aerobic Oxidation of 5â€HMF into 2,5â€Furandicarboxylic Acid with Pt Catalysts Supported on TiO ₂ ―and ZrO ₂ â€Based Supports. ChemSusChem, 2015, 8, 1206-1217.	3.6	190
367	Deactivation of solid catalysts in liquid media: the case of leaching of active sites in biomass conversion reactions. Green Chemistry, 2015, 17, 4133-4145.	4.6	200
368	Towards Production of Î ³ -valerolactone via Hydrogenation of Aqueous Levulinic Acid. International Journal of Chemical Reactor Engineering, 2015, 13, 119-127.	0.6	7
369	Selective Oxidation of Raw Glycerol Using Supported AuPd Nanoparticles. Catalysts, 2015, 5, 131-144.	1.6	28
370	Recyclable Supported Carbene Catalysts for High-Yielding Self-Condensation of Furaldehydes into C ₁₀ and C ₁₂ Furoins. ACS Catalysis, 2015, 5, 6907-6917.	5.5	54
371	A New Approach for the Design and Assessment of Bio-based Chemical Processes toward Sustainability. Industrial & Engineering Chemistry Research, 2015, 54, 5494-5504.	1.8	11
372	Chemicals from biomass: Efficient and facile synthesis of 5,5′(oxy-bis(methylene))bis-2-furfural from 5-hydroxymethylfurfural. Industrial Crops and Products, 2015, 78, 91-94.	2.5	18
373	The "one-pot―synthesis of 2,5-diformylfuran, a promising synthon for organic materials in the conversion of biomass. Russian Chemical Bulletin, 2015, 64, 1069-1073.	0.4	14

		CITATION RE	EPORT	
#	Article		IF	Citations
374	Fatty acid feedstock preparation and lactic acid production as integrated processes in r restaurant food and bakery wastes treatment. Food Research International, 2015, 73, 5	nixed 52-61.	2.9	57
375	Catalytic hydrothermal conversion of macroalgae-derived alginate: effect of pH on prod furfural and valuable organic acids under subcritical water conditions. Journal of Molecu Catalysis A, 2015, 399, 106-113.	uction of Ilar	4.8	31
376	A new, low-cost adsorbent: Preparation, characterization, and adsorption behavior of Pl Journal of Colloid and Interface Science, 2015, 445, 294-302.	o(II) and Cu(II).	5.0	125
377	Polyethylene Glycol-400-Functionalized Dicationic Acidic Ionic Liquids for Highly Efficier Conversion of Fructose into 5-Hydroxymethylfurfural. Catalysis Letters, 2015, 145, 108	it 0-1088.	1.4	15
378	Conversion of cellulose to lactic acid catalyzed by erbium-exchanged montmorillonite K Chemistry, 2015, 17, 2455-2463.	10. Green	4.6	109
379	One-Step Process for the Production of BTEX and LPG-like fuel from Pentanediol. ACS S Chemistry and Engineering, 2015, 3, 381-385.	ustainable	3.2	4
380	Catalytic Hydrogenolysis of Aryl Ethers: A Key Step in Lignin Valorization to Valuable Ch Catalysis, 2015, 5, 1675-1684.	emicals. ACS	5.5	214
381	Environmentally Friendly Synthesis of γ-Valerolactone by Direct Catalytic Conversion of Sources. ACS Catalysis, 2015, 5, 1882-1894.	Renewable	5.5	182
382	Electrocatalytic Carbohydrate Oxidation with 4-Benzoyloxy-TEMPO Heterogenised in a Intrinsic Microporosity. Electrochimica Acta, 2015, 160, 195-201.	Polymer of	2.6	25
383	Inhibiting effect of tungstic compounds on glucose hydrogenation over Ru/C catalyst. J Energy Chemistry, 2015, 24, 9-14.	ournal of	7.1	10
384	Multifaceted application of crop residue biochar as a tool for sustainable agriculture: Ar perspective. Ecological Engineering, 2015, 77, 324-347.	ı ecological	1.6	117
385	Base-Mediated Decomposition of Amide-Substituted Furfuryl Tosylhydrazones: Synthes Activities of Enynyl-Ketoamides. Journal of Organic Chemistry, 2015, 80, 2092-2102.	is and Cytotoxic	1.7	25
386	Thermoset Elastomers Derived from Carvomenthide. Biomacromolecules, 2015, 16, 24	5-256.	2.6	25
387	Aliphatic–aromatic poly(butylene carbonateâ€ <i>co</i> â€ŧerephthalate) random cop cocrystallization, and compositionâ€dependent properties. Journal of Applied Polymer S	olymers: Synthesis, Science, 2015, 132,	1.3	19
388	From monomers to polymers from renewable resources: Recent advances. Progress in F Science, 2015, 48, 1-39.	'olymer	11.8	530
389	Commercially available ammonium salt-catalyzed efficient dehydration of fructose to 5-hydroxymethylfurfural in ionic liquid. Inorganica Chimica Acta, 2015, 428, 32-36.		1.2	6
390	Furan's Gambit: Electrophileâ€Attackâ€Triggered Sacrifice of Furan Rings for the Intran Construction of Azaheterocycles. European Journal of Organic Chemistry, 2015, 2015,	iolecular 2999-3016.	1.2	50
391	Protonated titanate nanotubes as a highly active catalyst for the synthesis of renewable fuel range alkanes. Applied Catalysis B: Environmental, 2015, 170-171, 124-134.	e diesel and jet	10.8	55

#	Article	IF	CITATIONS
392	The role of water in catalytic biomass-based technologies to produce chemicals and fuels. Catalysis Today, 2015, 247, 33-46.	2.2	32
393	Mechanism of BrÃ,nsted Acidâ€Catalyzed Glucose Dehydration. ChemSusChem, 2015, 8, 1334-1341.	3.6	135
394	Biorefineries for the production of top building block chemicals and their derivatives. Metabolic Engineering, 2015, 28, 223-239.	3.6	425
395	5â€hydroxymethylfurfural conversion by fungal arylâ€alcohol oxidase and unspecific peroxygenase. FEBS Journal, 2015, 282, 3218-3229.	2.2	132
396	Titaniaâ€Supported Catalysts for Levulinic Acid Hydrogenation: Influence of Support and its Impact on γâ€Valerolactone Yield. ChemSusChem, 2015, 8, 1538-1547.	3.6	85
397	Lignopolyurethanic materials based on oxypropylated sodium lignosulfonate and castor oil blends. Industrial Crops and Products, 2015, 72, 77-86.	2.5	58
398	Hydrogenation of succinic acid over supported rhenium catalysts prepared by the microwave-assisted thermolytic method. Catalysis Science and Technology, 2015, 5, 2441-2448.	2.1	42
399	Selective etherification of \hat{I}^2 -citronellene catalyzed by zeolite beta. Green Chemistry, 2015, 17, 2840-2845.	4.6	3
400	Deoxygenation of Biomass-Derived Oxygenates: Reaction of Furfural on Zn-Modified Pt(111). ACS Catalysis, 2015, 5, 2177-2183.	5.5	83
401	Electrochemistry for the generation of renewable chemicals: electrochemical conversion of levulinic acid. RSC Advances, 2015, 5, 26634-26643.	1.7	69
402	Production of Renewable Hexanols from Mechanocatalytically Depolymerized Cellulose by Using Irâ€ReO _{<i>x</i>} /SiO ₂ catalyst. ChemSusChem, 2015, 8, 628-635.	3.6	77
403	Selective hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol over vanadium modified Ir/SiO2 catalyst. Catalysis Today, 2015, 245, 93-99.	2.2	49
404	Dehydration of sorbitol to isosorbide over H-beta zeolites with high Si/Al ratios. Green Chemistry, 2015, 17, 2732-2735.	4.6	112
405	Efficient hydrochlorination of glycerol to dichlorohydrin over the COOH-functionalized mesoporous carbon–silica composites. Journal of Porous Materials, 2015, 22, 57-64.	1.3	2
406	A Dry Platform for Separation of Proteins from Biomass ontaining Polysaccharides, Lignin, and Polyphenols. ChemSusChem, 2015, 8, 1161-1166.	3.6	26
407	Direct asymmetric reduction of levulinic acid to gamma-valerolactone: synthesis of a chiral platform molecule. Green Chemistry, 2015, 17, 5189-5195.	4.6	70
408	Iron-catalyzed selective oxidation of 5-hydroxylmethylfurfural in air: A facile synthesis of 2,5-diformylfuran at room temperature. Chinese Chemical Letters, 2015, 26, 1265-1268.	4.8	28
409	Enzymes for food waste remediation and valorisation. , 2015, , 123-145.		6

#	Article	IF	CITATIONS
410	Production of aromatic compounds from oil palm empty fruit bunches by hydro- and solvothermolysis. Industrial Crops and Products, 2015, 76, 104-111.	2.5	10
411	Bio-based solvents for the Baylis–Hillman reaction of HMF. RSC Advances, 2015, 5, 69238-69242.	1.7	20
412	Synthesis of isosorbide from sorbitol in water over high-silica aluminosilicate zeolites. Applied Catalysis A: General, 2015, 505, 28-35.	2.2	65
413	Production of indoles via thermo-catalytic conversion and ammonization of bio-derived furfural. Chemical Engineering Journal, 2015, 280, 74-81.	6.6	41
414	Sorbic Acid as a Renewable Resource for Atom-Economic and Selective Production of <i>p</i> -Toluic Acid and Alkyl- <i>p</i> -Toluates: Intermediates to Bioterephthalic Acid and Esters. Industrial & Engineering Chemistry Research, 2015, 54, 7164-7168.	1.8	22
415	Mild Approach to 2-Acylfurans via Intercepted Meyer–Schuster Rearrangement of 6-Hydroxyhex-2-en-4-ynals. Journal of Organic Chemistry, 2015, 80, 8314-8328.	1.7	34
416	Scope and Mechanistic Analysis for Chemoselective Hydrogenolysis of Carbonyl Compounds Catalyzed by a Cationic Ruthenium Hydride Complex with a Tunable Phenol Ligand. Journal of the American Chemical Society, 2015, 137, 11105-11114.	6.6	56
417	Biocatalysts for biomass deconstruction from environmental genomics. Current Opinion in Chemical Biology, 2015, 29, 18-25.	2.8	28
418	Catalysis for the Production of Sustainable Chemicals and Fuels from Biomass. , 2015, , 99-123.		5
419	Integrated Bio- and Chemocatalytic Processing for Biorenewable Chemicals and Fuels. , 2015, , 157-177.		11
420	Design Criteria for Future Fuels and Related Power Systems Addressing the Impacts of Non-CO ₂ Pollutants on Human Health and Climate Change. Annual Review of Chemical and Biomolecular Engineering, 2015, 6, 101-120.	3.3	11
421	Effective deoxygenation of fatty acids over Ni(OAc) ₂ in the absence of H ₂ and solvent. Green Chemistry, 2015, 17, 4198-4205.	4.6	71
422	Three step auto-tandem catalysed hydroesterification: Access to linear fruity esters from piperylene. Journal of Molecular Catalysis A, 2015, 407, 122-127.	4.8	11
423	Insights into the solvation of glucose in water, dimethyl sulfoxide (DMSO), tetrahydrofuran (THF) and N,N-dimethylformamide (DMF) and its possible implications on the conversion of glucose to platform chemicals. RSC Advances, 2015, 5, 20756-20763.	1.7	96
424	Rate-Enhancing Roles of Water Molecules in Methyltrioxorhenium-Catalyzed Olefin Epoxidation by Hydrogen Peroxide. Journal of the American Chemical Society, 2015, 137, 9604-9616.	6.6	42
425	Chemoselective conversion of biologically sourced polyols into chiral synthons. Nature Chemistry, 2015, 7, 576-581.	6.6	91
426	Economically Viable Components from Jerusalem Artichoke (Helianthus tuberosus L.) in a Biorefinery Concept. International Journal of Molecular Sciences, 2015, 16, 8997-9016.	1.8	48
427	Palladium nanoparticles incorporated within sulfonic acid-functionalized MIL-101(Cr) for efficient catalytic conversion of vanillin. Journal of Materials Chemistry A, 2015, 3, 17008-17015.	5.2	107

#	Articif	IF	CITATIONS
428	Highly active tin(<scp>iv</scp>) phosphate phase transfer catalysts for the production of lactic acid from triose sugars. Catalysis Science and Technology, 2015, 5, 4410-4421.	2.1	57
429	Beta zeolite: a universally applicable catalyst for the conversion of various types of saccharides into furfurals. Catalysis Science and Technology, 2015, 5, 4001-4007.	2.1	45
430	Hydrogenolysis vs. aqueous phase reforming (APR) of glycerol promoted by a heterogeneous Pd/Fe catalyst. Catalysis Science and Technology, 2015, 5, 4466-4473.	2.1	37
431	Glucosyloxymethylfurfural (GMF): a creative renewable scaffold towards bioinspired architectures. Pure and Applied Chemistry, 2015, 87, 827-839.	0.9	19
432	Convergent reductive depolymerization of wood lignin to isolated phenol derivatives by metal-free catalytic hydrosilylation. Energy and Environmental Science, 2015, 8, 2734-2743.	15.6	146
433	Synthesis and Free Radical Copolymerization of a Vinyl Monomer from Soybean Oil. ACS Sustainable Chemistry and Engineering, 2015, 3, 1618-1622.	3.2	57
434	Organocatalytic Upgrading of Furfural and 5-Hydroxymethyl Furfural to C10 and C12 Furoins with Quantitative Yield and Atom-Efficiency. International Journal of Molecular Sciences, 2015, 16, 7143-7158.	1.8	38
435	Green Synthesis of Polymer Composites/Nanocomposites Using Vegetable Oil. Advanced Structured Materials, 2015, , 495-511.	0.3	3
436	Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals. Science and Technology of Advanced Materials, 2015, 16, 034903.	2.8	104
437	Green Solvents in Carbohydrate Chemistry: From Raw Materials to Fine Chemicals. Chemical Reviews, 2015, 115, 6811-6853.	23.0	296
438	Reaction Pathways of Biomassâ€Đerived Oxygenates over Metals and Carbides: From Model Surfaces to Supported Catalysts. ChemCatChem, 2015, 7, 1402-1421.	1.8	50
439	Study on the one-pot oxidative esterification of glycerol with MOF supported polyoxometalates as catalyst. Catalysis Science and Technology, 2015, 5, 3383-3393.	2.1	34
440	A highly sustainable route to pyrrolidone derivatives – direct access to biosourced solvents. Green Chemistry, 2015, 17, 3251-3254.	4.6	57
441	Structure–performance correlations of Mg–Al hydrotalcite catalysts for the isomerization of glucose into fructose. Journal of Catalysis, 2015, 327, 1-9.	3.1	113
442	Conversion of bamboo fiber into 5-hydroxymethylfurfural catalyzed by sulfamic acid with microwave assistance in biphasic system. Industrial Crops and Products, 2015, 70, 266-271.	2.5	38
443	High production of fumaric acid from xylose by newly selected strain Rhizopus arrhizus RH 7-13-9#. Bioresource Technology, 2015, 186, 348-350.	4.8	23
444	SnCl ₄ -catalyzed isomerization/dehydration of xylose and glucose to furanics in water. Catalysis Science and Technology, 2015, 5, 2839-2847.	2.1	89
445	Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps. Energy and Environmental Science, 2015, 8, 1748-1763.	15.6	688

#	Article	IF	CITATIONS
446	Aromatics from saturated and unsaturated fatty acids via zeolite catalysis in supercritical water. Journal of Supercritical Fluids, 2015, 102, 73-79.	1.6	25
447	Enzyme-catalyzed selective oxidation of 5-hydroxymethylfurfural (HMF) and separation of HMF and 2,5-diformylfuran using deep eutectic solvents. Green Chemistry, 2015, 17, 3718-3722.	4.6	151
448	Perspectives on the replacement of harmful organic solvents in analytical methodologies: a framework toward the implementation of a generation of eco-friendly alternatives. Green Chemistry, 2015, 17, 3687-3705.	4.6	189
449	Robust and Recyclable Nonprecious Bimetallic Nanoparticles on Carbon Nanotubes for the Hydrogenation and Hydrogenolysis of 5â€Hydroxymethylfurfural. ChemCatChem, 2015, 7, 1701-1707.	1.8	122
450	Access to polysubstituted indoles or benzothiophenes via palladium-catalyzed cross-coupling of furfural tosylhydrazones with 2-iodoanilines or 2-iodothiophenols. Chemical Communications, 2015, 51, 6126-6129.	2.2	31
451	Molybdenum incorporated mesoporous silica catalyst for production of biofuels and value-added chemicals via catalytic fast pyrolysis. Green Chemistry, 2015, 17, 3035-3046.	4.6	45
452	Oxo-Rhenium-Catalyzed Deoxydehydration of Polyols with Hydroaromatic Reductants. Organometallics, 2015, 34, 1985-1990.	1.1	45
453	PtAu alloy nanoparticles supported on thermally expanded graphene oxide as a catalyst for the selective oxidation of glycerol. RSC Advances, 2015, 5, 37112-37118.	1.7	19
454	Conversion of Furfural to Cyclopentanol on Cu/Zn/Al Catalysts Derived from Hydrotalcite-Like Materials. Catalysis Letters, 2015, 145, 1557-1565.	1.4	43
455	Efficient oxidation of biomass derived 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid catalyzed by Merrifield resin supported cobalt porphyrin. Chemical Engineering Journal, 2015, 270, 444-449.	6.6	106
456	Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, 2015, 6, 4497-4559.	1.9	1,917
457	Contribution of Deep Eutectic Solvents for Biomass Processing: Opportunities, Challenges, and Limitations. ChemCatChem, 2015, 7, 1250-1260.	1.8	180
458	Thermally stable phosphorus and nickel modified ZSM-5 zeolites for catalytic co-pyrolysis of biomass and plastics. RSC Advances, 2015, 5, 30485-30494.	1.7	66
460	Transfer Hydrogenation of Ethyl Levulinate to <i>γ</i> â€Valerolactone Catalyzed by Iron Complexes. Chinese Journal of Chemistry, 2015, 33, 405-408.	2.6	31
461	Recent Advances in the Catalytic Synthesis of 2,5-Furandicarboxylic Acid and Its Derivatives. ACS Catalysis, 2015, 5, 6529-6544.	5.5	489
462	Clay catalysed rapid valorization of glycerol towards cyclic acetals and ketals. RSC Advances, 2015, 5, 83985-83996.	1.7	27
463	6. Biomass-derived molecules conversion to chemicals using heterogeneous and homogeneous catalysis. , 2015, , 141-164.		0
464	Conversion of concentrated sugar solutions into 5-hydroxymethyl furfural and furfural using Brönsted acidic ionic liquids. Catalysis Science and Technology, 2015, 5, 5086-5090.	2.1	59

#	Article	IF	CITATIONS
465	Depolymerization of Oxidized Lignin Catalyzed by Formic Acid Exploits an Unconventional Elimination Mechanism Involving 3c–4e Bonding: A DFT Mechanistic Study. ACS Catalysis, 2015, 5, 6386-6396.	5.5	46
466	Modular synthesis of tetra-substituted furans from alkynes, Weinreb amides, and aldehydes. Tetrahedron Letters, 2015, 56, 5738-5742.	0.7	4
467	Tuning the catalytic selectivity in biomass-derived succinic acid hydrogenation on FeOx-modified Pd catalysts. Journal of Materials Chemistry A, 2015, 3, 23560-23569.	5.2	38
468	Conversion of levulinic acid into γ-valerolactone using Fe ₃ (CO) ₁₂ : mimicking a biorefinery setting by exploiting crude liquors from biomass acid hydrolysis. Chemical Communications, 2015, 51, 14199-14202.	2.2	58
469	Chemicals from Biomass: Chemoselective Reductive Amination of Ethyl Levulinate with Amines. ACS Catalysis, 2015, 5, 5812-5821.	5.5	99
470	Catalytic Transformation of Lignin for the Production of Chemicals and Fuels. Chemical Reviews, 2015, 115, 11559-11624.	23.0	2,200
471	Exploring the Chemistry of Furans: Synthesis of Functionalized Bis(furanâ€2â€yl)methanes and 1,6â€Đihydropyridazines. European Journal of Organic Chemistry, 2015, 2015, 6146-6151.	1.2	23
472	Effect of Relative Humidity on the OH-Initiated Heterogeneous Oxidation of Monosaccharide Nanoparticles. Journal of Physical Chemistry A, 2015, 119, 11182-11190.	1.1	16
473	Theoretical Elucidation of Glucose Dehydration to 5-Hydroxymethylfurfural Catalyzed by a SO ₃ H-Functionalized Ionic Liquid. Journal of Physical Chemistry B, 2015, 119, 13398-13406.	1.2	48
474	Catalytic conversion of Jerusalem artichoke tuber into hexitols using the bifunctional catalyst Ru/(AC-SO3H). Chinese Journal of Catalysis, 2015, 36, 1694-1700.	6.9	9
475	Polyesters derived from bio-based eugenol and 10-undecenoic acid: synthesis, characterization, and structure–property relationships. RSC Advances, 2015, 5, 85996-86005.	1.7	17
476	Synthesis and properties of polyesters derived from renewable eugenol and α,ω-diols via a continuous overheating method. Polymer Chemistry, 2015, 6, 7138-7148.	1.9	25
477	Preparation and Characterization of a Renewable Pressure-Sensitive Adhesive System Derived from ε-Decalactone, <scp>l</scp> -Lactide, Epoxidized Soybean Oil, and Rosin Ester. ACS Sustainable Chemistry and Engineering, 2015, 3, 2309-2320.	3.2	88
478	Selective oxidation of glycerol over nitrogen-doped carbon nanotubes supported platinum catalyst in base-free solution. Catalysis Communications, 2015, 70, 72-76.	1.6	35
479	Catalytic dehydration of <scp>d</scp> -xylose to furfural over a tantalum-based catalyst in batch and continuous process. RSC Advances, 2015, 5, 70139-70146.	1.7	12
480	An interchangeable homogeneous ⇔ heterogeneous catalyst system for furfural upgrading. Green Chemistry, 2015, 17, 5149-5153.	4.6	18
481	A thermogravimetric analysis (TGA) method to determine the catalytic conversion of cellulose from carbon-supported hydrogenolysis process. Thermochimica Acta, 2015, 616, 9-13.	1.2	34
482	DFT Study of Solvent Effects in Acid-Catalyzed Diels–Alder Cycloadditions of 2,5-Dimethylfuran and Maleic Anhydride. Journal of Physical Chemistry A, 2015, 119, 9834-9843.	1.1	21

#	Article	IF	CITATIONS
483	Selective conversion of glycerol to lactic acid with iron pincer precatalysts. Chemical Communications, 2015, 51, 16201-16204.	2.2	86
484	Efficient conversion of chitosan into 5-hydroxymethylfurfural via hydrothermal synthesis in ionic liquids aqueous solution. Polymer Degradation and Stability, 2015, 121, 331-339.	2.7	37
485	Cellulose as a Source of Water Dispersible Renewable Film-Forming Materials. Macromolecules, 2015, 48, 8497-8508.	2.2	13
486	Room-Temperature Ionic Liquid System Converting Fructose into 5-Hydroxymethylfurfural in High Efficiency. ACS Sustainable Chemistry and Engineering, 2015, 3, 3338-3345.	3.2	53
487	Well-Dispersed H ₃ PW ₁₂ O ₄₀ /H ₄ SiW ₁₂ O ₄₀ Nanoparticles on Mesoporous Polymer for Highly Efficient Acid-Catalyzed Reactions. Industrial & Engineering Chemistry Research, 2015, 54, 11534-11542.	1.8	23
488	Surfactant-free Pd nanoparticles immobilized to a metal–organic framework with size- and location-dependent catalytic selectivity. Chemical Communications, 2015, 51, 2577-2580.	2.2	83
489	Aerobic oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid in water under mild conditions. Green Chemistry, 2015, 17, 1610-1617.	4.6	180
490	Opportunities, recent trends and challenges of integrated biorefinery: Part I. Renewable and Sustainable Energy Reviews, 2015, 43, 1427-1445.	8.2	338
491	Hydroxyâ€Functionalized Imidazolium Bromides as Catalysts for the Cycloaddition of CO ₂ and Epoxides to Cyclic Carbonates. ChemCatChem, 2015, 7, 94-98.	1.8	132
492	Ruthenium complex immobilized on poly(4-vinylpyridine)-functionalized carbon-nanotube for selective aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. RSC Advances, 2015, 5, 5933-5940.	1.7	55
493	Hydrogenation of succinic acid to 1,4-butanediol over Re–Ru bimetallic catalysts supported on mesoporous carbon. Applied Catalysis A: General, 2015, 490, 153-162.	2.2	85
494	Value-Added Chemicals from Microalgae: Greener, More Economical, or Both?. ACS Sustainable Chemistry and Engineering, 2015, 3, 82-96.	3.2	108
495	Selective Hydrogenation of Biomass-Based 5-Hydroxymethylfurfural over Catalyst of Palladium Immobilized on Amine-Functionalized Metal–Organic Frameworks. ACS Catalysis, 2015, 5, 722-733.	5.5	165
496	Catalytic Dehydration of Carbohydrates Suspended in Organic Solvents Promoted by AlCl ₃ /SiO ₂ Coated with Choline Chloride. ChemSusChem, 2015, 8, 269-274.	3.6	31
497	Cr-free Cu-catalysts for the selective hydrogenation of biomass-derived furfural to 2-methylfuran: The synergistic effect of metal and acid sites. Journal of Molecular Catalysis A, 2015, 398, 140-148.	4.8	140
498	Chitosan as a Sustainable Organocatalyst: A Concise Overview. ChemSusChem, 2015, 8, 217-244.	3.6	193
499	Effects of careful designing of SAPO-44 catalysts on the efficient synthesis of furfural. Catalysis Today, 2015, 251, 66-72.	2.2	33
500	A low-cost method for obtaining high-value bio-based propylene glycol from sugar beet pulp. RSC Advances, 2015, 5, 2299-2304.	1.7	19

#	Article	IF	CITATIONS
501	Biorefining in the prevailing energy and materials crisis: a review of sustainable pathways for biorefinery value chains and sustainability assessment methodologies. Renewable and Sustainable Energy Reviews, 2015, 43, 244-263.	8.2	209
502	Plasticizer and Surfactant Formation from Foodâ€Waste―and Algal Biomassâ€Derived Lipids. ChemSusChem, 2015, 8, 1686-1691.	3.6	42
503	Exploring the catalytic properties of supported palladium catalysts in the transfer hydrogenolysis of glycerol. Applied Catalysis B: Environmental, 2015, 166-167, 121-131.	10.8	76
504	Toward concise metrics for the production of chemicals from renewable biomass. Catalysis Today, 2015, 239, 3-6.	2.2	56
505	Nanoporous catalysts for biomass conversion. Green Chemistry, 2015, 17, 24-39.	4.6	119
506	Methyl ester synthesis catalyzed by nanoporous gold: from 10 ^{â^'9} Torr to 1 atm. Catalysis Science and Technology, 2015, 5, 1299-1306.	2.1	18
507	Tailoring the selectivity of glycerol oxidation by tuning the acid–base properties of Au catalysts. Catalysis Science and Technology, 2015, 5, 1126-1132.	2.1	78
508	NaOH catalyzed condensation reactions between levulinic acid and biomass derived furan-aldehydes in water. Industrial Crops and Products, 2015, 65, 546-549.	2.5	63
509	The Crystal Size Effect of Nano-Sized ZSM-5 in the Catalytic Performance of Petrochemical Processes: A Review. Chemical Engineering Communications, 2015, 202, 542-556.	1.5	55
510	Kinetic study of the competitive hydrogenation of glycolaldehyde and glucose on Ru/C with or without AMT. AICHE Journal, 2015, 61, 224-238.	1.8	49
511	Catalytic routes towards acrylic acid, adipic acid and ε-caprolactam starting from biorenewables. Green Chemistry, 2015, 17, 1341-1361.	4.6	228
512	Catalytic conversion of cellulosic biomass to ethylene glycol: Effects of inorganic impurities in biomass. Bioresource Technology, 2015, 175, 424-429.	4.8	48

⁵¹³ Carbocatalyst in biorefinery: Selective etherification of 5-hydroxymethylfurfural to

#	Article	IF	CITATIONS
519	Insight into effect of acid/base nature of supports on selectivity of glycerol oxidation over supported Au-Pt bimetallic catalysts. Applied Catalysis B: Environmental, 2015, 164, 334-343.	10.8	91
520	Pd/C-catalyzed reactions of HMF: decarbonylation, hydrogenation, and hydrogenolysis. Green Chemistry, 2015, 17, 307-313.	4.6	167
521	Hydrodeoxygenation of dibenzofuran over SiO ₂ , Al ₂ O ₃ /SiO ₂ and ZrO ₂ /SiO ₂ supported Pt catalysts. Catalysis Science and Technology, 2015, 5, 465-474.	2.1	38
522	Superelectrophilic activation of 5-hydroxymethylfurfural and 2,5-diformylfuran: organic synthesis based on biomass-derived products. Beilstein Journal of Organic Chemistry, 2016, 12, 2125-2135.	1.3	22
523	Microbial Production of Short Chain Fatty Acids from Lignocellulosic Biomass: Current Processes and Market. BioMed Research International, 2016, 2016, 1-15.	0.9	84
524	Ethyl Lactate As a Green Solvent: A Promising Bio-compatible Media for Organic Synthesis. Current Green Chemistry, 2016, 3, 111-118.	0.7	36
525	Alkene Metathesis Catalysis: A Key for Transformations of Unsaturated Plant Oils and Renewable Derivatives. Oil and Gas Science and Technology, 2016, 71, 19.	1.4	11
526	Regenerable Subnanometer Pd Clusters on Zirconia for Highly Selective Hydrogenation of Biomass-Derived Succinic Acid in Water. Catalysts, 2016, 6, 100.	1.6	2
527	Enzymatic Synthesis of Biobased Polyesters and Polyamides. Polymers, 2016, 8, 243.	2.0	181
528	Silica-supported sulfonic acids as recyclable catalyst for esterification of levulinic acid with stoichiometric amounts of alcohols. Beilstein Journal of Organic Chemistry, 2016, 12, 2173-2180.	1.3	27
529	Exogenous Classic Phytohormones Have Limited Regulatory Effects on Fructan and Primary Carbohydrate Metabolism in Perennial Ryegrass (Lolium perenne L.). Frontiers in Plant Science, 2015, 6, 1251.	1.7	16
530	Sustainable utilization of lignocellulose: Preparation of furan derivatives from carbohydrate biomass by bifunctional lignosulfonate-based catalysts. Catalysis Communications, 2016, 84, 159-162.	1.6	17
531	Mechanistic Study on Oxorhenium atalyzed Deoxydehydration and Allylic Alcohol Isomerization. Chemistry - an Asian Journal, 2016, 11, 1565-1571.	1.7	13
532	Kinetics of Catalytic Hydrogenation of 5-Hydroxymethylfurfural to 2,5-bis-Hydroxymethylfuran in Aqueous Solution over Ru/C. International Journal of Chemical Kinetics, 2016, 48, 318-328.	1.0	26
533	Biomass. World Scientific Series in Current Energy Issues, 2016, , 171-204.	0.1	0
534	Bioâ€based aromatic copoly(ether ester)s with enhanced toughness and degradability: Influence of insertion of phenoxyâ€ether linkage and eugenolâ€derived composition on properties. Journal of Polymer Science Part A, 2016, 54, 2171-2183.	2.5	6
535	Selective Conversion of 5â€Hydroxymethylfuraldehyde Using Cp*Ir Catalysts in Aqueous Formate Buffer Solution. ChemSusChem, 2016, 9, 1209-1215.	3.6	41
536	Direct Conversion of Mono―and Polysaccharides into 5â€Hydroxymethylfurfural Using Ionicâ€Liquid Mixtures. ChemSusChem, 2016, 9, 2089-2096.	3.6	49

#	Article	IF	CITATIONS
537	Polyvinyl Alcohol Functionalized Solid Acid Catalyst DIC _A Tâ€1 for Microwaveâ€Assisted Synthesis of 5â€Hydroxymethylfurfural in Green Solvent. Energy Technology, 2016, 4, 823-834.	1.8	13
538	Chemo―and Regioselective Hydrogenolysis of Diaryl Ether Câ^'O Bonds by a Robust Heterogeneous Ni/C Catalyst: Applications to the Cleavage of Complex Ligninâ€Related Fragments. Angewandte Chemie, 2016, 128, 1496-1500.	1.6	34
539	New methods for the one-pot processing of polysaccharide components (cellulose and) Tj ETQq0 0 0 rgBT /C activation. Catalysis in Industry, 2016, 8, 176-186.)verlock 10 Tf 0.3	[:] 50 667 Td (ł 20
540	Effect of boron content on 1,4-butanediol production by hydrogenation of succinic acid over Re-Ru/BMC (boron-modified mesoporous carbon) catalysts. Applied Catalysis A: General, 2016, 524, 206-213.	2.2	19
541	Chemo―and Regioselective Hydrogenolysis of Diaryl Ether Câ^'O Bonds by a Robust Heterogeneous Ni/C Catalyst: Applications to the Cleavage of Complex Ligninâ€Related Fragments. Angewandte Chemie - International Edition, 2016, 55, 1474-1478.	7.2	129
542	Fluorescent pH-Sensing Probe Based on Biorefinery Wood Lignosulfonate and Its Application in Human Cancer Cell Bioimaging. Journal of Agricultural and Food Chemistry, 2016, 64, 9592-9600.	2.4	36
543	Effective conversion of biomass-derived ethyl levulinate into γ-valerolactone over commercial zeolite supported Pt catalysts. RSC Advances, 2016, 6, 112477-112485.	1.7	20
544	Highly Selective Upgrading of Biomassâ€Derived Alcohol Mixtures for Jet/Dieselâ€Fuel Components. ChemSusChem, 2016, 9, 3465-3472.	3.6	19
545	9,10-Dicyanoanthracene Catalyzed Decarboxylative Alkynylation of Carboxylic Acids under Visible-Light Irradiation. Journal of Organic Chemistry, 2016, 81, 12357-12363.	1.7	53
546	Borane catalysed ring opening and closing cascades of furans leading to silicon functionalized synthetic intermediates. Nature Communications, 2016, 7, 13431.	5.8	61
547	Fractionation for further conversion: from raw corn stover to lactic acid. Scientific Reports, 2016, 6, 38623.	1.6	50
548	Thiophenol-Catalyzed Visible-Light Photoredox Decarboxylative Couplings of <i>N</i> -(Acetoxy)phthalimides. Organic Letters, 2016, 18, 6400-6403.	2.4	82
549	Direct production of levulinic acid in high yield from cellulose: joint effect of high ion strength and microwave field. RSC Advances, 2016, 6, 39131-39136.	1.7	24
550	Chemoselective dehydrogenative esterification of aldehydes and alcohols with a dimeric rhodium(<scp>ii</scp>) catalyst. Chemical Science, 2016, 7, 4428-4434.	3.7	75
551	Catalytic Isomerization of Biomassâ€Derived Aldoses: A Review. ChemSusChem, 2016, 9, 547-561.	3.6	227
552	High yield conversion of cellulosic biomass into 5-hydroxymethylfurfural and a study of the reaction kinetics of cellulose to HMF conversion in a biphasic system. Catalysis Science and Technology, 2016, 6, 6257-6266.	2.1	74
553	Effects of salt on the LLE and tie-line data for furfuryl alcohol — n-butanol–water at T = 298.15 K. Journal of Molecular Liquids, 2016, 218, 50-58.	2.3	21
554	Assessing eco-innovations in green chemistry: Life Cycle Assessment (LCA) of a cosmetic product with a bio-based ingredient. Journal of Cleaner Production, 2016, 129, 269-281.	4.6	62

# 555	ARTICLE Novel porous and hydrophobic POSS-ionic liquid polymeric hybrid as highly efficient solid acid catalyst for synthesis of oleate. Catalysis Communications, 2016, 83, 27-30.	IF 1.6	Citations 37
556	Synthesis and structure design of new bio-based elastomers via Thiol-ene-Click Reactions. Materials Science and Engineering C, 2016, 67, 554-560.	3.8	8
557	Greatly improved mechanical and thermal properties of chitosan by carboxyl-functionalized MoS2 nanosheets. Journal of Materials Science, 2016, 51, 1344-1353.	1.7	36
558	Characterization of Deactivated Bio-oil Hydrotreating Catalysts. Topics in Catalysis, 2016, 59, 65-72.	1.3	27
559	Itaconic Acid Based Surfactants: I. Synthesis and Characterization of Sodium <i>n</i> â€Octyl Sulfoitaconate Diester Anionic Surfactant. Journal of Surfactants and Detergents, 2016, 19, 373-379.	1.0	6
560	Atomically dispersed Pd catalysts for the selective hydrogenation of succinic acid to Î ³ -butyrolactone. Catalysis Today, 2016, 276, 55-61.	2.2	41
561	Anisotropic growth of PtFe nanoclusters induced by lattice-mismatch: Efficient catalysts for oxidation of biopolyols to carboxylic acid derivatives. Journal of Catalysis, 2016, 337, 272-283.	3.1	43
562	Small pore zeolite catalysts for furfural synthesis from xylose and switchgrass in a γ-valerolactone/water solvent. Journal of Molecular Catalysis A, 2016, 422, 18-22.	4.8	57
563	Combined treatments for producing 5-hydroxymethylfurfural (HMF) from lignocellulosic biomass. Catalysis Today, 2016, 278, 344-349.	2.2	90
564	Oxidative Furan-to-Indole Rearrangement. Synthesis of 2-(2-Acylvinyl)indoles and Flinderole C Analogues. Organic Letters, 2016, 18, 2192-2195.	2.4	28
565	Vapor-phase catalytic dehydration of lactic acid to acrylic acid over nano-crystalline cerium phosphate catalysts. Applied Petrochemical Research, 2016, 6, 367-377.	1.3	11
566	Simultaneous and selective transformation of glucose to arabinose and nitrosobenzene to azoxybenzene driven by visible-light. Green Chemistry, 2016, 18, 3852-3857.	4.6	32
567	Ruthenium nanoparticles supported on N-containing mesoporous polymer catalyzed aerobic oxidation of biomass-derived 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF). Applied Catalysis A: General, 2016, 520, 44-52.	2.2	60
568	Hydrolytic oxidation of cellulose to formic acid in the presence of Mo-V-P heteropoly acid catalysts. Catalysis Today, 2016, 278, 74-81.	2.2	54
569	Lignin-derived oxygenate reforming on a bimetallic surface: The reaction of benzaldehyde on Zn/Pt(111). Surface Science, 2016, 650, 161-166.	0.8	11
570	Tandem thionation of biomass derived levulinic acid with Lawesson's reagent. Green Chemistry, 2016, 18, 2971-2975.	4.6	14
571	Selective hydrogenolysis of biomass-derived furfuryl alcohol into 1,2- and 1,5-pentanediol over highly dispersed Cu-Al2O3 catalysts. Chinese Journal of Catalysis, 2016, 37, 700-710.	6.9	63
572	Depolymerization of cellulose to processable glucans by non-thermal technologies. Green Chemistry, 2016, 18, 3903-3913.	4.6	59

#	Article	IF	CITATIONS
573	Lactic acid production from rice straw in alkaline hydrothermal conditions in presence of NiO nanoplates. Catalysis Today, 2016, 274, 40-48.	2.2	32
574	Acid catalyzed condensation of levulinic acid with glyoxylic acid: synthesis of 1-methyl-2,8-dioxabicyclo[3.3.0]oct-4-ene-3,7-dione. Tetrahedron Letters, 2016, 57, 2598-2600.	0.7	14
575	The Techno-Economic Basis for Coproduct Manufacturing To Enable Hydrocarbon Fuel Production from Lignocellulosic Biomass. ACS Sustainable Chemistry and Engineering, 2016, 4, 3196-3211.	3.2	121
576	Controlled deposition of Pt nanoparticles on Fe ₃ O ₄ @carbon microspheres for efficient oxidation of 5-hydroxymethylfurfural. RSC Advances, 2016, 6, 51229-51237.	1.7	45
577	Hydrogenation of dicarboxylic acids to diols over Re–Pd catalysts. Catalysis Science and Technology, 2016, 6, 5668-5683.	2.1	87
578	Cooperative action of BrÃ,nsted and Lewis acid sites of niobium phosphate catalysts for cellobiose conversion in water. Applied Catalysis B: Environmental, 2016, 193, 93-102.	10.8	77
579	Solar Photochemical Synthesis: From the Beginnings of Organic Photochemistry to the Solar Manufacturing of Commodity Chemicals. Chemical Reviews, 2016, 116, 9664-9682.	23.0	200
580	Promotion effects of Pd on tungsten carbide catalysts: physiochemical properties and cellulose conversion performance. RSC Advances, 2016, 6, 87756-87766.	1.7	7
581	Renewable Unsaturated Polyesters from Muconic Acid. ACS Sustainable Chemistry and Engineering, 2016, 4, 6867-6876.	3.2	90
582	Furfural: A Promising Platform Compound for Sustainable Production of C ₄ and C ₅ Chemicals. ACS Catalysis, 2016, 6, 7621-7640.	5.5	607
583	Selective hydrogenation of levulinate esters to 1,4-pentanediol using a ternary skeletal CuAlZn catalyst. Green Chemistry, 2016, 18, 5999-6003.	4.6	50
584	Comparative investigation on hydrothermal and alkali catalytic liquefaction of bagasse: Process efficiency and product properties. Fuel, 2016, 186, 685-693.	3.4	36
585	Advances in the conversion of glucose and cellulose to 5-hydroxymethylfurfural over heterogeneous catalysts. RSC Advances, 2016, 6, 98874-98892.	1.7	106
586	Biobased Ionic Liquids with Abietate Anion. ACS Sustainable Chemistry and Engineering, 2016, 4, 6543-6550.	3.2	33
587	Selective Pd-catalyzed α- and β-arylations of the furan rings of (ortho-bromophenyl)furan-2-yl-methanones: C(CO)–C bond cleavage with a furan ring as a leaving group and synthesis of furan-derived fluorenones. Organic Chemistry Frontiers, 2016, 3, 1105-1110.	2.3	10
588	Enhancement of indoles production and catalyst stability in thermo-catalytic conversion and ammonization of furfural with NH3 and N2 environments. Journal of Analytical and Applied Pyrolysis, 2016, 121, 258-266.	2.6	16
589	Regioselective and Stereoselective Pd-Catalyzed Intramolecular Arylation of Furans: Access to Spirooxindoles and 5 <i>H</i> -Furo[2,3- <i>c</i>]quinolin-4-ones. Journal of Organic Chemistry, 2016, 81, 9695-9706.	1.7	32
590	Green Solvents in Biomass Processing. ACS Sustainable Chemistry and Engineering, 2016, 4, 5821-5837.	3.2	123

#	Article	IF	CITATIONS
591	Cleavage of the lignin β-O-4 ether bond via a dehydroxylation–hydrogenation strategy over a NiMo sulfide catalyst. Green Chemistry, 2016, 18, 6545-6555.	4.6	80
592	Advances in the synthesis of bio-based aromatic polyesters: novel copolymers derived from vanillic acid and Îμ-caprolactone. Polymer Chemistry, 2016, 7, 5396-5406.	1.9	46
593	Esters, Including Triglycerides, and Hydrogen as Feedstocks for the Rutheniumâ€Catalyzed Direct Nâ€Alkylation of Amines. Angewandte Chemie - International Edition, 2016, 55, 11049-11053.	7.2	30
594	Shell Biorefinery: Dream or Reality?. Chemistry - A European Journal, 2016, 22, 13402-13421.	1.7	203
595	Organocatalytic Cross-Coupling of Biofuranics to Multifunctional Difuranic C ₁₁ Building Blocks. ACS Sustainable Chemistry and Engineering, 2016, 4, 4927-4936.	3.2	23
596	Catalytic Transformations in the Presence of Metal Phthalocyanine Complexes and Their Analogs. , 2016, , 193-322.		6
597	A new pyrolysis model based on generalized extreme value (GEV) distributions and its application to lignocellulosic biomass. Fuel, 2016, 184, 211-221.	3.4	11
598	Recyclable montmorillonite-supported thiazolium ionic liquids for high-yielding and solvent-free upgrading of furfural and 5-hydroxymethylfurfural to C ₁₀ and C ₁₂ furoins. RSC Advances, 2016, 6, 76707-76715.	1.7	17
600	Facile synthesis of hierarchical pore foam catalysts with BrÃ,nsted–Lewis acid sites for the one-pot conversion of cellulose to 5-hydroxymethylfurfural. RSC Advances, 2016, 6, 80368-80382.	1.7	8
602	Dehydration of lactic acid to acrylic acid over lanthanum phosphate catalysts: the role of Lewis acid sites. Physical Chemistry Chemical Physics, 2016, 18, 23746-23754.	1.3	29
603	Structural, antioxidant, and emulsifying activities of fucoidan from Saccharina japonica using pressurized liquid extraction. Carbohydrate Polymers, 2016, 153, 518-525.	5.1	125
604	Co ₃ O ₄ Nanoparticles Supported on Mesoporous Carbon for Selective Transfer Hydrogenation of α,βâ€Unsaturated Aldehydes. Angewandte Chemie, 2016, 128, 11267-11271.	1.6	31
605	Co ₃ O ₄ Nanoparticles Supported on Mesoporous Carbon for Selective Transfer Hydrogenation of α,βâ€Unsaturated Aldehydes. Angewandte Chemie - International Edition, 2016, 55, 11101-11105.	7.2	99
606	Immobilization of Cellulase on Magnetic Nanocarriers. ChemistryOpen, 2016, 5, 183-187.	0.9	45
607	4-Hydroxybenzoic acid from hydrothermal pretreatment of oil palm empty fruit bunches – Its origin and influence on biomass conversion. Biomass and Bioenergy, 2016, 93, 209-216.	2.9	18
608	Hydroformylation of Olefinic Derivatives of Isosorbide and Isomannide. Journal of Organic Chemistry, 2016, 81, 7510-7517.	1.7	12
609	Application of γâ€Valerolactone as an Alternative Biomassâ€Based Medium for Aminocarbonylation Reactions. ChemPlusChem, 2016, 81, 1224-1229.	1.3	37
610	Esters, Including Triglycerides, and Hydrogen as Feedstocks for the Rutheniumâ€Catalyzed Direct Nâ€Alkylation of Amines. Angewandte Chemie, 2016, 128, 11215-11219.	1.6	13

#	Article	IF	CITATIONS
611	Bio-oil Stabilization by Hydrogenation over Reduced Metal Catalysts at Low Temperatures. ACS Sustainable Chemistry and Engineering, 2016, 4, 5533-5545.	3.2	93
612	Coupling hydrogen separation with butanone hydrogenation in an electrochemical hydrogen pump with sulfonated poly (phthalazinone ether sulfone ketone) membrane. Journal of Power Sources, 2016, 327, 178-186.	4.0	13
613	Identification of a novel cellulose-binding domain within the endo -β-1,4-xylanase KRICT PX-3 from Paenibacillus terrae HPL-003. Enzyme and Microbial Technology, 2016, 93-94, 166-173.	1.6	16
614	Conversion of 5-hydroxymethylfurfural into 5-ethoxymethylfurfural and ethyl levulinate catalyzed by MOF-based heteropolyacid materials. Green Chemistry, 2016, 18, 5884-5889.	4.6	107
615	Electrocatalytic Conversion of Furanic Compounds. ACS Catalysis, 2016, 6, 6704-6717.	5.5	226
616	Magnetic Silica Bonding Perfluoroalkylsulfonylimide as Reusable BrÃ,nsted Acid Catalysts for Cellobiose Hydrolysis. Catalysis Letters, 2016, 146, 2165-2172.	1.4	2
617	A Toolbox of Solid-State NMR Experiments for the Characterization of Soft Organic Nanomaterials. Annual Reports on NMR Spectroscopy, 2016, 88, 307-383.	0.7	7
618	High yield production of HMF from carbohydrates over silica–alumina composite catalysts. Catalysis Science and Technology, 2016, 6, 7586-7596.	2.1	56
619	Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energy and Environmental Science, 2016, 9, 3314-3347.	15.6	556
620	Modification of poly(ethylene 2,5-furandicarboxylate) with 1,4-cyclohexanedimethylene: Influence of composition on mechanical and barrier properties. Polymer, 2016, 103, 1-8.	1.8	138
621	Hydrotalcite-supported PdPt-catalyzed Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid in Water. Chemistry Letters, 2016, 45, 613-615.	0.7	43
622	One-pot Synthesis of Furfural from Xylose using Al ₂ O ₃ –Ni-Al Layered Double Hydroxide Acid-Base Bi-functional Catalyst and Sulfonated Resin. Chemistry Letters, 2016, 45, 194-196.	0.7	15
623	Fragmentation of Lignin Samples with Commercial Pd/C under Ambient Pressure of Hydrogen. ACS Catalysis, 2016, 6, 7385-7392.	5.5	86
624	Searching for novel reusable biomass-derived solvents: furfuryl alcohol/water azeotrope as a medium for waste-minimised copper-catalysed azide–alkyne cycloaddition. Green Chemistry, 2016, 18, 6380-6386.	4.6	36
625	Combined Function of BrÃ,nsted and Lewis Acidity in the Zeoliteâ€Catalyzed Isomerization of Glucose to Fructose in Alcohols. ChemCatChem, 2016, 8, 3107-3111.	1.8	35
626	Assessing energy performance of bio-based succinic acid production using LCA. Journal of Cleaner Production, 2016, 139, 761-769.	4.6	55
627	Oneâ€Step Production of 1,3â€Butadiene from 2,3â€Butanediol Dehydration. Chemistry - A European Journal, 2016, 22, 12290-12294.	1.7	39
628	Compositional and structural feedstock requirements of a liquid phase cellulose-to-naphtha process in a carbon- and hydrogen-neutral biorefinery context. Green Chemistry, 2016, 18, 5594-5606.	4.6	23

#	Article	IF	CITATIONS
629	Selective glucose conversion to 5-hydroxymethylfurfural (5-HMF) instead of levulinic acid with MIL-101Cr MOF-derivatives. New Journal of Chemistry, 2016, 40, 7958-7967.	1.4	100
630	Palladium-catalyzed dearomatizing 2,5-alkoxyarylation of furan rings: diastereospecific access to spirooxindoles. Chemical Communications, 2016, 52, 9550-9553.	2.2	45
631	Catalytic oxidative C–C bond cleavage route of levulinic acid and methyl levulinate. RSC Advances, 2016, 6, 72744-72749.	1.7	9
632	Biocatalysis and Biomass Conversion in Alternative Reaction Media. Chemistry - A European Journal, 2016, 22, 12984-12999.	1.7	149
633	Biomassâ€Based and Oxidantâ€Free Preparation of Hydroquinone from Quinic Acid. European Journal of Organic Chemistry, 2016, 2016, 3856-3861.	1.2	9
634	The Conversion of Starch and Sugars into Branched C ₁₀ and C ₁₁ Hydrocarbons. ChemSusChem, 2016, 9, 2298-2300.	3.6	18
635	Magnetic ZSM-5 zeolite: a selective catalyst for the valorization of furfuryl alcohol to γ-valerolactone, alkyl levulinates or levulinic acid. Green Chemistry, 2016, 18, 5586-5593.	4.6	59
636	Molecular Origin for the Difficulty in Separation of 5-Hydroxymethylfurfural from Imidazolium Based Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2016, 4, 6712-6721.	3.2	38
637	Genesis of a bi-functional acid–base site on a Cr-supported layered double hydroxide catalyst surface for one-pot synthesis of furfurals from xylose with a solid acid catalyst. Catalysis Science and Technology, 2016, 6, 8200-8211.	2.1	21
638	Catalytic Conversion of Carbohydrates to Levulinate Ester over Heteropolyanionâ€Based Ionic Liquids. ChemSusChem, 2016, 9, 3307-3316.	3.6	46
639	Organic Solid Acid Catalyst for Efficient Conversion of Furfuryl Alcohol to Biofuels. ChemistrySelect, 2016, 1, 6079-6085.	0.7	9
640	Development of Ga Salt of Molybdophosphoric Acid for Biomass Conversion to Levulinic Acid. Energy & Fuels, 2016, 30, 10583-10591.	2.5	30
641	Comprehensive evaluation of the liquid fraction during the hydrothermal treatment of rapeseed straw. Biotechnology for Biofuels, 2016, 9, 142.	6.2	57
642	Catalysis for Renewable Chemicals. , 2016, , 597-662.		3
643	Highly selective supported gold catalyst for CO-driven reduction of furfural in aqueous media. Chinese Journal of Catalysis, 2016, 37, 1669-1675.	6.9	14
644	Analyses of Biomass Fibers by XRD, FT-IR, and NIR. , 2016, , 45-83.		15
645	Selective extraction and conversion of lignin in actual biomass to monophenols: A review. Journal of Energy Chemistry, 2016, 25, 947-956.	7.1	82
646	Direct carbon-carbon coupling of furanics with acetic acid over BrÃ,nsted zeolites. Science Advances, 2016, 2, e1601072.	4.7	44
ARTICLE IF CITATIONS Photo-induced reduction of biomass-derived 5-hydroxymethylfurfural using graphitic carbon nitride 647 1.7 56 supported metal catalysts. RSC Advances, 2016, 6, 101968-101973. Vanadium-oxo immobilized onto Schiff base modified graphene oxide for efficient catalytic oxidation 648 1.7 of 5-hydroxymethylfurfural and furfural into maleic anhydride. RSC Advances, 2016, 6, 101277-101282. Free Radical Polymerization Behavior of the Vinyl Monomers from Plant Oil Triglycerides. ACS 649 3.2 47 Sustainable Chemistry and Engineering, 2016, 4, 6974-6980. Appraisal of photoelectrocatalytic oxidation of glucose and production of high value chemicals on nanotube Ti/TiO2 electrode. Electrochimica Acta, 2016, 222, 123-132. Manganese(III) Tetraphenylporphyrin Encapsulated by Ion-Modified Hexagonal Mesoporous Silica With Unexpected Enhanced Epoxidation Selectivity. Synthesis and Reactivity in Inorganic, Metal Organic, 651 0.6 2 and Nano Metal Chemistry, 2016, 46, 1765-1772. Oxidation of Glycerol to Dicarboxylic Acids Using Cobalt Catalysts. ACS Catalysis, 2016, 6, 4576-4583. 5.5 Hydrogenation of biomass-derived compounds containing a carbonyl group over a copper-based nánocatalyst: Insight into the origin and influence of surface oxygen vacancies. Journal of Catalysis, 2016, 340, 184-195. 653 3.1 101 Consecutive visible-light photoredox decarboxylative couplings of adipic acid active esters with 654 47 alkynyl sulfones leading to cyclic compounds. Chemical Communications, 2016, 52, 8862-8864. A Stochastic Method to Generate Libraries of Structural Representations of Lignin. Energy & amp; 655 2.5 40 Fuels, 2016, 30, 5835-5845. Alcohol Effect and the Related Mechanism on Fructose Dehydration into 5-Hydroxymethylfurfural in the Deep Eutectic Solvent of [Emim]Cl/Alcohol. ACS Sustainable Chemistry and Engineering, 2016, 4, 3.2 3995-4002. Surface properties of amphiphilic carbon nanotubes and study of their applicability as basic catalysts. 657 12 1.7 RSC Advances, 2016, 6, 54293-54298. Sub/supercritical carbon dioxide induced phase switching for the reaction and separation in 4.7 ILs/methanol. Green Energy and Environment, 2016, 1, 144-148. Synthesis of Novel Renewable Polyesters and Polyamides with Olefin Metathesis. ACS Sustainable 659 3.2 19 Chemistry and Engineering, 2016, 4, 5943-5952. An efficient route from reproducible glucose to 5-hydroxymethylfurfural catalyzed by porous coordination polymer heterogeneous catalysts. Chemical Engineering Journal, 2016, 300, 177-184. 6.6 1,2-Ethanediol and 1,3-Propanediol Conversions over (MO₃)₃(M = Mo, W) 661 1.1 8 Nanoclusters: A Computational Study. Journal of Physical Chemistry A, 2016, 120, 1897-1907. 2,5-Oxyarylation of Furans: Synthesis of Spiroacetals via Palladium-Catalyzed Aerobic Oxidative Coupling of Boronic Acids with α-Hydroxyalkylfurans. Organic Letters, 2016, 18, 3226-3229. Towards more accurate prediction of activation energies for polyalcohol dehydrogenation on 663 2.131 transition metal catalysts in water. Catalysis Science and Technology, 2016, 6, 6615-6624. The use of bimetallics to control the selectivity for the upgrading of lignin-derived oxygenates: 664 3.1 Reaction of anisole on Pt and PtZn catalysts. Journal of Catalysis, 2016, 340, 219-226.

#	Article	IF	CITATIONS
665	Succinic acid production on xylose-enriched biorefinery streams by Actinobacillus succinogenes in batch fermentation. Biotechnology for Biofuels, 2016, 9, 28.	6.2	120
666	Heterogeneous Nb-containing catalyst/N,N-dimethylacetamide–salt mixtures: novel and efficient catalytic systems for the dehydration of fructose. RSC Advances, 2016, 6, 64338-64343.	1.7	13
667	Synergistic effect of pretreatment with dimethyl sulfoxide and an ionic liquid on enzymatic digestibility of white poplar and pine. RSC Advances, 2016, 6, 62278-62285.	1.7	18
668	Glucose to Fructose Isomerization in Aqueous Media over Homogeneous and Heterogeneous Catalysts. ChemCatChem, 2016, 8, 1100-1110.	1.8	95
669	Selective Oxidation of Glycerol to Glyceric Acid in Baseâ€Free Aqueous Solution at Room Temperature Catalyzed by Platinum Supported on Carbon Activated with Potassium Hydroxide. ChemCatChem, 2016, 8, 1699-1707.	1.8	19
670	From models to lignin: Transition metal catalysis for selective bond cleavage reactions. Coordination Chemistry Reviews, 2016, 306, 510-532.	9.5	221
671	Gas-phase cascade upgrading of furfural to 2-methylfuran using methanol as a H-transfer reactant and MgO based catalysts. Catalysis Science and Technology, 2016, 6, 4418-4427.	2.1	43
672	The Closure of the Cycle: Enzymatic Synthesis and Functionalization of Bio-Based Polyesters. Trends in Biotechnology, 2016, 34, 316-328.	4.9	107
673	Model-Based Design of Tailor-Made Biofuels. Energy & amp; Fuels, 2016, 30, 1109-1134.	2.5	70
674	Hydrogenative cyclization of levulinic acid into \hat{I}^3 -valerolactone by photocatalytic intermolecular hydrogen transfer. Green Chemistry, 2016, 18, 2296-2301.	4.6	22
675	Selective oxidation of furfural in a bi-phasic system with homogeneous acid catalyst. Catalysis Today, 2016, 276, 97-104.	2.2	59
676	Response surface methodology for the optimization of cellulosic ethanol production from Phragmites australis through pre-saccharification and simultaneous saccharification and fermentation. Industrial Crops and Products, 2016, 83, 431-437.	2.5	30
677	Chemistry of Ketene <i>N</i> , <i>S</i> -Acetals: An Overview. Chemical Reviews, 2016, 116, 287-322.	23.0	127
678	Transformation of bio-derived acids into fuel-like alkanes via ketonic decarboxylation and hydrodeoxygenation: Design of multifunctional catalyst, kinetic and mechanistic aspects. Journal of Energy Chemistry, 2016, 25, 208-224.	7.1	44
679	ZnCl ₂ induced catalytic conversion of softwood lignin to aromatics and hydrocarbons. Green Chemistry, 2016, 18, 2802-2810.	4.6	76
680	Green chemistry, catalysis and valorization of waste biomass. Journal of Molecular Catalysis A, 2016, 422, 3-12.	4.8	150
681	Direct synthesis of 2,5-diformylfuran from fructose with graphene oxide as a bifunctional and metal-free catalyst. Green Chemistry, 2016, 18, 2302-2307.	4.6	79
682	Selective hydrogenolysis of glycerol to 1,3-propanediol over egg-shell type Ir–ReO _x catalysts. RSC Advances, 2016, 6, 13600-13608.	1.7	28

#	Article	IF	CITATIONS
683	Thermal degradation of biobased polyesters: Kinetics and decomposition mechanism of polyesters from 2,5-furandicarboxylic acid and long-chain aliphatic diols. Journal of Analytical and Applied Pyrolysis, 2016, 117, 162-175.	2.6	59
684	Evaluation of the chemical composition of brown seaweed (Saccharina japonica) hydrolysate by pressurized hot water extraction. Algal Research, 2016, 13, 246-254.	2.4	63
685	Synthesis of renewable diesel with 2-methylfuran and angelica lactone derived from carbohydrates. Green Chemistry, 2016, 18, 1218-1223.	4.6	32
686	Towards quantitative and scalable transformation of furfural to cyclopentanone with supported gold catalysts. Green Chemistry, 2016, 18, 2155-2164.	4.6	127
687	Perovskite type oxide-supported Ni catalysts for the production of 2,5-dimethylfuran from biomass-derived 5-hydroxymethylfurfural. Green Chemistry, 2016, 18, 3858-3866.	4.6	79
688	Vapor–Liquid Equilibrium Study of the Gamma-Valerolactone–Water Binary System. Journal of Chemical & Engineering Data, 2016, 61, 1502-1508.	1.0	42
689	Production of C4 and C5 alcohols from biomass-derived materials. Green Chemistry, 2016, 18, 2579-2597.	4.6	147
690	Aromatic copolyesters with enhanced crystallizability and mechanical properties by adding the renewable nipagin-based composition. RSC Advances, 2016, 6, 21555-21563.	1.7	5
691	Functionalized silica nanoparticles for conversion of fructose to 5-hydroxymethylfurfural. Chemical Engineering Journal, 2016, 296, 209-216.	6.6	75
692	A sustainable process for the production of 2-methyl-1,4-butanediol by hydrogenation of biomass-derived itaconic acid. Catalysis Today, 2016, 274, 88-93.	2.2	11
693	Solvent effects in catalysis: rational improvements of catalysts via manipulation of solvent interactions. Catalysis Science and Technology, 2016, 6, 3302-3316.	2.1	254
694	Selective aerobic oxidation of biomass-derived HMF to 2,5-diformylfuran using a MOF-derived magnetic hollow Fe–Co nanocatalyst. Green Chemistry, 2016, 18, 3152-3157.	4.6	162
695	Pyrolysis of Jatropha Curcas seed cake followed by optimization of liquidâ¿¿liquid extraction procedure for the obtained bio-oil. Journal of Analytical and Applied Pyrolysis, 2016, 118, 202-224.	2.6	51
696	Conversion of lignin model compounds under mild conditions in pseudo-homogeneous systems. Green Chemistry, 2016, 18, 2341-2352.	4.6	66
697	Hydrolysis of Cellulose to Glucose Using Carbon Catalysts. Springer Theses, 2016, , 43-75.	0.0	1
698	Initiating Highly Effective Hydrolysis of Regenerated Cellulose by Controlling Transition of Crystal Form with Sulfolane under Microwave Radiation. ACS Sustainable Chemistry and Engineering, 2016, 4, 1507-1511.	3.2	21
699	Combining a flow reactor with spray dryer to allow the preparation of food-grade quality sodium 2-polyhydroxyalkyl-1,3-thiazolidine-4-carboxylates with a low environmental impact. RSC Advances, 2016, 6, 6651-6657.	1.7	2
700	Lipase catalyzed synthesis of fluorescent glycolipids: gelation studies and graphene incorporated self-assembled sheet formation for semiconductor applications. Green Chemistry, 2016, 18, 3722-3731.	4.6	33

#	Article	IF	CITATIONS
701	Using carbon dioxide and its sulfur analogues as monomers in polymer synthesis. Polymer, 2016, 82, 406-431.	1.8	90
702	A Study on Catalytic Conversion of Non-Food Biomass into Chemicals. Springer Theses, 2016, , .	0.0	5
703	Directional liquefaction coupling fractionation of lignocellulosic biomass for platform chemicals. Green Chemistry, 2016, 18, 3124-3138.	4.6	64
704	Selective direct conversion of C ₅ and C ₆ sugars to high added-value chemicals by a bifunctional, single catalytic body. Green Chemistry, 2016, 18, 2935-2940.	4.6	44
705	Aquivion®–carbon composites via hydrothermal carbonization: amphiphilic catalysts for solvent-free biphasic acetalization. Journal of Materials Chemistry A, 2016, 4, 4380-4385.	5.2	32
706	Synergistic Effects of Bimetallic PtPd/TiO ₂ Nanocatalysts in Oxidation of Glucose to Glucaric Acid: Structure Dependent Activity and Selectivity. Industrial & Engineering Chemistry Research, 2016, 55, 2932-2945.	1.8	73
707	Improvement of Gold-Catalyzed Oxidation of Free Carbohydrates to Corresponding Aldonates Using Microwaves. ACS Sustainable Chemistry and Engineering, 2016, 4, 2432-2438.	3.2	33
708	Furan-based co-polyesters with enhanced thermal properties: poly(1,4-butylene-co-1,4-cyclohexanedimethylene-2,5-furandicarboxylic acid). RSC Advances, 2016, 6, 27632-27639.	1.7	40
709	Bioethanol dehydrogenation over copper supported on functionalized graphene materials and a high surface area graphite. Carbon, 2016, 102, 426-436.	5.4	40
710	cis,cis-Muconic acid: separation and catalysis to bio-adipic acid for nylon-6,6 polymerization. Green Chemistry, 2016, 18, 3397-3413.	4.6	147
711	Vapor phase hydrogenation of furfural over nickel mixed metal oxide catalysts derived from layered double hydroxides. Applied Catalysis A: General, 2016, 517, 187-195.	2.2	73
712	Opportunities and challenges in biological lignin valorization. Current Opinion in Biotechnology, 2016, 42, 40-53.	3.3	517
713	Toughened aromatic poly-(decylene terephthalate) copolyesters with two renewable eugenol-based components via a random copolymerization method. Polymer Chemistry, 2016, 7, 1096-1110.	1.9	18
714	Converting solid wastes into liquid fuel using a novel methanolysis process. Waste Management, 2016, 49, 304-310.	3.7	15
715	Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chemical Society Reviews, 2016, 45, 584-611.	18.7	619
716	Utilization of renewable bio-based resources, viz. sorbitol, diol, and diacid, in the preparation of two pack PU anticorrosive coatings. RSC Advances, 2016, 6, 9843-9850.	1.7	28
717	Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy and Environmental Science, 2016, 9, 1144-1189.	15.6	1,220
718	Synthesis of 1,6-hexanediol from HMF over double-layered catalysts of Pd/SiO ₂ + Ir–ReO _x /SiO ₂ in a fixed-bed reactor. Green Chemistry, 2016, 18, 2175-2184.	4.6	127

#	Article	IF	CITATIONS
719	A versatile bi-metallic copper–cobalt catalyst for liquid phase hydrogenation of furfural to 2-methylfuran. RSC Advances, 2016, 6, 1649-1658.	1.7	94
720	Valorization of organic residues for the production of added value chemicals: A contribution to the bio-based economy. Biochemical Engineering Journal, 2016, 116, 3-16.	1.8	84
721	Solid acid catalyzed synthesis of furans from carbohydrates. Catalysis Reviews - Science and Engineering, 2016, 58, 36-112.	5.7	111
722	In situ generation of water-stable and -soluble ruthenium complexes of pyridine-based chelate-ligands and their use for the hydrodeoxygenation of biomass-related substrates in aqueous acidic medium. Journal of Molecular Catalysis A, 2016, 422, 175-187.	4.8	6
723	Deoxydehydration (DODH) of Biomass-Derived Molecules. Green Chemistry and Sustainable Technology, 2016, , 1-11.	0.4	3
724	Efficient hydrogenation of levulinic acid in water using a supported Ni–Sn alloy on aluminium hydroxide catalysts. Catalysis Science and Technology, 2016, 6, 2955-2961.	2.1	37
725	Bio-chemicals from lignocellulose feedstock: sustainability, LCA and the green conundrum. Green Chemistry, 2016, 18, 1912-1922.	4.6	91
726	Simple efficient one-pot synthesis of 5-hydroxymethylfurfural and 2,5-diformylfuran from carbohydrates. Reaction Chemistry and Engineering, 2016, 1, 176-182.	1.9	24
727	The conversion of glycerol to lactic acid catalyzed by ZrO2-supported CuO catalysts. Chemical Engineering Journal, 2016, 283, 759-767.	6.6	106
728	Polymer of Intrinsic Microporosity Induces Host-Guest Substrate Selectivity in Heterogeneous 4-Benzoyloxy-TEMPO-Catalysed Alcohol Oxidations. Electrocatalysis, 2016, 7, 70-78.	1.5	18
729	A colloidoscope of colloid-based porous materials and their uses. Chemical Society Reviews, 2016, 45, 281-322.	18.7	256
730	Highly selective catalytic conversion of furfural to Î ³ -butyrolactone. Green Chemistry, 2016, 18, 638-642.	4.6	46
731	Investigation of the synthesis of poly- <scp>D,L-</scp> lactide- <i>co</i> -poly(ethylene glycol) flexible thermoplastic. International Journal of Polymer Analysis and Characterization, 2016, 21, 104-111.	0.9	7
732	Hydrolysis of woody biomass by a biomass-derived reusable heterogeneous catalyst. Chemical Science, 2016, 7, 692-696.	3.7	98
733	Alternative Monomers Based on Lignocellulose and Their Use for Polymer Production. Chemical Reviews, 2016, 116, 1540-1599.	23.0	580
734	Molecular design of sulfonated hyperbranched poly(arylene oxindole)s for efficient cellulose conversion to levulinic acid. Green Chemistry, 2016, 18, 1694-1705.	4.6	53
735	Performance of Zn/ZSM-5 for In Situ Catalytic Upgrading of Pyrolysis Bio-oil by Methane. Topics in Catalysis, 2016, 59, 86-93.	1.3	48
736	Butadiene from biomass, a life cycle perspective to address sustainability in the chemical industry. Green Chemistry, 2016, 18, 1625-1638.	4.6	126

ARTICLE IF CITATIONS # Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a 737 4.6 140 Pt/C–O–Mg catalyst. Green Chemistry, 2016, 18, 1597-1604. Homogeneous Catalysts for the Hydrodeoxygenation of Biomass-Derived Carbohydrate Feedstocks. 0.4 Green Chemistry and Sustainable Technology, 2016, , 13-38. Production of hexane from sorbitol in aqueous medium over Pt/NbOPO4 catalyst. Applied Catalysis B: 739 10.8 61 Environmental, 2016, 181, 699-706. Silver supported on hierarchically porous SiO2 and Co3O4 monoliths: Efficient heterogeneous 740 4.8 catalyst for oxidation of cyclohexene. Journal of Molecular Catalysis A, 2016, 411, 61-71. Microwave-assisted alcoholysis of furfural alcohol into alkyl levulinates catalyzed by metal salts. 741 4.6 83 Green Chemistry, 2016, 18, 1516-1523. Graphene-promoted acetalisation of glycerol under acid-free conditions. Green Chemistry, 2016, 18, 742 4.6 1531-1537. Niobium phytate prepared from phytic acid and NbCl5: a highly efficient and heterogeneous acid 743 2.1 20 catalyst. Catalysis Science and Technology, 2016, 6, 1070-1076. Synthesis of ethylene glycol and terephthalic acid from biomass for producing PET. Green Chemistry, 744 4.6 254 2016, 18, 342-359. Efficient and sustainable transformation of gamma-valerolactone into nylon monomers. Green 745 4.6 26 Chemistry, 2016, 18, 691-694. Heterogeneous catalysis for the ketalisation of ethyl levulinate with 1,2-dodecanediol: Opening the 746 1.6 way to a new class of bio-degradable surfactants. Catalysis Communications, 2016, 73, 84-87 Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion I. Green Chemistry and 747 0.4 6 Sustainable Technology, 2016, , . Advances in the Conversion of Short-Chain Carbohydrates: A Mechanistic Insight. Green Chemistry 748 0.4 and Sustainable Technology, 2016, , 27-55. Depolymerization of Cellulosic Biomass Catalyzed by Activated Carbons. Green Chemistry and 749 0.4 3 Sustainable Technology, 2016, , 15-26. Mechanism and Kinetic Analysis of the Hydrogenolysis of Cellulose to Polyols. Green Chemistry and 0.4 Sustainable Technology, 2016, , 227-260. Starch to value added biochemicals. Starch/Staerke, 2016, 68, 274-286. 751 1.1 24 Oxidant free one-pot transformation of bio-based 2,5-bis-hydroxymethylfuran into α-6-hydroxy-6-methyl-4-enyl-2H-pyran-3-one in water. Applied Catalysis B: Environmental, 2016, 180, 38-43. Impacts of acidity and textural properties of oxidized carbon materials on their catalytic activity for 753 2.234 hydrolysis of cellobiose. Microporous and Mesoporous Materials, 2016, 219, 317-321. Optimal processing network design under uncertainty for producing fuels and valueâ€added 754 bioproducts from microalgae: Twoâ€stage adaptive robust mixed integer fractional programming model 1.8 58 and computationally efficient solution algorithm. AICHE Journal, 2017, 63, 582-600.

#	Article	IF	CITATIONS
755	Impact of the fouling mechanism on enzymatic depolymerization of xylan in different configurations of membrane reactors. Separation and Purification Technology, 2017, 178, 154-162.	3.9	16
756	TC-FTIR Method for the Characterization of Bio-oils in Chemical Families. Energy & Fuels, 2017, 31, 1689-1701.	2.5	38
757	Ruthenium-catalyzed solvent-free conversion of furfural to furfuryl alcohol. RSC Advances, 2017, 7, 3331-3335.	1.7	34
758	Spherical Boron Nitride Supported Gold–Copper Catalysts for the Lowâ€Temperature Selective Oxidation of Ethanol. ChemCatChem, 2017, 9, 1363-1367.	1.8	28
759	Ag(I) atalyzed Cyclizative Hydration of Alkynes and Propargylic Alcohols. A Mild Approach to 2â€Acylfuran Derivatives. ChemistrySelect, 2017, 2, 1058-1062.	0.7	11
760	Effect of Reduction Protocol of Pd Catalysts on Product Distribution in Furfural Hydrogenation. ChemistrySelect, 2017, 2, 24-32.	0.7	33
761	Chemoselective synthesis of propionic acid from biomass and lactic acid over a cobalt catalyst in aqueous media. Green Chemistry, 2017, 19, 1308-1314.	4.6	25
762	Catalytic glycerol hydrogenolysis to 1,3-propanediol in a gas–solid fluidized bed. RSC Advances, 2017, 7, 3853-3860.	1.7	47
763	MIL-100(Fe)-catalyzed efficient conversion of hexoses to lactic acid. RSC Advances, 2017, 7, 5621-5627.	1.7	79
764	Ruthenium and Iridium Dipyridylamine Catalysts for the Efficient Synthesis of Î ³ -Valerolactone by Transfer Hydrogenation of Levulinic Acid. Organometallics, 2017, 36, 708-713.	1.1	36
765	Solvent effects in acid-catalyzed dehydration of the Diels-Alder cycloadduct between 2,5-dimethylfuran and maleic anhydride. Chemical Physics, 2017, 485-486, 118-124.	0.9	4
766	Reactionâ€Induced Selfâ€Assembly of CoO@Cu ₂ O Nanocomposites Inâ€Situ onto SiCâ€Foam for Gasâ€Phase Oxidation of Bioethanol to Acetaldehyde. ChemSusChem, 2017, 10, 1380-1384.	3.6	14
767	Synthesis of Isosorbide Esters from Sorbitol with Heterogeneous Catalysts. ChemistrySelect, 2017, 2, 1013-1018.	0.7	19
768	New pentose dimers with bicyclic moieties from pretreated biomass. RSC Advances, 2017, 7, 5206-5213.	1.7	7
769	Exploratory catalyst screening studies on the liquefaction of model humins from C6 sugars. RSC Advances, 2017, 7, 5136-5147.	1.7	18
770	Crystallinity and surface state of cellulose in wet ballâ€milling process. Journal of Applied Polymer Science, 2017, 134, .	1.3	22
771	A sustainable approach to empower the bio-based future: upgrading of biomass via process intensification. Green Chemistry, 2017, 19, 1624-1627.	4.6	38
772	Continuous Liquid-Phase Hydrogenation of 1,4-Butynediol to High-Purity 1,4-Butanediol over Particulate Raney Nickel Catalyst in a Fixed Bed Reactor. Organic Process Research and Development, 2017, 21, 327-335.	1.3	31

щ		IF	CITATIONS
Ŧ	A green synthetic approach toward the synthesis of structurally diverse spirooxindole derivative	IF	CHATIONS
773	libraries under catalyst-free conditions. Molecular Diversity, 2017, 21, 325-337.	2.1	24
774	Electrostatically self-assembled chitosan derivatives working as efficient cathode interlayers for organic solar cells. Nano Energy, 2017, 34, 164-171.	8.2	40
775	Hybrid Catalysis: A Suitable Concept for the Valorization of Biosourced Saccharides to Valueâ€Added Chemicals. ChemCatChem, 2017, 9, 2080-2084.	1.8	13
776	Dehydration of sorbitol to isosorbide over sulfonic acid resins under solvent-free conditions. Applied Catalysis A: General, 2017, 537, 66-73.	2.2	36
777	All-solid-state magnesium oxide supported Group VIII and IB metal catalysts for selective catalytic reforming of aqueous aldehydes into hydrogen. International Journal of Hydrogen Energy, 2017, 42, 10834-10843.	3.8	15
778	Hierarchical Sn-Beta Zeolite Catalyst for the Conversion of Sugars to Alkyl Lactates. ACS Sustainable Chemistry and Engineering, 2017, 5, 3123-3131.	3.2	72
779	Wood-Based Nanocomposite Derived by in Situ Formation of Organic–Inorganic Hybrid Polymer within Wood via a Sol–Gel Method. ACS Applied Materials & Interfaces, 2017, 9, 9070-9078.	4.0	55
780	Porous Zirconium–Furandicarboxylate Microspheres for Efficient Redox Conversion of Biofuranics. ChemSusChem, 2017, 10, 1761-1770.	3.6	81
781	A Viewpoint on Chemical Reductions of Carbon–Oxygen Bonds in Renewable Feedstocks Including CO ₂ and Biomass. ACS Catalysis, 2017, 7, 2107-2115.	5.5	75
782	MnCo ₂ O ₄ spinel supported ruthenium catalyst for air-oxidation of HMF to FDCA under aqueous phase and base-free conditions. Green Chemistry, 2017, 19, 1619-1623.	4.6	158
783	Lignin-based polymeric surfactants for emulsion polymerization. Polymer, 2017, 112, 418-426.	1.8	49
784	Nanobelt α-CuV ₂ O ₆ with hydrophilic mesoporous poly(ionic liquid): a binary catalyst for synthesis of 2,5-diformylfuran from fructose. Catalysis Science and Technology, 2017, 7, 1006-1016.	2.1	60
785	Thermochemistry analyses for transformation of C6 glucose compound into C9, C12 and C15 alkanes using density functional theory. Molecular Physics, 2017, 115, 413-423.	0.8	5
786	One-Pot Synthesis of Cardanol-Derived High-Efficiency Antioxidants Based on Intramolecular Synergism. ACS Sustainable Chemistry and Engineering, 2017, 5, 3399-3408.	3.2	27
787	Tunable and selective hydrogenation of furfural to furfuryl alcohol and cyclopentanone over Pt supported on biomass-derived porous heteroatom doped carbon. Faraday Discussions, 2017, 202, 79-98.	1.6	52
788	Glycerol as a potential renewable raw material for acrylic acid production. Green Chemistry, 2017, 19, 3186-3213.	4.6	143
789	Selective conversion of furfural to cyclopentanone over CNT-supported Cu based catalysts: Model reaction for upgrading of bio-oil. Fuel, 2017, 202, 1-11.	3.4	72
790	Iridium atalyzed Reductive Amination of Levulinic Acid to Pyrrolidinones under <scp>H₂</scp> in Water. Chinese Journal of Chemistry, 2017, 35, 581-585.	2.6	33

#	Article	IF	CITATIONS
792	Selective arabinose extraction from Pinus sp. sawdust by two-step soft acid hydrolysis. Industrial Crops and Products, 2017, 104, 229-236.	2.5	15
793	Efficient Production of the Liquid Fuel 2,5-Dimethylfuran from 5-Hydroxymethylfurfural in the Absence of Acid Additive over Bimetallic PdAu Supported on Graphitized Carbon. Energy & Fuels, 2017, 31, 6364-6373.	2.5	36
794	Detecting Elusive Intermediates in Carbohydrate Conversion: A Dynamic Ensemble of Acyclic Glucose–Catalyst Complexes. ACS Sustainable Chemistry and Engineering, 2017, 5, 5571-5577.	3.2	9
795	Recent progress on upgrading of bio-oil to hydrocarbons over metal/zeolite bifunctional catalysts. Catalysis Science and Technology, 2017, 7, 2385-2415.	2.1	142
796	Catalytic transfer hydrogenation of butyl levulinate to γ-valerolactone over zirconium phosphates with adjustable Lewis and BrÃ,nsted acid sites. Applied Catalysis B: Environmental, 2017, 214, 67-77.	10.8	209
797	AgCu/SiC-powder: A highly stable and active catalyst for gas-phase selective oxidation of alcohols. Catalysis Communications, 2017, 98, 1-4.	1.6	14
798	Solid Acidic NbOx/ZrO2 Catalysts for Transformation of Cellulose to Glucose and 5-Hydroxymethylfurfural in Pure Hot Water. Catalysis Letters, 2017, 147, 1485-1495.	1.4	47
799	Highly efficient and selective oxidation of 5-hydroxymethylfurfural by molecular oxygen in the presence of Cu-MnO2 catalyst. Catalysis Communications, 2017, 90, 91-94.	1.6	59
800	Selective Synthesis of 2,5-Diformylfuran and 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural and Fructose Catalyzed by Magnetically Separable Catalysts. Energy & Fuels, 2017, 31, 533-541.	2.5	80
801	Quantitative analysis of acid-catalyzed levulinic acid product mixture from cellulose by mixed-mode liquid chromatography. Carbohydrate Polymers, 2017, 173, 150-156.	5.1	1
802	Multi-product biorefineries from lignocelluloses: a pathway to revitalisation of the sugar industry?. Biotechnology for Biofuels, 2017, 10, 87.	6.2	151
803	Role of ionâ€exchange resins as catalyst in the reactionâ€network of transformation of biomass into biofuels. Journal of Chemical Technology and Biotechnology, 2017, 92, 2775-2786.	1.6	34
804	New Method for Highly Efficient Conversion of Biomass-Derived Levulinic Acid to γ-Valerolactone in Water without Precious Metal Catalysts. ACS Sustainable Chemistry and Engineering, 2017, 5, 6517-6523.	3.2	34
805	Facile Synthesis of Ethyl-4-ethoxy Pentanoate as a Novel Biofuel Additive Derived from γ-Valerolactone. ACS Sustainable Chemistry and Engineering, 2017, 5, 6645-6653.	3.2	9
806	Heteroâ€Diels–Alder and Ringâ€Opening Reactions of Furans Applied to the Synthesis of Functionalized Heterocycles. European Journal of Organic Chemistry, 2017, 2017, 4011-4025.	1.2	22
807	Hydrodeoxygenation of Phenols to Form Cyclohexanes Catalyzed by Pt/Hâ€beta in Ester Solvents under Mild Conditions. ChemistrySelect, 2017, 2, 4226-4229.	0.7	5
808	Biofuel by isomerizing metathesis of rapeseed oil esters with (bio)ethylene for use in contemporary diesel engines. Science Advances, 2017, 3, e1602624.	4.7	31
809	Quantitative NMR Approach to Optimize the Formation of Chemical Building Blocks from Abundant Carbohydrates. ChemSusChem, 2017, 10, 2990-2996.	3.6	29

#	Article	IF	CITATIONS
810	Recent advances in catalytic production of sugar alcohols and their applications. Science China Chemistry, 2017, 60, 853-869.	4.2	68
811	Water effects on the acidic property of typical solid acid catalysts by 3,3-dimethylbut-1-ene isomerization and 2-propanol dehydration reactions. Catalysis Today, 2017, 295, 110-118.	2.2	21
812	Lignocellulosics as sustainable resources for production of bioplastics – A review. Journal of Cleaner Production, 2017, 162, 646-664.	4.6	312
813	Challenges and opportunities for the application of biofuel. Renewable and Sustainable Energy Reviews, 2017, 79, 850-866.	8.2	170
814	Improved Activity for Cellulose Conversion to Levulinic Acid through Hierarchization of ETS-10 Zeolite. ACS Sustainable Chemistry and Engineering, 2017, 5, 5800-5809.	3.2	44
815	Highly Efficient and Stable Bimetallic AuPd over La-Doped Ca–Mg–Al Layered Double Hydroxide for Base-Free Aerobic Oxidation of 5-Hydroxymethylfurfural in Water. ACS Sustainable Chemistry and Engineering, 2017, 5, 5852-5861.	3.2	88
816	Highly Selective Hydrogenation of Levulinic Acid to γ-Valerolactone Over Ru/ZrO2 Catalysts. Catalysis Letters, 2017, 147, 1744-1753.	1.4	44
817	Rice husk silica derived nanomaterials for sustainable applications. Renewable and Sustainable Energy Reviews, 2017, 80, 453-466.	8.2	191
819	Selective Dehydration of Mannitol to Isomannide over HÎ ² Zeolite. ACS Catalysis, 2017, 7, 4828-4834.	5.5	26
820	Integrating lignin valorization and bio-ethanol production: on the role of Ni-Al ₂ O ₃ catalyst pellets during lignin-first fractionation. Green Chemistry, 2017, 19, 3313-3326.	4.6	251
821	Photoredox-Catalyzed Hydroacylation of Olefins Employing Carboxylic Acids and Hydrosilanes. Organic Letters, 2017, 19, 3430-3433.	2.4	55
822	Production of Platform Chemicals from Sustainable Resources. Biofuels and Biorefineries, 2017, , .	0.5	30
823	Efficient production of acrylic acid by dehydration of lactic acid over BaSO ₄ with crystal defects. RSC Advances, 2017, 7, 10278-10286.	1.7	19
824	3D Flower-like Micro/Nano Ce–Mo Composite Oxides as Effective Bifunctional Catalysts for One-Pot Conversion of Fructose to 2,5-Diformylfuran. ACS Sustainable Chemistry and Engineering, 2017, 5, 4179-4187.	3.2	52
825	The synthesis of Fe-containing ionic liquid and its catalytic performance for the dehydration of fructose. Chemical Papers, 2017, 71, 1541-1549.	1.0	7
826	Intensified levulinic acid/ester production from cassava by one-pot cascade prehydrolysis and delignification. Applied Energy, 2017, 204, 1094-1100.	5.1	27
827	Conversion of cellulose into lactic acid using zirconium oxide catalysts. RSC Advances, 2017, 7, 18561-18568.	1.7	49
828	Coordination Polymerization of Renewable 3â€Methylenecyclopentene with Rareâ€Earthâ€Metal Precursors. Angewandte Chemie - International Edition, 2017, 56, 4560-4564.	7.2	25

#	Article	IF	CITATIONS
829	Sonocatalysis: A Potential Sustainable Pathway for the Valorization of Lignocellulosic Biomass and Derivatives. Topics in Current Chemistry, 2017, 375, 41.	3.0	41
830	Is water a suitable solvent for the catalytic amination of alcohols?. Green Chemistry, 2017, 19, 2839-2845.	4.6	40
831	Heterogeneous catalysts for the cyclization of dicarboxylic acids to cyclic anhydrides as monomers for bioplastic production. Green Chemistry, 2017, 19, 3238-3242.	4.6	22
832	Selective glycerol oxidation using platinum nanoparticles supported on multi-walled carbon nanotubes and nitrogen-doped graphene hybrid. Chinese Journal of Catalysis, 2017, 38, 537-544.	6.9	22
833	Lignocellulases: a review of emerging and developing enzymes, systems, and practices. Bioresources and Bioprocessing, 2017, 4, .	2.0	108
834	Kinetics of Valeric Acid Ketonization and Ketenization in Catalytic Pyrolysis on Nanosized SiO ₂ , γâ€Al ₂ O ₃ , CeO ₂ /SiO ₂ , Al ₂ O ₃ /SiO ₂ and TiO ₂ /SiO ₂ . ChemPhysChem. 2017. 18. 1943-1955.	1.0	30
835	Timeâ€dependent climate impact and energy efficiency of combined heat and power production from shortâ€rotation coppice willow using pyrolysis or direct combustion. GCB Bioenergy, 2017, 9, 876-890.	2.5	11
836	Catalytic Hydrogenation and Hydrodeoxygenation of Furfural over Pt(111): A Model System for the Rational Design and Operation of Practical Biomass Conversion Catalysts. Journal of Physical Chemistry C, 2017, 121, 8490-8497.	1.5	66
838	Probing the Lignin Disassembly Pathways with Modified Catalysts Based on Cu-Doped Porous Metal Oxides. ACS Sustainable Chemistry and Engineering, 2017, 5, 3158-3169.	3.2	42
839	Stereoselective acetylation of hemicellulosic C5-sugars. Carbohydrate Research, 2017, 443-444, 1-14.	1.1	2
840	Direct Synthesis of Ultrasmall Ruthenium Nanoparticles on Porous Supports Using Natural Sources for Highly Efficient and Selective Furfural Hydrogenation. ChemCatChem, 2017, 9, 2448-2452.	1.8	25
841	High Catalytic Performance of Aquivion PFSA, a Reusable Solid Perfluorosulfonic Acid Polymer, in the Biphasic Glycosylation of Glucose with Fatty Alcohols. ACS Catalysis, 2017, 7, 2990-2997.	5.5	37
842	Palladium atalyzed Dearomatizing Alkoxydiarylation of Furan Rings by Coupling with Arylboronic Acids: Access to Polysubstituted Oxabicyclic Compounds. Advanced Synthesis and Catalysis, 2017, 359, 2001-2007.	2.1	11
843	Glucose Isomerization by Enzymes and Chemo-catalysts: Status and Current Advances. ACS Catalysis, 2017, 7, 3010-3029.	5.5	154
844	Phenolic acetals from lignins of varying compositions via iron(<scp>iii</scp>) triflate catalysed depolymerisation. Green Chemistry, 2017, 19, 2774-2782.	4.6	136
845	Vapor Phase Hydrogenolysis of Furanics Utilizing Reduced Cobalt Mixed Metal Oxide Catalysts. ChemCatChem, 2017, 9, 1815-1823.	1.8	14
846	An innovative way for the delignification of <i>Phragmites australis</i> residues by steam explosion and γâ€valerolactone microwave assisted extraction. Environmental Progress and Sustainable Energy, 2017, 36, 736-741.	1.3	3
847	Benchmarking Cellulose Nanocrystals: From the Laboratory to Industrial Production. Langmuir, 2017, 33, 1583-1598.	1.6	382

#	Article	IF	CITATIONS
848	Heterogeneouslyâ€Catalyzed Aerobic Oxidation of 5â€Hydroxymethylfurfural to 2,5â€Furandicarboxylic Acid with MnO ₂ . ChemSusChem, 2017, 10, 654-658.	3.6	134
849	A Model Study to Unravel the Complexity of Bioâ€Oil from Organic Wastes. ChemSusChem, 2017, 10, 171-181.	3.6	25
850	Efficient Oxidation of Glucose into Sodium Gluconate Catalyzed by Hydroxyapatite Supported Au Catalyst. Catalysis Letters, 2017, 147, 383-390.	1.4	7
851	Effective conversion of biomass into bromomethylfurfural, furfural, and depolymerized lignin in lithium bromide molten salt hydrate of a biphasic system. RSC Advances, 2017, 7, 300-308.	1.7	57
852	Sustainable Synthetic Approaches for the Preparation of Plant Oilâ€Based Thermosets. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 169-186.	0.8	46
853	Decarboxylative Gieseâ€Type Reaction of Carboxylic Acids Promoted by Visible Light: A Sustainable and Photoredoxâ€Neutral Protocol. European Journal of Organic Chemistry, 2017, 2017, 2154-2163.	1.2	64
854	Acidic mesostructured silica-carbon nanocomposite catalysts for biofuels and chemicals synthesis from sugars in alcoholic solutions. Applied Catalysis B: Environmental, 2017, 206, 74-88.	10.8	42
855	The Critical Role of Water in the Ring Opening of Furfural Alcohol to 1,2-Pentanediol. ACS Catalysis, 2017, 7, 333-337.	5.5	81
856	The Role of Ruthenium on Carbonâ€Supported PtRu Catalysts for Electrocatalytic Glycerol Oxidation under Acidic Conditions. ChemCatChem, 2017, 9, 1683-1690.	1.8	56
857	Highly selective liquid-phase hydrogenation of furfural over N-doped carbon supported metallic nickel catalyst under mild conditions. Molecular Catalysis, 2017, 429, 51-59.	1.0	81
858	Catalytic Transfer Hydrogenation of Furfural into Furfuryl Alcohol over Magnetic γ-Fe ₂ O ₃ @HAP Catalyst. ACS Sustainable Chemistry and Engineering, 2017, 5, 942-947.	3.2	162
859	Efficient conversion of carbohydrates into 5-hydroxylmethylfurfan and 5-ethoxymethylfurfural over sufonic acid-functionalized mesoporous carbon catalyst. Fuel, 2017, 192, 102-107.	3.4	92
860	Selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over MnO _x –CeO ₂ composite catalysts. Green Chemistry, 2017, 19, 996-1004.	4.6	154
861	Visibleâ€Light Photoredox Decarboxylative Couplings. Asian Journal of Organic Chemistry, 2017, 6, 368-385.	1.3	171
862	Co embedded within biomass-derived mesoporous N-doped carbon as an acid-resistant and chemoselective catalyst for transfer hydrodeoxygenation of biomass with formic acid. Green Chemistry, 2017, 19, 5714-5722.	4.6	106
863	Greener synthesis of nanofibrillated cellulose using magnetically separable TEMPO nanocatalyst. Green Chemistry, 2017, 19, 4792-4797.	4.6	49
864	CO ₂ -assisted synthesis of non-symmetric α-diketones directly from aldehydes <i>via</i> C–C bond formation. Green Chemistry, 2017, 19, 5356-5360.	4.6	48
865	Efficient Synthesis of 2-Methylfuran from Bio-Derived Furfural over Supported Copper Catalyst: The Synergistic Effect of CuO _x and Cu. ChemistrySelect, 2017, 2, 9984-9991.	0.7	14

#	Article	IF	CITATIONS
866	Synthesis, properties, and application of polymeric carbon nitrides. Russian Chemical Bulletin, 2017, 66, 782-807.	0.4	7
867	Lactate-Based Ionic Liquid Catalyzed Reductive Amination/Cyclization of Keto Acids under Mild Conditions: A Metal-Free Route To Synthesize Lactams. ACS Catalysis, 2017, 7, 7772-7776.	5.5	51
868	Biobased Polyamide Ecomaterials and Their Susceptibility to Biodegradation. , 2017, , 1-34.		3
869	Hydrolysis of Cellulose and Glucose Using Recyclable α-Hydroxysulfonic Acids. Industrial & Engineering Chemistry Research, 2017, 56, 12529-12537.	1.8	5
870	Optimizing the Preparation of Meso- and Microporous Canola Stalk-Derived Hydrothermal Carbon via Response Surface Methodology for Methylene Blue Removal. Energy & Fuels, 2017, 31, 12327-12338.	2.5	32
871	Rhenium-catalyzed deoxydehydration of renewable biomass using sacrificial alcohol as reductant. Tetrahedron Letters, 2017, 58, 3760-3763.	0.7	16
872	Selective Hydrodeoxygenation of Lignin-Derived Phenols to Cyclohexanols over Co-Based Catalysts. ACS Sustainable Chemistry and Engineering, 2017, 5, 8594-8601.	3.2	111
873	Accessing the HMF Derivatives from Furfural Acetate through Oxidative Carbonylation. ChemistrySelect, 2017, 2, 7096-7099.	0.7	9
874	Clean synthesis of furfural oxime through liquid-phase ammoximation of furfural over titanosilicate catalysts. Green Chemistry, 2017, 19, 4871-4878.	4.6	29
875	Selective Utilization of the Methoxy Group in Lignin to Produce Acetic Acid. Angewandte Chemie - International Edition, 2017, 56, 14868-14872.	7.2	72
876	Detection of an Iridium–Dihydrogen Complex: A Proposed Intermediate in Ionic Hydrogenation. Journal of the American Chemical Society, 2017, 139, 12638-12646.	6.6	21
877	An Insight into the Selective Conversion of Bamboo Biomass to Ethyl Glycosides. ACS Sustainable Chemistry and Engineering, 2017, 5, 5880-5886.	3.2	19
878	Water excellent solvent for the synthesis of bifunctionalized cyclopentenones from furfural. Green Chemistry, 2017, 19, 5403-5411.	4.6	55
881	Diols Production From Glycerol Over Pt-Based Catalysts: On the Role Played by the Acid Sites of the Support. Catalysis Letters, 2017, 147, 2523-2533.	1.4	11
882	Sustainable chemistry: how to produce better and more from less?. Green Chemistry, 2017, 19, 4973-4989.	4.6	125
883	Effect of Ionic Liquid Pretreatment on the Porosity of Pine: Insights from Small-Angle Neutron Scattering, Nitrogen Adsorption Analysis, and X-ray Diffraction. Energy & Fuels, 2017, 31, 10874-10879.	2.5	6
884	Conversion of HMF to methyl cyclopentenolone using Pd/Nb ₂ O ₅ and Ca–Al catalysts via a two-step procedure. Green Chemistry, 2017, 19, 5103-5113.	4.6	64
885	Palladium-Catalyzed Hydroxycarbonylation of Pentenoic Acids. Computational and Experimental Studies on the Catalytic Selectivity. ACS Catalysis, 2017, 7, 7070-7080.	5.5	27

#	Article	IF	CITATIONS
886	Aqueous-Phase Oxidation of Furfural to Maleic Acid Catalyzed by Copper Phosphate Catalysts. Catalysis Letters, 2017, 147, 2714-2723.	1.4	38
889	Selective Utilization of the Methoxy Group in Lignin to Produce Acetic Acid. Angewandte Chemie, 2017, 129, 15064-15068.	1.6	13
890	Selective and Efficient Iridium Catalyst for the Reductive Amination of Levulinic Acid into Pyrrolidones. ChemSusChem, 2017, 10, 4150-4154.	3.6	66
891	Diffusion of modified vegetables oils in thermoplastic polymers. Materials Chemistry and Physics, 2017, 200, 107-120.	2.0	5
892	Promotion catalytic role of ethanol on BrÃ,nsted acid for the sequential dehydration-etherification of fructose to 5-ethoxymethylfurfural. Journal of Catalysis, 2017, 352, 586-598.	3.1	40
893	Cooking with Active Oxygen and Solid Alkali: A Promising Alternative Approach for Lignocellulosic Biorefineries. ChemSusChem, 2017, 10, 3982-3993.	3.6	36
894	Alkyl Esterification of Vinylarenes Enabled by Visible‣ightâ€Induced Decarboxylation. Chemistry - A European Journal, 2017, 23, 11767-11770.	1.7	37
895	Preparation of hydrolytic liquid from dried distiller's grains with solubles and fumaric acid fermentation by Rhizopus arrhizus RH 7-13. Journal of Environmental Management, 2017, 201, 172-176.	3.8	14
896	Microalgal cultivation for value-added products: a critical enviro-economical assessment. 3 Biotech, 2017, 7, 243.	1.1	77
898	Synthesis of Diesel and Jet Fuel Range Alkanes with Furfural and Angelica Lactone. ACS Catalysis, 2017, 7, 5880-5886.	5.5	85
899	Valorization of waste "date seeds―bio-glycerol for synthesizing oxidative green fuel additive. Journal of Cleaner Production, 2017, 165, 1090-1096.	4.6	16
900	Direct deoxygenation of lignin model compounds into aromatic hydrocarbons through hydrogen transfer reaction. Applied Catalysis A: General, 2017, 547, 30-36.	2.2	67
901	High-Performance Lubricant Base Stocks from Biorenewable Gallic Acid: Systematic Study on Their Physicochemical and Tribological Properties. Industrial & Engineering Chemistry Research, 2017, 56, 9513-9523.	1.8	13
902	Coordination Polymerization of Renewable 3â€Methylenecyclopentene with Rareâ€Earthâ€Metal Precursors. Angewandte Chemie, 2017, 129, 4631-4635.	1.6	9
903	Metal Nanoparticles Supported on Perfluorinated Superacid Polymers: A Family of Bifunctional Catalysts for the Selective, Oneâ€Pot Conversion of Vegetable Substrates in Water. ChemCatChem, 2017, 9, 4256-4267.	1.8	18
904	Reduced Cu–Co–Al Mixed Metal Oxides for the Ring-Opening of Furfuryl Alcohol to Produce Renewable Diols. ACS Sustainable Chemistry and Engineering, 2017, 5, 8959-8969.	3.2	55
905	Exploiting H-transfer as a tool for the catalytic reduction of bio-based building blocks: the gas-phase production of 2-methylfurfural using a FeVO ₄ catalyst. Green Chemistry, 2017, 19, 4412-4422.	4.6	35
906	Selective oxidation of glycerol in base-free conditions over N-doped carbon film coated carbon supported Pt catalysts. Catalysis Communications, 2017, 101, 107-110.	1.6	24

#	Article	IF	CITATIONS
907	Domino-Fluorination–Protodefluorination Enables Decarboxylative Cross-Coupling of α-Oxocarboxylic Acids with Styrene via Photoredox Catalysis. Journal of Organic Chemistry, 2017, 82, 9305-9311.	1.7	55
908	Super impact absorbing bio-alloys from inedible plants. Green Chemistry, 2017, 19, 4503-4508.	4.6	9
909	In situ generated Ni(0)@boehmite from NiAl-LDH: An efficient catalyst for selective hydrogenation of biomass derived levulinic acid to Î ³ -valerolactone. Catalysis Communications, 2017, 102, 40-43.	1.6	46
910	The comparison of chemical liquid deposition and acid dealumination modified ZSM-5 for catalytic pyrolysis of pinewood using pyrolysis-gas chromatography/mass spectrometry. Bioresource Technology, 2017, 244, 726-732.	4.8	51
911	Aromatic poly(ether ester)s derived from a naturally occurring building block nipagin and linear aliphatic α,ω-diols. RSC Advances, 2017, 7, 32989-33000.	1.7	8
912	Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol by using Ultrasmall Rh Nanoparticles Embedded on Diamineâ€Functionalized KITâ€6. ChemCatChem, 2017, 9, 4570-4579.	1.8	47
913	Synthesis of 3-alkoxypropan-1,2-diols from glycidol: experimental and theoretical studies for the optimization of the synthesis of glycerol derived solvents. Green Chemistry, 2017, 19, 4176-4185.	4.6	24
914	Synthesis of value added fatty alcohols and FAMEs by non-catalytic supercritical methanol transesterification of jojoba (Simmondsia chinensis) wax. Energy Conversion and Management, 2017, 154, 430-439.	4.4	8
915	Cellulose Hydrolysis Using Oxidized Carbon Catalyst in a Plug-Flow Slurry Process. Industrial & Engineering Chemistry Research, 2017, 56, 14471-14478.	1.8	16
916	Integration of Waste Valorization for Sustainable Production of Chemicals and Materials via Algal Cultivation. Topics in Current Chemistry, 2017, 375, 89.	3.0	9
917	Continuous-Flow Preparation of γ-Butyrolactone Scaffolds from Renewable Fumaric and Itaconic Acids under Photosensitized Conditions. Organic Process Research and Development, 2017, 21, 2012-2017.	1.3	28
918	Ionic Liquidâ€Encapsulated Zeolite Catalysts for the Conversion of Glucose to 5â€Hydroxymethylfurfural. ChemistrySelect, 2017, 2, 10379-10386.	0.7	17
919	Metal-exchanged magnetic \hat{l}^2 -zeolites: valorization of lignocellulosic biomass-derived compounds to platform chemicals. Green Chemistry, 2017, 19, 3856-3868.	4.6	35
920	Application of microwave-assisted heterogeneous catalysis in sustainable synthesis design. Green Chemistry, 2017, 19, 3729-3751.	4.6	108
921	β-Amino acid derived gemini surfactants from diformylfuran (DFF) with particularly low critical micelle concentration (CMC). Green Chemistry, 2017, 19, 4074-4079.	4.6	31
922	Examples of xylochemistry: colorants and polymers. Green Chemistry, 2017, 19, 3780-3786.	4.6	17
923	Catalytic Upgrading of Glycerol, Conversion of Biomass Derived Carbohydrates to Fuels and Catalysis in Depolymerization of Lignin. Green Energy and Technology, 2017, , 113-139.	0.4	0
924	The controlled catalytic oxidation of furfural to furoic acid using AuPd/Mg(OH) ₂ . Catalysis Science and Technology, 2017, 7, 5284-5293.	2.1	87

#	Article	IF	CITATIONS
925	Carboxylic acid formation by hydroxyl insertion into acyl moieties on late transition metals. Catalysis Science and Technology, 2017, 7, 5365-5375.	2.1	2
926	High-efficiency oxidative esterification of furfural to methylfuroate with a non-precious metal Co-N-C/MgO catalyst. Chinese Journal of Catalysis, 2017, 38, 1148-1154.	6.9	20
927	Catalytic hydroprocessing of lignin β-O-4 ether bond model compound phenethyl phenyl ether over ruthenium catalysts. Biomass Conversion and Biorefinery, 2017, 7, 385-398.	2.9	17
929	Coproducing Value-Added Chemicals and Hydrogen with Electrocatalytic Glycerol Oxidation Technology: Experimental and Techno-Economic Investigations. ACS Sustainable Chemistry and Engineering, 2017, 5, 6626-6634.	3.2	68
930	Highly Selective and Efficient Rearrangement of Biomass-Derived Furfural to Cyclopentanone over Interface-Active Ru/Carbon Nanotubes Catalyst in Water. ACS Sustainable Chemistry and Engineering, 2017, 5, 744-751.	3.2	83
931	A Highly Porous Carbon Support Rich in Graphiticâ€N Stabilizes Copper Nanocatalysts for Efficient Ethanol Dehydrogenation. ChemCatChem, 2017, 9, 505-510.	1.8	34
932	Synthesis of maleic and fumaric acids from furfural in the presence of betaine hydrochloride and hydrogen peroxide. Green Chemistry, 2017, 19, 98-101.	4.6	73
933	Comprehensive Understanding of the Role of BrĄ̃nsted and Lewis Acid Sites in Glucose Conversion into 5â€Hydromethylfurfural. ChemCatChem, 2017, 9, 2739-2746.	1.8	86
934	Synergism studies on alumina-supported copper-nickel catalysts towards furfural and 5-hydroxymethylfurfural hydrogenation. Journal of Molecular Catalysis A, 2017, 426, 244-256.	4.8	121
935	Bimetallic overlayer catalysts with high selectivity and reactivity for furfural hydrogenation. Catalysis Communications, 2017, 89, 77-80.	1.6	30
936	Oneâ€Pot Selective Catalytic Synthesis of Pyrrolidone Derivatives from Ethyl Levulinate and Nitro Compounds. ChemSusChem, 2017, 10, 119-128.	3.6	55
937	A Critical Review on Hemicellulose Pyrolysis. Energy Technology, 2017, 5, 52-79.	1.8	266
938	Selective hydrogenation of furfuryl alcohol to tetrahydrofurfuryl alcohol over Ni/γ-Al2O3 catalysts. Research on Chemical Intermediates, 2017, 43, 1179-1195.	1.3	26
939	Agro-Industrial Residues and Microbial Enzymes. , 2017, , 475-511.		27
940	Experimental and kinetic study of glucose conversion to levulinic acid catalyzed by synergy of Lewis and BrÃ,nsted acids. Chemical Engineering Journal, 2017, 307, 389-398.	6.6	119
941	Zirconium Oxide Supported Palladium Nanoparticles as a Highly Efficient Catalyst in the Hydrogenation–Amination of Levulinic Acid to Pyrrolidones. ChemCatChem, 2017, 9, 2661-2667.	1.8	59
942	Highly selective isomerization of biomass \hat{l}^2 -pinene over hierarchically acidic MCM-22 catalyst. Microporous and Mesoporous Materials, 2017, 237, 180-188.	2.2	20
943	Protonated and layered transition metal oxides as solid acids for dehydration of biomass-based fructose into 5-hydroxymethylfurfural. Journal of Energy Chemistry, 2017, 26, 147-154.	7.1	21

		CITATION REPORT		
#	Article		IF	Citations
944	The E factor 25 years on: the rise of green chemistry and sustainability. Green Chemistry, 2017, 19,	18-43.	4.6	912
945	Efficient magnetic recoverable acid-functionalized-carbon catalysts for starch valorization to multiple bio-chemicals. Catalysis Today, 2017, 279, 45-55.		2.2	14
946	Catalytic Transformation of Lignocellulose into Chemicals and Fuel Products in Ionic Liquids. Chemical Reviews, 2017, 117, 6834-6880.		23.0	706
947	Magnetically separable sulfated zirconia as highly active acidic catalysts for selective synthesis of ethyl levulinate from furfuryl alcohol. Green Chemistry, 2017, 19, 963-976.		4.6	87
948	From Lignocellulosic Biomass to Furfural: Insight into the Active Species of a Silica‣upported Tungsten Oxide Catalyst. ChemCatChem, 2017, 9, 2709-2716.		1.8	17
949	Catalytic Cascade Transformations of Biomass into Polyols. Biofuels and Biorefineries, 2017, , 187-2	19.	0.5	1
950	Bio- and chemocatalysis cascades as a bridge between biology and chemistry for green polymer synthesis. Cellular and Molecular Biology Letters, 2017, 22, 28.		2.7	6
952	Microemulsion and Sol-Gel Synthesized ZrO2-MgO Catalysts for the Liquid-Phase Dehydration of Xylose to Furfural. Molecules, 2017, 22, 2257.		1.7	9
953	Catalytic Oxidation of Lignin in Solvent Systems for Production of Renewable Chemicals: A Review. Polymers, 2017, 9, 240.		2.0	72
954	Initial Considerations. , 2017, , 3-16.			3
955	Conversion of Cellulose to Lactic Acid by Using ZrO2–Al2O3 Catalysts. Catalysts, 2017, 7, 221.		1.6	25
956	Fractionation of Lignocellulosic Residues Coupling Steam Explosion and Organosolv Treatments Using Green Solvent Î ³ -Valerolactone. Energies, 2017, 10, 1264.		1.6	10
957	Purification of Polymer-Grade Fumaric Acid from Fermented Spent Sulfite Liquor. Fermentation, 201 3, 13.	7,	1.4	13
958	Asymmetric Reduction of Ketones to Chiral Platform Molecules. , 2017, , 223-240.			0
960	Propionic acid production from corn stover hydrolysate by Propionibacterium acidipropionici. Biotechnology for Biofuels, 2017, 10, 200.		6.2	25
961	Catalytic Natural Gas Utilization on Unconventional Oil Upgrading. , 2017, , .			1
962	Foundational techniques for catalyst design in the upgrading of biomass-derived multifunctional molecules. Progress in Energy and Combustion Science, 2018, 67, 1-30.		15.8	24
963	Catalytic coupling of biomass-derived aldehydes into intermediates for biofuels and materials. Catalysis Science and Technology, 2018, 8, 1777-1798.		2.1	55

#	Article	IF	CITATIONS
964	Efficient utilization of renewable feedstocks: the role of catalysis and process design. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170064.	1.6	21
965	Highly selective hydrogenation of furfural to tetrahydrofurfuryl alcohol over MIL-101(Cr)-NH 2 supported Pd catalyst at low temperature. Chinese Journal of Catalysis, 2018, 39, 319-326.	6.9	48
966	Aqueous Hydrogenation of Levulinic Acid to 1,4â€Pentanediol over Moâ€Modified Ru/Activated Carbon Catalyst. ChemSusChem, 2018, 11, 1316-1320.	3.6	73
967	Synthesis of Bioacrylic Polymers from Dihydro-5-hydroxyl furan-2-one (2H-HBO) by Free and Controlled Radical Polymerization. ACS Omega, 2018, 3, 2040-2048.	1.6	23
968	Full conversion of oleic acid to estolides esters, biodiesel and choline carboxylates in three easy steps. Journal of Cleaner Production, 2018, 184, 579-585.	4.6	19
969	Selective production of glycols from xylitol over Ru on covalent triazine frameworks – suppressing decarbonylation reactions. Green Chemistry, 2018, 20, 1316-1322.	4.6	29
970	Selective catalytic conversion of waste lignocellulosic biomass for renewable value-added chemicals <i>via</i> directional microwave-assisted liquefaction. Sustainable Energy and Fuels, 2018, 2, 1035-1047.	2.5	34
971	Synergetic effects of bimetals in modified beta zeolite for lactic acid synthesis from biomass-derived carbohydrates. RSC Advances, 2018, 8, 8965-8975.	1.7	44
972	Transglycosylation: A Key Reaction to Access Alkylpolyglycosides from Lignocellulosic Biomass. ChemSusChem, 2018, 11, 1395-1409.	3.6	20
973	Toward Platform Chemicals from Bio-Based Ethylene: Heterogeneous Catalysts and Processes. ACS Catalysis, 2018, 8, 3263-3279.	5.5	80
974	Supported cobalt catalysts for the selective hydrogenation of ethyl levulinate to various chemicals. RSC Advances, 2018, 8, 9152-9160.	1.7	25
975	Conservative evolution and industrial metabolism in Green Chemistry. Green Chemistry, 2018, 20, 2171-2191.	4.6	45
976	Calcium(II) Catalyzed Cycloisomerization of <i>cis</i> â€6â€Hydroxy/(Acyloxy)hexâ€2â€enâ€4â€ynals to 2â€Acyl 2â€(Acyloxyalkenyl)furans. ChemistrySelect, 2018, 3, 4490-4494.	―and 0.7	9
977	Progressive cationic functionalization of chlorin derivatives for antimicrobial photodynamic inactivation and related vancomycin conjugates. Photochemical and Photobiological Sciences, 2018, 17, 638-651.	1.6	34
978	The Green ChemisTREE: 20 years after taking root with the 12 principles. Green Chemistry, 2018, 20, 1929-1961.	4.6	499
979	Depolymerization of Cellulose with Superheated Steam: Remarkable Obstruction Effects of Sodium and High Reactivity of Crystalline Cellulose. ACS Sustainable Chemistry and Engineering, 2018, 6, 6570-6576.	3.2	8
980	Access to Densely Functionalized Chalcone Derivatives with a 2-Pyridone Subunit via Pd/Cu-Catalyzed Oxidative Furan–Yne Cyclization of <i>N</i> -(2-Furanylmethyl) Alkynamides under Air. Organic Letters, 2018, 20, 2273-2277.	2.4	22
981	Total Hydrogenation of Furfural over Pd/Al ₂ O ₃ and Ru/ZrO ₂ Mixture under Mild Conditions: Essential Role of Tetrahydrofurfural as an Intermediate and Support Effect, ACS Sustainable Chemistry and Engineering, 2018, 6, 6957-6964.	3.2	63

#	Article	IF	Citations
982	Effect of Lewis and BrÃ,nsted acidity on glucose conversion to 5-HMF and lactic acid in aqueous and organic media. Applied Catalysis A: General, 2018, 555, 75-87.	2.2	136
983	Copper-cobalt catalyzed liquid phase hydrogenation of furfural to 2-methylfuran: An optimization, kinetics and reaction mechanism study. Chemical Engineering Research and Design, 2018, 132, 313-324.	2.7	47
984	Improved catalytic activity and stability for hydrogenation of levulinic acid by Ru/N-doped hierarchically porous carbon. Molecular Catalysis, 2018, 448, 100-107.	1.0	49
985	Comprehensive on-line two-dimensional liquid chromatography × supercritical fluid chromatography with trapping column-assisted modulation for depolymerised lignin analysis. Journal of Chromatography A, 2018, 1541, 21-30.	1.8	26
986	A cobalt catalyst for reductive etherification of 5-hydroxymethyl-furfural to 2,5-bis(methoxymethyl)furan under mild conditions. Green Chemistry, 2018, 20, 1095-1105.	4.6	71
988	Valorization of Chitosan as Food Waste of Aquatic Organisms into 5â€Hydroxymethylfurfural by Sulfamic Acidâ€Catalyzed Conversion Process. Energy Technology, 2018, 6, 1747-1754.	1.8	19
989	A Low-Cost and Easily Prepared Manganese Carbonate as an Efficient Catalyst for Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran. Transactions of Tianjin University, 2018, 24, 301-307.	3.3	6
990	A Scalable Upgrading of Concentrated Furfural in Ethanol: Combining Meerwein–Ponndorf–Verley Reduction with <i>in Situ</i> Cross Aldol Condensation. ACS Sustainable Chemistry and Engineering, 2018, 6, 4316-4320.	3.2	19
991	Development of catalyst complexes for upgrading biomass into ester-based biolubricants for automotive applications: a review. RSC Advances, 2018, 8, 5559-5577.	1.7	27
992	Ru/ZrO ₂ Catalysts for Transfer Hydrogenation of Levulinic Acid with Formic Acid/Formate Mixtures: Importance of Support Stability. ChemistrySelect, 2018, 3, 1343-1351.	0.7	22
993	Metal-Free and Selective Oxidation of Furfural to Furoic Acid with an N-Heterocyclic Carbene Catalyst. ACS Sustainable Chemistry and Engineering, 2018, 6, 3434-3442.	3.2	67
994	In Situ Polymerization of Furfuryl Alcohol with Ammonium Dihydrogen Phosphate in Poplar Wood for Improved Dimensional Stability and Flame Retardancy. ACS Sustainable Chemistry and Engineering, 2018, 6, 3349-3357.	3.2	128
995	Optimization of the levulinic acid production from the red macroalga, Gracilaria verrucosa using methanesulfonic acid. Algal Research, 2018, 31, 116-121.	2.4	30
996	Gold Catalysis and Photoactivation: A Fast and Selective Procedure for the Oxidation of Free Sugars. ACS Catalysis, 2018, 8, 1635-1639.	5.5	26
997	Preparation of Lignosulfonate-Based Carbon Foams by Pyrolysis and Their Use in the Microencapsulation of a Phase Change Material. ACS Sustainable Chemistry and Engineering, 2018, 6, 2453-2461.	3.2	26
998	Mass transfer considerations for monitoring catalytic solid–liquid interfaces under operating conditions. Reaction Chemistry and Engineering, 2018, 3, 55-67.	1.9	7
999	Ruthenium(0)â€katalysierte Cycloaddition von 1,2â€Diolen, Ketolen oder Dionen durch Alkoholâ€vermittelte Wasserstoff¼bertragung. Angewandte Chemie, 2018, 130, 3064-3073.	1.6	4
1000	Determination of Acid Site Location in Dealuminated MCM-68 by ²⁷ Al MQMAS NMR and FT-IR Spectroscopy with Probe Molecules. Journal of Physical Chemistry C, 2018, 122, 1180-1191.	1.5	10

#	Article	IF	CITATIONS
1001	Computational Study of B(C ₆ F ₅) ₃ -Catalyzed Selective Deoxygenation of 1,2-Diols: Cyclic and Noncyclic Pathways. ACS Catalysis, 2018, 8, 1697-1702.	5.5	22
1002	Manufacturing Ethylene from Wet Shale Gas and Biomass: Comparative Technoeconomic Analysis and Environmental Life Cycle Assessment. Industrial & Engineering Chemistry Research, 2018, 57, 5980-5998.	1.8	50
1003	Efficient Synthesis of Succinimide from Succinic Anhydride in Water over Unsupported Nanoporous Nickel Material. ChemistrySelect, 2018, 3, 724-728.	0.7	9
1004	Highly efficient conversion of glucose into methyl levulinate catalyzed by tin-exchanged montmorillonite. Renewable Energy, 2018, 120, 231-240.	4.3	27
1005	Highly Selective Oxidation of Ethyl Lactate to Ethyl Pyruvate Catalyzed by Mesoporous Vanadia–Titania. ACS Catalysis, 2018, 8, 2365-2374.	5.5	38
1006	Iron atalyzed Reductive Amination from Levulinic and Formic Acid Aqueous Solutions: An Approach for the Selective Production of Pyrrolidones in Biorefinery Facilities. ChemistrySelect, 2018, 3, 368-372.	0.7	24
1007	Photocatalytic synthesis of 2,5-diformylfuran from 5-hydroxymethyfurfural or fructose over bimetallic Au-Ru nanoparticles supported on reduced graphene oxides. Applied Catalysis A: General, 2018, 552, 70-76.	2.2	66
1008	Photoredox-Catalyzed Decarboxylative Alkylation of Silyl Enol Ethers To Synthesize Functionalized Aryl Alkyl Ketones. Organic Letters, 2018, 20, 349-352.	2.4	82
1009	Encapsulation of ultrafine metal-oxide nanoparticles within mesopores for biomass-derived catalytic applications. Chemical Science, 2018, 9, 1854-1859.	3.7	62
1010	Electrocatalytic and photocatalytic hydrogen evolution integrated with organic oxidation. Chemical Communications, 2018, 54, 5943-5955.	2.2	142
1011	Upgrading the value of anaerobic digestion <i>via</i> chemical production from grid injected biomethane. Energy and Environmental Science, 2018, 11, 1788-1802.	15.6	88
1012	Base-free selective oxidation of pectin derived galacturonic acid to galactaric acid using supported gold catalysts. Green Chemistry, 2018, 20, 2763-2774.	4.6	13
1013	Hydrochar supported bimetallic Ni–Fe nanocatalysts with tailored composition, size and shape for improved biomass steam reforming performance. Green Chemistry, 2018, 20, 2788-2800.	4.6	85
1014	Understanding the Role of Atomic Ordering in the Crystal Structures of Ni _{<i>x</i>} Sn _{<i>y</i>} toward Efficient Vapor Phase Furfural Hydrogenation. ACS Sustainable Chemistry and Engineering, 2018, 6, 7325-7338.	3.2	46
1015	Sulfonate group modified Ni catalyst for highly efficient liquid-phase selective hydrogenation of bio-derived furfural. Chinese Chemical Letters, 2018, 29, 1617-1620.	4.8	22
1016	Contributions of ultrasonic wave, metal ions, and oxidation on the depolymerization of cellulose and its kinetics. Renewable Energy, 2018, 126, 699-707.	4.3	17
1017	Experimental and kinetic study of glucose conversion to levulinic acid in aqueous medium over Cr/HZSM-5 catalyst. Fuel, 2018, 225, 311-321.	3.4	62
1018	Production of 5-HMF from Cellulosic Biomass: Experimental Results and Integrated Process Simulation. Waste and Biomass Valorization, 2018, 9, 2433-2445.	1.8	41

#	Article	IF	CITATIONS
1019	Highly Efficient Hydrogenation of Levulinic Acid into γâ€Valerolactone using an Iron Pincer Complex. ChemSusChem, 2018, 11, 1474-1478.	3.6	36
1020	Selective Production of Propylene and 1-Butene from Ethylene by Catalytic Cascade Reactions. ACS Catalysis, 2018, 8, 3636-3640.	5.5	19
1021	Efficient Method for Synthesis of 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural and Fructose Using Pd/CC Catalyst under Aqueous Conditions. ACS Sustainable Chemistry and Engineering, 2018, 6, 5766-5771.	3.2	88
1022	Sustainable Routes for the Synthesis of Renewable Heteroatom-Containing Chemicals. ACS Sustainable Chemistry and Engineering, 2018, 6, 5694-5707.	3.2	140
1023	Recent advances and remaining challenges for polymeric nanocomposites in healthcare applications. Progress in Polymer Science, 2018, 80, 1-38.	11.8	155
1024	Etherification Reactions of Furfuryl Alcohol in the Presence of Orthoesters and Ketals: Application to the Synthesis of Furfuryl Ether Biofuels. ACS Sustainable Chemistry and Engineering, 2018, 6, 4996-5002.	3.2	38
1025	From Furan to High Quality Bio-based Poly(ethylene furandicarboxylate). Chinese Journal of Polymer Science (English Edition), 2018, 36, 720-727.	2.0	31
1026	The Efficient Oxidation of Biomass-Derived 5-Hydroxymethyl Furfural to Produce 2,5-Diformylfuran Over Supported Cobalt Catalysts. Waste and Biomass Valorization, 2018, 9, 95-101.	1.8	21
1027	Selective hydrogenation of biomass-derived 5-hydroxymethylfurfural using palladium catalyst supported on mesoporous graphitic carbon nitride. Journal of Energy Chemistry, 2018, 27, 283-289.	7.1	27
1028	Ultrasound-assisted acid hydrolysis of cellulose to chemical building blocks: Application to furfural synthesis. Ultrasonics Sonochemistry, 2018, 40, 81-88.	3.8	33
1029	Efficient conversion of cellulose into 5-hydroxymethylfurfural over niobia/carbon composites. Chemical Engineering Journal, 2018, 332, 528-536.	6.6	93
1030	One pot selective transformation of biomass derived chemicals towards alkyl levulinates over titanium exchanged heteropoly tungstate catalysts. Catalysis Today, 2018, 309, 269-275.	2.2	56
1031	Chemoselective hydrogenation of furfural to furfuryl alcohol on ZrO2 systems synthesized through the microemulsion method. Catalysis Today, 2018, 306, 89-95.	2.2	38
1032	Heterogeneous catalysts for the selective aerobic oxidation of 5-hydroxymethylfurfural to added value products in water. Inorganica Chimica Acta, 2018, 470, 11-21.	1.2	57
1033	Evolving biocatalysis to meet bioeconomy challenges and opportunities. New Biotechnology, 2018, 40, 154-169.	2.4	99
1034	MgFe hydrotalcites-derived layered structure iron molybdenum sulfide catalysts for eugenol hydrodeoxygenation to produce phenolic chemicals. Journal of Energy Chemistry, 2018, 27, 600-610.	7.1	24
1035	Biosourced lauroyl poly(glycerol-succinate) oligoesters modified by copolymerizable solvents: A wasteless and eco-friendly surfactants properties enhancement. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 536, 88-95.	2.3	6
1036	A Comparative Study of Structurally Related Homogeneous Ruthenium and Iron Catalysts for the Hydrogenation of Levulinic Acid to 1 ³ -Valerolactone. European Journal of Inorganic Chemistry, 2018, 2018, 694-702.	1.0	18

#	Article	IF	CITATIONS
1037	Sustainable Production of Fine Chemicals and Materials Using Nontoxic Renewable Sources. Toxicological Sciences, 2018, 161, 214-224.	1.4	14
1038	Ruthenium(0) atalyzed Cycloaddition of 1,2â€Diols, Ketols, or Diones via Alcoholâ€Mediated Hydrogen Transfer. Angewandte Chemie - International Edition, 2018, 57, 3012-3021.	7.2	26
1039	IR-IR Conformation Specific Spectroscopy of Na ⁺ (Glucose) Adducts. Journal of the American Society for Mass Spectrometry, 2018, 29, 42-50.	1.2	33
1040	Influence of the Anion on the Oxidation of 5â€Hydroxymethylfurfural by Using Ionicâ€Polymerâ€Supported Platinum Nanoparticle Catalysts. ChemPlusChem, 2018, 83, 19-23.	1.3	27
1041	Iron(III)â€modified tungstophosphoric acid supported on silicaâ€pillared montmorillonite as catalysts for fructose conversion to methyl levulinate. Journal of Chemical Technology and Biotechnology, 2018, 93, 557-568.	1.6	13
1042	Selective hydrogenolysis of tetrahydrofurfuryl alcohol on Pt/WO 3 /ZrO 2 catalysts: Effect of WO 3 loading amount on activity. Catalysis Today, 2018, 303, 207-212.	2.2	40
1043	Role of Biocatalysis in Sustainable Chemistry. Chemical Reviews, 2018, 118, 801-838.	23.0	1,175
1044	Selective synthesis of 2, 5-furandicarboxylic acid by oxidation of 5-hydroxymethylfurfural over MnFe 2 O 4 catalyst. Catalysis Today, 2018, 309, 119-125.	2.2	56
1045	Tandem O–H Insertion/[3,3]‣igmatropic Rearrangement of Rhodium Carbenoids with 2â€Furfuryl Alcohols: A Strategy To Access Polysubstituted Furans. European Journal of Organic Chemistry, 2018, 2018, 759-762.	1.2	10
1046	Electrochemical characterization of pyrophosphate-based catalysts for the oxidation of furfural in aqueous phase. Journal of Electroanalytical Chemistry, 2018, 821, 126-130.	1.9	3
1047	Süße Chemie. , 2018, , 109-140.		0
1048	Cu supported on thin carbon layer-coated porous SiO ₂ for efficient ethanol dehydrogenation. Catalysis Science and Technology, 2018, 8, 472-479.	2.1	54
1049	A strategy of ketalization for the catalytic selective dehydration of biomass-based polyols over H-beta zeolite. Green Chemistry, 2018, 20, 634-640.	4.6	17
1050	Biobased polyurethane adhesive over petroleum based adhesive: Use of renewable resource. Journal of Macromolecular Science - Pure and Applied Chemistry, 2018, 55, 36-48.	1.2	42
1051	Facile production of 2,5-diformylfuran from base-free oxidation of 5-hydroxymethyl furfural over manganese–cobalt spinels supported ruthenium nanoparticles. Journal of Industrial and Engineering Chemistry, 2018, 60, 513-519.	2.9	39
1052	Improving economics of lignocellulosic biofuels: An integrated strategy for coproducing 1,5-pentanediol and ethanol. Applied Energy, 2018, 213, 585-594.	5.1	60
1053	Membrane separation of enzyme-converted biomass compounds: Recovery of xylose and production of gluconic acid as a value-added product. Separation and Purification Technology, 2018, 194, 73-80.	3.9	15
1054	Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability. Chemical Reviews, 2018, 118, 505-613.	23.0	898

#	Article	IF	CITATIONS
1055	MoO ₃ -Containing Protonated Nitrogen Doped Carbon as a Bifunctional Catalyst for One-Step Synthesis of 2,5-Diformylfuran from Fructose. ACS Sustainable Chemistry and Engineering, 2018, 6, 284-291.	3.2	48
1056	Selectivity tuning over monometallic and bimetallic dehydrogenation catalysts: effects of support and particle size. Catalysis Science and Technology, 2018, 8, 314-327.	2.1	23
1057	Catalysis performance comparison of a BrÃ,nsted acid H 2 SO 4 and a Lewis acid Al 2 (SO 4) 3 in methyl levulinate production from biomass carbohydrates. Journal of Energy Chemistry, 2018, 27, 552-558.	7.1	30
1058	Novel preparation method of bimetallic Ni-In alloy catalysts supported on amorphous alumina for the highly selective hydrogenation of furfural. Molecular Catalysis, 2018, 445, 52-60.	1.0	29
1059	Metrics of Green Chemistry and Sustainability: Past, Present, and Future. ACS Sustainable Chemistry and Engineering, 2018, 6, 32-48.	3.2	673
1060	Inorganic–organic hybrid wood in response to visible light. Journal of Materials Science, 2018, 53, 3889-3898.	1.7	7
1061	Positional Selectivity in the Hydrosilylative Partial Deoxygenation of Disaccharides by Boron Catalysts. ACS Catalysis, 2018, 8, 81-85.	5.5	26
1062	Advanced biotechnology in biorefinery: a new insight into municipal waste management to the production of high-value products. International Journal of Environmental Science and Technology, 2018, 15, 675-686.	1.8	9
1063	Solvent-free mechanochemical oxidation and reduction of biomass-derived 5-hydroxymethyl furfural. Green Chemistry, 2018, 20, 5261-5265.	4.6	19
1064	At room temperature in water: efficient hydrogenation of furfural to furfuryl alcohol with a Pt/SiC–C catalyst. RSC Advances, 2018, 8, 37243-37253.	1.7	21
1065	Microwave-assisted preparation of Ag/Ag ₂ S carbon hybrid structures from pig bristles as efficient HER catalysts. Journal of Materials Chemistry A, 2018, 6, 21516-21523.	5.2	48
1066	Production of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF): recent progress focusing on the chemical-catalytic routes. Green Chemistry, 2018, 20, 5427-5453.	4.6	445
1067	Upgrading of Carbohydrates to the Biofuel Candidate 5-Ethoxymethylfurfural (EMF). International Journal of Chemical Engineering, 2018, 2018, 1-10.	1.4	22
1069	Synthesis of Surfaceâ€Controlled CePO4and Its Application for Catalyzed Decarbonylation of Lactic Acid to Acetaldehyde. ChemistrySelect, 2018, 3, 12389-12395.	0.7	2
1070	General Protocol to Obtain Dâ€Glucosamine from Biomass Residues: Shrimp Shells, Cicada Sloughs and Cockroaches. Global Challenges, 2018, 2, 1800046.	1.8	20
1071	Chemo―and Regioselective Synthesis of Arylated γâ€Valerolactones from Bioâ€based Levulinic Acid with Aromatics Using Hâ€Î² Zeolite Catalyst. ChemCatChem, 2019, 11, 1102-1111.	1.8	10
1072	Photocatalyzed Transformation of Free Carbohydrates. Catalysts, 2018, 8, 672.	1.6	9
1073	State-of-the-art catalytic hydrogenolysis of lignin for the production of aromatic chemicals. Catalysis Science and Technology, 2018, 8, 6275-6296.	2.1	90

#	Article	IF	Citations
1074	Direct Hydrogenolysis of Cellulose into Methane under Mild Conditions. Energy & Fuels, 2018, 32, 11529-11537.	2.5	18
1075	Optimizing and predicting degree of hydrolysis of ultrasound assisted sodium hydroxide extraction of protein from tea (Camellia sinensis L.) residue using response surface methodology. Journal of Food Science and Technology, 2018, 55, 5166-5174.	1.4	12
1076	Preparation of Novel Aromaticâ€Aliphatic Poly(ketone ester)s through Condensation of Biomassâ€Derived Monomers. ChemCatChem, 2018, 10, 5377-5381.	1.8	7
1077	Shell biorefinery: A comprehensive introduction. Green Energy and Environment, 2018, 3, 318-327.	4.7	79
1078	Facile and rapid decarboxylation of glutamic acid to γ-aminobutyric acid via microwave-assisted reaction: Towards valorisation of waste gluten. Journal of Cleaner Production, 2018, 205, 1102-1113.	4.6	21
1079	Dual role of methyl-β-cyclodextrin in the emulsion polymerization of highly hydrophobic plant oil-based monomers with various unsaturations. European Polymer Journal, 2018, 108, 322-328.	2.6	15
1080	Zeolite@Pd/Al2O3 Core–Shell Catalyst for Efficient Hydrodeoxygenation of Phenolic Biomolecules. Industrial & Engineering Chemistry Research, 2018, 57, 14088-14095.	1.8	15
1081	Bio-based aliphatic polyesters from dicarboxylic acids and related sugar and amino acid derivatives. , 2018, , 317-349.		2
1082	Ni nanoparticles entrapped in nickel phyllosilicate for selective hydrogenation of guaiacol to 2-methoxycyclohexanol. Applied Catalysis A: General, 2018, 568, 231-241.	2.2	53
1083	In Situ Synthesis of Highly Dispersed Cu–Co Bimetallic Nanoparticles for Tandem Hydrogenation/Rearrangement of Bioderived Furfural in Aqueous-Phase. ACS Sustainable Chemistry and Engineering, 2018, 6, 14919-14925.	3.2	46
1084	Production and Emulsifying Effect of Esters on The Basis of Polyglycerol and Еpoxidized Derivatives of Sunflower and Soybean Oil. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 1561-1574.	0.8	3
1085	How Catalysts and Experimental Conditions Determine the Selective Hydroconversion of Furfural and 5-Hydroxymethylfurfural. Chemical Reviews, 2018, 118, 11023-11117.	23.0	585
1086	Coâ€Al Hydrotalcites: Highly Active Catalysts for the Oneâ€Pot Conversion of Fructose to 2,5â€Diformylfuran. ChemistrySelect, 2018, 3, 11388-11397.	0.7	8
1087	Biocatalytic Transformation of 5-Hydroxymethylfurfural into High-Value Derivatives: Recent Advances and Future Aspects. ACS Sustainable Chemistry and Engineering, 2018, 6, 15915-15935.	3.2	122
1088	Ru/Mn Ce1O catalysts with enhanced oxygen mobility and strong metal-support interaction: Exceptional performances in 5-hydroxymethylfurfural base-free aerobic oxidation. Journal of Catalysis, 2018, 368, 53-68.	3.1	121
1089	Chemoselective Lactonization of Renewable Succinic Acid with Heterogeneous Nanoparticle Catalysts. ACS Sustainable Chemistry and Engineering, 2018, 6, 16341-16351.	3.2	10
1090	Efficient conversion of 5-hydroxymethylfurfural to high-value chemicals by chemo- and bio-catalysis. RSC Advances, 2018, 8, 30875-30886.	1.7	130
1091	The synthesis of HMF-based α-amino phosphonates <i>via</i> one-pot Kabachnik–Fields reaction. RSC Advances, 2018, 8, 31496-31501.	1.7	25

#	Article	IF	CITATIONS
1092	Highly Active and Selective NiFe/SiO ₂ Bimetallic Catalyst with Optimized Solvent Effect for the Liquid-Phase Hydrogenation of Furfural to Furfuryl Alcohol. ACS Sustainable Chemistry and Engineering, 2018, 6, 13287-13295.	3.2	71
1093	Hydrothermal Solubilization–Hydrolysis–Dehydration of Cellulose to Glucose and 5-Hydroxymethylfurfural Over Solid Acid Carbon Catalysts. Topics in Catalysis, 2018, 61, 1912-1927.	1.3	37
1094	Catalytic Lewis Pair Polymerization of Renewable Methyl Crotonate to High-Molecular-Weight Polymers. ACS Catalysis, 2018, 8, 9877-9887.	5.5	60
1095	Fabrication of supported Au-CuO nanohybrids by reduction-oxidation strategy for efficient oxidative esterification of 5-hydroxymethyl-2-furfural into dimethyl furan-2,5-dicarboxylate. Applied Catalysis A: General, 2018, 567, 80-89.	2.2	30
1096	Contribution of Different NbOx Species in the Hydrodeoxygenation of 2,5-Dimethyltetrahydrofuran to Hexane. ACS Sustainable Chemistry and Engineering, 2018, 6, 13107-13113.	3.2	27
1097	Synthesis of Ethylâ€4â€ethoxy Pentanoate by Reductive Etherification of Ethyl Levulinate in Ethanol on Pd/SiO ₂ Catalysts. ChemSusChem, 2018, 11, 3796-3802.	3.6	5
1098	Catalytic conversion of glucose to 5-hydroxymethylfurfural using zirconium-containing metal–organic frameworks using microwave heating. RSC Advances, 2018, 8, 31618-31627.	1.7	49
1099	Protonic acid catalysis of sulfonated carbon material: Tunable and selective conversion of fructose in low-boiling point solvent. Applied Catalysis A: General, 2018, 566, 140-145.	2.2	19
1100	Glucose isomerization catalyzed by bone char and the selective production of 5-hydroxymethylfurfural in aqueous media. Sustainable Energy and Fuels, 2018, 2, 2148-2153.	2.5	35
1101	Alkene Metathesis for Transformations of Renewables. Topics in Organometallic Chemistry, 2018, , 77-102.	0.7	5
1102	Pd Nanoparticles Supported on Cellulose as a Catalyst for Vanillin Conversion in Aqueous Media. Journal of Organic Chemistry, 2018, 83, 7534-7538.	1.7	39
1103	Sustainable Conversion of Glycerol into Valueâ€Added Chemicals by Selective Electroâ€Oxidation on Ptâ€Based Catalysts. ChemElectroChem, 2018, 5, 1636-1643.	1.7	62
1104	Facile synthesis and characterization of urushiol analogues from tung oil via ultraviolet photocatalysis. Progress in Organic Coatings, 2018, 120, 240-251.	1.9	27
1105	Pinene: reichlich vorhandene und erneuerbare Bausteine für eine Vielzahl an nachhaltigen Polymeren. Angewandte Chemie, 2018, 130, 14560-14569.	1.6	10
1106	Nanoscale center-hollowed hexagon MnCo2O4 spinel catalyzed aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Catalysis Communications, 2018, 113, 19-22.	1.6	54
1107	Recent Advances in Thermo-, Photo-, and Electrocatalytic Glycerol Oxidation. ACS Catalysis, 2018, 8, 6301-6333.	5.5	305
1108	Transfer-hydrogenation of furfural and levulinic acid over supported copper catalyst. Fuel, 2018, 231, 165-171.	3.4	77
1109	Palladium-metalated porous organic polymers as recyclable catalysts for chemoselective decarbonylation of aldehydes. Chemical Communications, 2018, 54, 8446-8449.	2.2	41

#	Article	IF	CITATIONS
1110	Ruthenium Supported on Highâ€Surfaceâ€Area Zirconia as an Efficient Catalyst for the Baseâ€Free Oxidation of 5â€Hydroxymethylfurfural to 2,5â€Furandicarboxylic Acid. ChemSusChem, 2018, 11, 2083-2090.	3.6	60
1111	Zirconium tripolyphosphate as an efficient catalyst for the hydrogenation of ethyl levulinate to γ-valerolactone with isopropanol as hydrogen donor. Reaction Kinetics, Mechanisms and Catalysis, 2018, 125, 71-84.	0.8	4
1112	Optimization of specific methane yield prediction models for biogas crops based on lignocellulosic components using non-linear and crop-specific configurations. Industrial Crops and Products, 2018, 120, 330-342.	2.5	31
1113	Highly selective and efficient solvent-free transformation of bio-derived levulinic acid to γ-valerolactone by Ru(II) arene catalyst precursors. Inorganica Chimica Acta, 2018, 482, 460-468.	1.2	17
1114	Acetalization of glycerol with acetone over Co[II](Co[III] Al2â^')O4 derived from layered double hydroxide. Fuel, 2018, 233, 565-571.	3.4	34
1115	Porous Zrâ€Bibenzyldiphosphonate Nanohybrid with Extra Hydroxy Species for Enhancive Upgrading of Biomassâ€Based Levulinates. ChemistrySelect, 2018, 3, 4252-4261.	0.7	3
1116	Fructose Transformations in Ethanol using Carbon Supported Polyoxometalate Acidic Solids for 5â€Ethoxymethylfurfural Production. ChemCatChem, 2018, 10, 3746-3753.	1.8	10
1117	Synthesis and characterization of sustainable polyurethane foams based on polyhydroxyls with different terminal groups. Polymer, 2018, 149, 134-145.	1.8	37
1118	Successive C1–C2 bond cleavage: the mechanism of vanadium(<scp>v</scp>)-catalyzed aerobic oxidation of <scp>d</scp> -glucose to formic acid in aqueous solution. Physical Chemistry Chemical Physics, 2018, 20, 17942-17951.	1.3	23
1119	Mechanism of Glucose Conversion into 5-Ethoxymethylfurfural in Ethanol with Hydrogen Sulfate Ionic Liquid Additives and a Lewis Acid Catalyst. Energy & Fuels, 2018, 32, 8411-8419.	2.5	33
1120	Propylphenol to Phenol and Propylene over Acidic Zeolites: Role of Shape Selectivity and Presence of Steam. ACS Catalysis, 2018, 8, 7861-7878.	5.5	59
1121	Sulfonic polymer catalysts for converting of furfural to high-value chemicals. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2018, 40, 2342-2353.	1.2	5
1122	Ru-Photoredox-Catalyzed Decarboxylative Oxygenation of Aliphatic Carboxylic Acids through <i>N</i> -(acyloxy)phthalimide. Organic Letters, 2018, 20, 4824-4827.	2.4	44
1123	Sugar Beet Pulp as a Source of Valuable Biotechnological Products. , 2018, , 359-392.		16
1124	Direct Aldolization of Unprotected Fructose to Bio-Based Surfactants. ACS Sustainable Chemistry and Engineering, 2018, 6, 11695-11703.	3.2	4
1126	Biomass-Derived Building Block Chemicals. , 2018, , 177-200.		2
1127	Encapsulation of Nonprecious Metal into Ordered Mesoporous N-Doped Carbon for Efficient Quinoline Transfer Hydrogenation with Formic Acid. ACS Catalysis, 2018, 8, 8396-8405.	5.5	93
1129	Variations of Major Product Derived from Conversion of 5-Hydroxymethylfurfural over a Modified MOFs-Derived Carbon Material in Response to Reaction Conditions. Nanomaterials, 2018, 8, 492.	1.9	19

		CITATION REPORT		
#	Article		IF	CITATIONS
1130	Metal Carbides for Biomass Valorization. Applied Sciences (Switzerland), 2018, 8, 259.		1.3	15
1131	Synthesis of Tetrahydropyran from Tetrahydrofurfuryl Alcohol over Cu–Zno/Al2O3 ur Gaseous-Phase Condition. Catalysts, 2018, 8, 105.	der a	1.6	3
1132	The Rhodium Catalysed Direct Conversion of Phenols to Primary Cyclohexylamines. Che 2018, 10, 3689-3693.	:mCatChem,	1.8	26
1133	Mechanocatalytic Solvent-Free Esterification of Sugarcane Bagasse. Polymers, 2018, 10), 282.	2.0	10
1134	Reduction of Propionic Acid over a Pd-Promoted ReO _{<i>x</i>} /SiO _{2< Probed by X-ray Absorption Spectroscopy and Transient Kinetic Analysis. ACS Sustainab and Engineering, 2018, 6, 12353-12366.}	/sub> Catalyst le Chemistry	3.2	14
1135	Mechanocatalytic Depolymerization of Cellulose With Perfluorinated Sulfonic Acid Ionc Frontiers in Chemistry, 2018, 6, 74.	mers.	1.8	19
1136	Silylated Zeolites With Enhanced Hydrothermal Stability for the Aqueous-Phase Hydrog Levulinic Acid to Î ³ -Valerolactone. Frontiers in Chemistry, 2018, 6, 143.	enation of	1.8	24
1137	Pinenes: Abundant and Renewable Building Blocks for a Variety of Sustainable Polymers Chemie - International Edition, 2018, 57, 14362-14371.	s. Angewandte	7.2	96
1138	Effect of the surface acid sites of tungsten trioxide for highly selective hydrogenation o to ethylene glycol. Bioresource Technology, 2018, 264, 58-65.	f cellulose	4.8	23
1139	Separation of lactic acid from synthetic solutions and the mixture directly derived from by aqueous two phase extraction. Separation and Purification Technology, 2018, 204, 2	corn stover 281-289.	3.9	27
1140	Crystalline niobium phosphates with water-tolerant and adjustable Lewis acid sites for t production of lactic acid from triose sugars. Sustainable Energy and Fuels, 2018, 2, 153	he 0-1541.	2.5	26
1141	Efficient Hydroxymethylfurfural Production over Phosphoric Carbon Solid Acids. Catalys 2018, 148, 1848-1855.	is Letters,	1.4	17
1142	Enhancing the conversion of ethyl levulinate to γ-valerolactone over Ru/UiO-66 by intro sulfonic groups into the framework. RSC Advances, 2018, 8, 16611-16618.	ducing	1.7	15
1143	Design of Circular Economy Plants – The Case of Waste Textiles to Chemicals. Comp Chemical Engineering, 2018, 44, 1153-1158.	uter Aided	0.3	3
1144	Efficient Synthesis of 2,5-Furandicarboxylic Acid from Furfural Based Platform through Aqueous-Phase Carbonylation. ACS Sustainable Chemistry and Engineering, 2018, 6, 13	3192-13198.	3.2	22
1145	CoZn-ZIF-derived ZnCo ₂ O ₄ -framework for the synthesis of al glycerol. Green Chemistry, 2018, 20, 4299-4307.	cohols from	4.6	25
1146	Stimuli-Responsive Cellulose Based Hydrogels. Polymers and Polymeric Composites, 20	18, , 1-40.	0.6	0
1147	Lignocellulose Fractionation and Lignin Depolymerization Using Glycerol and Acidic Ion Identification of the Main Products by GC-MS. BioResources, 2018, 13, .	ic Liquids:	0.5	6

#	Article	IF	CITATIONS
1148	Photoinduced Deaminative Borylation of Alkylamines. Journal of the American Chemical Society, 2018, 140, 10700-10704.	6.6	310
1149	Early Transition Metal Doped Tungstite as an Effective Catalyst for Glucose Upgrading to 5-Hydroxymethylfurfural. Catalysis Letters, 2018, 148, 3093-3101.	1.4	16
1150	Iridium complexes catalysed the selective dehydrogenation of glucose to gluconic acid in water. Green Chemistry, 2018, 20, 4094-4101.	4.6	21
1151	Electrocatalytic Upgrading of Biomassâ€Derived Intermediate Compounds to Valueâ€Added Products. Chemistry - A European Journal, 2018, 24, 18258-18270.	1.7	140
1152	Dehydration of sorbitol into isosorbide over silver-exchanged phosphotungstic acid catalysts. Molecular Catalysis, 2018, 458, 19-24.	1.0	18
1154	Determination of the crucial functional groups in graphene oxide for vanadium oxide nanosheet fabrication and its catalytic application in 5-hydroxymethylfurfural and furfural oxidation. Journal of Cleaner Production, 2018, 196, 32-41.	4.6	29
1155	Kinetics and Mechanisms of Dehydration of Secondary Alcohols Under Hydrothermal Conditions. ACS Earth and Space Chemistry, 2018, 2, 821-832.	1.2	36
1156	Suppressed char agglomeration by rotary kiln reactor with alumina ball during the pyrolysis of Kraft lignin. Journal of Industrial and Engineering Chemistry, 2018, 66, 72-77.	2.9	35
1157	Copyrolysis of Lignocellulosic Biomass With Waste Plastics for Resource Recovery. , 2018, , 349-391.		10
1158	Room temperature pretreatment of pubescens by AlCl3 aqueous solution. Journal of Energy Chemistry, 2019, 31, 138-147.	7.1	6
1159	Perspective: green polyurethane synthesis for coating applications. Polymer International, 2019, 68, 826-831.	1.6	45
1160	Catalytic Transfer Hydrogenation Using Biomass as Hydrogen Source. ChemSusChem, 2019, 12, 3094-3098.	3.6	31
1161	Catalytic conversion of cellulose-based biomass and glycerol to lactic acid. Journal of Energy Chemistry, 2019, 32, 138-151.	7.1	74
1162	Synthesis, X-ray diffraction studies, thermal behavior and catalytic investigation of Cu(II) complexes for levulinic acid-based polyol esters. Journal of Molecular Structure, 2019, 1175, 566-576.	1.8	3
1163	Efficient hydrolysis of hemicellulose to furfural by novel superacid SO4H-functionalized ionic liquids. Green Energy and Environment, 2019, 4, 49-55.	4.7	80
1164	Co-Aromatization of Furan and Methanol over ZSM-5—A Pathway to Bio-Aromatics. ACS Catalysis, 2019, 9, 8547-8554.	5.5	29
1165	Selective Conversion of Furoic Acid Derivatives to Multiâ€&ubstituted Furanacrylate by a Ruthenium Catalyst. ChemCatChem, 2019, 11, 5124-5130.	1.8	11
1166	Urea-Appended Amino Acid To Vitalize Yeast Growth, Enhance Fermentation, and Promote Ethanol Production. ACS Omega, 2019, 4, 13172-13179.	1.6	4

# 1167	ARTICLE Levulinic Acid Derived Reusable Cobalt-Nanoparticles-Catalyzed Sustainable Synthesis of Î ³ -Valerolactone. ACS Sustainable Chemistry and Engineering, 2019, 7, 14756-14764.	IF 3.2	CITATIONS
1168	Disrotatory Ring-Opening of Furans Gives Stereocontrol. Journal of Organic Chemistry, 2019, 84, 11061-11067.	1.7	4
1169	Enhanced corn-stover fermentation for biogas production by NaOH pretreatment with CaO additive and ultrasound. Journal of Cleaner Production, 2019, 238, 117813.	4.6	52
1170	Monodisperse nanoparticles for catalysis and nanomedicine. Nanoscale, 2019, 11, 18946-18967.	2.8	61
1171	Kinetics and Mechanism of Catalytic Oxidation of 5-Methylfurfural to 2,5-Furandicarboxylic Acid with Co/Mn/Br Catalyst. Industrial & Engineering Chemistry Research, 2019, 58, 19009-19021.	1.8	12
1172	Highly Selective Hydrogenation of Furfural to Cyclopentanone over a NiFe Bimetallic Catalyst in a Methanol/Water Solution with a Solvent Effect. ACS Sustainable Chemistry and Engineering, 2019, 7, 15221-15229.	3.2	66
1173	Interplay of Lewis and BrÃ,nsted Acid Sites in Zr-Based Metal–Organic Frameworks for Efficient Esterification of Biomass-Derived Levulinic Acid. ACS Applied Materials & Interfaces, 2019, 11, 32090-32096.	4.0	44
1174	Photocatalytic conversion of lignocellulosic biomass to valuable products. Green Chemistry, 2019, 21, 4266-4289.	4.6	180
1175	Synthesis of 2-Acyl-3,4-dihydronaphthalenes by Silver-Promoted Oxidative C–C σ-Bond Acylation/Arylation of Alkylidenecyclopropanes with α-Ketoacids. Journal of Organic Chemistry, 2019, 84, 9984-9994.	1.7	15
1176	Formic acid as a hydrogen source for the iridium-catalyzed reductive amination of levulinic acid and 2-formylbenzoic acid. Catalysis Science and Technology, 2019, 9, 4077-4082.	2.1	21
1177	Mesoporous ZrO ₂ Nanopowder Catalysts for the Synthesis of 5-Hydroxymethylfurfural. ACS Applied Nano Materials, 2019, 2, 5125-5131.	2.4	18
1178	Activity of a Heterogeneous Catalyst in Deep Eutectic Solvents: The Case of Carbohydrate Conversion into 5-Hydroxymethylfurfural. ACS Sustainable Chemistry and Engineering, 2019, 7, 13359-13368.	3.2	42
1179	Hydrodeoxygenation of phenol over Ni-based bimetallic single-atom surface alloys: mechanism, kinetics and descriptor. Catalysis Science and Technology, 2019, 9, 4314-4326.	2.1	65
1180	Catalytic Transformation of Biomass Derivatives to Valueâ€Added Chemicals and Fuels in Continuous Flow Microreactors. ChemCatChem, 2019, 11, 4671-4708.	1.8	67
1181	Catalytic Approaches to Monomers for Polymers Based on Renewables. ACS Catalysis, 2019, 9, 8012-8067.	5.5	146
1182	Valorization of wood biomass-lignin via selective bond scission: A minireview. Applied Catalysis B: Environmental, 2019, 257, 117936.	10.8	73
1183	Synergistic effects and kinetic evidence of a transition metal-tin modified Beta zeolite on conversion of Miscanthus to lactic acid. Applied Catalysis A: General, 2019, 583, 117126.	2.2	21
1184	Decarboxylative sulfenylation of amino acids <i>via</i> metallaphotoredox catalysis. Organic Chemistry Frontiers, 2019, 6, 3224-3227.	2.3	25

#	Article	IF	CITATIONS
1185	Insights on the Oneâ€Pot Formation of 1,5â€Pentanediol from Furfural with Coâ^'Al Spinelâ€based Nanoparticles as an Alternative to Noble Metal Catalysts. ChemCatChem, 2019, 11, 4944-4953.	1.8	33
1186	Changes in oxygen functionality of soluble portions and residues from bagasse sub- and supercritical alkanolyses: Identification of complex structural fragments. Biomass and Bioenergy, 2019, 127, 105288.	2.9	3
1187	Highly Selective Oxidation of 5-Hydroxymethylfurfural to 5-Hydroxymethyl-2-Furancarboxylic Acid by a Robust Whole-Cell Biocatalyst. Catalysts, 2019, 9, 526.	1.6	26
1188	MIL-53-NH2-derived carbon-Al2O3 composites supported Ru catalyst for effective hydrogenation of levulinic acid to Î ³ -valerolactone under ambient conditions. Molecular Catalysis, 2019, 475, 110478.	1.0	24
1189	Electrochemical conversion of a bio-derivable hydroxy acid to a drop-in oxygenate diesel fuel. Energy and Environmental Science, 2019, 12, 2406-2411.	15.6	45
1190	Solvent issues in the Baylis-Hillman reaction of 5-hydroxymethyl furfural (HMF) and 5-glucosyloxymethyl furfural (GMF). Towards no-solvent conditions. Pure and Applied Chemistry, 2019, 91, 1149-1158.	0.9	2
1191	Design of graphene oxide by a oneâ€pot synthetic route for catalytic conversion of furfural alcohol to ethyl levulinate. Journal of Chemical Technology and Biotechnology, 2019, 94, 3093-3101.	1.6	14
1192	Emulsion Polymerization of Dihydroeugenol-, Eugenol-, and Isoeugenol-Derived Methacrylates. Industrial & Engineering Chemistry Research, 2019, 58, 21155-21164.	1.8	27
1193	Glycerol-Derived Solvents: Synthesis and Properties of Symmetric Glyceryl Diethers. ACS Sustainable Chemistry and Engineering, 2019, 7, 13004-13014.	3.2	27
1194	Selective hydrothermal reductions using geomimicry. Green Chemistry, 2019, 21, 4159-4168.	4.6	11
1195	B(C ₆ F ₅) ₃ â€Catalyzed sp ³ C—Si Bond Forming Consecutive Reactions. Chinese Journal of Chemistry, 2019, 37, 1057-1071.	2.6	21
1196	Multiple Hydrogen-Bonding Interactions Enhance the Solubility of Starch in Natural Deep Eutectic Solvents: Molecule and Macroscopic Scale Insights. Journal of Agricultural and Food Chemistry, 2019, 67, 12366-12373.	2.4	50
1197	Inverse Bimetallic RuSn Catalyst for Selective Carboxylic Acid Reduction. ACS Catalysis, 2019, 9, 11350-11359.	5.5	15
1198	Production of biofuel precursors and value-added chemicals from hydrolysates resulting from hydrothermal processing of biomass: A review. Biomass and Bioenergy, 2019, 130, 105397.	2.9	62
1199	Lipase and Metal Chloride Hydrate-Natural Deep Eutectic Solvents Synergistically Catalyze Amidation Reaction via Multiple Noncovalent Bond Interactions. ACS Sustainable Chemistry and Engineering, 2019, 7, 18174-18184.	3.2	16
1200	Study on influence of dam foundation damage on seismic safety of gravity dam under combined action of main shock and aftershock. IOP Conference Series: Earth and Environmental Science, 2019, 304, 042063.	0.2	1
1201	Selective synthesis of 1,3-propanediol from glycidol over a carbon film encapsulated Co catalyst. Catalysis Science and Technology, 2019, 9, 5022-5030.	2.1	6
1202	Smart Car Based on Open MV Vision System. IOP Conference Series: Earth and Environmental Science, 2019, 310, 032054.	0.2	1

#	Article	IF	CITATIONS
1203	Cuâ^'Ni Bimetallic Hydroxide Catalyst for Efficient Electrochemical Conversion of 5â€Hydroxymethylfurfural to 2,5â€Furandicarboxylic Acid. ChemElectroChem, 2019, 6, 5797-5801.	1.7	45
1204	Disruption of a putative mitochondrial oxaloacetate shuttle protein in Aspergillus carbonarius results in secretion of malic acid at the expense of citric acid production. BMC Biotechnology, 2019, 19, 72.	1.7	11
1205	Kinetic triplet of Colombian sawmill wastes using thermogravimetric analysis. Heliyon, 2019, 5, e02723.	1.4	15
1206	Selective Hydrogenolysis of α-C–O Bond in Biomass-Derived 2-Furancarboxylic Acid to 5-Hydroxyvaleric Acid on Supported Pt Catalysts at Near-Ambient Temperature. ACS Catalysis, 2019, 9, 11413-11425.	5.5	21
1207	Insight into the Oxidation Mechanism of Furanic Compounds on Pt(111). ACS Catalysis, 2019, 9, 11360-11370.	5.5	10
1208	The Role of Gold Nanoparticles on Different Supports for the In-Air Conversion of Levulinic Acid into Î ³ -Valerolactone with Formic Acid as an Alternative Hydrogen Source. Russian Journal of Applied Chemistry, 2019, 92, 1316-1323.	0.1	5
1209	A Mini-Review on Hydrogen-Rich Syngas Production by Thermo-Catalytic and Bioconversion of Biomass and Its Environmental Implications. Frontiers in Energy Research, 2019, 7, .	1.2	32
1210	Alternating Multilayer Structural Epoxy Composite Coating for Corrosion Protection of Steel. Macromolecular Materials and Engineering, 2019, 304, 1900374.	1.7	71
1211	Co-catalyzed Hydrogenation of Levulinic Acid to γ-Valerolactone under Atmospheric Pressure. ACS Sustainable Chemistry and Engineering, 2019, 7, 18236-18241.	3.2	32
1212	Beyond Expertâ€Level Performance Prediction for Rechargeable Batteries by Unsupervised Machine Learning. Advanced Intelligent Systems, 2019, 1, 1900102.	3.3	9
1213	Catalytic Oneâ€Pot Conversion of Renewable Platform Chemicals to Hydrocarbon and Ether Biofuels through Tandem Hf(OTf) ₄ +Pd/C Catalysis. ChemSusChem, 2019, 12, 5217-5223.	3.6	12
1214	Optimizing the Aromatic Product Distribution from Catalytic Fast Pyrolysis of Biomass Using Hydrothermally Synthesized Ga-MFI Zeolites. Catalysts, 2019, 9, 854.	1.6	8
1215	Catalytic Conversion of Microcrystalline Cellulose to Glucose and 5-Hydroxymethylfurfural over a Niobic Acid Catalyst. Industrial & Engineering Chemistry Research, 2019, 58, 17675-17681.	1.8	20
1216	Selective Hydrogenation of Furfural to Tetrahydrofurfuryl Alcohol Using Supported Nickel–Cobalt Catalysts. Industrial & Engineering Chemistry Research, 2019, 58, 16138-16152.	1.8	45
1217	Metal–Organic-Framework-Derived Co/Cu–Carbon Nanoparticle Catalysts for Furfural Hydrogenation. ACS Applied Nano Materials, 2019, 2, 6040-6056.	2.4	43
1218	Formation of Five-Membered Carbocycles from <scp>d</scp> -Glucose: A Concise Synthesis of 4-Hydroxy-2-(hydroxymethyl)cyclopentenone. Bulletin of the Chemical Society of Japan, 2019, 92, 1324-1328.	2.0	4
1219	Multi-functional metal-organic framework and metal-organic framework-zeolite nanocomposite for the synthesis of carbohydrate derived chemicals via one-pot cascade reaction. Journal of Colloid and Interface Science, 2019, 557, 144-155.	5.0	28
1220	A rare oxidation of camphene to acid and aldehyde in the presence of Lacunar Keggin heteropoly salts. Molecular Catalysis, 2019, 478, 110589.	1.0	14

			(
#	Article	IF	CITATIONS
1221	Recent Advances in Catalytic Hydrogenation of Furfural. Catalysts, 2019, 9, 796.	1.6	153
1222	Catalytic transfer hydrogenation of oleic acid to octadecanol over magnetic recoverable cobalt catalysts. Green Chemistry, 2019, 21, 314-320.	4.6	63
1223	Relative saccharification of waste paper during successive treatment with garden snail (Cornu) Tj ETQq0 0 0 rgBT	· /Qverlock	ع 10 Tf 50 66

1224	Xylochemical Synthesis of Cytotoxic 2-Aminophenoxazinone-Type Natural Products Through Oxidative Cross Coupling. ACS Sustainable Chemistry and Engineering, 2019, 7, 4414-4419.	3.2	24
1225	Molecular mechanism comparison of decarbonylation with deoxygenation and hydrogenation of 5-hydroxymethylfurfural catalyzed by palladium acetate. Physical Chemistry Chemical Physics, 2019, 21, 3795-3804.	1.3	8
1226	Radical polymerization of biobased monomers in aqueous dispersed media. Green Chemistry, 2019, 21, 36-53.	4.6	69
1227	Theoretical investigation on the mechanism of glucose-to-fructose isomerization synergistically catalyzed by MnCl ₂ and [C ₄ SO ₃ HMIM][CH ₃ SO ₃] in [BMIM]Cl. New Journal of Chemistry, 2019, 43, 4022-4028.	1.4	4
1228	Selective utilization of methoxy groups in lignin for <i>N</i> -methylation reaction of anilines. Chemical Science, 2019, 10, 1082-1088.	3.7	33
1229	Cesium-functionalized pectin as a cathode interlayer for polymer solar cells. Journal of Materials Chemistry C, 2019, 7, 1592-1596.	2.7	10
1230	Leatherâ€Promoted Transformation of Glucose into 5â€Hydroxymethylfurfural and Levoglucosenone. ChemSusChem, 2019, 12, 1437-1442.	3.6	8
1231	D-Excess-LaA Production Directly from Biomass by Trivalent Yttrium Species. IScience, 2019, 12, 132-140.	1.9	19
1232	Proteinâ€Rich Biomass Waste as a Resource for Future Biorefineries: State of the Art, Challenges, and Opportunities. ChemSusChem, 2019, 12, 1272-1303.	3.6	60
1233	Optimization of Lignin Extraction from Pine Wood for Fast Pyrolysis by Using a Î ³ -Valerolactone-Based Binary Solvent System. ACS Sustainable Chemistry and Engineering, 2019, 7, 4058-4068.	3.2	21
1234	Hydrocarbon Synthesis via Photoenzymatic Decarboxylation of Carboxylic Acids. Journal of the American Chemical Society, 2019, 141, 3116-3120.	6.6	123
1235	Isocyanideâ€Based Multicomponent Reactions: A Concise Approach to 2â€Aminoâ€3â€perfluoroalkylfurans Using Methyl Perfluoroalkâ€2â€ynoates as Fluorinated Building Blocks. Asian Journal of Organic Chemistry, 2019, 8, 710-715.	1.3	9
1236	Sustainable methine sources for the synthesis of heterocycles under metal- and peroxide-free conditions. Green Chemistry, 2019, 21, 979-985.	4.6	41
1237	Ironâ€Catalysed Switchable Synthesis of Pyrrolidines <i>vs</i> Pyrrolidinones by Reductive Amination of Levulinic Acid Derivatives <i>via</i> Hydrosilylation. Advanced Synthesis and Catalysis, 2019, 361, 1781-1786.	2.1	43
1238	Synergistic Catalytic Mechanism of Acidic Silanol and Basic Alkylamine Bifunctional Groups Over SBA-15 Zeolite toward Aldol Condensation, Journal of Physical Chemistry C, 2019, 123, 4903-4913	1.5	20

#	Article	IF	CITATIONS
1239	One pot selective conversion of furfural to γ-valerolactone over zirconia containing heteropoly tungstate supported on β-zeolite catalyst. Molecular Catalysis, 2019, 466, 52-59.	1.0	52
1240	Origins of complex solvent effects on chemical reactivity and computational tools to investigate them: a review. Reaction Chemistry and Engineering, 2019, 4, 165-206.	1.9	108
1241	Cellulose conversion to ethylene glycol by tungsten oxide-based catalysts. Molecular Catalysis, 2019, 473, 110400.	1.0	22
1242	Bifunctional ZSM-5/hydrotalcite composite for enhanced production of 5-hydroxymethylfurfural from glucose. New Journal of Chemistry, 2019, 43, 9483-9490.	1.4	16
1243	Hydrogenolysis of Biomassâ€Derived 5â€Hydroxymethylfurfural to Produce 2,5â€Dimethylfuran Over Ruâ€ZrO ₂ â€MCMâ€41 Catalyst. ChemistrySelect, 2019, 4, 6080-6089.	0.7	12
1244	Continuous Hydrogenation of Ethyl Levulinate to 1,4â€Pentanediol over 2.8Cuâ€3.5Fe/SBAâ€15 Catalyst at Low Loading: The Effect of Fe Doping. ChemSusChem, 2019, 12, 3837-3848.	3.6	27
1245	Continuous flow conversion of alkyl levulinates into \hat{I}^3 -valerolactone in the presence of Ru/C as catalyst. Molecular Catalysis, 2019, 475, 110456.	1.0	17
1246	Molybdenum atalyzed Oxidative Cleavage of Raw Poplar Sawdust into Monoâ€Aromatics and Organic Acid Esters. Asian Journal of Organic Chemistry, 2019, 8, 1348-1353.	1.3	1
1247	Naphthoate based lubricating oil with high oxidation stability and lubricity. Tribology International, 2019, 138, 204-210.	3.0	15
1248	Catalytic Activity of the H ₂ 0/CO ₂ System in Lignocellulosic-Material Decomposition. Industrial & Engineering Chemistry Research, 2019, 58, 9239-9245.	1.8	4
1249	High Aluminum Content Beta Zeolite as an Active Lewis Acid Catalyst for γ-Valerolactone Decarboxylation. Industrial & Engineering Chemistry Research, 2019, 58, 11841-11848.	1.8	12
1250	Selective Conversion of Furfural to Cyclopentanone and Cyclopentanol by Magnetic Cuâ€Fe ₃ O ₄ NPs Catalyst. ChemistrySelect, 2019, 4, 5845-5852.	0.7	15
1251	One-Pot Synthesis of 5-Hydroxymethylfurfural from Glucose by BrÃ,nsted Acid-Free Bifunctional Porous Coordination Polymers in Water. ACS Omega, 2019, 4, 9316-9323.	1.6	16
1252	Exploring the Keggin-Type Heteropolyacid-Catalyzed Reaction Pathways of the Î ² -Pinene with Alkyl Alcohols. Catalysis Letters, 2019, 149, 2844-2853.	1.4	6
1253	Metal-functionalized carbon nanotubes for biomass conversion: base-free highly efficient and recyclable catalysts for aerobic oxidation of 5-hydroxymethylfurfural. New Journal of Chemistry, 2019, 43, 10601-10609.	1.4	13
1254	Electron Donor–Acceptor Complex Enabled Decarboxylative Sulfonylation of Cinnamic Acids under Visible-Light Irradiation. Journal of Organic Chemistry, 2019, 84, 8691-8701.	1.7	52
1255	Eugenol: A Promising Building Block for Synthesis of Radically Polymerizable Monomers. Macromolecular Chemistry and Physics, 2019, 220, 1900179.	1.1	36
1256	Damaged starch derived carbon foam-supported heteropolyacid for catalytic conversion of cellulose: Improved catalytic performance and efficient reusability. Bioresource Technology, 2019, 288, 121532.	4.8	31

#	Article	IF	CITATIONS
1257	Transition metal carbide catalysts for biomass conversion: A review. Applied Catalysis B: Environmental, 2019, 254, 510-522.	10.8	149
1258	The Role of BrÃ,nsted and Waterâ€Tolerant Lewis Acid Sites in the Cascade Aqueousâ€Phase Reaction of Triose to Lactic Acid. ChemCatChem, 2019, 11, 3054-3063.	1.8	45
1259	Aerobic oxidation of C ₄ –C ₆ α,ï‰-diols to the diacids in base-free medium over zirconia-supported (bi)metallic catalysts. New Journal of Chemistry, 2019, 43, 9873-9885.	1.4	8
1260	How corporate social (ir)responsibility in the textile sector is defined, and its impact on ethical sustainability: An analysis of 133 concepts. Corporate Social Responsibility and Environmental Management, 2019, 26, 1285-1306.	5.0	49
1261	Advances in catalytic conversion of lignocellulose to chemicals and liquid fuels. Journal of Energy Chemistry, 2019, 36, 74-86.	7.1	94
1262	Organosolv Treatment Using 1-Butanol and Degradation of Extracted Lignin Fractions into Phenolic Compounds over Iron Oxide Catalyst. Journal of the Japan Petroleum Institute, 2019, 62, 37-44.	0.4	12
1263	Mechanistic study of the hydrodeoxygenation of lignin-derived oxygenates on a CoPt bimetallic catalyst: reaction of anisole on Co-modified Pt(111). JPhys Energy, 2019, 1, 015003.	2.3	6
1264	Alternative Recovery and Valorization of Metals from Exhausted Catalytic Converters in a New Smart Polymetallic Catalyst. ChemistrySelect, 2019, 4, 4624-4632.	0.7	0
1265	Renewable routes to monomeric precursors of nylon 66 and nylon 6 from food waste. Journal of Cleaner Production, 2019, 227, 624-633.	4.6	50
1266	Exploring the Treasure of Plant Molecules With Integrated Biorefineries. Frontiers in Plant Science, 2019, 10, 478.	1.7	7
1267	High production of levulinic acid from cellulosic feedstocks being catalyzed by temperature-responsive transition metal substituted heteropolyacids. Renewable Energy, 2019, 141, 802-813.	4.3	35
1268	Hydrophobic and Bulk Polymerizable Protein-Based Elastomers Compatibilized with Surfactants. ACS Sustainable Chemistry and Engineering, 2019, 7, 9103-9111.	3.2	6
1269	Deoxydehydration of glycerol in presence of rhenium compounds: reactivity and mechanistic aspects. Catalysis Science and Technology, 2019, 9, 3036-3046.	2.1	23
1270	Noble and Base-Metal Nanoparticles Supported on Mesoporous Metal Oxides: Efficient Catalysts for the Selective Hydrogenation of Levulinic Acid to Î ³ -Valerolactone. Catalysis Letters, 2019, 149, 2807-2822.	1.4	23
1271	Choline chloride functionalized zeolites for the conversion of biomass derivatives to 5-hydroxymethylfurfural. Applied Catalysis A: General, 2019, 580, 59-70.	2.2	23
1272	Preparation and Characterization of Acylcaramel. Journal of Agricultural and Food Chemistry, 2019, 67, 5614-5620.	2.4	3
1273	Cu/C atalyzed Hydrogenolysis of Sorbitol to Glycols–On the Influence of Particle Size and Base. ChemCatChem, 2019, 11, 4123-4129.	1.8	18
1274	Liquid–Liquid Equilibria for Ternary Mixtures of γ-Valerolactone + <i>n</i> -Tetradecane + (Butanoic) Tj ETQq1 I 2019, 64, 2045-2051.	l 0.78431 1.0	4 rgBT /Over 9

ARTICLE IF CITATIONS Mesoporous Doped Tungsten Oxide for Glucose Dehydration to 5-Hydroxymethylfurfural. ACS 1275 3.2 32 Sustainable Chemistry and Engineering, 2019, 7, 7552-7562. Advances in Sustainable Catalysis: A Computational Perspective. Frontiers in Chemistry, 2019, 7, 182. 1276 1.8 Injection molded biocomposites from polypropylene and lignin: Effect of compatibilizers on 1277 2.540 interfacial adhesion and performance. Industrial Crops and Products, 2019, 132, 497-510. Understanding the Mechanocatalytic Conversion of Biomass: A Lowâ€Energy Oneâ€Step Reaction Mechanism by Applying Mechanical Force. Angewandte Chemie, 2019, 131, 5286-5289. Catalytic conversion of furfuryl alcohol or levulinic acid into alkyl levulinates using a sulfonic 1279 1.6 59 acid-functionalized hafnium-based MOF. Catalysis Communications, 2019, 124, 62-66. AuPdâ€Fe₃O₄ Nanoparticleâ€Catalyzed Synthesis of Furanâ€2,5â€dimethylcarboxylate from 5â€Hydroxymethylfurfural under Mild Conditions. ChemSusChem, 2019, 12, 2310-2317. 1280 A consolidated road map for economically gainful efficient utilization of agroâ€wastes for ecoâ€friendly 1281 1.9 9 products. Biofuels, Bioproducts and Biorefining, 2019, 13, 899-911. A novel shape-stabilization strategy for phase change thermal energy storage. Journal of Materials 5.2 60 Chemistry A, 2019, 7, 8194-8203 Catalytic glycosylation of glucose with alkyl alcohols over sulfonated mesoporous carbons. 1283 1.0 16 Molecular Catalysis, 2019, 468, 125-129. One-step fabrication of Ni-embedded hierarchically-porous carbon microspheres for levulinic acid 1284 6.6 53 hydrogenation. Chemical Engineering Journal, 2019, 369, 386-393. A Freeâ€Radical Reduction and Cyclization of Alkyl Halides Mediated by FeCl 2. ChemCatChem, 2019, 11, 1285 4 1.8 2438-2442. Reductive amination of ethyl levulinate to pyrrolidones over AuPd nanoparticles at ambient hydrogen 1286 4.6 44 pressure. Green Chemistry, 2019, 21, 1895-1899. Insight of the stability and activity of platinum single atoms on ceria. Nano Research, 2019, 12, 1287 5.8 121 1401-1409. Selective Hydrodeoxygenation of Guaiacol to Phenolics by Ni/Anatase TiO₂ Catalyst Formed by Cross-Surface Migration of Ni and TiO₂. ACS Catalysis, 2019, 9, 3551-3563. 1288 5.5 84 Porous Zr–Thiophenedicarboxylate Hybrid for Catalytic Transfer Hydrogenation of Bio-Based 1289 1.4 41 Furfural to Furfuryl Alcohol. Catalysis Letters, 2019, 149, 1845-1855. A Group Contribution Equation of State for Biorefineries. GCA-EOS Extension to Bioether Fuels and 1290 Their Mixtures with <i>n'</i>-Alkanes. Journal of Chemical & amp; Engineering Data, 2019, 64, 2170-2185. Metal–Organic Framework Supported Palladium Nanoparticles: Applications and Mechanisms. Particle 1291 1.2 22 and Particle Systems Characterization, 2019, 36, 1800557. Catalytic Reduction of Cyclic Ethers with Hydrosilanes. Chemistry - an Asian Journal, 2019, 14, 2048-2066.

#	Article	IF	CITATIONS
1293	Essential Oils as Chemical Reagents in Heterocyclic Synthesis. Natural Product Communications, 2019, 14, 1934578X1901400.	0.2	2
1295	Catalytic transfer hydrogenation of furfural into furfuryl alcohol over Ni–Feâ€layered double hydroxide catalysts. Journal of the Chinese Chemical Society, 2019, 66, 1610-1618.	0.8	11
1296	Centrifugal partition chromatography as a fractionation tool for the analysis of lignocellulosic biomass products by liquid chromatography coupled to mass spectrometry. Journal of Chromatography A, 2019, 1597, 159-166.	1.8	20
1297	Depolymerization and hydrodeoxygenation of lignin to aromatic hydrocarbons with a Ru catalyst on a variety of Nb-based supports. Chinese Journal of Catalysis, 2019, 40, 609-617.	6.9	57
1298	Nanostructured Metal Catalysts for Selective Hydrogenation and Oxidation of Cellulosic Biomass to Chemicals. Chemical Record, 2019, 19, 1952-1994.	2.9	10
1299	Understanding the Mechanocatalytic Conversion of Biomass: A Lowâ€Energy Oneâ€Step Reaction Mechanism by Applying Mechanical Force. Angewandte Chemie - International Edition, 2019, 58, 5232-5235.	7.2	23
1300	Amphiphilic cellulose supported PdNi alloy nanoparticles towards biofuel upgrade under mild conditions. Catalysis Communications, 2019, 122, 43-46.	1.6	10
1301	Selective C–O Bond Cleavage of Lignin Systems and Polymers Enabled by Sequential Palladium-Catalyzed Aerobic Oxidation and Visible-Light Photoredox Catalysis. ACS Catalysis, 2019, 9, 2252-2260.	5.5	95
1302	Synergistic Effect of Different Species in Stannic Chloride Solution on the Production of Levulinic Acid from Biomass. ACS Sustainable Chemistry and Engineering, 2019, 7, 5176-5183.	3.2	40
1303	Hydrogenolysis of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran under Mild Conditions without Any Additive. ACS Sustainable Chemistry and Engineering, 2019, 7, 5711-5716.	3.2	33
1304	Highly efficient transfer hydrodeoxygenation of vanillin over Sn4+-induced highly dispersed Cu-based catalyst. Applied Surface Science, 2019, 480, 548-556.	3.1	42
1305	Isolation of phenolic monomers from kraft lignin using a magnetically recyclable TEMPO nanocatalyst. Green Chemistry, 2019, 21, 785-791.	4.6	17
1306	Synthesis of 5-hydroxymethylfurfural from glucose using H-Beta catalyst treated with phosphoric acid in one-pot biphasic solvent system. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2019, 41, 2769-2777.	1.2	4
1307	Theoretical Study of Ruthenium(0)-Catalyzed Transfer Hydrogenative Cycloaddition of Cyclohexadiene and Norbornadiene with 1,2-Diols to Form Bridged Carbocycles. Journal of Organic Chemistry, 2019, 84, 3377-3387.	1.7	3
1308	Recent Advances in the Catalytic Production of Platform Chemicals from Holocellulosic Biomass. ChemCatChem, 2019, 11, 2022-2042.	1.8	92
1309	Sulfonated carbon derived from the residue obtained after recovery of essential oil from the leaves of <i>Cinnamomum longepaniculatum </i> using BrÃ,nsted acid ionic liquid, and its use in the preparation of ellagic acid and gallic acid. RSC Advances, 2019, 9, 5142-5150.	1.7	14
1311	Kinetic analysis of delignification of cedar wood during organosolv treatment with a two-phase solvent using the unreacted-core model. Chemical Engineering Journal, 2019, 368, 71-78.	6.6	25
1312	Ag- and Cu-Promoted Mesoporous Ta-SiO2 Catalysts Prepared by Non-Hydrolytic Sol-Gel for the Conversion of Ethanol to Butadiene. Catalysts, 2019, 9, 920.	1.6	13
CITATION R	EPORT		
------------	-------	---------	
	IF	Citatio	

#	Article	IF	CITATIONS
1313	Mixed-Ligand Ni(II), Co(II) and Fe(II) Complexes as Catalysts for Esterification of Biomass-Derived Levulinic Acid with Polyol and in Situ Reduction via Hydrogenation with NaBH4. Journal of Renewable Materials, 2019, 7, 731-748.	1.1	1
1314	Selective Conversion of Glucose to 5-Hydroxymethylfurfural by Using L-Type Zeolites with Different Morphologies. Catalysts, 2019, 9, 1073.	1.6	15
1315	Chiral catalysts derived from biomass: design, synthesis and applications in asymmetric catalysis. Vietnam Journal of Chemistry, 2019, 57, 670-680.	0.7	0
1316	The selective aerobic oxidation of 5-hydroxymethylfurfural to produce 2,5-diformylfuran using Nitrogen-doped porous carbons as catalysts. New Carbon Materials, 2019, 34, 593-599.	2.9	12
1317	An integrated strategy for the production of hydrocarbon fuels from lignocellulosic biomass. , 2019, , \cdot		0
1318	Deoxydehydration of polyols catalyzed by a molybdenum dioxo-complex supported by a dianionic ONO pincer ligand. Dalton Transactions, 2019, 48, 16304-16311.	1.6	19
1319	Solvent basicity controlled deformylation for the formation of furfural from glucose and fructose. Green Chemistry, 2019, 21, 6146-6153.	4.6	39
1320	Cellulose conversion into lactic acid over supported HPA catalysts. Green Chemistry, 2019, 21, 6161-6178.	4.6	42
1321	Selective hydrogenation of 5-HMF to 2,5-DMF over a magnetically recoverable non-noble metal catalyst. Green Chemistry, 2019, 21, 6390-6406.	4.6	59
1322	Selective hydrogenolysis of 2-furancarboxylic acid to 5-hydroxyvaleric acid derivatives over supported platinum catalysts. Green Chemistry, 2019, 21, 6133-6145.	4.6	26
1323	Synthesis of long-chain polyols from the Claisen condensation of Î ³ -valerolactone. Green Chemistry, 2019, 21, 6441-6450.	4.6	3
1324	Synthesis and Evaluation of Acidâ€base Biâ€functional MOFs Catalyst Supported on PVDF Membrane for Glucose Dehydration to 5â€HMF. ChemistrySelect, 2019, 4, 13182-13190.	0.7	9
1325	Tailor-made biofuel 2-butyltetrahydrofuran from the continuous flow hydrogenation and deoxygenation of furfuralacetone. Green Chemistry, 2019, 21, 6299-6306.	4.6	15
1326	The direct synthesis of a bio-lubricant by the oligomerization of methyllinoleate <i>via</i> castor oil. Green Chemistry, 2019, 21, 6658-6666.	4.6	9
1327	Activating molecular oxygen with Au/CeO2 for the conversion of lignin model compounds and organosolv lignin. RSC Advances, 2019, 9, 31070-31077.	1.7	11
1328	Modification of Poly(Ethylene 2,5-Furandicarboxylate) with Poly(Ethylene glycol) for Biodegradable Copolyesters with Good Mechanical Properties and Spinnability. Polymers, 2019, 11, 2105.	2.0	18
1329	Selective hydrogenolysis of 5-(hydroxymethyl)furfural over Pd/C catalyst to 2,5-dimethylfuran. Journal of Saudi Chemical Society, 2019, 23, 439-451.	2.4	35
1330	Recent advances for sustainable production of levulinic acid in ionic liquids from biomass: Current scenario, opportunities and challenges. Renewable and Sustainable Energy Reviews, 2019, 102, 266-284.	8.2	69

#	Article	IF	CITATIONS
1331	Carbon Support with Tunable Porosity Prepared by Carbonizing Chitosan for Catalytic Oxidation of 5-Hydroxylmethylfurfural. ACS Sustainable Chemistry and Engineering, 2019, 7, 3742-3748.	3.2	43
1332	Propylene glycol oxidation with hydrogen peroxide over Zr-containing metal-organic framework UiO-66. Catalysis Today, 2019, 333, 47-53.	2.2	25
1333	X-ray tomography measurements identify structure-reactivity correlations in catalysts for oxygenates coupling reactions. Catalysis Today, 2019, 336, 186-192.	2.2	10
1334	Hydrotreatment of Kraft Lignin to Alkylphenolics and Aromatics Using Ni, Mo, and W Phosphides Supported on Activated Carbon. ACS Sustainable Chemistry and Engineering, 2019, 7, 2044-2055.	3.2	43
1335	Online photoionization mass spectrometric evaluation of catalytic co-pyrolysis of cellulose and polyethylene over HZSM-5. Bioresource Technology, 2019, 275, 130-137.	4.8	34
1336	Biocatalytic Production of Amino Carbohydrates through Oxidoreductase and Transaminase Cascades. ChemSusChem, 2019, 12, 848-857.	3.6	32
1337	Direct synthesis of metal-organic frameworks catalysts with tunable acid–base strength for glucose dehydration to 5-hydroxymethylfurfural. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 93-103.	2.7	34
1338	Quantitative Evaluation of the Effect of the Hydrophobicity of the Environment Surrounding BrÄnsted Acid Sites on Their Catalytic Activity for the Hydrolysis of Organic Molecules. Journal of the American Chemical Society, 2019, 141, 1636-1645.	6.6	18
1339	Valorization of Methyl Azelaaldehydate – A Vegetable Oil Based Platform Molecule for the Synthesis of Monomers through Stetter Reaction. European Journal of Organic Chemistry, 2019, 2019, 1251-1256.	1.2	4
1340	Catalytic Upgrading of Biomass Model Compounds: Novel Approaches and Lessons Learnt from Traditional Hydrodeoxygenation – a Review. ChemCatChem, 2019, 11, 924-960.	1.8	167
1341	Selective two-step synthesis of 2,5-diformylfuran from monosaccharide, disaccharide, and polysaccharide using H-Beta and octahedral MnO2 molecular sieves. Molecular Catalysis, 2019, 462, 92-103.	1.0	30
1342	High-efficient preparation of gasoline-ranged C5–C6 alkanes from biomass-derived sugar polyols of sorbitol over Ru-MoO3â^'x/C catalyst. Fuel Processing Technology, 2019, 183, 19-26.	3.7	37
1343	The potential of lignocellulosic biomass precursors for biochar production: Performance, mechanism and wastewater application—A review. Industrial Crops and Products, 2019, 128, 405-423.	2.5	204
1344	Sustaining the Transition from a Petrobased to a Biobased Chemical Industry with Flow Chemistry. Topics in Current Chemistry, 2019, 377, 1.	3.0	104
1345	Hierarchical K/LTL zeolite as solid base for aqueous phase hydrogenation of xylose to xylitol. Microporous and Mesoporous Materials, 2019, 278, 70-80.	2.2	17
1346	Selective conversion of biomass-derived levulinic acid to ethyl levulinate catalyzed by metal organic framework (MOF)-supported polyoxometalates. Applied Catalysis A: General, 2019, 572, 168-175.	2.2	53
1347	Stimuli-Responsive Cellulose-Based Hydrogels. Polymers and Polymeric Composites, 2019, , 269-308.	0.6	3
1348	Surface characterization of Miscanthus × giganteus and Willow subjected to torrefaction. Journal of Analytical and Applied Pyrolysis, 2019, 138, 231-241.	2.6	22

		CITATION REPORT		
#	Article		IF	CITATIONS
1349	Bio-Based Chemicals from Renewable Biomass for Integrated Biorefineries. Energies, 20	019, 12, 233.	1.6	236
1350	Seed-mediated synthesis of PtxAuy@Ag electrocatalysts for the selective oxidation of Applied Catalysis B: Environmental, 2019, 245, 604-612.	glycerol.	10.8	82
1351	Hydrous ruthenium oxide: A new generation remarkable catalyst precursor for energy e sustainable production of γ-valerolactone from levulinic acid in aqueous medium. App General, 2019, 569, 117-125.	efficient and lied Catalysis A:	2.2	30
1352	Hydroxyapatite supported gold nanocatalyst for base-free oxidative esterification of 5-hydroxymethyl-2-furfural to 2,5-furan dimethylcarboxylate with air as oxidant. Journa and Engineering Chemistry, 2019, 70, 338-345.	l of Industrial	2.9	24
1353	Nitroxide supported on nanometric metal oxides as new hybrid catalysts for selective s oxidation. Journal of Colloid and Interface Science, 2019, 536, 526-535.	ugar	5.0	4
1354	Visible-light induced decarboxylative C2-alkylation of benzothiazoles with carboxylic ad metal-free conditions. Organic and Biomolecular Chemistry, 2019, 17, 115-121.	ids under	1.5	23
1355	One-Step Approach to 2,5-Diformylfuran from Fructose over Molybdenum Oxides Sup Carbon Spheres. ACS Sustainable Chemistry and Engineering, 2019, 7, 315-323.	ported on	3.2	27
1356	Catalytic Transfer Hydrogenation of Biomassâ€Derived Substrates to Valueâ€Added C Dualâ€Function Catalysts: Opportunities and Challenges. ChemSusChem, 2019, 12, 7	nemicals on 1-92.	3.6	109
1357	Preparation of highly phenol substituted bioâ€oil–phenol–formaldehyde adhesive bonding performance using furfural as crosslinking agent. Journal of Applied Polymer S 136, 46995.	with enhanced cience, 2019,	1.3	11
1358	Development of High Performance Heterogeneous Catalysts for Selective Cleavage of Bonds of Biomassâ€Derived Oxygenates. Chemical Record, 2019, 19, 1179-1198.	Câ^'O and Câ^'C	2.9	22
1359	Real-time monitoring biomass pyrolysis via on-line photoionization ultrahigh-resolutior spectrometry. Fuel, 2019, 235, 962-971.	ı mass	3.4	29
1360	Furfural production from lignocellulosic biomass by ultrasound-assisted acid hydrolysis Ultrasonics Sonochemistry, 2019, 51, 332-339.		3.8	41
1361	Effect of oxide supports on Pt-Ni bimetallic catalysts for the selective hydrogenation of biomass-derived 2(5H)-furanone. Catalysis Today, 2019, 319, 93-99.	ŕ	2.2	8
1362	Mechanism of Ni-catalyzed selective C O cleavage of lignin model compound benzyl pl mild conditions. Journal of the Energy Institute, 2019, 92, 74-81.	nenyl ether under	2.7	51
1363	Preparation of partial crystalline mesoporous zeolite TS-1 for epoxidation of unsaturate ester. Catalysis Today, 2020, 355, 180-187.	ed fatty acid	2.2	5
1364	Highly dispersed Pd catalysts supported on various carbons for furfural hydrogenation. Today, 2020, 350, 71-79.	Catalysis	2.2	30
1365	F-containing ionic liquid–catalyzed benign and rapid hydrogenation of bio-based furf relevant aldehydes using siloxane as hydrogen source. Biomass Conversion and Biorefi 795-802.	ural and nery, 2020, 10,	2.9	5
1366	A Pt-Mo hybrid catalyst for furfural transformation. Catalysis Today, 2020, 357, 122-13	81.	2.2	11

#	Article	IF	CITATIONS
1367	A versatile Pseudomonas putida KT2440 with new ability: selective oxidation of 5-hydroxymethylfurfural to 5-hydroxymethyl-2-furancarboxylic acid. Bioprocess and Biosystems Engineering, 2020, 43, 67-73.	1.7	24
1368	Characterization of liquid–liquid extraction fractions from lignocellulosic biomass by high performance liquid chromatography hyphenated to tandem high-resolution mass spectrometry. Journal of Chromatography A, 2020, 1610, 460569.	1.8	13
1369	Selective hydrogenation of furfural to furfuryl alcohol without external hydrogen over N-doped carbon confined Co catalysts. Fuel Processing Technology, 2020, 197, 106205.	3.7	60
1370	MiR-337–3p suppresses proliferation of epithelial ovarian cancer by targeting PIK3CA and PIK3CB. Cancer Letters, 2020, 469, 54-67.	3.2	45
1371	Mg(OH) ₂ â€Facilitated Liquidâ€Phase Conversion of Lactic Acid into 1,2â€Propanediol over Cu: An Experimental and Theoretical Study. ChemSusChem, 2020, 13, 126-130.	3.6	12
1372	Highly efficient microwave driven assisted hydrolysis of cellulose to sugar with the utilization of ZrO2 to inhibit recrystallization of cellulose. Carbohydrate Polymers, 2020, 228, 115358.	5.1	19
1373	Chinese media coverage of eating disorders: Disorder representations and patient profiles. International Journal of Eating Disorders, 2020, 53, 113-122.	2.1	21
1374	Recent advances in RAFT polymerization of monomers derived from renewable resources. Polymer Chemistry, 2020, 11, 220-229.	1.9	52
1375	A comprehensive state-of-technology review for upgrading bio-oil to renewable or blended hydrocarbon fuels. Renewable and Sustainable Energy Reviews, 2020, 118, 109548.	8.2	139
1376	Fe-assisted hydrothermal liquefaction of cellulose: Effects of hydrogenation catalyst addition on properties of water-soluble fraction. Journal of Analytical and Applied Pyrolysis, 2020, 145, 104719.	2.6	22
1377	Density Functional Theory Study of ZnIn ₂ S ₄ and CdIn ₂ S ₄ Polymorphs Using Fullâ€Potential Linearized Augmented Plane Wave Method and Modified Becke–Johnson Potential. Physica Status Solidi (B): Basic Research, 2020, 257, 1900485.	0.7	19
1378	Biomass-Based Products and Chemicals. , 2020, , 167-184.		0
1379	Polybutylene terephthalate modified with dimer acid methyl ester derived from fatty acid methyl esters and its use as a hotâ€melt adhesive. Journal of Applied Polymer Science, 2020, 137, 48474.	1.3	9
1380	Synergistic Catalytic Synthesis of Gemini Lipoamino Acids Based on Multiple Hydrogen-Bonding Interactions in Natural Deep Eutectic Solvents-Enzyme System. Journal of Agricultural and Food Chemistry, 2020, 68, 989-997.	2.4	5
1381	Bifunctional CuNi/CoOx catalyst for mild-temperature in situ hydrodeoxygenation of fatty acids to alkanes using isopropanol as hydrogen source. Fuel, 2020, 265, 116913.	3.4	35
1382	Pentanoic acid from \hat{I}^3 -valerolactone and formic acid using bifunctional catalysis. Green Chemistry, 2020, 22, 1171-1181.	4.6	33
1383	Making natural products from renewable feedstocks: back to the roots?. Natural Product Reports, 2020, 37, 380-424.	5.2	56
1384	Furan-2,5- and Furan-2,3-dicarboxylate Esters Derived from Marine Biomass as Plasticizers for Poly(vinyl chloride). ACS Omega, 2020, 5, 197-206.	1.6	13

#	Article	IF	CITATIONS
1385	Flame-made amorphous solid acids with tunable acidity for the aqueous conversion of glucose to levulinic acid. Green Chemistry, 2020, 22, 688-698.	4.6	14
1386	Efficient UV-vis-IR photothermocatalytic selective ethanol oxidation on MnO _x /TiO ₂ nanocomposites significantly enhanced by a novel photoactivation. Journal of Materials Chemistry A, 2020, 8, 1254-1264.	5.2	18
1387	Formic-Acid-Induced using Recyclable-Ionic Liquids as Catalysts for Lignin Conversion into Aromatic Co-Products. Waste and Biomass Valorization, 2020, 11, 6261-6272.	1.8	7
1388	Porous organic polymer supported PdAg bimetallic catalyst for the hydrodeoxygenation of lignin-derived species. Renewable Energy, 2020, 149, 600-608.	4.3	30
1389	Interfacial Structure-Determined Reaction Pathway and Selectivity for 5-(Hydroxymethyl)furfural Hydrogenation over Cu-Based Catalysts. ACS Catalysis, 2020, 10, 1353-1365.	5.5	118
1390	Amorphization and Semi-Dry Conversion of Crystalline Cellulose to Oligosaccharides by Impregnated Phosphoric Acid. Bulletin of the Chemical Society of Japan, 2020, 93, 273-278.	2.0	9
1391	Organocatalytic Asymmetric Synthesis of Indole-Based Chiral Heterocycles: Strategies, Reactions, and Outreach. Accounts of Chemical Research, 2020, 53, 425-446.	7.6	414
1392	On-Demand, Ultraselective Hydrogenation System Enabled by Precisely Modulated Pd–Cd Nanocubes. Journal of the American Chemical Society, 2020, 142, 962-972.	6.6	53
1393	Recent advances in selective oxidation of biomass-derived platform chemicals over gold catalysts. Current Opinion in Green and Sustainable Chemistry, 2020, 21, 50-55.	3.2	14
1394	Cobalt–Polypyrrole/Melamine-Derived Co–N@NC Catalysts for Efficient Base-Free Formic Acid Dehydrogenation and Formylation of Quinolines through Transfer Hydrogenation. ACS Applied Materials & Interfaces, 2020, 12, 474-483.	4.0	25
1395	Aqueous-Phase Hydrogenation of Levulinic Acid Using Formic Acid as a Sustainable Reducing Agent Over Pt Catalysts Supported on Mesoporous Zirconia. ACS Sustainable Chemistry and Engineering, 2020, 8, 393-402.	3.2	47
1396	Hydrogenolysis of Organosolv Lignin in Ethanol/Isopropanol Media without Added Transition-Metal Catalyst. ACS Sustainable Chemistry and Engineering, 2020, 8, 1023-1030.	3.2	55
1397	Bamboo wastes catalytic pyrolysis with N-doped biochar catalyst for phenols products. Applied Energy, 2020, 260, 114242.	5.1	141
1398	Theoretical studies on the noncovalent interaction of fructose and functionalized ionic liquids. Carbohydrate Research, 2020, 487, 107882.	1.1	13
1399	NMR Investigation into the Influence of Surface Interactions on Liquid Diffusion in a Mesoporous Catalyst Support. Topics in Catalysis, 2020, 63, 319-327.	1.3	10
1400	Ru/MnCo2O4 as a catalyst for tunable synthesis of 2,5-bis(hydroxymethyl)furan or 2,5-bis(hydroxymethyl)tetrahydrofuran from hydrogenation of 5-hydroxymethylfurfural. Molecular Catalysis, 2020, 484, 110722.	1.0	33
1401	HMF and furfural: Promising platform molecules in rhodium-catalyzed carbonylation reactions for the synthesis of furfuryl esters and tertiary amides. Journal of Catalysis, 2020, 381, 215-221.	3.1	20
1402	Dipolar cycloadditions of HMF-based nitrones: stepwise and multicomponent reactions, stereochemical outcome and structural scope. Green Chemistry, 2020, 22, 7907-7912.	4.6	3

#	Article	IF	CITATIONS
1403	High Performance and Sustainable Copper-Modified Hydroxyapatite Catalysts for Catalytic Transfer Hydrogenation of Furfural. Catalysts, 2020, 10, 1045.	1.6	24
1404	One-pot hydrodeoxygenation (HDO) of lignin monomers to C9 hydrocarbons co-catalysed by Ru/C and Nb ₂ O ₅ . Green Chemistry, 2020, 22, 7406-7416.	4.6	33
1405	Unraveling the Reaction Mechanism and Active Sites of Metal–Organic Frameworks for Glucose Transformations in Water: Experimental and Theoretical Studies. ACS Sustainable Chemistry and Engineering, 2020, 8, 16143-16155.	3.2	19
1406	Lewis acid metal cations exchanged heteropoly salts as catalysts in β-pinene etherification. Reaction Kinetics, Mechanisms and Catalysis, 2020, 131, 875-887.	0.8	14
1407	Catalytic Formation of Lactic and Levulinic Acids from Biomass Derived Monosaccarides through Sn-Beta Formed by Impregnation. Catalysts, 2020, 10, 1219.	1.6	7
1408	Algae-based electrochemical energy storage devices. Green Chemistry, 2020, 22, 8062-8096.	4.6	33
1409	Titanium Oxideâ€Confined Manganese Oxide for Oneâ€Step Electrocatalytic Preparation of 2,5â€Furandicarboxylic Acid in Acidic Media. ChemElectroChem, 2020, 7, 4251-4258.	1.7	14
1410	NaOH(KOH)-catalyzed vinylation of cellulose with acetylene gas in water. Cellulose, 2020, 27, 9271-9283.	2.4	2
1411	Electrocatalytic Oxidation of 5â€Hydroxymethylfurfural into the Monomer 2,5â€Furandicarboxylic Acid using Mesostructured Nickel Oxide. Advanced Sustainable Systems, 2020, 4, 1900151.	2.7	28
1412	Myrcenol-Based Monomer for Carbanionic Polymerization: Functional Copolymers with Myrcene and Bio-Based Graft Copolymers. Macromolecules, 2020, 53, 9008-9017.	2.2	20
1413	Synergy Effects between Oxygen Groups and Defects in Hydrodeoxygenation of Biomass over a Carbon Nanosphere Supported Pd Catalyst. ACS Sustainable Chemistry and Engineering, 2020, 8, 15998-16009.	3.2	64
1414	Metal silicotungstate salts as catalysts in furfural oxidation reactions with hydrogen peroxide. Molecular Catalysis, 2020, 493, 111104.	1.0	22
1415	Towards the sustainable production of bulk-chemicals using biotechnology. New Biotechnology, 2020, 59, 59-64.	2.4	32
1416	Synthesis of 2,5-furandicarboxylic acid by a TEMPO/laccase system coupled with <i>Pseudomonas putida</i> KT2440. RSC Advances, 2020, 10, 21781-21788.	1.7	18
1417	A review on pyrolysis of protein-rich biomass: Nitrogen transformation. Bioresource Technology, 2020, 315, 123801.	4.8	131
1418	Production of furfural and levoglucosan from typical agricultural wastes via pyrolysis coupled with hydrothermal conversion: Influence of temperature and raw materials. Waste Management, 2020, 114, 43-52.	3.7	20
1419	Transformations of Biomass, Its Derivatives, and Downstream Chemicals over Ceria Catalysts. ACS Catalysis, 2020, 10, 8788-8814.	5.5	75
1420	Controlling the Reaction Networks for Efficient Conversion of Glucose into 5â€Hydroxymethylfurfural. ChemSusChem, 2020, 13, 4812-4832.	3.6	73

#	Article	IF	CITATIONS
1421	Direct Transformation of Glycerol to Propanal using Zirconium Phosphateâ€6upported Bimetallic Catalysts. ChemSusChem, 2020, 13, 4954-4966.	3.6	15
1422	From calorimetry to thermal risk assessment: γ-Valerolactone production from the hydrogenation of alkyl levulinates. Chemical Engineering Research and Design, 2020, 144, 32-41.	2.7	17
1423	Challenges and future prospects in heterogeneous catalysis for biorefinery technologies. , 2020, , 225-250.		3
1424	Transformations of bioâ€sourced 4â€hydroxyphenylpropanoids based on olefin metathesis. ChemCatChem, 2020, 12, 5000-5021.	1.8	11
1425	Polyphenylene as an Active Support for Ru-Catalyzed Hydrogenolysis of 5-Hydroxymethylfurfural. ACS Applied Materials & Interfaces, 2020, 12, 53712-53718.	4.0	5
1426	Tapered Multiblock Copolymers Based on Farnesene and Styrene: Impact of Biobased Polydiene Architectures on Material Properties. Macromolecules, 2020, 53, 10397-10408.	2.2	44
1427	Prediction of Hydroxymethylfurfural Yield in Glucose Conversion through Investigation of Lewis Acid and Organic Solvent Effects. ACS Catalysis, 2020, 10, 14707-14721.	5.5	41
1428	The Influence of Carbon Nature on the Catalytic Performance of Ru/C in Levulinic Acid Hydrogenation with Internal Hydrogen Source. Molecules, 2020, 25, 5362.	1.7	6
1429	Process design and techno-economic evaluation for the production of platform chemical for hydrocarbon fuels from lignocellulosic biomass using biomass-derived <mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:math mul<="" multimath="" td=""><td>4.3</td><td>15</td></mml:math></mml:math>	4.3	15
1430	The one-step transformation of fructose to 2,5-diformylfuran over Ru metal supported on montmorillonite. New Journal of Chemistry, 2020, 44, 13659-13668.	1.4	8
1431	Effective and facile solvent-free synthesis route to novel biobased monomers from vanillic acid: Structure–thermal property relationships of sustainable polyesters. Polymer Degradation and Stability, 2020, 181, 109315.	2.7	15
1432	Heterogeneous catalysts for hydrothermal liquefaction of lignocellulosic biomass: A review. Biomass and Bioenergy, 2020, 140, 105662.	2.9	75
1433	Bimetallic PtFe-Catalyzed Selective Hydrogenation of Furfural to Furfuryl Alcohol: Solvent Effect of Isopropanol and Hydrogen Activation. ACS Sustainable Chemistry and Engineering, 2020, 8, 12722-12730.	3.2	61
1434	Photocatalytic transformations of lignocellulosic biomass into chemicals. Chemical Society Reviews, 2020, 49, 6198-6223.	18.7	374
1435	Functional B@ <i>m</i> CN-assisted photocatalytic oxidation of biomass-derived pentoses and hexoses to lactic acid. Green Chemistry, 2020, 22, 6384-6392.	4.6	52
1436	Tuning the synthesis of polymetallic-doped ZIF derived materials for efficient hydrogenation of furfural to furfuryl alcohol. Nanoscale, 2020, 12, 18296-18304.	2.8	40
1437	Sustainable energy and fuels from biomass: a review focusing on hydrothermal biomass processing. Sustainable Energy and Fuels, 2020, 4, 4390-4414.	2.5	140
1438	Direct conversion of cellulose to 5-hydroxymethylfurfural over SnNb2O6–ZrO2 catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2020, 130, 903-918.	0.8	5

ARTICLE IF CITATIONS # Efficient hydrogenolysis of aryl ethers over Ce-MOF supported Pd NPs under mild conditions: mechanistic insight using density functional theoretical calculations. Catalysis Science and 1439 2.1 27 Technology, 2020, 10, 6892-6901. Nickel-Catalysed Vapour-Phase Hydrogenation of Furfural, Insights into Reactivity and Deactivation. Topics in Catalysis, 2020, 63, 1446-1462. 1440 1.3 Liquid–Liquid Equilibrium Data and Continuous Process Concept for the Electrosynthesis of Valeric 1441 1.2 6 Acid from Levulinic Acid. Frontiers in Energy Research, 2020, 8, . Dehydration of saccharides to anhydro-sugars in dioxane: effect of reactants, acidic strength and 1442 2.4 watér removal in situ. Cellulose, 2020, 27, 9825-9838. Investigation of the reaction mechanism of the hydrodeoxygenation of propionic acid over a $Rh(1\ 1\ 1)$ 1443 3.1 8 surface: A first principles study. Journal of Catalysis, 2020, 391, 98-110. Valorization of Biomass-Derived Platform Molecules via Photoredox Sustainable Catalysis. 1444 3.3 Transactions of Tianjin University, 2020, 26, 325-340. The production of fuels and chemicals in the new world: critical analysis of the choice between 1445 crude oil and biomass vis-Ã-vis sustainability and the environment. Clean Technologies and 2.1 86 Environmental Policy, 2020, 22, 1757-1774. One-pot synthesis of pyrrolidones from levulinic acid and amines/nitroarenes/nitriles over the Ir-PVP 1446 4.6 26 catalyst. Green Chemistry, 2020, 22, 7760-7764. Insight into the Effect of Dual Active Cu^O/Cu⁺ Sites in a 1447 Cu/ŽnO-Al₂O₃ Catalyst on 5-Hydroxylmethylfurfural Hydrodeoxygenation. 3.2 55 ACS Sustainable Chemistry and Engineering, 2020, 8, 15288-15298. Synthesis and properties of renewable citronellol based biodegradable anionic surfactant. Colloid 1448 1.0 and Polymer Science, 2020, 298, 1543-1550. Selective hydrogenation of furfural for high-value chemicals: effect of catalysts and temperature. 1449 2.5 28 Sustainable Energy and Fuels, 2020, 4, 5709-5720. Unravelling the role of oxophilic metal in promoting the deoxygenation of catechol on Ni-based alloy 2.1 catalysts. Čatalysis Science and Technology, 2020, 10, 6849-6859. Ligninolysis Potential of Ligninolytic Enzymes: A Green and Sustainable Approach to Bio-transform 1451 0.2 7 Lignocellulosic Biomass into High-Value Entities. Handbook of Environmental Chemistry, 2020, , 151-171. Untangling the active sites in the exposed crystal facet of zirconium oxide for selective hydrogenation of bioaldehydes. Catalysis Science and Technology, 2020, 10, 7016-7026. 1452 2.1 One Pot Hydrogenation of Furfural to 2â€Methyl Tetrahydrofuran over Supported Mono―and Biâ€metallic 1453 0.7 10 Catalysts. ChemistrySelect, 2020, 5, 9590-9600. Chemical Synthesis of Adipic Acid from Glucose and Derivatives: Challenges for Nanocatalyst Design. 1454 ACS Sustainable Chemistry and Engineering, 2020, 8, 18732-18754. Sustainable production of value-added carbon nanomaterials from biomass pyrolysis. Nature 1455 11.5 124 Sustainability, 2020, 3, 753-760. Photocatalytic Partial Oxidation of 5â€Hydroxymethylfurfural (HMF) to 2,5â€Diformylfuran (DFF) Over a 1456 1.5 Covalent Triazine Framework in Water. ChemPhotoChem, 2020, 4, 571-576.

#	Article	IF	CITATIONS
1457	Catalytic deoxygenation of bio-based 3-hydroxydecanoic acid to secondary alcohols and alkanes. Green Chemistry, 2020, 22, 3522-3531.	4.6	18
1458	Heterostructured Redoxâ€Active V 2 O 5 /SnO 2 Oxide Nanocatalyst for Aqueousâ€Phase Oxidation of Furfural to Renewable Maleic Acid. ChemistrySelect, 2020, 5, 6255-6267.	0.7	10
1459	Cooperative interaction of sodium and chlorine ions with β-cellobiose in aqueous solution from quantum mechanics and molecular dynamics. Cellulose, 2020, 27, 6793-6809.	2.4	3
1460	Furfuryl alcohol—a promising platform chemical. , 2020, , 323-353.		6
1461	Rhodium porphyrin molecule-based catalysts for the hydrogenation of biomass derived levulinic acid to biofuel additive γ-valerolactone. New Journal of Chemistry, 2020, 44, 11064-11075.	1.4	19
1462	Hydrothermal Catalytic Conversion of Glucose into Lactic Acid with Acidic MIL-101(Fe). Journal of Chemistry, 2020, 2020, 1-7.	0.9	2
1463	Catalytic Conversion Furfuryl Alcohol to Tetrahydrofurfuryl Alcohol and 2-Methylfuran at Terrace, Step, and Corner Sites on Ni. ACS Catalysis, 2020, 10, 7240-7249.	5.5	31
1464	Mild Hydrodeoxygenation of Phenols into Cycloalkanes under Ambient Hydrogen Pressure over a Ni/Hâ€Beta Catalyst. ChemistrySelect, 2020, 5, 5577-5580.	0.7	1
1465	Enzymatic preparation of pyruvate by a whole-cell biocatalyst coexpressing l-lactate oxidase and catalase. Process Biochemistry, 2020, 96, 113-121.	1.8	12
1466	gem â€Diolâ€Type Intermediate in the Activation of a Ketone on Snâ€Î² Zeolite as Studied by Solidâ€6tate NMR Spectroscopy. Angewandte Chemie, 2020, 132, 19700-19706.	1.6	2
1467	gem â€Diolâ€Type Intermediate in the Activation of a Ketone on Snâ€Î² Zeolite as Studied by Solidâ€State NMR Spectroscopy. Angewandte Chemie - International Edition, 2020, 59, 19532-19538.	7.2	13
1468	Radical Aqueous Emulsion Copolymerization of Eugenol-Derived Monomers for Adhesive Applications. Biomacromolecules, 2020, 21, 4514-4521.	2.6	19
1469	Modulating the electronic property of Pt nanocatalyst on rGO by iron oxides for aerobic oxidation of glycerol. Catalysis Communications, 2020, 144, 106073.	1.6	5
1470	Pd(II) and Pt(II) catalysed selective synthesis of furfuryl alcohol: Solvent effects and insights into the mechanism. Journal of Organometallic Chemistry, 2020, 922, 121362.	0.8	14
1471	Enhancement of levoglucosan production via fast pyrolysis of sugarcane bagasse by pretreatment with Keggin heteropolyacids. Industrial Crops and Products, 2020, 154, 112680.	2.5	11
1472	A perspective on biomass-derived biofuels: From catalyst design principles to fuel properties. Journal of Hazardous Materials, 2020, 400, 123198.	6.5	23
1473	Novel BrÃ,nsted–Lewis acidic di-cationic ionic liquid for efficient conversion carbohydrate to platform compound. Cellulose, 2020, 27, 6897-6908.	2.4	14
1474	Influence of the pendant arm in deoxydehydration catalyzed by dioxomolybdenum complexes supported by amine bisphenolate ligands. New Journal of Chemistry, 2020, 44, 9933-9941.	1.4	14

# 1475	ARTICLE Selective production of glycolaldehyde via hydrothermal pyrolysis of glucose: Experiments and microkinetic modeling, Journal of Analytical and Applied Pyrolysis, 2020, 149, 104846.	IF 2.6	CITATIONS
1476	Direct conversion of cellulose into isosorbide over Ni doped NbOPO ₄ catalysts in water. New Journal of Chemistry, 2020, 44, 10292-10299.	1.4	15
1477	Low-melting-point alloy integration into puffed wood for improving mechanical and thermal properties of wood–metal functional composites. Wood Science and Technology, 2020, 54, 637-649.	1.4	7
1478	100th Anniversary of Macromolecular Science Viewpoint: Polymers from Lignocellulosic Biomass. Current Challenges and Future Opportunities. ACS Macro Letters, 2020, 9, 476-493.	2.3	105
1479	Gold-Based Nanoparticles on Amino-Functionalized Mesoporous Silica Supports as Nanozymes for Glucose Oxidation. Catalysts, 2020, 10, 333.	1.6	31
1480	Catalytic Transfer Hydrogenation of Levulinic Acid to γ-Valerolactone over Ni ₃ P-CePO ₄ Catalysts. Industrial & Engineering Chemistry Research, 2020, 59, 7416-7425.	1.8	45
1481	In Situ Catalytic Fast Pyrolysis Using Red Mud Catalyst: Impact of Catalytic Fast Pyrolysis Temperature and Biomass Feedstocks. ACS Sustainable Chemistry and Engineering, 2020, 8, 5156-5164.	3.2	37
1482	Ionic hydrogen-bonding interaction controlled electrophilicity and nucleophilicity: Mechanistic insights into the synergistic catalytic effect of lipase and natural deep eutectic solvents in amidation reaction. Journal of Catalysis, 2020, 384, 159-168.	3.1	12
1483	One-pot synthesis of 1,3-butanediol by 1,4-anhydroerythritol hydrogenolysis over a tungsten-modified platinum on silica catalyst. Green Chemistry, 2020, 22, 2375-2380.	4.6	42
1484	Insight on the Contribution of Plasmons to Goldâ€Catalyzed Solarâ€Driven Selective Oxidation of Glucose under Oxygen. Solar Rrl, 2020, 4, 2000084.	3.1	8
1485	Selectivity and Sustainability of Electroenzymatic Process for Glucose Conversion to Gluconic Acid. Catalysts, 2020, 10, 269.	1.6	8
1486	Optimized Bioproduction of Itaconic and Fumaric Acids Based on Solid-State Fermentation of Lignocellulosic Biomass. Molecules, 2020, 25, 1070.	1.7	21
1487	Biâ€Functional Magnesium Silicate Catalyzed Glucose and Furfural Transformations to Renewable Chemicals. ChemCatChem, 2020, 12, 4807-4816.	1.8	5
1488	Electroreforming of Glucose and Xylose in Alkaline Medium at Carbon Supported Alloyed Pd3Au7 Nanocatalysts: Effect of Aldose Concentration and Electrolysis Cell Voltage. Clean Technologies, 2020, 2, 184-203.	1.9	5
1489	Catalyst control of selectivity in the C–O bond alumination of biomass derived furans. Chemical Science, 2020, 11, 7850-7857.	3.7	15
1490	Olefins from Biobased Sugar Alcohols via Selective, Ru-Mediated Reaction in Catalytic Phosphonium Ionic Liquids. ACS Catalysis, 2020, 10, 9401-9409.	5.5	17
1491	Kinetic modeling of the multistep hydrolysis-dehydration of cellulose to platform molecules over a solid carbon acid catalyst in pure water. Reaction Kinetics, Mechanisms and Catalysis, 2020, 130, 669-684.	0.8	8
1492	Catalytic Processes for Biomass-Derived Platform Molecules Valorisation. Topics in Catalysis, 2020, 63, 846-865.	1.3	16

#	Article	IF	CITATIONS
1493	Purification of 5â€Hydroxymethyl Furfural from Side Products of Fructose Dehydration Reaction in a Green Solvent. ChemistrySelect, 2020, 5, 6851-6855.	0.7	5
1494	Selective hydrogenation of aromatic furfurals into aliphatic tetrahydrofurfural derivatives. Green Chemistry, 2020, 22, 4937-4942.	4.6	34
1495	Synthesis of fatty ketoesters by tandem epoxidation–rearrangement with heterogeneous catalysis. Catalysis Science and Technology, 2020, 10, 1789-1795.	2.1	12
1496	Selective radical depolymerization of cellulose to glucose induced by high frequency ultrasound. Chemical Science, 2020, 11, 2664-2669.	3.7	16
1497	Direct Conversion of Biomass Carbohydrates to Platform Chemicals: 5-Hydroxymethylfurfural (HMF) and Furfural. Energy & Fuels, 2020, 34, 3284-3293.	2.5	62
1498	Microwave-Assisted Oxidation of Hydroxymethyl Furfural to Added-Value Compounds over a Ruthenium-Based Catalyst. ACS Sustainable Chemistry and Engineering, 2020, 8, 3091-3102.	3.2	47
1499	Efficient formation of γ-valerolactone in the vapor-phase hydrogenation of levulinic acid over Cu-Co/alumina catalyst. Catalysis Communications, 2020, 139, 105967.	1.6	22
1500	Fabrication of Hierarchical Sn-Beta Zeolite as Efficient Catalyst for Conversion of Cellulosic Sugar to Methyl Lactate. ACS Sustainable Chemistry and Engineering, 2020, 8, 3796-3808.	3.2	50
1501	The Effect of Thermomechanical Pretreatment on the Structure and Properties of Lignin-Rich Plant Biomass. Molecules, 2020, 25, 995.	1.7	17
1502	Kinetic Studies and Optimization of Heterogeneous Catalytic Oxidation Processes for the Green Biorefinery of Wood. Topics in Catalysis, 2020, 63, 229-242.	1.3	8
1503	Efficient base-free oxidation of monosaccharide into sugar acid under mild conditions using hierarchical porous carbon supported gold catalysts. Green Chemistry, 2020, 22, 2588-2597.	4.6	23
1504	Tin oxide-coated transition metal oxide molecular wires for biomass conversion. New Journal of Chemistry, 2020, 44, 5147-5151.	1.4	0
1505	Biomass Categories. , 2020, , 1-29.		1
1507	Direct Alkoxycarbonylation of Heteroarenes via Cu-Mediated Trichloromethylation and In Situ Alcoholysis. Organic Letters, 2020, 22, 2093-2098.	2.4	22
1508	Catalytic Properties of Microporous Zeolite Catalysts in Synthesis of Isosorbide from Sorbitol by Dehydration. Catalysts, 2020, 10, 148.	1.6	18
1509	Current perspective of sustainable surfactants based on renewable building blocks. Current Opinion in Colloid and Interface Science, 2020, 45, 124-135.	3.4	65
1510	Multistep Engineering of Synergistic Catalysts in a Metal–Organic Framework for Tandem C–O Bond Cleavage. Journal of the American Chemical Society, 2020, 142, 4872-4882.	6.6	48
1511	Directing the Simultaneous Conversion of Hemicellulose and Cellulose in Raw Biomass to Lactic Acid. ACS Sustainable Chemistry and Engineering, 2020, 8, 4244-4255.	3.2	47

#	Article	IF	CITATIONS
1512	Selective hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran catalyzed by ordered mesoporous alumina supported nickel-molybdenum sulfide catalysts. Applied Catalysis B: Environmental, 2020, 268, 118748.	10.8	58
1513	Recent Advances in Aqueous-Phase Catalytic Conversions of Biomass Platform Chemicals Over Heterogeneous Catalysts. Frontiers in Chemistry, 2019, 7, 948.	1.8	33
1514	Reusable and active Pt@Co-NC catalysts for oxidation of glycerol. Renewable Energy, 2020, 153, 472-479.	4.3	12
1515	Review of supported metal nanoparticles: synthesis methodologies, advantages and application as catalysts. Journal of Materials Science, 2020, 55, 6195-6241.	1.7	248
1516	One-Pot Tandem Dehydration–Hydrogenation of Xylose with Formic Acid over Co Catalysts. Industrial & Engineering Chemistry Research, 2020, 59, 2754-2760.	1.8	14
1517	Recent Developments in Metal-Based Catalysts for the Catalytic Aerobic Oxidation of 5-Hydroxymethyl-Furfural to 2,5-Furandicarboxylic Acid. Catalysts, 2020, 10, 120.	1.6	47
1518	Direct and Solventâ€Free Oxidative Cleavage of Double Bonds in Highâ€Oleic Vegetable Oils. ChemistrySelect, 2020, 5, 1396-1400.	0.7	23
1519	Oxidation of biomass-derived furans to maleic acid over nitrogen-doped carbon catalysts under acid-free conditions. Catalysis Science and Technology, 2020, 10, 1498-1506.	2.1	30
1520	Selective hydrogenation of 5-hydroxymethylfurfural and its acetal with 1,3-propanediol to 2,5-bis(hydroxymethyl)furan using supported rhenium-promoted nickel catalysts in water. Green Chemistry, 2020, 22, 1229-1238.	4.6	50
1521	Synergy of Al2(SO4)3 and H3PO4 in co-solvents converts starch to 5-ethoxymethylfurfural. Catalysis Communications, 2020, 137, 105947.	1.6	13
1522	Hydroconversion of 5â€Hydroxymethylfurfural to 2,5â€Dimethylfuran and 2,5â€Dimethyltetrahydrofuran over Nonâ€promoted Ni/SBAâ€15. ChemCatChem, 2020, 12, 2050-2059.	1.8	41
1523	Nickel on nitrogen-doped carbon pellets for continuous-flow hydrogenation of biomass-derived compounds in water. Green Chemistry, 2020, 22, 2755-2766.	4.6	47
1524	2nd generation biomass derived glucose conversion to 5-hydroxymethylfurfural and levulinic acid catalyzed by ionic liquid and transition metal sulfate: Elucidation of kinetics and mechanism. Journal of Cleaner Production, 2020, 256, 120292.	4.6	38
1525	Selective Catalytic Dehydration of Xylose to Furfural and Fructose and Clucose to 5â€Hydroximethylfurfural (HMF) Using Preyssler Heteropolyacid. ChemistrySelect, 2020, 5, 4186-4193.	0.7	18
1526	Ruthenium on phosphorous-modified alumina as an effective and stable catalyst for catalytic transfer hydrogenation of furfural. RSC Advances, 2020, 10, 11507-11516.	1.7	15
1527	Solid catalysts for conversion of furfural and its derivatives to alkanediols. Catalysis Reviews - Science and Engineering, 2020, 62, 566-606.	5.7	12
1528	A Study of the Mechanisms of Guaiacol Pyrolysis Based on Free Radicals Detection Technology. Catalysts, 2020, 10, 295.	1.6	16
1529	Evaluation of Pore Structure of Polarity-Controllable Post-Cross-Linked Adsorption Resins on the Adsorption Performance of 5-Hydroxymethylfurfural in Both Single- and Ternary-Component Systems. Industrial & Engineering Chemistry Research, 2020, 59, 17575-17586.	1.8	16

#	Article	IF	CITATIONS
1530	Gasoline engine fueled with bioethanol-bio-acetone-gasoline blends: Performance and emissions exploration. Fuel, 2020, 274, 117825.	3.4	34
1531	Selective Conversion of Various Monosaccharaides into Sugar Acids by Additiveâ€Free Dehydrogenation in Water. ChemCatChem, 2020, 12, 3746-3752.	1.8	9
1532	Advances and approaches for chemical recycling of plastic waste. Journal of Polymer Science, 2020, 58, 1347-1364.	2.0	408
1533	The Protection of Câ^'O Bond of Pine Lignin in Different Organic Solvent Systems. ChemistrySelect, 2020, 5, 3850-3858.	0.7	4
1534	Temperature-Responsive HCl-Releasing Catalysts for Cellulose Hydrolysis into Glucose. Catalysis Letters, 2020, 150, 3184-3195.	1.4	4
1535	Depolymerization of Wheat Straw to Produce Glucose by Self-Catalyzed Hydrolysis. Energy & Fuels, 2020, 34, 5990-5996.	2.5	6
1536	Domino lignin depolymerization and reconnection to complex molecules mediated by boryl radicals. Catalysis Science and Technology, 2020, 10, 3008-3014.	2.1	4
1537	Recent advance in synthesis and application of heteroatom zeolites. Chinese Chemical Letters, 2021, 32, 328-338.	4.8	28
1538	Conversion of succinic acid over Ni and Co catalysts. Catalysis Today, 2021, 367, 165-176.	2.2	3
1539	A highly efficient and reusable Ru-NaY catalyst for the base free oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic acid. Catalysis Today, 2021, 375, 145-154.	2.2	22
1540	Chemistry and Specialty Industrial Applications of Lignocellulosic Biomass. Waste and Biomass Valorization, 2021, 12, 2145-2169.	1.8	166
1541	Remarkably Efficient Carbon-Supported Nanostructured Platinum-Bismuth Catalysts for the Selective Electrooxidation of Glucose and Methyl-Glucoside. Electrocatalysis, 2021, 12, 1-14.	1.5	20
1542	Nitrogen-doped carbon: A metal-free catalyst for selective oxidation of crude 5-hydroxymethylfurfural obtained from high fructose corn syrup (HFCS-90) to 2,5-furandicarboxylic acid (FDCA). Chemical Engineering Journal, 2021, 404, 127063.	6.6	33
1543	Base-free selective conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a CoOx-CeO2 catalyst. Catalysis Today, 2021, 367, 2-8.	2.2	23
1545	Alkylation of lignin-derived aromatic oxygenates with cyclic alcohols on acidic zeolites. Applied Catalysis B: Environmental, 2021, 281, 119424.	10.8	16
1546	Boron doped magnetic catalysts for selective transfer hydrogenation of furfural into furfuryl alcohol. Chemical Engineering Science, 2021, 229, 116075.	1.9	21
1547	Aqueous phase hydrogenation of furfural to tetrahydrofurfuryl alcohol over Pd/UiO-66. Catalysis Communications, 2021, 148, 106178.	1.6	37
1548	Photocatalytic conversion of biomass-based monosaccharides to lactic acid by ultrathin porous oxygen doped carbon nitride. Applied Catalysis B: Environmental, 2021, 283, 119520.	10.8	108

#	Article	IF	CITATIONS
1549	Synthesis of [2,2']Bifuranylâ€5,5'â€dicarboxylic Acid Esters <i>via</i> Reductive Homocoupling of <scp>5â€Bromofuran</scp> â€2â€carboxylates Using Alcohols as Reductants ^{â€} . Chinese Journal of Chemistry, 2021, 39, 62-68.	2.6	5
1550	Significantly enhancing lubricity and anti-wear performances of glycerol lubricant with urea-functionalized imidazolium-organophosphate ionic liquid as additive. Tribology International, 2021, 153, 106602.	3.0	18
1551	Green synthesis of heterogeneous copper-alumina catalyst for selective hydrogenation of pure and biomass-derived 5-hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan. Applied Catalysis A: General, 2021, 609, 117892.	2.2	40
1552	Evidence of a Phenolic Pool as a Key Intermediate for Zeoliteâ€Catalyzed Lignin Pyrolysis. Angewandte Chemie - International Edition, 2021, 60, 2643-2647.	7.2	33
1553	Hydrothermal and Pyrolytic Conversion of Biomasses into Catalysts for Advanced Oxidation Treatments. Advanced Functional Materials, 2021, 31, 2006505.	7.8	64
1554	Comprehensive study on the catalytic methods for furyl alkane synthesis: A promising biodiesel precursor. Renewable and Sustainable Energy Reviews, 2021, 135, 110218.	8.2	7
1555	Exploring the interaction of amino acid-based ionic liquids in water and organic solvents: Insight from MD simulations and QM calculations. Journal of Molecular Liquids, 2021, 327, 114867.	2.3	2
1556	Acid hydrolysis conditions for the production of fine chemicals from Gracilaria birdiae alga biomass. Algal Research, 2021, 53, 102139.	2.4	14
1557	Rapid conversion of glucose to 5-hydroxymethylfurfural using a MoCl3 catalyst in an ionic liquid with microwave irradiation. Industrial Crops and Products, 2021, 160, 113091.	2.5	28
1558	Thermomorphic Polyethyleneâ€supported Organocatalysts for the Valorization of Vegetable Oils and CO ₂ . Advanced Sustainable Systems, 2021, 5, 2000218.	2.7	11
1559	Recyclable catalysts for the synthesis of heterocyclic compounds using carbon materials. Journal of Heterocyclic Chemistry, 2021, 58, 1039-1057.	1.4	11
1560	State of the Art and Perspectives in Catalytic Conversion Mechanism of Biomass to Bio-aromatics. Energy & Fuels, 2021, 35, 45-62.	2.5	33
1561	Recent developments in polymer-supported ruthenium nanoparticles/complexes for oxidation reactions. Journal of Organometallic Chemistry, 2021, 933, 121658.	0.8	5
1562	Highly efficient separation of 5-hydroxymethylfurfural from imidazolium-based ionic liquids. Green Chemistry, 2021, 23, 405-411.	4.6	53
1563	Biobased Aldehydes from Fatty Epoxides through Thermal Cleavage of βâ€Hydroxy Hydroperoxides**. ChemSusChem, 2021, 14, 379-386.	3.6	9
1564	Evidence of a Phenolic Pool as a Key Intermediate for Zeoliteâ€Catalyzed Lignin Pyrolysis. Angewandte Chemie, 2021, 133, 2675-2679.	1.6	5
1565	A Stable Biomassâ€Derived Hard Carbon Anode for Highâ€Performance Sodiumâ€ion Full Battery. Energy Technology, 2021, 9, 2000730.	1.8	26
1566	One-pot transformation of furfural into γ-valerolactone catalyzed by a hierarchical Hf-Al-USY zeolite with balanced Lewis and BrÃ,nsted acid sites. Sustainable Energy and Fuels, 2021, 5, 4724-4735.	2.5	17

#	Article	IF	CITATIONS
1567	Polymeric carbon nitride-based photocatalysts for photoreforming of biomass derivatives. Green Chemistry, 2021, 23, 7435-7457.	4.6	39
1568	Towards atomic precision in HMF and methane oxidation electrocatalysts. Chemical Communications, 2021, 57, 4230-4238.	2.2	7
1569	Efficiently selective oxidation of glycerol by Bi _{QDs} /BiOBr–O _v : promotion of molecular oxygen activation by Bi quantum dots and oxygen vacancies. New Journal of Chemistry, 2021, 45, 12938-12944.	1.4	11
1570	Levulinic acid hydrogenation to $\hat{1}^3$ -valerolactone over single Ru atoms on a TiO ₂ @nitrogen doped carbon support. Green Chemistry, 2021, 23, 1621-1627.	4.6	46
1571	Selective hydrogenation of levulinic acid to γ-valerolactone using bimetallic Pd-Fe catalyst supported on titanium oxide. IOP Conference Series: Materials Science and Engineering, 0, 980, 012013.	0.3	8
1572	Strategies for the synthesis of block copolymers with biodegradable polyester segments. Polymer Chemistry, 2021, 12, 783-806.	1.9	37
1573	The effect of THF and the chelating modifier DTHFP on the copolymerisation of β-myrcene and styrene: kinetics, microstructures, morphologies, and mechanical properties. Polymer Chemistry, 2021, 12, 4632-4642.	1.9	15
1574	Electrochemical upgrading of biomass-derived 5-hydroxymethylfurfural and furfural over oxygen vacancy-rich NiCoMn-layered double hydroxides nanosheets. Green Chemistry, 2021, 23, 4034-4043.	4.6	95
1575	Improving the hydrothermal stability of zeolite Y by La ³⁺ cation exchange as a catalyst for the aqueous-phase hydrogenation of levulinic acid. RSC Advances, 2021, 11, 5568-5579.	1.7	9
1576	PEG-400 as a carbon synthon: highly selective synthesis of quinolines and methylquinolines under metal-free conditions. Green Chemistry, 2021, 23, 5542-5548.	4.6	15
1577	Biosolvents as green solvents in the pharmaceutical industry. , 2021, , 105-149.		1
1578	Selective hydrodeoxygenation of 5-hydroxymethylfurfural to 2, 5-dimethylfuran over mesoporous silica supported copper catalysts. Materials Science for Energy Technologies, 2021, 4, 357-366.	1.0	2
1579	Fabrication of a reusable bifunctional biomimetic Ti ⁴⁺ -phosphorylated cellulose monolith with a coral-like structure for enrichment of phosphorylated and glycosylated peptides. Green Chemistry, 2021, 23, 7674-7684.	4.6	18
1580	Vanadium-doped sodium phosphomolybdate salts as catalysts in the terpene alcohols oxidation with hydrogen peroxide. RSC Advances, 2021, 11, 24072-24085.	1.7	26
1581	Emerging heterogeneous catalysts for biomass conversion: studies of the reaction mechanism. Chemical Society Reviews, 2021, 50, 11270-11292.	18.7	102
1582	Single Electron Transfer-Induced Redox Processes Involving <i>N</i> -(Acyloxy)phthalimides. ACS Catalysis, 2021, 11, 1640-1683.	5.5	190
1583	A highly selective decarboxylative deuteration of carboxylic acids. Chemical Science, 2021, 12, 5505-5510.	3.7	36
1584	Production and Polymerization of Biobased Acrylates and Analogs. Macromolecular Rapid Communications, 2021, 42, e2000530.	2.0	35

#	Article	IF	CITATIONS
1585	Assessment of the environmental sustainability of solvent-less fatty acid ketonization to bio-based ketones for wax emulsion applications. Green Chemistry, 2021, 23, 7137-7161.	4.6	9
1586	Catalytic Conversion of Alcohols into Value-Added Products. , 2021, , 505-590.		0
1587	Phytoplankton: Biodiesel Production and Other Applications for Marine Biotechnology. Encyclopedia of the UN Sustainable Development Goals, 2021, , 982-992.	0.0	0
1588	Selective catalytic oxidation of diglycerol. Green Chemistry, 2021, 23, 1154-1159.	4.6	0
1589	Influence of metal oxide and heteropoly tungstate location in mesoporous silica towards catalytic transfer hydrogenation of furfural to Î ³ -valerolactone. Sustainable Energy and Fuels, 2021, 5, 3719-3728.	2.5	14
1590	Zr-DBS with Sulfonic Group: A Green and Highly Efficient Catalyst for Alcoholysis of Furfuryl Alcohol to Ethyl Levulinate. Catalysis Letters, 2021, 151, 2622-2630.	1.4	8
1591	A nitrogen-doped carbon modified nickel catalyst for the hydrogenation of levulinic acid under mild conditions. Green Chemistry, 2021, 23, 7065-7073.	4.6	22
1592	Electrodeposition of hybrid nanosheet-structured NiCo ₂ O ₄ on carbon fiber paper as a non-noble electrocatalyst for efficient electrocxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. New Journal of Chemistry, 2021, 45, 11213-11221.	1.4	12
1593	Benzoic acid resin (BAR): a heterogeneous redox organocatalyst for continuous flow synthesis of benzoquinones from β-O-4 lignin models. Green Chemistry, 2021, 23, 2308-2316.	4.6	4
1594	Efficient hydrogenation of biomass-derived phenol to cyclohexanol over 3D mesoporous silica-supported Ni catalysts in a continuous gas phase conditions. Biomass Conversion and Biorefinery, 2023, 13, 2757-2768.	2.9	3
1595	Techno-Economic Analysis of a Process for the Aqueous Conversion of Corn Stover into Lactic and Levulinic Acid through Sn-Beta Catalysis. Processes, 2021, 9, 436.	1.3	3
1596	Toward Value-Added Dicarboxylic Acids from Biomass Derivatives via Thermocatalytic Conversion. ACS Catalysis, 2021, 11, 2524-2560.	5.5	75
1597	Differences in Mechanism and Rate of Zeolite-Catalyzed Cyclohexanol Dehydration in Apolar and Aqueous Phase. ACS Catalysis, 2021, 11, 2879-2888.	5.5	26
1598	Recent Advances in Photocatalytic Oxidation of 5â€Hydroxymethylfurfural. ChemPhotoChem, 2021, 5, 502-511.	1.5	46
1599	Conversion of Lignocellulosic Biomass to Reducing Sugars in High Pressure and Supercritical Fluids: Greener Alternative for Biorefining of Renewables. Advanced Sustainable Systems, 2021, 5, 2000275.	2.7	7
1600	Advances in Electrochemical Modification Strategies of 5â€Hydroxymethylfurfural. ChemSusChem, 2021, 14, 1674-1686.	3.6	47
1601	Hydrolysis–dehydration of cellulose to glucose and 5-hydroxymethylfurfural over Sibunit solid acid carbon catalysts under semi-flow conditions. Wood Science and Technology, 2021, 55, 607-624.	1.4	10
1602	Identification of Known and Novel Monomers for Poly(hydroxyurethanes) from Biobased Materials. Industrial & Engineering Chemistry Research, 2021, 60, 6814-6825.	1.8	9

#	Article	IF	CITATIONS
1603	Mechanism of solvothermal conversion of xylose to furfural in rich-methanol solution: A study based on density functional theory. Journal of Analytical and Applied Pyrolysis, 2021, 154, 104996.	2.6	14
1604	Mechanochemical Functionalization of Mesoporous Carbons for the Catalytic Transformation of <i>trans</i> -Ferulic Acid into Vanillin. ACS Sustainable Chemistry and Engineering, 2021, 9, 4704-4710.	3.2	5
1605	Tuning the Reaction Selectivity over MgAl Spinel-Supported Pt Catalyst in Furfuryl Alcohol Conversion to Pentanediols. Catalysts, 2021, 11, 415.	1.6	2
1607	Solar Photooxygenations for the Manufacturing of Fine Chemicals—Technologies and Applications. Molecules, 2021, 26, 1685.	1.7	8
1608	Catalytic production of hexamethylenediamine from renewable feedstocks. Korean Journal of Chemical Engineering, 2021, 38, 1079-1086.	1.2	13
1609	Chemoselective Deoxygenation of 2° Benzylic Alcohols through a Sequence of Formylation and B(C 6) Tj ETQq1	1,0,7843 1.2	14 rgBT /Ove
1610	Preparation of high-activity coal char-based catalysts from high metals containing coal gangue and lignite for catalytic decomposition of biomass tar. International Journal of Hydrogen Energy, 2021, 46, 14138-14147.	3.8	13
1611	Selectively reductive amination of levulinic acid with aryl amines to N-substituted aryl pyrroles. Green Energy and Environment, 2023, 8, 438-443.	4.7	4
1612	Nitrogen-doped graphene supported Ni as an efficient and stable catalyst for levulinic acid hydrogenation. Nanotechnology, 2021, , .	1.3	0
1613	Sequential Superassembly of Nanofiber Arrays to Carbonaceous Ordered Mesoporous Nanowires and Their Heterostructure Membranes for Osmotic Energy Conversion. Journal of the American Chemical Society, 2021, 143, 6922-6932.	6.6	61
1614	Light-driven transformation of biomass into chemicals using photocatalysts – Vistas and challenges. Journal of Environmental Management, 2021, 284, 111983.	3.8	23
1615	A single step ultrasound-assisted nitrocellulose synthesis from microcrystalline cellulose. Ultrasonics Sonochemistry, 2021, 72, 105453.	3.8	14
1616	Cellulose-based polymers. ChemistrySelect, 2023, 8, 2001-2048.	0.7	2
1617	Domino transformation of furfural to ^î ³-valerolactone over SAPO-34 zeolite supported zirconium phosphate catalysts with tunable Lewis and BrÃ _, nsted acid sites. Molecular Catalysis, 2021, 506, 111538.	1.0	19
1618	The effect of mix-milling with P2O5 on cellulose physicochemical properties responsible for increased glucose yield. Carbohydrate Polymers, 2021, 258, 117652.	5.1	7
1622	Preparation of 5-hydroxymethylfurfural from cellulose catalyzed by chemical bond anchoring catalyst HfxZr1â^'xP/SiO2. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133, 157-171.	0.8	5
1623	Recent Advances in Lipid Derived Bioâ€Based Materials for Food Packaging Applications. Macromolecular Materials and Engineering, 2021, 306, 2000799.	1.7	29
1624	Selective Extraction of Xylose from Acidic Hydrolysate–from Fundamentals to Process. ACS Sustainable Chemistry and Engineering, 2021, 9, 6632-6638.	3.2	12

#	Article	IF	CITATIONS
1626	A carbon neutral chemical industry powered by the sun. Discover Chemical Engineering, 2021, 1, 1.	1.1	17
1627	Hydrolysis of Lignocellulosic Biomass in Hot-Compressed Water with Supercritical Carbon Dioxide. ACS Omega, 2021, 6, 14252-14259.	1.6	9
1628	Capturing renewable isobutanol from model vapor mixtures using an all-silica beta zeolite. Chemical Engineering Journal, 2021, 412, 128658.	6.6	9
1629	Highly Efficient Hydrogenation of Furfural to Furfuryl Alcohol Catalyzed by Pt Supported on Bi-Metallic MIL-100 (Fe, Mn/Co) MOFs Derivates Prepared by Hydrothermal Polyol Reduction Method. Catalysis Letters, 0, , 1.	1.4	6
1630	Copper atalyzed Oxidative Câ^'C Cleavage of Carbohydrates: An Efficient Access to Quinazolinone Scaffolds. Asian Journal of Organic Chemistry, 2021, 10, 1795-1800.	1.3	17
1631	Computational Insights into the Hydrodeoxygenation of Phenolic Compounds over Pt–Fe Catalysts. Journal of Physical Chemistry C, 2021, 125, 14239-14252.	1.5	4
1632	Hydrogenolysis of succinic acid over Ru and Pd catalysts encapsulated in porous silica nanoparticles. Clean Technologies and Environmental Policy, 2021, 23, 2171-2182.	2.1	2
1633	Reductive amination of levulinic acid or its derivatives to pyrrolidones over heterogeneous catalysts in the batch and continuous flow reactors: A review. Renewable and Sustainable Energy Reviews, 2021, 143, 110876.	8.2	26
1634	Ketonization of Propionic Acid on Lewis Acidic Zr-Beta Zeolite with Improved Stability and Selectivity. ACS Sustainable Chemistry and Engineering, 2021, 9, 7982-7992.	3.2	30
1635	Ester Oils Prepared from Fully Renewable Resources and Their Lubricant Base Oil Properties. ACS Omega, 2021, 6, 16343-16355.	1.6	10
1636	Recent advances in lignocellulose prior-fractionation for biomaterials, biochemicals, and bioenergy. Carbohydrate Polymers, 2021, 261, 117884.	5.1	72
1637	Metal Sulfide Photocatalysts for Lignocellulose Valorization. Advanced Materials, 2021, 33, e2007129.	11.1	106
1638	Sulfation of wheat straw soda lignin: Role of solvents and catalysts. Catalysis Today, 2022, 397-399, 397-406.	2.2	7
1639	Amberlyst 15®: An Efficient Green Catalyst for the Synthesis of Heterocyclic Compounds. Russian Journal of Organic Chemistry, 2021, 57, 1109-1134.	0.3	9
1640	Catalytic transfer hydrogenolysis of C–O bonds in lignin model compounds without arene hydrogenation. Green Chemical Engineering, 2022, 3, 25-33.	3.3	10
1641	MOF-derived hcp-Co nanoparticles encapsulated in ultrathin graphene for carboxylic acids hydrogenation to alcohols. Journal of Catalysis, 2021, 399, 201-211.	3.1	12
1642	Highly Dispersed Pd on Zeolite/Carbon Nanocomposites for Selective Hydrodeoxygenation of Biomass-Derived Molecules under Mild Conditions. ACS Sustainable Chemistry and Engineering, 2021, 9, 9891-9902.	3.2	48
1644	2,5-Furandicarboxylic acid production from furfural by sequential biocatalytic reactions. Journal of Bioscience and Bioengineering, 2021, 132, 18-24.	1.1	14

#	Article	IF	CITATIONS
1645	Core–Shell Microcapsules from Unpurified Legume Flours. ACS Applied Materials & Interfaces, 2021, 13, 37598-37608.	4.0	12
1646	PdAg Nanoparticles Supported on Bipyridineâ€Based Porous Organic Polymers: An Effective Bimetallic Catalyst for the Hydrodeoxygenation of Vanillin. Energy Technology, 2021, 9, 2100306.	1.8	5
1647	Ammonia Etching to Generate Oxygen Vacancies on CuMn ₂ O ₄ for Highly Efficient Electrocatalytic Oxidation of 5-Hydroxymethylfurfural. ACS Sustainable Chemistry and Engineering, 2021, 9, 11790-11797.	3.2	26
1648	Methanesulfonic acid-mediated conversion of microalgae Scenedesmus obliquus biomass into levulinic acid. Journal of Industrial and Engineering Chemistry, 2021, 104, 85-85.	2.9	2
1649	The Impact of 5â€Hydroxymethylfurfural (HMF)â€Metal Interactions on the Electrochemical Reduction Pathways of HMF on Various Metal Electrodes. ChemSusChem, 2021, 14, 4563-4572.	3.6	22
1650	Synthesis of hydroxyfatty esters by sequential epoxidation-hydrogenolysis: Solvent effects. Applied Catalysis A: General, 2021, 623, 118270.	2.2	4
1651	Terpenes and Terpenoids: Building Blocks to Produce Biopolymers. Sustainable Chemistry, 2021, 2, 467-492.	2.2	28
1652	Aromatic Ketone-Catalyzed Photochemical Synthesis of Imidazo-isoquinolinone Derivatives. Journal of Organic Chemistry, 2021, 86, 12851-12861.	1.7	24
1653	Selective Electro-oxidation of Alcohols to the Corresponding Aldehydes in Aqueous Solution via Cu(III) Intermediates from CuO Nanorods. ACS Sustainable Chemistry and Engineering, 2021, 9, 11855-11861.	3.2	19
1654	Can BrĀ,nsted acids catalyze the epoxidation of allylic alcohols with H2O2? With a little help from the proton, the H3PMo12O40 acid did it and well. Molecular Catalysis, 2021, 512, 111780.	1.0	12
1655	Reductive Amination of Biomass-Based Levulinic Acid into Pyrrolidone by Protic Ionic Liquid via Dehydrogenation of Dimethyl Amine Borane. Waste and Biomass Valorization, 2022, 13, 443-451.	1.8	5
1656	Eugenol, a Promising Building Block for Biobased Polymers with Cutting-Edge Properties. Biomacromolecules, 2021, 22, 3625-3648.	2.6	39
1657	Efficient thermochemical liquefaction of microalgae Haematococcus pluvialis for production of high quality biocrude with high selectivity over Fe/montmorillonite catalyst. Journal of the Energy Institute, 2021, 97, 73-79.	2.7	11
1658	Catalytic Reductive Alcohol Etherifications with Carbonylâ€Based Compounds or CO ₂ and Related Transformations for the Synthesis of Ether Derivatives. ChemSusChem, 2021, 14, 3744-3784.	3.6	18
1659	NHC-Iridium-Catalyzed Deoxygenative Coupling of Primary Alcohols Producing Alkanes Directly: Synergistic Hydrogenation with Sodium Formate Generated in Situ. ACS Catalysis, 2021, 11, 10796-10801.	5.5	16
1660	Conversion of lignocellulose to biofuels and chemicals via sugar platform: An updated review on chemistry and mechanisms of acid hydrolysis of lignocellulose. Renewable and Sustainable Energy Reviews, 2021, 146, 111169.	8.2	138
1661	Nonedible Vegetable Oil-Based Polyols in Anticorrosive and Antimicrobial Polyurethane Coatings. Polymers, 2021, 13, 3149.	2.0	20
1662	Hydrogenative Ring-Rearrangement of Furfural to Cyclopentanone over Pd/UiO-66-NO2 with Tunable Missing-Linker Defects. Molecules, 2021, 26, 5736.	1.7	10

	Сітатіої	CITATION REPORT	
#	Article	IF	CITATIONS
1663	One-pot domino conversion of biomass-derived furfural to γ-valerolactone with an in-situ formed bifunctional catalyst. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-17.	1.2	1
1664	Structure and performance relationship of silica-supported platinum-tungsten catalysts in selective C-O hydrogenolysis of glycerol and 1,4-anhydroerythritol. Applied Catalysis B: Environmental, 2021, 292, 120164.	10.8	26
1665	The Food–Materials Nexus: Next Generation Bioplastics and Advanced Materials from Agriâ€Food Residues. Advanced Materials, 2021, 33, e2102520.	11.1	50
1666	Kilogram-Scale Production of Sustainable PCF Copolyesters Based on Novel Cyclic Diol THFDM Derived from 5-Hydroxymethylfurfural: Trade-Off between the THFDM Structure and Various Properties of Copolyesters. ACS Sustainable Chemistry and Engineering, 2021, 9, 13287-13302.	3.2	8
1667	Photocycloadditions of Arenes Derived from Lignin. Journal of Organic Chemistry, 2021, 86, 13310-13321.	1.7	6
1668	Selective Oxidation of 5-Hydroxymethylfurfural to 2, 5-Diformylfuran Over a Vanadium Manganese Oxide Catalyst. Catalysis Letters, 2022, 152, 2280-2287.	1.4	3
1669	New bio-based sustainable polymers and polymer composites based on methacrylate derivatives of furfural, solketal and lactic acid. Materials Today Communications, 2021, 28, 102721.	0.9	7
1670	A review on catalytic conversion of lignin into high-value chemicals over Ni-based catalysts. Biomass Conversion and Biorefinery, 2023, 13, 11339-11381.	2.9	7
1671	Optimizing operational parameters for the enzymatic production of furandicarboxylic acid building block. Microbial Cell Factories, 2021, 20, 180.	1.9	6
1672	Control of coke deposition in solid acid catalysis through the doping of transition metal combined with the assistance of H2: A review. Applied Catalysis A: General, 2021, 626, 118340.	2.2	8
1673	Synthesis of bio-based 2-thiothiophenes. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200350.	1.6	0
1674	Acid–hydrolysed furfural production from rice straw bio-waste: Process synthesis, simulation, and optimisation. South African Journal of Chemical Engineering, 2021, 38, 34-40.	1.2	5
1675	Efficient transformation of 5-hydroxymethylfurfural to ethyl levulinate over the BrÃ,nsted acidic ionic liquid functionalized dendritic fibrous nanosilica spheres. Microporous and Mesoporous Materials, 2021, 326, 111354.	2.2	1
1676	Catalytic oxidation of lignin and model compounds over nano europium oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 126846.	2.3	5
1677	Conversion of chitin biomass into 5-hydroxymethylfurfural: A review. Renewable and Sustainable Energy Reviews, 2021, 150, 111452.	8.2	32
1678	Global evolution of research on green energy and environmental technologies:A bibliometric study. Journal of Environmental Management, 2021, 297, 113382.	3.8	139
1679	Rational construction of metal–base synergetic sites on Au/Mg-beta catalyst for selective aerobic oxidation of 5-hydroxymethylfurfural. Journal of Energy Chemistry, 2021, 62, 599-609.	7.1	19
1680	Photo-/thermal synergies in heterogeneous catalysis: Towards low-temperature (solar-driven) processing for sustainable energy and chemicals. Applied Catalysis B: Environmental, 2021, 296, 120320.	10.8	66

#	Article	IF	CITATIONS
1681	Structural features of cotton gin trash derived carbon material as a catalyst for the dehydration of fructose to 5-hydroxymethylfurfural. Fuel, 2021, 306, 121670.	3.4	14
1682	Ru(III) single site solid micellar catalyst for selective aqueous phase hydrogenation of carbonyl groups in biomass-derived compounds. Applied Catalysis B: Environmental, 2022, 300, 120730.	10.8	12
1683	Elucidating the effect of process parameters on the production of hydrogen-rich syngas by biomass and coal Co-gasification techniques: A multi-criteria modeling approach. Chemosphere, 2022, 287, 132052.	4.2	28
1684	Cr-Mn bimetallic functionalized USY zeolite monolithic catalyst for direct production of 2, 5-Furandicarboxylic acid from raw biomass. Chemical Engineering Journal, 2022, 429, 132173.	6.6	18
1685	Solid catalysts for environmentally benign synthesis. , 2022, , 23-80.		0
1686	Catalytic transfer hydrogenation of furfural to furfuryl alcohol using easy-to-separate core–shell magnetic zirconium hydroxide. New Journal of Chemistry, 2021, 45, 2715-2722.	1.4	15
1687	Conversion of biomass-derived furfural into 1,5-pentadiol using effective Pt/silicalite-1 catalyst at mild condition. AIP Conference Proceedings, 2021, , .	0.3	0
1688	Cost and energy efficient cyclic separation of 5-hydroxymethyl furfural from an aqueous solution. Green Chemistry, 2021, 23, 4008-4023.	4.6	15
1689	The hydrogen peroxide-mediated oxidation of biorenewable furfural to 2(5H)-furanone using heteropolyacids supported on ammonium Y zeolite as the catalyst. Materials Today: Proceedings, 2021, 46, 3011-3017.	0.9	1
1690	Separation of short-chain glucan oligomers from molten salt hydrate and hydrolysis to glucose. Green Chemistry, 2021, 23, 4114-4124.	4.6	15
1691	Furan platform chemicals beyond fuels and plastics. Green Chemistry, 2021, 23, 7458-7487.	4.6	43
1692	Ni–Al/CoOx-catalyzed hydrodeoxygenation of 5-hydroxymethylfurfural into 2,5-dimethylfuran at low temperatures without external hydrogen. Green Chemistry, 2021, 23, 7763-7772.	4.6	25
1693	The transfer hydrogenation of high concentration levulinic acid to γ-valerolactone catalyzed by glucose phosphate carbamide zirconium. Green Chemistry, 2021, 23, 3428-3438.	4.6	29
1694	Optimization of the Process of Obtaining Ethanol-Lignin from Abies Bark (Abies Sibirica). Lecture Notes in Networks and Systems, 2021, , 363-368.	0.5	0
1695	Silica-Supported Fe(II), Co(II) and Ni(II) Complexes as Efficient Catalysts to Esterification of Levulinic acid with Polyol. Asian Journal of Chemistry, 2021, 33, 1842-1848.	0.1	0
1696	Lignocellulose-derived hydrogel/aerogel-based flexible quasi-solid-state supercapacitors with high-performance: a review. Journal of Materials Chemistry A, 2021, 9, 14233-14264.	5.2	55
1697	Hydrolysis of Cellulose in the Presence of Catalysts Based on Cesium Salts of Heteropoly Acids. Catalysis in Industry, 2021, 13, 73-80.	0.3	6
1698	Catalytic Conversion of Cellulose to Levoglucosenone Using Propylsulfonic Acid Functionalized Sba-15 and H2so4Âln Tetrahydrofuran. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
1699	Catalytic Conversion of Tetrahydrofurfuryl Alcohol over Stable Pt/MoS2 Catalysts. Catalysis Letters, 2021, 151, 2734-2747.	1.4	6
1700	Design of BrÃ,nsted acidic ionic liquid functionalized mesoporous organosilica nanospheres for efficient synthesis of ethyl levulinate and levulinic acid from 5-hydroxymethylfurfural. Catalysis Science and Technology, 2021, 11, 1827-1842.	2.1	11
1701	Recent Advances in Catalytic Transfer Hydrogenation with Formic Acid over Heterogeneous Transition Metal Catalysts. ACS Catalysis, 2021, 11, 1071-1095.	5.5	146
1702	An organophotoredox-catalyzed redox-neutral cascade involving <i>N</i> -(acyloxy)phthalimides and maleimides. Organic Chemistry Frontiers, 2021, 8, 2256-2262.	2.3	30
1703	Earth-abundant 3d-transition-metal catalysts for lignocellulosic biomass conversion. Chemical Society Reviews, 2021, 50, 6042-6093.	18.7	104
1704	Microwave-Assisted Reactions in Green Chemistry. , 2018, , 1-40.		4
1705	Microwave-Assisted Reactions in Green Chemistry. , 2019, , 573-612.		4
1706	Implications: Convergence of Knowledge and Technology for a Sustainable Society. Science Policy Reports, 2013, , 371-431.	0.1	3
1707	Saccharide Biomass for Biofuels, Biomaterials, and Chemicals. , 2018, , 11-30.		1
1708	Enzymatic Conversion of First- and Second-Generation Sugars. , 2018, , 169-189.		8
1709	Biobased Polyamide Ecomaterials and Their Susceptibility to Biodegradation. , 2019, , 2901-2934.		7
1710	The Biotechnological Potential of Corynebacterium glutamicum, from Umami to Chemurgy. Microbiology Monographs, 2013, , 1-49.	0.3	6
1711	Hydrothermal Conversion of Cellulose into Organic Acids with a CuO Oxidant. Green Chemistry and Sustainable Technology, 2014, , 31-59.	0.4	5
1712	Production of \hat{I}^3 -Valerolactone from Biomass. Biofuels and Biorefineries, 2017, , 413-436.	0.5	1
1713	Catalytic Aerobic Oxidation of 5-Hydroxymethylfurfural (HMF) into 2,5-Furandicarboxylic Acid and Its Derivatives. Biofuels and Biorefineries, 2017, , 171-206.	0.5	5
1714	Role of Solvent System in Green Synthesis of Nanoparticles. , 2020, , 53-74.		2
1715	Review on impregnation issues in laminates manufacture: opportunities and risks of phenol substitution by lignins or other natural phenols in resins. European Journal of Wood and Wood Products, 2017, 75, 853-876.	1.3	16
1716	Selectivity enhancement in the g-C3N4-catalyzed conversion of glucose to gluconic acid and glucaric acid by modification of cobalt thioporphyrazine. Journal of Catalysis, 2020, 388, 11-19.	3.1	34

#		IF	Citations
1717	characterization by X-ray absorption spectroscopy of bimetallic Rea Pd/102 catalysts efficient for selective aqueous-phase hydrogenation of succinic acid to 1,4-butanediol. Materials Chemistry and Physics, 2020, 252, 123225.	2.0	11
1718	Supercritical reactors for the production of advanced bio-fuels: A review. Journal of Supercritical Fluids, 2018, 134, 106-113.	1.6	8
1719	Simultaneous Direct Production of 5-Hydroxymethylfurfural (HMF) and Furfural from Corncob Biomass Using Porous HSO ₃ -ZSM-5 Zeolite Catalyst. Energy & Fuels, 2021, 35, 546-551.	2.5	26
1720	Photoreforming of Lignocellulosic Biomass into Hydrogen under Sunlight in the Presence of Thermally Radiative CdS/SiC Composite Photocatalyst. ACS Applied Energy Materials, 2021, 4, 1059-1062.	2.5	18
1721	Catalytic Hydrogenation of Sugars. RSC Green Chemistry, 2015, , 89-133.	0.0	5
1722	Chapter 7. Non-fuel Applications of Sugars in Brazil. RSC Green Chemistry, 0, , 228-257.	0.0	2
1723	Catalyst-free Organic Synthesis: An Introduction. RSC Green Chemistry, 2017, , 1-10.	0.0	4
1724	Catalytic Processes and Catalyst Development in Biorefining. RSC Green Chemistry, 2018, , 25-64.	0.0	8
1725	Catalysts for Depolymerization of Biomass. RSC Green Chemistry, 2018, , 65-97.	0.0	5
1726	Production of carbonaceous microspheres from wood sawdust by a novel hydrothermal carbonization and extraction method. RSC Advances, 2017, 7, 42123-42128.	1.7	9
1727	Current challenges and future perspectives in sustainable mechanochemical transformations of carbohydrates. Green Chemistry, 2020, 22, 5559-5583.	4.6	31
1728	Existe-t-il réellement un nouveau paradigme de la chimie verte�. Natures Sciences Societes, 2014, 22, 103-113.	0.1	11
1730	Hydrolysis of Cellulose in the Presence of Catalysts Based on Cesium Salts of Heteropolyacids. Kataliz V Promyshlennosti, 2020, 20, 234-242.	0.2	3
1731	Isomaltulose Oxidation and Dehydration Products as Starting Materials Towards Fine Chemicals. Current Organic Chemistry, 2014, 18, 1768-1787.	0.9	8
1732	Catalytic Hydrogenolysis of Biomass-derived Polyhydric Compounds to C2–C3 Small- Molecule Polyols: A Review. Current Organic Chemistry, 2019, 23, 2180-2189.	0.9	4
1733	Preparation of 5-Hydroxymethylfurfural from Glucose and Fructose in Ionic Liquids by Reactive Vacuum Distillation Over a Solid Catalyst. Current Organic Synthesis, 2017, 14, 596-603.	0.7	13
1734	Heterogeneous System in Organic Synthesis: A Review. Mini-Reviews in Organic Chemistry, 2020, 17, 740-753.	0.6	13
1735	Bio-based polyurethane prepared from Kraft lignin and modified castor oil. EXPRESS Polymer Letters,	1.1	100

#	Article	IF	CITATIONS
1736	Toward Green Production of Chewing Gum and Diet: Complete Hydrogenation of Xylose to Xylitol over Ruthenium Composite Catalysts under Mild Conditions. Research, 2019, 2019, 5178573.	2.8	10
1737	Bio-Renewable Sources for Synthesis of Eco-Friendly Polyurethane Adhesives—Review. Open Journal of Polymer Chemistry, 2017, 07, 57-75.	1.8	26
1738	Scientific specialties in Green Chemistry. Iberoamerican Journal of Science Measurement and Communication, 2020, 1, 005.	1.6	4
1739	Cyclocondensation of Anthranilamide with Aldehydes on Gallium-Containing MCM-22 Zeolite Materials. ACS Omega, 2021, 6, 28828-28837.	1.6	5
1740	One-pot synthesis of pyrrolidone derivatives via reductive amination of levulinic acid/ester with nitriles over Pd/C catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2021, 134, 777-792.	0.8	4
1741	Application of Analytical Chemistry in the Production of Liquid Biofuels. Lecture Notes in Energy, 2014, , 173-187.	0.2	0
1742	Preparation of 2,5-Diformylfuran through Selective Electro-Catalytic Oxidation with Modified Metallic Electrodes. Sustainable Energy, 2014, 04, 31-39.	0.1	0
1744	Investigation of Furfural Yields of Liquid Hydrolyzate during Dilute Acid Pretreatment Process on Quercus Mongolica using Response Surface Methodology. Journal of the Korean Wood Science and Technology, 2016, 44, 85-95.	0.8	3
1745	Phenolics Value Chain and l-Lactic Acid Bioproduction from Agricultural Biomass. Green Chemistry and Sustainable Technology, 2016, , 319-347.	0.4	0
1746	Characteristics of Cotton Stalk Torrefaction Catalyzed by Magnesium Chloride. Forest Products Journal, 2016, 66, 44-48.	0.2	1
1747	Conversion of Lignin into High Value Chemical Products. , 2018, , 1-20.		0
1748	Przestrzenne zróżnicowanie produkcji biomasy rolniczej pochodzenia roślinnego w państwach UE w kontekście rozwoju biogospodarki. Zeszyty Naukowe SGGW W Warszawie - Problemy Rolnictwa Åšwiatowego, 2018, 18(33), 100-110.	0.0	0
1750	Textile production and its relationship with corporate social responsibility. DimensiÓn Empresarial, 2018, 17, 59-76.	0.2	0
1751	Optimizing Return on Investment in Biomass Conversion Networks under Uncertainty Using Data-Driven Adaptive Robust Optimization. Computer Aided Chemical Engineering, 2019, 46, 67-72.	0.3	0
1752	Conversion of Lignin into High Value Chemical Products. , 2019, , 385-403.		2
1753	Chemistry of Bioproducts. Green Energy and Technology, 2020, , 233-267.	0.4	1
1754	Sweet Chemistry and. , 2020, , 113-141.		0
1755	Upgrading of seafood waste as a carbon source: Nano-world outlook. Journal of Environmental Chemical Engineering, 2021, 9, 106656.	3.3	25

#	Article	IF	CITATIONS
1756	Catalytic Synthesis of the Biofuel 5-Ethoxymethylfurfural (EMF) from Biomass Sugars. Journal of Chemistry, 2021, 2021, 1-16.	0.9	3
1757	Grass-like Ni _{<i>x</i>} Se _{<i>y</i>} nanowire arrays shelled with NiFe LDH nanosheets as a 3D hierarchical core–shell electrocatalyst for efficient upgrading of biomass-derived 5-hydroxymethylfurfural and furfural. Catalysis Science and Technology, 2022, 12, 201-211.	2.1	24
1758	The dehydration of <i>N</i> -acetylglucosamine (GlcNAc) to enantiopure dihydroxyethyl acetamidofuran (Di-HAF). Organic and Biomolecular Chemistry, 2021, 19, 10105-10111.	1.5	11
1759	Production of chemicals from marine biomass catalysed by acidic ionic liquids. Green Chemistry, 2021, 23, 9800-9814.	4.6	13
1760	Phytoplankton: Biodiesel Production and Other Applications for Marine Biotechnology. Encyclopedia of the UN Sustainable Development Goals, 2020, , 1-10.	0.0	0
1761	SnBr2-catalyzed highly selective synthesis of alkyl ethers from monoterpenes. Comptes Rendus Chimie, 2020, 23, 93-103.	0.2	0
1762	Reductive Upgrading of Bio-Based Furanic Compounds over Subnanometer Catalysts. ACS Symposium Series, 2020, , 77-92.	0.5	0
1764	Computational understanding of Fe-Pt synergy in promoting guaiacol hydrodeoxygenation. Surface Science, 2022, 717, 121985.	0.8	4
1765	Ionic liquids screening for lignin dissolution: COSMO-RS simulations and experimental characterization. Journal of Molecular Liquids, 2022, 348, 118007.	2.3	14
1766	In situ Generated Ru(0)-HRO@Na-β From Hydrous Ruthenium Oxide (HRO)/Na-β: An Energy-Efficient Catalyst for Selective Hydrogenation of Sugars. Frontiers in Chemistry, 2020, 8, 525277.	1.8	1
1767	Valorization of Biowastes into Food, Fuels, and Chemicals: Towards Sustainable Environment, Economy, and Society. , 2021, , 85-100.		2
1769	Switchable solvents for bio-refinery applications. , 2022, , 1-20.		0
1770	Catalytic conversion of cellulose to levoglucosenone using propylsulfonic acid functionalized SBA-15 and H2SO4 in tetrahydrofuran. Biomass and Bioenergy, 2022, 156, 106315.	2.9	4
1771	Impact of Design on the Activity of ZrO2 Catalysts in Cellulose Hydrolysis-Dehydration to Glucose and 5-Hydroxymethylfurfural. Catalysts, 2021, 11, 1359.	1.6	5
1772	Production of Copolyester Monomers from Plantâ€Based Acrylate and Acetaldehyde. Angewandte Chemie - International Edition, 2022, 61, .	7.2	1
1773	Development of Sustainable Catalytic Pathways for Furan Derivatives. Frontiers in Chemistry, 2021, 9, 707908.	1.8	1
1774	A Landscape of Lignocellulosic Biopolymer Transformations into Valuable Molecules by Heterogeneous Catalysis in C'Durable Team at IRCELYON. Molecules, 2021, 26, 6796.	1.7	1
1775	Catalyst design strategy toward the efficient heterogeneously-catalyzed selective oxidation of 5-hydroxymethylfurfural. Green Energy and Environment, 2022, 7, 900-932.	4.7	38

#	Article	IF	CITATIONS
1776	Insight into Biomass Upgrade: A Review on Hydrogenation of 5-Hydroxymethylfurfural (HMF) to 2,5-Dimethylfuran (DMF). Molecules, 2021, 26, 6848.	1.7	13
1777	Fractionation of Birch Wood by Integrating Alkaline-Acid Treatments and Hydrogenation in Ethanol over a Bifunctional Ruthenium Catalyst. Catalysts, 2021, 11, 1362.	1.6	6
1778	Enhancing Glycerol Conversion and Selectivity toward Glycolic Acid via Precise Nanostructuring of Electrocatalysts. ACS Catalysis, 2021, 11, 14926-14931.	5.5	24
1779	Selective hydrogenation of levulinic acid to \hat{I}^3 -valerolactone on Ni-based catalysts. Molecular Catalysis, 2021, 516, 112000.	1.0	9
1780	Construction of Cu-M-O <i>_x</i> (M = Zn or Al) Interface in Cu Catalysts for Hydrogenation Rearrangement of Furfural. Industrial & Engineering Chemistry Research, 2021, 60, 16939-16950.	1.8	12
1781	Production of Copolyester Monomers from Plantâ€Based Acrylate and Acetaldehyde. Angewandte Chemie, 0, , .	1.6	0
1782	Homogeneous Catalyzed Valorization of Furanics: A Sustainable Bridge to Fuels and Chemicals. Catalysts, 2021, 11, 1371.	1.6	12
1783	Integrated Catalytic Hydrolysis and Complete Conversion of Three Crop Stalks to Valuable Oxygenated Organic Chemicals. SSRN Electronic Journal, 0, , .	0.4	0
1784	An organophotoredox-catalyzed redox-neutral cascade involving <i>N</i> -(acyloxy)phthalimides and allenamides: synthesis of indoles. Chemical Communications, 2021, 57, 13130-13133.	2.2	22
1785	Decarboxylative cross-nucleophile coupling via ligand-to-metal charge transfer photoexcitation of Cu(ii) carboxylates. Nature Chemistry, 2022, 14, 94-99.	6.6	101
1786	Highly efficient selective hydrogenation of levulinic acid to γ-valerolactone over Cu–Re/TiO ₂ bimetallic catalysts. RSC Advances, 2021, 12, 602-610.	1.7	7
1787	Selective oxidation of cellulose into formic acid over heteropolyacid-based temperature responsive catalysts. Renewable Energy, 2022, 185, 139-146.	4.3	10
1788	Oligomer-first mechanism in the transformation of biomass derivatives selectively to produce D-lactic acid. Chemical Engineering Journal, 2022, 432, 134359.	6.6	8
1789	Employment of biogas as pyrolysis medium and chemical feedstock. Journal of CO2 Utilization, 2022, 57, 101877.	3.3	9
1790	Electrochemical hydrogenation of biomass-based furfural in aqueous media by Cu catalyst supported on N-doped hierarchically porous carbon. Applied Catalysis B: Environmental, 2022, 305, 121062.	10.8	38
1791	Conversion of furfuryl alcohol to ethyl levulinate in the presence of mesoporous aluminosilicate catalyst. Open Chemistry, 2021, 19, 1294-1300.	1.0	1
1792	Visible Light-Mediated Metal-Free Decarboxylative Deuteration of Carboxylic Acid. Chinese Journal of Organic Chemistry, 2021, 41, 4725.	0.6	8
1794	Selective conversion of acetone to mesitylene over tantalum phosphate catalysts. Chemical Communications, 2022, 58, 2862-2865.	2.2	9

#	Article	IF	CITATIONS
1795	Nanocrystalline rhenium-doped TiO ₂ : an efficient catalyst in the one-pot conversion of carbohydrates into levulinic acid. The synergistic effect between BrA,nsted and Lewis acid sites. Catalysis Science and Technology, 2022, 12, 167-180.	2.1	4
1796	Novel Sulfonic Acid Polystyrene Microspheres for Alcoholysis of Furfuryl Alcohol to Ethyl Levulinate. Catalysis Letters, 2022, 152, 3158-3167.	1.4	2
1797	Synthesis of jet fuel and diesel range cycloalkanes with 2-methylfuran and benzaldehyde. Sustainable Energy and Fuels, 2022, 6, 1156-1163.	2.5	4
1798	Influence of Ca/P ratio on the catalytic performance of hydroxyapatite for decarboxylation of itaconic acid to methacrylic acid. Chinese Journal of Chemical Engineering, 2023, 53, 402-408.	1.7	3
1799	Production of Platform Chemicals and High Value Products from Hemicellulose. Clean Energy Production Technologies, 2022, , 361-397.	0.3	1
1800	Production of levulinic acid and alkyl levulinates: a process insight. Green Chemistry, 2022, 24, 614-646.	4.6	84
1801	Furfural – a versatile, biomass-derived platform chemical for the production of renewable chemicals. Green Chemistry, 2022, 24, 510-551.	4.6	104
1802	Enhanced catalytic performance of H3PO4/SiO2 by doping WO3 and Ag for the vapor-phase dehydration of 1,2-propanediol to form propanal. Applied Catalysis A: General, 2022, 633, 118509.	2.2	2
1803	5â€Hydroxymethylfurfural and Furfural Chemistry Toward Biobased Surfactants. ChemSusChem, 2022, 15, .	3.6	10
1804	Synthetic Study of 5â€Hydroxymethylfurfural in Groebkeâ€Blackburnâ€Bienaymé Reaction. European Journal of Organic Chemistry, 2022, 2022, .	1.2	5
1805	Thermochemical conversion of heavy metal contaminated biomass: Fate of the metals and their impact on products. Science of the Total Environment, 2022, 822, 153426.	3.9	26
1806	Applications of heteropoly acids in industry. , 2022, , 305-373.		1
1807	Catalytic Sulfation of Betulin with Sulfamic Acid: Experiment and DFT Calculation. International Journal of Molecular Sciences, 2022, 23, 1602.	1.8	12
1808	Metal vs. Metalâ€Free Catalysts for Oxidation of 5â€Hydroxymethylfurfural and Levoglucosenone to Biosourced Chemicals. ChemSusChem, 2022, 15, .	3.6	4
1809	Surfactants produced from carbohydrate derivatives: A review of the biobased building blocks used in their synthesis. Journal of Surfactants and Detergents, 2022, 25, 147-183.	1.0	21
1810	The sustainable materials roadmap. JPhys Materials, 2022, 5, 032001.	1.8	24
1811	Promising and efficient lignin degradation versatile strategy based on DFT calculations. IScience, 2022, 25, 103755.	1.9	4
1812	3-Isobutyl-5,5,7-tris(3-methylbut-2-en-1-yl)-1-phenyl-1,7-dihydro-4H-indazole-4,6(5H)-dione. MolBank, 2022, 2022, M1330.	0.2	0

#	Article	IF	CITATIONS
1813	Valorisation of lignocellulosic biomass to value-added products: Paving the pathway towards low-carbon footprint. Fuel, 2022, 313, 122678.	3.4	66
1814	An Anderson-type polyoxometalate triggers aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. Fuel, 2022, 315, 123226.	3.4	15
1815	Catalytic transformation of biomass-based feedstocks in green solvents. , 2022, , 673-720.		1
1816	Amination of biomass to nitrogen-containing compounds. , 2022, , 593-612.		1
1817	Role of noble metal catalysts for transformation of bio-based platform molecules. , 2022, , 641-672.		0
1818	Biochemicals and materials production: an introduction. , 2022, , 1-8.		0
1819	Sustainable Sorbitol Dehydration to Isosorbide using Solid Acid Catalysts: Transition from Batch Reactor to Continuousâ€Flow System. ChemSusChem, 2022, 15, .	3.6	13
1820	Direct Hydrolysis of Biomass Polymers using High-pressure CO2 and CO2–H2O Mixtures. RSC Green Chemistry, 2017, , 83-114.	0.0	3
1821	Fast and Continuous Synthesis of 2,5-Furandicarboxylic Acid in a Micropacked-Bed Reactor. SSRN Electronic Journal, 0, , .	0.4	1
1822	Synthesis of indoles and carbazoles from a lignin model compound α-hydroxyacetophenone. Green Chemistry, 2022, 24, 2919-2926.	4.6	9
1823	Recent advances in biomass-derived platform chemicals to valeric acid synthesis. New Journal of Chemistry, 2022, 46, 5907-5921.	1.4	21
1824	Carbon-based and carbon-supported nanomaterials for the catalytic conversion of biomass: a review. Environmental Chemistry Letters, 2022, 20, 1719-1744.	8.3	19
1825	Hydrogen production from autothermal CO2 gasification of cellulose in a fixed-bed reactor: Influence of thermal compensation from CaO carbonation. International Journal of Hydrogen Energy, 2022, 47, 41480-41487.	3.8	6
1826	Hydrothermal hydrolysis of microcrystalline cellulose from birch wood catalyzed by Al2O3-B2O3 mixed oxides. Wood Science and Technology, 2022, 56, 437-457.	1.4	21
1827	Synergic Effects of Boronate Diester Formation and High-Ionic Strength Biphasic Operation on Xylose-to-Furfural Selectivity. ACS Sustainable Chemistry and Engineering, 2022, 10, 3595-3603.	3.2	4
1828	A Semi‣erendipitous Journey towards the Commercialisation of a Catalytic Hydrocracking Process for Polymer Waste. ChemPlusChem, 2022, 87, e202200012.	1.3	0
1829	Nano-H-ZSM-5 with Short <i>b</i> -Axis Channels as a Highly Efficient Catalyst for the Synthesis of Ethyl Levulinate from Furfuryl Alcohol. ACS Sustainable Chemistry and Engineering, 2022, 10, 3808-3816.	3.2	5
1830	A Catalytic Strategy for Selective Production of 5â€Formylfuranâ€2â€carboxylic Acid and Furanâ€2,5â€dicarboxylic Acid. ChemCatChem, 2022, 14,	1.8	6

#	Article	IF	CITATIONS
1831	Chemical Modification of Silk Proteins: Current Status and Future Prospects. Advanced Fiber Materials, 2022, 4, 705-719.	7.9	28
1832	Catalyst-controlled functionalization of carboxylic acids by electrooxidation of self-assembled carboxyl monolayers. Nature Communications, 2022, 13, 1319.	5.8	19
1833	Ligninâ€inspired Polybenzylethersulfone Synthesis via S _N Ar Reaction. Macromolecular Chemistry and Physics, 0, , 2100484.	1.1	0
1834	New reactions of betulin with sulfamic acid and ammonium sulfamate in the presence of solid catalysts. Biomass Conversion and Biorefinery, 2024, 14, 4245-4256.	2.9	20
1835	Advances in Catalytic Routes for the Homogeneous Green Conversion of the Bioâ€Based Platform 5â€Hydroxymethylfurfural. ChemSusChem, 2022, 15, .	3.6	10
1836	Boron Modified Cu/Al ₂ O ₃ Catalysts for the Selective Reductive Amination of Levulinic Acid to Nâ€Substituted Pyrrolidinones. ChemCatChem, 2022, 14, .	1.8	11
1837	Rhodium-Catalyzed Regioselective and Chemoselective Deoxygenative Reduction of 1,3-Diketones. ACS Catalysis, 2022, 12, 4640-4647.	5.5	7
1838	Solvent-promoted and acid- controlled selectivity oxidation of 5-hydroxymethylfurfural over metal-free TEMPO catalyst. Applied Catalysis A: General, 2022, 636, 118600.	2.2	2
1839	Electrochemical Decarboxylative Oxygenation of Carboxylic Acids. ACS Sustainable Chemistry and Engineering, 2022, 10, 5067-5071.	3.2	9
1840	Effect of poly(N-vinylpyrrolidone) ligand on catalytic activities of Au nanoparticles supported on Nb2O5 for CO oxidation and furfural oxidation. Catalysis Today, 2023, 410, 143-149.	2.2	2
1841	Hydrogen-Rich Syngas and Biochar Production by Non-Catalytic Valorization of Date Palm Seeds. Energies, 2022, 15, 2727.	1.6	21
1842	Biobased tar pitch produced from biomass pyrolysis oils. Fuel, 2022, 318, 123300.	3.4	3
1843	In-situ catalytic fast pyrolysis of reed as a sustainable method for production of porous carbon as VOCs adsorbents. Journal of Analytical and Applied Pyrolysis, 2022, 164, 105520.	2.6	10
1844	Selective hydrogenation of reducing sugars over SiO2@Ni/NiO hetero-structured nanoreactor in Mg-driven aqueous phase. Applied Surface Science, 2022, 587, 152849.	3.1	8
1845	Fast and continuous synthesis of 2,5-furandicarboxylic acid in a micropacked-bed reactor. Chemical Engineering Journal, 2022, 442, 136110.	6.6	17
1846	Synergistic interaction of renewable nipagin and eugenol for aromatic copoly(ether ester) materials with desired performance. Scientific Reports, 2021, 11, 24119.	1.6	0
1847	Highly Efficient Synthesis of Poly(silylether)s: Access to Degradable Polymers from Renewable Resources. Angewandte Chemie - International Edition, 2022, 61, e202113443.	7.2	13
1848	Effect of Functional Group on the Catalytic Activity of Lipase B from Candida antarctica Immobilized in a Silica-Reinforced Pluronic F127/α-Cyclodextrin Hydrogel. Gels, 2022, 8, 3.	2.1	3

#	Article	IF	CITATIONS
1849	Highly Efficient Synthesis of Poly(silylether)s: Access to Degradable Polymers from Renewable Resources. Angewandte Chemie, 2022, 134, .	1.6	1
1850	Photocatalytic Radical Addition to Levoglucosenone. European Journal of Organic Chemistry, 2022, 2022, .	1.2	5
1851	Fructose to Sorbents: Synthesis of Metal–Organic Frameworks Directly from Biomass for Humid Shale Gas Separation. ACS Sustainable Chemistry and Engineering, 2021, 9, 17310-17318.	3.2	4
1852	Efficient production of ethylene glycol from cellulose over Co@C catalysts combined with tungstic acid. Sustainable Energy and Fuels, 2022, 6, 2602-2612.	2.5	6
1853	Vanadium-doped phosphomolybdic acids as catalysts for geraniol oxidation with hydrogen peroxide. RSC Advances, 2022, 12, 11796-11806.	1.7	10
1854	Conversion of <i>N</i> â€Acetylâ€Dâ€glucosamine into 3â€Acetamidoâ€5â€acetylfuran Using Cheap Ammonium Chloride as Catalyst. ChemistrySelect, 2022, 7, .	0.7	3
1855	Selective preparation of renewable ketals from biomass-based carbonyl compounds with polyols using β-zeolite catalyst. Molecular Catalysis, 2022, 524, 112269.	1.0	6
1856	Integrated catalytic hydroconversion of three crop stalks to valuable oxygenated organic chemicals. Fuel, 2022, 322, 124149.	3.4	7
1861	H ₂ O ₂ -promoted C–C bond oxidative cleavage of β-O-4 lignin models to benzanilides using water as a solvent under metal-free conditions. Green Chemistry, 2022, 24, 4395-4398.	4.6	7
1862	Assisted catalysis: An overview of alternative activation technologies for the conversion of biomass. , 2022, , 365-393.		3
1863	More than a support: the unique role of Nb ₂ O ₅ in supported metal catalysts for lignin hydrodeoxygenation. Catalysis Science and Technology, 2022, 12, 3751-3766.	2.1	18
1864	In-Situ Synthesis of Ru-Wox/ Biochar Catalyst for Conversion of Cellulose Toward Ethylene Glycol. SSRN Electronic Journal, 0, , .	0.4	0
1865	Bio- and chemical surfactants for remediation of emerging organic contaminants. , 2022, , 367-380.		0
1866	Determination of highest occupied molecular orbital and cationic structures of cyclopentanone using highâ \in resolution vacuum ultraviolet massâ \in analyzed threshold ionization mass spectrophotometry. Bulletin of the Korean Chemical Society, 2022, 43, 636-644.	1.0	6
1867	Technology Overview of Fast Pyrolysis of Lignin: Current State and Potential for Scaleâ€Up. ChemSusChem, 2022, 15, .	3.6	7
1868	Characterization of the Compounds Released in the Gaseous Waste Stream during the Slow Pyrolysis of Hemp (Cannabis sativa L.). Molecules, 2022, 27, 2794.	1.7	1
1869	MyrDOL, a Protected Dihydroxyfunctional Diene Monomer Derived from β-Myrcene: Functional Polydienes from Renewable Resources via Anionic Polymerization. Macromolecules, 2022, 55, 4046-4055.	2.2	3
1870	Selective oxidation of biomassâ€based 5â€hydroxymethylfurfural to 2,5â€diformylfuran catalyzed by multicomponent molybdenum based catalyst. Journal of Chemical Technology and Biotechnology, 0, , .	1.6	0

#	Article	IF	CITATIONS
1871	Simultaneous Coordination of Zn(II) and Zr(IV) to <scp>d</scp> -Amino Acid Oxidase: Highly Efficient Catalytic Transfer Hydrogenation of Levulinic Acid to I³-Valerolactone. ACS Sustainable Chemistry and Engineering, 2022, 10, 6584-6595.	3.2	2
1872	A highly dispersed Ni3P/HZSM-5 catalyst for hydrodeoxygenation of phenolic compounds to cycloalkanes. Journal of Catalysis, 2022, 410, 294-306.	3.1	11
1873	Review on development of ionic liquids in lignocellulosic biomass refining. Journal of Molecular Liquids, 2022, 359, 119326.	2.3	20
1874	Ru-supported mesoporous melamine polymers as efficient catalysts for selective hydrogenation of aqueous 5-hydroxymethylfurfural to 2,5-bis-(hydroxymethyl)furan. Biomass Conversion and Biorefinery, 2024, 14, 6267-6284.	2.9	4
1875	Conversion of bio-carbohydrates to 5-hydroxymethylfurfural in three-component deep eutectic solvent. RSC Advances, 2022, 12, 14957-14963.	1.7	7
1876	Degradation of cotton stalk lignin by carbon dots loaded copper oxide synergistic emulsion system. Nanotechnology, 2022, 33, 485402.	1.3	3
1877	Humins‣ike Solid Support for Palladium Immobilization: Highly Efficient and Recyclable Catalyst for Cross oupling Reactions. European Journal of Organic Chemistry, 2022, 2022, .	1.2	3
1878	Copper dispersed natural kaolinite as high-performance catalysts for the hydrolysis of cellulose in water. Biomass Conversion and Biorefinery, 2024, 14, 5295-5304.	2.9	1
1879	Synthesis of branched surfactant via ethoxylation of oleic acid derivative and its surface properties. Chemical Engineering Science, 2022, 258, 117747.	1.9	5
1880	Alcohol-assisted hydrodeoxygenation as a sustainable and cost-effective pathway for biomass derivatives upgrading. Journal of Energy Chemistry, 2022, 73, 133-159.	7.1	28
1881	Raw materials for a biomass-based industry. , 2022, , 25-52.		2
1882	Magnetically-Separable Cobalt Catalyst Embedded in Metal Nitratepromoted Hierarchically Porous N-Doped Carbon Nanospheres for Hydrodeoxygenation of Lignin-Derived Species. SSRN Electronic Journal, 0, , .	0.4	0
1883	Pd@silicate-1 synthesized by steam-assisted-crystallization strategy for high-efficient catalytic hydrogenation of furfural. Journal of Porous Materials, 2022, 29, 1479-1487.	1.3	2
1884	éžè´µé‡'属基å,¬åŒ–å‰,用于生物è΅ç"µæ°§åŒ–é«~值化å^©ç"¨çš" ç"究进展. Science China Mat	erðats, 202	222 6 5, 327
1885	Conversion of glucose to fructose over Sn and Ga-doped zeolite Y in methanol and water media. Applied Catalysis A: General, 2022, , 118689.	2.2	2
1886	Industrial sustainability in architectural paints - a bibliometric research. International Journal of Innovation and Technology Management, 0, , .	0.8	0
1887	Catalytic Transfer Hydrogenation of Biomass-Derived Furfural into Furfuryl Alcohol Over Zirconium Doped Nanofiber. SSRN Electronic Journal, 0, , .	0.4	0
1888	Highly efficient one-pot conversion of saccharides to 2,5-dimethylfuran using P-UiO-66 and Ni–Co@NC noble metal-free catalysts. Green Chemistry, 2022, 24, 5070-5076.	4.6	11

#	Article	IF	CITATIONS
1889	Highly Efficient Chemoselective Hydrogenation of 5â€HMF to BHMF over Reusable Bimetallic Pdâ€ŀr/C Catalyst. ChemistrySelect, 2022, 7, .	0.7	2
1890	Synthesis of Glycerol Carbonate from Glycerol and CO ₂ Using CaO as a Dehydrating Agent. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	0
1891	Preparation of Metal-Loaded ZSM-5 Zeolite Catalyst and Its Catalytic Effect on HMF Production from Biomass. Applied Biochemistry and Biotechnology, 2022, 194, 4985-4998.	1.4	1
1892	Fast and Efficient Mechanosynthesis of Aldonamides by Aminolysis of Unprotected Sugar Lactones. Sustainable Chemistry, 2022, 3, 300-311.	2.2	3
1893	Improving the Glucose to Fructose Isomerization via Epitaxialâ€Grafting of Niobium in UIOâ€66 Framework. ChemCatChem, 2022, 14, .	1.8	3
1894	Evolution Process of Humins Derived from Glucose. ChemistrySelect, 2022, 7, .	0.7	5
1895	Theoretical exploration of the reactivity of cellulose models under nonâ€ŧhermal plasma conditions—mechanistic and NBO studies. Journal of Computational Chemistry, 2022, 43, 1334-1341.	1.5	1
1896	Biochemical synthesis for carbon derivatives. , 2022, , 55-70.		0
1897	Editorial: Biomass Resources Utilization. Frontiers in Chemistry, 0, 10, .	1.8	1
1898	Catalytic Hydrogenation of Biomassâ€Derived Furoic Acid to Tetrahydrofuroic Acid Derivatives over Pd/CoO _x Catalyst in Water. ChemCatChem, 2022, 14, .	1.8	1
1899	Thermally Stable, Solvent Resistant, and Multifunctional Thermosetting Polymer Networks with High Mechanical Properties Prepared from Renewable Plant Phenols via Thiol–Ene Photo Click Chemistry. ACS Applied Polymer Materials, 2022, 4, 5330-5340.	2.0	7
1900	Cobaltâ€Catalyzed Selective Transformation of Levulinic Acid and Amines into Pyrrolidines and Pyrrolidinones using Hydrogen. Advanced Synthesis and Catalysis, 2022, 364, 2830-2836.	2.1	10
1901	Sustainable Efficient Synthesis of Pyrrolidones from Levulinic Acid over Pd/C Catalyst. ChemistrySelect, 2022, 7, .	0.7	2
1902	In situ construction of hierarchical Ag-decorated Cu nanowire arrays as an efficient and durable electrocatalyst for hydrogenation of 5-hydroxymethylfurfural and furfural. Molecular Catalysis, 2022, 528, 112487.	1.0	8
1903	Tuning the Cu/SiO2 wettability features for bio-derived platform molecules valorization. Molecular Catalysis, 2022, 528, 112462.	1.0	1
1904	Surface modified porous silica-alumina glasses with enhanced hydrothermal stability for biomass conversion. Materials Chemistry and Physics, 2022, 289, 126504.	2.0	1
1905	Green solvents in polymeric membrane fabrication: A review. Separation and Purification Technology, 2022, 298, 121691.	3.9	32
1906	Hydrogenation of biomass lactones to diols over CuLax/γ-Al2O3 catalyst:The promoting role of LaOx. Applied Catalysis B: Environmental, 2022, 317, 121689.	10.8	6

#	Article	IF	CITATIONS
1907	Investigation of the catalytic performance of coal gangue char on biomass pyrolysis in a thermogravimetric analyzer and a fixed bed reactor. Fuel, 2022, 328, 125216.	3.4	6
1908	Recent advances in continuous reduction of furfural to added value chemicals. Current Opinion in Green and Sustainable Chemistry, 2022, , 100655.	3.2	6
1909	Defect-Guided Synthesis of Hierarchical Sn-B-Beta Zeolite with Highly Exposed Sn Sites. Inorganic Chemistry, 2022, 61, 11939-11948.	1.9	2
1910	Selective hydrodeoxygenation of 5-hydroxymethylfurfural (HMF) to 2,5-dimethylfuran (DMF) over carbon supported copper catalysts using isopropyl alcohol as a hydrogen donor. Applied Catalysis B: Environmental, 2022, 317, 121790.	10.8	23
1911	Influence of Sn Content in Sn-β on Selective Production of Methyl Lactate from Glucose. Catalysis Letters, 0, , .	1.4	1
1912	Visible-Light-Induced Decarboxylative Alkynylation of Carboxylic in Batch and Continuous Flow. SSRN Electronic Journal, 0, , .	0.4	0
1913	Soybean Oil Epoxidation Catalyzed by a Functionalized Metal–Organic Framework with Active Dioxo-Molybdenum (VI) Centers. Catalysis Letters, 2023, 153, 1756-1772.	1.4	2
1914	Enhanced cello-oligosaccharides production from cellulose hydrolysis in molten salt hydrate over lignin-based hyper-cross-linked polymer (LHCP) adsorption. Applied Catalysis A: General, 2022, 644, 118808.	2.2	5
1915	Advances in catalytic valorization of cellulose into value-added chemicals and fuels over heterogeneous catalysts. Catalysis Today, 2023, 408, 92-110.	2.2	13
1916	In-situ synthesis of Ru–WOX/biochar catalyst for conversion of cellulose toward ethylene glycol. Cellulose, 2022, 29, 8195-8211.	2.4	2
1917	Perovskite Supported Catalysts for the Selective Oxidation of Glycerol to Tartronic Acid. Catalysis Letters, 0, , .	1.4	1
1918	Electrophotochemical Decarboxylative Azidation of Aliphatic Carboxylic Acids. ACS Catalysis, 2022, 12, 10661-10667.	5.5	26
1919	Realizing direct conversion of glucose to furfurals with tunable selectivity utilizing a carbon dot catalyst with dual acids controlled by a biphasic medium. Biomass Conversion and Biorefinery, 0, , .	2.9	5
1920	Mechanistic Insights and Rational Design of Ca-Doped CeO ₂ Catalyst for Acetic Acid Ketonization. ACS Sustainable Chemistry and Engineering, 2022, 10, 11068-11077.	3.2	3
1921	Conversion of Cellulose into 5-Hydroxymethylfurfural in a Biphasic System Catalyzed by Aluminum Sulfate and Byproduct Characterization. ACS Sustainable Chemistry and Engineering, 2022, 10, 10444-10456.	3.2	14
1922	Selective oxidation of 5-hydroxymethylfurfural into 2,5-diformylfuran by TEMPO-assisted magnetic Fe3O4@SiO2@mSiO2-NH2-Cu(II) catalytic system. Molecular Catalysis, 2022, 530, 112622.	1.0	2
1923	Influence of graphite particles in UV-curable corrosion protection coating from palm oil based urethane acrylate (POBUA). Industrial Crops and Products, 2022, 187, 115436.	2.5	2
1924	Valorization of waste biomass through fungal technology: Advances, challenges, and prospects. Industrial Crops and Products, 2022, 188, 115608.	2.5	5

#	Article	IF	CITATIONS
1925	Ionic liquids enhance the electrocatalysis of lignin model compounds towards generating valuable aromatic molecules. Journal of Molecular Liquids, 2022, 367, 120407.	2.3	4
1926	Greener approach for the synthesis of nitrovinylfurans from biomass-derived 5-hydroxymethyfurfural as selective antiproliferative agents. Sustainable Chemistry and Pharmacy, 2022, 30, 100828.	1.6	0
1927	Catalytic transfer hydrogenation of biomass-derived furfural into furfuryl alcohol over zirconium doped nanofiber. Fuel, 2023, 331, 125792.	3.4	8
1928	Site isolated Ru clusters and sulfoacids in a yolk-shell nanoreactor towards cellulose valorization to 1,2-propylene glycol. Chemical Engineering Journal, 2023, 452, 139206.	6.6	6
1929	Magnetically-separable cobalt catalyst embedded in metal nitrate-promoted hierarchically porous N-doped carbon nanospheres for hydrodeoxygenation of lignin-derived species. Fuel, 2023, 331, 125917.	3.4	8
1930	Efficient Conversion of Furfural to Furfural Amine Over 4ru1co/Ac Catalyst. SSRN Electronic Journal, 0, , .	0.4	0
1931	Cobalt-catalyzed synthesis of aryl ketones and aldehydes from redox-active esters. Organic and Biomolecular Chemistry, 2022, 20, 6554-6557.	1.5	0
1932	Insights into the molecular mechanism of a new efficient whole-cell biocatalyst <i>Enterobacter ludwigii</i> YYP3 in 5-hydroxymethylfurfural reduction. Green Chemistry, 0, , .	4.6	3
1933	Bio-based 1,4-butanediol and tetrahydrofuran synthesis: perspective. Green Chemistry, 2022, 24, 6450-6466.	4.6	22
1934	An Efficient Lignin Depolymerization Process for Phenolic Products Via Synergistic Effects between Lignin-Based Multi-Active Site Catalysts and Mixed-Solvents. SSRN Electronic Journal, 0, , .	0.4	0
1935	Site Isolated Ru Clusters and Sulfoacids in a Yolk-Shell Nanoreactor Towards Cellulose Valorization to 1,2-Propylene Glycol. SSRN Electronic Journal, 0, , .	0.4	0
1936	Perspectives and challenges in using bio-based flame retardants. , 2022, , 451-466.		0
1937	Cellulose hydrogenolysis to alcohol and ketone products using Co@C catalysts in the phosphoric acid aqueous solution. Reaction Chemistry and Engineering, 2022, 8, 64-76.	1.9	1
1938	Au/Sn-Beta catalyst with metal-Lewis acid cooperative sites steers aerobic oxidation of 5-hydroxymethylfurfural. Applied Surface Science, 2023, 608, 155154.	3.1	9
1939	Multigram Synthesis of Pure HMF and BHMF. Organic Process Research and Development, 2022, 26, 2830-2838.	1.3	17
1940	Synthesis, biological evaluation and molecular modeling studies of novel 1,2,3-triazole-linked menadione-furan derivatives as P2X7 inhibitors. Journal of Bioenergetics and Biomembranes, 2022, 54, 227-239.	1.0	7
1941	Waste Biomass Selective and Sustainable Photooxidation to High-Added-Value Products: A Review. Catalysts, 2022, 12, 1091.	1.6	7
1942	Preparation of Biomass-Derived Furfuryl Acetals by Transacetalization Reactions Catalyzed by Nanoporous Aluminosilicates. ACS Sustainable Chemistry and Engineering, 2022, 10, 13759-13764.	3.2	5

#	Article	IF	CITATIONS
1943	Successive Cleavage and Reconstruction of Lignin βâ€Oâ€4 Models and Polymer to Access Quinoxalines. ChemSusChem, 2022, 15, .	3.6	11
1944	Natural weathering of spruce wood chemically modified by reâ€used εâ€caprolactone solution. Coloration Technology, 2023, 139, 265-275.	0.7	2
1945	Advances in Catalytic Asymmetric Reactions Using 2-Indolylmethanols as Platform Molecules. Chinese Journal of Organic Chemistry, 2022, 42, 3351.	0.6	38
1946	Microwave-assisted decarboxylative reactions: advanced strategies for sustainable organic synthesis. Organic and Biomolecular Chemistry, 2022, 20, 8569-8583.	1.5	3
1947	Biohydrogen Production Technologies: Past, Present, and Future Perspective. Microorganisms for Sustainability, 2022, , 185-205.	0.4	1
1948	Ag substituted Au clusters supported on Mg-Al-hydrotalcite for highly efficient base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Green Chemistry, 2022, 24, 8840-8852.	4.6	7
1950	Visible-light-induced decarboxylative alkynylation of carboxylic acids in batch and continuous flow. Green Synthesis and Catalysis, 2024, 5, 20-24.	3.7	2
1951	Preparation of bio-based elastomer and its nanocomposites based on dimethyl itaconate with versatile properties. Composites Part B: Engineering, 2023, 248, 110383.	5.9	12
1952	Deaminative Arylation and Alkenyaltion of Aliphatic Tertiary Amines with Aryl and Alkenylboronic Acids via Nitrogen Ylides. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
1953	Efficient conversion of furfural to furfural amine over 4Ru1Co/AC catalyst. Applied Catalysis A: General, 2022, 647, 118902.	2.2	3
1954	Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chemical Reviews, 2023, 123, 2609-2734.	23.0	53
1955	Deaminative Arylation or Alkenylation of Aliphatic Tertiary Amines with Aryl or Alkenylboronic Acids via Nitrogen Ylides. Angewandte Chemie, 0, , .	1.6	0
1956	Catalyst Deactivation and Its Mitigation during Catalytic Conversions of Biomass. ACS Catalysis, 2022, 12, 13555-13599.	5.5	17
1957	Hydrogenation of levulinic acid to gamma-valerolactone over nickel supported organoclay catalyst. Catalysis Today, 2023, 408, 36-49.	2.2	6
1958	Introduction of acid mine drainage in the direct production of 5-hydroxymethylfurfural from raw biomass and expanding the use of biomass conversion residue. Bioresource Technology, 2022, 364, 128094.	4.8	3
1959	Application of thermogravimetric analysis method for the characterisation of products from triglycerides during biodiesel production. Journal of Analytical and Applied Pyrolysis, 2022, 168, 105766.	2.6	9
1960	Bio-based poly(decylene terephthalate-co-decylene furandicarboxylate)s derived from 2,5-furandicarboxylic acid (FDCA): Synthesis and properties. Reactive and Functional Polymers, 2022, 181, 105446.	2.0	2
1961	A comprehensive review on biomass humification: Recent advances in pathways, challenges, new applications, and perspectives. Renewable and Sustainable Energy Reviews, 2022, 170, 112984.	8.2	32

#	ARTICLE	IF	CITATIONS
1962	One-pot multi-step synthesis of gamma-valerolactone from furfuryl alcohol: Microwave vs continuous flow reaction studies. Fuel, 2023, 334, 126439.	3.4	3
1963	Fast and continuous conversion of xylose to furfural in micropacked bed reactors. Chemical Engineering Science, 2023, 266, 118256.	1.9	4
1964	Comparative life cycle environmental, exergteic, and economic assessment of three hydrocarbon-based ethylene production routes. Fuel, 2023, 333, 126359.	3.4	8
1965	Highly Efficient Conversion of Carbohydrates into Formic Acid with a Heterogeneous MgO Catalyst at Near-Ambient Temperatures. ACS Sustainable Chemistry and Engineering, 2022, 10, 15423-15436.	3.2	6
1966	A Photoinduced, Nickelâ€Catalyzed Reaction for the Stereoselective Assembly of <i>Câ€</i> Linked Glycosides and Glycopeptides. Angewandte Chemie, 2023, 135, .	1.6	2
1967	A Photoinduced, Nickelâ€Catalyzed Reaction for the Stereoselective Assembly of <i>Câ€</i> Linked Glycosides and Glycopeptides. Angewandte Chemie - International Edition, 2023, 62, .	7.2	15
1968	A Green Synthesis of 5,5â€2â€{Oxybis(methylene)]bisâ€2â€Furfural: from Byâ€Product to Attractive Bioâ€Based Platform Chemical. Advanced Sustainable Systems, 2022, 6, .	2.7	6
1969	Boosting the Catalytic Activity and Stability of Ru Metal Clusters in Hydrodeoxygenation of Guaiacol through MWW Zeolite Pore Constraints. ACS Catalysis, 2022, 12, 14717-14726.	5.5	15
1970	Constructing core-shell structured Au/Snβ@mesosilica composite for one-pot base-free conversion of glycerol to methyl lactate. Microporous and Mesoporous Materials, 2023, 347, 112348.	2.2	4
1971	Reductive Catalytic Fractionation of Spruce Wood over Ru/C Bifunctional Catalyst in the Medium of Ethanol and Molecular Hydrogen. Catalysts, 2022, 12, 1384.	1.6	9
1972	Combined conversion of lignocellulosic biomass into high-value products with ultrasonic cavitation and photocatalytic produced reactive oxygen species – A review. Bioresource Technology, 2023, 368, 128333.	4.8	18
1973	Chapter 10. Oleochemicals as Green Corrosion Inhibitors. RSC Green Chemistry, 2022, , 225-238.	0.0	0
1974	Single pot selective conversion of furfural into 2-methylfuran over a Co-CoOx/AC bifunctional catalyst. Applied Surface Science, 2023, 612, 155871.	3.1	5
1975	Recent Progress of Hydrogenation and Hydrogenolysis Catalysts Derived from Layered Double Hydroxides. Catalysts, 2022, 12, 1484.	1.6	2
1976	Syntheisis of Divinyl Ether from 5-Hydroxymethylfurfural (5-HMF) and Calcium Carbide. Russian Journal of General Chemistry, 2022, 92, 2507-2510.	0.3	0
1977	Progress and Outlook of Solar-Powered Biomass for Biorefineries: A Minireview. Energy & Fuels, 2022, 36, 14573-14583.	2.5	8
1978	Valorization of the Wheat Bran C5 Fraction Using Ru/ZrO ₂ -MCM48 Catalysts. ACS Sustainable Chemistry and Engineering, 2022, 10, 16324-16334.	3.2	3
1979	Ruthenium Pincer-Catalyzed Selective Synthesis of Alkanes and Alkenes via Deoxygenative Coupling of Primary Alcohols. Organometallics, 2023, 42, 55-61.	1.1	1
#	ARTICLE	IF	CITATIONS
----------	---	------------------	-------------
 1980	Perfluorinated Sulfonate Resins as Reusable Heterogeneous Catalysts for the Oneâ€Pot Synthesis of DiPhenolic Esters (DPEs). European Journal of Organic Chemistry, 2022, 2022, .	1.2	1
1981	Sn doping on partially dealuminated Beta zeolite by solid state ion exchange for 5â€hydroxymethylfurfural (<scp>5â€HMF</scp>) production from glucose. Journal of Chemical Technology and Biotechnology, 2023, 98, 773-781.	1.6	1
1982	Selective hydrodeoxygenation of lignin-derived phenols to alkyl cyclohexanols over highly dispersed RuFe bimetallic catalysts. Fuel, 2023, 339, 126916.	3.4	10
1983	Photoinduced Ligandâ€ŧoâ€Metal Charge Transfer of Carboxylates: Decarboxylative Functionalizations, Lactonizations, and Rearrangements. Advanced Synthesis and Catalysis, 2022, 364, 4189-4230.	2.1	21
1984	Electrocatalytic oxidation of 5â€hydroxymethylfurfural for sustainable 2,5â€furandicarboxylic acid production—From mechanism to catalysts design. SusMat, 2023, 3, 21-43.	7.8	22
1985	Unravelling and overcoming the challenges in the electrocatalytic reduction of fructose to sorbitol. Green Chemistry, 2023, 25, 1658-1671.	4.6	4
1986	Synthesis of unsymmetrical NH-pyrroles from biomass feedstock in the confined space of metal–organic frameworks. Green Chemistry, 2023, 25, 915-921.	4.6	3
1987	ï€-Facial selectivity in the Diels–Alder reaction of glucosamine-based chiral furans and maleimides. Organic and Biomolecular Chemistry, 0, , .	1.5	2
1988	H4PMo11VO40-Catalyzed \hat{l}^2 -Citronellal Condensation Reactions. Catalysis Letters, 0, , .	1.4	0
1989	Recent advances in the photocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. Biomass Conversion and Biorefinery, 0, , .	2.9	2
1990	Process coupling of CO ₂ reduction and 5-HMF oxidation mediated by defect-enriched layered double hydroxides. Dalton Transactions, 2023, 52, 1950-1961.	1.6	4
1991	Electrophotochemical Metalâ€Catalyzed Enantioselective Decarboxylative Cyanation. Chemistry - A European Journal, 2023, 29, .	1.7	9
1992	Reticular Coordination Induced Interfacial Interstitial Carbon Atoms on Ni Nanocatalysts for Highly Selective Hydrogenation of Bio-Based Furfural under Facile Conditions. Nanomaterials, 2023, 13, 285.	1.9	2
1993	Ni-based Electro/Photo-Catalysts in HER – A Review. Surfaces and Interfaces, 2023, 36, 102619.	1.5	2
1994	Production of solid fuel in the vacuum distillation of bio-oil. Fuel Processing Technology, 2023, 242, 107618.	3.7	2
1995	Synthesis, Thermal Behavior, and Mechanical Properties of Fully Biobased Poly(Hexamethylene) Tj ETQq1 1 0.784	1314 rgBT 2.0	/Oyerlock I
1996	Aldehyde Hydrogenation by Pt/TiO ₂ Catalyst in Aqueous Phase: Synergistic Effect of Oxygen Vacancy and Solvent Water. Jacs Au, 2023, 3, 143-153.	3.6	5
1997	Catalytic isomerization of glucose to fructose over organic ligands: a DFT study. Journal of Molecular Modeling, 2023, 29, .	0.8	0

#	Article	IF	CITATIONS
1998	Importance of interface open circuit potential on aqueous hydrogenolytic reduction of benzyl alcohol over Pd/C. Nature Communications, 2022, 13, .	5.8	10
1999	New insights into the base catalyzed depolymerization of technical lignins: a systematic comparison. RSC Advances, 2023, 13, 4898-4909.	1.7	0
2000	Research advancement in molten salt-mediated thermochemical upcycling of biomass waste. Green Chemistry, 2023, 25, 2087-2108.	4.6	7
2001	Selective and Efficient Synthesis of Pine Sterol Esters Catalyzed by Deep Eutectic Solvent. Molecules, 2023, 28, 993.	1.7	1
2002	Flow-through reductive catalytic fractionation of beech wood sawdust. , 2023, 1, 459-469.		3
2003	Agricultural waste: Sustainable valuable products. , 2023, , 155-178.		0
2004	Catalytic transformations for agro-waste conversion to 5-hydroxymethylfurfural and furfural: Chemistry and scale-up development. Green Chemistry, 2023, 25, 849-870.	4.6	8
2005	Operando Forming of Lattice Vacancy Defect in Ultrathin Crumpled NiVW‣ayered Metal Hydroxides Nanosheets for Valorization of Biomass. Small, 2023, 19, .	5.2	12
2006	Plasmon Enhanced Nickel(II) Catalyst for Photocatalytic Lignin Model Cleavage. , 2023, 1, 1-10.		1
2007	Catalytic performance of CoMoW Sulfide catalysts supported on hierarchically structured porous silicas for HDS reactions. Chemical Engineering Journal Advances, 2023, 14, 100454.	2.4	0
2008	The importance of constructing Triple-functional Sr2P2O7/Ni2P catalysts for smoothing hydrogenation Ring-rearrangement of Biomass-derived Furfural compounds in water. Journal of Catalysis, 2023, 421, 117-133.	3.1	13
2009	Synergistic effect of tung oil and heat treatment on surface characteristics and dimensional stability of wood. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 665, 131233.	2.3	6
2010	Recent progress of metal single-atom catalysts for energy applications. Nano Energy, 2023, 111, 108404.	8.2	37
2011	Catalytically efficient Co-CoOx-Al2O3 interface for mild temperature fatty alcohol production via fatty acid transfer hydrogenation. Fuel, 2023, 345, 128136.	3.4	3
2012	Photoreforming of Waste Polymers for Sustainable Hydrogen Fuel and Chemicals Feedstock: Waste to Energy. Chemical Reviews, 2023, 123, 4443-4509.	23.0	47
2013	Sustainable production of bio-propionic acid: synergy between vacancy and thermoelectron in MoS ₂ /MoO ₃ composite-enhanced hydrodeoxygenation of lactic acid. Catalysis Science and Technology, 2023, 13, 1221-1232.	2.1	5
2014	Ocean Resources for the Production of Renewable Chemicals and Materials. , 2014, , 443-458.		1
2015	Solar Photochemical Manufacturing of Fine Chemicals: Historical Background, Modern Solar Technologies, Recent Applications and Future Challenges. , 2014, , 158-191.		0

#	Article	IF	Citations
2016	Photocatalytic precise hydrogenation of furfural over ultrathin Pt/NiMg-MOF-74 nanosheets: Synergistic effect of surface optimized Nill sites and Pt clusters. Applied Surface Science, 2023, 616, 156553.	3.1	7
2017	High-Yield Synthesis of 1-Hydroxyhexane-2,5-dione via Hydrogenation/Hydrolysis of 5-Hydroxymethyl-furfural in Ionic Liquid-Assisted Multi-Phase Systems. ACS Sustainable Chemistry and Engineering, 2023, 11, 2520-2530.	3.2	1
2018	Biomassâ€Derived Materials for Interface Engineering in Organic/Perovskite Photovoltaic and Lightâ€Emitting Devices. Advanced Materials Technologies, 2023, 8, .	3.0	6
2019	Reductive Catalytic Fractionation of Abies Wood into Bioliquids and Cellulose with Hydrogen in an Ethanol Medium over NiCuMo/SiO2 Catalyst. Catalysts, 2023, 13, 413.	1.6	2
2020	Optimization of Alkaline Extraction of Xylan-Based Hemicelluloses from Wheat Straws: Effects of Microwave, Ultrasound, and Freeze–Thaw Cycles. Polymers, 2023, 15, 1038.	2.0	3
2021	An Efficient Strategy for Chemoenzymatic Conversion of Corn Stover to Furfuryl Alcohol in Deep Eutectic Solvent ChCl:PEG10000â°`Water Medium. Catalysts, 2023, 13, 467.	1.6	2
2022	Lipids: Valorization of biomass for lipids production. , 2023, , 87-111.		0
2023	Recent Advances in the Efficient Synthesis of Useful Amines from Biomass-Based Furan Compounds and Their Derivatives over Heterogeneous Catalysts. Catalysts, 2023, 13, 528.	1.6	1
2024	Efficient Lignin Depolymerization Process for Phenolic Products with Lignin-Based Catalysts and Mixed Solvents. Energy & Fuels, 2023, 37, 5206-5219.	2.5	7
2025	Bioinspired Electrode for the Production and Timely Separation of Nitrile and Hydrogen. Small, 0, , 2208044.	5.2	0
2026	Aerosol-assisted sol–gel synthesis of mesoporous Ag–Ta–SiO ₂ catalysts for the direct upgrading of ethanol to butadiene. , 2023, 1, 599-608.		3
2027	Mechanistic Studies of the Deoxydehydration of Polyols Catalyzed by a Mo(VI) Dioxo(pyridine-2,6-dicarboxylato) Complex. Organometallics, 2023, 42, 1190-1197.	1.1	2
2028	The Future Biorefinery: The Impact of Upscaling the Reductive Catalytic Fractionation of Lignocellulose Biomass on the Quality of the Lignin Oil, Carbohydrate Products, and Pulp. ACS Sustainable Chemistry and Engineering, 2023, 11, 5440-5450.	3.2	8
2029	Calcium(II)-Catalyzed Reductive Amination of Biomass-Derived Keto Acids to Functionalized Lactams under Solvent-Free Conditions. Organic Letters, 2023, 25, 2504-2508.	2.4	2
2030	Wood Biorefineries. Springer Handbooks, 2023, , 1713-1751.	0.3	0
2031	Winter oilseed rape: Agronomic management in different tillage systems and energy balance. Energy, 2023, 277, 127590.	4.5	4
2032	Boron doping g-C3N4 supported Cu2O for photocatalytic reforming of xylose into lactic acid. Journal of Environmental Chemical Engineering, 2023, 11, 109981.	3.3	3
2039	Chemoselective Synthesis of Propionic Acid from Biomass and Lactic Acid Over a Cobalt Catalyst in Aqueous Media. , 2023, , 87-104.		0

#	Article	IF	CITATIONS
2053	17.4. Synthesis of Levulinic Acid from Sucrose. , 2016, , 878-880.		0
2054	2.1.9. Controlled Monoalkylation of the Structurally Rigid Bicyclic System Isomannide. , 2016, , 87-91.		0
2056	Recent advances in radical polymerization of bio-based monomers in aqueous dispersed media. , 2023, 1, 788-813.		1
2058	Hydrothermal Treatment of Biomass Feedstocks for Sustainable Production of Chemicals, Fuels, and Materials: Progress and Perspectives. Chemical Reviews, 2023, 123, 7193-7294.	23.0	39
2059	Selective Hydrogenation of Levulinate Esters to 1,4-Pentanediol Using a Ternary Skeletal CuAlZn Catalyst. , 2023, , 3-16.		0
2069	Reaction induced thermally stabilized TS-1 zeolite as a novel long-lasting catalyst for methyl lactate production. Chemical Communications, 2023, 59, 9376-9379.	2.2	0
2077	Deep eutectic solvents for catalytic biodiesel production from liquid biomass and upgrading of solid biomass into 5-hydroxymethylfurfural. Green Chemistry, 2023, 25, 7410-7440.	4.6	23
2111	Major Advances in Syntheses of Biomass Based Amines and Pyrrolidone Products by Reductive Amination Process of Major Bio-derived Platform Molecules. Biofuels and Biorefineries, 2023, , 21-71.	0.5	0
2118	Extraction of Lignin from Various Agricultural Biomass: Its Characterization and Applications. , 2023, , 273-293.		0
2124	Chemocatalytic production of sorbitol from cellulose <i>via</i> sustainable chemistry – a tutorial review. Green Chemistry, 0, , .	4.6	0
2129	Analysis of forest residues pretreatment using solar photovoltaic. AIP Conference Proceedings, 2023, ,	0.3	0
2132	Introduction of Energy Materials. , 2024, , 1-8.		0
2136	Adsorptive separation of saccharides and polyols over materials functionalized with boronate groups. Green Chemistry, 0, , .	4.6	0
2139	Industrial Chemicals <i>Via</i> Decarboxylation of Natural Carboxylic Acids. , 2023, , 144-158.		0
2154	A silver-mediated radical process of \hat{l}^2 -keto sulfones for the synthesis of 2,3-diacyl furans. Organic and	1.5	0

Biomolecular Chemistry, 2024, 22, 1770-1774.