Δ⁹â€Tetrahydrocannabinol and <i>N</i>â GPR18 receptors and induce migration in human endon

British Journal of Pharmacology 165, 2414-2424 DOI: 10.1111/j.1476-5381.2011.01497.x

Citation Report

#	Article	IF	CITATIONS
1	Cortisolâ€mediated adhesion of synovial fibroblasts is dependent on the degradation of anandamide and activation of the endocannabinoid system. Arthritis and Rheumatism, 2012, 64, 3867-3876.	6.7	23
2	Cannabinoid receptors: nomenclature and pharmacological principles. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2012, 38, 4-15.	2.5	139
3	So what do we call GPR18 now?. British Journal of Pharmacology, 2012, 165, 2411-2413.	2.7	27
4	N-arachidonoyl glycine induces macrophage apoptosis via GPR18. Biochemical and Biophysical Research Communications, 2012, 418, 366-371.	1.0	60
5	siRNA knockdown of GPR18 receptors in BV-2 microglia attenuates N -arachidonoyl glycine-induced cell migration. Journal of Molecular Signaling, 2012, 7, 10.	0.5	43
6	GPR18 in microglia: implications for the CNS and endocannabinoid system signalling. British Journal of Pharmacology, 2012, 167, 1575-1582.	2.7	64
7	2012 cannabinoid themed section. British Journal of Pharmacology, 2012, 167, 1573-1574.	2.7	4
8	A potential role for GPR55 in gastrointestinal functions. Current Opinion in Pharmacology, 2012, 12, 653-658.	1.7	50
9	Cannabinoid Signaling Through Non-CB1R/Non-CB2R Targets in Microglia. , 2013, , 143-171.		6
10	Cannabinoid Receptors and Cholecystokinin in Feeding Inhibition. Vitamins and Hormones, 2013, 92, 165-196.	0.7	13
11	Characterization of Cannabinoid Receptors. Current Protocols in Pharmacology, 2013, 63, Unit 1.26	4.0	0
12	N-Arachidonyl Glycine Does Not Activate G Protein–Coupled Receptor 18 Signaling via Canonical Pathways. Molecular Pharmacology, 2013, 83, 267-282.	1.0	56
13	The fatty acid amide hydrolase inhibitor, URB597, promotes retinal ganglion cell neuroprotection in a rat model of optic nerve axotomy. Neuropharmacology, 2013, 72, 116-125.	2.0	36
14	Endocannabinoids in obesity: brewing up the perfect metabolic storm?. Environmental Sciences Europe, 2013, 2, 49-63.	2.6	4
15	Antagonists for the Orphan G-Protein-Coupled Receptor GPR55 Based on a Coumarin Scaffold. Journal of Medicinal Chemistry, 2013, 56, 4798-4810.	2.9	50
16	Brain Levels of Prostaglandins, Endocannabinoids, and Related Lipids Are Affected by Mating Strategies. International Journal of Endocrinology, 2013, 2013, 1-14.	0.6	25
17	International Union of Basic and Clinical Pharmacology. LXXXVIII. G Protein-Coupled Receptor List: Recommendations for New Pairings with Cognate Ligands. Pharmacological Reviews, 2013, 65, 967-986.	7.1	250
18	N â€arachidonoyl glycine suppresses Na + / Ca 2+ exchangerâ€mediated Ca 2+ entry into endothelial cells and activates BK Ca channels ind. British Journal of Pharmacology, 2013, 169, 933-948.	2.7	25

#	Article	IF	CITATIONS
19	A <scp>GPR</scp> 18â€based signalling system regulates <scp>IOP</scp> in murine eye. British Journal of Pharmacology, 2013, 169, 834-843.	2.7	59
20	Δ9-THC and N-arachidonoyl glycine regulate BV-2 microglial morphology and cytokine release plasticity: implications for signaling at GPR18. Frontiers in Pharmacology, 2014, 4, 162.	1.6	46
21	Tapping into the endocannabinoid system to ameliorate acute inflammatory flares and associated pain in mouse knee joints. Arthritis Research and Therapy, 2014, 16, 437.	1.6	25
22	CB2 Receptor Activation Inhibits Melanoma Cell Transmigration through the Blood-Brain Barrier. International Journal of Molecular Sciences, 2014, 15, 8063-8074.	1.8	29
23	Activation of <scp>GPR</scp> 18 by cannabinoid compounds: a tale of biased agonism. British Journal of Pharmacology, 2014, 171, 3908-3917.	2.7	131
24	<i>N</i> â€Acyl amino acids and their impact on biological processes. BioFactors, 2014, 40, 381-388.	2.6	54
25	Neuronal Nitric Oxide Synthase–Dependent Elevation in Adiponectin in the Rostral Ventrolateral Medulla Underlies G Protein–Coupled Receptor 18–Mediated Hypotension in Conscious Rats. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 44-53.	1.3	13
26	Endothelial atypical cannabinoid receptor: do we have enough evidence?. British Journal of Pharmacology, 2014, 171, 5573-5588.	2.7	26
27	The cannabinoid acids, analogs and endogenous counterparts. Bioorganic and Medicinal Chemistry, 2014, 22, 2830-2843.	1.4	17
28	Bicyclic imidazole-4-one derivatives: a new class of antagonists for the orphan G protein-coupled receptors GPR18 and GPR55. MedChemComm, 2014, 5, 632-649.	3.5	24
29	The Endocannabinoid/Endovanilloid N-Arachidonoyl Dopamine (NADA) and Synthetic Cannabinoid WIN55,212-2 Abate the Inflammatory Activation of Human Endothelial Cells. Journal of Biological Chemistry, 2014, 289, 13079-13100.	1.6	47
30	Early phytocannabinoid chemistry to endocannabinoids and beyond. Nature Reviews Neuroscience, 2014, 15, 757-764.	4.9	278
31	Cannabinoids in pain management: CB1, CB2 and non-classic receptor ligands. Expert Opinion on Investigational Drugs, 2014, 23, 1123-1140.	1.9	68
32	Mitochondria: a possible nexus for the regulation of energy homeostasis by the endocannabinoid system?. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E1-E13.	1.8	32
33	Indoloditerpenes from a Marine-Derived Fungal Strain of <i>Dichotomomyces cejpii</i> with Antagonistic Activity at GPR18 and Cannabinoid Receptors. Journal of Natural Products, 2014, 77, 673-677.	1.5	38
34	The Novel Endocannabinoid Receptor GPR18 Is Expressed in the Rostral Ventrolateral Medulla and Exerts Tonic Restraining Influence on Blood Pressure. Journal of Pharmacology and Experimental Therapeutics, 2014, 349, 29-38.	1.3	40
35	Cannabinoid and lipid-mediated vasorelaxation in retinal microvasculature. European Journal of Pharmacology, 2014, 735, 105-114.	1.7	48
36	Primary Macrophage Chemotaxis Induced by Cannabinoid Receptor 2 Agonists Occurs Independently of the CB2 Receptor. Scientific Reports, 2015, 5, 10682.	1.6	28

#	Article	IF	CITATIONS
37	Role of Endothelium in Abnormal Cannabidiol-Induced Vasoactivity in Retinal Arterioles. , 2015, 56, 4029.		25
38	Anti-inflammatory effects of N-acylethanolamines in rheumatoid arthritis synovial cells are mediated by TRPV1 and TRPA1 in a COX-2 dependent manner. Arthritis Research and Therapy, 2015, 17, 321.	1.6	72
39	New Approaches in the Design and Development of Cannabinoid Receptor Ligands: Multifunctional and Bivalent Compounds. ChemMedChem, 2015, 10, 773-786.	1.6	26
40	The evolving role of the endocannabinoid system in gynaecological cancer. Human Reproduction Update, 2015, 21, 517-535.	5.2	11
41	Molecular-Interaction and Signaling Profiles of AM3677, a Novel Covalent Agonist Selective for the Cannabinoid 1 Receptor. ACS Chemical Neuroscience, 2015, 6, 1400-1410.	1.7	22
42	Endocannabinoids and Their Pharmacological Actions. Handbook of Experimental Pharmacology, 2015, 231, 1-37.	0.9	230
43	Cannabinoid-based drugs targeting CB1 and TRPV1, the sympathetic nervous system, and arthritis. Arthritis Research and Therapy, 2015, 17, 226.	1.6	68
44	Common Receptors for Endocannabinoid-Like Mediators and Plant Cannabinoids. , 2015, , 153-175.		2
45	N-Acyl Amides: Ubiquitous Endogenous Cannabimimetic Lipids That Are in the Right Place at the Right Time. , 2015, , 33-48.		5
46	An atlas of G-protein coupled receptor expression and function in human subcutaneous adipose tissue. , 2015, 146, 61-93.		65
47	Endocannabinoids as Guardians of Metastasis. International Journal of Molecular Sciences, 2016, 17, 230.	1.8	25
48	An Overview of Major and Minor Phytocannabinoids. , 2016, , 672-678.		11
49	G protein coupled receptor 18: A potential role for endocannabinoid signaling in metabolic dysfunction. Molecular Nutrition and Food Research, 2016, 60, 92-102.	1.5	32
50	Pharmacological evaluation of synthetic cannabinoids identified as constituents of spice. Forensic Toxicology, 2016, 34, 329-343.	1.4	96
51	The endocannabinoid anandamide causes endothelium-dependent vasorelaxation in human mesenteric arteries. Pharmacological Research, 2016, 113, 356-363.	3.1	28
52	From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology. Physiological Reviews, 2016, 96, 1593-1659.	13.1	317
53	Cannabinoids, inflammation, and fibrosis. FASEB Journal, 2016, 30, 3682-3689.	0.2	76
54	The cannabinoid receptor CB1contributes to the development of ectopic lesions in a mouse model of endometriosis. Human Reproduction, 2016, 32, 175-184.	0.4	11

#	Article	IF	CITATIONS
55	Characterization of non-olfactory GPCRs in human sperm with a focus on GPR18. Scientific Reports, 2016, 6, 32255.	1.6	27
56	Broad impact of deleting endogenous cannabinoid hydrolyzing enzymes and the CB1 cannabinoid receptor on the endogenous cannabinoid-related lipidome in eight regions of the mouse brain. Pharmacological Research, 2016, 110, 159-172.	3.1	50
57	Expression of Cannabinoid Receptors in Human Osteoarthritic Cartilage: Implications for Future Therapies. Cannabis and Cannabinoid Research, 2016, 1, 3-15.	1.5	41
58	Lipidomics profile of a NAPE-PLD KO mouse provides evidence of a broader role of this enzyme in lipid metabolism in the brain. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 491-500.	1.2	91
59	Fatty acids, endocannabinoids and inflammation. European Journal of Pharmacology, 2016, 785, 96-107.	1.7	63
60	Therapeutic potential of cannabis-related drugs. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 64, 157-166.	2.5	95
61	Molecular Targets of the Phytocannabinoids: A Complex Picture. Progress in the Chemistry of Organic Natural Products, 2017, 103, 103-131.	0.8	292
62	Molecular Pharmacology of Phytocannabinoids. Progress in the Chemistry of Organic Natural Products, 2017, 103, 61-101.	0.8	137
63	Cannabinoid Therapeutics in Parkinson's Disease: Promise and Paradox. Journal of Herbs, Spices and Medicinal Plants, 2017, 23, 231-248.	0.5	10
64	Endocannabinoids modulate apoptosis in endometriosis and adenomyosis. Acta Histochemica, 2017, 119, 523-532.	0.9	34
65	Phenotypic screening of cannabinoid receptor 2 ligands shows different sensitivity to genotype. Biochemical Pharmacology, 2017, 130, 60-70.	2.0	4
66	Cannabinoid CB ₁ and CB ₂ Receptor Signaling and Bias. Cannabis and Cannabinoid Research, 2017, 2, 48-60.	1.5	165
67	Cannabinoid Receptor-Related Orphan G Protein-Coupled Receptors. Advances in Pharmacology, 2017, 80, 223-247.	1.2	58
68	Resveratrol protects from lipopolysaccharide-induced inflammation in the uterus and prevents experimental preterm birth. Molecular Human Reproduction, 2017, 23, 571-581.	1.3	22
69	The Clinical Significance of Endocannabinoids in Endometriosis Pain Management. Cannabis and Cannabinoid Research, 2017, 2, 72-80.	1.5	33
70	Lipidomics: A Corrective Lens for Enzyme Myopia. Methods in Enzymology, 2017, 593, 123-141.	0.4	5
71	An Overview on Medicinal Chemistry of Synthetic and Natural Derivatives of Cannabidiol. Frontiers in Pharmacology, 2017, 8, 422.	1.6	123
72	Cannabinoids Modulate Neuronal Activity and Cancer by CB1 and CB2 Receptor-Independent Mechanisms. Frontiers in Pharmacology, 2017, 8, 720.	1.6	35

#	Article	IF	CITATIONS
73	Endocannabinoid Analytical Methodologies: Techniques That Drive Discoveries That Drive Techniques. Advances in Pharmacology, 2017, 80, 1-30.	1.2	10
74	A single dose of cannabidiol reduces blood pressure in healthy volunteers in a randomized crossover study. JCI Insight, 2017, 2, .	2.3	77
75	The quest for endothelial atypical cannabinoid receptor: BKCa channels act as cellular sensors for cannabinoids in in vitro and in situ endothelial cells. Vascular Pharmacology, 2018, 102, 44-55.	1.0	18
76	Targeting the endocannabinoid system as a potential anticancer approach. Drug Metabolism Reviews, 2018, 50, 26-53.	1.5	37
77	Δ 9 -Tetrahydrocannabinol changes the brain lipidome and transcriptome differentially in the adolescent and the adult. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 479-492.	1.2	37
78	Peripheral modulation of the endocannabinoid system in metabolic disease. Drug Discovery Today, 2018, 23, 592-604.	3.2	31
79	Pharmacological evaluation of new constituents of "Spice― synthetic cannabinoids based on indole, indazole, benzimidazole and carbazole scaffolds. Forensic Toxicology, 2018, 36, 385-403.	1.4	88
80	N -acylethanolamine hydrolyzing acid amidase inhibition: tools and potential therapeutic opportunities. Drug Discovery Today, 2018, 23, 1520-1529.	3.2	41
81	<i>N-</i> Acyl Amino Acids (Elmiric Acids): Endogenous Signaling Molecules with Therapeutic Potential. Molecular Pharmacology, 2018, 93, 228-238.	1.0	46
82	Large set data mining reveals overexpressed GPCRs in prostate and breast cancer: potential for active targeting with engineered anti-cancer nanomedicines. Oncotarget, 2018, 9, 24882-24897.	0.8	24
83	Investigation of non-CB1, non-CB2 WIN55212-2-sensitive G-protein-coupled receptors in the brains of mammals, birds, and amphibians. Journal of Receptor and Signal Transduction Research, 2018, 38, 316-326.	1.3	6
84	Broad and Region-Specific Impacts of the Synthetic Cannabinoid CP 55,940 in Adolescent and Adult Female Mouse Brains. Frontiers in Molecular Neuroscience, 2018, 11, 436.	1.4	6
85	î" ⁹ -Tetrahydrocannabinol and Cannabidiol Differentially Regulate Intraocular Pressure. , 2018, 59, 5904.		60
86	Lipoxin and Resolvin Receptors Transducing the Resolution of Inflammation in Cardiovascular Disease. Frontiers in Pharmacology, 2018, 9, 1273.	1.6	117
87	Inflammation and CB2 signaling drive novel changes in the ocular lipidome and regulate immune cell activity in the eye. Prostaglandins and Other Lipid Mediators, 2018, 139, 54-62.	1.0	15
88	Medicinal Properties of Cannabinoids, Terpenes, and Flavonoids in Cannabis, and Benefits in Migraine, Headache, and Pain: An Update on Current Evidence and Cannabis Science. Headache, 2018, 58, 1139-1186.	1.8	161
89	Structure-activity relationships of imidazothiazinones and analogs as antagonists of the cannabinoid-activated orphan G protein-coupled receptor GPR18. European Journal of Medicinal Chemistry, 2018, 155, 381-397.	2.6	22
90	A Systematic Review and Meta-Analysis of the In Vivo Haemodynamic Effects of Δ9-Tetrahydrocannabinol. Pharmaceuticals, 2018, 11, 13.	1.7	20

#	Article	IF	CITATIONS
91	Development of a Cannabinoid-Based Photoaffinity Probe to Determine the Δ ^{8/9} -Tetrahydrocannabinol Protein Interaction Landscape in Neuroblastoma Cells. Cannabis and Cannabinoid Research, 2018, 3, 136-151.	1.5	10
92	Patterns of medicinal cannabis use, strain analysis, and substitution effect among patients with migraine, headache, arthritis, and chronic pain in a medicinal cannabis cohort. Journal of Headache and Pain, 2018, 19, 37.	2.5	126
93	New approaches and challenges to targeting the endocannabinoid system. Nature Reviews Drug Discovery, 2018, 17, 623-639.	21.5	346
94	New Insights in Cannabinoid Receptor Structure and Signaling. Current Molecular Pharmacology, 2019, 12, 239-248.	0.7	74
95	Antitumor Activity of Abnormal Cannabidiol and Its Analog O-1602 in Taxol-Resistant Preclinical Models of Breast Cancer. Frontiers in Pharmacology, 2019, 10, 1124.	1.6	39
96	Dark Classics in Chemical Neuroscience: Δ ⁹ -Tetrahydrocannabinol. ACS Chemical Neuroscience, 2019, 10, 2160-2175.	1.7	55
97	What Every Pediatric Gynecologist Should Know About Marijuana Use in Adolescents. Journal of Pediatric and Adolescent Gynecology, 2019, 32, 349-353.	0.3	8
98	Cannabinoid receptors as therapeutic targets for autoimmune diseases: where do we stand?. Drug Discovery Today, 2019, 24, 1845-1853.	3.2	22
99	Modulation of the Endocannabinoid System as a Potential Anticancer Strategy. Frontiers in Pharmacology, 2019, 10, 430.	1.6	56
100	Emerging class of omega-3 fatty acid endocannabinoids & their derivatives. Prostaglandins and Other Lipid Mediators, 2019, 143, 106337.	1.0	75
101	Towards A Molecular Understanding of The Cannabinoid Related Orphan Receptor GPR18: A Focus on Its Constitutive Activity. International Journal of Molecular Sciences, 2019, 20, 2300.	1.8	9
102	Cannabinoids Stimulate the TRP Channel-Dependent Release of Both Serotonin and Dopamine to Modulate Behavior in <i>C. elegans</i> . Journal of Neuroscience, 2019, 39, 4142-4152.	1.7	26
103	Expression of Cannabinoid Receptors in Myometrium and its Correlation With Dysmenorrhea in Adenomyosis. Reproductive Sciences, 2019, 26, 1618-1625.	1.1	19
104	Protective Effect of N-Arachidonoyl Glycine-GPR18 Signaling after Excitotoxical Lesion in Murine Organotypic Hippocampal Slice Cultures. International Journal of Molecular Sciences, 2019, 20, 1266.	1.8	28
105	Cannabinoid Actions on Neural Stem Cells: Implications for Pathophysiology. Molecules, 2019, 24, 1350.	1.7	28
106	Development of Chromen-4-one Derivatives as (Ant)agonists for the Lipid-Activated G Protein-Coupled Receptor GPR55 with Tunable Efficacy. ACS Omega, 2019, 4, 4276-4295.	1.6	9
107	<i>N</i> â€Palmitoylglycine and other <i>N</i> â€acylamides activate the lipid receptor G2A/GPR132. Pharmacology Research and Perspectives, 2019, 7, e00542.	1.1	21
108	Evidence for a GPR18 Role in Chemotaxis, Proliferation, and the Course of Wound Closure in the Cornea. Cornea, 2019, 38, 905-913.	0.9	15

#	ARTICLE	IF	CITATIONS
109	Endocannabinoid System in the Airways. Molecules, 2019, 24, 4626.	1.7	25
110	N-Acyl Amino Acids: Metabolism, Molecular Targets, and Role in Biological Processes. Biomolecules, 2019, 9, 822.	1.8	40
111	GPR18 expression on PMNs as biomarker for outcome in patient with sepsis. Life Sciences, 2019, 217, 49-56.	2.0	23
112	Beyond THC and Endocannabinoids. Annual Review of Pharmacology and Toxicology, 2020, 60, 637-659.	4.2	107
113	Cannabidiol and Cannabinoid Compounds as Potential Strategies for Treating Parkinson's Disease and I-DOPA-Induced Dyskinesia. Neurotoxicity Research, 2020, 37, 12-29.	1.3	33
114	Adding more "spice―to the pot: A review of the chemistry and pharmacology of newly emerging heterocyclic synthetic cannabinoid receptor agonists. Drug Testing and Analysis, 2020, 12, 297-315.	1.6	23
115	Cannabinoids. Journal of Clinical Gastroenterology, 2020, 54, 769-788.	1.1	1
116	The role of the endocannabinoid system in aetiopathogenesis of endometriosis: A potential therapeutic target. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2020, 244, 87-94.	0.5	11
117	Δ9-Tetrahydrocannabinol (THC) and Cannabidiol (CBD). , 2020, , 13-26.		1
118	Cannabinoids and Inflammation and Autoimmune Disorders. , 2020, , 113-124.		0
119	The long-term effects of Δ9-tetrahydrocannabinol on microtubule dynamicity in rats. Archives of Biochemistry and Biophysics, 2020, 693, 108574.	1.4	2
120	Therapeutic Exploitation of GPR18: Beyond the Cannabinoids?. Journal of Medicinal Chemistry, 2020, 63, 14216-14227.	2.9	31
121	Cannabidiol and Other Non-Psychoactive Cannabinoids for Prevention and Treatment of Gastrointestinal Disorders: Useful Nutraceuticals?. International Journal of Molecular Sciences, 2020, 21, 3067.	1.8	108
122	Discovery of Tricyclic Xanthines as Agonists of the Cannabinoid-Activated Orphan G-Protein-Coupled Receptor GPR18. ACS Medicinal Chemistry Letters, 2020, 11, 2024-2031.	1.3	16
123	Cannabinoid typeâ€2 receptor agonist, inverse agonist, and anandamide regulation of inflammatory responses in ILâ€1β stimulated primary human periodontal ligament fibroblasts. Journal of Periodontal Research, 2020, 55, 762-783.	1.4	17
124	The fundamental role of the endocannabinoid system in endometrium and placenta: implications in pathophysiological aspects of uterine and pregnancy disorders. Human Reproduction Update, 2020, 26, 586-602.	5.2	55
125	Terpenoids, Cannabimimetic Ligands, beyond the Cannabis Plant. Molecules, 2020, 25, 1567.	1.7	61
126	A Guide to Targeting the Endocannabinoid System in Drug Design. International Journal of Molecular Sciences, 2020, 21, 2778	1.8	79

\sim		· ·	Deeg	
		ON	K F D (ו גו
\sim	/			

#	Article	IF	CITATIONS
127	Novel selective agonist of GPR18, PSBâ€KKâ€1415 exerts potent antiâ€inflammatory and antiâ€nociceptive activities in animal models of intestinal inflammation and inflammatory pain. Neurogastroenterology and Motility, 2021, 33, e14003.	1.6	15
128	Imaging Cannabinoid Receptors: A Brief Collection of Covalent and Fluorescent Probes for CB. Australian Journal of Chemistry, 2021, 74, 416-432.	0.5	7
129	Medicinal Cannabis: an overview for health-care providers. , 2021, , 75-101.		4
130	The Immunopathology of COVID-19 and the Cannabis Paradigm. Frontiers in Immunology, 2021, 12, 631233.	2.2	25
131	Effects of GPR18 Ligands on Body Weight and Metabolic Parameters in a Female Rat Model of Excessive Eating. Pharmaceuticals, 2021, 14, 270.	1.7	7
132	Polarity scaffolds signaling in epithelial cell permeability. Inflammation Research, 2021, 70, 525-538.	1.6	1
133	THC Reduces Ki67-Immunoreactive Cells Derived from Human Primary Glioblastoma in a GPR55-Dependent Manner. Cancers, 2021, 13, 1064.	1.7	15
134	Cannabis sativa and Skin Health: Dissecting the Role of Phytocannabinoids. Planta Medica, 2022, 88, 492-506.	0.7	22
135	Endocannabinoid signaling pathways: beyond CB1R and CB2R. Journal of Cell Communication and Signaling, 2021, 15, 335-360.	1.8	18
136	Cannabidiol Signaling in the Eye and Its Potential as an Ocular Therapeutic Agent. Cellular Physiology and Biochemistry, 2021, 55, 1-14.	1.1	5
137	The role of endocannabinoids in consolidation, retrieval, reconsolidation, and extinction of fear memory. Pharmacological Reports, 2021, 73, 984-1003.	1.5	7
138	Phytocannabinoids Biosynthesis in Angiosperms, Fungi, and Liverworts and Their Versatile Role. Plants, 2021, 10, 1307.	1.6	11
139	A review of non-prostanoid, eicosanoid receptors: expression, characterization, regulation, and mechanism of action. Journal of Cell Communication and Signaling, 2022, 16, 5-46.	1.8	6
140	GPR18 drives FAAH inhibition-induced neuroprotection against HIV-1 Tat-induced neurodegeneration. Experimental Neurology, 2021, 341, 113699.	2.0	15
141	Anandamide Concentration-Dependently Modulates Toll-Like Receptor 3 Agonism or UVB-Induced Inflammatory Response of Human Corneal Epithelial Cells. International Journal of Molecular Sciences, 2021, 22, 7776.	1.8	4
142	Topical Use of Cannabis sativa L. Biochemicals. Cosmetics, 2021, 8, 85.	1.5	11
143	Metabolic Consequences of Gestational Cannabinoid Exposure. International Journal of Molecular Sciences, 2021, 22, 9528.	1.8	13
144	Cannabinoids—A New Perspective in Adjuvant Therapy for Pulmonary Hypertension. International Journal of Molecular Sciences, 2021, 22, 10048.	1.8	7

#	Article	IF	CITATIONS
145	Cannabinoids: Revealing their complexity and role in central networks of fear and anxiety. Neuroscience and Biobehavioral Reviews, 2021, 131, 30-46.	2.9	4
146	Synthetic and Natural Derivatives of Cannabidiol. Advances in Experimental Medicine and Biology, 2021, 1297, 11-25.	0.8	6
147	Overview of Non-CB1/CB2 Cannabinoid Receptors: Chemistry and Modeling. Receptors, 2013, , 29-51.	0.2	1
148	GPR55., 2016,, 1-18.		1
149	Neuromolecular Mechanisms of Cannabis Action. Advances in Experimental Medicine and Biology, 2021, 1264, 15-28.	0.8	4
150	GPR55., 2018,, 2200-2217.		1
151	The Natural Product Magnolol as a Lead Structure for the Development of Potent Cannabinoid Receptor Agonists. PLoS ONE, 2013, 8, e77739.	1.1	32
152	GPR18 Controls Reconstitution of Mouse Small Intestine Intraepithelial Lymphocytes following Bone Marrow Transplantation. PLoS ONE, 2015, 10, e0133854.	1.1	25
153	Atypical cannabinoid ligands O-1602 and O-1918 administered chronically in diet-induced obesity. Endocrine Connections, 2019, 8, 203-216.	0.8	14
154	Metabotyping human endometrioid endometrial adenocarcinoma reveals an implication of endocannabinoid metabolism. Oncotarget, 2016, 7, 52364-52374.	0.8	17
155	Decisive role of P42/44 mitogen-activated protein kinase in Δ9-tetrahydrocannabinol-induced migration of human mesenchymal stem cells. Oncotarget, 2017, 8, 105984-105994.	0.8	6
157	The Role of the Cannabinoid System in Opioid Analgesia and Tolerance. Mini-Reviews in Medicinal Chemistry, 2020, 20, 875-885.	1.1	9
158	Potential metabolic and behavioural roles of the putative endocannabinoid receptors GPR18, GPR55 and GPR119 in feeding. Current Neuropharmacology, 2019, 17, 947-960.	1.4	25
159	Molecular Modeling of an Orphan GPR18 Receptor. Letters in Drug Design and Discovery, 2019, 16, 1167-1174.	0.4	6
160	Class A Orphans (version 2019.5) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	8
161	New Insights Into Peptide Cannabinoids: Structure, Biosynthesis and Signaling. Frontiers in Pharmacology, 2020, 11, 596572.	1.6	9
162	Intercellular Lipid Mediators and GPCR Drug Discovery. Biomolecules and Therapeutics, 2013, 21, 411-422.	1.1	36
163	Review of the neurological benefits of phytocannabinoids. , 2018, 9, 91.		134

#	Article	IF	CITATIONS
164	GPR18 undergoes a high degree of constitutive trafficking but is unresponsive to N-Arachidonoyl Glycine. PeerJ, 2016, 4, e1835.	0.9	57
165	Overview of Nonclassical Cannabinoid Receptors. Receptors, 2013, , 3-27.	0.2	4
166	GPR18 and NAGly Signaling: New Members of the Endocannabinoid Family or Distant Cousins?. , 2013, , 135-142.		0
167	The Endocannabinoid System: A Dynamic Signalling System at the Crossroads Between Metabolism and Disease. AAPS Advances in the Pharmaceutical Sciences Series, 2014, , 155-187.	0.2	1
168	Cannabinoids as a Therapeutic Approach in Multiple Sclerosis. RSC Drug Discovery Series, 2019, , 241-263.	0.2	0
169	Class A Orphans (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	0
170	Cannabinoid receptor CB1 and CB2 interacting proteins: Techniques, progress and perspectives. Methods in Cell Biology, 2021, 166, 83-132.	0.5	9
172	On the Biomedical Properties of Endocannabinoid Degradation and Reuptake Inhibitors: Pre-clinical and Clinical Evidence. Neurotoxicity Research, 2021, 39, 2072-2097.	1.3	4
173	-FATTY ACYLGLYCINES: UNDERAPPRECIATED ENDOCANNABINOID-LIKE FATTY ACID AMIDES?. Journal of Biology and Nature, 2017, 8, 156-165.	0.0	5
174	Parkinson's disease related alterations in cannabinoid transmission. Brain Research Bulletin, 2022, 178, 82-96.	1.4	4
175	Cannabidiol for the Management of Endometriosis and Chronic Pelvic Pain. Journal of Minimally Invasive Gynecology, 2022, 29, 169-176.	0.3	6
176	(Wh)olistic (E)ndocannabinoidome-Microbiome-Axis Modulation through (N)utrition (WHEN) to Curb Obesity and Related Disorders. Lipids in Health and Disease, 2022, 21, 9.	1.2	17
177	Modulatory role of the endocannabinoidome in the pathophysiology of the gastrointestinal tract. Pharmacological Research, 2022, 175, 106025.	3.1	19
179	Anti-Microbial Activity of Phytocannabinoids and Endocannabinoids in the Light of Their Physiological and Pathophysiological Roles. Biomedicines, 2022, 10, 631.	1.4	17
180	Why Do Marijuana and Synthetic Cannabimimetics Induce Acute Myocardial Infarction in Healthy Young People?. Cells, 2022, 11, 1142.	1.8	14
181	Formation, Signaling and Occurrence of Specialized Pro-Resolving Lipid Mediators—What is the Evidence so far?. Frontiers in Pharmacology, 2022, 13, 838782.	1.6	70
185	Molecular and Biochemical Mechanism of Cannabidiol in the Management of the Inflammatory and Oxidative Processes Associated with Endometriosis. International Journal of Molecular Sciences, 2022, 23, 5427.	1.8	16
186	Review of deltaâ€8â€tetrahydrocannabinol (Δ ⁸ â€THC): Comparative pharmacology with Δ ⁹ â€THC. British Journal of Pharmacology, 2022, 179, 3915-3933.	2.7	50

#	Article	IF	CITATIONS
187	The resolvin D2 – GPR18 axis is expressed in human coronary atherosclerosis and transduces atheroprotection in apolipoprotein E deficient mice. Biochemical Pharmacology, 2022, 201, 115075.	2.0	18
188	Gene expression of the endocannabinoid system in endometrium through menstrual cycle. Scientific Reports, 2022, 12, .	1.6	2
189	Structure Prediction, Evaluation, and Validation of GPR18 Lipid Receptor Using Free Programs. International Journal of Molecular Sciences, 2022, 23, 7917.	1.8	0
190	Presynaptic nigral GPR55 receptors stimulate [³ H]â€GABA release through [³ H]â€cAMP production and PKA activation and promote motor behavior. Synapse, 2022, 76, .	0.6	4
191	CD4+-mediated colitis in mice is independent of the GPR183 and GPR18 pathways. Frontiers in Immunology, 0, 13, .	2.2	2
192	Resolution of depression: Antidepressant actions of resolvins. Neuroscience Research, 2022, , .	1.0	5
193	Pharmacognosy and Effects of Cannabinoids in the Vascular System. ACS Pharmacology and Translational Science, 2022, 5, 1034-1049.	2.5	3
194	Cys-loop receptors on cannabinoids: All high?. Frontiers in Physiology, 0, 13, .	1.3	2
195	Cannabinoid Compounds as a Pharmacotherapeutic Option for the Treatment of Non-Cancer Skin Diseases. Cells, 2022, 11, 4102.	1.8	4
196	The Endocannabinoid System as a Potential Therapeutic Target for HIV-1-Associated Neurocognitive Disorder. Cannabis and Cannabinoid Research, 0, , .	1.5	0
198	The impact of cannabinoids on inflammasome signaling in HIV-1 infection. , 2023, .		0
199	Cannabinoids and the placenta: Receptors, signaling and outcomes. Placenta, 2023, 135, 51-61.	0.7	5
200	Role of omega-3 and omega-6 endocannabinoids in cardiopulmonary pharmacology. Advances in Pharmacology, 2023, , 375-422.	1.2	0
201	Modulation of pulmonary immune function by inhaled cannabis products and consequences for lung disease. Respiratory Research, 2023, 24, .	1.4	5
202	N-arachidonylglycine is a caloric state-dependent circulating metabolite which regulates human CD4+T cell responsiveness. IScience, 2023, 26, 106578.	1.9	4
203	GPR18 and GPR55-related Ligands Serving as Antagonists or Agonists: Current Situation, Challenges and Perspectives. Medicinal Chemistry, 2023, 19, .	0.7	0
204	The endocannabinoid system and breathing. Frontiers in Neuroscience, 0, 17, .	1.4	1