An Extension and Further Validation of an All-Atomistic Membranes

Journal of Chemical Theory and Computation 8, 2938-2948

DOI: 10.1021/ct300342n

Citation Report

#	Article	IF	CITATIONS
11	Molecular Dynamics Simulations of a Characteristic DPC Micelle in Water. Journal of Chemical Theory and Computation, 2012, 8, 4610-4623.	5.3	62
12	Computer simulation of lipid membranes: Methodology and achievements. Polymer Science - Series C, 2013, 55, 162-180.	1.7	26
13	Another Piece of the Membrane Puzzle: Extending Slipids Further. Journal of Chemical Theory and Computation, 2013, 9, 774-784.	5. 3	237
14	Biomolecular Simulations with the Transferable Potentials for Phase Equilibria: Extension to Phospholipids. Journal of Physical Chemistry B, 2013, 117, 9910-9921.	2.6	14
15	Implicit inclusion of atomic polarization in modeling of partitioning between water and lipid bilayers. Physical Chemistry Chemical Physics, 2013, 15, 4677.	2.8	43
16	Comparing Simulations of Lipid Bilayers to Scattering Data: The GROMOS 43A1-S3 Force Field. Journal of Physical Chemistry B, 2013, 117, 5065-5072.	2.6	47
17	On Calculation of the Electrostatic Potential of a Phosphatidylinositol Phosphate-Containing Phosphatidylcholine Lipid Membrane Accounting for Membrane Dynamics. PLoS ONE, 2014, 9, e104778.	2.5	3
18	An Annular Lipid Belt Is Essential for Allosteric Coupling and Viral Inhibition of the Antigen Translocation Complex TAP (Transporter Associated with Antigen Processing). Journal of Biological Chemistry, 2014, 289, 33098-33108.	3.4	27
19	Molecular simulation of ibuprofen passing across POPC membrane. Journal of Theoretical and Computational Chemistry, 2014, 13, 1450033.	1.8	14
20	Relevant Interactions of Antimicrobial Iron Chelators and Membrane Models Revealed by Nuclear Magnetic Resonance and Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2014, 118, 14590-14601.	2.6	11
22	W246 ^{6.48} Opens a Gate for a Continuous Intrinsic Water Pathway during Activation of the Adenosineâ€A _{2A} Receptor. Angewandte Chemie - International Edition, 2015, 54, 556-559.	13.8	64
23	Molecular Dynamics Simulation of Membrane Proteins. Advances in Experimental Medicine and Biology, 2014, 805, 305-329.	1.6	16
24	The challenges of understanding glycolipid functions: An open outlook based on molecular simulations. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 1130-1145.	2.4	35
26	A new AMBER-compatible force field parameter set for alkanes. Journal of Molecular Modeling, 2014, 20, 2143.	1.8	19
27	MemBuilder: a web-based graphical interface to build heterogeneously mixed membrane bilayers for the GROMACS biomolecular simulation program. Bioinformatics, 2014, 30, 439-441.	4.1	54
28	Cholesterol, sphingolipids, and glycolipids: What do we know about their role in raft-like membranes?. Chemistry and Physics of Lipids, 2014, 184, 82-104.	3.2	159
29	Disorder in Cholesterol-Binding Functionality of CRAC Peptides: A Molecular Dynamics Study. Journal of Physical Chemistry B, 2014, 118, 13169-13174.	2.6	31
30	Benchmarking of Force Fields for Molecule–Membrane Interactions. Journal of Chemical Theory and Computation, 2014, 10, 4143-4151.	5.3	73

#	Article	IF	Citations
31	Atomistic mechanisms of huntingtin Nâ€ŧerminal fragment insertion on a phospholipid bilayer revealed by molecular dynamics simulations. Proteins: Structure, Function and Bioinformatics, 2014, 82, 1409-1427.	2.6	16
32	Assembly and stability of Salmonella enterica ser. Typhi TolC protein in POPE and DMPE. Journal of Biological Physics, 2014, 40, 387-400.	1.5	4
33	HIV-1 Tat membrane interactions probed using X-ray and neutron scattering, CD spectroscopy and MD simulations. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 3078-3087.	2.6	26
34	Activation of G-protein-coupled receptors correlates with the formation of a continuous internal water pathway. Nature Communications, 2014, 5, 4733.	12.8	197
35	Lipid14: The Amber Lipid Force Field. Journal of Chemical Theory and Computation, 2014, 10, 865-879.	5.3	1,068
36	CHARMM36 United Atom Chain Model for Lipids and Surfactants. Journal of Physical Chemistry B, 2014, 118, 547-556.	2.6	143
37	Refined OPLS All-Atom Force Field for Saturated Phosphatidylcholine Bilayers at Full Hydration. Journal of Physical Chemistry B, 2014, 118, 4571-4581.	2.6	139
38	Microsecond Molecular Dynamics Simulations of Lipid Mixing. Langmuir, 2014, 30, 11993-12001.	3.5	101
39	Structural Dynamics and Conformational Equilibria of SERCA Regulatory Proteins in Membranes by Solid-State NMR Restrained Simulations. Biophysical Journal, 2014, 106, 2566-2576.	0.5	20
40	Biomembrane simulations of 12 lipid types using the general amber force field in a tensionless ensemble. Journal of Biomolecular Structure and Dynamics, 2014, 32, 88-103.	3.5	10
41	Lipid-associated aggregate formation of superoxide dismutase-1 is initiated by membrane-targeting loops. Proteins: Structure, Function and Bioinformatics, 2014, 82, 3194-3209.	2.6	10
42	Unspecific membrane protein-lipid recognition: combination of AFM imaging, force spectroscopy, DSC and FRET measurements. Journal of Molecular Recognition, 2015, 28, 679-686.	2.1	5
43	A coiled coil switch mediates cold sensing by the thermosensory protein <scp>DesK</scp> . Molecular Microbiology, 2015, 98, 258-271.	2.5	50
44	Penetration of HIV-1 Tat47–57 into PC/PE Bilayers Assessed by MD Simulation and X-ray Scattering. Membranes, 2015, 5, 473-494.	3.0	11
45	Structural Significance of Lipid Diversity as Studied by Small Angle Neutron and X-ray Scattering. Membranes, 2015, 5, 454-472.	3.0	70
46	Binding of the Antagonist Caffeine to the Human Adenosine Receptor hA2AR in Nearly Physiological Conditions. PLoS ONE, 2015, 10, e0126833.	2.5	12
47	Structural Determinants for the Binding of Morphinan Agonists to the \hat{l} 4-Opioid Receptor. PLoS ONE, 2015, 10, e0135998.	2.5	20
48	Structure and dynamics of POPC bilayers in water solutions of room temperature ionic liquids. Journal of Chemical Physics, 2015, 142, 124706.	3.0	59

#	Article	IF	Citations
49	Tristearin bilayers: structure of the aqueous interface and stability in the presence of surfactants. RSC Advances, 2015, 5, 49933-49943.	3.6	3
50	Apolipoprotein A-I mimetic peptide 4F blocks sphingomyelinase-induced LDL aggregation. Journal of Lipid Research, 2015, 56, 1206-1221.	4.2	20
51	<i>LipidBuilder:</i> A Framework To Build Realistic Models for Biological Membranes. Journal of Chemical Information and Modeling, 2015, 55, 2491-2499.	5.4	17
52	Interaction of <scp>l</scp> -Phenylalanine with a Phospholipid Monolayer at the Water–Air Interface. Journal of Physical Chemistry B, 2015, 119, 9038-9048.	2.6	47
53	The effects of globotriaosylceramide tail saturation level on bilayer phases. Soft Matter, 2015, 11, 1352-1361.	2.7	22
54	Evaluating Force Fields for the Computational Prediction of Ionized Arginine and Lysine Side-Chains Partitioning into Lipid Bilayers and Octanol. Journal of Chemical Theory and Computation, 2015, 11, 1775-1791.	5.3	34
55	Computational Biochemistry., 2015,,.		1
56	Biomembranes in atomistic and coarse-grained simulations. Journal of Physics Condensed Matter, 2015, 27, 323103.	1.8	61
57	Martini Coarse-Grained Force Field: Extension to DNA. Journal of Chemical Theory and Computation, 2015, 11, 3932-3945.	5.3	239
58	Spontaneous Adsorption of Coiled-Coil Model Peptides K and E to a Mixed Lipid Bilayer. Journal of Physical Chemistry B, 2015, 119, 4396-4408.	2.6	29
59	Ordering in bio-inorganic hybrid nanomaterials probed by in situ scanning transmission X-ray microscopy. Nanoscale, 2015, 7, 9477-9486.	5.6	2
60	Ensemble-Based Virtual Screening for Cannabinoid-Like Potentiators of the Human Glycine Receptor α1 for the Treatment of Pain. Journal of Medicinal Chemistry, 2015, 58, 2958-2966.	6.4	26
61	Liquid but Durable: Molecular Dynamics Simulations Explain the Unique Properties of Archaeal-Like Membranes. Scientific Reports, 2014, 4, 7462.	3.3	42
62	Visualizing KcsA Conformational Changes upon Ion Binding by Infrared Spectroscopy and Atomistic Modeling. Journal of Physical Chemistry B, 2015, 119, 5824-5831.	2.6	25
63	Empirical force field for cisplatin based on quantum dynamics data: case study of new parameterization scheme for coordination compounds. Journal of Molecular Modeling, 2015, 21, 268.	1.8	20
64	Activation and Allosteric Modulation of Human \hat{l} 4 Opioid Receptor in Molecular Dynamics. Journal of Chemical Information and Modeling, 2015, 55, 2421-2434.	5.4	31
65	Toward Atomistic Resolution Structure of Phosphatidylcholine Headgroup and Glycerol Backbone at Different Ambient Conditions. Journal of Physical Chemistry B, 2015, 119, 15075-15088.	2.6	109
66	The molecular mechanism behind reactive aldehyde action on transmembrane translocations of proton and potassium ions. Free Radical Biology and Medicine, 2015, 89, 1067-1076.	2.9	39

#	ARTICLE	IF	Citations
67	Direct-Space Corrections Enable Fast and Accurate Lorentz–Berthelot Combination Rule Lennard-Jones Lattice Summation. Journal of Chemical Theory and Computation, 2015, 11, 5737-5746.	5.3	112
68	Can Specific Protein-Lipid Interactions Stabilize an Active State of the Beta 2 Adrenergic Receptor?. Biophysical Journal, 2015, 109, 1652-1662.	0.5	58
69	Synaptobrevin Transmembrane Domain Dimerization Studied by Multiscale Molecular Dynamics Simulations. Biophysical Journal, 2015, 109, 760-771.	0.5	22
70	Probing the importance of lipid diversity in cell membranes via molecular simulation. Chemistry and Physics of Lipids, 2015, 192, 12-22.	3.2	56
71	A Simple and Transferable All-Atom/Coarse-Grained Hybrid Model to Study Membrane Processes. Journal of Chemical Theory and Computation, 2015, 11, 4749-4759.	5.3	32
72	Molecular Models of Nanodiscs. Journal of Chemical Theory and Computation, 2015, 11, 4923-4932.	5.3	33
73	Conformational Changes of the Antibacterial Peptide ATP Binding Cassette Transporter McjD Revealed by Molecular Dynamics Simulations. Biochemistry, 2015, 54, 5989-5998.	2.5	21
74	Molecular Structures of Fluid Phosphatidylethanolamine Bilayers Obtained from Simulation-to-Experiment Comparisons and Experimental Scattering Density Profiles. Journal of Physical Chemistry B, 2015, 119, 1947-1956.	2.6	81
76	Effects of cholesterol concentration on the interaction of cytarabine with lipid membranes: a molecular dynamics simulation study. Journal of Biomolecular Structure and Dynamics, 2015, 33, 1254-1268.	3.5	14
77	Binding Orientations and Lipid Interactions of Human Amylin at Zwitterionic and Anionic Lipid Bilayers. Journal of Diabetes Research, 2016, 2016, 1-13.	2.3	9
78	Characteristics of Sucrose Transport through the Sucrose-Specific Porin ScrY Studied by Molecular Dynamics Simulations. Frontiers in Bioengineering and Biotechnology, 2016, 4, 9.	4.1	12
79	The Molecular Switching Mechanism at the Conserved D(E)RY Motif in Class-A GPCRs. Biophysical Journal, 2016, 111, 79-89.	0.5	19
80	Conformational Dynamics and Proteinâ€"Substrate Interaction of ABC Transporter BtuCD at the Occluded State Revealed by Molecular Dynamics Simulations. Biochemistry, 2016, 55, 6897-6907.	2.5	9
81	Molecular electrometer and binding of cations to phospholipid bilayers. Physical Chemistry Chemical Physics, 2016, 18, 32560-32569.	2.8	78
82	Extension of the Slipids Force Field to Polyunsaturated Lipids. Journal of Physical Chemistry B, 2016, 120, 12826-12842.	2.6	39
83	A molecular insight into the electro-transfer of small molecules through electropores driven by electric fields. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2278-2289.	2.6	66
84	Model parameters for simulation of physiological lipids. Journal of Computational Chemistry, 2016, 37, 1112-1118.	3.3	36
85	Penetration of HIV-1 Tat47-57 into PC/PE Bilayers Assessed by MD Simulation and X-Ray Scattering. Biophysical Journal, 2016, 110, 204a.	0.5	0

#	Article	IF	CITATIONS
86	Sphingolipids contribute to acetic acid resistance in <i>Zygosaccharomyces bailii</i> and Bioengineering, 2016, 113, 744-753.	3.3	54
87	Permeability across lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2254-2265.	2.6	215
88	New insight into probe-location dependent polarity and hydration at lipid/water interfaces: comparison between gel- and fluid-phases of lipid bilayers. Physical Chemistry Chemical Physics, 2016, 18, 24185-24197.	2.8	14
89	Molecular simulation study on concentration effects of rofecoxib with POPC bilayer. Journal of Molecular Graphics and Modelling, 2016, 70, 94-99.	2.4	7
90	Free energy of adsorption of supported lipid bilayers from molecular dynamics simulation. Chemical Physics Letters, 2016, 664, 199-204.	2.6	18
91	Mixed DPPC/POPC Monolayers: All-atom Molecular Dynamics Simulations and Langmuir Monolayer Experiments. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 3120-3130.	2.6	42
92	Adsorption of Synthetic Cationic Polymers on Model Phospholipid Membranes: Insight from Atomic-Scale Molecular Dynamics Simulations. Langmuir, 2016, 32, 10402-10414.	3.5	41
93	Combining Immune Checkpoint Inhibitors and Kinase-Inhibiting Supramolecular Therapeutics for Enhanced Anticancer Efficacy. ACS Nano, 2016, 10, 9227-9242.	14.6	36
94	Computer Simulation and Modeling Techniques in the Study of Nanoparticle-Membrane Interactions. Annual Reports in Computational Chemistry, 2016, , 159-200.	1.7	4
95	Diphenylhexatriene membrane probes DPH and TMA-DPH: A comparative molecular dynamics simulation study. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2647-2661.	2.6	87
96	Polyarginine Interacts More Strongly and Cooperatively than Polylysine with Phospholipid Bilayers. Journal of Physical Chemistry B, 2016, 120, 9287-9296.	2.6	76
97	Estimation of Liposome Penetration Barriers of Drug Molecules with All-Atom and Coarse-Grained Models. Journal of Chemical Theory and Computation, 2016, 12, 4651-4661.	5. 3	11
98	Hydration Dynamics of a Peripheral Membrane Protein. Journal of the American Chemical Society, 2016, 138, 11526-11535.	13.7	57
99	Partitioning into Colloidal Structures of Fasted State Intestinal Fluid Studied by Molecular Dynamics Simulations. Langmuir, 2016, 32, 12732-12740.	3.5	19
100	Binding Characteristics of Sphingosine-1-Phosphate to ApoM hints to Assisted Release Mechanism via the ApoM Calyx-Opening. Scientific Reports, 2016, 6, 30655.	3.3	21
101	An extensive simulation study of lipid bilayer properties with different head groups, acyl chain lengths, and chain saturations. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 3093-3104.	2.6	51
102	Acetylation within the First 17 Residues of Huntingtin Exon 1 Alters Aggregation and Lipid Binding. Biophysical Journal, 2016, 111, 349-362.	0.5	55
103	Multi-scale molecular dynamics study of cholera pentamer binding to a GM1-phospholipid membrane. Journal of Molecular Graphics and Modelling, 2016, 68, 236-251.	2.4	15

#	Article	IF	CITATIONS
104	Algorithm for Designing Nanoscale Supramolecular Therapeutics with Increased Anticancer Efficacy. ACS Nano, 2016, 10, 8154-8168.	14.6	18
105	The Lipid Bilayer Provides a Site for Cortisone Crystallization at High Cortisone Concentrations. Scientific Reports, 2016, 6, 22425.	3.3	23
106	A peptide from human \hat{l}^2 thymosin as a platform for the development of new anti-biofilm agents for Staphylococcus spp. and Pseudomonas aeruginosa. World Journal of Microbiology and Biotechnology, 2016, 32, 124.	3.6	14
107	Concentration effect of cimetidine with POPC bilayer: a molecular dynamics simulation study. Molecular Simulation, 2016, 42, 1292-1297.	2.0	7
108	Sensing membrane thickness: Lessons learned from cold stress. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 837-846.	2.4	35
109	Effects of Al ³⁺ on Phosphocholine and Phosphoglycerol Containing Solid Supported Lipid Bilayers. Langmuir, 2016, 32, 1771-1781.	3.5	5
110	Force Field Development for Lipid Membrane Simulations. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2483-2497.	2.6	80
111	CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. Journal of Chemical Theory and Computation, 2016, 12, 405-413.	5.3	2,567
112	Fluorescence of nitrobenzoxadiazole (NBD)-labeled lipids in model membranes is connected not to lipid mobility but to probe location. Physical Chemistry Chemical Physics, 2016, 18, 7042-7054.	2.8	55
113	Transmembrane Potential Modeling: Comparison between Methods of Constant Electric Field and Ion Imbalance. Journal of Chemical Theory and Computation, 2016, 12, 2418-2425.	5.3	34
114	Validating lipid force fields against experimental data: Progress, challenges and perspectives. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1556-1565.	2.6	69
115	Allostery in BAX protein activation. Journal of Biomolecular Structure and Dynamics, 2016, 34, 2469-2480.	3.5	11
116	Interplay between Two Allosteric Sites and Their Influence on Agonist Binding in Human \hat{l}^4 Opioid Receptor. Journal of Chemical Information and Modeling, 2016, 56, 563-570.	5.4	35
117	Simulation of lipid bilayer self-assembly using all-atom lipid force fields. Physical Chemistry Chemical Physics, 2016, 18, 10573-10584.	2.8	44
118	Efficient preparation and analysis of membrane and membrane protein systems. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2468-2482.	2.6	33
119	Membrane pore formation in atomistic and coarse-grained simulations. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2266-2277.	2.6	64
120	Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1635-1651.	2.6	111
121	Molecular principle of the cyclin-dependent kinase selectivity of 4-(thiazol-5-yl)-2-(phenylamino) pyrimidine-5-carbonitrile derivatives revealed by molecular modeling studies. Physical Chemistry Chemical Physics, 2016, 18, 2034-2046.	2.8	21

#	Article	IF	CITATIONS
122	Molecular dynamics simulation of six \hat{l}^2 -blocker drugs passing across POPC bilayer. Molecular Simulation, 2016, 42, 56-63.	2.0	20
123	Increased Binding of Calcium Ions at Positively Curved Phospholipid Membranes. Journal of Physical Chemistry Letters, 2017, 8, 518-523.	4.6	27
124	An averaged polarizable potential for multiscale modeling in phospholipid membranes. Journal of Computational Chemistry, 2017, 38, 601-611.	3.3	12
125	The mechanism of aquaporin inhibition by gold compounds elucidated by biophysical and computational methods. Chemical Communications, 2017, 53, 3830-3833.	4.1	50
126	Maltose-binding protein effectively stabilizes the partially closed conformation of the ATP-binding cassette transporter MalFGK ₂ . Physical Chemistry Chemical Physics, 2017, 19, 9366-9373.	2.8	8
127	The Startle Disease Mutation E103K Impairs Activation of Human Homomeric α1 Glycine Receptors by Disrupting an Intersubunit Salt Bridge across the Agonist Binding Site. Journal of Biological Chemistry, 2017, 292, 5031-5042.	3.4	8
128	Revisiting Partition in Hydrated Bilayer Systems. Journal of Chemical Theory and Computation, 2017, 13, 2290-2299.	5. 3	13
129	Antioxidant and Membrane Binding Properties of Serotonin Protect Lipids from Oxidation. Biophysical Journal, 2017, 112, 1863-1873.	0.5	66
130	A novel pathway for amyloids self-assembly in aggregates at nanomolar concentration mediated by the interaction with surfaces. Scientific Reports, 2017, 7, 45592.	3.3	44
131	Testing High Concentrations of Membrane Active Antibiotic Chlorhexidine Via Computational Titration and Calorimetry. Journal of Physical Chemistry B, 2017, 121, 4657-4668.	2.6	8
132	Defeating Bacterial Resistance and Preventing Mammalian Cells Toxicity Through Rational Design of Antibiotic-Functionalized Nanoparticles. Scientific Reports, 2017, 7, 1326.	3.3	33
133	Structural Behavior of the Peptaibol Harzianin HK VI in a DMPC Bilayer: Insights from MD Simulations. Biophysical Journal, 2017, 112, 2602-2614.	0.5	8
134	Chemical End Group Modified Diblock Copolymers Elucidate Anchor and Chain Mechanism of Membrane Stabilization. Molecular Pharmaceutics, 2017, 14, 2333-2339.	4.6	28
135	Exploring Fluorescent Dyes at Biomimetic Interfaces with Second Harmonic Generation and Molecular Dynamics. Langmuir, 2017, 33, 3373-3383.	3.5	9
136	Structures of single, double and triple layers of lipids adsorbed on graphene: Insights from all-atom molecular dynamics simulations. Carbon, 2017, 118, 358-369.	10.3	9
137	Structural heterogeneity of the $\hat{1}\frac{1}{4}$ -opioid receptor $\hat{a}\in\mathbb{N}$ s conformational ensemble in the apo state. Scientific Reports, 2017, 7, 45761.	3.3	23
138	Critical Comparison of Biomembrane Force Fields: Proteinâ€"Lipid Interactions at the Membrane Interface. Journal of Chemical Theory and Computation, 2017, 13, 2310-2321.	5.3	62
139	Diffusion of the small, very polar, drug piracetam through a lipid bilayer: an MD simulation study. Theoretical Chemistry Accounts, 2017, 136, 1.	1.4	20

#	Article	IF	CITATIONS
140	Structure–Kinetic Relationships of Passive Membrane Permeation from Multiscale Modeling. Journal of the American Chemical Society, 2017, 139, 442-452.	13.7	106
141	Impact of iron coordination isomerism on pyoverdine recognition by the FpvA membrane transporter of Pseudomonas aeruginosa. Physical Chemistry Chemical Physics, 2017, 19, 29498-29507.	2.8	1
142	Effects of High Pressure on Phospholipid Bilayers. Journal of Physical Chemistry B, 2017, 121, 9597-9606.	2.6	27
143	Binding of protofibrillar \hat{A}^2 trimers to lipid bilayer surface enhances \hat{A}^2 structural stability and causes membrane thinning. Physical Chemistry Chemical Physics, 2017, 19, 27556-27569.	2.8	32
144	Quantum chemical and molecular dynamics modelling of hydroxylated polybrominated diphenyl ethers. Physical Chemistry Chemical Physics, 2017, 19, 28263-28274.	2.8	6
145	Nanoparticles of Short Cationic Peptidopolysaccharide Self-Assembled by Hydrogen Bonding with Antibacterial Effect against Multidrug-Resistant Bacteria. ACS Applied Materials & Emp; Interfaces, 2017, 9, 38288-38303.	8.0	67
146	All-Atom Molecular Dynamics-Based Analysis of Membrane-Stabilizing Copolymer Interactions with Lipid Bilayers Probed under Constant Surface Tensions. Journal of Physical Chemistry B, 2017, 121, 10657-10664.	2.6	27
147	Interplay Between Membrane Composition and Structural Stability of Membrane-Bound hIAPP. Journal of Physical Chemistry B, 2017, 121, 8661-8668.	2.6	25
148	Effects of Coarse Graining and Saturation of Hydrocarbon Chains on Structure and Dynamics of Simulated Lipid Molecules. Scientific Reports, 2017, 7, 11476.	3.3	14
149	On the Calculation of Acyl Chain Order Parameters from Lipid Simulations. Journal of Chemical Theory and Computation, 2017, 13, 5683-5696.	5.3	92
150	Drude Polarizable Force Field for Molecular Dynamics Simulations of Saturated and Unsaturated Zwitterionic Lipids. Journal of Chemical Theory and Computation, 2017, 13, 4535-4552.	5. 3	90
151	How Rhodopsin Tunes the Equilibrium between Protonated and Deprotonated Forms of the Retinal Chromophore. Journal of Chemical Theory and Computation, 2017, 13, 4524-4534.	5.3	10
152	Membrane Binding of Recoverin: From Mechanistic Understanding to Biological Functionality. ACS Central Science, 2017, 3, 868-874.	11.3	15
153	Physicochemical properties of nanoparticles affect translocation across pulmonary surfactant monolayer. Molecular Physics, 2017, 115, 3143-3154.	1.7	4
154	Influence of doxorubicin on model cell membrane properties: insights from in vitro and in silico studies. Scientific Reports, 2017, 7, 6343.	3.3	70
155	The orientation and stability of the GPCR-Arrestin complex in a lipid bilayer. Scientific Reports, 2017, 7, 16985.	3.3	10
156	Binding Modes of Teixobactin to Lipid II: Molecular Dynamics Study. Scientific Reports, 2017, 7, 17197.	3.3	18
157	Membrane Cholesterol Reduces Polymyxin B Nephrotoxicity in Renal Membrane Analogs. Biophysical Journal, 2017, 113, 2016-2028.	0.5	24

#	Article	IF	CITATIONS
158	Probe-location dependent resonance energy transfer at lipid/water interfaces: comparison between the gel- and fluid-phase of lipid bilayer. Physical Chemistry Chemical Physics, 2017, 19, 25870-25885.	2.8	9
159	Water permeation through the internal water pathway in activated GPCR rhodopsin. PLoS ONE, 2017, 12, e0176876.	2.5	14
160	Structural model of the SARS coronavirus E channel in LMPG micelles. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1309-1317.	2.6	155
161	Interaction of lecithin:cholesterol acyltransferase with lipid surfaces and apolipoprotein A-I-derived peptides. Journal of Lipid Research, 2018, 59, 670-683.	4.2	16
162	Influence of electric field on the amyloid- $\langle i \rangle \hat{l}^2 \langle j \rangle (29-42)$ peptides embedded in a membrane bilayer. Journal of Chemical Physics, 2018, 148, 045105.	3.0	21
163	Lipids Shape the Electron Acceptor-Binding Site of the Peripheral Membrane Protein Dihydroorotate Dehydrogenase. Cell Chemical Biology, 2018, 25, 309-317.e4.	5.2	25
164	Balancing Force Field Protein–Lipid Interactions To Capture Transmembrane Helix–Helix Association. Journal of Chemical Theory and Computation, 2018, 14, 1706-1715.	5.3	40
165	Role of the cell membrane interface in modulating production and uptake of Alzheimer's beta amyloid protein. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1639-1651.	2.6	47
166	Metastable Prepores in Tension-Free Lipid Bilayers. Physical Review Letters, 2018, 120, 128103.	7.8	47
167	Structural basis of the signal transduction via transmembrane domain of the human growth hormone receptor. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1410-1420.	2.4	28
168	Molecular dynamics simulation and molecular docking studies of 1,4-Dihydropyridines as P-glycoprotein's allosteric inhibitors. Journal of Biomolecular Structure and Dynamics, 2018, 36, 112-125.	3.5	32
169	Impact of membrane partitioning on the spatial structure of an S-type cobra cytotoxin. Journal of Biomolecular Structure and Dynamics, 2018, 36, 3463-3478.	3.5	13
170	Atomistic Model for Nearly Quantitative Simulations of Langmuir Monolayers. Langmuir, 2018, 34, 2565-2572.	3.5	53
171	Opportunities and Challenges in the Discovery of Allosteric Modulators of GPCRs. Methods in Molecular Biology, 2018, 1705, 297-319.	0.9	16
172	Perspective: Computational modeling of accurate cellular membranes with molecular resolution. Journal of Chemical Physics, 2018, 149, 220901.	3.0	17
173	Roughness of Transmembrane Helices Reduces Lipid Membrane Dynamics. IScience, 2018, 10, 87-97.	4.1	14
174	Probing the effect of membrane contents on transmembrane protein-protein interaction using solution NMR and computer simulations. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2486-2498.	2.6	10
175	Antimicrobial and Antibiofilm Activity of a Recombinant Fragment of \hat{I}^2 -Thymosin of Sea Urchin Paracentrotus lividus. Marine Drugs, 2018, 16, 366.	4.6	14

#	Article	IF	CITATIONS
176	Role of Extracellular Loops and Membrane Lipids for Ligand Recognition in the Neuronal Adenosine Receptor Type 2A: An Enhanced Sampling Simulation Study. Molecules, 2018, 23, 2616.	3.8	13
177	Molecular Dynamics Simulations of Membrane Proteins: An Overview. Journal of Chemical Information and Modeling, 2018, 58, 2193-2202.	5.4	50
178	Structural Prediction of the Dimeric Form of the Mammalian Translocator Membrane Protein TSPO: A Key Target for Brain Diagnostics. International Journal of Molecular Sciences, 2018, 19, 2588.	4.1	15
179	Optimal Hydrophobicity and Reorientation of Amphiphilic Peptides Translocating through Membrane. Biophysical Journal, 2018, 115, 1045-1054.	0.5	29
180	Glyceryl Monostearate: Probing the Self Assembly of a Lipid Amenable To Surface Modification for Hepatic Targeting. Journal of Physical Chemistry C, 2018, 122, 22160-22169.	3.1	4
181	Structure of the mechanosensitive OSCA channels. Nature Structural and Molecular Biology, 2018, 25, 850-858.	8.2	133
182	The impact of lipid oxidation on the functioning of a lung surfactant model. Physical Chemistry Chemical Physics, 2018, 20, 24968-24978.	2.8	15
183	Molecular dynamics modeling of <i>Pseudomonas aeruginosa </i> outer membranes. Physical Chemistry Chemical Physics, 2018, 20, 23635-23648.	2.8	27
184	Faster Simulations with a 5 fs Time Step for Lipids in the CHARMM Force Field. Journal of Chemical Theory and Computation, 2018, 14, 3342-3350.	5.3	34
185	Local low dose curcumin treatment improves functional recovery and remyelination in a rat model of sciatic nerve crush through inhibition of oxidative stress. Neuropharmacology, 2018, 139, 98-116.	4.1	51
186	Membrane partition of bis-(3-hydroxy-4-pyridinonato) zinc(ii) complexes revealed by molecular dynamics simulations. RSC Advances, 2018, 8, 27081-27090.	3.6	4
187	Free energy of adhesion of lipid bilayers on silica surfaces. Journal of Chemical Physics, 2018, 148, 194704.	3.0	14
188	Cholesterol promotes Cytolysin A activity by stabilizing the intermediates during pore formation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7323-E7330.	7.1	48
189	Mechanism of Long-Chain Free Fatty Acid Protonation at the Membrane-Water Interface. Biophysical Journal, 2018, 114, 2142-2151.	0.5	57
190	Vibrational spectroscopy combined with molecular dynamics simulations as a tool for studying behavior of reactive aldehydes inserted in phospholipid bilayers. Chemistry and Physics of Lipids, 2019, 225, 104793.	3.2	3
191	Force Field Comparison of GM1 in a DOPC Bilayer Validated with AFM and FRET Experiments. Journal of Physical Chemistry B, 2019, 123, 7504-7517.	2.6	8
192	Fat SIRAH: Coarse-Grained Phospholipids To Explore Membrane–Protein Dynamics. Journal of Chemical Theory and Computation, 2019, 15, 5674-5688.	5.3	36
193	Insight into the antimicrobial mechanism of action of \hat{l}^2 2,2-amino acid derivatives from molecular dynamics simulation: Dancing the can-can at the membrane surface. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 183028.	2.6	9

#	Article	IF	CITATIONS
194	Compatibility of advanced water models with a united atom model of lipid in lipid bilayer simulation. Journal of Chemical Physics, 2019, 151, .	3.0	14
195	Temperature Dependence of the Structure and Dynamics of a Dye-Labeled Lipid in a Planar Phospholipid Bilayer: A Computational Study. Journal of Membrane Biology, 2019, 252, 227-240.	2.1	7
196	Implicit solvent systematic coarse-graining of dioleoylphosphatidylethanolamine lipids: From the inverted hexagonal to the bilayer structure. PLoS ONE, 2019, 14, e0214673.	2.5	4
197	All-Factor Analysis and Correlations on the Transmembrane Process for Arginine-Rich Cell-Penetrating Peptides. Langmuir, 2019, 35, 9286-9296.	3.5	12
198	Accelerating Membrane Simulations with Hydrogen Mass Repartitioning. Journal of Chemical Theory and Computation, 2019, 15, 4673-4686.	5.3	85
199	Hopanoids Like Sterols Form Compact but Fluid Films. Langmuir, 2019, 35, 9848-9857.	3.5	16
200	Free energy of adhesion of lipid bilayers on titania surfaces. Journal of Chemical Physics, 2019, 151, 134707.	3.0	6
201	Magainin 2 and PGLa in Bacterial Membrane Mimics I: Peptide-Peptide and Lipid-Peptide Interactions. Biophysical Journal, 2019, 117, 1858-1869.	0.5	30
202	Effect of lipid saturation on amyloid-beta peptide partitioning and aggregation in neuronal membranes: molecular dynamics simulations. European Biophysics Journal, 2019, 48, 813-824.	2.2	21
203	Computational Study of the Interaction of a PEGylated Hyperbranched Polymer/Doxorubicin Complex with a Bilipid Membrane. Fluids, 2019, 4, 17.	1.7	4
204	Covalent modification of phosphatidylethanolamine by 4-hydroxy-2-nonenal increases sodium permeability across phospholipid bilayer membranes. Free Radical Biology and Medicine, 2019, 143, 433-440.	2.9	13
205	Agonist Selectivity and Ion Permeation in the $\hat{l}\pm3\hat{l}^24$ Ganglionic Nicotinic Receptor. Neuron, 2019, 104, 501-511.e6.	8.1	131
206	Surface Shear Viscosity and Interleaflet Friction from Nonequilibrium Simulations of Lipid Bilayers. Journal of Chemical Theory and Computation, 2019, 15, 6471-6481.	5.3	27
207	Quantum Mechanical and Molecular Mechanics Modeling of Membrane-Embedded Rhodopsins. Journal of Membrane Biology, 2019, 252, 425-449.	2.1	11
208	Molecular Ordering in Lipid Monolayers: An Atomistic Simulation. Langmuir, 2019, 35, 13782-13790.	3.5	3
209	Molecular Mechanism of S1P Binding and Activation of the S1P1 Receptor. Journal of Chemical Information and Modeling, 2019, 59, 4402-4412.	5.4	20
210	Violacein Targets the Cytoplasmic Membrane of Bacteria. ACS Infectious Diseases, 2019, 5, 539-549.	3.8	58
211	GLUT1 and GLUT3 involvement in anthocyanin gastric transport- Nanobased targeted approach. Scientific Reports, 2019, 9, 789.	3.3	42

#	Article	IF	CITATIONS
212	Curvature effect and stabilize ruptured membrane of BAX derived peptide studied by molecular dynamics simulations. Journal of Molecular Graphics and Modelling, 2019, 88, 152-159.	2.4	1
213	Tetrameric Charge-Zipper Assembly of the TisB Peptide in Membranesâ€"Computer Simulation and Experiment. Journal of Physical Chemistry B, 2019, 123, 1770-1779.	2.6	6
214	Multiscale Modeling and Simulation Approaches to Lipid–Protein Interactions. Methods in Molecular Biology, 2019, 2003, 1-30.	0.9	7
215	Atomistic Simulations of Membrane Ion Channel Conduction, Gating, and Modulation. Chemical Reviews, 2019, 119, 7737-7832.	47.7	87
216	Identification of the Initial Steps in Signal Transduction in the $\hat{l}\pm4\hat{l}^22$ Nicotinic Receptor: Insights from Equilibrium and Nonequilibrium Simulations. Structure, 2019, 27, 1171-1183.e3.	3.3	24
217	Structural Insights into the Process of GPCR-G Protein Complex Formation. Cell, 2019, 177, 1243-1251.e12.	28.9	121
218	Atomistic characterization of collective protein–water–membrane dynamics. Physical Chemistry Chemical Physics, 2019, 21, 15958-15965.	2.8	9
219	Imidazole in Aqueous Solution: Hydrogen Bond Interactions and Structural Reorganization with Concentration. Journal of Physical Chemistry B, 2019, 123, 4055-4064.	2.6	9
220	Hydration-mediated stiffening of collective membrane dynamics by cholesterol. Physical Chemistry Chemical Physics, 2019, 21, 10370-10376.	2.8	9
221	Calculation of apparent pKa values of saturated fatty acids with different lengths in DOPC phospholipid bilayers. Physical Chemistry Chemical Physics, 2019, 21, 10052-10060.	2.8	16
222	Chasing the Full Free Energy Landscape of Neuroreceptor/Ligand Unbinding by Metadynamics Simulations. Journal of Chemical Theory and Computation, 2019, 15, 3354-3361.	5.3	53
223	Exploring the Dual Interaction of Natural Rhamnolipids with Plant and Fungal Biomimetic Plasma Membranes through Biophysical Studies. International Journal of Molecular Sciences, 2019, 20, 1009.	4.1	43
224	Does the Lipid Bilayer Orchestrate Access and Binding of Ligands to Transmembrane Orthosteric/Allosteric Sites of G Protein-Coupled Receptors?. Molecular Pharmacology, 2019, 96, 527-541.	2.3	45
225	Molecular Dynamic Simulations to Probe Water Permeation Pathways of GPCRs. Methods in Molecular Biology, 2019, 1947, 21-30.	0.9	0
226	The asymmetry of plasma membranes and their cholesterol content influence the uptake of cisplatin. Scientific Reports, 2019, 9, 5627.	3.3	95
227	Interplay between lipid lateral diffusion, dye concentration and membrane permeability unveiled by a combined spectroscopic and computational study of a model lipid bilayer. Scientific Reports, 2019, 9, 1508.	3.3	31
228	Structural Features and Energetics of the Periplasmic Entrance Opening of the Outer Membrane Channel TolC Revealed by Molecular Dynamics Simulation and Markov State Model Analysis. Journal of Chemical Information and Modeling, 2019, 59, 2359-2366.	5.4	8
229	Amyloid-β(29–42) Dimeric Conformations in Membranes Rich in Omega-3 and Omega-6 Polyunsaturated Fatty Acids. Journal of Physical Chemistry B, 2019, 123, 2687-2696.	2.6	14

#	Article	IF	CITATIONS
230	Membrane charge and lipid packing determine polymyxin-induced membrane damage. Communications Biology, 2019, 2, 67.	4.4	37
231	Developing and Testing of Lipid Force Fields with Applications to Modeling Cellular Membranes. Chemical Reviews, 2019, 119, 6227-6269.	47.7	72
232	Emerging Diversity in Lipid–Protein Interactions. Chemical Reviews, 2019, 119, 5775-5848.	47.7	299
233	Multiscale (re)modeling of lipid bilayer membranes. Advances in Biomembranes and Lipid Self-Assembly, 2019, 30, 39-104.	0.6	1
234	The ABCG2 multidrug transporter is a pump gated by a valve and an extracellular lid. Nature Communications, 2019, 10, 5433.	12.8	44
235	Collective absorption of 2,4,6-trinitrotoluene into lipid membranes and its effects on bilayer properties. A computational study. RSC Advances, 2019, 9, 39046-39054.	3.6	3
236	Single-molecule studies of flavivirus envelope dynamics: Experiment and computation. Progress in Biophysics and Molecular Biology, 2019, 143, 38-51.	2.9	9
237	Cholesterol in phospholipid bilayers: positions and orientations inside membranes with different unsaturation degrees. Soft Matter, 2019, 15, 78-93.	2.7	52
238	Modeling Lipid Membranes. , 2019, , 741-759.		0
239	Computational Modeling of Realistic Cell Membranes. Chemical Reviews, 2019, 119, 6184-6226.	47.7	502
240	Cholesterol Flip-Flop in Heterogeneous Membranes. Journal of Chemical Theory and Computation, 2019, 15, 2064-2070.	5.3	62
241	Influence of Bilayer Size and Number in Multi-Bilayer DOPC Simulations at Full and Low Hydration. Langmuir, 2019, 35, 2399-2411.	3.5	16
242	Molecular mechanisms of allosteric probe dependence in $\hat{l}^{1}\!\!/\!\!4$ opioid receptor. Journal of Biomolecular Structure and Dynamics, 2019, 37, 36-47.	3.5	12
243	Morphology and dynamics of domains in ergosterol or cholesterol containing membranes. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183101.	2.6	15
244	A molecular dynamics study proposing the existence of statistical structural heterogeneity due to chain orientation in the POPC-cholesterol bilayer. Biophysical Chemistry, 2020, 257, 106275.	2.8	10
245	Magainin 2 and PGLa in Bacterial Membrane Mimics II: Membrane Fusion and Sponge Phase Formation. Biophysical Journal, 2020, 118, 612-623.	0.5	25
246	A Refined Open State of the Glycine Receptor Obtained via Molecular Dynamics Simulations. Structure, 2020, 28, 130-139.e2.	3.3	36
247	Investigating the interactions of the first 17 amino acid residues of Huntingtin with lipid vesicles using mass spectrometry and molecular dynamics. Journal of Mass Spectrometry, 2020, 55, e4470.	1.6	10

#	Article	IF	CITATIONS
248	Optimization of Slipids Force Field Parameters Describing Headgroups of Phospholipids. Journal of Physical Chemistry B, 2020, 124, 8784-8793.	2.6	35
249	Structure of the Inhibited State of the Sec Translocon. Molecular Cell, 2020, 79, 406-415.e7.	9.7	44
250	Novel Mechanism of Cholesterol Transport by ABCA5 in Macrophages and Its Role in Dyslipidemia. Journal of Molecular Biology, 2020, 432, 4922-4941.	4.2	16
251	GDP Release from the Open Conformation of \widehat{Gl} ± Requires Allosteric Signaling from the Agonist-Bound Human \widehat{I}^2 ₂ Adrenergic Receptor. Journal of Chemical Information and Modeling, 2020, 60, 4064-4075.	5.4	8
252	A practical guide to biologically relevant molecular simulations with charge scaling for electronic polarization. Journal of Chemical Physics, 2020, 153, 050901.	3.0	63
253	Dimeric states of transmembrane domains of insulin and IGF-1R receptors: Structures and possible role in activation. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183417.	2.6	6
254	Mechanism of Cell Penetration by Permeabilization of Late Endosomes: Interplay between a Multivalent TAT Peptide and Bis(monoacylglycero)phosphate. Cell Chemical Biology, 2020, 27, 1296-1307.e5.	5.2	23
255	Mild lipid extraction and anisotropic cell membrane penetration of α-phase phosphorene carbide nanoribbons by molecular dynamics simulation studies. Physical Chemistry Chemical Physics, 2020, 22, 23268-23275.	2.8	7
256	Stabilization of Lipid Membranes through Partitioning of the Blood Bag Plasticizer Di-2-ethylhexyl phthalate (DEHP). Langmuir, 2020, 36, 11899-11907.	3.5	15
257	Functional Impact of the G279S Substitution in the Adenosine A ₁ -Receptor (A ₁ R-G279S ^{7.44}), a Mutation Associated with Parkinson's Disease. Molecular Pharmacology, 2020, 98, 250-266.	2.3	2
258	Dissecting the Structural Plasticity and Dynamics of Cytochrome P450 2B4 by Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 2020, 60, 5026-5035.	5.4	6
259	Revealing Thermodynamics and Kinetics of Lipid Self-Assembly by Markov State Model Analysis. Journal of the American Chemical Society, 2020, 142, 21344-21352.	13.7	22
260	Lipid-protein interactions modulate the conformational equilibrium of a potassium channel. Nature Communications, 2020, 11, 2162.	12.8	33
261	Flavonol clustering in model lipid membranes: DSC, AFM, force spectroscopy and MD simulations study. Colloids and Surfaces B: Biointerfaces, 2020, 193, 111147.	5.0	7
262	Molecular dynamics study of functionally relevant interdomain and active site interactions in the autotransporter esterase EstA from <i>Pseudomonas aeruginosa</i> . Molecular Simulation, 2020, 46, 743-756.	2.0	0
264	Breakage of Hydrophobic Contacts Limits the Rate of Passive Lipid Exchange between Membranes. Journal of Physical Chemistry B, 2020, 124, 5884-5898.	2.6	15
265	Functional impact of the G279S substitution in the adenosine A1-receptor (A1R-G279S), a mutation associated with Parkinson's disease. Molecular Pharmacology, 2020, 98, MOLPHARM-AR-2020-000003.	2.3	12
266	Desaturase specificity is controlled by the physicochemical properties of a single amino acid residue in the substrate binding tunnel. Computational and Structural Biotechnology Journal, 2020, 18, 1202-1209.	4.1	8

#	Article	IF	CITATIONS
267	Organic Anion Transporting Polypeptide–Mediated Hepatic Uptake of Glucuronide Metabolites of Androgens. Molecular Pharmacology, 2020, 98, 234-242.	2.3	13
268	Assessing the DOPC-cholesterol interactions and their influence on fullerene C60 partitioning in lipid bilayers. Journal of Molecular Liquids, 2020, 315, 113698.	4.9	15
269	Modeling the allosteric modulation on a G-Protein Coupled Receptor: the case of M2 muscarinic Acetylcholine Receptor in complex with LY211960. Scientific Reports, 2020, 10, 3037.	3.3	6
270	Computer simulations of protein–membrane systems. Progress in Molecular Biology and Translational Science, 2020, 170, 273-403.	1.7	31
271	Analysis of vismodegib resistance in D473G and W535L mutants of SMO receptor and design of novel drug derivatives using molecular dynamics simulations. Life Sciences, 2020, 244, 117302.	4.3	7
272	Phase Separation in Atomistic Simulations of Model Membranes. Journal of the American Chemical Society, 2020, 142, 2844-2856.	13.7	57
273	Phosphorylation-dependent conformational changes of arrestin in the rhodopsin–arrestin complex. Physical Chemistry Chemical Physics, 2020, 22, 9330-9338.	2.8	1
274	Molecular modeling of three-dimensional structure of hTRPV4 protein and experimental verification of its antagonist binding sites. Journal of Molecular Structure, 2021, 1227, 129421.	3.6	2
275	Molecular Dynamics Simulations Reveal Membrane Interactions for Poorly Water-Soluble Drugs: Impact of Bile Solubilization and Drug Aggregation. Journal of Pharmaceutical Sciences, 2021, 110, 176-185.	3.3	16
276	Effect of the lipid composition and cholesterol on the membrane selectivity of low generations PAMAM dendrimers: A molecular dynamics simulation study. Applied Surface Science, 2021, 540, 148274.	6.1	7
278	Identification and characterisation of putative drug binding sites in human ATP-binding cassette B5 (ABCB5) transporter. Computational and Structural Biotechnology Journal, 2021, 19, 691-704.	4.1	5
279	Using Open Data to Rapidly Benchmark Biomolecular Simulations: Phospholipid Conformational Dynamics. Journal of Chemical Information and Modeling, 2021, 61, 938-949.	5.4	24
280	Red-shifted tetra- <i>ortho</i> -halo-azobenzenes for photo-regulated transmembrane anion transport. Organic and Biomolecular Chemistry, 2021, 19, 9058-9067.	2.8	26
281	Membrane models for molecular simulations of peripheral membrane proteins. Advances in Physics: X, 2021, 6, 1932589.	4.1	3
282	The Interplay of Cholesterol and Ligand Binding in hTSPO from Classical Molecular Dynamics Simulations. Molecules, 2021, 26, 1250.	3.8	5
283	The role of prolines and glycine in the transmembrane domain of LAT. FEBS Journal, 2021, 288, 4039-4052.	4.7	6
284	A Comparative Study on DMSO-Induced Modulation of the Structural and Dynamical Properties of Model Bilayer Membranes. Langmuir, 2021, 37, 2065-2078.	3.5	11
285	State-dependent protein-lipid interactions of a pentameric ligand-gated ion channel in a neuronal membrane. PLoS Computational Biology, 2021, 17, e1007856.	3.2	18

#	Article	IF	CITATIONS
286	Effect of Water Models on Transmembrane Self-Assembled Cyclic Peptide Nanotubes. ACS Nano, 2021, 15, 7053-7064.	14.6	12
289	Structural basis of antifolate recognition and transport by PCFT. Nature, 2021, 595, 130-134.	27.8	36
290	Construction of dimeric hTSPO protein model using homology modeling and molecular dynamics. Journal of Physics: Conference Series, 2021, 1932, 012016.	0.4	1
291	Considerations of Recent All-Atom Lipid Force Field Development. Journal of Physical Chemistry B, 2021, 125, 5676-5682.	2.6	8
292	In silico Exploration of Interactions Between Potential COVID-19 Antiviral Treatments and the Pore of the hERG Potassium Channelâ€"A Drug Antitarget. Frontiers in Cardiovascular Medicine, 2021, 8, 645172.	2.4	4
293	Investigating the Mechanism of Sodium Binding to SERT Using Direct Simulations. Frontiers in Cellular Neuroscience, 2021, 15, 673782.	3.7	9
294	Modulation of Phospholipid Bilayer Properties by Simvastatin. Journal of Physical Chemistry B, 2021, 125, 8406-8418.	2.6	5
295	Transmembrane Self-Assembled Cyclic Peptide Nanotubes Based on αâ€Residues and Cyclic δâ€Amino Acids: A Computational Study. Frontiers in Chemistry, 2021, 9, 704160.	3.6	3
296	Atomistic Molecular Dynamics Simulations of Lipids Near TiO ₂ Nanosurfaces. Journal of Physical Chemistry B, 2021, 125, 8048-8059.	2.6	4
297	A Data-Driven Dimensionality Reduction Approach to Compare and Classify Lipid Force Fields. Journal of Physical Chemistry B, 2021, 125, 7785-7796.	2.6	21
299	Molecular-dynamics-simulation-guided membrane engineering allows the increase of membrane fatty acid chain length in Saccharomyces cerevisiae. Scientific Reports, 2021, 11, 17333.	3.3	3
301	A multiscale approach for bridging the gap between potency, efficacy, and safety of small molecules directed at membrane proteins. Scientific Reports, 2021, 11, 16580.	3.3	10
302	Alemtuzumab scFv fragments and CD52 interaction study through molecular dynamics simulation and binding free energy. Journal of Molecular Graphics and Modelling, 2021, 107, 107949.	2.4	7
303	Amyloid- \hat{l}^2 peptide dimers undergo a random coil to \hat{l}^2 -sheet transition in the aqueous phase but not at the neuronal membrane. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	60
304	Molecular Simulation Studies on the Interactions of Bilirubin at Different States with a Lipid Bilayer. Langmuir, 2021, 37, 11707-11715.	3.5	4
305	Influence of Lipid Bilayer on the GPCR Structure: Comparison of All-Atom Lipid Force Fields. Bulletin of the Chemical Society of Japan, 2021, 94, 2569-2574.	3.2	9
306	The importance of intramolecular hydrogen bonds on the translocation of the small drug piracetam through a lipid bilayer. RSC Advances, 2021, 11, 899-908.	3.6	39
308	Computer Simulations of Phase Separation in Lipid Bilayers and Monolayers. Methods in Molecular Biology, 2015, 1232, 307-322.	0.9	10

#	Article	IF	CITATIONS
309	In Silico Design of Antimicrobial Peptides. Methods in Molecular Biology, 2015, 1268, 195-219.	0.9	20
310	Atomistic Force Fields for Proteins. Methods in Molecular Biology, 2019, 2022, 3-19.	0.9	14
311	Molecular Dynamics Simulations of Membrane Proteins. Methods in Molecular Biology, 2013, 1033, 85-101.	0.9	26
312	Stepwise Insertion of Cobra Cardiotoxin CT2 into a Lipid Bilayer Occurs as an Interplay of Protein and Membrane "Dynamic Molecular Portraits― Journal of Chemical Information and Modeling, 2021, 61, 385-399.	5.4	6
313	A New Lipid Force Field (FUJI). Journal of Chemical Theory and Computation, 2020, 16, 3664-3676.	5. 3	7
318	Cloning and Expression of Î ² -Defensin from Soiny Mullet (Liza haematocheila), with Insights of its Antibacterial Mechanism. PLoS ONE, 2016, 11, e0157544.	2.5	16
319	ATP Hydrolysis Induced Conformational Changes in the Vitamin B12 Transporter BtuCD Revealed by MD Simulations. PLoS ONE, 2016, 11, e0166980.	2.5	5
320	Simulation Best Practices for Lipid Membranes [Article v1.0]. Living Journal of Computational Molecular Science, 2019, 1, .	6.4	22
321	v-SNARE transmembrane domains function as catalysts for vesicle fusion. ELife, 2016, 5, .	6.0	50
322	Ultrasensitive two-dimensional material-based MCF-7 cancer cell sensor driven by perturbation processes. Nanoscale Advances, 2021, 3, 6974-6983.	4.6	10
323	Lipid Nanodiscs for High-Resolution NMR Studies of Membrane Proteins. Chemical Reviews, 2022, 122, 9395-9421.	47.7	30
324	Structural and Material Perturbations of Lipid Bilayers Due to HIV-1 Tat Peptide. Springer Theses, 2015, , 9-63.	0.1	0
325	Modeling Lipid Membranes. , 2016, , 1-19.		0
328	Computer Modelling of the Lipid Matrix of Biomembranes. Springer Series on Bio- and Neurosystems, 2019, , 331-370.	0.2	1
334	Mechanism of Cell Penetration by Permeabilization of Late Endosomes: Interplay between a Multivalent TAT-Like Cell-Penetrating Peptide and the Lipid Bis(Monoacylglycerol)Phosphate. SSRN Electronic Journal, 0, , .	0.4	0
337	Coarse-grained implicit solvent lipid force field with a compatible resolution to the $\hat{\text{Cl}}\pm$ protein representation. Journal of Chemical Physics, 2020, 153, 205101.	3.0	7
339	Predicting nanoparticle uptake by biological membranes: theory and simulation. Molecular Simulation, 2022, 48, 150-167.	2.0	1
340	Physical properties of SOPC lipid membranes containing cholesterol by molecular dynamics simulation. Advances in Biomembranes and Lipid Self-Assembly, 2021, , 1-30.	0.6	3

#	Article	IF	CITATIONS
341	Probing Liquid-Ordered and Disordered Phases in Lipid Model Membranes: A Combined Theoretical and Spectroscopic Study of a Fluorescent Molecular Rotor. Journal of Physical Chemistry B, 2022, , .	2.6	0
342	Changes in fluidity of the <i>E.Âcoli</i> outer membrane in response to temperature, divalent cations and polymyxinâ€B show two different mechanisms of membrane fluidity adaptation. FEBS Journal, 2022, 289, 3550-3567.	4.7	5
343	Occlusion of the human serotonin transporter is mediated by serotonin-induced conformational changes in the bundleÂdomain. Journal of Biological Chemistry, 2022, 298, 101613.	3.4	13
344	Rotational decoupling between the hydrophilic and hydrophobic regions in lipid membranes. Biophysical Journal, 2022, 121, 68-78.	0.5	13
345	Advanced characterizations for stabilization/solidification technologies., 2022,, 497-516.		1
346	Sodium Binding Stabilizes the Outward-Open State of SERT by Limiting Bundle Domain Motions. Cells, 2022, 11, 255.	4.1	7
347	Spontaneous local membrane curvature induced by transmembrane proteins. Biophysical Journal, 2022, 121, 671-683.	0.5	15
348	H1 helix of colicin U causes phospholipid membrane permeation. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183866.	2.6	1
349	Molecular basis for redox control by the human cystine/glutamate antiporter system xcâ^'. Nature Communications, 2021, 12, 7147.	12.8	65
350	Spliced isoforms of the cardiac Nav1.5 channel modify channel activation by distinct structural mechanisms. Journal of General Physiology, 2022, 154, .	1.9	1
351	Molecular Dynamics Simulations of Transmembrane Cyclic Peptide Nanotubes Using Classical Force Fields, Hydrogen Mass Repartitioning, and Hydrogen Isotope Exchange Methods: A Critical Comparison. International Journal of Molecular Sciences, 2022, 23, 3158.	4.1	1
352	Membrane contact probability: An essential and predictive character for the structural and functional studies of membrane proteins. PLoS Computational Biology, 2022, 18, e1009972.	3.2	8
353	The lung surfactant activity probed with molecular dynamics simulations. Advances in Colloid and Interface Science, 2022, 304, 102659.	14.7	6
354	Migration of 4-Hexylresorcinol Through Escherichia coli Cell Membranes. Russian Journal of Physical Chemistry B, 2021, 15, 1026-1035.	1.3	2
355	Thermal Unfolding of the Human Serotonin Transporter: Differential Effect by Stabilizing and Destabilizing Mutations and Cholesterol on Thermodynamic and Kinetic Stability. Molecular Pharmacology, 2022, 101, 95-105.	2.3	9
356	All-Atom Modeling of Complex Cellular Membranes. Langmuir, 2022, 38, 3-17.	3.5	6
357	Atomistic mechanisms of human TRPA1 activation by electrophile irritants through molecular dynamics simulation and mutual information analysis. Scientific Reports, 2022, 12, 4929.	3.3	8
358	Interaction analyses of hTAAR1 and mTAAR1 with antagonist EPPTB. Life Sciences, 2022, 300, 120553.	4.3	6

#	Article	IF	CITATIONS
359	Understanding the different cross-membrane transport kinetics of two charged molecules on the DOPG lipid surface with second harmonic generation and MD simulation. Soft Matter, 2022, 18, 4305-4314.	2.7	4
360	Ultralong recovery time in nanosecond electroporation systems enabled by orientational-disordering processes. Nanoscale, 2022, 14, 7934-7942.	5.6	4
361	Ultrasensitive Detection of MCF-7 Cells with a Carbon Nanotube-Based Optoelectronic-Pulse Sensor Framework. ACS Omega, 2022, 7, 18459-18470.	3.5	3
362	Allosteric Binding Sites of $\hat{Al^2}$ Peptides on the Acetylcholine Synthesizing Enzyme ChAT as Deduced by In Silico Molecular Modeling. International Journal of Molecular Sciences, 2022, 23, 6073.	4.1	21
363	Binding of DEP domain to phospholipid membranes: More than just electrostatics. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183983.	2.6	1
364	Probing effects of the SARS-CoV-2 E protein on membrane curvature and intracellular calcium. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183994.	2.6	11
366	Impact of A2T and D23N mutations on C99 homodimer conformations. Journal of Chemical Physics, 2022, 157, 085102.	3.0	0
367	Structural basis for cannabinoid-induced potentiation of alpha1-glycine receptors in lipid nanodiscs. Nature Communications, 2022, 13, .	12.8	3
368	The clinical drug candidate anle 138b binds in a cavity of lipidic \hat{l}_{\pm} -synuclein fibrils. Nature Communications, 2022, 13, .	12.8	17
369	Lipid-A-dependent and cholesterol-dependent dynamics properties of liposomes from gram-negative bacteria in ESKAPE. Scientific Reports, 2022, 12, .	3.3	2
370	Plasma membrane lipid bilayer is druggable: Selective delivery of gemcitabine-squalene nano-medicine to cancer cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2023, 1869, 166614.	3.8	3
371	SARS-CoV-2 accessory protein 7b forms homotetramers in detergent. Virology Journal, 2022, 19, .	3.4	1
372	Membrane Lipid Reshaping Underlies Oxidative Stress Sensing by the Mitochondrial Proteins UCP1 and ANT1. Antioxidants, 2022, 11, 2314.	5.1	2
373	Unraveling the Abnormal Molecular Mechanism of Suicide Inhibition of Cytochrome P450 3A4. Journal of Chemical Information and Modeling, 2022, 62, 6172-6181.	5.4	1
374	Citrus, Milk Thistle, and Propolis Extracts Improved the Intestinal Permeability of Curcuminoids from Turmeric Extractâ" € an <i>In Silico</i> and <i>In Vitro</i> Permeability Caco-2 Cells Approach. ACS Food Science & Technology, 2023, 3, 113-122.	2.7	2
375	Physical properties of phospholipids at low temperatures through Slipid force field. Journal of Physics: Conference Series, 2023, 2436, 012025.	0.4	1
377	Molecular dynamics simulations reveal the importance of amyloid-beta oligomer \hat{l}^2 -sheet edge conformations in membrane permeabilization. Journal of Biological Chemistry, 2023, 299, 103034.	3.4	6
378	Investigation of the Impact of Lipid Acyl Chain Saturation on Fusion Peptide Interactions with Lipid Bilayers. Biophysica, 2023, 3, 121-138.	1.4	2

#	Article	IF	CITATIONS
379	The architecture of transmembrane and cytoplasmic juxtamembrane regions of Toll-like receptors. Nature Communications, 2023, 14 , .	12.8	5
380	Ultraviolet irradiation confers titanium oxide oleophilicity. Journal of Materials Science, 2023, 58, 5258-5268.	3.7	0
382	Functional insight into <i>Cordyceps militaris</i> sugar transporters by structure modeling, network analysis and allosteric regulation. Physical Chemistry Chemical Physics, 2023, 25, 14311-14323.	2.8	2
383	Structure of human CALHM1 reveals key locations for channel regulation and blockade by ruthenium red. Nature Communications, 2023, 14, .	12.8	3
385	Aggregation and partitioning of amyloid peptide fragments in the presence of a lipid bilayer: A coarse grained molecular dynamics study. Biophysical Chemistry, 2023, 300, 107051.	2.8	1
386	Application of computational approaches in biomembranes: From structure to function. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, 13, .	14.6	2
389	Mycolactone A vs. B: Multiscale Simulations Reveal the Roles of Localization and Association in Isomer-Specific Toxicity. Toxins, 2023, 15, 486.	3.4	0
390	Quantitative Comparison against Experiments Reveals Imperfections in Force Fields' Descriptions of POPC–Cholesterol Interactions. Journal of Chemical Theory and Computation, 2023, 19, 6342-6352.	5.3	5
391	Cholesterol catalyzes unfolding in membrane-inserted motifs of the pore forming protein cytolysinÂA. Biophysical Journal, 2023, 122, 4068-4081.	0.5	1
392	Martini-3 Coarse-Grained Models for the Bacterial Lipopolysaccharide Outer Membrane of <i>Escherichia coli</i>)i>. Journal of Chemical Theory and Computation, 2024, 20, 1704-1716.	5.3	3
393	Exploring Fullerenol-C60(OH)24 interactions with lipid bilayers: Molecular dynamics study of agglomeration and surface deposition. Journal of Molecular Liquids, 2023, 391, 123205.	4.9	0
394	Computational biology-based study of the molecular mechanism of spermidine amelioration of acute pancreatitis. Molecular Diversity, 0 , , .	3.9	1
395	Puncturing lipid membranes: onset of pore formation and the role of hydrogen bonding in the presence of flavonoids. Journal of Lipid Research, 2023, 64, 100430.	4.2	0
397	Molecular dynamics study on micelle-small molecule interactions: developing a strategy for an extensive comparison. Journal of Computer-Aided Molecular Design, 2024, 38, .	2.9	0
398	Decrypting Allostery in Membrane-Bound K-Ras4B Using Complementary <i>In Silico</i> Approaches Based on Unbiased Molecular Dynamics Simulations. Journal of the American Chemical Society, 0, , .	13.7	0
399	Mechanism of water transport through the lipid membrane with trichogin GA IV. Molecular dynamics study. Journal of Molecular Liquids, 2024, 396, 123948.	4.9	О
400	Molecular Modeling of the Fluorination Effect on the Penetration of Nanoparticles across Lipid Bilayers. Langmuir, 2024, 40, 1295-1304.	3.5	0
401	Charge of a transmembrane peptide alters its interaction with lipid membranes. Colloids and Surfaces B: Biointerfaces, 2024, 235, 113765.	5.0	О

#	Article	IF	CITATIONS
402	Ligand coupling mechanism of the human serotonin transporter differentiates substrates from inhibitors. Nature Communications, 2024, 15 , .	12.8	0
403	Lightâ€Activated Synthetic Rotary Motors in Lipid Membranes Induce Shape Changes Through Membrane Expansion. Advanced Materials, 2024, 36, .	21.0	0
404	Molecular Modeling of the Adsorption of an Egg Yolk Protein on a Water–Oil Interface. Langmuir, 0, , .	3.5	1
405	Molecular Dynamics Investigation of Lipid-Specific Interactions with a Fusion Peptide. Biomolecules, 2024, 14, 285.	4.0	0
406	Structure of the Bacterial Cell Envelope and Interactions with Antimicrobials: Insights from Molecular Dynamics Simulations. Langmuir, 2024, 40, 7791-7811.	3.5	0
407	The mutual and dynamic role of TSPO and ligands in their binding process: An example with PK-11195. Biochimie, 2024, , .	2.6	0
408	The polybasic region in Gαi proteins: Relevant or not? Insights from Gαi3 research. Cellular Signalling, 2024, 118, 111138.	3.6	0