Wetting transparency of graphene

Nature Materials 11, 217-222 DOI: 10.1038/nmat3228

Citation Report

#	Article	IF	CITATIONS
6	Wettability of pristine and alkyl-functionalized graphane. Journal of Chemical Physics, 2012, 137, 034707.	1.2	50
7	Substrate-assisted nucleation of ultra-thin dielectric layers on graphene by atomic layer deposition. Applied Physics Letters, 2012, 100, .	1.5	78
8	Temperature dependence of the structure of protein hydration water and the liquid-liquid transition. Physical Review E, 2012, 85, 031503.	0.8	22
9	Adsorption kinetics of ammonia sensing by graphene films decorated with platinum nanoparticles. Journal of Applied Physics, 2012, 111, .	1.1	67
10	Graphene based field effect transistor for the detection of ammonia. Journal of Applied Physics, 2012, 112, .	1.1	72
11	Defect-Engineered Three-Dimensional Graphene–Nanotube–Palladium Nanostructures with Ultrahigh Capacitance. ACS Nano, 2012, 6, 10562-10570.	7.3	141
12	Thermal resistance at a liquid–solid interface dependent on the ratio of thermal oscillation frequencies. Chemical Physics Letters, 2012, 554, 77-81.	1.2	22
13	Graphene oxide/titania hybrid films with dual-UV-responsive surfaces of tunable wettability. RSC Advances, 2012, 2, 10829.	1.7	15
14	Scanning tunneling microscopy characterization of graphene-coated few-layered water on mica. , 2012, , .		0
15	Nuclear spin Hall and Klein tunneling effects during oxidation with electric and magnetic field inductions in graphene. Physical Chemistry Chemical Physics, 2012, 14, 16096.	1.3	0
16	Identification of epitaxial graphene domains and adsorbed species in ambient conditions using quantified topography measurements. Journal of Applied Physics, 2012, 112, 054308.	1.1	30
17	Graphene: An Emerging Electronic Material. Advanced Materials, 2012, 24, 5782-5825.	11.1	718
18	Water structure and charge transfer phenomena at the liquid–graphene interface. Physical Chemistry Chemical Physics, 2012, 14, 14605.	1.3	21
19	Step like surface potential on few layered graphene oxide. Applied Physics Letters, 2012, 101, 263109.	1.5	21
20	Stuffed structures. Nature Materials, 2012, 11, 183-184.	13.3	5
21	Unobtrusive graphene coatings. Nature Materials, 2012, 11, 182-183.	13.3	22
22	Detection of organic vapors by graphene films functionalized with metallic nanoparticles. Journal of Applied Physics, 2012, 112, .	1.1	47
23	Unfolding the Damping Behavior of Multilayer Graphene Membrane in the Low-Frequency Regime. ACS Nano, 2012, 6, 3992-4000.	7.3	50

	CITATION	Report	
#	Article	IF	CITATIONS
24	Breakdown in the Wetting Transparency of Graphene. Physical Review Letters, 2012, 109, 176101.	2.9	313
25	One-step graphene coating of heteroepitaxial GaN films. Nanotechnology, 2012, 23, 435603.	1.3	33
26	Robust adhesion of flower-like few-layer graphene nanoclusters. Scientific Reports, 2012, 2, 511.	1.6	55
27	Fluorinated Graphene for Promoting Neuroâ€Induction of Stem Cells. Advanced Materials, 2012, 24, 4285-4290.	11.1	315
28	Protecting copper from electrochemical degradation by graphene coating. Carbon, 2012, 50, 4040-4045.	5.4	409
29	The nature of free O-H stretching in water adsorbed on carbon nanosystems. Journal of Chemical Physics, 2013, 139, 064704.	1.2	8
30	Impact of van der Waals Interactions on Single Asperity Friction. Physical Review Letters, 2013, 111, 035502.	2.9	50
31	Electrical and mechanical performance of graphene sheets exposed to oxidative environments. Nano Research, 2013, 6, 485-495.	5.8	41
32	Interfacial Entropy of Water on Rigid Hydrophobic Surfaces. Langmuir, 2013, 29, 9807-9813.	1.6	35
33	Monitoring bound HA1(H1N1) and HA1(H5N1) on freely suspended graphene over plasmonic platforms with infrared spectroscopy. Chemical Physics Letters, 2013, 582, 134-140.	1.2	1
34	Effect of airborne contaminants on the wettability of supported graphene and graphite. Nature Materials, 2013, 12, 925-931.	13.3	712
35	Superhydrophobic Grapheneâ€Based Materials: Surface Construction and Functional Applications. Advanced Materials, 2013, 25, 5352-5359.	11.1	68
36	Control of density and LSPR of Au nanoparticles on graphene. Nanotechnology, 2013, 24, 275702.	1.3	36
37	Dipotassium hydrogen phosphate as reducing agent for the efficient reduction of graphene oxide nanosheets. Journal of Colloid and Interface Science, 2013, 409, 1-7.	5.0	31
38	Surface fractal evolution induced rubbing for rapid room temperature and transfer-free fabrication of graphene on flexible polymer substrate. Applied Physics Letters, 2013, 103, 011601.	1.5	14
39	Structural Instability of Transferred Graphene Grown by Chemical Vapor Deposition against Heating. Journal of Physical Chemistry C, 2013, 117, 22123-22130.	1.5	22
40	Observation of 4 nm Pitch Stripe Domains Formed by Exposing Graphene to Ambient Air. ACS Nano, 2013, 7, 10032-10037.	7.3	48
41	How much do van der Waals dispersion forces contribute to molecular recognition in solution?. Nature Chemistry, 2013, 5, 1006-1010.	6.6	250

#	Article	IF	CITATIONS
42	Epitaxial Graphene and Graphene–Based Devices Studied by Electrical Scanning Probe Microscopy. Crystals, 2013, 3, 191-233.	1.0	69
43	Room temperature rubbing for few-layer two-dimensional thin flakes directly on flexible polymer substrates. Scientific Reports, 2013, 3, 2697.	1.6	26
44	Introduction to graphene electronics – a new era of digital transistors and devices. Contemporary Physics, 2013, 54, 233-251.	0.8	52
45	Observing Graphene Grow: Catalyst–Graphene Interactions during Scalable Graphene Growth on Polycrystalline Copper. Nano Letters, 2013, 13, 4769-4778.	4.5	231
46	Contact with what?. Nature Materials, 2013, 12, 872-873.	13.3	40
47	Wetting translucency of graphene. Nature Materials, 2013, 12, 866-869.	13.3	241
48	Pressure dependence of Kapitza resistance at gold/water and silicon/water interfaces. Journal of Chemical Physics, 2013, 139, 244702.	1.2	73
49	Flexible and Transferrable Selfâ€Assembled Nanopatterning on Chemically Modified Graphene. Advanced Materials, 2013, 25, 1331-1335.	11.1	88
50	Nanogap based graphene coated AFM tips with high spatial resolution, conductivity and durability. Nanoscale, 2013, 5, 10816.	2.8	18
51	Lotus leaf-inspired CVD grown graphene for a water repellant flexible transparent electrode. Chemical Communications, 2013, 49, 10626.	2.2	12
52	Effects of graphene coating and charge injection on water adsorption of solid surfaces. Nanoscale, 2013, 5, 10414.	2.8	12
53	What Is the Contact Angle of Water on Graphene?. Langmuir, 2013, 29, 1457-1465.	1.6	421
54	Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nature Materials, 2013, 12, 321-325.	13.3	735
55	Ionic liquid-assisted exfoliation of graphite oxide for simultaneous reduction and functionalization to graphenes with improved properties. Journal of Materials Chemistry A, 2013, 1, 2663.	5.2	61
56	Slip Flow through Colloidal Crystals of Varying Particle Diameter. ACS Nano, 2013, 7, 725-731.	7.3	47
57	Fabrication, Optimization, and Use of Graphene Field Effect Sensors. Analytical Chemistry, 2013, 85, 509-521.	3.2	99
58	Flow Condensation on Copper-Based Nanotextured Superhydrophobic Surfaces. Langmuir, 2013, 29, 840-848.	1.6	143
59	Local anodic oxidation kinetics of chemical vapor deposition graphene supported on a thin oxide buffered silicon template. Carbon, 2013, 54, 336-342.	5.4	18

#	Article	IF	CITATIONS
60	Towards bi-carrier ion-transistors: DC and optically induced effects in electrically controlled electrochemical cells. Electrochimica Acta, 2013, 95, 308-312.	2.6	5
61	Enhancement of integrity of graphene transferred by interface energy modulation. Carbon, 2013, 65, 165-174.	5.4	7
62	Optical and magnetic properties of porous graphene films produced by electrospraying. Thin Solid Films, 2013, 527, 120-125.	0.8	9
63	Nanotechnology for implantable sensors: carbon nanotubes and graphene in medicine. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2013, 5, 233-249.	3.3	58
64	Microscopic Insight into Surface Wetting: Relations between Interfacial Water Structure and the Underlying Lattice Constant. Physical Review Letters, 2013, 110, 126101.	2.9	67
65	Fusion of nacre, mussel, and lotus leaf: bio-inspired graphene composite paper with multifunctional integration. Nanoscale, 2013, 5, 5758.	2.8	59
66	Free Energy Relationships in the Electrical Double Layer over Single-Layer Graphene. Journal of the American Chemical Society, 2013, 135, 979-981.	6.6	28
67	Wettability of Graphene. Nano Letters, 2013, 13, 1509-1515.	4.5	400
68	Graphene: An effective oxidation barrier coating for liquid and two-phase cooling systems. Corrosion Science, 2013, 69, 5-10.	3.0	64
69	Purification of water through nanoporous carbon membranes: a molecular simulation viewpoint. Current Opinion in Chemical Engineering, 2013, 2, 223-228.	3.8	27
70	Communication: Growing room temperature ice with graphene. Journal of Chemical Physics, 2013, 138, 121101.	1.2	24
71	Large-scale quantification of CVD graphene surface coverage. Nanoscale, 2013, 5, 2379.	2.8	47
72	Janus graphene from asymmetric two-dimensional chemistry. Nature Communications, 2013, 4, 1443.	5.8	231
73	Chemical Gradients on Graphene To Drive Droplet Motion. ACS Nano, 2013, 7, 4746-4755.	7.3	142
74	Molecular dynamic study on contact angle of water droplet on a single-wall carbon nanotube (SWCNT) plate. Applied Physics A: Materials Science and Processing, 2013, 111, 747-754.	1.1	7
75	Graphene Drape Minimizes the Pinning and Hysteresis of Water Drops on Nanotextured Rough Surfaces. ACS Nano, 2013, 7, 3512-3521.	7.3	46
76	Direct PECVD growth of vertically erected graphene walls on dielectric substrates as excellent multifunctional electrodes. Journal of Materials Chemistry A, 2013, 1, 770-775.	5.2	142
77	Fabrication of transparent, flexible conducing graphene thin films via soft transfer printing method. Applied Surface Science, 2013, 276, 437-446.	3.1	26

#	Article	IF	CITATIONS
78	Charge Transfer and Current Fluctuations in Single Layer Graphene Transistors Modified by Selfâ€Assembled C ₆₀ Adlayers. Small, 2013, 9, 2420-2426.	5.2	20
79	Wetting and Interfacial Properties of Water on the Defective Graphene. Journal of Physical Chemistry C, 2013, 117, 14106-14112.	1.5	45
80	Nanoscale Interfacial Interactions of Graphene with Polar and Nonpolar Liquids. Langmuir, 2013, 29, 7735-7742.	1.6	51
81	Size effects on water adsorbed on hydrophobic probes at the nanometric scale. Journal of Chemical Physics, 2013, 138, 214702.	1.2	10
82	Thickness dependent adhesion force and its correlation to surface roughness in multilayered graphene. , 2013, , .		2
83	Characterization of Interfaces between Graphene Films and Support Substrates by Observation of Lipid Membrane Formation. Journal of Physical Chemistry C, 2013, 117, 18913-18918.	1.5	13
84	Self-Assembly of Polar Phthalocyanine Molecules on Graphene Grown by Chemical Vapor Deposition. Journal of Physical Chemistry C, 2013, 117, 21849-21855.	1.5	42
85	Superhydrophobic Graphene Foams. Small, 2013, 9, 75-80.	5.2	183
86	Controlling the electroosmotic transport in nanochannels: effect of divalent counter-ions. , 2013, , .		0
87	Epitaxial graphene on SiC(\$000ar {1}\$): functional electrical microscopy studies and effect of atmosphere. Nanotechnology, 2013, 24, 215702.	1.3	21
88	A Spike-Like Ionic Current Behavior via Graphene Nanopore. Applied Mechanics and Materials, 2013, 475-476, 1351-1354.	0.2	0
89	Polarizability effects in molecular dynamics simulations of the graphene-water interface. Journal of Chemical Physics, 2013, 138, 054117.	1.2	101
90	Photoluminescence Measurements and Molecular Dynamics Simulations of Water Adsorption on the Hydrophobic Surface of a Carbon Nanotube in Water Vapor. Physical Review Letters, 2013, 110, 157402.	2.9	80
91	Not so transparent. Nature Materials, 2013, 12, 865-865.	13.3	18
92	Polymer-assisted transfer printing of graphene composite films. Physica Status Solidi (B): Basic Research, 2013, 250, 2668-2671.	0.7	8
93	Control of wetting with hyperbolic metamaterials and metallic films. , 2013, , .		0
94	Graphene oated Atomic Force Microscope Tips for Reliable Nanoscale Electrical Characterization. Advanced Materials, 2013, 25, 1440-1444.	11.1	56
95	Theoretical Study on Interaction Energy between Water and Graphene Model Compounds. Journal of Computer Chemistry Japan, 2014, 13, 171-172.	0.0	4

#	Article	IF	CITATIONS
97	Understanding interfacial water and its role in practical applications using molecular simulations. MRS Bulletin, 2014, 39, 1062-1067.	1.7	12
99	Ice and water droplets on graphite: A comparison of quantum and classical simulations. Journal of Chemical Physics, 2014, 141, 204701.	1.2	13
100	Graphene thickness dependent adhesion force and its correlation to surface roughness. Applied Physics Letters, 2014, 104, 171603.	1.5	18
101	Wetting transparency of graphene in water. Journal of Chemical Physics, 2014, 141, 18C517.	1.2	58
102	Spectroscopic Investigation of the Wettability of Multilayer Graphene Using Highly Ordered Pyrolytic Graphite as a Model Material. Langmuir, 2014, 30, 12827-12836.	1.6	81
103	Time dependent wettability of graphite upon ambient exposure: The role of water adsorption. Journal of Chemical Physics, 2014, 141, 084709.	1.2	55
104	Vapor deposition of water on graphitic surfaces: Formation of amorphous ice, bilayer ice, ice I, and liquid water. Journal of Chemical Physics, 2014, 141, 18C508.	1.2	63
105	van der Waals Screening by Single-Layer Graphene and Molybdenum Disulfide. ACS Nano, 2014, 8, 12410-12417.	7.3	69
106	Wettability of graphene-laminated micropillar structures. Journal of Applied Physics, 2014, 116, .	1.1	7
107	Pentacene on graphene: Differences between single layer and bilayer. Carbon, 2014, 69, 162-168.	5.4	23
108	Selective Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol over Graphene Supported Pt–Co Bimetallic Catalysts. Catalysis Letters, 2014, 144, 980-986.	1.4	43
109	25th Anniversary Article: Chemically Modified/Doped Carbon Nanotubes & Graphene for Optimized Nanostructures & Nanodevices. Advanced Materials, 2014, 26, 40-67.	11.1	479
110	Heat transport enhancement of thermal energy storage material using graphene/ceramic composites. Carbon, 2014, 75, 314-321.	5.4	65
111	Wettingâ€Transparent Graphene Films for Hydrophobic Waterâ€Harvesting Surfaces. Advanced Materials, 2014, 26, 5166-5172.	11.1	97
112	Effects of dielectric barrier discharge in air on morphological and electrical properties of graphene nanoplatelets and multi-walled carbon nanotubes. Journal of Physics and Chemistry of Solids, 2014, 75, 858-868.	1.9	11
113	Two-Dimensional Water Diffusion at a Graphene–Silica Interface. Journal of the American Chemical Society, 2014, 136, 6634-6642.	6.6	95
114	A Simple Method for Cleaning Graphene Surfaces with an Electrostatic Force. Advanced Materials, 2014, 26, 637-644.	11.1	25
115	Tailoring the physical properties of nanocomposite films by the insertion of graphene and other nanoparticles. Composites Part B: Engineering, 2014, 60, 29-35.	5.9	42

		CITATION REPO	RT	
#	Article	IF	.	CITATIONS
116	Ultra-high sensitivity graphene photosensors. Applied Physics Letters, 2014, 104, 041110.	1.	.5	16
117	Understanding Water Permeation in Graphene Oxide Membranes. ACS Applied Materials &a Interfaces, 2014, 6, 5877-5883.	mp; 4.	.0	415
118	Charging the Quantum Capacitance of Graphene with a Single Biological Ion Channel. ACS N 8, 4228-4238.	Vano, 2014, 7.	3	32
119	Thermodynamic investigation of ferrocyanide/ferricyanide redox system on nitrogen-doped multi-walled carbon nanotubes decorated with gold nanoparticles. Thermochimica Acta, 201	14, 576, 1-8. ^{1.}	2	5
120	Multifunctional Superhydrophobic Polymer/Carbon Nanocomposites: Graphene, Carbon Nar or Carbon Black?. ACS Applied Materials & Interfaces, 2014, 6, 8859-8867.	iotubes, 4.	.0	116
121	Wetting of Graphene Oxide: A Molecular Dynamics Study. Langmuir, 2014, 30, 3572-3578.	1.	.6	190
122	Amorphous Nitrogen Doped Carbon Films: A Novel Corrosion Resistant Coating Material. Ad Engineering Materials, 2014, 16, 532-538.	vanced 1.	.6	13
123	Face-to-face transfer of wafer-scale graphene films. Nature, 2014, 505, 190-194.	1	3.7	386
124	The CVD graphene transfer procedure introduces metallic impurities which alter the grapher electrochemical properties. Nanoscale, 2014, 6, 472-476.	1e 2.	.8	138
125	Improved transfer of chemical-vapor-deposited graphene through modification of intermolec interactions and solubility of poly(methylmethacrylate) layers. Carbon, 2014, 66, 612-618.	cular 5.	.4	49
126	Breakdown of fast water transport in graphene oxides. Physical Review E, 2014, 89, 012113	. 0.	.8	164
127	Water on BN doped benzene: A hard test for exchange-correlation functionals and the impaexchange on weak binding. Journal of Chemical Physics, 2014, 141, 18C530.	ct of exact 1.	.2	25
128	Molecular dynamics simulation of the graphene–water interface: comparing water models Molecular Simulation, 2014, 40, 1190-1200.	О	.9	55
129	Enhancement and wettability of self-assembled GO sheets as interfacial layers of CF/PI comp Advances, 2014, 4, 7511.	oosites. RSC 1.	.7	7
130	Graphene thickness-controlled photocatalysis and surface enhanced Raman scattering. Nan 2014, 6, 12805-12813.	oscale, 2.	.8	41
131	Friction of Water on Graphene and Hexagonal Boron Nitride from <i>Ab Initio</i> Methods: Different Slippage Despite Very Similar Interface Structures. Nano Letters, 2014, 14, 6872-6	Very 877. 4.	.5	326
132	Spiers Memorial Lecture : Advances of carbon nanomaterials. Faraday Discussions, 2014, 17	3, 9-46. 1.	.6	24
133	Adsorption of water on graphene/Ru(0001)—an experimental ultra-high vacuum study. Ch Communications, 2014, 50, 7698-7701.	emical 2.	.2	21

#	Article	IF	CITATIONS
134	Polyelectrolyte multilayer electrostatic gating of graphene field-effect transistors. Nano Research, 2014, 7, 1650-1658.	5.8	27
135	The influence of intercalated oxygen on the properties of graphene on polycrystalline Cu under various environmental conditions. Physical Chemistry Chemical Physics, 2014, 16, 25989-26003.	1.3	108
136	Probing nanoscale graphene–liquid interfacial interactions via ultrasonic force spectroscopy. Nanoscale, 2014, 6, 10806-10816.	2.8	19
137	Molecular dynamics investigations of liquid–vapor interaction and adsorption of formaldehyde, oxocarbons, and water in graphitic slit pores. Physical Chemistry Chemical Physics, 2014, 16, 15289-15298.	1.3	24
138	Microwetting of Supported Graphene on Hydrophobic Surfaces Revealed by Polymerized Interfacial Femtodroplets. Langmuir, 2014, 30, 10043-10049.	1.6	16
139	A Graphene Surface Force Balance. Langmuir, 2014, 30, 11485-11492.	1.6	21
140	A nanoscopic approach to studying evolution in graphene wettability. Carbon, 2014, 80, 784-792.	5.4	64
141	Interactions of Organic Solvents at Graphene/α-Al ₂ O ₃ and Graphene Oxide/α-Al ₂ O ₃ Interfaces Studied by Sum Frequency Generation. Journal of Physical Chemistry C, 2014, 118, 17745-17755.	1.5	13
142	Molecular adsorption on graphene. Journal of Physics Condensed Matter, 2014, 26, 443001.	0.7	161
143	Benchmarking dispersion and geometrical counterpoise corrections for costâ€effective largeâ€scale DFT calculations of water adsorption on graphene. Journal of Computational Chemistry, 2014, 35, 1789-1800.	1.5	24
144	Protein adsorption to graphene surfaces controlled by chemical modification of the substrate surfaces. Journal of Colloid and Interface Science, 2014, 431, 77-81.	5.0	27
145	Surface Energy Engineering for Tunable Wettability through Controlled Synthesis of MoS ₂ . Nano Letters, 2014, 14, 4314-4321.	4.5	258
146	Wetting and spreading of long-chain ZDOL polymer nanodroplet on graphene-coated amorphous carbon. Surface Science, 2014, 630, 71-77.	0.8	2
147	Enhanced Stability of Reduced Graphene Oxide Colloid Using Cross-Linking Polymers. Journal of Physical Chemistry C, 2014, 118, 9450-9457.	1.5	38
148	Sum Frequency Generation Spectroscopy Study of an Ionic Liquid at a Graphene-BaF ₂ (111) Interface. Journal of Physical Chemistry B, 2014, 118, 5203-5210.	1.2	30
149	Ageing mechanisms and reliability of graphene-based electrodes. Nano Research, 2014, 7, 1820-1831.	5.8	23
150	Bio-Inspired Titanium Dioxide Materials with Special Wettability and Their Applications. Chemical Reviews, 2014, 114, 10044-10094.	23.0	489
151	Two-Dimensional Materials as Emulsion Stabilizers: Interfacial Thermodynamics and Molecular Barrier Properties. Langmuir, 2014, 30, 3687-3696.	1.6	95

#	Article	IF	CITATIONS
152	Wetting and Evaporative Aggregation of Nanofluid Droplets on CVD-Synthesized Hydrophobic Graphene Surfaces. Langmuir, 2014, 30, 8268-8275.	1.6	18
153	Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications. Chemical Communications, 2014, 50, 6818.	2.2	428
154	Does Hydrophilicity of Carbon Particles Improve Their Ice Nucleation Ability?. Journal of Physical Chemistry A, 2014, 118, 7330-7337.	1.1	136
155	Study on the Surface Energy of Graphene by Contact Angle Measurements. Langmuir, 2014, 30, 8598-8606.	1.6	380
156	Large area hexagonal boron nitride monolayer as efficient atomically thick insulating coating against friction and oxidation. Nanotechnology, 2014, 25, 105701.	1.3	96
157	Atomically Resolved Graphitic Surfaces in Air by Atomic Force Microscopy. ACS Nano, 2014, 8, 5233-5239.	7.3	62
158	Instantaneous Reduction of Graphene Oxide Paper for Supercapacitor Electrodes with Unimpeded Liquid Permeation. Journal of Physical Chemistry C, 2014, 118, 13493-13502.	1.5	19
159	Wettability of Azobenzene Self-Assembled Monolayers. Langmuir, 2014, 30, 4415-4421.	1.6	5
160	Large-area graphene coating via superhydrophilic-assisted electro-hydrodynamic spraying deposition. Carbon, 2014, 79, 294-301.	5.4	18
161	Electrochemistry of Graphene and Related Materials. Chemical Reviews, 2014, 114, 7150-7188.	23.0	968
161 162	Electrochemistry of Graphene and Related Materials. Chemical Reviews, 2014, 114, 7150-7188. A Route toward Digital Manipulation of Water Nanodroplets on Surfaces. ACS Nano, 2014, 8, 3955-3960.	23.0 7.3	968 35
161 162 163	Electrochemistry of Graphene and Related Materials. Chemical Reviews, 2014, 114, 7150-7188. A Route toward Digital Manipulation of Water Nanodroplets on Surfaces. ACS Nano, 2014, 8, 3955-3960. Two-Minute Assembly of Pristine Large-Area Graphene Based Films. Nano Letters, 2014, 14, 1388-1393.	23.0 7.3 4.5	968 35 92
161 162 163 165	Electrochemistry of Graphene and Related Materials. Chemical Reviews, 2014, 114, 7150-7188. A Route toward Digital Manipulation of Water Nanodroplets on Surfaces. ACS Nano, 2014, 8, 3955-3960. Two-Minute Assembly of Pristine Large-Area Graphene Based Films. Nano Letters, 2014, 14, 1388-1393. Reduction dependent wetting properties of graphene oxide. Carbon, 2014, 77, 473-480.	23.0 7.3 4.5 5.4	968 35 92 49
 161 162 163 165 166 	Electrochemistry of Graphene and Related Materials. Chemical Reviews, 2014, 114, 7150-7188. A Route toward Digital Manipulation of Water Nanodroplets on Surfaces. ACS Nano, 2014, 8, 3955-3960. Two-Minute Assembly of Pristine Large-Area Graphene Based Films. Nano Letters, 2014, 14, 1388-1393. Reduction dependent wetting properties of graphene oxide. Carbon, 2014, 77, 473-480. The Tunable Hydrophobic Effect on Electrically Doped Graphene. Journal of Physical Chemistry B, 2014, 118, 530-536.	23.0 7.3 4.5 5.4 1.2	968 35 92 49 46
 161 162 163 165 166 167 	Electrochemistry of Graphene and Related Materials. Chemical Reviews, 2014, 114, 7150-7188. A Route toward Digital Manipulation of Water Nanodroplets on Surfaces. ACS Nano, 2014, 8, 3955-3960. Two-Minute Assembly of Pristine Large-Area Graphene Based Films. Nano Letters, 2014, 14, 1388-1393. Reduction dependent wetting properties of graphene oxide. Carbon, 2014, 77, 473-480. The Tunable Hydrophobic Effect on Electrically Doped Graphene. Journal of Physical Chemistry B, 2014, 118, 530-536. A Bottomâ€Up Approach to Build 3D Architectures from Nanosheets for Superior Lithium Storage. Advanced Functional Materials, 2014, 24, 125-130.	23.0 7.3 4.5 5.4 1.2 7.8	 968 35 92 49 46 247
 161 162 163 165 166 167 168 	Electrochemistry of Graphene and Related Materials. Chemical Reviews, 2014, 114, 7150-7188. A Route toward Digital Manipulation of Water Nanodroplets on Surfaces. ACS Nano, 2014, 8, 3955-3960. Two-Minute Assembly of Pristine Large-Area Graphene Based Films. Nano Letters, 2014, 14, 1388-1393. Reduction dependent wetting properties of graphene oxide. Carbon, 2014, 77, 473-480. The Tunable Hydrophobic Effect on Electrically Doped Graphene. Journal of Physical Chemistry B, 2014, 118, 530-536. A Bottomã€Up Approach to Build 3D Architectures from Nanosheets for Superior Lithium Storage. Advanced Functional Materials, 2014, 24, 125-130. Layer Dependent Wetting in Parahexaphenyl Thin Film Growth on Graphene. E-Journal of Surface Science and Nanotechnology, 2014, 12, 31-39.	23.0 7.3 4.5 5.4 1.2 7.8 0.1	 968 35 92 49 46 247 8
 161 162 163 165 166 167 168 169 	Electrochemistry of Graphene and Related Materials. Chemical Reviews, 2014, 114, 7150-7188.A Route toward Digital Manipulation of Water Nanodroplets on Surfaces. ACS Nano, 2014, 8, 3955-3960.Two-Minute Assembly of Pristine Large-Area Graphene Based Films. Nano Letters, 2014, 14, 1388-1393.Reduction dependent wetting properties of graphene oxide. Carbon, 2014, 77, 473-480.The Tunable Hydrophobic Effect on Electrically Doped Graphene. Journal of Physical Chemistry B, 2014, 118, 530-536.A Bottomã&Up Approach to Build 3D Architectures from Nanosheets for Superior Lithium Storage. Advanced Functional Materials, 2014, 24, 125-130.Layer Dependent Wetting in Parahexaphenyl Thin Film Growth on Graphene. E-Journal of Surface Science and Nanotechnology, 2014, 12, 31-39.Near-surface viscosity effects on capillary rise of water in nanotubes. Physical Review E, 2015, 92, 053009.	 23.0 7.3 4.5 5.4 1.2 7.8 0.1 0.8 	 968 35 92 49 49 46 247 8 62

#	Article	IF	CITATIONS
171	Direct and accurate measurement of size dependent wetting behaviors for sessile water droplets. Scientific Reports, 2015, 5, 18150.	1.6	27
172	Hydrophilic behavior of graphene and graphene-based materials. Journal of Chemical Physics, 2015, 143, 154704.	1.2	21
173	Wettability of graphitic-carbon and silicon surfaces: MD modeling and theoretical analysis. Journal of Chemical Physics, 2015, 143, 044703.	1.2	41
174	Substrate wettability requirement for the direct transfer of graphene. Applied Physics Letters, 2015, 107, .	1.5	10
175	Theoretical study on wettability of graphene/water interface. AIP Conference Proceedings, 2015, , .	0.3	0
176	Support effects in the adsorption of water on CVD graphene: an ultra-high vacuum adsorption study. Chemical Communications, 2015, 51, 11463-11466.	2.2	26
177	Wettability modification of graphene oxide by removal of carboxyl functional groups using non-thermal effects of microwave. Thin Solid Films, 2015, 589, 364-368.	0.8	35
179	Application of Graphene Within Optoelectronic Devices and Transistors. Progress in Optical Science and Photonics, 2015, , 191-221.	0.3	23
180	Interface of Ionic Liquids and Carbon: Ultrathin [C ₁ C ₁ Im][Tf ₂ N] Films on Graphite and Graphene. Journal of Physical Chemistry C, 2015, 119, 28068-28076.	1.5	30
181	Water contact angles on quartz surfaces under supercritical CO2 sequestration conditions: Experimental and molecular dynamics simulation studies. International Journal of Greenhouse Gas Control, 2015, 42, 655-665.	2.3	81
182	Establishing Nanoscale Heterogeneity with Nanoscale Force Measurements. Journal of Physical Chemistry C, 2015, 119, 18267-18277.	1.5	7
183	Surface melting of copper during graphene growth by chemical vapour deposition. Journal Physics D: Applied Physics, 2015, 48, 435303.	1.3	13
184	Mechanical stability of substrate-bound graphene in contact with aqueous solutions. 2D Materials, 2015, 2, 024011.	2.0	12
185	Intrinsic wettability of graphitic carbon. Carbon, 2015, 87, 10-17.	5.4	60
186	The effect of graphene layers on interfacial thermal resistance in composite nanochannels with flow. Microfluidics and Nanofluidics, 2015, 18, 637-648.	1.0	12
187	A high-performance supercapacitor of vertically-oriented few-layered graphene with high-density defects. Nanoscale, 2015, 7, 3675-3682.	2.8	63
188	H ₂ O on Graphene/Ir(111): A Periodic Array of Frozen Droplets. Journal of Physical Chemistry C, 2015, 119, 1418-1423.	1.5	15
189	Annealing free, clean graphene transfer using alternative polymer scaffolds. Nanotechnology, 2015, 26, 055302.	1.3	114

		CITATION REPORT		
#	Article		IF	CITATIONS
190	Graphene modifications in polylactic acid nanocomposites: a review. Polymer Bulletin, 2	2015, 72, 931-961.	1.7	75
191	Novel ALD-assisted growth of ZnO nanorods on graphene and its Cu ₂ ZnSn(S _x Se _{1â°x}) ₄ solar cell ap Chemistry Chemical Physics, 2015, 17, 4757-4762.	plication. Physical	1.3	9
192	Elucidation of the wettability of graphene through a multi-length-scale investigation ap Advances, 2015, 5, 39532-39538.	proach. RSC	1.7	10
193	Thickness-Dependent Hydrophobicity of Epitaxial Graphene. ACS Nano, 2015, 9, 8401-8	3411.	7.3	121
194	Copper-Assisted Direct Growth of Vertical Graphene Nanosheets on Glass Substrates by Low-Temperature Plasma-Enhanced Chemical Vapour Deposition Process. Nanoscale Re 2015, 10, 1019.	/ search Letters,	3.1	59
195	Friction Reduction at a Superhydrophilic Surface: Role of Ordered Water. Journal of Phy Chemistry C, 2015, 119, 11679-11684.	sical	1.5	66
196	Wettability of graphene. 2D Materials, 2015, 2, 032001.		2.0	74
197	Liquid Phase Exfoliation of Two-Dimensional Materials by Directly Probing and Matching Tension Components. Nano Letters, 2015, 15, 5449-5454.	g Surface	4.5	436
198	Dry-Surface Simulation Method for the Determination of the Work of Adhesion of Solid Interfaces. Langmuir, 2015, 31, 8335-8345.	–Liquid	1.6	56
199	Molecular-scale Hydrophilicity Induced by Solute: Molecular-thick Charged Pancakes of Solution on Hydrophobic Carbon-based Surfaces. Scientific Reports, 2014, 4, 6793.	Aqueous Salt	1.6	35
200	Interfacial structure of water/methanol mixture in contact with graphene surface using dynamics simulation. Journal of Statistical Mechanics: Theory and Experiment, 2015, 20	molecular 115, P06033.	0.9	4
201	Interface engineering for high performance graphene electronic devices. Nano Converg	ence, 2015, 2, .	6.3	22
202	Time-varying wetting behavior on copper wafer treated by wet-etching. Applied Surface 341, 37-42.	Science, 2015,	3.1	11
203	Interface engineering of ionic liquid integrated graphene in poly(vinylidene fluoride) ma magnificent improvement in mechanical, electrical and dielectric properties. Polymer, 20	trix yielding 015, 65, 154-167.	1.8	65
204	Controlled Crumpling of Graphene Oxide Films for Tunable Optical Transmittance. Adva Materials, 2015, 27, 3256-3265.	inced	11.1	129
205	Quantitatively Predicting Bacterial Adhesion Using Surface Free Energy Determined wit Spectrophotometric Method. Environmental Science & Technology, 2015, 49, 616	h a 4-6171.	4.6	82
206	Wetting of Mono and Few-Layered WS ₂ and MoS ₂ Films Sup Si/SiO ₂ Substrates. ACS Nano, 2015, 9, 3023-3031.	ported on	7.3	186
207	Recent advances in electrochemical biosensing schemes using graphene and graphene- nanocomposites. Carbon, 2015, 84, 519-550.	based	5.4	202

#	Article	IF	CITATIONS
208	Unusually High Optical Transparency in Hexagonal Nanopatterned Graphene with Enhanced Conductivity by Chemical Doping. Small, 2015, 11, 3143-3152.	5.2	13
209	Atomically Thin Epitaxial Template for Organic Crystal Growth Using Graphene with Controlled Surface Wettability. Nano Letters, 2015, 15, 2474-2484.	4.5	55
210	Scalable Graphene Coatings for Enhanced Condensation Heat Transfer. Nano Letters, 2015, 15, 2902-2909.	4.5	236
211	Wettability of Graphene-Coated Surface: Free Energy Investigations Using Molecular Dynamics Simulation. Journal of Physical Chemistry C, 2015, 119, 8103-8111.	1.5	33
212	Electronâ€transfer transparency of graphene: Fast reduction of metal ions on grapheneâ€covered donor surfaces. Physica Status Solidi - Rapid Research Letters, 2015, 9, 180-186.	1.2	14
213	Wet adhesion of graphene. Extreme Mechanics Letters, 2015, 3, 130-140.	2.0	16
214	Microwave-Assisted Synthesis of Dendritic Viologen-Arranged Molecules with an ω-Mercaptoalkyl Group and Their Self-Assembled Monolayers Complexed with Various Anions. Macromolecules, 2015, 48, 8090-8097.	2.2	11
215	Fabrication of Gold Nanoparticles/Graphene-PDDA Nanohybrids for Bio-detection by SERS Nanotechnology. Nanoscale Research Letters, 2015, 10, 397.	3.1	51
216	Nanowetting of Graphene by Ionic Liquid Droplets. Journal of Physical Chemistry C, 2015, 119, 24529-24537.	1.5	38
217	Communication: Water on hexagonal boron nitride from diffusion Monte Carlo. Journal of Chemical Physics, 2015, 142, 181101.	1.2	56
218	Carbon microtube/graphene hybrid structures for thermal management applications. Journal of Materials Chemistry A, 2015, 3, 18706-18710.	5.2	18
219	Catalyst-Free Plasma Enhanced Growth of Graphene from Sustainable Sources. Nano Letters, 2015, 15, 5702-5708.	4.5	124
220	Graphene synthesis: a Review. Materials Science-Poland, 2015, 33, 566-578.	0.4	105
221	Electrochemical Potential Stabilization of Reconstructed Au(111) Structure by Monolayer Coverage with Graphene. Journal of Physical Chemistry Letters, 2015, 6, 3403-3409.	2.1	21
222	Biotic–Abiotic Interactions: Factors that Influence Peptide–Graphene Interactions. ACS Applied Materials & Interfaces, 2015, 7, 20447-20453.	4.0	38
223	Wettability of water droplet on misoriented graphene bilayer sructure: A molecular dynamics study. AIP Advances, 2015, 5, .	0.6	12
224	Direct Chemical Vapor Deposition-Derived Graphene Glasses Targeting Wide Ranged Applications. Nano Letters, 2015, 15, 5846-5854.	4.5	176
225	Interfacial structure and wetting properties of water droplets on graphene under a static electric field. Physical Chemistry Chemical Physics, 2015, 17, 23460-23467.	1.3	53

	CITATION R	EPORT	
#	Article	IF	CITATIONS
226	Coalescence of water films on carbon-based substrates: the role of the interfacial properties and anisotropic surface topography. Physical Chemistry Chemical Physics, 2015, 17, 11284-11291.	1.3	8
227	Performance assessments of vertically aligned carbon nanotubes multi-electrode arrays using Cath.a-differentiated (CAD) cells. Nanotechnology, 2015, 26, 335701.	1.3	4
228	Water flattens graphene wrinkles: laser shock wrapping of graphene onto substrate-supported crystalline plasmonic nanoparticle arrays. Nanoscale, 2015, 7, 19885-19893.	2.8	41
229	Reproducible, stable and fast electrochemical activity from easy to make graphene on copper electrodes. Physical Chemistry Chemical Physics, 2015, 17, 29628-29636.	1.3	22
230	Parametrizing Nonbonded Interactions from Wetting Experiments via the Work of Adhesion: Example of Water on Graphene Surfaces. Journal of Physical Chemistry C, 2015, 119, 28470-28481.	1.5	61
231	Recurrent Filmwise and Dropwise Condensation on a Beetle Mimetic Surface. ACS Nano, 2015, 9, 71-81.	7.3	436
232	Self-assembly and nanosphere lithography for large-area plasmonic patterns on graphene. Journal of Colloid and Interface Science, 2015, 447, 202-210.	5.0	26
233	Rapid ethanol sensor based on electrolytically-exfoliated graphene-loaded flame-made In-doped SnO2 composite film. Sensors and Actuators B: Chemical, 2015, 209, 40-55.	4.0	76
234	Interactions of DNA with graphene and sensing applications of graphene field-effect transistor devices: A review. Analytica Chimica Acta, 2015, 853, 127-142.	2.6	123
235	Adsorption of Water on Two-Dimensional Crystals: Water/Graphene and Water/Silicatene. Inorganics, 2016, 4, 10.	1.2	11
236	Graphene FETs with Low-Resistance Hybrid Contacts for Improved High Frequency Performance. Nanomaterials, 2016, 6, 86.	1.9	3
237	Conformal Graphene-Decorated Nanofluidic Sensors Based on Surface Plasmons at Infrared Frequencies. Sensors, 2016, 16, 899.	2.1	19
238	Visualization of Graphene on Various Substrates Based on Water Wetting Behavior. Advanced Materials Interfaces, 2016, 3, 1500674.	1.9	14
239	A Phytic Acid Induced Superâ€Amphiphilic Multifunctional 3D Grapheneâ€Based Foam. Angewandte Chemie - International Edition, 2016, 55, 3936-3941.	7.2	176
240	On-chip purification via liquid immersion of arc-discharge synthesized multiwalled carbon nanotubes. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	9
241	Doping-Induced Tunable Wettability and Adhesion of Graphene. Nano Letters, 2016, 16, 4708-4712.	4.5	119
242	The effect of polymer-substrate interaction on the nucleation property: Comparing study of graphene and hexagonal boron nitride Nanosheets. Chinese Journal of Polymer Science (English Edition), 2016, 34, 1021-1031.	2.0	7
243	A Phytic Acid Induced Superâ€Amphiphilic Multifunctional 3D Grapheneâ€Based Foam. Angewandte Chemie, 2016, 128, 4004-4009.	1.6	14

#	Article	IF	CITATIONS
244	Pressureâ€Induced Charge Transfer Doping of Monolayer Graphene/MoS ₂ Heterostructure. Small, 2016, 12, 4063-4069.	5.2	45
245	Graphene layer encapsulated metal nanoparticles as a new type of nonâ€precious metal catalysts for oxygen reduction. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 382-385.	0.8	11
246	One-Minute Room-Temperature Transfer-Free Production of Mono- and Few-Layer Polycrystalline Graphene on Various Substrates. Scientific Reports, 2016, 6, 19313.	1.6	18
247	Long-range wetting transparency on top of layered metal-dielectric substrates. Scientific Reports, 2016, 6, 27834.	1.6	13
248	Wettability transparency and the quasiuniversal relationship between hydrodynamic slip and contact angle. Applied Physics Letters, 2016, 108, .	1.5	22
249	Are Graphitic Surfaces Hydrophobic?. Accounts of Chemical Research, 2016, 49, 2765-2773.	7.6	143
250	Quantitative scanning thermal microscopy of graphene devices on flexible polyimide substrates. Journal of Applied Physics, 2016, 119, .	1.1	17
251	Ag-catalyzed InAs nanowires grown on transferable graphite flakes. Nanotechnology, 2016, 27, 365603.	1.3	14
252	Investigation of mechanical behavior of single- and multi-layer graphene by using molecular dynamics simulation. International Journal of Precision Engineering and Manufacturing, 2016, 17, 1693-1701.	1.1	18
253	On the wettability transparency of graphene-coated silicon surfaces. Journal of Chemical Physics, 2016, 144, 014701.	1.2	42
254	Thickness dependent wetting properties and surface free energy of HfO2 thin films. Applied Physics Letters, 2016, 108, .	1.5	28
255	Wettability and friction of water on a MoS2 nanosheet. Applied Physics Letters, 2016, 108, .	1.5	113
256	Adsorption kinetics of benzene on graphene: An ultrahigh vacuum study. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	0.9	20
257	Hydrogen bonds at silica–CO ₂ saturated water interface under geologic sequestration conditions. Molecular Physics, 2016, 114, 2924-2935.	0.8	6
258	Flexible hydrophobic ZrN nitride films. Vacuum, 2016, 131, 34-38.	1.6	30
259	Interfacial thermal resistance between the graphene-coated copper and liquid water. International Journal of Heat and Mass Transfer, 2016, 97, 422-431.	2.5	44
260	Controlling the Formation of Phospholipid Monolayer, Bilayer, and Intact Vesicle Layer on Graphene. ACS Applied Materials & Interfaces, 2016, 8, 11875-11880.	4.0	37
261	Microbial colonisation of transparent glass-like carbon films triggered by a reversible radiation-induced hydrophobic to hydrophilic transition. RSC Advances, 2016, 6, 50278-50287.	1.7	8

#	Article	IF	CITATIONS
262	Optimizing blocking of nonspecific bacterial attachment to impedimetric biosensors. Sensing and Bio-Sensing Research, 2016, 8, 47-54.	2.2	35
263	Enhancing gas sensing properties of graphene by using a nanoporous substrate. 2D Materials, 2016, 3, 011007.	2.0	14
264	Stress and surface tension analyses of water on graphene-coated copper surfaces. International Journal of Precision Engineering and Manufacturing, 2016, 17, 503-510.	1.1	29
265	The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon, 2016, 105, 52-76.	5.4	1,335
266	Superhydrophobic and Superoleophilic Micro-Wrinkled Reduced Graphene Oxide as a Highly Portable and Recyclable Oil Sorbent. ACS Applied Materials & amp; Interfaces, 2016, 8, 9977-9985.	4.0	80
267	Multilayer Graphene Enables Higher Efficiency in Improving Thermal Conductivities of Graphene/Epoxy Composites. Nano Letters, 2016, 16, 3585-3593.	4.5	289
268	Molecular dynamics simulation of a Gold nanodroplet in contact with graphene. Materials Letters, 2016, 178, 205-207.	1.3	11
269	Nanodroplets Impacting on Graphene. MRS Advances, 2016, 1, 675-680.	0.5	3
270	Contact Angle, Liquid Film, and Liquid–Liquid and Liquid–Solid Interfaces in Model Oil–Brine–Substrate Systems. Journal of Physical Chemistry C, 2016, 120, 11910-11917.	1.5	59
271	Unzipping of Double-Stranded Ribonucleic Acids by Graphene and Single-Walled Carbon Nanotube: Helix Geometry versus Surface Curvature. Journal of Physical Chemistry C, 2016, 120, 22681-22693.	1.5	19
272	Van der Waals Force Isolation of Monolayer MoS ₂ . Advanced Materials, 2016, 28, 10055-10060.	11.1	34
273	Water mass flow rate in a finite SWCNT under electric charge: A molecular dynamic simulation. Journal of Molecular Liquids, 2016, 224, 165-170.	2.3	6
274	Tunable Substrate Wettability by Thin Water Layer. Journal of Physical Chemistry B, O, , .	1.2	0
275	Advanced Sorbents for Oilâ€5pill Cleanup: Recent Advances and Future Perspectives. Advanced Materials, 2016, 28, 10459-10490.	11.1	547
276	Enhancing the sensitivity of graphene/polyurethane nanocomposite flexible piezo-resistive pressure sensors with magnetite nano-spacers. Carbon, 2016, 108, 450-460.	5.4	87
277	Mechanical Robustness of Graphene on Flexible Transparent Substrates. ACS Applied Materials & Amp; Interfaces, 2016, 8, 22506-22515.	4.0	25
278	Substrate effect modulates adhesion and proliferation of fibroblast on graphene layer. Colloids and Surfaces B: Biointerfaces, 2016, 146, 785-793.	2.5	20
279	Effect of electric charging on the velocity of water flow in CNT. Journal of Molecular Modeling, 2016, 22, 198.	0.8	0

#	Article	IF	CITATIONS
280	Physics behind Water Transport through Nanoporous Boron Nitride and Graphene. Journal of Physical Chemistry Letters, 2016, 7, 3371-3376.	2.1	70
281	Optimizing PVD conditions for electrochemical anodization growth of well-adherent Ta ₂ O ₅ nanotubes on Ti–6Al–4V alloy. RSC Advances, 2016, 6, 78999-79015.	1.7	21
282	Wetting of nanofluids with nanoparticles of opposite surface potentials on pristine CVD graphene. Experiments in Fluids, 2016, 57, 1.	1.1	4
283	Dominance of Dispersion Interactions and Entropy over Electrostatics in Determining the Wettability and Friction of Two-Dimensional MoS ₂ Surfaces. ACS Nano, 2016, 10, 9145-9155.	7.3	63
284	Physico-chemical properties of pristine graphene and its performance as electrode material for electro-Fenton treatment of wastewater. Electrochimica Acta, 2016, 214, 217-230.	2.6	90
285	Fast and uniform growth of graphene glass using confined-flow chemical vapor deposition and its unique applications. Nano Research, 2016, 9, 3048-3055.	5.8	32
286	Divergent surface properties of multidimensional <i>sp</i> ² carbon allotropes: the effect of aging phenomena. Nanotechnology, 2016, 27, 295701.	1.3	3
287	Simulations of graphitic nanoparticles at air–water interfaces. Nanoscale, 2016, 8, 19620-19628.	2.8	14
288	Not spreading in reverse: The dewetting of a liquid film into a single drop. Science Advances, 2016, 2, e1600183.	4.7	52
289	Long-Term Lithium-Ion Battery Performance Improvement via Ultraviolet Light Treatment of the Graphite Anode. Journal of the Electrochemical Society, 2016, 163, A2866-A2875.	1.3	31
290	Transport Phenomena of Water in Molecular Fluidic Channels. Scientific Reports, 2016, 6, 33881.	1.6	71
291	Surface stress of graphene layers supported on soft substrate. Scientific Reports, 2016, 6, 25653.	1.6	5
292	Wrinkled single-layer graphenes fabricated by silicon nanopillar arrays. Nanotechnology, 2016, 27, 475304.	1.3	2
293	Graphene-coated meshes for electroactive flow control devices utilizing two antagonistic functions of repellency and permeability. Nature Communications, 2016, 7, 13345.	5.8	36
294	Ultrafast Heating for Intrinsic Properties of Atomically Thin Two-Dimensional Materials on Plastic Substrates. ACS Applied Materials & Interfaces, 2016, 8, 31222-31230.	4.0	7
295	Wettability of partially suspended graphene. Scientific Reports, 2016, 6, 24237.	1.6	55
296	Correlation of p-doping in CVD Graphene with Substrate Surface Charges. Scientific Reports, 2016, 6, 22858.	1.6	77
297	Tunable Substrate Wettability by Thin Water Layer. Journal of Physical Chemistry C, 2016, 120, 24688-24696.	1.5	32

#	Article	IF	CITATIONS
298	Manyâ€body dispersion interactions for periodic systems based on maximally localized Wannier functions: Application to graphene/water systems. Physica Status Solidi (B): Basic Research, 2016, 253, 308-313.	0.7	7
299	Temporospatial Control of Graphene Wettability. Advanced Materials, 2016, 28, 661-667.	11.1	39
300	Contact Angle Hysteresis on Graphene Surfaces and Hysteresis-free Behavior on Oil-infused Graphite Surfaces. Applied Surface Science, 2016, 385, 153-161.	3.1	31
301	On the Mechanism of Hydrophilicity of Graphene. Nano Letters, 2016, 16, 4447-4453.	4.5	148
302	A facile method to prepare porous graphene with tunable structure as electrode materials for immobilization of glucose oxidase. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 502, 26-33.	2.3	9
303	The Carbon-Water Interface: Modeling Challenges and Opportunities for the Water-Energy Nexus. Annual Review of Chemical and Biomolecular Engineering, 2016, 7, 533-556.	3.3	72
304	High-Resolution Characterization of Preferential Gas Adsorption at the Graphene–Water Interface. Langmuir, 2016, 32, 11164-11171.	1.6	25
305	Wetting dynamics of a water nanodrop on graphene. Physical Chemistry Chemical Physics, 2016, 18, 23482-23493.	1.3	65
306	Thin film growth of aromatic rod-like molecules on graphene. Nanotechnology, 2016, 27, 292001.	1.3	21
307	Molecular Dynamics Simulations of the Influence of Drop Size and Surface Potential on the Contact Angle of Ionic-Liquid Droplets. Journal of Physical Chemistry C, 2016, 120, 15244-15250.	1.5	55
308	Synthesis of an electrically cleanable forward osmosis membrane. Desalination and Water Treatment, 2016, 57, 1634-1646.	1.0	6
309	Lipid dip-pen nanolithography on self-assembled monolayers. Journal of Micromechanics and Microengineering, 2016, 26, 025016.	1.5	19
310	Water adsorption on two-dimensional silica films. Applied Surface Science, 2016, 364, 822-828.	3.1	10
311	Time Evolution of the Wettability of Supported Graphene under Ambient Air Exposure. Journal of Physical Chemistry C, 2016, 120, 2215-2224.	1.5	108
312	Metallic Nanoislands on Graphene as Highly Sensitive Transducers of Mechanical, Biological, and Optical Signals. Nano Letters, 2016, 16, 1375-1380.	4.5	66
313	Preparation of graphene oxide by dry planetary ball milling process from natural graphite. RSC Advances, 2016, 6, 12657-12668.	1.7	109
314	Water Protects Graphitic Surface from Airborne Hydrocarbon Contamination. ACS Nano, 2016, 10, 349-359.	7.3	97
315	Effective Heat Dissipation from Color-Converting Plates in High-Power White Light Emitting Diodes by Transparent Graphene Wrapping. ACS Nano, 2016, 10, 238-245.	7.3	39

#	Article	IF	CITATIONS
316	Probing the adhesion interactions of graphene on silicon oxide by nanoindentation. Carbon, 2016, 103, 63-72.	5.4	50
317	Fluorine-Terminated Diamond Surfaces as Dense Dipole Lattices: The Electrostatic Origin of Polar Hydrophobicity. Journal of the American Chemical Society, 2016, 138, 4018-4028.	6.6	47
318	Molecular Modeling of Water Interfaces: From Molecular Spectroscopy to Thermodynamics. Journal of Physical Chemistry B, 2016, 120, 3785-3796.	1.2	39
319	Microdomain orientation control of PS-b-PMMA films enabled by wettability relay of graphene. RSC Advances, 2016, 6, 7527-7531.	1.7	1
320	Surface energy and wettability of van der Waals structures. Nanoscale, 2016, 8, 5764-5770.	2.8	167
321	Electrochemical Delamination and Chemical Etching of Chemical Vapor Deposition Graphene: Contrasting Properties. Journal of Physical Chemistry C, 2016, 120, 4682-4690.	1.5	17
322	A graphene superficial layer for the advanced electroforming process. Nanoscale, 2016, 8, 12710-12714.	2.8	6
323	Analysis of superhydrophobic material performance based on molecular dynamics simulations. Surface Engineering, 2016, 32, 147-156.	1.1	5
324	Tribological characteristics of few-layer graphene over Ni grain and interface boundaries. Nanoscale, 2016, 8, 6646-6658.	2.8	28
325	Influences of ambient temperature, surface fluctuation and charge density on wettability properties of graphene film. Nanotechnology, 2016, 27, 075707.	1.3	6
326	Mixed-mode traction-separation relations between graphene and copper by blister tests. International Journal of Solids and Structures, 2016, 84, 147-159.	1.3	39
327	Interfacial separation and electrochemical delamination of CVD grown multilayer graphene for recyclable use of Cu powder. RSC Advances, 2016, 6, 24865-24870.	1.7	11
328	Versatile Polymer-Free Graphene Transfer Method and Applications. ACS Applied Materials & Interfaces, 2016, 8, 8008-8016.	4.0	95
329	Moving graphene devices from lab to market: advanced graphene-coated nanoprobes. Nanoscale, 2016, 8, 8466-8473.	2.8	31
330	Ultra-wetting graphene-based membrane. Journal of Membrane Science, 2016, 500, 76-85.	4.1	24
331	Selective mono-facial modification of graphene oxide nanosheets in suspension. Chemical Communications, 2016, 52, 288-291.	2.2	34
332	Modelling of graphene functionalization. Physical Chemistry Chemical Physics, 2016, 18, 6351-6372.	1.3	190
333	Immunosensing procedures for carcinoembryonic antigen using graphene and nanocomposites. Biosensors and Bioelectronics, 2017, 89, 293-304.	5.3	31

# 334	ARTICLE Evidence for negative charge near large area supported graphene in water: A study of silica microsphere interactions. Journal of Colloid and Interface Science, 2017, 492, 15-24.	IF 5.0	CITATIONS 2
335	Molecular Understanding on the Underwater Oleophobicity of Self-Assembled Monolayers: Zwitterionic versus Nonionic. Langmuir, 2017, 33, 1732-1741.	1.6	37
336	Synthesis of graphene oxide membranes and their behavior in water and isopropanol. Carbon, 2017, 116, 145-153.	5.4	53
337	Slip divergence of water flow in graphene nanochannels: the role of chirality. Physical Chemistry Chemical Physics, 2017, 19, 8646-8652.	1.3	43
338	Advanced nanomaterials for use in electrochemical and optical immunoassays of carcinoembryonic antigen. A review. Mikrochimica Acta, 2017, 184, 389-414.	2.5	74
339	Characterization of the Intrinsic Water Wettability of Graphite Using Contact Angle Measurements: Effect of Defects on Static and Dynamic Contact Angles. Langmuir, 2017, 33, 959-967.	1.6	100
340	Molecular Interactions between Graphene and Biological Molecules. Journal of the American Chemical Society, 2017, 139, 1928-1936.	6.6	96
341	Electrowetting on conductors: anatomy of the phenomenon. Faraday Discussions, 2017, 199, 49-61.	1.6	15
342	Cyanographene and Graphene Acid: Emerging Derivatives Enabling High-Yield and Selective Functionalization of Graphene. ACS Nano, 2017, 11, 2982-2991.	7.3	133
343	Wettability of graphene nanoribbons films with different surface density. RSC Advances, 2017, 7, 11890-11895.	1.7	4
344	Graphitic materials: Intrinsic hydrophilicity and its implications. Extreme Mechanics Letters, 2017, 14, 44-50.	2.0	27
345	Scale effects of graphene and graphene oxide coatings on pool boiling enhancement mechanisms. International Journal of Heat and Mass Transfer, 2017, 109, 357-366.	2.5	85
346	Defluorination of Fluorographene Oxide via Solvent Interactions. Particle and Particle Systems Characterization, 2017, 34, 1600346.	1.2	10
347	Formation of Two-Dimensional Micelles on Graphene: Multi-Scale Theoretical and Experimental Study. ACS Nano, 2017, 11, 3404-3412.	7.3	14
348	A modified Wenzel model for water wetting on van der Waals layered materials with topographic surfaces. Nanoscale, 2017, 9, 3843-3849.	2.8	12
349	Hierarchical, Dual-Scale Structures of Atomically Thin MoS ₂ for Tunable Wetting. Nano Letters, 2017, 17, 1756-1761.	4.5	66
350	Investigation into the microscopic mechanisms influencing convective heat transfer of water flow in graphene nanochannels. International Journal of Heat and Mass Transfer, 2017, 109, 28-39.	2.5	49
351	Lattice Transparency of Graphene. Nano Letters, 2017, 17, 1711-1718.	4.5	35

#	Article	IF	CITATIONS
352	Surface Tension Components Ratio: An Efficient Parameter for Direct Liquid Phase Exfoliation. ACS Applied Materials & Interfaces, 2017, 9, 9168-9175.	4.0	45
353	Controlled 3D Assembly of Graphene Sheets to Build Conductive, Chemically Selective and Shapeâ€Responsive Materials. Advanced Materials, 2017, 29, 1604947.	11.1	26
354	Water graphene contact surface investigated by pairwise potentials from force-matching PAW-PBE with dispersion correction. Journal of Chemical Physics, 2017, 146, 054702.	1.2	28
355	Roughness-Induced Chemical Heterogeneity Leads to Large Hydrophobicity in Wetting-Translucent Nanostructures. Journal of Physical Chemistry C, 2017, 121, 10010-10017.	1.5	22
356	Design and roles of RGO-wrapping in charge transfer and surface passivation in photoelectrochemical enhancement of cascade-band photoanode. Nano Research, 2017, 10, 2415-2430.	5.8	11
357	Adhesive-free adhesion between polytetrafluoroethylene (PTFE) and isobutylene–isoprene rubber (IIR) via heat-assisted plasma treatment. RSC Advances, 2017, 7, 6432-6438.	1.7	28
358	Protecting Silicon Film Anodes in Lithium-Ion Batteries Using an Atomically Thin Graphene Drape. ACS Nano, 2017, 11, 5051-5061.	7.3	113
359	Crystals aligned through graphene. Nature, 2017, 544, 301-302.	13.7	2
360	Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature, 2017, 544, 340-343.	13.7	410
361	Effect of trapped water on the frictional behavior of graphene oxide layers sliding in water environment. Carbon, 2017, 120, 11-16.	5.4	35
362	Dropwise condensation heat transfer model considering the liquid-solid interfacial thermal resistance. International Journal of Heat and Mass Transfer, 2017, 112, 333-342.	2.5	44
362 363	Dropwise condensation heat transfer model considering the liquid-solid interfacial thermal resistance. International Journal of Heat and Mass Transfer, 2017, 112, 333-342. A comprehensive review on wettability, desalination, and purification using graphene-based materials at water interfaces. Catalysis Today, 2017, 295, 14-25.	2.5 2.2	44 55
362 363 364	Dropwise condensation heat transfer model considering the liquid-solid interfacial thermal resistance. International Journal of Heat and Mass Transfer, 2017, 112, 333-342. A comprehensive review on wettability, desalination, and purification using graphene-based materials at water interfaces. Catalysis Today, 2017, 295, 14-25. Solid–Liquid Interface Thermal Resistance Affects the Evaporation Rate of Droplets from a Surface: A Study of Perfluorohexane on Chromium Using Molecular Dynamics and Continuum Theory. Langmuir, 2017, 33, 5336-5343.	2.5 2.2 1.6	44 55 31
362 363 364 365	Dropwise condensation heat transfer model considering the liquid-solid interfacial thermal resistance. International Journal of Heat and Mass Transfer, 2017, 112, 333-342. A comprehensive review on wettability, desalination, and purification using graphene-based materials at water interfaces. Catalysis Today, 2017, 295, 14-25. Solid–Liquid Interface Thermal Resistance Affects the Evaporation Rate of Droplets from a Surface: A Study of Perfluorohexane on Chromium Using Molecular Dynamics and Continuum Theory. Langmuir, 2017, 33, 5336-5343. Interaction of the Helium, Hydrogen, Air, Argon, and Nitrogen Bubbles with Graphite Surface in Water. ACS Applied Materials & amp; Interfaces, 2017, 9, 17517-17525.	2.5 2.2 1.6 4.0	44 55 31 13
362 363 364 365 366	Dropwise condensation heat transfer model considering the liquid-solid interfacial thermal resistance. International Journal of Heat and Mass Transfer, 2017, 112, 333-342. A comprehensive review on wettability, desalination, and purification using graphene-based materials at water interfaces. Catalysis Today, 2017, 295, 14-25. Solid–Liquid Interface Thermal Resistance Affects the Evaporation Rate of Droplets from a Surface: A Study of Perfluorohexane on Chromium Using Molecular Dynamics and Continuum Theory. Langmuir, 2017, 33, 5336-5343. Interaction of the Helium, Hydrogen, Air, Argon, and Nitrogen Bubbles with Graphite Surface in Water. ACS Applied Materials & amp; Interfaces, 2017, 9, 17517-17525. Insight on Structure of Water and Ice Next to Graphene Using Surface-Sensitive Spectroscopy. ACS Nano, 2017, 11, 4899-4906.	2.5 2.2 1.6 4.0 7.3	44 55 31 13 60
362 363 364 365 366	Dropwise condensation heat transfer model considering the liquid-solid interfacial thermal resistance. International Journal of Heat and Mass Transfer, 2017, 112, 333-342. A comprehensive review on wettability, desalination, and purification using graphene-based materials at water interfaces. Catalysis Today, 2017, 295, 14-25. Solid–Liquid Interface Thermal Resistance Affects the Evaporation Rate of Droplets from a Surface: A Study of Perfluorohexane on Chromium Using Molecular Dynamics and Continuum Theory. Langmuir, 2017, 33, 5336-5343. Interaction of the Helium, Hydrogen, Air, Argon, and Nitrogen Bubbles with Graphite Surface in Water. ACS Applied Materials & amp; Interfaces, 2017, 9, 17517-17525. Insight on Structure of Water and Ice Next to Graphene Using Surface-Sensitive Spectroscopy. ACS Nano, 2017, 11, 4899-4906. On-stack two-dimensional conversion of MoS ₂ into MoO ₃ . 2D Materials, 2017, 4, 014003.	 2.5 2.2 1.6 4.0 7.3 2.0 	44 55 31 13 60 51
362 363 364 365 366 367	Dropwise condensation heat transfer model considering the liquid-solid interfacial thermal resistance. International Journal of Heat and Mass Transfer, 2017, 112, 333-342. A comprehensive review on wettability, desalination, and purification using graphene-based materials at water interfaces. Catalysis Today, 2017, 295, 14-25. Solidãe ^{ce} Liquid Interface Thermal Resistance Affects the Evaporation Rate of Droplets from a Surface: A Study of Perfluorohexane on Chromium Using Molecular Dynamics and Continuum Theory. Langmuir, 2017, 33, 5336-5343. Interaction of the Helium, Hydrogen, Air, Argon, and Nitrogen Bubbles with Graphite Surface in Water. ACS Applied Materials & amp: Interfaces, 2017, 9, 17517-17525. Insight on Structure of Water and Ice Next to Graphene Using Surface-Sensitive Spectroscopy. ACS Nano, 2017, 11, 4899-4906. On-stack two-dimensional conversion of MoS ₂ into MoO ₃ . 2D Materials, 2017, 4, 014003. Role of substrate on interaction of water molecules with graphene oxide and reduced graphene oxide. Carbon, 2017, 122, 168-175.	2.5 2.2 1.6 4.0 7.3 2.0 5.4	 44 55 31 13 60 51 16

#	Article	IF	CITATIONS
370	Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries. Jom, 2017, 69, 1484-1496.	0.9	186
371	Mimicking rose petal wettability by chemical modification of graphene films. Carbon, 2017, 121, 472-478.	5.4	9
372	Influence of O ₂ , H ₂ O and airborne hydrocarbons on the properties of selected 2D materials. RSC Advances, 2017, 7, 27048-27057.	1.7	33
373	A convenient method for large-scale STM mapping of freestanding atomically thin conductive membranes. Review of Scientific Instruments, 2017, 88, 063702.	0.6	3
374	Condensation on hybrid-patterned copper tubes (I): Characterization of condensation heat transfer. International Journal of Heat and Mass Transfer, 2017, 112, 991-1004.	2.5	94
375	Drop spreading on a superhydrophobic surface: pinned contact line and bending liquid surface. Physical Chemistry Chemical Physics, 2017, 19, 14442-14452.	1.3	7
376	Nanowire-Mesh-Templated Growth of Out-of-Plane Three-Dimensional Fuzzy Graphene. ACS Nano, 2017, 11, 6301-6311.	7.3	46
377	From two-dimensional materials to their heterostructures: An electrochemist's perspective. Applied Materials Today, 2017, 8, 68-103.	2.3	212
378	Adhesion Mechanics between Nanoscale Silicon Oxide Tips and Few-Layer Graphene. Tribology Letters, 2017, 65, 1.	1.2	10
379	Analysis of impact phenomenon on superhydrophobic surfaces based on molecular dynamics simulation. Computational Materials Science, 2017, 134, 8-16.	1.4	9
380	Wetting at the nanoscale: A molecular dynamics study. Journal of Chemical Physics, 2017, 146, 114704.	1.2	64
381	A novel non-enzymatic glucose sensor based on a Cu-nanoparticle-modified graphene edge nanoelectrode. Analytical Methods, 2017, 9, 2205-2210.	1.3	55
382	Nanoengineered materials for liquid–vapour phase-change heat transfer. Nature Reviews Materials, 2017, 2, .	23.3	431
383	Mimicking an Atomically Thin "Vacuum Spacer―to Measure the Hamaker Constant between Graphene Oxide and Silica. Advanced Materials Interfaces, 2017, 4, 1600495.	1.9	9
384	Light irradiation tuning of surface wettability, optical, and electric properties of graphene oxide thin films. Nanotechnology, 2017, 28, 054003.	1.3	20
385	The dependence of the measured surface energy of graphene on nanosheet size. 2D Materials, 2017, 4, 015040.	2.0	17
386	Universal wetting transition of an evaporating water droplet on hydrophobic micro- and nano-structures. Soft Matter, 2017, 13, 978-984.	1.2	47
387	Non-covalent functionalization of graphene with a hydrophilic self-limiting monolayer for macro-molecule immobilization. FlatChem, 2017, 1, 52-56.	2.8	12

#	Article	IF	CITATIONS
388	Large area fabrication of graphene nanoribbons by wetting transparency-assisted block copolymer lithography. Polymer, 2017, 110, 131-138.	1.8	9
389	Large-area thin-film capacitors deposited onto graphene bottom electrodes via facing-target sputtering that is free of plasma damage. Journal of Alloys and Compounds, 2017, 695, 2886-2893.	2.8	6
390	Fluorinated Graphene Enables the Growth of Inorganic Thin Films by Chemical Bath Deposition on Otherwise Inert Substrates. ACS Applied Materials & amp; Interfaces, 2017, 9, 677-683.	4.0	3
391	Non-Continuum Intercalated Water Diffusion Explains Fast Permeation through Graphene Oxide Membranes. ACS Nano, 2017, 11, 11152-11161.	7.3	81
392	Superhydrophobic inkjet printed flexible graphene circuits <i>via</i> direct-pulsed laser writing. Nanoscale, 2017, 9, 19058-19065.	2.8	29
393	Charge Induced Dynamics of Water in a Graphene–Mica Slit Pore. Langmuir, 2017, 33, 11977-11985.	1.6	15
394	Redox-active nanomaterials for nanomedicine applications. Nanoscale, 2017, 9, 15226-15251.	2.8	104
395	Interaction between a water drop and holey graphene: retarded imbibition and generation of novel water–graphene wetting states. Physical Chemistry Chemical Physics, 2017, 19, 27421-27434.	1.3	7
396	Whiteâ€Light Photoassisted Covalent Functionalization of Graphene Using 2â€Propanol. Small Methods, 2017, 1, 1700214.	4.6	22
397	Wettability of monolayer graphene/single-walled carbon nanotube hybrid films. RSC Advances, 2017, 7, 48184-48188.	1.7	6
398	Graphene as Barrier to Prevent Volume Increment of Air Bubbles over Silicone Polymer in Aqueous Environment. Langmuir, 2017, 33, 12865-12872.	1.6	2
399	Doping-Driven Wettability of Two-Dimensional Materials: A Multiscale Theory. Langmuir, 2017, 33, 12827-12837.	1.6	10
400	Control of graphene surface wettability by using CF 4 plasma. Surface and Coatings Technology, 2017, 328, 89-93.	2.2	23
401	Metallic nanoislands on graphene: a metamaterial for chemical, mechanical, optical, and biological applications. Nanoscale Horizons, 2017, 2, 311-318.	4.1	24
402	Experimental studies on the detachment of multi-walled carbon nanotubes by a mobile liquid interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 533, 109-115.	2.3	2
403	Molecular Epitaxy on Two-Dimensional Materials: The Interplay between Interactions. Industrial & Engineering Chemistry Research, 2017, 56, 10552-10581.	1.8	29
404	Surface wettability of an atomically heterogeneous system and the resulting intermolecular forces. Europhysics Letters, 2017, 118, 68006.	0.7	19
405	Deformation of water nano-droplets on graphene under the influence of constant and alternative electric fields. Physical Chemistry Chemical Physics, 2017, 19, 26833-26838.	1.3	22

#	Article	IF	CITATIONS
406	Focus on graphene and related materials. Nanotechnology, 2017, 28, 410201.	1.3	13
407	Hydrogenated Fluorographene: A 2D Counterpart of Graphane with Enhanced Nonlinear Optical Properties. Journal of Physical Chemistry C, 2017, 121, 22567-22575.	1.5	23
408	High-Quality Monolithic Graphene Films via Laterally Stitched Growth and Structural Repair of Isolated Flakes for Transparent Electronics. Chemistry of Materials, 2017, 29, 7808-7815.	3.2	38
409	Phosphorene for energy and catalytic application—filling the gap between graphene and 2D metal chalcogenides. 2D Materials, 2017, 4, 042006.	2.0	46
410	Multilayer Regulation of Atomic Boron Nitride Films to Improve Oxidation and Corrosion Resistance of Cu. ACS Applied Materials & amp; Interfaces, 2017, 9, 27152-27165.	4.0	53
411	Tunable fluorescence quenching near the graphene-aqueous interface. Journal of Colloid and Interface Science, 2017, 506, 76-82.	5.0	2
412	Structures and thermodynamics of water encapsulated by graphene. Scientific Reports, 2017, 7, 2646.	1.6	26
413	Substrate Effects in Grapheneâ€Based Electric Double‣ayer Capacitors: The Pivotal Interplays between Ions and Solvents. ChemElectroChem, 2017, 4, 2966-2974.	1.7	10
414	Effects of morphology, tension and vibration on wettability of graphene: A molecular dynamics study. Computational Materials Science, 2017, 139, 216-224.	1.4	39
415	Insights on the Role of Many-Body Polarization Effects in the Wetting of Graphitic Surfaces by Water. Journal of Physical Chemistry C, 2017, 121, 28166-28179.	1.5	46
416	Graphene as a thin-film catalyst booster: graphene-catalyst interface plays a critical role. Nanotechnology, 2017, 28, 495708.	1.3	5
417	Protection from Below: Stabilizing Hydrogenated Graphene Using Graphene Underlayers. Langmuir, 2017, 33, 13749-13756.	1.6	12
418	Wetting control through topography and surface hydrophilic/hydrophobic property changes by coarse grained simulation. Molecular Simulation, 2017, 43, 1202-1208.	0.9	5
419	The physics and chemistry of graphene-on-surfaces. Chemical Society Reviews, 2017, 46, 4417-4449.	18.7	309
420	Distinct Chemical and Physical Properties of Janus Nanosheets. ACS Nano, 2017, 11, 7485-7493.	7.3	79
421	Scalable Graphene Electro-Patterning, Functionalization, and Printing. Journal of Physical Chemistry C, 2017, 121, 14954-14961.	1.5	7
422	Albumin (BSA) adsorption onto graphite stepped surfaces. Journal of Chemical Physics, 2017, 146, 214704.	1.2	12
423	Electronic properties and optical absorption of graphene-polyvinylidene fluoride nanocomposites: A theoretical study. Materials Chemistry and Physics, 2017, 186, 159-166.	2.0	13

#	Article	IF	CITATIONS
424	Fully integrated graphene electronic biosensor for label-free detection of lead (II) ion based on G-quadruplex structure-switching. Biosensors and Bioelectronics, 2017, 89, 758-763.	5.3	69
425	Microstructure and properties characterization of tungsten–copper composite materials doped with graphene. Journal of Alloys and Compounds, 2017, 695, 1637-1646.	2.8	71
426	Recent Advances in the Study of Phosphorene and its Nanostructures. Critical Reviews in Solid State and Materials Sciences, 2017, 42, 1-82.	6.8	130
429	Wettability of Supported Monolayer Hexagonal Boron Nitride in Air. Advanced Functional Materials, 2017, 27, 1603181.	7.8	54
430	Oxygen and water barrier performance of the composite thin film of graphene and polydimethylsiloxane (PDMS). , 2017, , .		0
431	Influences of ambient temperature, charge density on wettability properties of monolayer MoS <inf>2</inf> films. , 2017, , .		2
432	Evaluation of wetting transparency and surface energy of pristine and aged graphene through nanoscale friction. Carbon, 2018, 132, 749-759.	5.4	32
433	The 1-ethyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)-imide ionic liquid nanodroplets on solid surfaces and in electric field: A molecular dynamics simulation study. Journal of Chemical Physics, 2018, 148, 193833.	1.2	15
434	Wetting of water on graphene nanopowders of different thicknesses. Applied Physics Letters, 2018, 112,	1.5	20
435	Reversible Hydrophobicity–Hydrophilicity Transition Modulated by Surface Curvature. Journal of Physical Chemistry Letters, 2018, 9, 2346-2352.	2.1	22
436	Phase Diagram of Water Confined by Graphene. Scientific Reports, 2018, 8, 6228.	1.6	55
437	Tunable Colloidal Crystalline Patterns on Flat and Periodically Micropatterned Surfaces as Antireflective Layers and Printable–Erasable Substrates. Advanced Materials Interfaces, 2018, 5, 1800138.	1.9	6
438	Microspray quenching on nanotextured surfaces via a piezoelectric atomizer with multiple arrays of micronozzles. International Journal of Heat and Mass Transfer, 2018, 121, 832-844.	2.5	9
439	Interaction Between Graphene-Coated SiC Single Crystal and Liquid Copper. Journal of Materials Engineering and Performance, 2018, 27, 2317-2329.	1.2	7
440	Layered graphene-mica substrates induce melting of DNA origami. Materials Research Express, 2018, 5, 045035.	0.8	5
441	Controlling Nanodrop Passage through Capillary Nanovalves by Adjusting Lyophilic Crevice Structure. Journal of Physical Chemistry C, 2018, 122, 2231-2237.	1.5	9
442	Water transport confined in graphene oxide channels through the rarefied effect. Physical Chemistry Chemical Physics, 2018, 20, 9780-9786.	1.3	23
443	Anisotropic Wetting Characteristics of Water Droplets on Phosphorene: Roles of Layer and Defect Engineering. Journal of Physical Chemistry C, 2018, 122, 4622-4627.	1.5	21

#	Article	IF	CITATIONS
444	Formation of Multilayer Cu Islands Embedded beneath the Surface of Graphite: Characterization and Fundamental Insights. Journal of Physical Chemistry C, 2018, 122, 4454-4469.	1.5	27
445	Toward the Systematic Control of the Exfoliation of Atomically Thin Layered Materials by Electrostatics. ACS Central Science, 2018, 4, 142-143.	5.3	0
446	Ion-ion correlations across and between electrified graphene layers. Journal of Chemical Physics, 2018, 148, 193812.	1.2	28
447	Superstable Ultrathin Water Film Confined in a Hydrophilized Carbon Nanotube. Nano Letters, 2018, 18, 1869-1874.	4.5	34
448	Anode coverage for enhanced electrochemical oxidation: a green and efficient strategy towards water-dispersible graphene. Green Chemistry, 2018, 20, 1306-1315.	4.6	35
449	Single-Walled Carbon Nanotubes in Solar Cells. Topics in Current Chemistry, 2018, 376, 4.	3.0	58
450	Stable Molecular Diodes Based on π–π Interactions of the Molecular Frontier Orbitals with Graphene Electrodes. Advanced Materials, 2018, 30, 1706322.	11.1	35
451	Fast water transport in graphene nanofluidic channels. Nature Nanotechnology, 2018, 13, 238-245.	15.6	220
452	Development of nonâ€bonded interaction parameters between graphene and water using particle swarm optimization. Journal of Computational Chemistry, 2018, 39, 721-734.	1.5	18
453	Ratio dependence of contact angle for droplet wetting on chemically heterogeneous substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 539, 237-242.	2.3	14
454	Hydrophilicity of Graphene in Water through Transparency to Polar and Dispersive Interactions. Advanced Materials, 2018, 30, 1703274.	11.1	61
455	Superhydrophobic hybrid membranes by grafting arc-like macromolecular bridges on graphene sheets: Synthesis, characterization and properties. Applied Surface Science, 2018, 440, 359-368.	3.1	26
456	Adsorption and binding dynamics of graphene-supported phospholipid membranes using the QCM-D technique. Nanoscale, 2018, 10, 2555-2567.	2.8	28
457	RNA nanopatterning on graphene. 2D Materials, 2018, 5, 031006.	2.0	12
458	Coarse-grained molecular dynamics study of membrane distillation through meso-size graphene channels. Journal of Membrane Science, 2018, 558, 34-44.	4.1	28
459	Structure and dynamics of water at water–graphene and water–hexagonal boron-nitride sheet interfaces revealed by <i>ab initio</i> sum-frequency generation spectroscopy. Physical Chemistry Chemical Physics, 2018, 20, 12979-12985.	1.3	53
460	Dynamic Wetting of Nanodroplets on Smooth and Patterned Graphene-Coated Surface. Journal of Physical Chemistry C, 2018, 122, 8423-8429.	1.5	18
461	First-Principles Investigation of Black Phosphorus Synthesis. Journal of Physical Chemistry Letters, 2018, 9, 1759-1764.	2.1	25

#	Article	IF	CITATIONS
462	Strategies for improving the lithium-storage performance of 2D nanomaterials. National Science Review, 2018, 5, 389-416.	4.6	108
463	Inherent wettability of different rock surfaces at nanoscale: a theoretical study. Applied Surface Science, 2018, 434, 73-81.	3.1	51
464	Scanning atmospheric plasma for ultrafast reduction of graphene oxide and fabrication of highly conductive graphene films and patterns. Carbon, 2018, 127, 113-121.	5.4	71
465	Hybrid graphene oxide/polysaccharide nanocomposites with controllable surface properties and biocompatibility. Carbohydrate Polymers, 2018, 181, 78-85.	5.1	13
466	Exploring the Nanotoxicology of MoS ₂ : A Study on the Interaction of MoS ₂ Nanoflakes and K ⁺ Channels. ACS Nano, 2018, 12, 705-717.	7.3	44
467	Bacterial Adhesion to Graphene Oxide (GO)-Functionalized Interfaces Is Determined by Hydrophobicity and GO Sheet Spatial Orientation. Environmental Science and Technology Letters, 2018, 5, 14-19.	3.9	30
468	Water on graphene: review of recent progress. 2D Materials, 2018, 5, 022001.	2.0	119
469	Experimental investigation on thermal performance of aluminum vapor chamber using micro-grooved wick with reentrant cavity array. Applied Thermal Engineering, 2018, 130, 185-194.	3.0	58
470	A Multiscale Morphological Insight into Graphene Based Coatings for Pool Boiling Applications. Heat Transfer Engineering, 2018, 39, 1331-1343.	1.2	15
471	Wetting behaviors and applications of metal-catalyzed CVD grown graphene. Journal of Materials Chemistry A, 2018, 6, 22437-22464.	5.2	33
472	Experimental determination of the diameter-dependent wettability of carbon nanotubes as studied using atomic force microscopy. Physical Chemistry Chemical Physics, 2018, 20, 26979-26985.	1.3	5
473	A Facile Approach to Achieve Tunable Wettablility of Graphene-based Films from Superhydrophilicty to Superhydrophobicity. Journal of Nanosciences Current Research, 2018, 03, .	1.2	0
474	Ambient-pressure atomic force microscope with variable pressure from ultra-high vacuum up to one bar. Review of Scientific Instruments, 2018, 89, 103701.	0.6	9
475	Remote heteroepitaxy across graphene: Hydrothermal growth of vertical ZnO microrods on graphene-coated GaN substrate. Applied Physics Letters, 2018, 113, .	1.5	30
476	Hexagonal Monolayer Ice without Shared Edges. Physical Review Letters, 2018, 121, 256001.	2.9	20
477	Wettability of Bare and Graphene-Adsorbed Pt(111) during Glass–Liquid Transition, Crystallization, and Premelting of Water. Journal of Physical Chemistry C, 2018, 122, 28094-28104.	1.5	12
478	Confined Structures and Selective Mass Transport of Organic Liquids in Graphene Nanochannels. ACS Applied Materials & Interfaces, 2018, 10, 37014-37022.	4.0	18
479	Polarity governs atomic interaction through two-dimensional materials. Nature Materials, 2018, 17, 999-1004.	13.3	182

#	Article	IF	CITATIONS
480	Mechanism of Electric Power Generation from Ionic Droplet Motion on Polymer Supported Graphene. Journal of the American Chemical Society, 2018, 140, 13746-13752.	6.6	87
481	Direct Measurement of the Magnitude of the van der Waals Interaction of Single and Multilayer Graphene. Langmuir, 2018, 34, 12335-12343.	1.6	33
482	Water–Holey-Graphene Interactions: Route to Highly Enhanced Water-Accessible Graphene Surface Area. ACS Applied Nano Materials, 2018, 1, 5907-5919.	2.4	6
483	Polymerization driven monomer passage through monolayer chemical vapour deposition graphene. Nature Communications, 2018, 9, 4051.	5.8	20
484	Contact angle measurement of free-standing square-millimeter single-layer graphene. Nature Communications, 2018, 9, 4185.	5.8	102
485	Droplets on Slippery Lubricant-Infused Porous Surfaces: A Macroscale to Nanoscale Perspective. Langmuir, 2018, 34, 14439-14447.	1.6	30
486	Water confined in two-dimensions: Fundamentals and applications. Surface Science Reports, 2018, 73, 233-264.	3.8	48
487	Accessibility of the pores in highly porous alumina films synthesized via sequential infiltration synthesis. Nanotechnology, 2018, 29, 495703.	1.3	19
488	Ultrathin Metal Crystals: Growth on Supported Graphene Surfaces and Applications. Small, 2018, 14, e1801529.	5.2	7
489	Multifunctional polymer coatings for titanium implants. Materials Science and Engineering C, 2018, 93, 950-957.	3.8	27
490	Meniscus Motion and Void Generation Inside Carbon Nanotubes. Journal of Physical Chemistry C, 2018, 122, 21910-21918.	1.5	3
491	Lubricity of graphene on rough Au surfaces. Journal Physics D: Applied Physics, 2018, 51, 435301.	1.3	9
492	Remote epitaxy of copper on sapphire through monolayer graphene buffer. Nanotechnology, 2018, 29, 445702.	1.3	23
493	Quantifying Graphene Oxide Reduction Using Spectroscopic Techniques: A Chemometric Analysis. Applied Spectroscopy, 2018, 72, 1764-1773.	1.2	9
494	Preparation of lignocellulose/graphene composite conductive paper. Cellulose, 2018, 25, 6139-6149.	2.4	13
495	Rigorous and Accurate Contrast Spectroscopy for Ultimate Thickness Determination of Micrometer-Sized Graphene on Gold and Molecular Sensing. ACS Applied Materials & Interfaces, 2018, 10, 22520-22528.	4.0	12
496	Water wettability of graphene: interplay between the interfacial water structure and the electronic structure. RSC Advances, 2018, 8, 16918-16926.	1.7	24
497	Transition from superhydrophilic to superhydrophobic of silicon wafer by a combination of laser treatment and fluoropolymer deposition. Journal Physics D: Applied Physics, 2018, 51, 255307.	1.3	20

#	Article	IF	CITATIONS
498	Ultrafast Water Permeation in Graphene Nanostructures Anomalously Enhances Twoâ€Phase Heat Transfer. Advanced Materials Interfaces, 2018, 5, 1800286.	1.9	28
499	Wetting transparency of supported graphene is regulated by polarities of liquids and substrates. Applied Surface Science, 2018, 454, 249-255.	3.1	25
500	Wetting characteristics of vertically aligned graphene nanosheets. Nanotechnology, 2018, 29, 385703.	1.3	8
501	Graphene Translucency and Interfacial Interactions in the Gold/Graphene/SiC System. Journal of Physical Chemistry Letters, 2018, 9, 3850-3855.	2.1	19
502	Molecular Dynamics Simulations of Iron/Graphite Interfacial Behaviors: Influence of Oxygen. ISIJ International, 2018, 58, 1022-1027.	0.6	9
503	Graphene and 2D-Like Nanomaterials: Different Biofunctionalization Pathways for Electrochemical Biosensor Development. , 2018, , 1-35.		7
504	van der Waals screening by graphenelike monolayers. Physical Review B, 2018, 97, .	1.1	17
505	Molecular dynamics simulation of the spreading of the nanosized droplet on a graphene-coated substrate: the effect of the contact line forces. Molecular Simulation, 2018, 44, 1229-1236.	0.9	1
506	Comparative study on chemical reduction of free-standing flexible GO films and their cyclic voltammetry performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 630-637.	2.3	9
507	Investigation of Atomistic-Scale Thin-Film Evaporation. , 2018, , .		2
508	Molecular investigation of the wettability of rough surfaces using molecular dynamics simulation. Physical Chemistry Chemical Physics, 2018, 20, 22308-22319.	1.3	31
509	Electro-optical interfacial effects on a graphene/΀-conjugated organic semiconductor hybrid system. Beilstein Journal of Nanotechnology, 2018, 9, 963-974.	1.5	8
510	Effect of plasma power on reduction of printable graphene oxide thin films on flexible substrates. Materials Research Express, 2018, 5, 056405.	0.8	10
511	Wettability and Surface Free Energy Analyses of Monolayer Graphene. Journal of Thermal Science, 2018, 27, 359-363.	0.9	9
512	Interaction Between Liquid Silver and Graphene-Coated SiC Substrate. Journal of Materials Engineering and Performance, 2018, 27, 4140-4149.	1.2	10
513	Microscopic Origins of the Variability of Water Contact Angle with Adsorbed Contaminants on Layered Materials. Journal of Physical Chemistry C, 2018, 122, 18520-18527.	1.5	7
514	3-D manipulation of a single nano-droplet on graphene with an electrowetting driving scheme: critical condition and tunability. Nanoscale, 2018, 10, 16079-16086.	2.8	7
515	Perovskites-Based Solar Cells: A Review of Recent Progress, Materials and Processing Methods. Materials, 2018, 11, 729.	1.3	205

#	ARTICLE	IF	CITATIONS
516	Molecular dynamics simulation of droplet nucleation and growth on a rough surface: revealing the microscopic mechanism of the flooding mode. RSC Advances, 2018, 8, 24517-24524.	1.7	36
517	The Impact of Graphene on the Fabrication of Thin Film Solar Cells: Current Status and Future Prospects. Materials, 2018, 11, 36.	1.3	36
518	The effect of ionic liquid adsorption on the electronic and optical properties of fluorographene nanosheets. Journal of Molecular Liquids, 2018, 268, 206-214.	2.3	15
519	Mechanics of spontaneously formed nanoblisters trapped by transferred 2D crystals. Proceedings of the United States of America, 2018, 115, 7884-7889.	3.3	130
520	Transparency in graphene mediated evaporation. 2D Materials, 2018, 5, 041001.	2.0	10
521	Scalable and reusable micro-bubble removal method to flatten large-area 2D materials. Applied Physics Letters, 2018, 112, .	1.5	8
522	Effect of Gold Nanoparticles and Unwanted Residues on Raman Spectra of Graphene Sheets. Brazilian Journal of Physics, 2018, 48, 477-484.	0.7	3
523	Binding Characteristics of Anticancer Drug Doxorubicin with Two-Dimensional Graphene and Graphene Oxide: Insights from Density Functional Theory Calculations and Fluorescence Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 21031-21038.	1.5	41
524	N-doping of graphene: toward long-term corrosion protection of Cu. Journal of Materials Chemistry A, 2018, 6, 24136-24148.	5.2	68
525	Atomistic dewetting mechanics of Wenzel and monostable Cassie–Baxter states. Physical Chemistry Chemical Physics, 2018, 20, 24759-24767.	1.3	22
526	Triboelectric Series of 2D Layered Materials. Advanced Materials, 2018, 30, e1801210.	11.1	179
527	The evolution in graphitic surface wettability with first-principles quantum simulations: the counterintuitive role of water. Physical Chemistry Chemical Physics, 2018, 20, 22636-22644.	1.3	23
528	Preparation of Al2O3-coated expanded graphite with enhanced hydrophilicity and oxidation resistance. Ceramics International, 2018, 44, 16256-16264.	2.3	23
529	Dynamic strain in gold nanoparticle supported graphene induced by focused laser irradiation. Nanoscale, 2018, 10, 13417-13425.	2.8	3
530	Anomalous Capillary Rise under Nanoconfinement: A View of Molecular Kinetic Theory. Langmuir, 2018, 34, 7714-7725.	1.6	32
531	Direct synthesis of vertical graphene nanowalls on glass substrate for thermal management. Materials Research Express, 2018, 5, 065606.	0.8	16
532	Wetting of chemically heterogeneous striped surfaces: Molecular dynamics simulations. AIP Advances, 2018, 8, .	0.6	33
533	Direct observation of 2-dimensional ices on different surfaces near room temperature without confinement. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16723-16728.	3.3	33

ARTICLE IF CITATIONS # Wettability of graphene by molten polymers. Polymer, 2019, 180, 121708. 534 1.8 14 Ice II-like Monolayer Ice Grown on Graphite Surface. Journal of Physical Chemistry C, 2019, 123, 1.5 20297-20303. Tailoring Surface Properties via Functionalized Hydrofluorinated Graphene Compounds. Advanced 536 11.1 23 Materials, 2019, 31, e1903424. Assessing and Mitigating Surface Contamination of Carbon Electrode Materials. Chemistry of 3.2 Materials, 2019, 31, 7133-7142. Reactive intercalation and oxidation at the buried graphene-germanium interface. APL Materials, 2019, 538 2.2 16 7,. Shear properties of the liquid bridge between two graphene films using a refined molecular kinetics theory and molecular dynamics simulations. Mechanics of Materials, 2019, 137, 103124. 1.7 Nanoscale spatial mapping of mechanical properties through dynamic atomic force microscopy. 540 1.5 4 Beilstein Journal of Nanotechnology, 2019, 10, 1332-1347. Chemomechanics of transfer printing of thin films in a liquid environment. International Journal of Solids and Structures, 2019, 180-181, 30-44. 1.3 Unidirectional Self-Driving Liquid Droplet Transport on a Monolayer Graphene-Covered Textured 542 4.0 37 Substrate. ACS Applied Materials & amp; Interfaces, 2019, 11, 28562-28570. 543 Graphene-assisted biosensing based on terahertz nanoslot antennas. Scientific Reports, 2019, 9, 9749. 1.6 Investigation of wetting properties of few layers of graphene sheets prepared by electrochemical 544 4 0.3 method. AIP Conference Proceedings, 2019,,. Molecular Dynamic Simulation of the Effect of Nanocoating on Two-Phase Evaporative Heat and Mass Transfer. , 2019, , . Wetting behavior of MoS2 thin films. Materials Research Express, 2019, 6, 096424. 546 0.8 10 Few-layer graphene coated current collectors for safe and powerful lithium ion batteries. Carbon, 2019, 153, 495-503. 547 5.4 Molecular dynamics study on water vapor condensation and infiltration characteristics in 548 3.1 22 nanopores with tunable wettability. Applied Surface Science, 2019, 494, 249-258. Feeling Your Neighbors across the Walls: How Interpore Ionic Interactions Affect Capacitive Energy 549 14 Storage. Journal of Physical Chemistry Letters, 2019, 10, 4523-4527. Interaction-Transferable Graphene-Isolated Superstable AuCo Nanocrystal-Enabled Direct Cyanide 550 3.29 Capture. Analytical Chemistry, 2019, 91, 8762-8766. Mechanism of a microscale flat plate heat pipe with extremely high nominal thermal conductivity for 4.4 cooling high-end smartphone chips. Energy Conversion and Management, 2019, 201, 112202.

#	Article	IF	CITATIONS
552	Ionic liquid wettability of CVD-grown graphene on Cu/α-Al2O3(0â€ ⁻ 0â€ ⁻ 0â€ ⁻ 1) characterized by in situ contact angle measurement in a vacuum. Chemical Physics Letters, 2019, 735, 136781.	1.2	5
553	Study on axial wetting length and evaporating heat transfer in rectangular microgrooves with superhydrophilic nano-textured surfaces for two-phase heat transfer devices. Energy Conversion and Management, 2019, 200, 112098.	4.4	26
555	The role of water models on the prediction of slip length of water in graphene nanochannels. Journal of Chemical Physics, 2019, 151, 174705.	1.2	25
556	Microstructural characterization of reaction products in Cu/Graphene/SiC system. SN Applied Sciences, 2019, 1, 1.	1.5	0
557	Recent Advances in Seeded and Seed-Layer-Free Atomic Layer Deposition of High-K Dielectrics on Graphene for Electronics. Journal of Carbon Research, 2019, 5, 53.	1.4	20
558	Using Different Ions to Tune Graphene Stack Structures from Sheet- to Onion-Like During Plasma Exfoliation, with Supercapacitor Applications. Nanoscale Research Letters, 2019, 14, 141.	3.1	14
559	Adsorption transparency of supported graphene. Carbon, 2019, 155, 580-586.	5.4	9
560	An Optical Method for Quantitatively Determining the Surface Free Energy of Micro- and Nanoparticles. Analytical Chemistry, 2019, 91, 12819-12826.	3.2	16
561	The Hydrophobicity of Doped Graphene by the Fourth Group Elements of the Periodic Table: Theoretical and Computational Studies. Journal of Physical Chemistry C, 2019, 123, 24837-24845.	1.5	2
562	Liquefaction of water on the surface of anisotropic two-dimensional atomic layered black phosphorus. Nature Communications, 2019, 10, 4062.	5.8	37
563	Coalescence and wetting mechanism of Al droplets on different types of carbon for developing wettable cathodes: a molecular dynamics simulation. Physical Chemistry Chemical Physics, 2019, 21, 21473-21484.	1.3	1
564	Graphene's Partial Transparency to van der Waals and Electrostatic Interactions. Langmuir, 2019, 35, 12306-12316.	1.6	13
565	Surface-Specific Spectroscopy of Water at a Potentiostatically Controlled Supported Graphene Monolayer. Journal of Physical Chemistry C, 2019, 123, 24031-24038.	1.5	29
566	Water Flow in Silica Nanopores Coated by Carbon Nanotubes from a Wetting Translucency Perspective. Journal of Physical Chemistry C, 2019, 123, 25635-25642.	1.5	11
567	Phase Diagram of Nanoscale Water on Solid Surfaces with Various Wettabilities. Journal of Physical Chemistry Letters, 2019, 10, 6316-6323.	2.1	11
568	Translucency of Graphene to van der Waals Forces Applies to Atoms/Molecules with Different Polar Character. ACS Nano, 2019, 13, 12230-12241.	7.3	11
569	Hydrophobicity of graphene as a driving force for inhibiting biofilm formation of pathogenic bacteria and fungi. Dental Materials, 2019, 35, 403-413.	1.6	49
570	Surface energies, adhesion energies, and exfoliation energies relevant to copper-graphene and copper-graphite systems. Surface Science, 2019, 685, 48-58.	0.8	74

#	Article	IF	CITATIONS
571	Impurities Limit the Capacitance of Carbon-Based Supercapacitors. Journal of Physical Chemistry C, 2019, 123, 4085-4093.	1.5	24
572	Wettability of graphene: from influencing factors and reversible conversions to potential applications. Nanoscale Horizons, 2019, 4, 339-364.	4.1	103
573	Electrical Double Layer of Supported Atomically Thin Materials. Nano Letters, 2019, 19, 4588-4593.	4.5	24
574	Effect of graphene oxide loading on plasma sprayed alumina-graphene oxide composites for improved anticorrosive and hydrophobic surface. Surface Topography: Metrology and Properties, 2019, 7, 024003.	0.9	18
575	Single-Walled Carbon Nanotubes in Solar Cells. Topics in Current Chemistry Collections, 2019, , 271-298.	0.2	18
576	Ultrasensitive paper-based polyaniline/graphene composite strain sensor for sign language expression. Composites Science and Technology, 2019, 181, 107660.	3.8	26
577	Control of Functionalities in GO: Effect of Bronsted Acids as Supported by Ab Initio Simulations and Experiments. ACS Omega, 2019, 4, 9407-9418.	1.6	10
578	Molecular Dynamics Simulation of Nanofilm Boiling on Graphene oated Surface. Advanced Theory and Simulations, 2019, 2, 1900065.	1.3	16
579	Adhesion properties of 2D materials. Journal Physics D: Applied Physics, 2019, 52, 364002.	1.3	39
580	Single-Walled Carbon Nanotubes. Topics in Current Chemistry Collections, 2019, , .	0.2	20
581	Next-Generation Composite Coating System: Nanocoating. Frontiers in Materials, 2019, 6, .	1.2	24
582	Remote heteroepitaxy of atomic layered hafnium disulfide on sapphire through hexagonal boron nitride. Nanoscale, 2019, 11, 9310-9318.	2.8	20
583	Effects of a chemically heterogeneous island on the dynamic contact angles of droplets. Applied Surface Science, 2019, 486, 337-343.	3.1	17
584	Highly Sensitive and Selective Detection of Steroid Hormones Using Terahertz Molecule-Specific Sensors. Analytical Chemistry, 2019, 91, 6844-6849.	3.2	56
585	Potential blockade of the human voltage-dependent anion channel by MoS2 nanoflakes. Physical Chemistry Chemical Physics, 2019, 21, 9520-9530.	1.3	2
586	Direct Measurement of Adhesions of Liquids on Graphite. Journal of Physical Chemistry C, 2019, 123, 11671-11676.	1.5	7
587	Layer dependence of graphene-diamene phase transition in epitaxial and exfoliated few-layer graphene using machine learning. 2D Materials, 2019, 6, 035043.	2.0	40
588	Ãngstrom-Scale, Atomically Thin 2D Materials for Corrosion Mitigation and Passivation. Coatings, 2019, 9, 133.	1.2	22

#	Article	IF	CITATIONS
589	Insights into graphene wettability transparency by locally probing its surface free energy. Nanoscale, 2019, 11, 7944-7951.	2.8	25
590	Comparative study on Cronobacter sakazakii and Pseudomonas otitidis isolated from septic tank wastewater in microbial fuel cell for bioelectricity generation. Fuel, 2019, 248, 47-55.	3.4	40
591	SLIPS-TENG: robust triboelectric nanogenerator with optical and charge transparency using a slippery interface. National Science Review, 2019, 6, 540-550.	4.6	110
592	Ion Interactions across Graphene in Electrolyte Aqueous Solutions. Journal of Physical Chemistry C, 2019, 123, 9799-9806.	1.5	25
593	Gas-surface interactions on two-dimensional crystals. Surface Science Reports, 2019, 74, 141-177.	3.8	16
594	The inherent behavior of graphene flakes in water: A molecular dynamics study. Computational Materials Science, 2019, 162, 140-147.	1.4	7
595	AgNWs-graphene transparent conductor for heat and sensing applications. Materials Research Express, 2019, 6, 066312.	0.8	8
596	Characterization of the Lipid Structure and Fluidity of Lipid Membranes on Epitaxial Graphene and Their Correlation to Graphene Features. Langmuir, 2019, 35, 4726-4735.	1.6	5
597	Effects of Ultraviolet Light Treatment in Ambient Air on Lithium-Ion Battery Graphite and PVDF Binder. Journal of the Electrochemical Society, 2019, 166, A1121-A1126.	1.3	9
598	Development of non-bonded interaction parameters between hexagonal boron-nitride and water. Computational Materials Science, 2019, 161, 339-345.	1.4	10
599	Spreading patterns of high velocity nanodroplets impacting on suspended graphene. Journal of Molecular Liquids, 2019, 292, 110429.	2.3	3
600	Electric-Field-Tunable Growth of Organic Semiconductor Crystals on Graphene. Nano Letters, 2019, 19, 1758-1766.	4.5	12
601	Manipulating thermal resistance at the solid–fluid interface through monolayer deposition. RSC Advances, 2019, 9, 4948-4956.	1.7	24
602	Multilayer fabrication of unobtrusive poly(dimethylsiloxane) nanobrush for tunable cell adhesion. Scientific Reports, 2019, 9, 1834.	1.6	5
603	A molecular dynamics study on the wettability of graphene-based silicon dioxide (glass) surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 569, 43-51.	2.3	12
605	Effective Wetting Area Based on Electrochemical Impedance Analysis: Hydrophilic Structured Surface. Langmuir, 2019, 35, 16508-16513.	1.6	9
606	Fabrication of electrochemically interconnected MoO3/GO/MWCNTs/graphite sheets for high performance all-solid-state symmetric supercapacitor. International Journal of Hydrogen Energy, 2019, 44, 2741-2751.	3.8	44
607	Critical Contact Angle to Induce Capillary Rise of Polymers in Nanopores Does Not Depend on Chain Length. ACS Macro Letters, 2019, 8, 31-35.	2.3	5

#	Article	IF	CITATIONS
608	Wetting hysteresis of atomically heterogeneous systems created by low energy inert gas ion irradiation on metal surfaces: Liquid thin film coverage in the receding mode and surface interaction energies. Applied Surface Science, 2019, 470, 773-782.	3.1	16
609	Frictional characteristics of nano-confined water mediated hole-doped single-layer graphene on silica surface. Nanotechnology, 2019, 30, 045706.	1.3	7
610	Polystyrene nanoparticles as a flotation collector: A molecular dynamics study. Journal of Molecular Liquids, 2019, 275, 554-566.	2.3	19
611	Adhesion between graphene and polymers: A surface analysis perspective. EXPRESS Polymer Letters, 2019, 13, 52-64.	1.1	6
612	Effects of graphene on structure and corrosion resistance of plasma electrolytic oxidation coatings formed on D16T Al alloy. Applied Surface Science, 2019, 475, 645-659.	3.1	41
613	Rapid Programmable Nanodroplet Motion on a Strain-Gradient Surface. Langmuir, 2019, 35, 2865-2870.	1.6	19
614	Calculation of the interfacial tension of the graphene-water interaction by molecular simulations. Journal of Chemical Physics, 2019, 150, 014703.	1.2	26
615	Enhanced corrosion resistance in metal matrix composites assembled from graphene encapsulated copper nanoflakes. Carbon, 2019, 142, 482-490.	5.4	58
616	Graphene surface structure in aqueous media: Evidence for an air-bubble layer and ion adsorption. Carbon, 2019, 143, 97-105.	5.4	6
617	Synthesis of anticorrosion nanohybrid films based on bioinspired dopamine, L-cys/CNT@PDA through self-assembly on 304 stainless steel in 3.5% NaCl. Bioelectrochemistry, 2019, 126, 79-85.	2.4	21
618	Dropwise condensation on superhydrophobic nanostructure surface, Part I: Long-term operation and nanostructure failure. International Journal of Heat and Mass Transfer, 2019, 129, 86-95.	2.5	59
619	Interactions of ions across carbon nanotubes. Physical Chemistry Chemical Physics, 2020, 22, 10603-10608.	1.3	4
620	Wettability of striped patterned mono-and multilayer graphene supported on platinum. Applied Surface Science, 2020, 500, 144002.	3.1	10
621	Effect of temperature on wetting kinetics in Al/SiC system: a molecular dynamic investigation. Composite Interfaces, 2020, 27, 587-600.	1.3	8
622	Wetting translucency of graphene on plasmonic nanohole arrays. 2D Materials, 2020, 7, 011004.	2.0	2
623	Chemical interaction between nitrogen-doped graphene defects and a copper (1â€ ⁻ 1â€ ⁻ 1) surface: Effects on water molecule adsorption. Applied Surface Science, 2020, 502, 144149.	3.1	10
624	Wettability of nanostructured hexagonal boron nitride surfaces: molecular dynamics insights on the effect of wetting anisotropy. Physical Chemistry Chemical Physics, 2020, 22, 2488-2497.	1.3	20
625	Surface Energy Change of Atomic-Scale Metal Oxide Thin Films by Phase Transformation. ACS Nano, 2020, 14, 676-687.	7.3	10

#	Article	IF	CITATIONS
626	Slippery and Wear-Resistant Surfaces Enabled by Interface Engineered Graphene. Nano Letters, 2020, 20, 905-917.	4.5	18
627	Clean and less defective transfer of monolayer graphene by floatation in hot water. Applied Surface Science, 2020, 508, 145057.	3.1	16
628	Metal-Free Synthesis of Boron-Doped Graphene Glass by Hot-Filament Chemical Vapor Deposition for Wave Energy Harvesting. ACS Applied Materials & Interfaces, 2020, 12, 2805-2815.	4.0	13
629	Unsaturated carbon linear chains created during bacteria incubation with amorphous carbon thin films produced by a clean technology. Journal of Cleaner Production, 2020, 249, 119363.	4.6	7
630	Smart superhydrophobic anticorrosive coatings. , 2020, , 515-534.		3
631	Wetting of single crystalline and amorphous silicon surfaces: effective range of intermolecular forces for wetting. Molecular Simulation, 2020, 46, 224-234.	0.9	11
632	Spreading behavior of AgCuTi/Cu at elevated temperatures: A molecular dynamics study. Journal of Molecular Liquids, 2020, 319, 114332.	2.3	4
633	3D network structure and hydrophobic Ni-G-WO3-x solar-driven interfacial evaporator for highly efficient steam generation. Solar Energy Materials and Solar Cells, 2020, 217, 110593.	3.0	22
634	Van der Waals Epitaxy of III-Nitrides and Its Applications. Materials, 2020, 13, 3835.	1.3	4
635	Fabrication of layered double hydroxide/carbon nanomaterial for heavy metals removal. Applied Clay Science, 2020, 199, 105867.	2.6	18
636	Plasmonic Manipulation of Sodium Chlorate Chiral Crystallization: Directed Chirality Transfer via Contact-Induced Polymorphic Transformation and Formation of Liquid Precursor. Crystal Growth and Design, 2020, 20, 5493-5507.	1.4	7
637	Molecular dynamics computations of brine-CO2/CH4-shale contact angles: Implications for CO2 sequestration and enhanced gas recovery. Fuel, 2020, 280, 118590.	3.4	32
638	Water flow enhancement in amorphous silica nanochannels coated with monolayer graphene. MRS Communications, 2020, 10, 428-433.	0.8	5
639	Screening effect of monolayer van der Waals crystals on surface deicing: a molecular simulation study. Physical Chemistry Chemical Physics, 2020, 22, 27873-27881.	1.3	3
640	Enhanced Gas Sensing Properties of Graphene Transistor by Reduced Doping with Hydrophobic Polymer Brush as a Surface Modification Layer. ACS Applied Materials & Interfaces, 2020, 12, 55493-55500.	4.0	29
641	Encapsulation of Electrically Conductive Apparel Fabrics: Effects on Performance. Sensors, 2020, 20, 4243.	2.1	4
642	Outstanding Broadband (532 nm to 2.2 μm) and Very Efficient Optical Limiting Performance of Some Defect-Engineered Graphenes. Journal of Physical Chemistry Letters, 2020, 11, 9515-9520.	2.1	11
643	Nanographitic coating enables hydrophobicity in lightweight and strong microarchitected carbon. Communications Materials, 2020, 1, .	2.9	10

#	Article	IF	CITATIONS
644	Reversible Switching of Charge Transfer at the Graphene–Mica Interface with Intercalating Molecules. ACS Nano, 2020, 14, 11594-11604.	7.3	7
645	Hydrothermal Synthesis of Carbon Nanoâ€Onions from Citric Acid. Chemistry - an Asian Journal, 2020, 15, 3428-3431.	1.7	16
646	Diethylaminoâ€fluorographene: A 2D material with broadband and efficient optical limiting performance (from 500 to 1800 nm) with very large nonlinear optical response. Nano Select, 2020, 1, 395-404.	1.9	4
647	Molecular transportation phenomena of simple liquids through a nanoporous graphene membrane. Physical Review E, 2020, 102, 033110.	0.8	9
648	Interfacial Properties of Water on Hydrogenated and Fluorinated Graphene Surfaces: Parametrization of Nonbonded Interactions. Journal of Physical Chemistry C, 2020, 124, 21467-21475.	1.5	16
649	Polyvinylidene Fluoride/Reduced Graphene Oxide Layers on SiO _{<i>x</i>} N _{<i>y</i>} /Poly(ethylene terephthalate) Films as Transparent Coatings for Organic Electronic Devices and Packaging Materials. ACS Applied Nano Materials, 2020, 3, 8972-8981.	2.4	9
650	Biophysical binding profile with ct-DNA and cytotoxic studies of a modulated nanoconjugate of umbelliferone cobalt oxide loaded on graphene oxide (GO) as drug carrier. Journal of Biomolecular Structure and Dynamics, 2022, 40, 4558-4569.	2.0	7
651	Temporal evolution of wetting transitions of graphene oxide coated on roughened polyvinyl chloride surfaces. Materials Today Communications, 2020, 25, 101650.	0.9	2
652	Effects of Stoichiometry on Structural, Morphological and Nanomechanical Properties of Bi2Se3 Thin Films Deposited on InP(111) Substrates by Pulsed Laser Deposition. Coatings, 2020, 10, 958.	1.2	8
653	UV Laser Photo-Reduction of Graphene Oxide and Graphene Fluoride for the Efficient Tuning of their Nonlinear Optical Response. , 2020, , .		1
654	Nanoscale Molecular Building Blocks for Layerâ€by‣ayer Assembly. Advanced Materials Interfaces, 2020, 7, 2000522.	1.9	3
655	Exploring the limits of sensitivity for strain gauges of graphene and hexagonal boron nitride decorated with metallic nanoislands. Nanoscale, 2020, 12, 11209-11221.	2.8	9
656	Manipulating electronic structure of graphene for producing ferromagnetic graphene particles by Leidenfrost effect-based method. Scientific Reports, 2020, 10, 6874.	1.6	11
657	Influence of substrate on ultrafast water transport property of multilayer graphene coatings. Nanotechnology, 2020, 31, 375704.	1.3	11
658	In-situ X-ray diffraction analysis of GaN growth on graphene-covered amorphous substrates. Japanese Journal of Applied Physics, 2020, 59, 070902.	0.8	4
659	Nitrogen-Doped Unusually Superwetting, Thermally Insulating, and Elastic Graphene Aerogel for Efficient Solar Steam Generation. ACS Applied Materials & Interfaces, 2020, 12, 26200-26212.	4.0	55
660	Effect of Pt Crystal Surface on Hydrogenation of Monolayer h-BN and Its Conversion to Graphene. Chemistry of Materials, 2020, 32, 4584-4590.	3.2	9
661	Templating effect of single-layer graphene supported by an insulating substrate on the molecular orientation of lead phthalocyanine. Beilstein Journal of Nanotechnology, 2020, 11, 814-820.	1.5	4

#	Article	IF	CITATIONS
662	How Universal Is the Wetting Aging in 2D Materials. Nano Letters, 2020, 20, 5670-5677.	4.5	22
663	Solvent–Solvent Correlations across Graphene: The Effect of Image Charges. ACS Nano, 2020, 14, 7987-7998.	7.3	25
664	Green synthesis of peptide functionalized reduced graphene oxide (rGO) nano bioconjugate with enhanced antibacterial activity. Scientific Reports, 2020, 10, 9441.	1.6	65
665	Bio-Based Carbon Materials from Potato Waste as Electrode Materials in Supercapacitors. Energies, 2020, 13, 2406.	1.6	15
666	Multidimensional graphene structures and beyond: Unique properties, syntheses and applications. Progress in Materials Science, 2020, 113, 100665.	16.0	61
667	Interaction of 2D materials with liquids: wettability, electrochemical properties, friction, and emerging directions. NPG Asia Materials, 2020, 12, .	3.8	53
668	Locally-triggered hydrophobic collapse induces global interface self-cleaning in van-der-Waals heterostructures at room-temperature. 2D Materials, 2020, 7, 035002.	2.0	4
669	Wettability of graphene. Surface Science Reports, 2020, 75, 100482.	3.8	58
670	Evolution of morphology and defects of graphene with growth parameters by PECVD. Materials Research Express, 2020, 7, 035025.	0.8	4
671	Smart Bifunctional Sb 2 Se 3 Nanorods for Integrated Water Purification: Insoluble Liquid Separation and Photoelectrochemical Degradation. ChemSusChem, 2020, 13, 3017-3027.	3.6	6
672	Wetting Transition in a Molten Metal and Solid Substrate System in High Magnetic Fields. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 2333-2343.	1.1	7
673	Superhydrophobic nickel/carbon core–shell nanocomposites for the hydrogen transfer reactions of nitrobenzene and N-heterocycles. Green Chemistry, 2020, 22, 1996-2010.	4.6	26
674	Evaporation of Initially Heated Sessile Droplets and the Resultant Dried Colloidal Deposits on Substrates Held at Ambient Temperature. Langmuir, 2020, 36, 8407-8421.	1.6	27
675	Screening effect of CVD graphene on the surface free energy of substrates. Physical Chemistry Chemical Physics, 2020, 22, 16672-16680.	1.3	4
676	Emissions and exposures of graphene nanomaterials, titanium dioxide nanofibers, and nanoparticles during down-stream industrial handling. Journal of Exposure Science and Environmental Epidemiology, 2021, 31, 736-752.	1.8	23
677	Selective Permeation of Water through Angstromâ€Channel Graphene Membranes for Bioethanol Concentration. Advanced Materials, 2020, 32, e2002320.	11.1	35
678	Theory and simulation developments of confined mass transport through graphene-based separation membranes. Physical Chemistry Chemical Physics, 2020, 22, 6032-6057.	1.3	19
679	Unexpected large impact of small charges on surface frictions with similar wetting properties. Communications Chemistry, 2020, 3, .	2.0	11

#	Article	IF	CITATIONS
680	Semiempirical van der Waals method for two-dimensional materials with incorporated dielectric functions. Physical Review B, 2020, 101, .	1.1	9
681	Atomic-level insights into nano-salt droplets wetting on the MgO surface using molecular dynamics simulations. Corrosion Science, 2020, 167, 108549.	3.0	11
682	First Adsorbed Water Layer and Its Wettability Transition under Compressive Lattice Strain. Journal of Physical Chemistry C, 2020, 124, 4057-4064.	1.5	4
683	On the wetting translucency of hexagonal boron nitride. Physical Chemistry Chemical Physics, 2020, 22, 7710-7718.	1.3	19
684	Atomic force microscopy phase imaging of epitaxial graphene films. JPhys Materials, 2020, 3, 024005.	1.8	8
685	Investigating the impact of layer properties on the performance of p-graphene/CH3NH3PbI3/n-cSi solar cell using numerical modelling. Superlattices and Microstructures, 2020, 140, 106468.	1.4	13
686	Radial buckle delamination around 2D material tents. Journal of the Mechanics and Physics of Solids, 2020, 137, 103843.	2.3	34
687	Carbon science perspective in 2020: Current research and future challenges. Carbon, 2020, 161, 373-391.	5.4	77
688	Enhancing the stability of perovskites by constructing heterojunctions of graphene/MASnl ₃ . Physical Chemistry Chemical Physics, 2020, 22, 3724-3733.	1.3	6
689	Green and Facile Preparation of Readily Dual-Recyclable Thermosetting Polymers with Superior Stability Based on Asymmetric Acetal. Macromolecules, 2020, 53, 1474-1485.	2.2	80
690	"Wrapped―nitrogen-doped defective reduced graphene oxide (ND-rGO): A virtual electron bed for enhanced supercapacitive charge storage in stepped-surfaced-NiCo2O4/ND-rGO Bi2O3 asymmetric device. Electrochimica Acta, 2020, 338, 135819.	2.6	19
691	Nanoscale Correlations of Ice Adhesion Strength and Water Contact Angle. Coatings, 2020, 10, 379.	1.2	20
692	Heterogeneity of Water Molecules on the Free Surface of Thin Reduced Graphene Oxide Sheets. Journal of Physical Chemistry C, 2020, 124, 11064-11074.	1.5	9
693	Ultrafast spontaneous driving of water droplets on monolayer graphene-covered gradient nanopillared surfaces. Applied Surface Science, 2020, 515, 145976.	3.1	16
694	Development of graphene-PVDF composite membranes for membrane distillation. Journal of Membrane Science, 2020, 604, 118017.	4.1	52
695	Atomic Layer Deposition of High-k Insulators on Epitaxial Graphene: A Review. Applied Sciences (Switzerland), 2020, 10, 2440.	1.3	15
696	Influence of Carbyne Content on the Mechanical Performance of Nanothick Amorphous Carbon Coatings. Nanomaterials, 2020, 10, 780.	1.9	4
697	Facile fabrication of super-hydrophilic porous graphene with ultra-fast spreading feature and capillary effect by direct laser writing. Materials Chemistry and Physics, 2020, 251, 123083.	2.0	11

CITATI	ON	
U I I A I I		

#	Article	IF	CITATIONS
698	Wettability of NaNO ₃ and KNO ₃ on MgO and Carbon Surfaces—Understanding the Substrate and the Length Scale Effects. Journal of Physical Chemistry C, 2020, 124, 8140-8152.	1.5	11
699	Microstructural and Dynamical Heterogeneities in Ionic Liquids. Chemical Reviews, 2020, 120, 5798-5877.	23.0	277
700	A review of recent advances in computational and experimental analysis of first adsorbed water layer on solid substrate. Molecular Simulation, 2021, 47, 925-941.	0.9	8
701	Influence of the Polymer Interphase Structure on the Interaction between Metal and Semicrystalline Thermoplastics. Advanced Engineering Materials, 2021, 23, 2000518.	1.6	7
702	Graphene and its derivative composite materials with special wettability: Potential application in oil-water separation. Carbon, 2021, 172, 647-681.	5.4	47
703	Ultrafast water evaporation through graphene membranes with subnanometer pores for desalination. Journal of Membrane Science, 2021, 621, 118934.	4.1	45
704	Multifunctional TaCu-nanotubes coated titanium for enhanced bacteriostatic, angiogenic and osteogenic properties. Materials Science and Engineering C, 2021, 120, 111777.	3.8	19
705	Ways to eliminate PMMA residues on graphene —— superclean graphene. Carbon, 2021, 173, 609-636.	5.4	53
706	Graphene and graphene oxide on Ir(111) are transparent to wetting but not to icing. Carbon, 2021, 174, 396-403.	5.4	17
707	Solutionâ€processed graphene oxide coatings for enhanced heat transfer during dropwise condensation of steam. Nano Select, 2021, 2, 61-71.	1.9	12
708	Molecular simulations on the hydration and underwater oleophobicity of zwitterionic selfâ€assembled monolayers. AICHE Journal, 2021, 67, e17103.	1.8	14
709	<i>In Situ</i> Photothermal Response of Single Gold Nanoparticles through Hyperspectral Imaging Anti-Stokes Thermometry. ACS Nano, 2021, 15, 2458-2467.	7.3	42
710	Interactions between Primary Neurons and Graphene Films with Different Structure and Electrical Conductivity. Advanced Functional Materials, 2021, 31, 2005300.	7.8	15
711	Screening of hydrogen bonding interactions by a single layer graphene. Nanoscale, 2021, 13, 8098-8106.	2.8	8
712	Hydrogenated Graphene Improves Neuronal Network Maturation and Excitatory Transmission. Advanced Biology, 2021, 5, e2000177.	1.4	12
713	Improving the efficiency of electrokinetic conversion in nanofluidics with graphene-engineered surface. Sustainable Energy and Fuels, 2021, 5, 3292-3297.	2.5	2
714	The rise of carbon materials for field emission. Journal of Materials Chemistry C, 2021, 9, 2620-2659.	2.7	28
715	Adsorption of water on epitaxial graphene. Journal of Materials Research, 2021, 36, 129-139.	1.2	6

# 716	ARTICLE Interface-enhanced CO ₂ capture <i>via</i> the synthetic effects of a nanomaterial-supported ionic liquid thin film. Nanoscale Advances, 2021, 3, 1397-1403.	IF 2.2	Citations 9
717	Does Expanding or Contracting MgO Lattice Really Help with Corrosion Resistance of Mg Surface: Insights from Molecular Dynamics Simulations. ACS Omega, 2021, 6, 1099-1107.	1.6	1
718	Grain size effects on the wettability of as-grown graphene and dropwise condensation. Carbon, 2021, 171, 507-513.	5.4	11
719	Protein interactions with chemical vapor deposited graphene modified by substrate. 2D Materials, 2021, 8, 025015.	2.0	3
720	Structural and dynamical fingerprints of the anomalous dielectric properties of water under confinement. Physical Review Materials, 2021, 5, .	0.9	10
721	TECHNOLOGY AND APPLICATIONS OF GRAPHENE OXIDE MEMBRANES. Surface Review and Letters, 2021, 28, 2140004.	0.5	10
722	Preparation of transparent and hydrophobic cerium oxide films with stable mechanical properties by magnetron sputtering. Vacuum, 2021, 184, 109888.	1.6	13
723	Designing Carbonized Loofah Sponge Architectures with Plasmonic Cu Nanoparticles Encapsulated in Graphitic Layers for Highly Efficient Solar Vapor Generation. Nano Letters, 2021, 21, 1709-1715.	4.5	79
724	A combined theoretical and experimental investigation on the wettability of MWCNT filled PVAc-g-PDMS easy-clean coating. Progress in Organic Coatings, 2021, 151, 106092.	1.9	22
725	Impact of the Surface and Microstructure on the Lubricative Properties of MoS ₂ Aging under Different Environments. Langmuir, 2021, 37, 2928-2941.	1.6	9
726	A generalized examination of capillary force balance at contact line: On rough surfaces or in two-liquid systems. Journal of Colloid and Interface Science, 2021, 585, 320-327.	5.0	12
727	Coating performance of hexagonal boron nitride and graphene layers. 2D Materials, 2021, 8, 034002.	2.0	14
728	Pinning effect in droplet self-driving and its reduction mechanism by monolayer graphene. Applied Surface Science, 2021, 542, 148666.	3.1	8
729	Macroscopic and Microscopic Wettability of Graphene. Langmuir, 2021, 37, 4049-4055.	1.6	15
730	Role of Long-Range Electrostatic Interactions and Local Topology of the Hydrogen Bond Network in the Wettability of Fully and Partially Wetted Single and Multilayer Graphene. Journal of Physical Chemistry C, 2021, 125, 6367-6377.	1.5	20
731	A three component-based van der Waals surface vertically designed for biomolecular recognition enhancement. Electrochimica Acta, 2021, 376, 138025.	2.6	8
732	Characterization of the interaction between graphene and copper substrate by time-of-flight secondary ion mass spectrometry. Applied Surface Science, 2021, 544, 148950.	3.1	7
733	Wettability Transition on Graphyne-Coated Au(111) Substrates with Different Pore Sizes: The Role of Interfacial Hydrogen Bonds. Journal of Physical Chemistry C, 2021, 125, 7971-7979.	1.5	4

#	Article	IF	CITATIONS
734	Antibacterial and antibiofilm properties of graphene and its derivatives. Colloids and Surfaces B: Biointerfaces, 2021, 200, 111588.	2.5	49
735	Nonmonotonous Distance Dependence of van der Waals Screening by a Dielectric Layer. Journal of Physical Chemistry Letters, 2021, 12, 4993-4999.	2.1	3
736	Resolving few-layer antimonene/graphene heterostructures. Npj 2D Materials and Applications, 2021, 5,	3.9	11
737	Graphene overcoats for ultra-high storage density magnetic media. Nature Communications, 2021, 12, 2854.	5.8	15
738	Remote growth of oxide heteroepitaxy through MoS2. APL Materials, 2021, 9, .	2.2	11
739	Self-consistent dielectric functions of materials: Toward accurate computation of Casimir–van der Waals forces. Science Advances, 2021, 7, .	4.7	18
740	Slip-Flow Regimes in Nanofluidics: A Universal Superexponential Model. Physical Review Applied, 2021, 15, .	1.5	7
741	In-situ synthesis of graphene-like carbon encapsulated copper particles for reinforcing copper matrix composites. Materials and Design, 2021, 203, 109586.	3.3	11
742	Layer dependent out-of-plane elastic modulus of graphene. Applied Physics Letters, 2021, 118, 263101.	1.5	1
743	Preparing Better Samples for Cryo–Electron Microscopy: Biochemical Challenges Do Not End with Isolation and Purification. Annual Review of Biochemistry, 2021, 90, 451-474.	5.0	33
744	Multiple Wetting–Dewetting States of a Water Droplet on Dual-Scale Hierarchical Structured Surfaces. Jacs Au, 2021, 1, 955-966.	3.6	3
745	Electrostatics of Single Monolayer Graphene Coated Metal Electrode in Electrolyte. Advanced Materials Interfaces, 2021, 8, 2100370.	1.9	2
746	Multifunctional laser-induced graphene enabled polymeric composites. Composites Communications, 2021, 25, 100714.	3.3	15
747	Nanophotonic biosensors harnessing van der Waals materials. Nature Communications, 2021, 12, 3824.	5.8	88
748	Construction of Functional Superhydrophobic Biochars as Hydrogen Transfer Catalysts for Dehydrogenation of <i>N</i> -Heterocycles. ACS Sustainable Chemistry and Engineering, 2021, 9, 9062-9077.	3.2	7
749	Wettability of graphene and interfacial water structure. CheM, 2021, 7, 1602-1614.	5.8	33
750	Reversible Lectin Binding to Glycan-Functionalized Graphene. International Journal of Molecular Sciences, 2021, 22, 6661.	1.8	1
751	Recent Progress in the Synthesis of MoS2 Thin Films for Sensing, Photovoltaic and Plasmonic Applications: A Review. Materials, 2021, 14, 3283.	1.3	38

#	Article	IF	CITATIONS
752	Effects of dissimilar molecular interface and ion-concentration on wetting characteristics of nanodroplets. Microfluidics and Nanofluidics, 2021, 25, 1.	1.0	15
753	Interfacial tension of the graphene–water solid–liquid interface: how to handle the electrostatic interactions?. Molecular Physics, 2021, 119, .	0.8	2
754	Control of Water Adsorption via Electrically Doped Graphene: Effect of Fermi Level on Uptake and H ₂ 0 Orientation. Advanced Materials Interfaces, 2021, 8, 2100445.	1.9	3
755	Interaction and dynamics of two nanodroplets separated by monolayer graphene. Journal of Molecular Liquids, 2021, , 116987.	2.3	4
756	Enhancing ultra-wideband THz fingerprint sensing of unpatterned 2D carbon-based nanomaterials. Carbon, 2021, 179, 666-676.	5.4	25
757	Stable graphene oxide-halloysite composite membrane with enhanced permeability for efficient dye desalination. Separation and Purification Technology, 2021, 266, 118067.	3.9	21
758	Surface modifications to enhance dropwise condensation. Surfaces and Interfaces, 2021, 25, 101143.	1.5	34
759	Nanomechanical characteristics of trapped oil droplets with nanoparticles: A molecular dynamics simulation. Journal of Petroleum Science and Engineering, 2021, 203, 108649.	2.1	16
760	Concentration-dependent emissive lignin-derived graphene quantum dots for bioimaging and anti-counterfeiting. Diamond and Related Materials, 2021, 117, 108482.	1.8	7
761	Memory effects in polymer brushes showing co-nonsolvency effects. Advances in Colloid and Interface Science, 2021, 294, 102442.	7.0	11
762	Continuous Water Filling in a Graphene Nanochannel: A Molecular Dynamics Study. Journal of Physical Chemistry B, 2021, 125, 9824-9833.	1.2	9
763	Ultrathin Lubricant-Infused Vertical Graphene Nanoscaffolds for High-Performance Dropwise Condensation. ACS Nano, 2021, 15, 14305-14315.	7.3	23
764	Few-layer graphene on nickel enabled sustainable dropwise condensation. Science Bulletin, 2021, 66, 1877-1884.	4.3	18
765	Are Contact Angle Measurements Useful for Oxide-Coated Liquid Metals?. Langmuir, 2021, 37, 10914-10923.	1.6	54
766	Atomically Thin Bilayer Janus Membranes for Cryo-electron Microscopy. ACS Nano, 2021, 15, 16562-16571.	7.3	5
767	Investigation of surface wettability and their influencing mechanisms under vibration field: A molecular dynamics simulation study. Computational Materials Science, 2021, 197, 110615.	1.4	8
768	Entropic Stabilization of Water at Graphitic Interfaces. Journal of Physical Chemistry Letters, 2021, 12, 9162-9168.	2.1	5
769	Osteoinductive and antimicrobial mechanisms of grapheneâ€based materials for enhancing bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 915-935.	1.3	17

#	Article	IF	CITATIONS
770	Diffusion of water nanodroplets on graphene with double-vacancy: The constraining effects of defect. Applied Surface Science, 2022, 573, 151235.	3.1	3
771	Ultrafast self-propelled water droplet transport on a graphene-covered nanocone. Journal Physics D: Applied Physics, 2021, 54, 505307.	1.3	4
772	Multifunctional Laserâ€Induced Graphene Papers with Combined Defocusing and Grafting Processes for Patternable and Continuously Tunable Wettability from Superlyophilicity to Superlyophobicity. Small, 2021, 17, e2103322.	5.2	25
773	Thermal performance of nanomaterial in solar collector: State-of-play for graphene. Journal of Energy Storage, 2021, 42, 103022.	3.9	13
774	Hydrophobic-to-hydrophilic affinity change of sub-monolayer water molecules at water–graphene interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127393.	2.3	13
775	Improved moisture stability of graphene transistors by controlling water molecule adsorption. Sensors and Actuators B: Chemical, 2021, 347, 130579.	4.0	6
776	The study of water wettability on solid surfaces by molecular dynamics simulation. Surface Science, 2021, 714, 121916.	0.8	10
777	Molecular dynamics simulation study on nanofilm boiling of water with insoluble gas. International Journal of Thermal Sciences, 2022, 171, 107212.	2.6	6
778	Surface modification on copper particles toward graphene reinforced copper matrix composites for electrical engineering application. Journal of Alloys and Compounds, 2022, 891, 162058.	2.8	13
779	CHAPTER 6. Mechanical Properties of Polymer Functionalized Graphene. RSC Polymer Chemistry Series, 2021, , 164-196.	0.1	0
780	Effect of vacancy defects on electronic properties and wettability of coal surface. Applied Surface Science, 2020, 511, 145546.	3.1	20
781	Engineering high-defect densities across vertically-aligned graphene nanosheets to induce photocatalytic reactivity. Carbon, 2020, 168, 32-41.	5.4	22
782	Heat transfer enhancement of a multilayer graphene coating surface. Experimental Thermal and Fluid Science, 2020, 118, 110175.	1.5	9
783	Graphene nanoplatelets as an anticorrosion additive for solar absorber coatings. Solar Energy Materials and Solar Cells, 2018, 176, 19-29.	3.0	68
784	Snap-through in Graphene Nanochannels: With Application to Fluidic Control. ACS Applied Materials & Interfaces, 2021, 13, 1158-1168.	4.0	11
785	Nonreciprocal interactions induced by water in confinement. Physical Review Research, 2020, 2, .	1.3	29
786	Multiple epitaxial lateral overgrowth of GaN thin films using a patterned graphene mask by metal organic chemical vapor deposition. Journal of Applied Crystallography, 2020, 53, 1502-1508.	1.9	10
788	Uni-directional self-driving of water droplets on monolayer graphene-covered wedge-shaped copper substrate. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 200202.	0.2	1

#	Article	IF	CITATIONS
789	Graphene and graphene-related materials as brain electrodes. Journal of Materials Chemistry B, 2021, 9, 9485-9496.	2.9	12
790	Influence of Annealing and Substrate Surface Textures on the Wettability of Grapheneâ€Coated Copper Foil. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, 2100305.	0.8	3
791	Defect Engineering of Graphene to Modulate pH Response of Graphene Devices. Langmuir, 2021, 37, 12163-12178.	1.6	16
792	Can Graphene Lead to Breakthrough in Boiling Heat Transfer?. Journal of Material Science & Engineering, 2013, 03, .	0.2	0
794	Progress in Surface Properties and the Surface Testing of Graphene. Journal of Advances in Physical Chemistry, 2016, 05, 48-57.	0.1	0
795	Interfacial water at microscopic level: from quasi-one-dimensional, two-dimensional confined space, to biomolecules surfaces and material surfaces. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 186101.	0.2	4
796	Theoretical Study of Hydrogen Bonds in Water Nanodroplet on Graphene. Journal of Computer Chemistry Japan, 2016, 15, 85-86.	0.0	0
797	Morphological evolution and liquid-like behavior of gold nanofilm on the suspended graphene. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 126803.	0.2	1
798	Molecular dynamics simulation of characteristic water molecular arrangement on graphene surface and wetting transparency of graphene. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 086801.	0.2	0
799	Wettability of graphene and its control. Ceramist, 2020, 23, 166-177.	0.0	2
800	Heat Transfer Enhancement During Dropwise Condensation Over Wettability-Controlled Surfaces. , 2022, , 29-67.		5
801	Microscopic insights into hydrophobicity of cerium oxide: Effects of crystal orientation and lattice constant. Journal of Materials Science and Technology, 2022, 109, 20-29.	5.6	10
802	Atomic Layers of Graphene for Microbial Corrosion Prevention. ACS Nano, 2021, 15, 447-454.	7.3	20
803	Wetting and Drying Transitions of Water Nanodroplets on Suspended Graphene Bilayers. Journal of Physical Chemistry C, 2020, 124, 28152-28158.	1.5	4
804	Molecular structure and transport of ionic liquid confined in asymmetric graphene-coated silica nanochannel. Journal of Molecular Liquids, 2022, 345, 117869.	2.3	13
805	Adsorption of water on epitaxial graphene. Journal of Materials Research, 2021, 36, 1-11.	1.2	0
806	Topography versus chemistry – How can we control surface wetting?. Journal of Colloid and Interface Science, 2022, 609, 645-656.	5.0	19
807	Intrinsic Wettability in Pristine Graphene. Advanced Materials, 2022, 34, e2103620.	11.1	28

#	Article	IF	CITATIONS
808	Vertical graphene-coated Cu wire for enhanced tolerance to high current density in power transmission. Nano Research, 2022, 15, 9727-9733.	5.8	11
809	Substrate-Driven Atomic Layer Deposition of High-κ Dielectrics on 2D Materials. Applied Sciences (Switzerland), 2021, 11, 11052.	1.3	11
810	Superior Antidegeneration Hierarchical Nanoengineered Wicking Surfaces for Boiling Enhancement. Advanced Functional Materials, 2022, 32, 2108836.	7.8	23
811	Micro/Nanopatterned Superhydrophobic Surfaces Fabrication for Biomolecules and Biomaterials Manipulation and Analysis. Micromachines, 2021, 12, 1501.	1.4	5
812	Graphene wettability control: Texturing of the substrate and removal of airborne contaminants in the atmosphere of various gases. Journal of Molecular Liquids, 2022, 349, 118116.	2.3	17
813	Uniform deposition of large-area graphene films on copper using low-pressure chemical vapor deposition technique. Carbon Letters, 2022, 32, 781-787.	3.3	6
814	Tuning the Structure, Conductivity, and Wettability of Laser-Induced Graphene for Multiplexed Open Microfluidic Environmental Biosensing and Energy Storage Devices. ACS Nano, 2022, 16, 15-28.	7.3	40
815	Scalable Characterization of 2D Gallium-Intercalated Epitaxial Graphene. ACS Applied Materials & Interfaces, 2021, 13, 55428-55439.	4.0	5
816	Surface and Interface Investigations of Matrix–Fillers in Heterogeneous Amorphous Semiconductors. ACS Omega, 2021, 6, 34075-34085.	1.6	1
818	Wettability of Penta-Graphene: A Molecular Dynamics Simulation Approach. Journal of Physical Chemistry C, 2022, 126, 1590-1599.	1.5	4
819	Long-Range Orbital Hybridization in Remote Epitaxy: The Nucleation Mechanism of GaN on Different Substrates <i>via</i> Single-Layer Graphene. ACS Applied Materials & Interfaces, 2022, 14, 2263-2274.	4.0	22
820	Study on heat transfer characteristics of indirect evaporative cooling system based on secondary side hydrophilic. Energy and Buildings, 2022, 257, 111704.	3.1	6
821	Adsorption of extended surfactants at the water-PTFE interface: The effect of PO number. Journal of Molecular Liquids, 2022, 348, 118465.	2.3	7
822	High-performance porous graphene oxide hollow fiber membranes with tailored pore sizes for water purification. Journal of Membrane Science, 2022, 645, 120216.	4.1	17
823	Experimental data and modeling of wettability on graphene-coated copper. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 277, 115588.	1.7	13
824	Smart electronic material GRAPHENE and its utilization as a photo-sensitive switchable device. , 2022, , 103-114.		0
825	Impact of confinement and polarizability on dynamics of ionic liquids. Journal of Chemical Physics, 2022, 156, 064703.	1.2	7
826	Wetting Stability of Supported Graphene in Ambient Environment. Advanced Engineering Materials, 0, , 2101283.	1.6	0

#	Article	IF	CITATIONS
827	Size ontrolled Nanosculpture of Cylindrical Pores across Multilayer Graphene via Photocatalytic Perforation. Advanced Materials Interfaces, 2022, 9, .	1.9	4
828	Spontaneous inversion of the submicron ceramic layer deposited on steel and the copper droplet positioned on their top (case of ceramic poorly wetted by liquid Cu). Journal of Materials Science, 2022, 57, 1648-1668.	1.7	1
829	Single-layer graphene prevents Cassie-wetting failure of structured hydrophobic surface for efficient condensation. Journal of Colloid and Interface Science, 2022, 615, 302-308.	5.0	7
830	Effect of graphene wrinkle degree on the interfacial behavior between iron and graphene: Atomic simulation. Journal of Molecular Liquids, 2022, 351, 118598.	2.3	1
831	A Review of Recent Progress in Molecular Dynamics and Coarse-Grain Simulations Assisted Understanding of Wettability. Archives of Computational Methods in Engineering, 2022, 29, 3059-3085.	6.0	18
832	Non-covalent interactions of graphene surface: Mechanisms and applications. CheM, 2022, 8, 947-979.	5.8	29
833	Origin and evolution of a crack in silicon induced by a single grain grinding. Journal of Manufacturing Processes, 2022, 75, 617-626.	2.8	40
834	Superhydrophobic nanocomposites of erbium oxide and reduced graphene oxide for high-performance microwave absorption. Journal of Colloid and Interface Science, 2022, 615, 69-78.	5.0	14
835	Can Graphene Act as a (Noble) Metal-free Catalyst?. Current Physical Chemistry, 2022, 12, 2-10.	0.1	3
836	Introducing an interesting and novel strategy based on exploiting first-order advantage from spectrofluorimetric data for monitoring three toxic metals in living cells. Toxicology Reports, 2022, 9, 647-655.	1.6	1
837	On the effects of induced polarizability at the water–graphene interface <i>via</i> classical charge-on-spring models. Physical Chemistry Chemical Physics, 2022, 24, 7748-7758.	1.3	4
838	Rotation induced symmetry change of friction coefficient of water on graphene/h-BN heterostructures. Applied Physics Letters, 2022, 120, 084103.	1.5	1
839	Mathematical model of dynamic imbibition in nanoporous reservoirs. Petroleum Exploration and Development, 2022, 49, 170-178.	3.0	7
840	éžå⊷陿†ä»¶ä,‹äºŒç»´å†°çš"å½¢æ^åŠç"Ÿé•įæœºå^¶ç"ç©¶. Chinese Science Bulletin, 2022, , .	0.4	1
841	Graphene nanoencapsulation action at an air/lipid interface. Journal of Materials Science, 2022, 57, 6223-6232.	1.7	1
842	A game changer nano-fiber: Review on recent trends of graphene. Materials Today: Proceedings, 2022, 63, 127-130.	0.9	2
843	Microscopic Simulations of Electrochemical Double-Layer Capacitors. Chemical Reviews, 2022, 122, 10860-10898.	23.0	81
844	Morphology and surface engineering of vertical graphene films for dye photodegradation. Ceramics International, 2022, 48, 9477-9482.	2.3	4

#	Article	IF	CITATIONS
845	Improving TC drill bit's efficiency and resistance to wear by graphene coating. Petroleum Research, 2022, 7, 430-436.	1.6	1
846	Freestanding Graphene Fabric Film for Flexible Infrared Camouflage. Advanced Science, 2022, 9, e2105004.	5.6	24
847	Nanohydrodynamic Model and Transport Mechanisms of Tight Oil Confined in Nanopores Considering Liquid–Solid Molecular Interaction Effect. Industrial & Engineering Chemistry Research, 2021, 60, 18154-18165.	1.8	6
848	Wettability of graphene oxide functionalized with <i>N</i> -alkylamines: a molecular dynamics study. Physical Chemistry Chemical Physics, 2022, 24, 11412-11419.	1.3	6
849	Experimental and numerical investigation on U-shaped tube liquid-separation plate condenser. Applied Thermal Engineering, 2022, 211, 118518.	3.0	1
850	Wettability of graphene, water contact angle, and interfacial water structure. CheM, 2022, 8, 1187-1200.	5.8	18
851	Effects of wettability and heat flux on water nanofilm phase change over copper plate. Applied Thermal Engineering, 2022, 213, 118638.	3.0	8
852	Graphene-based multifunctional surface and structure gradients engineered by atmospheric plasma. Applied Materials Today, 2022, 27, 101486.	2.3	11
853	Role of Interfacial Interactions in the Graphene-Directed Assembly of Monolayer Conjugated Polymers. Langmuir, 2022, 38, 6984-6995.	1.6	2
854	Wetting properties of graphene and multilayer graphene deposited on copper: The influence of copper topography. Thin Solid Films, 2022, 755, 139333.	0.8	3
855	Dynamic radiation regulations for thermal comfort. Nano Energy, 2022, 100, 107435.	8.2	49
857	A Brief Overview on Facile Synthesis and Challenging Properties of Graphene Nanocomposite: State-of-the-art. Asian Journal of Chemistry, 2022, 34, 1603-1612.	0.1	Ο
858	Electrochemical Transparency of Graphene. ACS Nano, 2022, 16, 9278-9286.	7.3	5
859	Graphene Surface Energy by Contact Angle Measurements. Arabian Journal for Science and Engineering, 2023, 48, 757-762.	1.7	3
860	Synthesis and Characterization of PVDF/Graphene Nanocomposite Membrane for Water Treatment Applications. Key Engineering Materials, 0, 924, 177-187.	0.4	0
861	Surface-treatment process related sheet resistance variations in graphene-based thin-film electrodes. Surfaces and Interfaces, 2022, 32, 102161.	1.5	3
862	Molecular Dynamics Simulation on Liquid Nanofilm Boiling Over Vibrating Surface. SSRN Electronic Journal, O, , .	0.4	0
863	Lamellar water induced quantized interlayer spacing of nanochannels walls. Green Energy and Environment, 2024, 9, 356-365.	4.7	5

#	ARTICLE	IF	CITATIONS
864	Electrophoresed Graphene Coatings for Corrosion Prevention: A Review. Nano, 2022, 17, .	0.5	1
865	Thickness Dependence of Contact Angles in Multilayered Ultrathin Polymer Films. Macromolecules, 2022, 55, 7556-7563.	2.2	4
866	Ultrahigh resistance of hexagonal boron nitride to mineral scale formation. Nature Communications, 2022, 13, .	5.8	16
867	The effect of air solubility on the Kapitza resistance of the copper-water interface. Journal of Molecular Liquids, 2022, 366, 120049.	2.3	1
868	Controllable and Gradient Wettability of Bilayer Two-Dimensional Materials Regulated by Interlayer Distance. ACS Applied Materials & amp; Interfaces, 2022, 14, 41489-41498.	4.0	5
869	Biphenylene: A Twoâ^'Dimensional Grapheneâ^'Based Coating with Superior Antiâ^'Corrosion Performance. Materials, 2022, 15, 5675.	1.3	4
870	Reactions between graphene oxide sheets cause irreversible agglomeration. Science Bulletin, 2022, 67, 1943-1945.	4.3	2
871	Graphene induced structure and doping level tuning of evaporated CsPbBr3 on different substrates. Chemical Engineering Journal, 2023, 452, 139243.	6.6	1
872	Translucency and negative temperature-dependence for the slip length of water on graphene. Nanoscale, 0, , .	2.8	2
873	Effect of Graphene Substrate on Melting of Cu Nanoparticles. SSRN Electronic Journal, 0, , .	0.4	0
874	Mocvd of Wse2 Crystals on Highly Crystalline Single- and Multi-Layer Cvd Graphene. SSRN Electronic Journal, 0, , .	0.4	0
875	MOLECULAR DYNAMICS STUDY ON THE RELATIONSHIP BETWEEN DENSITY DEPLETION LENGTH AND INTERFACIAL THERMAL RESISTANCE AT NANOSTRUCTURED SURFACES. Heat Transfer Research, 2023, 54, 77-92.	0.9	1
876	Effect of Environmental Contaminants on the Interfacial Properties of Two-Dimensional Materials. Accounts of Materials Research, 2022, 3, 1022-1032.	5.9	7
877	Two-dimensional material templates for van der Waals epitaxy, remote epitaxy, and intercalation growth. Applied Physics Reviews, 2022, 9, .	5.5	9
878	Superhydrophobic Graphene-Like Nanocarbon Film Formation on Arbitrary Surfaces through MgO Nanoparticle Catalysis: Advanced Coatings for Energy Storage and Nanocomposites. ACS Applied Nano Materials, 2022, 5, 13341-13348.	2.4	2
879	Graphene 2D platform is safe and cytocompatibile for HaCaT cells growing under static and dynamic conditions. Nanotoxicology, 0, , 1-19.	1.6	0
880	Progress of water desalination applications based on wettability and surface characteristics of graphene and graphene oxide: A review. , 2022, 32, 15-26.		1
881	Mapping the Binding Energy of Layered Crystals to Macroscopic Observables. Advanced Science, 0, , 2204001.	5.6	1

#	Article	IF	CITATIONS
882	Non-wetting of condensation-induced droplets on smooth monolayer suspended graphene with contact angle approaching 180 degrees. Communications Materials, 2022, 3, .	2.9	6
883	Atomically Flat, 2D Edgeâ€Directed Selfâ€Assembly of Block Copolymers. Advanced Materials, 2023, 35, .	11.1	2
884	Imbibition dynamics and steady flows in graphene nanochannels with sparse geometric and chemical defects. Physics of Fluids, 2022, 34, 112003.	1.6	5
885	MOCVD of WSe2 crystals on highly crystalline single- and multi-layer CVD graphene. Carbon, 2023, 202, 150-160.	5.4	4
886	Molecular dynamics simulation on liquid nanofilm boiling over vibrating surface. International Journal of Heat and Mass Transfer, 2023, 201, 123617.	2.5	1
887	A study on the mechanism of water vapour condensation inhibition by nanostructures on the copper surface. Journal of Materials Science, 2022, 57, 20615-20630.	1.7	2
888	An in-depth evaluation of sample and measurement induced influences on static contact angle measurements. Scientific Reports, 2022, 12, .	1.6	6
889	Innovations in the synthesis of graphene nanostructures for bio and gas sensors. , 2023, 145, 213234.		9
890	Next generation 2D materials for anodes in battery applications. Journal of Power Sources, 2023, 556, 232256.	4.0	15
891	Analytical Techniques for the Wettability and Contact Angle. , 2022, , 1-22.		0
892	How do Graphene Composite Surfaces Affect the Development and Structure of Marine Cyanobacterial Biofilms?. Coatings, 2022, 12, 1775.	1.2	3
893	Heterogeneous Ice Nucleation Studied with Single-Layer Graphene. Langmuir, 2022, 38, 15121-15131.	1.6	0
894	Correlation between copper particle morphology and number of graphene layers on a palladium substrate. Applied Physics Express, 2023, 16, 015503.	1.1	0
895	The Surface Energy of Hydrogenated and Fluorinated Graphene. ACS Applied Materials & Interfaces, 2023, 15, 2429-2436.	4.0	9
896	Graphene as Thinnest Coating on Copper Electrodes in Microbial Methanol Fuel Cells. ACS Nano, 2023, 17, 137-145.	7.3	1
897	Spin Coating Promotes the Epitaxial Growth of AgCN Microwires on 2D Materials. ACS Nano, 2022, 16, 20521-20532.	7.3	0
898	Direct Measurement of Solid-Liquid Interfacial Energy Using a Meniscus. Physical Review Letters, 2022, 129, .	2.9	3
899	Interfacial Liquid Water on Graphite, Graphene, and 2D Materials. ACS Nano, 2023, 17, 51-69.	7.3	11

#	Article	IF	CITATIONS
900	Formation of carbon and oxygen rich surface layer on high purity magnesium by atmospheric carbon dioxide plasma. Journal of Magnesium and Alloys, 2023, 11, 88-99.	5.5	2
901	Molecular Dynamics Study of Phase Transition Heat Transfer in Water Nanofilm on Nanorough Surfaces. Coatings, 2022, 12, 1943.	1.2	0
902	Water Flow in Graphene Nanochannels driven by Imposed Thermal Gradients: The Role of Flexural Phonons. Physical Chemistry Chemical Physics, 0, , .	1.3	2
903	An adjustable high-speed and directional diffusion of water nanodroplets confined by graphene sheets. Physical Chemistry Chemical Physics, 0, , .	1.3	0
904	Time-Dependent Pinning of Nanoblisters Confined by Two-Dimensional Sheets. Part 1: Scaling Law and Hydrostatic Pressure. Langmuir, 2023, 39, 701-708.	1.6	2
905	Anisotropy and Hybrid Heterosurface-Modulated Two-Dimensional Hydrogen Bond Network of Water. Journal of Physical Chemistry C, 2023, 127, 2544-2557.	1.5	0
906	Defect engineering of two-dimensional materials for advanced energy conversion and storage. Chemical Society Reviews, 2023, 52, 1723-1772.	18.7	66
907	Effect of graphene substrate on melting of Cu nanoparticles. Physica B: Condensed Matter, 2023, 657, 414817.	1.3	0
908	Growing Nanocrystalline Graphene on Aggregates for Conductive and Strong Smart Cement Composites. ACS Nano, 2023, 17, 3587-3597.	7.3	26
909	Modulation of Remote Epitaxial Heterointerface by Graphene-Assisted Attenuative Charge Transfer. ACS Nano, 2023, 17, 4023-4033.	7.3	11
910	Review on Hybrid Reinforced Polymer Matrix Composites with Nanocellulose, Nanomaterials, and Other Fibers. Polymers, 2023, 15, 984.	2.0	12
911	Superwetting graphene-based materials: From wettability regulation to practical applications. Materials Today Chemistry, 2023, 29, 101452.	1.7	1
912	The First-Water-Layer Evolution at the Graphene/Water Interface under Different Electro-Modulated Hydrophilic Conditions Observed by Suspended/Supported Field-Effect-Device Architectures. ACS Applied Materials & Interfaces, 2023, 15, 17019-17028.	4.0	2
913	A molecular dynamics study of water confined in between two graphene sheets under compression. Journal of Nanoparticle Research, 2023, 25, .	0.8	3
914	Dielectric-free electrowetting on graphene. Faraday Discussions, 0, 246, 307-321.	1.6	3
915	Spontaneous transport of nanodroplets in 2D nanochannels. , 2023, , .		0
916	Rational Engineering of 2D Materials as Advanced Catalyst Cathodes for Highâ€Performance Metal–Carbon Dioxide Batteries. Small Structures, 2023, 4, .	6.9	2
917	Zeta potential variations in bonding states of fluorocarbon films deposited by plasma-enhanced chemical vapor deposition. Japanese Journal of Applied Physics, 0, , .	0.8	0

#	Article	IF	CITATIONS
918	Collaborative mechanisms boost the nanoscale boiling heat transfer at functionalized gold surfaces. International Journal of Heat and Mass Transfer, 2023, 210, 124179.	2.5	1
920	Wetting of MXenes and Beyond. Nano-Micro Letters, 2023, 15, .	14.4	5
921	A comprehensive review of graphene-based aerogels for biomedical applications. The impact of synthesis parameters onto material microstructure and porosity. Archives of Civil and Mechanical Engineering, 2023, 23, .	1.9	3
924	lonic liquids as a new cornerstone to support hydrogen energy. Green Chemistry, 2023, 25, 4981-4994.	4.6	3
962	The potential of graphene coatings as neural interfaces. Nanoscale Horizons, 2024, 9, 384-406.	4.1	1