An Extension and Further Validation of an All-Atomisti Membranes

Journal of Chemical Theory and Computation 8, 2938-2948
DOI: $10.1021 / c t 300342 n$

Citation Report

\#	Article	IF	Citations
11	Molecular Dynamics Simulations of a Characteristic DPC Micelle in Water. Journal of Chemical Theory and Computation, 2012, 8, 4610-4623.	2.3	62
12	Computer simulation of lipid membranes: Methodology and achievements. Polymer Science - Series C, 2013, 55, 162-180.	0.8	26
13	Another Piece of the Membrane Puzzle: Extending Slipids Further. Journal of Chemical Theory and Computation, 2013, 9, 774-784.	2.3	237
14	Biomolecular Simulations with the Transferable Potentials for Phase Equilibria: Extension to Phospholipids. Journal of Physical Chemistry B, 2013, 117, 9910-9921.	1.2	14
15	Implicit inclusion of atomic polarization in modeling of partitioning between water and lipid bilayers. Physical Chemistry Chemical Physics, 2013, 15, 4677.	1.3	43
16	Comparing Simulations of Lipid Bilayers to Scattering Data: The GROMOS 43A1-S3 Force Field. Journal of Physical Chemistry B, 2013, 117, 5065-5072.	1.2	47
17	On Calculation of the Electrostatic Potential of a Phosphatidylinositol Phosphate-Containing Phosphatidylcholine Lipid Membrane Accounting for Membrane Dynamics. PLoS ONE, 2014, 9, el04778.	1.1	3
18	An Annular Lipid Belt Is Essential for Allosteric Coupling and Viral Inhibition of the Antigen Translocation Complex TAP (Transporter Associated with Antigen Processing). Journal of Biological Chemistry, 2014, 289, 33098-33108.	1.6	27
19	Molecular simulation of ibuprofen passing across POPC membrane. Journal of Theoretical and Computational Chemistry, 2014, 13, 1450033.	1.8	14
20	Relevant Interactions of Antimicrobial Iron Chelators and Membrane Models Revealed by Nuclear Magnetic Resonance and Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2014, 118, 14590-14601.	1.2	11

W246^{6.48} Opens a Gate for a Continuous Intrinsic Water Pathway during Activation of
the Adenosineâ $€ . . . A<$ sub> $2 A</$ sub> Receptor. Angewandte Chemie - International Edition, 2015, 54, 556-559.
7.2
23 Molecular Dynamics Simulation of Membrane Proteins. Advances in Experimental Medicine and
Biology, 2014, 805, 305-329.Magnetic Resonance and Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2014, 118,1.21114590-14601.
The challenges of understanding glycolipid functions: An open outlook based on molecular1.235simulations. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 1130-1145.
A new AMBER-compatible force field parameter set for alkanes. Journal of Molecular Modeling, 2014, $26 \quad 20,2143$. 19MemBuilder: a web-based graphical interface to build heterogeneously mixed membrane bilayers for1.854the GROMACS biomolecular simulation program. Bioinformatics, 2014, 30, 439-441.
1.5 159Cholesterol, sphingolipids, and glycolipids: What do we know about their role in raft-likemembranes?. Chemistry and Physics of Lipids, 2014, 184, 82-104.
Disorder in Cholesterol-Binding Functionality of CRAC Peptides: A Molecular Dynamics Study. Journal 1.2 31

\#	Article	IF	Citations
31	Atomistic mechanisms of huntingtin Nâ€terminal fragment insertion on a phospholipid bilayer revealed by molecular dynamics simulations. Proteins: Structure, Function and Bioinformatics, 2014, 82, 1409-1427.	1.5	16
32	Assembly and stability of Salmonella enterica ser. Typhi ToIC protein in POPE and DMPE. Journal of Biological Physics, 2014, 40, 387-400.	0.7	4
33	HIV-1 Tat membrane interactions probed using X-ray and neutron scattering, CD spectroscopy and MD simulations. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 3078-3087.	1.4	26
34	Activation of G-protein-coupled receptors correlates with the formation of a continuous internal water pathway. Nature Communications, 2014, 5, 4733.	5.8	197
35	Lipid14: The Amber Lipid Force Field. Journal of Chemical Theory and Computation, 2014, 10, 865-879.	2.3	1,068
36	CHARMM36 United Atom Chain Model for Lipids and Surfactants. Journal of Physical Chemistry B, 2014, 118, 547-556.	1.2	143
37	Refined OPLS All-Atom Force Field for Saturated Phosphatidylcholine Bilayers at Full Hydration. Journal of Physical Chemistry B, 2014, 118, 4571-4581.	1.2	139
38	Microsecond Molecular Dynamics Simulations of Lipid Mixing. Langmuir, 2014, 30, 11993-12001.	1.6	101
39	Structural Dynamics and Conformational Equilibria of SERCA Regulatory Proteins in Membranes by Solid-State NMR Restrained Simulations. Biophysical Journal, 2014, 106, 2566-2576.	0.2	20
40	Biomembrane simulations of 12 lipid types using the general amber force field in a tensionless ensemble. Journal of Biomolecular Structure and Dynamics, 2014, 32, 88-103.	2.0	10
41	Lipid-associated aggregate formation of superoxide dismutase-1 is initiated by membrane-targeting loops. Proteins: Structure, Function and Bioinformatics, 2014, 82, 3194-3209.	1.5	10
42	Unspecific membrane protein-lipid recognition: combination of AFM imaging, force spectroscopy, DSC and FRET measurements. Journal of Molecular Recognition, 2015, 28, 679-686.	1.1	5
43	A coiled coil switch mediates cold sensing by the thermosensory protein <scp>DesK</scp>. Molecular Microbiology, 2015, 98, 258-271.	1.2	50
44	Penetration of HIV-1 Tat47â€" 57 into PC/PE Bilayers Assessed by MD Simulation and X-ray Scattering. Membranes, 2015, 5, 473-494.	1.4	11

\#	Article	IF	Citations
49	Tristearin bilayers: structure of the aqueous interface and stability in the presence of surfactants. RSC Advances, 2015, 5, 49933-49943.	1.7	3
50	Apolipoprotein A-I mimetic peptide 4F blocks sphingomyelinase-induced LDL aggregation. Journal of Lipid Research, 2015, 56, 1206-1221.	2.0	20
51	<i>LipidBuilder:</i>A Framework To Build Realistic Models for Biological Membranes. Journal of Chemical Information and Modeling, 2015, 55, 2491-2499.	2.5	17
52	Interaction of <scp>\|</scp>-Phenylalanine with a Phospholipid Monolayer at the Waterâe"Air Interface. Journal of Physical Chemistry B, 2015, 119, 9038-9048.	1.2	47
53	The effects of globotriaosylceramide tail saturation level on bilayer phases. Soft Matter, 2015, 11, 1352-1361.	1.2	22
54	Evaluating Force Fields for the Computational Prediction of lonized Arginine and Lysine Side-Chains Partitioning into Lipid Bilayers and Octanol. Journal of Chemical Theory and Computation, 2015, 11, 1775-1791.	2.3	34

55 Computational Biochemistry. , 2015, , . 1
56 Biomembranes in atomistic and coarse-grained simulations. Journal of Physics Condensed Matter, 2015,
27,323103 .

$58 \quad$| Spontaneous Adsorption of Coiled-Coil Model Peptides K and E to a Mixed Lipid Bilayer. Journal of |
| :--- |
| Physical Chemistry B, 2015, 119, 4396-4408. |

Ordering in bio-inorganic hybrid nanomaterials probed by in situ scanning transmission X-ray
microscopy. Nanoscale, 2015, 7, 9477-9486.
Ensemble-Based Virtual Screening for Cannabinoid-Like Potentiators of the Human Clycine Receptor $\hat{l} \pm 1$$\quad 2.9 \quad 26$
$61 \quad$ Liquid but Durable: Molecular Dynamics Simula 1.6 42

Visualizing KcsA Conformational Changes upon Ion Binding by Infrared Spectroscopy and Atomistic Modeling. Journal of Physical Chemistry B, 2015, 119, 5824-5831.

Empirical force field for cisplatin based on quantum dynamics data: case study of new parameterization scheme for coordination compounds. Journal of Molecular Modeling, 2015, 21, 268.

\#	Article	IF	Citations
67	Direct-Space Corrections Enable Fast and Accurate Lorentzâf"Berthelot Combination Rule Lennard-Jones Lattice Summation. Journal of Chemical Theory and Computation, 2015, 11, 5737-5746.	2.3	112
68	Can Specific Protein-Lipid Interactions Stabilize an Active State of the Beta 2 Adrenergic Receptor?. Biophysical Journal, 2015, 109, 1652-1662.	0.2	58
69	Synaptobrevin Transmembrane Domain Dimerization Studied by Multiscale Molecular Dynamics Simulations. Biophysical Journal, 2015, 109, 760-771.	0.2	22
70	Probing the importance of lipid diversity in cell membranes via molecular simulation. Chemistry and Physics of Lipids, 2015, 192, 12-22.	1.5	56
71	A Simple and Transferable All-Atom/Coarse-Grained Hybrid Model to Study Membrane Processes. Journal of Chemical Theory and Computation, 2015, 11, 4749-4759.	2.3	32
72	Molecular Models of Nanodiscs. Journal of Chemical Theory and Computation, 2015, 11, 4923-4932.	2.3	33
73	Conformational Changes of the Antibacterial Peptide ATP Binding Cassette Transporter McjD Revealed by Molecular Dynamics Simulations. Biochemistry, 2015, 54, 5989-5998.	1.2	21
74	Molecular Structures of Fluid Phosphatidylethanolamine Bilayers Obtained from Simulation-to-Experiment Comparisons and Experimental Scattering Density Profiles. Journal of Physical Chemistry B, 2015, 119, 1947-1956.	1.2	81
76	Effects of cholesterol concentration on the interaction of cytarabine with lipid membranes: a molecular dynamics simulation study. Journal of Biomolecular Structure and Dynamics, 2015, 33, 1254-1268.	2.0	14
77	Binding Orientations and Lipid Interactions of Human Amylin at Zwitterionic and Anionic Lipid Bilayers. Journal of Diabetes Research, 2016, 2016, 1-13.	1.0	9
78	Characteristics of Sucrose Transport through the Sucrose-Specific Porin ScrY Studied by Molecular Dynamics Simulations. Frontiers in Bioengineering and Biotechnology, 2016, 4, 9.	2.0	12
79	The Molecular Switching Mechanism at the Conserved D(E)RY Motif in Class-A GPCRs. Biophysical Journal, 2016, 111, 79-89.	0.2	19
80	Conformational Dynamics and Proteinấ"Substrate Interaction of ABC Transporter BtuCD at the Occluded State Revealed by Molecular Dynamics Simulations. Biochemistry, 2016, 55, 6897-6907.	1.2	9
81	Molecular electrometer and binding of cations to phospholipid bilayers. Physical Chemistry Chemical Physics, 2016, 18, 32560-32569.	1.3	78

Physics, 2016, 18, 32560-32569.

Extension of the Slipids Force Field to Polyunsaturated Lipids. Journal of Physical Chemistry B, 2016, 120, 12826-12842.
1.2

39

A molecular insight into the electro-transfer of small molecules through electropores driven by
electric fields. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2278-2289.
1.4

66

Model parameters for simulation of physiological lipids. Journal of Computational Chemistry, 2016, 37,
1.5

36

\＃	Article	IF	Citations
86	Sphingolipids contribute to acetic acid resistance in 〈i〉Zygosaccharomyces bailii＜／i〉．Biotechnology and Bioengineering，2016，113，744－753．	1.7	54
87	Permeability across lipid membranes．Biochimica Et Biophysica Acta－Biomembranes，2016，1858， 2254－2265．	1.4	215
88	New insight into probe－location dependent polarity and hydration at lipid／water interfaces： comparison between gel－and fluid－phases of lipid bilayers．Physical Chemistry Chemical Physics，2016， 18，24185－24197．	1.3	14
89	Molecular simulation study on concentration effects of rofecoxib with POPC bilayer．Journal of Molecular Graphics and Modelling，2016，70，94－99．	1.3	7
90	Free energy of adsorption of supported lipid bilayers from molecular dynamics simulation．Chemical Physics Letters，2016，664，199－204．	1.2	18
91	Mixed DPPC／POPC Monolayers：All－atom Molecular Dynamics Simulations and Langmuir Monolayer Experiments．Biochimica Et Biophysica Acta－Biomembranes，2016，1858，3120－3130．	1.4	42
92	Adsorption of Synthetic Cationic Polymers on Model Phospholipid Membranes：Insight from Atomic－Scale Molecular Dynamics Simulations．Langmuir，2016，32，10402－10414．	1.6	41
93	Combining Immune Checkpoint Inhibitors and Kinase－Inhibiting Supramolecular Therapeutics for Enhanced Anticancer Efficacy．ACS Nano，2016，10，9227－9242．	7.3	36

94	Computer Simulation and Modeling Techniques in the Study of Nanoparticle－Membrane Interactions． Annual Reports in Computational Chemistry，2016，，159－200．	0.9	4
95	Diphenylhexatriene membrane probes DPH and TMA－DPH：A comparative molecular dynamics simulation study．Biochimica Et Biophysica Acta－Biomembranes，2016，1858，2647－2661．	1.4	87

Polyarginine Interacts More Strongly and Cooperatively than Polylysine with Phospholipid Bilayers．	1.2	76

Hydration Dynamics of a Peripheral Membrane Protein．Journal of the American Chemical Society，2016，
138，11526－11535．
Partitioning into Colloidal Structures of Fasted State Intestinal Fluid Studied by Molecular Dynamics
$99 \quad$ Simulations．Langmuir，2016，32，12732－12740．
100 Binding Characteristics of Sphingosine－1－Phosphate to ApoM hints to Assisted Release Mechanism via
$100 \begin{aligned} & \text { Binding Characteristics of Sphingosine－1－Phosphate to ApoM hints to Assisted Release Mechanism via } \\ & \text { the ApoM Calyx－Opening．Scientific Reports，2016，6，} 30655 \text { ．}\end{aligned}$
1.6

19
1.6

21

An extensive simulation study of lipid bilayer properties with different head groups，acyl chain
lengths，and chain saturations．Biochimica Et Biophysica Acta－Biomembranes，2016，1858，3093－3104．
1.4

51

Acetylation within the First 17 Residues of Huntingtin Exon 1 Alters Aggregation and Lipid Binding．
Biophysical Journal，2016，111，349－362．
0.2

55

\#	Article	IF	Citation
104	Algorithm for Designing Nanoscale Supramolecular Therapeutics with Increased Anticancer Efficacy. ACS Nano, 2016, 10, 8154-8168.	7.3	18
105	The Lipid Bilayer Provides a Site for Cortisone Crystallization at High Cortisone Concentrations. Scientific Reports, 2016, 6, 22425.	1.6	23
106	A peptide from human $\hat{1}^{2}$ thymosin as a platform for the development of new anti-biofilm agents for Staphylococcus spp. and Pseudomonas aeruginosa. World Journal of Microbiology and Biotechnology, 2016, 32, 124.	1.7	14
107	Concentration effect of cimetidine with POPC bilayer: a molecular dynamics simulation study. Molecular Simulation, 2016, 42, 1292-1297.	0.9	7
108	Sensing membrane thickness: Lessons learned from cold stress. Biochimica Et Biophysica Acta Molecular and Cell Biology of Lipids, 2016, 1861, 837-846.	1.2	35
109	Effects of Al <sup $>3+</$ sup $>$ on Phosphocholine and Phosphoglycerol Containing Solid Supported Lipid Bilayers. Langmuir, 2016, 32, 1771-1781.	1.6	5
110	Force Field Development for Lipid Membrane Simulations. Biochimica Et Biophysica Acta Biomembranes, 2016, 1858, 2483-2497.	1.4	80
111	CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. Journal of Chemical Theory and Computation, 2016, 12, 405-413.	2.3	2,567
112	Fluorescence of nitrobenzoxadiazole (NBD)-labeled lipids in model membranes is connected not to lipid mobility but to probe location. Physical Chemistry Chemical Physics, 2016, 18, 7042-7054.	1.3	55
113	Transmembrane Potential Modeling: Comparison between Methods of Constant Electric Field and Ion Imbalance. Journal of Chemical Theory and Computation, 2016, 12, 2418-2425.	2.3	34
114	Validating lipid force fields against experimental data: Progress, challenges and perspectives. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1556-1565.	1.4	69
115	Allostery in BAX protein activation. Journal of Biomolecular Structure and Dynamics, 2016, 34, 2469-2480.	2.0	11
116	Interplay between Two Allosteric Sites and Their Influence on Agonist Binding in Human î1/4 Opioid Receptor. Journal of Chemical Information and Modeling, 2016, 56, 563-570.	2.5	35
117	Simulation of lipid bilayer self-assembly using all-atom lipid force fields. Physical Chemistry Chemical Physics, 2016, 18, 10573-10584.	1.3	44
118	Efficient preparation and analysis of membrane and membrane protein systems. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2468-2482.	1.4	33
119	Membrane pore formation in atomistic and coarse-grained simulations. Biochimica Et Biophysica Acta Biomembranes, 2016, 1858, 2266-2277.	1.4	64
120	Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1635-1651.	1.4	111
121	Molecular principle of the cyclin-dependent kinase selectivity of 4-(thiazol-5-yl)-2-(phenylamino) pyrimidine-5-carbonitrile derivatives revealed by molecular modeling studies. Physical Chemistry Chemical Physics, 2016, 18, 2034-2046.	1.3	21

\#	Article	IF	Citations
122	Molecular dynamics simulation of six 1 ²-blocker drugs passing across POPC bilayer. Molecular Simulation, 2016, 42, 56-63.	0.9	20
123	Increased Binding of Calcium Ions at Positively Curved Phospholipid Membranes. Journal of Physical Chemistry Letters, 2017, 8, 518-523.	2.1	27
124	An averaged polarizable potential for multiscale modeling in phospholipid membranes. Journal of Computational Chemistry, 2017, 38, 601-611.	1.5	12
125	The mechanism of aquaporin inhibition by gold compounds elucidated by biophysical and computational methods. Chemical Communications, 2017, 53, 3830-3833.	2.2	50
126	Maltose-binding protein effectively stabilizes the partially closed conformation of the ATP-binding cassette transporter MalFGK₂. Physical Chemistry Chemical Physics, 2017, 19, 9366-9373.	1.3	8
127	The Startle Disease Mutation E103K Impairs Activation of Human Homomeric $̂ \neq 1$ Clycine Receptors by Disrupting an Intersubunit Salt Bridge across the Agonist Binding Site. Journal of Biological Chemistry, 2017, 292, 5031-5042.	1.6	8
128	Revisiting Partition in Hydrated Bilayer Systems. Journal of Chemical Theory and Computation, 2017, 13, 2290-2299.	2.3	13
129	Antioxidant and Membrane Binding Properties of Serotonin Protect Lipids from Oxidation. Biophysical Journal, 2017, 112, 1863-1873.	0.2	66
130	A novel pathway for amyloids self-assembly in aggregates at nanomolar concentration mediated by the interaction with surfaces. Scientific Reports, 2017, 7, 45592.	1.6	44
131	Testing High Concentrations of Membrane Active Antibiotic Chlorhexidine Via Computational Titration and Calorimetry. Journal of Physical Chemistry B, 2017, 121, 4657-4668.	1.2	8

135	Exploring Fluorescent Dyes at Biomimetic Interfaces with Second Harmonic Generation and Molecular Dynamics. Langmuir, 2017, 33, 3373-3383.	1.6	9
136	Structures of single, double and triple layers of lipids adsorbed on graphene: Insights from all-atom molecular dynamics simulations. Carbon, 2017, 118, 358-369.	5.4	9
137	Structural heterogeneity of the $\hat{1} 1 / 4$-opioid receptorâ $\epsilon^{T_{S}}$ S conformational ensemble in the apo state. Scientific Reports, 2017, 7, 45761.	1.6	23
138	Critical Comparison of Biomembrane Force Fields: Proteinấ"Lipid Interactions at the Membrane Interface. Journal of Chemical Theory and Computation, 2017, 13, 2310-2321.	2.3	62
139	Diffusion of the small, very polar, drug piracetam through a lipid bilayer: an MD simulation study. Theoretical Chemistry Accounts, 2017, 136, 1.	0.5	20

$147 \begin{aligned} & \text { Interplay Between Membrane Composition and } \\ & \text { of Physical Chemistry B, 2017, 121, 8661-8668. }\end{aligned}$
149 On the Calculation of Acyl Chain Order Paramete$2.3 \quad 92$
Drude Polarizable Force Field for Molecular Dynamics Simulations of Saturated and Unsaturated Zwitterionic Lipids. Journal of Chemical Theory and Computation, 2017, 13, 4535-4552. 2.3 90

179

Optimal Hydrophobicity and Reorientation of Amphiphilic Peptides Translocating through Membrane.
0.2

Biophysical Journal, 2018, 115, 1045-1054.

Glyceryl Monostearate: Probing the Self Assembly of a Lipid Amenable To Surface Modification for
181 Structure of the mechanosensitive OSCA channels. Nature Structural and Molecular Biology, 2018,
$25,850-858$.
Molecular dynamics modeling of $\langle\mathrm{i}\rangle$ Pseudomonas aeruginosa</i>outer membranes. Physical Chemistren
Chemical Physics, 2018, 20, 23635-23648.

$184 \quad$| Faster Simulations with a 5 fs Time Step for Lipids in the CHARMM Force Field. Journal of Chemical |
| :--- |
| Theory and Computation, 2018, 14, 3342-3350. |

194704.

Cholesterol promotes Cytolysin A activity by stabilizing the intermediates during pore formation.
Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7323-E7330.
3.3

48

Mechanism of Long-Chain Free Fatty Acid Protonation at the Membrane-Water Interface. Biophysical
Journal, 2018, 114, 2142-2151.
Vibrational spectroscopy combined with molecular dynamics simulations as a tool for studying
190 behavior of reactive aldehydes inserted in phospholipid bilayers. Chemistry and Physics of Lipids, 2019,
1.5 225, 104793.

191 Force Field Comparison of GM1 in a DOPC Bilayer Validated with AFM and FRET Experiments. Journal of Physical Chemistry B, 2019, 123, 7504-7517.

Fat SIRAH: Coarse-Grained Phospholipids To Explore Membraneâ€"Protein Dynamics. Journal of Chemical Theory and Computation, 2019, 15, 5674-5688.

\#	Article	IF	Citations
194	Compatibility of advanced water models with a united atom model of lipid in lipid bilayer simulation. Journal of Chemical Physics, 2019, 151, .	1.2	14
195	Temperature Dependence of the Structure and Dynamics of a Dye-Labeled Lipid in a Planar Phospholipid Bilayer: A Computational Study. Journal of Membrane Biology, 2019, 252, 227-240.	1.0	7
196	Implicit solvent systematic coarse-graining of dioleoylphosphatidylethanolamine lipids: From the inverted hexagonal to the bilayer structure. PLoS ONE, 2019, 14, e0214673.	1.1	4
197	All-Factor Analysis and Correlations on the Transmembrane Process for Arginine-Rich Cell-Penetrating Peptides. Langmuir, 2019, 35, 9286-9296.	1.6	12
198	Accelerating Membrane Simulations with Hydrogen Mass Repartitioning. Journal of Chemical Theory and Computation, 2019, 15, 4673-4686.	2.3	85
199	Hopanoids Like Sterols Form Compact but Fluid Films. Langmuir, 2019, 35, 9848-9857.	1.6	16
200	Free energy of adhesion of lipid bilayers on titania surfaces. Journal of Chemical Physics, 2019, 151, 134707.	1.2	6
201	Magainin 2 and PGLa in Bacterial Membrane Mimics I: Peptide-Peptide and Lipid-Peptide Interactions. Biophysical Journal, 2019, 117, 1858-1869.	0.2	30
202	Effect of lipid saturation on amyloid-beta peptide partitioning and aggregation in neuronal membranes: molecular dynamics simulations. European Biophysics Journal, 2019, 48, 813-824.	1.2	21
203	Computational Study of the Interaction of a PECylated Hyperbranched Polymer/Doxorubicin Complex with a Bilipid Membrane. Fluids, 2019, 4, 17.	0.8	4
204	Covalent modification of phosphatidylethanolamine by 4-hydroxy-2-nonenal increases sodium permeability across phospholipid bilayer membranes. Free Radical Biology and Medicine, 2019, 143, 433-440.	1.3	13
205	Agonist Selectivity and Ion Permeation in the $\hat{l} \pm 3 \hat{\imath} 24$ Ganglionic Nicotinic Receptor. Neuron, 2019, 104, 501-511.e6.	3.8	131
206	Surface Shear Viscosity and Interleaflet Friction from Nonequilibrium Simulations of Lipid Bilayers. Journal of Chemical Theory and Computation, 2019, 15, 6471-6481.	2.3	27
207	Quantum Mechanical and Molecular Mechanics Modeling of Membrane-Embedded Rhodopsins. Journal of Membrane Biology, 2019, 252, 425-449.	1.0	11

208 Molecular Ordering in Lipid Monolayers: An Atomistic Simulation. Langmuir, 2019, 35, 13782-13790.
1.63

209 Molecular Mechanism of S1P Binding and Activation of the S1P1 Receptor. Journal of Chemical
Information and Modeling, 2019, 59, 4402-4412.
2.5

20

210 Violacein Targets the Cytoplasmic Membrane of Bacteria. ACS Infectious Diseases, 2019, 5, 539-549.
1.8

58

215 | Atomistic Simulations of Membrane lon Channel Conduction, Gating, and Modulation. Chemical |
| :--- |
| Reviews, 2019, 119, 7737-7832. |

Identification of the Initial Steps in Signal Transduction in the $\hat{\imath} \pm 4 \hat{1} 22$ Nicotinic Receptor: Insights from
Equilibrium and Nonequilibrium Simulations. Structure, 2019, 27, 1171-1183.e3.
Structural Insights into the Process of GPCR-G Protein Complex Formation. Cell, 2019, 177,
$1243-1251 . e 12$.

218

Atomistic characterization of collective proteinâ€"waterâ€"membrane dynamics. Physical Chemistry Chemical Physics, 2019, 21, 15958-15965.
219 Imidazole in Aqueous Solution: Hydrogen Bond Interactions and Structural Reorganization with
219 Concentration. Journal of Physical Chemistry B, 2019, 123, 4055-4064.
Hydration-mediated stiffening of collective membrane dynamics by cholesterol. Physical Chemistry Chemical Physics, 2019, 21, 10370-10376. $1.2 \quad 9$
221 Calculation of apparent pKa values of saturated fatty acids with different lengths in DOPC phospholipid bilayers. Physical Chemistry Chemical Physics, 2019, 21, 10052-10060.$1.3 \quad 9$Chasing the Full Free Energy Landscape of Neuroreceptor/Ligand Unbinding by Metadynamics
2.3 53
Simulations. Journal of Chemical Theory and Computation, 2019, 15, 3354-3361. 121
223 Exploring the Dual Interaction of Natural Rhamnolipids with Plant and Fungal Biomimetic Plasma 1.843Does the Lipid Bilayer Orchestrate Access and Binding of Ligands to Transmembrane224 Orthosteric/Allosteric Sites of G Protein-Coupled Receptors?. Molecular Pharmacology, 2019, 96,1.0
527-541.
225 Molecular Dynamic Simulations to Probe Water Permeation Pathways of GPCRs. Methods in
Molecular Biology, 2019, 1947, 21-30.0.40The asymmetry of plasma membranes and their cholesterol content influence the uptake of cisplatin.
1508.Structural Features and Energetics of the Periplasmic Entrance Opening of the Outer Membraneof Chemical Information and Modeling, 2019, 59, 2359-2366.

\#	Article	
230	Membrane charge and lipid packing determine polymyxin-induced membrane damage. Communications Biology, 2019, 2, 67.	CITATIONS
Developing and Testing of Lipid Force Fields with Applications to Modeling Cellular Membranes.		
Chemical Reviews, 2019, 119, 6227-6269.		

238 Modeling Lipid Membranes. , 2019, , 741-759. 0
239 Computational Modeling of Realistic Cell Membranes. Chemical Reviews, 2019, 119, 6184-6226. 23.0 502
240 Cholesterol Flip-Flop in Heterogeneous Membranes. Journal of Chemical Theory and Computation, 2019, 15, 2064-2070. 2.3 62
241 Influence of Bilayer Size and Number in Multi-Bilayer DOPC Simulations at Full and Low Hydration.
Langmuir, 2019, 35, 2399-2411.1.616Molecular mechanisms of allosteric probe dependence in $11 / 4$ opioid receptor. Journal of Biomolecular
$2.0 \quad 12$
Structure and Dynamics, 2019, 37, 36-47.12Morphology and dynamics of domains in ergosterol or cholesterol containing membranes.$243 \begin{aligned} & \text { Morphology and dynamics of domains in ergosterol or cholesterol con } \\ & \text { Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, } 183101 .\end{aligned}$
151.510
A molecular dynamics study proposing the existence of statistical structural heterogeneity due to chain orientation in the POPC-cholesterol bilayer. Biophysical Chemistry, 2020, 257, 106275.Magainin 2 and PGLa in Bacterial Membrane Mimics II: Membrane Fusion and Sponge Phase Formation.0.225
245 Biophysical Journal, 2020, 118, 612-623.A Refined Open State of the Clycine Receptor Obtained via Molecular Dynamics Simulations. Structure,2020, 28, 130-139.e2.

\# Article			
248	Optimization of Slipids Force Field Parameters Describing Headgroups of Phospholipids. Journal of Physical Chemistry B, 2020, 124, 8784-8793.		Structure of the Inhibited State of the Sec Translocon. Molecular Cell, 2020, 79, 406-415.e7.
:---			

Dissecting the Structural Plasticity and Dynamics of Cytochrome P450 2B4 by Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 2020, 60, 5026-5035.

$2.5 \quad 6$
259 Revealing Thermodynamics and Kinetics of Lipid Self-Assembly by Markov State Model Analysis. Journal6.6
261 Flavonol clustering in model lipid membranes: DSC, AFM, force spectroscopy and MD simulations 2.5 7 study. Colloids and Surfaces B: Biointerfaces, 2020, 193, 111147.

Molecular dynamics study of functionally relevant interdomain and active site interactions in the
262 autotransporter esterase EstA from <i>Pseudomonas aeruginosa</i>. Molecular Simulation, 2020, 46,
$0.9 \quad 0$ 743-756.

264 Breakage of Hydrophobic Contacts Limits the Rate of Passive Lipid Exchange between Membranes.
1.2

Journal of Physical Chemistry B, 2020, 124, 5884-5898.
15

Functional impact of the G279S substitution in the adenosine Al-receptor (A1R-G279S), a mutation associated with Parkinson's disease. Molecular Pharmacology, 2020, 98, MOLPHARM-AR-2020-000003.

\# Article			
267	Organic Anion Transporting Polypeptideâ€"Mediated Hepatic Uptake of Clucuronide Metabolites of Androgens. Molecular Pharmacology, 2020, 98, 234-242.		Assessing the DOPC-cholesterol interactions and their influence on fullerene C60 partitioning in
:---			
lipid bilayers. Journal of Molecular Liquids, 2020, 315, 113698.			

Red-shifted tetra-<i>ortho<<i>-halo-azobenzenes for photo-regulated transmembrane anion transport.
Organic and Biomolecular Chemistry, 2021, 19, 9058-9067.
$1.5 \quad 26$

Membrane models for molecular simulations of peripheral membrane proteins. Advances in Physics: X, 2021, 6, 1932589.

The Interplay of Cholesterol and Ligand Binding in hTSPO from Classical Molecular Dynamics

The role of prolines and glycine in the transmembrane domain of LAT. FEBS Journal, 2021, 288, 4039-4052.

\#	Article	IF	Citations
286	Effect of Water Models on Transmembrane Self-Assembled Cyclic Peptide Nanotubes. ACS Nano, 2021, 15, 7053-7064.	7.3	12
289	Structural basis of antifolate recognition and transport by PCFT. Nature, 2021, 595, 130-134.	13.7	36
290	Construction of dimeric hTSPO protein model using homology modeling and molecular dynamics. Journal of Physics: Conference Series, 2021, 1932, 012016.	0.3	1
291	Considerations of Recent All-Atom Lipid Force Field Development. Journal of Physical Chemistry B, 2021, 125, 5676-5682.	1.2	8
292	In silico Exploration of Interactions Between Potential COVID-19 Antiviral Treatments and the Pore of the hERG Potassium Channelâ€"A Drug Antitarget. Frontiers in Cardiovascular Medicine, 2021, 8, 645172.	1.1	4
293	Investigating the Mechanism of Sodium Binding to SERT Using Direct Simulations. Frontiers in Cellular Neuroscience, 2021, 15, 673782.	1.8	9
294	Modulation of Phospholipid Bilayer Properties by Simvastatin. Journal of Physical Chemistry B, 2021, 125, 8406-8418.	1.2	5
295	Transmembrane Self-Assembled Cyclic Peptide Nanotubes Based on Îtâ€Residues and Cyclic l̂'â€Amino Acids: A Computational Study. Frontiers in Chemistry, 2021, 9, 704160.	1.8	3
296	Atomistic Molecular Dynamics Simulations of Lipids Near TiO₂ Nanosurfaces. Journal of Physical Chemistry B, 2021, 125, 8048-8059.	1.2	4
297	A Data-Driven Dimensionality Reduction Approach to Compare and Classify Lipid Force Fields. Journal of Physical Chemistry B, 2021, 125, 7785-7796.	1.2	21

299 Molecular-dynamics-simulation-guided membrane engineering allows the increase of membrane fatty acid chain length in Saccharomyces cerevisiae. Scientific Reports, 2021, 11, 17333.

1.6

3
301 A multiscale approach for bridging the gap between potency, efficacy, and safety of small molecules
directed at membrane proteins. Scientific Reports, 2021, 11, 16580.
1.6 10
$1.3 \quad 7$Alemtuzumab scFv fragments and CD52 interaction study through molecular dynamics simulation and1.37binding free energy. Journal of Molecular Graphics and Modelling, 2021, 107, 107949.
America, 2021, 118,

304 Molecular Simulation Studies on the Interactions of Bilirubin at Different States with a Lipid Bilayer. Langmuir, 2021, 37, 11707-11715.
1.6

4

> 305 Influence of Lipid Bilayer on the GPCR Structure: Comparison of All-Atom Lipid Force Fields. Bulletin of the Chemical Society of Japan, 2021, $94,2569-2574$.

The importance of intramolecular hydrogen bonds on the translocation of the small drug piracetam

[^0]
325 Modeling Lipid Membranes. , 2016, , 1-19.
0

```
328 Computer Modelling of the Lipid Matrix of Biomembranes. Springer Series on Bio- and Neurosystems,
2019, , 331-370.
```

Mechanism of Cell Penetration by Permeabilization of Late Endosomes: Interplay between a
334 Multivalent TAT-Like Cell-Penetrating Peptide and the Lipid Bis(Monoacylglycerol)Phosphate. SSRN
$0.4 \quad 0$ Electronic Journal, 0, , .

337 Coarse-grained implicit solvent lipid force field with a compatible resolution to the $\mathrm{C} \hat{\mathrm{I}} \pm$ protein
$1.2 \quad 7$
representation. Journal of Chemical Physics, 2020, 153, 205101.

Predicting nanoparticle uptake by biological membranes: theory and simulation. Molecular
Simulation, 2022, 48, 150-167.

Probing Liquid-Ordered and Disordered Phases in Lipid Model Membranes: A Combined Theoretical and Spectroscopic Study of a Fluorescent Molecular Rotor. Journal of Physical Chemistry B, 2022, , .

Changes in fluidity of the <i>E.Âcoli<|i> outer membrane in response to temperature, divalent cations
342 and polymyxinâ€B show two different mechanisms of membrane fluidity adaptation. FEBS Journal, 2022,
2.2

5 289, 3550-3567.

343 Occlusion of the human serotonin transporter is mediated by serotonin-induced conformational
1.6

13 changes in the bundleÂdomain. Journal of Biological Chemistry, 2022, 298, 101613.

344 Rotational decoupling between the hydrophilic and hydrophobic regions in lipid membranes. Biophysical Journal, 2022, 121, 68-78.
0.2

13

345 Advanced characterizations for stabilization/solidification technologies., 2022, , 497-516.

346	Sodium Binding Stabilizes the Outward-Open State of SERT by Limiting Bundle Domain Motions. Cells, $2022,11,255$.

348 H1 helix of colicin U causes phospholipid membrane permeation. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183866.
350 Spliced isoforms of the cardiac Nav1.5 channel modify channel activation by distinct structural mechanisms. Journal of General Physiology, 2022, 154, .

The lung surfactant activity probed with molecular dynamics simulations. Advances in Colloid and

Understanding the different cross-membrane transport kinetics of two charged molecules on the
359 DOPG lipid surface with second harmonic generation and MD simulation. Soft Matter, 2022, 18,
Ultralong recovery time in nanosecond electroporation systems enabled by orientational-disordering
processes. Nanoscale, 2022, 14, 7934-7942.

$361 \quad$| Ultrasensitive Detection of MCF-7 Cells with a Carbon Nanotube-Based Optoelectronic-Pulse Sensor |
| :--- |
| Framework. ACS Omega, 2022, 7, 18459-18470. |

364	Probing effects of the SARS-CoV-2 E protein on membrane curvature and intracellular calcium. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183994.
366	Impact of A2T and D23N mutations on C99 homodimer conformations. Journal of Chemical Physics, 2022, 157, 085102.
367	Structural basis for cannabinoid-induced potentiation of alphal-glycine receptors in lipid nanodiscs. Nature Communications, 2022, 13, .
368	The clinical drug candidate anle138b binds in a cavity of lipidic $\mathfrak{l} \pm-s y n u c l e i n ~ f i b r i l s . ~ N a t u r e ~$ Communications, 2022, 13, .
369	Lipid-A-dependent and cholesterol-dependent dynamics properties of liposomes from gram-negative bacteria in ESKAPE. Scientific Reports, 2022, 12, .

Plasma membrane lipid bilayer is druggable: Selective delivery of gemcitabine-squalene nano-medicine
1.8

3

Citrus, Milk Thistle, and Propolis Extracts Improved the Intestinal Permeability of Curcuminoids from
374 Turmeric Extractâ" $€$ an $\langle\mathrm{i}\rangle \ln$ Silico</i> and $\langle\mathrm{i}\rangle \ln$ Vitro</i> Permeability Caco-2 Cells Approach. ACS Food

The architecture of transmembrane and cytoplasmic juxtamembrane regions of Toll-like receptors. Nature Communications, 2023, 14, .

[^0]: 308Computer Simulations of Phase Separation in Lipid Bilayers and Monolayers. Methods in MolecularBiology, 2015, 1232, 307-322.

