Candle Soot as a Template for a Transparent Robust Sup

Science

335, 67-70

DOI: 10.1126/science.1207115

Citation Report

#	Article	IF	CITATIONS
5	The Frontier of Inorganic Synthesis and Preparative Chemistry (I)—Biomimetic Synthesis. , 2011, , 525-553.		3
6	Dynamics of liquid droplets in an evaporating drop: liquid droplet "coffee stain―effect. RSC Advances, 2012, 2, 8390.	1.7	20
7	Smooth, transparent and nonperfluorinated surfaces exhibiting unusual contact angle behavior toward organic liquids. RSC Advances, 2012, 2, 9805.	1.7	50
8	Graphene oxide/titania hybrid films with dual-UV-responsive surfaces of tunable wettability. RSC Advances, 2012, 2, 10829.	1.7	15
9	Electrokinetics on superhydrophobic surfaces. Journal of Physics Condensed Matter, 2012, 24, 464110.	0.7	21
10	A Physical Approach To Specifically Improve the Mobility of Alkane Liquid Drops. Journal of the American Chemical Society, 2012, 134, 10191-10199.	6.6	151
11	How To Reduce Resistance to Movement of Alkane Liquid Drops Across Tilted Surfaces Without Relying on Surface Roughening and Perfluorination. Langmuir, 2012, 28, 17681-17689.	1.6	50
12	The Power of Perfluorinated Amphiphilic Polymers at Interfaces. ACS Symposium Series, 2012, , 111-126.	0.5	2
13	Patterned superhydrophobic surface based on Pd-based metallic glass. Applied Physics Letters, 2012, 101, 081601.	1.5	48
14	Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature, 2012, 489, 274-277.	13.7	467
15	New Nanotech from an Ancient Material: Chemistry Demonstrations Involving Carbon-Based Soot. Journal of Chemical Education, 2012, 89, 1280-1287.	1.1	28
16	Preparation and anti-icing of superhydrophobic PVDF coating on a wind turbine blade. Applied Surface Science, 2012, 259, 764-768.	3.1	120
17	Recent developments in superhydrophobic surfaces with unique structural and functional properties. Soft Matter, 2012, 8, 11217.	1.2	342
18	Synthesis of superamphiphobic breathable membranes utilizing SiO2 nanoparticles decorated fluorinated polyurethane nanofibers. Nanoscale, 2012, 4, 7549.	2.8	86
19	Robust superomniphobic surfaces with mushroom-like micropillar arrays. Soft Matter, 2012, 8, 8563.	1.2	116
20	Bio-inspired special wetting surfaces via self-assembly. Science China Chemistry, 2012, 55, 2327-2333.	4.2	37
21	Superoleophobic Surfaces through Control of Sprayed-on Stochastic Topography. Langmuir, 2012, 28, 9834-9841.	1.6	75
22	Wetting on the Microscale: Shape of a Liquid Drop on a Microstructured Surface at Different Length Scales. Langmuir, 2012, 28, 8392-8398.	1.6	74

#	Article	IF	Citations
23	Chemical Patterning and Physical Refinement of Reactive Superhydrophobic Surfaces. Advanced Materials, 2012, 24, 4291-4295.	11.1	73
24	Living anionic polymerization of a block copolymer and the preparation of superhydrophobic surfaces based on the method of phase separation. Polymer Journal, 2013, 45, 125-128.	1.3	13
25	Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers. Nature Communications, 2013, 4, 2167.	5.8	339
26	Transparent and Hard Zirconia-Based Hybrid Coatings with Excellent Dynamic/Thermoresponsive Oleophobicity, Thermal Durability, and Hydrolytic Stability. ACS Applied Materials & Samp; Interfaces, 2013, 5, 7899-7905.	4.0	29
27	Additive-Free Digital Microfluidics. Langmuir, 2013, 29, 9024-9030.	1.6	23
28	Robust Superamphiphobic Film from Electrospun TiO ₂ Nanostructures. ACS Applied Materials & Discrete Superaction (1988) amp; Interfaces, 2013, 5, 1527-1532.	4.0	127
29	Transparent Surface with Reversibly Switchable Wettability between Superhydrophobicity and Superhydrophilicity. Langmuir, 2013, 29, 10307-10312.	1.6	51
30	High performance flexible sensor based on inorganic nanomaterials. Sensors and Actuators B: Chemical, 2013, 176, 522-533.	4.0	77
31	Role of Statistical Properties of Randomly Rough Surfaces in Controlling Superhydrophobicity. Langmuir, 2013, 29, 599-609.	1.6	50
32	Superhydrophobic Grapheneâ€Based Materials: Surface Construction and Functional Applications. Advanced Materials, 2013, 25, 5352-5359.	11.1	68
33	Alkyl- and fluoroalkyltrialkoxysilanes for wettability modification. Applied Surface Science, 2013, 283, 453-459.	3.1	13
34	Lubricant-infused micro/nano-structured surfaces with tunable dynamic omniphobicity at high temperatures. Applied Physics Letters, 2013, 102, .	1.5	127
35	Bioinspired Patterning with Extreme Wettability Contrast on TiO ₂ Nanotube Array Surface: A Versatile Platform for Biomedical Applications. Small, 2013, 9, 2945-2953.	5.2	159
36	Unusual Dynamic Dewetting Behavior of Smooth Perfluorinated Hybrid Films: Potential Advantages over Conventional Textured and Liquid-Infused Perfluorinated Surfaces. Langmuir, 2013, 29, 12472-12482.	1.6	50
37	Flame soot stably deposited on silicone coatings possess superhydrophobic surface. Applied Surface Science, 2013, 284, 651-656.	3.1	36
38	Transparent Superhydrophobic/Translucent Superamphiphobic Coatings Based on Silica–Fluoropolymer Hybrid Nanoparticles. Langmuir, 2013, 29, 15051-15057.	1.6	139
39	Reducing the contact time of a bouncing drop. Nature, 2013, 503, 385-388.	13.7	824
40	Facile synthesis of transparent superhydrophobic titania coating by using soot as a nanoimprint template. RSC Advances, 2013, 3, 22825.	1.7	40

#	Article	IF	Citations
41	Electric Field-Induced, Reversible Lotus-to-Rose Transition in Nanohybrid Shish Kebab Paper with Hierarchical Roughness. ACS Applied Materials & Samp; Interfaces, 2013, 5, 12089-12098.	4.0	35
42	One step sol–gel electrochemistry for the fabrication of superhydrophobic surfaces. Journal of Materials Chemistry A, 2013, 1, 14471.	5.2	56
43	Facile preparation of durable and robust superhydrophobic textiles by dip coating in nanocomposite solution of organosilanes. Chemical Communications, 2013, 49, 11509.	2.2	147
44	Robust Superamphiphobic Coatings Based on Silica Particles Bearing Bifunctional Random Copolymers. ACS Applied Materials & Samp; Interfaces, 2013, 5, 13466-13477.	4.0	60
45	Smooth Perfluorinated Surfaces with Different Chemical and Physical Natures: Their Unusual Dynamic Dewetting Behavior toward Polar and Nonpolar Liquids. Langmuir, 2013, 29, 11322-11329.	1.6	82
46	Durable Superhydrophobic Surfaces Prepared by Spray Coating of Polymerized Organosilane/Attapulgite Nanocomposites. ChemPlusChem, 2013, 78, 1503-1509.	1.3	35
47	Robust amphiphobic coatings from bi-functional silica particles on flat substrates. Polymer, 2013, 54, 3008-3016.	1.8	48
48	Creation of low hysteresis superhydrophobic paper by deposition of hydrophilic diamond-like carbon films. Cellulose, 2013, 20, 3219-3226.	2.4	27
49	A Superamphiphobic Macroporous Silicone Monolith with Marshmallowâ€like Flexibility. Angewandte Chemie - International Edition, 2013, 52, 10788-10791.	7.2	122
50	Robust, Superamphiphobic Fabric with Multiple Self-Healing Ability against Both Physical and Chemical Damages. ACS Applied Materials & Samp; Interfaces, 2013, 5, 10221-10226.	4.0	177
51	Electrochemically assisted deposition of transparent, mechanically robust TiO2 films for advanced applications. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	27
52	Colloids in external electric and magnetic fields: Colloidal crystals, pinning, chain formation, and electrokinetics. European Physical Journal: Special Topics, 2013, 222, 2881-2893.	1.2	6
53	Restoration of Superhydrophobicity in Crushed Polymer Films by Treatment with Water: Selfâ€Healing and Recovery of Damaged Topographic Features Aided by an Unlikely Source. Advanced Materials, 2013, 25, 5104-5108.	11.1	125
54	All-Biomaterial Laser using Vitamin and Biopolymers. Advanced Materials, 2013, , n/a-n/a.	11.1	2
55	A novel precursor-derived one-step growth approach to fabrication of highly antireflective, mechanically robust and self-healing nanoporous silica thin films. Journal of Materials Chemistry C, 2013, 1, 4655.	2.7	37
56	Super liquid-repellent gas membranes for carbon dioxide capture and heart–lung machines. Nature Communications, 2013, 4, 2512.	5.8	98
57	Rational design and elaborate construction of surface nano-structures toward highly antireflective superamphiphobic coatings. Journal of Materials Chemistry A, 2013, 1, 8721.	5.2	37
58	Facile fabrication of nano-structured silica hybrid film with superhydrophobicity by one-step VAFS approach. Applied Surface Science, 2013, 265, 405-411.	3.1	14

#	ARTICLE	IF	CITATIONS
59	Bio-inspired superoleophobic and smart materials: Design, fabrication, and application. Progress in Materials Science, 2013, 58, 503-564.	16.0	513
60	Superomniphobic Surfaces for Effective Chemical Shielding. Journal of the American Chemical Society, 2013, 135, 578-581.	6.6	433
61	Long perfluoroalkyl chains are not required for dynamically oleophobic surfaces. Green Chemistry, 2013, 15, 100-104.	4.6	42
62	A thermally stable, durable and temperature-dependent oleophobic surface of a polymethylsilsesquioxane film. Chemical Communications, 2013, 49, 3318.	2.2	32
63	Dual-layered-coated mechanically-durable superomniphobic surfaces with anti-smudge properties. Journal of Colloid and Interface Science, 2013, 409, 227-236.	5.0	61
64	Design principles for superamphiphobic surfaces. Soft Matter, 2013, 9, 418-428.	1.2	196
65	In Situ Surfaceâ€Modificationâ€Induced Superhydrophobic Patterns with Reversible Wettability and Adhesion. Advanced Materials, 2013, 25, 1682-1686.	11.1	249
66	Hierarchical or Not? Effect of the Length Scale and Hierarchy of the Surface Roughness on Omniphobicity of Lubricant-Infused Substrates. Nano Letters, 2013, 13, 1793-1799.	4.5	426
67	Lyophilic Nonwettable Surface Based on an Oil/Water/Air/Solid Fourâ€Phase System. Small, 2013, 9, 2515-2519.	5.2	26
68	Self-assembly of nanostructures towards transparent, superhydrophobic surfaces. Journal of Materials Chemistry A, 2013, 1, 2955-2969.	5.2	246
69	Long-lived superhydrophobic surfaces. Journal of Materials Chemistry A, 2013, 1, 4146.	5.2	288
70	Brochosomal coats turn leafhopper (Insecta, Hemiptera, Cicadellidae) integument to superhydrophobic state. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122391.	1.2	68
71	Structure and Morphology Control in Crystalline Polymer–Carbon Nanotube Nanocomposites. Macromolecules, 2013, 46, 2877-2891.	2.2	197
72	Robust, Selfâ∈Healing Superamphiphobic Fabrics Prepared by Twoâ∈Step Coating of Fluoroâ∈Containing Polymer, Fluoroalkyl Silane, and Modified Silica Nanoparticles. Advanced Functional Materials, 2013, 23, 1664-1670.	7.8	428
73	Novel Transparent Zirconium-Based Hybrid Material With Multilayered Nanostructures: Studies of Surface Dewettability Toward Alkane Liquids. ACS Applied Materials & Samp; Interfaces, 2013, 5, 154-163.	4.0	14
74	Superhydrophobic surfaces fabricated from nano- and microstructured cellulose stearoyl esters. Chemical Communications, 2013, 49, 4962.	2.2	51
75	Water Bending Mode at the Water–Vapor Interface Probed by Sum-Frequency Generation Spectroscopy: A Combined Molecular Dynamics Simulation and Experimental Study. Journal of Physical Chemistry Letters, 2013, 4, 1872-1877.	2.1	100
76	Interfacial materials with special wettability. MRS Bulletin, 2013, 38, 366-371.	1.7	137

#	ARTICLE	IF	Citations
77	Synthesis of Fluorinated Graphene Oxide and its Amphiphobic Properties. Particle and Particle Systems Characterization, 2013, 30, 266-272.	1.2	106
78	Electrospun SiO2 nanofibers as a template to fabricate a robust and transparent superamphiphobic coating. RSC Advances, 2013, 3, 3819.	1.7	80
79	Fabrication of semi-transparent superoleophobic thin film by nanoparticle-based nano–microstructures on see-through fabrics. Journal of Materials Science, 2013, 48, 6613-6618.	1.7	18
80	Liquid Drops Impacting Superamphiphobic Coatings. Langmuir, 2013, 29, 7847-7856.	1.6	103
81	Preservation of Superhydrophobic and Superoleophobic Properties upon Wear Damage. ACS Applied Materials & Damage. ACS ACS Applied Materials & Damage. ACS Applied & Damage. ACS Applied & Damage. ACS Applied & Damage. ACS Ap	4.0	181
82	Superhydrophobic and Omnidirectional Antireflective Surfaces from Nanostructured Ormosil Colloids. ACS Applied Materials & Samp; Interfaces, 2013, 5, 853-860.	4.0	70
83	Extraordinary drag-reducing effect of a superhydrophobic coating on a macroscopic model ship at high speed. Journal of Materials Chemistry A, 2013, 1, 5886.	5.2	221
84	Fabrication of superhydrophobic surface from binary micro-/nano-structure of mullite-whisk-based films. Applied Physics A: Materials Science and Processing, 2013, 113, 591-596.	1.1	2
85	Bi-functional random copolymers for one-pot fabrication of superamphiphobic particulate coatings. Journal of Materials Chemistry A, 2013, 1, 6226.	5.2	43
86	A Rubberlike Stretchable Fibrous Membrane with Antiâ€Wettability and Gas Breathability. Advanced Functional Materials, 2013, 23, 5577-5584.	7.8	93
87	Evolution of Polyvinylidene Fluoride (PVDF) Hierarchical Morphology during Slow Gelation Process and Its Superhydrophobicity. ACS Applied Materials & Superhydrophobicity. ACS Applied Materials & Superhydrophobicity.	4.0	28
88	Plasma-driven tunable liquid adhesion of superoleophobic aluminum surfaces. Applied Surface Science, 2013, 280, 940-944.	3.1	9
89	Bioinspired TiO2 Nanostructure Films with Special Wettability and Adhesion for Droplets Manipulation and Patterning. Scientific Reports, 2013, 3, 3009.	1.6	64
90	Drop deposition on under-liquid low energy surfaces. Soft Matter, 2013, 9, 7437.	1.2	19
91	Facile and versatile replication of high-performance superlyophobic surfaces on curable substrates using elastomer molds. , 2013 , , .		1
92	Bioâ€Inspired Superoleophobic Fluorinated Wax Crystalline Surfaces. Advanced Functional Materials, 2013, 23, 4572-4576.	7.8	39
93	Porous Carbon Nanoparticle Networks with Tunable Absorbability. Scientific Reports, 2013, 3, 2524.	1.6	50
94	Nanoscale Growth and Patterning of Inorganic Oxides Using DNA Nanostructure Templates. Journal of the American Chemical Society, 2013, 135, 6778-6781.	6.6	97

#	Article	IF	CITATIONS
95	Drop Deposition Technique on Low Energy Surface. , 2013, , .		0
96	A Novel Method to Fabricate Hydrophobic Surfaces Based on Candle Soot Particles and Polydimethylsiloxane. Advanced Materials Research, 0, 815, 610-615.	0.3	3
97	Condensation heat transfer on superhydrophobic surfaces. MRS Bulletin, 2013, 38, 397-406.	1.7	329
98	Spray-Coated Metal Hexadecanoate-Based Coatings with Robust Superhydrophobicity and Repairability. Journal of Dispersion Science and Technology, 2013, 34, 1342-1346.	1.3	1
100	Superoleophobic surfaces: design criteria and recent studies. Surface Innovations, 2013, 1, 71-83.	1.4	69
101	Manipulated wettability of a superhydrophobic quartz crystal microbalance through electrowetting. Journal Physics D: Applied Physics, 2013, 46, 345307.	1.3	33
102	Transparent, Flexible, Superomniphobic Surfaces with Ultra‣ow Contact Angle Hysteresis. Angewandte Chemie - International Edition, 2013, 52, 13007-13011.	7.2	112
103	Allâ€Biomaterial Laser Using Vitamin and Biopolymers. Advanced Materials, 2013, 25, 5943-5947.	11.1	105
104	Superhydrophobic Zr-based metallic glass surface with high adhesive force. Applied Physics Letters, 2013, 102, 251603.	1.5	73
105	Superomniphobic surfaces: Design and durability. MRS Bulletin, 2013, 38, 383-390.	1.7	152
106	Solventâ€Free Synthesis of Microparticles on Superamphiphobic Surfaces. Angewandte Chemie - International Edition, 2013, 52, 11286-11289.	7.2	38
108	Directional Oil Sliding Surfaces with Hierarchical Anisotropic Groove Microstructures. Advanced Materials, 2013, 25, 5756-5761.	11.1	87
110	Under-water superoleophobic Glass: Unexplored role of the surfactant-rich solvent. Scientific Reports, 2013, 3, 1862.	1.6	25
111	Review on Liquid Flame Spray in paper converting: Multifunctional superhydrophobic nanoparticle coatings. Nordic Pulp and Paper Research Journal, 2014, 29, 747-759.	0.3	11
113	Durable Superhydrophobic/Superoleophilic Polyurethane Sponges Inspired by Mussel and Lotus Leaf for the Selective Removal of Organic Pollutants from Water. ChemPlusChem, 2014, 79, 850-856.	1.3	66
114	Superhydrophobic Gated Polyorganosilanes/Halloysite Nanocontainers for Sustained Drug Release. Advanced Materials Interfaces, 2014, 1, 1300136.	1.9	22
115	Wenn selbst Öl abperlt. Physik in Unserer Zeit, 2014, 45, 228-233.	0.0	0
116	Needle-free drop deposition technique for contact angle measurements of superhydrophobic surfaces. Journal of Applied Physics, 2014, 116, .	1.1	5

#	ARTICLE	IF	CITATIONS
117	Durable superoleophobic fabric surfaces with counterintuitive superwettability for polar solvents. AICHE Journal, 2014, 60, 2752-2756.	1.8	64
118	Electro-Responsively Reversible Transition of Polythiophene Films from Superhydrophobicity to Superhydrophilicity. ACS Applied Materials & Superhydrophilicity.	4.0	48
119	Turning a surface superrepellent even to completely wetting liquids. Science, 2014, 346, 1096-1100.	6.0	901
120	Fabrication of superhydrophobic film by microcellular plastic foaming method. Applied Physics A: Materials Science and Processing, 2014, 117, 755-759.	1.1	9
121	A Smart "Strider―Can Float on Both Water and Oils. ACS Applied Materials & Discrete Samp; Interfaces, 2014, 6, 21355-21362.	4.0	14
122	Evaporation-Induced Transition from <i>Nepenthes</i> Pitcher-Inspired Slippery Surfaces to Lotus Leaf-Inspired Superoleophobic Surfaces. Langmuir, 2014, 30, 14292-14299.	1.6	82
123	Lubricantâ€Infused Nanoparticulate Coatings Assembled by Layerâ€byâ€Layer Deposition. Advanced Functional Materials, 2014, 24, 6658-6667.	7.8	206
124	Clear Antismudge Unimolecular Coatings of Diblock Copolymers on Glass Plates. ACS Applied Materials & Samp; Interfaces, 2014, 6, 21435-21445.	4.0	35
125	Directed Water Shedding on Highâ€Aspectâ€Ratio Shape Memory Polymer Micropillar Arrays. Advanced Materials, 2014, 26, 1283-1288.	11.1	142
126	Physically and chemically stable ionic liquid-infused textured surfaces showing excellent dynamic omniphobicity. APL Materials, 2014, 2, 056108.	2.2	55
127	Bioâ€Inspired Multifunctional Metallic Foams Through the Fusion of Different Biological Solutions. Advanced Functional Materials, 2014, 24, 2721-2726.	7.8	46
129	Superhydrophobic surfaces by laser ablation of rare-earth oxide ceramics. MRS Communications, 2014, 4, 95-99.	0.8	32
130	Multilevel Hierarchy of Fluorinated Wax on CuO Nanowires for Superoleophobic Surfaces. Langmuir, 2014, 30, 15568-15573.	1.6	21
131	Fabrication of a superhydrophobic carbon nanotube coating with good reusability and easy repairability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 444, 252-256.	2.3	26
132	A facile method for imparting superoleophobicity to polymer substrates. Applied Physics A: Materials Science and Processing, 2014, 114, 1129-1133.	1.1	8
133	Superamphiphobic aluminum alloy surfaces with micro and nanoscale hierarchical roughness produced by a simple and environmentally friendly technique. Journal of Materials Science, 2014, 49, 1839-1853.	1.7	57
134	Super-non-wettable surfaces: A review. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 448, 93-106.	2.3	144
135	Highly Transparent and Durable Superhydrophobic Hybrid Nanoporous Coatings Fabricated from Polysiloxane. ACS Applied Materials & Diterfaces, 2014, 6, 10014-10021.	4.0	68

#	Article	IF	CITATIONS
136	Transparent and Superamphiphobic Surfaces from Oneâ€6tep Spray Coating of Stringed Silica Nanoparticle/Sol Solutions. Particle and Particle Systems Characterization, 2014, 31, 763-770.	1.2	130
137	Fluorinated Raspberry-like Polymer Particles for Superamphiphobic Coatings. ACS Applied Materials & Lamp; Interfaces, 2014, 6, 2629-2638.	4.0	99
138	Superamphiphobic Particles: How Small Can We Go?. Physical Review Letters, 2014, 112, 016101.	2.9	27
139	Candle Soot as Particular Lubricant Additives. Tribology Letters, 2014, 53, 521-531.	1.2	44
140	Impact dynamics of water droplets on Cu films with three-level hierarchical structures. Journal of Materials Science, 2014, 49, 3379-3390.	1.7	14
141	Rapid Generation of Cell Gradients by Utilizing Solely Nanotopographic Interactions on a Bioâ€Inert Glass Surface. Angewandte Chemie - International Edition, 2014, 53, 2915-2918.	7.2	22
142	Designing transparent superamphiphobic coatings directed by carbon nanotubes. Journal of Colloid and Interface Science, 2014, 421, 141-145.	5.0	58
143	Designing Fractal Nanostructured Biointerfaces for Biomedical Applications. ChemPhysChem, 2014, 15, 1550-1561.	1.0	38
144	Chemical and Physical Pathways for the Preparation of Superoleophobic Surfaces and Related Wetting Theories. Chemical Reviews, 2014, 114, 2694-2716.	23.0	466
145	Transparent superhydrophobic films possessing high thermal stability and improved moisture resistance from the deposition of MTMS-based aerogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 443, 255-264.	2.3	33
146	Facile fabrication of translucent superamphiphobic coating on paper to prevent liquid pollution. Chemical Engineering Journal, 2014, 246, 238-243.	6.6	105
147	Robust superhydrophobic transparent coatings fabricated by a low-temperature sol–gel process. Applied Surface Science, 2014, 305, 702-709.	3.1	89
148	Robust multifunctional superhydrophobic organic–inorganic hybrid macroporous coatings and films. Polymer, 2014, 55, 2661-2666.	1.8	20
149	Spray-coating process in preparing PTFE-PPS composite super-hydrophobic coating. AIP Advances, 2014, 4, .	0.6	17
150	Antifouling property of highly oleophobic substrates for solar cell surfaces. Journal of Applied Physics, 2014, 115, .	1.1	19
151	Superhydrophobic Coatings on Celluloseâ€Based Materials: Fabrication, Properties, and Applications. Advanced Materials Interfaces, 2014, 1, 1300026.	1.9	221
152	Characterization of super liquid-repellent surfaces. Current Opinion in Colloid and Interface Science, 2014, 19, 343-354.	3.4	151
153	Covalent Surface Modification of Oxide Surfaces. Angewandte Chemie - International Edition, 2014, 53, 6322-6356.	7.2	704

#	Article	IF	CITATIONS
154	Highly Efficient and Recyclable Carbon Soot Sponge for Oil Cleanup. ACS Applied Materials & Samp; Interfaces, 2014, 6, 5924-5929.	4.0	157
155	All Spraying Processes for the Fabrication of Robust, Selfâ€Healing, Superhydrophobic Coatings. Advanced Materials, 2014, 26, 3344-3348.	11,1	313
156	A Rapid One-Step Fabrication of Patternable Superhydrophobic Surfaces Driven by Marangoni Instability. Langmuir, 2014, 30, 2828-2834.	1.6	31
157	Bio-Inspired Strategies for Anti-Icing. ACS Nano, 2014, 8, 3152-3169.	7.3	760
158	Highly enhanced performance of spongy graphene as an oil sorbent. Journal of Materials Chemistry A, 2014, 2, 1652-1656.	5.2	116
159	Controllable fabrication of superhydrophobic TiO2 coating with improved transparency and thermostability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441, 298-305.	2.3	35
160	Recent progress in antireflection and self-cleaning technology $\hat{a}\in$ From surface engineering to functional surfaces. Progress in Materials Science, 2014, 61, 94-143.	16.0	350
161	Superamphiphobic surfaces. Chemical Society Reviews, 2014, 43, 2784-2798.	18.7	525
162	Candle-based process for creating a stable superhydrophobic surface. Carbon, 2014, 68, 583-596.	5.4	127
163	Nitrogen-Doped Carbon Nanoparticles by Flame Synthesis as Anode Material for Rechargeable Lithium-lon Batteries. Langmuir, 2014, 30, 318-324.	1.6	225
164	Facile synthesis of mesoporous silica and titania supraparticles by a meniscus templating route on a superhydrophobic surface and their application to adsorbents. Nanoscale, 2014, 6, 3483.	2.8	27
165	Optimization of superamphiphobic layers based on candle soot. Pure and Applied Chemistry, 2014, 86, 87-96.	0.9	23
166	Liquids on porous layers: wetting, imbibition and transport processes. Current Opinion in Colloid and Interface Science, 2014, 19, 320-335.	3.4	100
167	Kovalente OberflÄchenmodifikationen von Oxiden. Angewandte Chemie, 2014, 126, 6438-6474.	1.6	50
168	Scalable Nanopillar Arrays with Layerâ€by‣ayer Patterned Overt and Covert Images. Advanced Materials, 2014, 26, 6119-6124.	11.1	42
169	Multiscale Effect of Hierarchical Self-Assembled Nanostructures on Superhydrophobic Surface. Langmuir, 2014, 30, 13581-13587.	1.6	25
170	Facile fabrication of superhydrophobic surfaces with low roughness on Ti–6Al–4V substrates via anodization. Applied Surface Science, 2014, 314, 754-759.	3.1	43
171	An attempt to fabricate a photocatalytic and hydrophobic self-cleaning coating via electrospinning. RSC Advances, 2014, 4, 38498-38504.	1.7	25

#	Article	IF	Citations
172	Facile synthesis of a superhydrophobic surface with modified hollow silica nanoparticles. RSC Advances, 2014, 4, 51603-51608.	1.7	2
173	An experimental design for the investigation of water repellent property of candle soot particles. Materials Chemistry and Physics, 2014, 148, 134-142.	2.0	72
174	Formation of nanostructured cellulose stearoyl esters via nanoprecipitation. Journal of Materials Chemistry A, 2014, 2, 1107-1116.	5. 2	43
175	High-performance organic nano-floating-gate memory devices based on graphite nanocrystals as charge-trapping elements and high-k Ta2O5 as a controlled gate dielectric. Journal of Materials Chemistry C, 2014, 2, 5342.	2.7	17
176	Nanorough silica coatings by chemical vapor deposition. RSC Advances, 2014, 4, 12737.	1.7	0
177	Gold-catalytic green synthesis of Cu2O/Au/CuO hierarchical nanostructure and application for CO gas sensor. Science Bulletin, 2014, 59, 7-10.	1.7	5
178	<i>Nepenthes</i> Pitcher Inspired Antiâ€Wetting Silicone Nanofilaments Coatings: Preparation, Unique Antiâ€Wetting and Selfâ€Cleaning Behaviors. Advanced Functional Materials, 2014, 24, 1074-1080.	7.8	156
179	Multifunctional Superamphiphobic TiO ₂ Nanostructure Surfaces with Facile Wettability and Adhesion Engineering. Small, 2014, 10, 4865-4873.	5.2	113
180	An effective method to significantly enhance the robustness and adhesion-to-substrate of high transmittance superamphiphobic silica thin films. Journal of Materials Chemistry A, 2014, 2, 16601-16607.	5.2	82
181	Fabrication of superoleophobic surfaces with controllable liquid adhesion from polyelectrolyte multilayer film. RSC Advances, 2014, 4, 14227-14232.	1.7	16
182	Rational nanostructuring of surfaces for extraordinary icephobicity. Nanoscale, 2014, 6, 4874-4881.	2.8	203
183	Nanocomposite coating superhydrophobicity recovery after prolonged high-impact simulated rain. RSC Advances, 2014, 4, 47222-47226.	1.7	24
184	Universal self-assembly of organosilanes with long alkyl groups into silicone nanofilaments. Polymer Chemistry, 2014, 5, 1132-1139.	1.9	24
185	Bioinspired underwater superoleophobic surface with ultralow oil-adhesion achieved by femtosecond laser microfabrication. Journal of Materials Chemistry A, 2014, 2, 8790-8795.	5. 2	160
186	Hierarchically nanotextured surfaces maintaining superhydrophobicity under severely adverse conditions. Nanoscale, 2014, 6, 8710-8719.	2.8	72
187	Self-Driven One-Step Oil Removal from Oil Spill on Water via Selective-Wettability Steel Mesh. ACS Applied Materials & Diterfaces, 2014, 6, 19858-19865.	4.0	226
188	Fabrication of superhydrophobic surface by a laminating exfoliation method. Journal of Materials Chemistry A, 2014, 2, 1268-1271.	5.2	31
189	The design and applications of superomniphobic surfaces. NPG Asia Materials, 2014, 6, e109-e109.	3.8	314

#	Article	IF	Citations
190	Engineering superlyophobic surfaces on curable materials based on facile and inexpensive microfabrication. Journal of Materials Chemistry A, 2014, 2, 6952-6959.	5.2	60
191	High-Transparency, Self-Standable Gel-SLIPS Fabricated by a Facile Nanoscale Phase Separation. ACS Applied Materials & Description of the Applied Materials & Description of t	4.0	88
192	Biocompatible Polymeric Microparticles Produced by a Simple Biomimetic Approach. Langmuir, 2014, 30, 4535-4539.	1.6	30
193	Fabrication of superhydrophobic surface on aluminum by continuous chemical etching and its anti-icing property. Applied Surface Science, 2014, 317, 701-709.	3.1	201
194	Lasting and self-healing superhydrophobic surfaces by coating of polystyrene/SiO ₂ nanoparticles and polydimethylsiloxane. Journal of Materials Chemistry A, 2014, 2, 15001-15007.	5.2	175
195	Bioinspired superamphiphobic surfaces as a tool for polymer- and solvent-independent preparation of drug-loaded spherical particles. Acta Biomaterialia, 2014, 10, 4314-4322.	4.1	25
196	Transparent Slippery Surfaces Made with Sustainable Porous Cellulose Lauroyl Ester Films. ACS Applied Materials & Ester Films. ACS Applied Materials & Ester Films. ACS	4.0	64
197	Active surfaces: Ferrofluid-impregnated surfaces for active manipulation of droplets. Applied Physics Letters, 2014, 105, .	1.5	103
198	Underwaterâ€Transparent Nanodendritic Coatings for Directly Monitoring Cancer Cells. Advanced Healthcare Materials, 2014, 3, 332-337.	3.9	32
199	Combining the Best of Two Worlds: Nanoparticles and Nanofibers. Chemistry - an Asian Journal, 2014, 9, 2030-2035.	1.7	12
200	Nano- and Microstructures for Thin-Film Evaporation—A Review. Nanoscale and Microscale Thermophysical Engineering, 2014, 18, 251-269.	1.4	164
201	Candle soot as a supercapacitor electrode material. RSC Advances, 2014, 4, 2586-2589.	1.7	65
202	Preparation of lotus-like hierarchical microstructures on zinc substrate and study of its wettability. RSC Advances, 2014, 4, 33730-33738.	1.7	28
203	Solvent-controlled growth of silicone nanofilaments. RSC Advances, 2014, 4, 33424-33430.	1.7	7
205	Amphiphobic surfaces from functionalized TiO ₂ nanotube arrays. RSC Advances, 2014, 4, 33587-33598.	1.7	25
206	Facile fabrication of self-repairing superhydrophobic coatings. Chemical Communications, 2014, 50, 11891-11894.	2.2	110
207	Stable superhydrophobic surface based on silicone combustion product. RSC Advances, 2014, 4, 56259-56262.	1.7	20
208	Spray coating of superhydrophobic and angle-independent coloured films. Chemical Communications, 2014, 50, 2469.	2.2	106

#	Article	IF	CITATIONS
209	Bioinspired design of a photoresponsive superhydrophobic/oleophilic surface with underwater superoleophobic efficacy. Journal of Materials Chemistry A, 2014, 2, 17666-17675.	5.2	39
210	Physicochemical Characteristics and Droplet Impact Dynamics of Superhydrophobic Carbon Nanotube Arrays. Langmuir, 2014, 30, 6780-6790.	1.6	68
211	Controllable wettability and adhesion on bioinspired multifunctional TiO ₂ nanostructure surfaces for liquid manipulation. Journal of Materials Chemistry A, 2014, 2, 18531-18538.	5.2	84
212	Why Can Organic Liquids Move Easily on Smooth Alkyl-Terminated Surfaces?. Langmuir, 2014, 30, 4049-4055.	1.6	56
213	Trilevelâ€Structured Superhydrophobic Pillar Arrays with Tunable Optical Functions. Advanced Functional Materials, 2014, 24, 5550-5556.	7.8	33
214	Spray-coating of superhydrophobic aluminum alloys with enhanced mechanical robustness. Journal of Colloid and Interface Science, 2014, 423, 101-107.	5.0	159
215	Versatile superhydrophobic and photocatalytic films generated from TiO ₂ –SiO ₂ @PDMS and their applications on fabrics. Journal of Materials Chemistry A, 2014, 2, 4178-4184.	5.2	169
216	Facile preparation of super durable superhydrophobic materials. Journal of Colloid and Interface Science, 2014, 432, 31-42.	5.0	70
217	Solution copolymerization of perfluoroalkyl ethyl methacrylate with methyl methacrylate and butyl acrylate: Synthesis and surface properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 452, 9-17.	2.3	25
218	Mechanically Robust, Thermally Stable, Broadband Antireflective, and Superhydrophobic Thin Films on Glass Substrates. ACS Applied Materials & Substrates. ACS	4.0	103
219	Floating on Oil. Langmuir, 2014, 30, 10637-10642.	1.6	13
220	Multifunctional Superhydrophobic Surfaces Templated From Innately Microstructured Hydrogel Matrix. Nano Letters, 2014, 14, 4803-4809.	4.5	183
221	Superomniphobic, Transparent, and Antireflection Surfaces Based on Hierarchical Nanostructures. Nano Letters, 2014, 14, 4677-4681.	4.5	91
222	Combining hierarchical surface roughness with fluorinated surface chemistry to preserve superhydrophobicity after organic contamination. Applied Surface Science, 2014, 320, 658-663.	3.1	15
223	An Abrasion-Resistant and Broadband Antireflective Silica Coating by Block Copolymer Assisted Sol–Gel Method. Langmuir, 2014, 30, 10481-10486.	1.6	41
224	Superhydrophobic perfluoropolymer surfaces having heterogeneous roughness created by dip-coating from solutions containing a nonsolvent. Applied Surface Science, 2014, 292, 591-597.	3.1	50
225	Three-Dimensional Triple Hierarchy Formed by Self-Assembly of Wax Crystals on CuO Nanowires for Nonwettable Surfaces. ACS Applied Materials & Samp; Interfaces, 2014, 6, 4927-4934.	4.0	20
226	A review on †self-cleaning and multifunctional materials'. Journal of Materials Chemistry A, 2014, 2, 14773-14797.	5.2	387

#	Article	IF	CITATIONS
228	Pancake bouncing on superhydrophobic surfaces. Nature Physics, 2014, 10, 515-519.	6.5	748
229	Plasma Micro-Nanotextured, Scratch, Water and Hexadecane Resistant, Superhydrophobic, and Superamphiphobic Polymeric Surfaces with Perfluorinated Monolayers. ACS Applied Materials & Linterfaces, 2014, 6, 6510-6524.	4.0	165
230	Spray-Deposition and Photopolymerization of Organic–Inorganic Thiol–ene Resins for Fabrication of Superamphiphobic Surfaces. ACS Applied Materials & Samp; Interfaces, 2014, 6, 10763-10774.	4.0	76
231	Superhydrophilic and superoleophobic chitosan-based nanocomposite coatings for oil/water separation. Cellulose, 2014, 21, 1851-1857.	2.4	88
232	Relationship between wettabilities and chemical compositions of candle soots. Fuel, 2014, 128, 422-427.	3.4	59
233	The effect of perfluoroalkyl and hydrocarbon liquid chain lengths on oleophobic behaviors of copolymer surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441, 695-700.	2.3	13
234	Taking Advantage of Reduced Droplet-surface Interaction to Optimize Transport of Bioanalytes in Digital Microfluidics. Journal of Visualized Experiments, 2014, , e52091.	0.2	0
235	Functional polyelectrolyte multilayer assemblies for surfaces with controlled wetting behavior. Journal of Applied Polymer Science, 2015, 132, .	1.3	16
236	Zwitterionic Nanofibers of Super-Glue for Transparent and Biocompatible Multi-Purpose Coatings. Scientific Reports, 2015, 5, 14019.	1.6	28
237	Approaching the theoretical contact time of a bouncing droplet on the rational macrostructured superhydrophobic surfaces. Applied Physics Letters, 2015, 107, .	1.5	94
239	Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers. Applied Physics Letters, 2015, 107, .	1.5	98
240	Fluid contact angle on solid surfaces: Role of multiscale surface roughness. Journal of Chemical Physics, 2015, 143, 134705.	1.2	27
241	Mechanisms for Enhanced Hydrophobicity by Atomic-Scale Roughness. Scientific Reports, 2015, 5, 13790.	1.6	30
242	Inorganic Micelles (Hydrophilic Core@Amphiprotic Shell) for Multiple Applications. Advanced Functional Materials, 2015, 25, 6061-6070.	7.8	32
244	Integration of Selfâ€Lubrication and Nearâ€Infrared Photothermogenesis for Excellent Antiâ€Icing/Deicing Performance. Advanced Functional Materials, 2015, 25, 4237-4245.	7.8	184
245	Robust Flowerâ€Like TiO ₂ @Cotton Fabrics with Special Wettability for Effective Selfâ€Cleaning and Versatile Oil/Water Separation. Advanced Materials Interfaces, 2015, 2, 1500220.	1.9	175
246	Öl/Wasserâ€Trennung mit selektiven superabweisenden/superbenetzbaren OberflÃ⊠henmaterialien. Angewandte Chemie, 2015, 127, 2358-2368.	1.6	32
248	A General Strategy for the Separation of Immiscible Organic Liquids by Manipulating the Surface Tensions of Nanofibrous Membranes. Angewandte Chemie - International Edition, 2015, 54, 14732-14737.	7.2	140

#	Article	IF	Citations
249	Superhydrophobic "Pump― Continuous and Spontaneous Antigravity Water Delivery. Advanced Functional Materials, 2015, 25, 4114-4119.	7.8	111
250	Robustly Bloodâ€Inert and Shapeâ€Reproducible Electrospun Polymeric Mats. Advanced Materials Interfaces, 2015, 2, 1500065.	1.9	28
251	Superamphiphobic Coatings with High Transmittance: Structure, Fabrication, and Perspective. Advanced Materials Interfaces, 2015, 2, 1500196.	1.9	16
252	Manipulating Oil Droplets by Superamphiphobic Nozzle. Small, 2015, 11, 4837-4843.	5.2	43
253	New Developments in Omniphobic Surfaces Inspired by Nature. Journal of the Adhesion Society of Japan, 2015, 51, 370-374.	0.0	0
254	Rapid Cell Patterning Induced by Differential Topography on Silica Nanofractal Substrates. Small, 2015, 11, 5642-5646.	5.2	16
255	Superhydrophobic "Aspirator― Toward Dispersion and Manipulation of Micro/Nanoliter Droplets. Small, 2015, 11, 4491-4496.	5.2	34
257	Preparation of amphiphobic coating by combining fluoroalkyl silane with nano-SiO ₂ . Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 259-264.	0.8	6
258	Synthesis of Mesoporous Supraparticles on Superamphiphobic Surfaces. Advanced Materials, 2015, 27, 7338-7343.	11.1	91
260	Fluorineâ€Free Antiâ€Smudge Polyurethane Coatings. Angewandte Chemie - International Edition, 2015, 54, 12722-12727.	7.2	148
261	Wrinkled Graphene Monoliths as Superabsorbing Building Blocks for Superhydrophobic and Superhydrophilic Surfaces. Angewandte Chemie - International Edition, 2015, 54, 15165-15169.	7.2	45
262	Industrially Scalable Approach to Nanohybrid Shish Kebabs by In Situ Nanofibrillation of Isotactic Poly(propylene). Macromolecular Chemistry and Physics, 2015, 216, 2241-2248.	1.1	4
263	A Facile, Multifunctional, Transparent, and Superhydrophobic Coating Based on a Nanoscale Porous Structure Spontaneously Assembled from Branched Silica Nanoparticles. Advanced Materials Interfaces, 2015, 2, 1500201.	1.9	40
265	Multifunctional polypyrene/silica hybrid coatings with stable excimer fluorescence and robust superhydrophobicity derived from electrodeposited polypyrene films. Journal of Materials Chemistry C, 2015, 3, 2086-2092.	2.7	30
266	Thermally Triggered Transition of Superhydrophobic Characteristics of Micro- and Nanotextured Multiscale Rough Surfaces. Journal of Physical Chemistry C, 2015, 119, 14201-14213.	1.5	27
267	Magnetically driven superhydrophobic meshes with the capacity of moving at air/water and oil/water interfaces. RSC Advances, 2015, 5, 47892-47899.	1.7	9
268	Polysiloxane/multiwalled carbon nanotubes nanocomposites and their applications as ultrastable, healable and superhydrophobic coatings. Carbon, 2015, 93, 648-658.	5.4	66
269	Floatable, Self-Cleaning, and Carbon-Black-Based Superhydrophobic Gauze for the Solar Evaporation Enhancement at the Air–Water Interface. ACS Applied Materials & Diterfaces, 2015, 7, 13645-13652.	4.0	316

#	Article	IF	CITATIONS
270	Exceptionally robust and conductive superhydrophobic free-standing films of mesoporous carbon nanocapsule/polymer composite for multifunctional applications. Carbon, 2015, 93, 492-501.	5.4	34
271	Superamphiphobic Surfaces., 2015, , 57-69.		4
272	Anti-corrosive hierarchical structured copper mesh film with superhydrophilicity and underwater low adhesive superoleophobicity for highly efficient oil–water separation. Journal of Materials Chemistry A, 2015, 3, 13411-13417.	5 . 2	100
273	Modeling Pressure Stability and Contact-Angle Hysteresis of Superlyophobic Surfaces Based on Local Contact Line. Journal of Physical Chemistry C, 2015, 119, 12916-12922.	1.5	13
274	Rosmarinus officinalisL. extract and some of its active ingredients as potential emulsion stabilizers: a new approach to the formation of multiple $(W/O/W)$ emulsion. Pharmaceutical Development and Technology, 2015, 21, 1-9.	1.1	12
275	Fabrication of hydrophobic and anti-reflective polymeric films using anodic aluminum-oxide imprints. Journal of the Korean Physical Society, 2015, 67, 1977-1985.	0.3	1
276	Symmetry breaking in drop bouncing on curved surfaces. Nature Communications, 2015, 6, 10034.	5 . 8	340
277	Humidity Tolerant Organic Vapor Detection Using a Superhydrophobic Quartz Crystal Microbalance. IEEE Sensors Journal, 2015, 15, 6318-6325.	2.4	16
278	A novel laser ultrasound transducer using candle soot carbon nanoparticles. , 2015, , .		1
279	Quantification of residual liquid on repellent cotton fabrics after liquid roll off. RSC Advances, 2015, 5, 103722-103728.	1.7	4
280	Tunable wettability of hierarchical structured coatings derived from one-step synthesized raspberry-like poly(styrene-acrylic acid) particles. Polymer Chemistry, 2015, 6, 703-713.	1.9	24
281	Assembling Mixed Carboxylic Acid Molecules on Hierarchical Structured Aluminum Substrates for the Fabrication of Superoleophobic Surfaces with Controlled Oil Adhesion. ChemPlusChem, 2015, 80, 151-157.	1.3	3
282	Wear-Resistant and Antismudge Superoleophobic Coating on Polyethylene Terephthalate Substrate Using SiO ₂ Nanoparticles. ACS Applied Materials & Interfaces, 2015, 7, 743-755.	4.0	75
283	Micro-/nano-structured superhydrophobic surfaces in the biomedical field: part I: basic concepts and biomimetic approaches. Nanomedicine, 2015, 10, 103-119.	1.7	63
284	Superhydrophobic Porous Surfaces: Dissolved Oxygen Sensing. ACS Applied Materials & Dissolved Oxygen Sensing. Dissolved Oxygen Sensing. Dissolved Oxygen Sensing.	4.0	40
285	Synthetic Surfaces with Robust and Tunable Underwater Superoleophobicity. Advanced Functional Materials, 2015, 25, 1672-1681.	7.8	104
286	A facile method to fabricate functionally integrated devices for oil/water separation. Nanoscale, 2015, 7, 4553-4558.	2.8	61
287	Robust superhydrophobic wood obtained by spraying silicone nanoparticles. RSC Advances, 2015, 5, 21999-22004.	1.7	40

#	Article	IF	CITATIONS
288	Improving the Durability of a Drag-Reducing Nanocoating by Enhancing Its Mechanical Stability. ACS Applied Materials & Samp; Interfaces, 2015, 7, 4275-4282.	4.0	73
289	Optically Transparent Superhydrophobic Surfaces with Enhanced Mechanical Abrasion Resistance Enabled by Mesh Structure. ACS Applied Materials & Samp; Interfaces, 2015, 7, 4809-4816.	4.0	97
290	Magnetic, Durable, and Superhydrophobic Polyurethane@Fe ₃ 0 ₄ @SiO ₂ @Fluoropolymer Sponges for Selective Oil Absorption and Oil/Water Separation. ACS Applied Materials & Samp; Interfaces, 2015, 7, 4936-4946.	4.0	407
291	Modifying candle soot with FeP nanoparticles into high-performance and cost-effective catalysts for the electrocatalytic hydrogen evolution reaction. Nanoscale, 2015, 7, 4400-4405.	2.8	83
292	Ice accretion on superhydrophobic insulators under freezing condition. Cold Regions Science and Technology, 2015, 112, 87-94.	1.6	38
293	Fabrication and anti-icing property of coral-like superhydrophobic aluminum surface. Applied Surface Science, 2015, 331, 132-139.	3.1	92
294	Superhydrophobic nanocoatings: from materials to fabrications and to applications. Nanoscale, 2015, 7, 5922-5946.	2.8	322
295	Robust antifogging antireflective coatings on polymer substrates by hydrochloric acid vapor treatment. Journal of Colloid and Interface Science, 2015, 444, 67-73.	5.0	32
296	Transparent, thermally and mechanically stable superhydrophobic coating prepared by an electrochemical template strategy. Journal of Materials Chemistry A, 2015, 3, 3801-3807.	5.2	69
297	Bioinspired Superâ€Wettability from Fundamental Research to Practical Applications. Angewandte Chemie - International Edition, 2015, 54, 3387-3399.	7.2	611
298	pH-Controllable On-Demand Oil/Water Separation on the Switchable Superhydrophobic/Superhydrophilic and Underwater Low-Adhesive Superoleophobic Copper Mesh Film. Langmuir, 2015, 31, 1393-1399.	1.6	213
299	Influence of the average surface roughness on the formation of superhydrophobic polymer surfaces through spin-coating with hydrophobic fumed silica. Polymer, 2015, 62, 118-128.	1.8	83
300	Single-protein spin resonance spectroscopy under ambient conditions. Science, 2015, 347, 1135-1138.	6.0	283
301	Photon Upconversion Lithography: Patterning of Biomaterials Using Nearâ€Infrared Light. Advanced Materials, 2015, 27, 2203-2206.	11.1	119
302	An effective medium approach to predict the apparent contact angle of drops on super-hydrophobic randomly rough surfaces. Journal of Physics Condensed Matter, 2015, 27, 015009.	0.7	9
303	Transparent, durable and thermally stable PDMS-derived superhydrophobic surfaces. Applied Surface Science, 2015, 339, 94-101.	3.1	100
304	Interaction between Air Bubbles and Superhydrophobic Surfaces in Aqueous Solutions. Langmuir, 2015, 31, 7317-7327.	1.6	80
305	Biomimetic superhydrophobic surfaces by combining mussel-inspired adhesion with lotus-inspired coating. Nanotechnology, 2015, 26, 335602.	1.3	39

#	Article	IF	CITATIONS
306	Fish scale inspired design of underwater superoleophobic microcone arrays by sucrose solution assisted femtosecond laser irradiation for multifunctional liquid manipulation. Journal of Materials Chemistry A, 2015, 3, 18675-18683.	5.2	84
307	Wettability behavior of special microscale ZnO nail-coated mesh films for oil–water separation. Journal of Colloid and Interface Science, 2015, 458, 79-86.	5.0	48
308	Bacterially Antiadhesive, Optically Transparent Surfaces Inspired from Rice Leaves. ACS Applied Materials & Samp; Interfaces, 2015, 7, 19274-19281.	4.0	53
309	A facile method of fabricating mechanical durable anti-icing coatings based on CeO2microparticles. IOP Conference Series: Materials Science and Engineering, 2015, 87, 012062.	0.3	O
310	Controlled release kinetics from a surface modified microgel-based reservoir device. Journal of Materials Chemistry B, 2015, 3, 2516-2521.	2.9	13
311	Fabrication of superhydrophobic thin films on various substrates using SiO ₂ nanoparticles coated with polydimethylsiloxane: towards the development of shielding layers for gas sensors. RSC Advances, 2015, 5, 40595-40602.	1.7	24
312	Effects of drop size and measuring condition on static contact angle measurement on a superhydrophobic surface with goniometric technique. Korean Journal of Chemical Engineering, 2015, 32, 2394-2399.	1.2	13
313	Two-step wetting transition on ZnO nanorod arrays. Applied Surface Science, 2015, 347, 868-874.	3.1	18
314	Graftâ€Copolymerâ€Based Approach to Clear, Durable, and Antiâ€Smudge Polyurethane Coatings. Angewandte Chemie - International Edition, 2015, 54, 6516-6520.	7.2	136
315	Role of surface oxygen-to-metal ratio on the wettability of rare-earth oxides. Applied Physics Letters, 2015, 106, .	1.5	109
316	Coating of silica particles by fluorinated diblock copolymers and use of the resultant silica for superamphiphobic surfaces. Polymer, 2015, 64, 153-162.	1.8	32
317	Oneâ€Step Fabrication of Nanocomposite Thin Films of PTFE in SiO <i></i> Water. Advanced Engineering Materials, 2015, 17, 474-482.	1.6	13
318	Facile One-Step Photolithographic Method for Engineering Hierarchically Nano/Microstructured Transparent Superamphiphobic Surfaces. ACS Applied Materials & Samp; Interfaces, 2015, 7, 10988-10992.	4.0	47
319	Fabrication of super-hydrophobic duo-structures. Proceedings of SPIE, 2015, , .	0.8	2
320	Synthesis and self-assembly of well-defined binary graft copolymer and its use in superhydrophobic cotton fabrics preparation. RSC Advances, 2015, 5, 46132-46145.	1.7	17
321	Crosslinked superhydrophobic films fabricated by simply casting poly(methyl methacrylate-butyl) Tj ETQq1 1 0.784 Surface Science, 2015, 339, 109-115.	4314 rgBT 3.1	/Overlock 9
322	Water jet resistant superhydrophobic carbonaceous films by flame synthesis and tribocharging. Materials Today Communications, 2015, 3, 57-68.	0.9	47
323	Influence of different chemical modifications on the icephobic properties of superhydrophobic surfaces in a condensate environment. Journal of Materials Chemistry A, 2015, 3, 4967-4975.	5.2	46

#	Article	IF	CITATIONS
324	Bioinspired transparent underwater superoleophobic and anti-oil surfaces. Journal of Materials Chemistry A, 2015, 3, 9379-9384.	5.2	99
325	Intumescent Flame-Retardant and Self-Healing Superhydrophobic Coatings on Cotton Fabric. ACS Nano, 2015, 9, 4070-4076.	7.3	465
326	Robust self-cleaning surfaces that function when exposed to either air or oil. Science, 2015, 347, 1132-1135.	6.0	1,494
327	Fabrication of mechanically durable superhydrophobic wood surfaces using polydimethylsiloxane and silica nanoparticles. RSC Advances, 2015, 5, 30647-30653.	1.7	129
328	Three-dimensional ZnO porous films for self-cleaning ultraviolet photodetectors. RSC Advances, 2015, 5, 85969-85973.	1.7	11
329	Creating robust superamphiphobic coatings for both hard and soft materials. Journal of Materials Chemistry A, 2015, 3, 20999-21008.	5.2	123
330	Electronic properties of long DNA nanowires in dry and wet conditions. Solid State Communications, 2015, 222, 42-48.	0.9	19
331	Needle-free drop deposition: the role of elastic membranes. RSC Advances, 2015, 5, 82374-82380.	1.7	8
332	A multifunctional transparent superhydrophobic gel nanocoating with self-healing properties. Chemical Communications, 2015, 51, 16794-16797.	2.2	93
333	Femtosecond laser controlled wettability of solid surfaces. Soft Matter, 2015, 11, 8897-8906.	1.2	125
334	Omniphobic nanocomposite fiber mats with peel-away self similarity. Journal of Materials Chemistry A, 2015, 3, 23821-23828.	5.2	15
335	The design of underwater superoleophobic Ni/NiO microstructures with tunable oil adhesion. Nanoscale, 2015, 7, 19293-19299.	2.8	43
336	Spontaneous droplet trampolining on rigid superhydrophobic surfaces. Nature, 2015, 527, 82-85.	13.7	349
337	Transparent and Superamphiphobic Surfaces from Mushroom-Like Micropillar Arrays. ACS Applied Materials & Samp; Interfaces, 2015, 7, 24197-24203.	4.0	7 3
338	Extremely durable biofouling-resistant metallic surfaces based on electrodeposited nanoporous tungstite films on steel. Nature Communications, 2015, 6, 8649.	5.8	326
339	Multifunctional Engineering Aluminum Surfaces for Selfâ€Propelled Antiâ€Condensation. Advanced Engineering Materials, 2015, 17, 961-968.	1.6	21
340	Candle Soot derived Fractal-like Carbon Nanoparticles Network as High-Rate Lithium Ion Battery Anode Material. Electrochimica Acta, 2015, 180, 353-359.	2.6	94
341	The durability of superhydrophobic films. Applied Surface Science, 2015, 357, 1647-1657.	3.1	18

#	Article	IF	CITATIONS
342	Super-stable centimetre-scale inverse opal belts integrated with CdTe QDs for narrow band fluorescence optical waveguiding. Journal of Materials Chemistry C, 2015, 3, 10964-10967.	2.7	0
343	Fabrication and corrosion resistance of superhydrophobic magnesium alloy. Applied Physics A: Materials Science and Processing, 2015, 120, 561-570.	1.1	26
344	One-step preparation of transparent superhydrophobic coatings using atmospheric arc discharge. Applied Physics Letters, 2015, 107, .	1.5	18
345	Slippery Wenzel State. ACS Nano, 2015, 9, 9260-9267.	7. 3	207
346	Superhydrophobic-like tunable droplet bouncing on slippery liquid interfaces. Nature Communications, 2015, 6, 7986.	5.8	229
347	Wettability alteration of carbonate rocks from liquid-wetting to ultra gas-wetting using TiO 2, SiO 2 and CNT nanofluids containing fluorochemicals, for enhanced gas recovery. Journal of Natural Gas Science and Engineering, 2015, 26, 1294-1305.	2.1	57
348	Super dewetting surfaces: Focusing on their design and fabrication methods. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 484, 528-546.	2.3	30
349	Direct observation of drops on slippery lubricant-infused surfaces. Soft Matter, 2015, 11, 7617-7626.	1.2	323
350	Cleaning of Oil Fouling with Water Enabled by Zwitterionic Polyelectrolyte Coatings: Overcoming the Imperative Challenge of Oil–Water Separation Membranes. ACS Nano, 2015, 9, 9188-9198.	7.3	287
351	A solving-reprecipitation theory for self-healing functionality of stannate coating with a high environmental stability. Electrochimica Acta, 2015, 174, 1192-1201.	2.6	29
352	Rational design of nanomaterials for water treatment. Nanoscale, 2015, 7, 17167-17194.	2.8	176
353	Highly transparent, stable, and superhydrophobic coatings based on gradient structure design and fast regeneration from physical damage. Applied Surface Science, 2015, 359, 826-833.	3.1	21
354	Low Drag Porous Ship with Superhydrophobic and Superoleophilic Surface for Oil Spills Cleanup. ACS Applied Materials & Samp; Interfaces, 2015, 7, 26184-26194.	4.0	75
355	Fabrication of robust high-transmittance superamphiphobic coatings through dip-coating followed by spray-coating. RSC Advances, 2015, 5, 89262-89268.	1.7	15
356	Superwetting Surfaces under Different Media: Effects of Surface Topography on Wettability. Small, 2015, 11, 1939-1946.	5.2	142
357	Emerging trends in superhydrophobic surface based magnetic materials: fabrications and their potential applications. Journal of Materials Chemistry A, 2015, 3, 3224-3251.	5. 2	90
358	Liquidâ€Impermeable Inverse Opals with Invariant Photonic Bandgap. Advanced Materials, 2015, 27, 1282-1287.	11.1	68
359	Reversible Underwater Lossless Oil Droplet Transportation. Advanced Materials Interfaces, 2015, 2, 1400388.	1.9	60

#	Article	IF	CITATIONS
360	Catalytic, Self-Cleaning Surface with Stable Superhydrophobic Properties: Printed Polydimethylsiloxane (PDMS) Arrays Embedded with TiO ₂ Nanoparticles. ACS Applied Materials & Diterfaces, 2015, 7, 2632-2640.	4.0	58
361	Robust Superamphiphobic Nanoscale Copper Sheet Surfaces Produced by a Simple and Environmentally Friendly Technique. Advanced Engineering Materials, 2015, 17, 982-989.	1.6	31
362	Underwater Drag-Reducing Effect of Superhydrophobic Submarine Model. Langmuir, 2015, 31, 587-593.	1.6	98
363	Fabrication of Allâ€Waterâ€Based Selfâ€Repairing Superhydrophobic Coatings Based on UVâ€Responsive Microcapsules. Advanced Functional Materials, 2015, 25, 1035-1041.	7.8	360
364	Robust and antireflective superhydrophobic surfaces prepared by CVD of cured polydimethylsiloxane with candle soot as a template. RSC Advances, 2015, 5, 1315-1318.	1.7	60
365	Versatile aluminum alloy surface with various wettability. Applied Surface Science, 2015, 326, 168-173.	3.1	17
366	Ultrafiltration Membranes with Structureâ€Optimized Grapheneâ€Oxide Coatings for Antifouling Oil/Water Separation. Advanced Materials Interfaces, 2015, 2, 1400433.	1.9	129
367	Biomimetic superoleophobic surfaces: focusing on their fabrication and applications. Journal of Materials Chemistry A, 2015, 3, 1811-1827.	5.2	214
368	Superhydrophobic surfaces from surface-hydrophobized cellulose fibers with stearoyl groups. Cellulose, 2015, 22, 289-299.	2.4	15
369	Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO2-nanotube-coated 316L stainless steel. Colloids and Surfaces B: Biointerfaces, 2015, 125, 134-141.	2.5	101
370	Fabricating Surfaces with Tunable Wettability and Adhesion by Ionic Liquids in a Wide Range. Small, 2015, 11, 1782-1786.	5.2	34
371	Oil/Water Separation with Selective Superantiwetting/Superwetting Surface Materials. Angewandte Chemie - International Edition, 2015, 54, 2328-2338.	7.2	1,078
372	Progress in understanding wetting transitions on rough surfaces. Advances in Colloid and Interface Science, 2015, 222, 92-103.	7.0	356
373	Dropwise Condensation of Low Surface Tension Fluids on Omniphobic Surfaces. Scientific Reports, 2014, 4, 4158.	1.6	173
374	Long-living, stress- and pH-tolerant superhydrophobic silica particles via fast and efficient urethane chemistry; facile preparation of self-recoverable SH coatings. Journal of Materials Chemistry A, 2015, 3, 1465-1475.	5.2	31
375	Surface Adhesive Forces: A Metric Describing the Dragâ€Reducing Effects of Superhydrophobic Coatings. Small, 2015, 11, 1665-1671.	5.2	116
376	Preparation of stable superamphiphobic surfaces on Ti-6Al-4V substrates by one-step anodization. Applied Surface Science, 2015, 324, 825-830.	3.1	34
377	Hierarchically textured surfaces of versatile alloys for superamphiphobicity. Materials Letters, 2015, 138, 184-187.	1.3	16

#	Article	IF	CITATIONS
378	Controlling surface energy of glass substrates to prepare superhydrophobic and transparent films from silica nanoparticle suspensions. Journal of Colloid and Interface Science, 2015, 437, 24-27.	5.0	34
379	Biomimetic transparent and superhydrophobic coatings: from nature and beyond nature. Chemical Communications, 2015, 51, 1775-1794.	2.2	209
380	Biomimetic superhydrophobic polymer surfaces by replication of hierarchical structures fabricated using precision tooling machine and anodized aluminum oxidation. Microsystem Technologies, 2015, 21, 123-130.	1.2	12
381	Surface roughness rather than surface chemistry essentially affects insect adhesion. Beilstein Journal of Nanotechnology, 2016, 7, 1471-1479.	1.5	58
382	Recent Progress in Fabrication and Applications of Superhydrophobic Coating on Cellulose-Based Substrates. Materials, 2016, 9, 124.	1.3	99
383	A Review on Development and Applications of Bio-Inspired Superhydrophobic Textiles. Materials, 2016, 9, 892.	1.3	74
384	Dragonfly wing inspired multifunctional antireflective superhydrophobic surfaces., 2016,,.		0
385	Candle Soot as Efficient Support for Proton Exchange Membrane Fuel Cell Catalyst. Fuel Cells, 2016, 16, 652-655.	1.5	16
386	Moldable Superhydrophobic Surfaces. Advanced Materials Interfaces, 2016, 3, 1600074.	1.9	6
387	Microscopic Dimensions Engineering: Stepwise Manipulation of the Surface Wettability on 3D Substrates for Oil/Water Separation. Advanced Materials, 2016, 28, 936-942.	11.1	109
388	Largeâ€Scale Fabrication of Robust Superhydrophobic Coatings with High Rigidity and Good Flexibility. Advanced Materials Interfaces, 2016, 3, 1500718.	1.9	58
389	Recent Development of Durable and Self-Healing Surfaces with Special Wettability. Macromolecular Rapid Communications, 2016, 37, 463-485.	2.0	102
390	A Costâ€Effective Approach to Fabricate Superhydrophobic Coatings Using Hydrophilic Materials. Advanced Engineering Materials, 2016, 18, 567-571.	1.6	11
391	Oxygenâ€Rich Enzyme Biosensor Based on Superhydrophobic Electrode. Advanced Materials, 2016, 28, 1477-1481.	11.1	134
392	A Superhydrophobic Surface Templated by Protein Selfâ€Assembly and Emerging Application toward Protein Crystallization. Advanced Materials, 2016, 28, 579-587.	11.1	136
393	Thermal Processing of Silicones for Green, Scalable, and Healable Superhydrophobic Coatings. Advanced Materials, 2016, 28, 3677-3682.	11.1	165
394	Active Steerable Catalytic Supraparticles Shuttling on Preprogrammed Vertical Trajectories. Advanced Materials Interfaces, 2016, 3, 1600095.	1.9	19
395	Durable Selfâ€Healing Superhydrophobic Coating with Biomimic "Chloroplast―Analogous Structure. Advanced Materials Interfaces, 2016, 3, 1600040.	1.9	23

#	Article	IF	CITATIONS
396	Siliconbürsten: omniphobe OberflÃ g hen mit niedrigen Gleitwinkeln. Angewandte Chemie, 2016, 128, 6934-6937.	1.6	1
397	Smart Thin Hydrogel Coatings Harnessing Hydrophobicity and Topography to Capture and Release Cancer Cells. Small, 2016, 12, 4697-4701.	5.2	61
398	Mechanical Properties of Highly Porous Super Liquidâ€Repellent Surfaces. Advanced Functional Materials, 2016, 26, 4914-4922.	7.8	37
399	A Green Route for Substrate-Independent Oil-Repellent Coatings. Scientific Reports, 2016, 6, 38016.	1.6	6
400	Enhanced Wear Resistance of Transparent Epoxy Composite Coatings with Vertically Aligned Halloysite Nanotubes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 35552-35564.	4.0	38
401	Candle soot-based super-amphiphobic coatings resist protein adsorption. Biointerphases, 2016, 11, 031007.	0.6	20
402	Separation of organic liquid mixture by flexible nanofibrous membranes with precisely tunable wettability. NPG Asia Materials, 2016, 8, e334-e334.	3.8	62
403	Fabrication of high aspect ratio broadband antireflection porous nano-network on glass using candle soot as a sacrificial layer for solar energy utilization. Journal of Renewable and Sustainable Energy, 2016, 8, 063701.	0.8	0
404	Underwater Superhydrophobicity: Stability, Design and Regulation, and Applications. Applied Mechanics Reviews, 2016, 68, .	4.5	77
405	Designing bioinspired superoleophobic surfaces. APL Materials, 2016, 4, .	2.2	68
406	Novel transparent, liquid-repellent smooth surfaces with mechanical durability. Chemical Engineering Journal, 2016, 296, 458-465.	6.6	31
407	Robust Superhydrophobic Foam: A Graphdiyneâ€Based Hierarchical Architecture for Oil/Water Separation. Advanced Materials, 2016, 28, 168-173.	11.1	449
408	Covalently Attached Liquids: Instant Omniphobic Surfaces with Unprecedented Repellency. Angewandte Chemie - International Edition, 2016, 55, 244-248.	7.2	299
409	Preparation of robust anti-smudge coatings via electrophoretic deposition. Chemical Engineering Journal, 2016, 302, 744-751.	6.6	29
410	Development of Candle Soot Based Carbon Nanoparticles (CNPs)/Polyaniline Electrode and Its Comparative Study with CNPs/MnO2 in Supercapacitors. Electrochimica Acta, 2016, 210, 190-198.	2.6	25
411	Preparation of microstructure-controllable superhydrophobic polytetrafluoroethylene porous thin film by vacuum thermal-evaporation. Frontiers of Materials Science, 2016, 10, 320-327.	1.1	11
412	Superhydrophobic coatings with improved mechanical robustness based on polymer brushes. Surface and Coatings Technology, 2016, 299, 162-168.	2.2	42
413	Fractal-like structures in colloid science. Advances in Colloid and Interface Science, 2016, 235, 1-13.	7.0	155

#	Article	IF	CITATIONS
415	Moving superhydrophobic surfaces toward real-world applications. Science, 2016, 352, 142-143.	6.0	609
416	A facile method to fabricate superamphiphobic polytetrafluoroethylene surface by femtosecond laser pulses. Chemical Physics Letters, 2016, 644, 261-266.	1.2	30
417	Superhydrophobic meshes that can repel hot water and strong corrosive liquids used for efficient gravity-driven oil/water separation. Nanoscale, 2016, 8, 7638-7645.	2.8	380
418	Immobilized liquid layers: A new approach to anti-adhesion surfaces for medical applications. Experimental Biology and Medicine, 2016, 241, 909-918.	1.1	81
419	Rheological Properties of Viscoelastic Drops on Superamphiphobic Substrates. Langmuir, 2016, 32, 4071-4076.	1.6	6
420	The effect of polar end of long-chain fluorocarbon oligomers in promoting the superamphiphobic property over multi-scale rough Al alloy surfaces. Applied Surface Science, 2016, 379, 55-65.	3.1	30
421	Ultrastable coaxial cable-like superhydrophobic mesh with self-adaption effect: facile synthesis and oil/water separation application. Journal of Materials Chemistry A, 2016, 4, 8080-8090.	5.2	95
422	Transparent and abrasion-resistant superhydrophobic coating with robust self-cleaning function in either air or oil. Journal of Materials Chemistry A, 2016, 4, 7869-7874.	5.2	172
423	Superamphiphobic and Electroactive Nanocomposite toward Self-Cleaning, Antiwear, and Anticorrosion Coatings. ACS Applied Materials & Samp; Interfaces, 2016, 8, 12481-12493.	4.0	145
424	Stretchable Superhydrophobicity from Monolithic, Three-Dimensional Hierarchical Wrinkles. Nano Letters, 2016, 16, 3774-3779.	4.5	127
425	Amplified effect of surface charge on cell adhesion by nanostructures. Nanoscale, 2016, 8, 12540-12543.	2.8	41
426	Semitransparent, durable superhydrophobic polydimethylsiloxane/SiO ₂ nanocomposite coatings on varnished wood. Holzforschung, 2016, 70, 1039-1045.	0.9	28
427	Fabrication of a micro-nano structure on steel surface and surface wetting. RSC Advances, 2016, 6, 47588-47594.	1.7	10
428	Conformable superoleophobic surfaces with multi-scale structures on polymer substrates. Journal of Materials Chemistry A, 2016, 4, 8272-8282.	5.2	22
429	Tough Polymer Aerogels Incorporating a Conformal Inorganic Coating for Low Flammability and Durable Hydrophobicity. ACS Applied Materials & Samp; Interfaces, 2016, 8, 13051-13057.	4.0	50
430	A facile hybrid approach to high-performance broadband antireflective thin films with humidity resistance as well as mechanical robustness. Journal of Materials Chemistry C, 2016, 4, 5342-5348.	2.7	26
431	Bioinspired fabrication of mechanically durable superhydrophobic materials with abrasion-enhanced properties. RSC Advances, 2016, 6, 93403-93409.	1.7	16
432	Surfaces with Sustainable Superhydrophobicity upon Mechanical Abrasion. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 28171-28179.	4.0	74

#	Article	IF	Citations
433	A "writing―strategy for shape transition with infinitely adjustable shaping sequences and in situ tunable 3D structures. Materials Horizons, 2016, 3, 581-587.	6.4	28
434	A facile cost-effective method for preparing robust self-cleaning transparent superhydrophobic coating. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	11
435	Optovibrometry: tracking changes in the surface tension and viscosity of multicomponent droplets in real-time. Soft Matter, 2016, 12, 8790-8797.	1.2	1
436	Advanced Sorbents for Oilâ€Spill Cleanup: Recent Advances and Future Perspectives. Advanced Materials, 2016, 28, 10459-10490.	11.1	547
437	Facile fabrication of robust superhydrophobic surfaces: comparative investigation. RSC Advances, 2016, 6, 98257-98266.	1.7	8
438	Biomimetic Multi-Functional Superamphiphobic FOTS-TiO ₂ Particles beyond Lotus Leaf. ACS Applied Materials & Diterfaces, 2016, 8, 27188-27198.	4.0	131
439	Fabrication of superhydrophobic coating via spraying method and its applications in anti-icing and anti-corrosion. Applied Surface Science, 2016, 389, 547-553.	3.1	98
440	Robust Underwater Oilâ€Repellent Material Inspired by Columnar Nacre. Advanced Materials, 2016, 28, 8505-8510.	11.1	96
441	Fabrication of robust superhydrophobic fabrics based on coating with PVDF/PDMS. RSC Advances, 2016, 6, 84887-84892.	1.7	26
442	Fractal Surfaces of Molecular Crystals Mimicking Lotus Leaf with Phototunable Double Roughness Structures. Journal of the American Chemical Society, 2016, 138, 10299-10303.	6.6	63
443	Role of wide tip of mushroom-like micropillar arrays to make the Cassie state on superrepellent surfaces. RSC Advances, 2016, 6, 74670-74674.	1.7	16
444	Roles of silanes and silicones in forming superhydrophobic and superoleophobic materials. Journal of Materials Chemistry A, 2016, 4, 13677-13725.	5.2	215
445	Rational strategy for the atmospheric icing prevention based on chemically functionalized carbon soot coatings. Applied Surface Science, 2016, 390, 452-460.	3.1	48
446	Fabrication of Tunable, Stable, and Predictable Superhydrophobic Coatings on Foam Ceramic Materials. Industrial & Engineering Chemistry Research, 2016, 55, 10095-10103.	1.8	20
447	Single etch fabrication and characterization of robust nanoparticle tipped bi-level superhydrophobic surfaces. RSC Advances, 2016, 6, 81852-81861.	1.7	8
448	Perspectives on digital microfluidics. Sensors and Actuators A: Physical, 2016, 250, 15-28.	2.0	41
449	Biomimetics studies of <i>Salvinia molesta</i> for fabrication. Micro and Nano Letters, 2016, 11, 291-294.	0.6	2
450	Synthesis of vertically aligned composite microcone membrane filter for water/oil separation. Materials and Design, 2016, 111, 9-16.	3.3	16

#	Article	IF	CITATIONS
451	Durable polyorganosiloxane superhydrophobic films with a hierarchical structure by sol-gel and heat treatment method. Applied Surface Science, 2016, 390, 993-1001.	3.1	43
452	Flexible and mechanically robust superhydrophobic silicone surfaces with stable Cassie–Baxter state. Journal of Materials Chemistry A, 2016, 4, 14180-14186.	5.2	71
453	Brilliant Structurally Colored Films with Invariable Stop-Band and Enhanced Mechanical Robustness Inspired by the Cobbled Road. ACS Applied Materials & Enhanced Stop-Band and Enhanced Mechanical Robustness Inspired by the Cobbled Road. ACS Applied Materials & Enhanced Mechanical Robustness Inspired by the Cobbled Road. ACS Applied Materials & Enhanced Mechanical Robustness Inspired by the Cobbled Road. ACS Applied Materials & Enhanced Mechanical Robustness Inspired by the Cobbled Road. ACS Applied Materials & Enhanced Mechanical Robustness Inspired by the Cobbled Road. ACS Applied Materials & Enhanced Mechanical Robustness Inspired by the Cobbled Road. ACS Applied Materials & Enhanced Mechanical Robustness Inspired by the Cobbled Road. ACS Applied Materials & Enhanced Mechanical Robustness Inspired by the Cobbled Road. ACS Applied Materials & Enhanced Mechanical Robustness Inspired by the Cobbled Road. ACS Applied Materials & Enhanced Mechanical Robustness Inspired Britan Robust	4.0	24
454	Long-Term Repellency of Liquids by Superoleophobic Surfaces. Physical Review Letters, 2016, 117, 046102.	2.9	18
455	Flame synthesis of nitrogen doped carbon for the oxygen reduction reaction and non-enzymatic methyl parathion sensor. RSC Advances, 2016, 6, 71507-71516.	1.7	38
456	Superamphiphobic overhang structured coating on a biobased material. Applied Surface Science, 2016, 389, 135-143.	3.1	38
457	Applied Voltage and Nearâ€Infrared Light Enable Healing of Superhydrophobicity Loss Caused by Severe Scratches in Conductive Superhydrophobic Films. Advanced Functional Materials, 2016, 26, 6777-6784.	7.8	114
458	Durable superhydrophobic carbon soot coatings for sensor applications. Journal Physics D: Applied Physics, 2016, 49, 025309.	1.3	20
459	Engineering polydimethylsiloxane with two-dimensional graphene oxide for an extremely durable superhydrophobic fabric coating. RSC Advances, 2016, 6, 66834-66840.	1.7	16
460	Surface-Independent Hierarchical Coatings with Superamphiphobic Properties. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 29117-29127.	4.0	71
461	A robust, melting class bulk superhydrophobic material with heat-healing and self-cleaning properties. Scientific Reports, 2016, 5, 18510.	1.6	60
462	A Relation for Nanodroplet Diffusion on Smooth Surfaces. Scientific Reports, 2016, 6, 26488.	1.6	15
463	Candle-Soot Derived Photoactive and Superamphiphobic Fractal Titania Electrode. Chemistry of Materials, 2016, 28, 7919-7927.	3.2	36
464	Warum der Tropfen nicht hÃĦ. Nachrichten Aus Der Chemie, 2016, 64, 945-951.	0.0	0
465	Facile Synthesis of Tunable and Durable Bulk Superhydrophobic Material from Amine "Reactive― Polymeric Gel. Chemistry of Materials, 2016, 28, 8689-8699.	3.2	50
466	Preparation of wood-like structured copper with superhydrophobic properties. Scientific Reports, 2016, 5, 18328.	1.6	7
467	Cell micropatterns based on silicone-oil-modified slippery surfaces. Nanoscale, 2016, 8, 18612-18615.	2.8	33
468	Chapter 1 Multifunctional Coatings for Solar Energy Applications. , 2016, , 1-88.		0

#	Article	IF	CITATIONS
469	Robust, self-healing, superhydrophobic coatings highlighted by a novel branched thiol-ene fluorinated siloxane nanocomposites. Composites Science and Technology, 2016, 137, 78-86.	3.8	67
470	Recent Development in Durable Superâ€Liquidâ€Repellent Fabrics. Advanced Materials Interfaces, 2016, 3, 1600402.	1.9	38
471	Current Research Trends in Liquid-Repellent Treatments Focused on the Improvement of Sliding Properties. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2016, 67, 452-460.	0.1	1
472	Silverâ€Nanoparticleâ€Colored Cotton Fabrics with Tunable Colors and Durable Antibacterial and Selfâ€Healing Superhydrophobic Properties. Advanced Functional Materials, 2016, 26, 569-576.	7.8	397
473	An Aqueous Process for Durable Superamphiphobic Diblock Copolymer Coatings on Fabrics. Advanced Materials Interfaces, 2016, 3, 1500693.	1.9	23
474	Silicone Brushes: Omniphobic Surfaces with Low Sliding Angles. Angewandte Chemie - International Edition, 2016, 55, 6822-6824.	7.2	120
475	Slippery Liquidâ€Infused Porous Surfaces that Prevent Microbial Surface Fouling and Kill Nonâ€Adherent Pathogens in Surrounding Media: A Controlled Release Approach. Advanced Functional Materials, 2016, 26, 3599-3611.	7.8	132
476	Singleâ€Step Fabrication of Highâ€Density Microdroplet Arrays of Lowâ€Surfaceâ€Tension Liquids. Advanced Materials, 2016, 28, 3202-3208.	11.1	93
477	Understanding the Formation of Anisometric Supraparticles: A Mechanistic Look Inside Droplets Drying on a Superhydrophobic Surface. Langmuir, 2016, 32, 6902-6908.	1.6	14
478	Bioinspired durable superhydrophobic materials with antiwear property fabricated from quartz sands and organosilane. Journal of Materials Science, 2016, 51, 8718-8727.	1.7	32
479	Rapid fabrication and characterization of superhydrophobic tri-dimensional Ni/Al coatings. Applied Surface Science, 2016, 387, 8-15.	3.1	37
480	Single-step flame synthesis of carbon nanoparticles with tunable structure and chemical reactivity. RSC Advances, 2016, 6, 61620-61629.	1.7	18
481	Transparent superhydrophobic coatings from amphiphilic-fluorinated block copolymers synthesized by aqueous polymerization-induced self-assembly. Polymer Chemistry, 2016, 7, 3998-4003.	1.9	46
482	Fucoidan Hydrogels Photo-Cross-Linked with Visible Radiation As Matrices for Cell Culture. ACS Biomaterials Science and Engineering, 2016, 2, 1151-1161.	2.6	41
483	Ambient, rapid and facile deposition of polymer brushes for immobilization of plasmonic nanoparticles. Applied Surface Science, 2016, 385, 299-307.	3.1	12
484	A feasible electrochemical method for tuning coatings wettability from superhydrophilicity to superhydrophobicity. Applied Surface Science, 2016, 385, 80-87.	3.1	7
485	Robust and Superhydrophobic Surface Modification by a "Paint + Adhesive―Method: Applications in Self-Cleaning after Oil Contamination and Oil–Water Separation. ACS Applied Materials & Samp; Interfaces, 2016, 8, 17659-17667.	4.0	145
486	One-pot, template-free synthesis of a robust superhydrophobic polymer monolith with an adjustable hierarchical porous structure. Green Chemistry, 2016, 18, 5266-5272.	4.6	60

#	Article	IF	CITATIONS
487	Unique Necklaceâ€Like Phenol Formaldehyde Resin Nanofibers: Scalable Templating Synthesis, Casting Films, and Their Superhydrophobic Property. Advanced Functional Materials, 2016, 26, 5086-5092.	7.8	25
488	Longâ€Lived Multifunctional Superhydrophobic Heterostructure Via Molecular Selfâ€Supply. Advanced Materials Interfaces, 2016, 3, 1500727.	1.9	19
489	Clear and Durable Epoxy Coatings that Exhibit Dynamic Omniphobicity. Advanced Materials Interfaces, 2016, 3, 1600001.	1.9	55
490	Superhydrophobic TiO 2 /polyvinylidene fluoride composite surface with reversible wettability switching and corrosion resistance. Chemical Engineering Journal, 2016, 290, 37-44.	6.6	196
491	A new approach to understand the Cassie state of liquids on superamphiphobic materials. Nanoscale, 2016, 8, 3031-3039.	2.8	57
492	From Maya blue to biomimetic pigments: durable biomimetic pigments with self-cleaning property. Journal of Materials Chemistry A, 2016, 4, 901-907.	5.2	74
493	Durable and self-healing superamphiphobic coatings repellent even to hot liquids. Chemical Communications, 2016, 52, 2744-2747.	2.2	198
494	Controlling the evaporation lifetimes of sessile droplets on superhydrophobic paper by simple stretching. RSC Advances, 2016, 6, 12862-12867.	1.7	11
495	Stalagmite-like self-cleaning surfaces prepared by silanization of plasma-assisted metal-oxide nanostructures. Journal of Materials Chemistry A, 2016, 4, 3406-3414.	5.2	21
496	Electrochemical supercapacitor behaviour of functionalized candle flame carbon soot. Bulletin of Materials Science, 2016, 39, 241-248.	0.8	40
497	A self-modification approach toward transparent superhydrophobic glass for rainproofing and superhydrophobic fiberglass mesh for oilâ¿water separation. Applied Surface Science, 2016, 360, 789-797.	3.1	51
498	Understanding and Tuning the Intrinsic Hydrophobicity of Rare-Earth Oxides: A DFT+U Study. ACS Applied Materials & DFT+U Study. ACS Applied Materials & DFT+U Study. ACS	4.0	55
499	Semitransparent superoleophobic coatings with low sliding angles for hot liquids based on silica nanotubes. Journal of Materials Chemistry A, 2016, 4, 953-960.	5.2	44
500	Hydrophobic and superhydrophobic coatings for limestone and marble conservation., 2016,, 421-452.		16
501	Controlled hydrophilic/hydrophobic property of silica films by manipulating the hydrolysis and condensation of tetraethoxysilane. Applied Surface Science, 2016, 376, 1-9.	3.1	39
502	Facile preparation of superhydrophobic candle soot coating and its wettability under condensation. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	15
503	A Novel Laser Ultrasound Transducer Using Candle Soot Carbon Nanoparticles. IEEE Nanotechnology Magazine, 2016, 15, 395-401.	1.1	43
504	Particle-Stabilized Powdered Water-in-Oil Emulsions. Langmuir, 2016, 32, 3110-3115.	1.6	30

#	Article	IF	CITATIONS
505	Fabrication of polydopamine-coated superhydrophobic fabrics for oil/water separation and self-cleaning. Applied Surface Science, 2016, 370, 243-251.	3.1	119
506	Rapid fabrication of angle-independent structurally colored films with a superhydrophobic property. Dyes and Pigments, 2016, 130, 202-208.	2.0	35
507	Rapid synthesis of inherently robust and stable superhydrophobic carbon soot coatings. Applied Surface Science, 2016, 369, 341-347.	3.1	84
508	Superamphiphobicity and electroactivity enabled dual physical/chemical protections in novel anticorrosive nanocomposite coatings. Polymer, 2016, 85, 37-46.	1.8	46
509	A versatile approach for preparing self-recovering superhydrophobic coatings. Chemical Engineering Journal, 2016, 293, 75-81.	6.6	68
510	Superamphiphobic Silicon-Nanowire-Embedded Microsystem and In-Contact Flow Performance of Gas and Liquid Streams. ACS Nano, 2016, 10, 1156-1162.	7.3	23
511	Recent advances in oil-repellent surfaces. International Materials Reviews, 2016, 61, 101-126.	9.4	52
512	Icephobicity of Penguins <i>Spheniscus Humboldti</i> and an Artificial Replica of Penguin Feather with Air-Infused Hierarchical Rough Structures. Journal of Physical Chemistry C, 2016, 120, 15923-15929.	1.5	48
513	Fabrication of transparent superhydrophobic porous silica coating for self-cleaning and anti-fogging. Ceramics International, 2016, 42, 8706-8712.	2.3	156
514	Nanomanufacturing: A Perspective. ACS Nano, 2016, 10, 2995-3014.	7.3	176
515	A nanotubular coating with both high transparency and healable superhydrophobic self-cleaning properties. RSC Advances, 2016, 6, 21362-21366.	1.7	16
516	Dopamine/Silica Nanoparticle Assembled, Microscale Porous Structure for Versatile Superamphiphobic Coating. ACS Nano, 2016, 10, 2910-2921.	7.3	107
517	Replacing the solid needle by a liquid one when measuring static and advancing contact angles. Colloid and Polymer Science, 2016, 294, 657-665.	1.0	9
518	Palygorskite@Fe ₃ O ₄ @polyperfluoroalkylsilane nanocomposites for superoleophobic coatings and magnetic liquid marbles. Journal of Materials Chemistry A, 2016, 4, 5859-5868.	5.2	38
519	Modeling, Fabrication, and Characterization of Superoleophobic/Philic Surfaces. Biological and Medical Physics Series, 2016, , 243-325.	0.3	0
520	Durable Superhydrophobic Surfaces via Spontaneous Wrinkling of Teflon AF. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 6743-6750.	4.0	72
521	Tailoring re-entrant geometry in inverse colloidal monolayers to control surface wettability. Journal of Materials Chemistry A, 2016, 4, 6853-6859.	5.2	62
522	Rapid Fabrication of T-Shaped Micropillars on Polypropylene Surfaces with Robust Cassie–Baxter State for Quantitative Droplet Collection. Journal of Physical Chemistry C, 2016, 120, 1556-1561.	1.5	24

#	ARTICLE	IF	CITATIONS
523	A high performance three-phase enzyme electrode based on superhydrophobic mesoporous silicon nanowire arrays for glucose detection. Nanoscale, 2016, 8, 7391-7395.	2.8	32
524	Nanoparticle covered surfaces: An efficient way to enhance superhydrophobic properties. Materials and Design, 2016, 92, 911-918.	3.3	17
525	Substrate-Independent, Transparent Oil-Repellent Coatings with Self-Healing and Persistent Easy-Sliding Oil Repellency. ACS Nano, 2016, 10, 1076-1085.	7.3	102
526	Fabrication and characterization of Eri silk fibers-based sponges for biomedical application. Acta Biomaterialia, 2016, 32, 178-189.	4.1	52
527	Recent advances in the mechanical durability of superhydrophobic materials. Advances in Colloid and Interface Science, 2016, 229, 57-79.	7.0	411
528	Fabrication of robust, damage-tolerant superhydrophobic coatings on naturally micro-grooved wood surfaces. RSC Advances, 2016, 6, 701-707.	1.7	59
529	Durable and scalable icephobic surfaces: similarities and distinctions from superhydrophobic surfaces. Soft Matter, 2016, 12, 1938-1963.	1.2	272
530	The facile preparation of self-cleaning fabrics. Composites Science and Technology, 2016, 122, 1-9.	3.8	39
531	Nanoscale patterning of self-assembled monolayers using DNA nanostructure templates. Chemical Communications, 2016, 52, 1677-1680.	2.2	26
532	Drop Impact on a Solid Surface. Annual Review of Fluid Mechanics, 2016, 48, 365-391.	10.8	1,021
533	A colloidoscope of colloid-based porous materials and their uses. Chemical Society Reviews, 2016, 45, 281-322.	18.7	256
534	Lotus effect in wetting and self-cleaning. Biotribology, 2016, 5, 31-43.	0.9	208
535	Water-Repellent Properties of Superhydrophobic and Lubricant-Infused "Slippery―Surfaces: A Brief Study on the Functions and Applications. ACS Applied Materials & Samp; Interfaces, 2016, 8, 3615-3623.	4.0	212
536	Preparation of superamphiphobic polymer-based coatings via spray- and dip-coating strategies. Progress in Organic Coatings, 2016, 90, 463-471.	1.9	72
537	The springtail cuticle as a blueprint for omniphobic surfaces. Chemical Society Reviews, 2016, 45, 323-341.	18.7	191
538	Investigation of engine oil micro-droplets deposition using a round impinging jet. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016, 38, 721-734.	0.8	1
539	A Robust Cu(OH) ₂ Nanoneedles Mesh with Tunable Wettability for Nonaqueous Multiphase Liquid Separation. Small, 2017, 13, 1600499.	5.2	76
540	Selfâ€Restoration of Superhydrophobicity on Shape Memory Polymer Arrays with Both Crushed Microstructure and Damaged Surface Chemistry. Small, 2017, 13, 1503402.	5. 2	122

#	Article	IF	CITATIONS
541	Water purification: oil–water separation by nanotechnology and environmental concerns. Environmental Science: Nano, 2017, 4, 514-525.	2.2	122
542	Air drying on superamphiphobic surfaces can reduce damage by organic solvents to microbial cells immobilized in synthetic resin capsules. Process Biochemistry, 2017, 54, 28-32.	1.8	5
543	Superhydrophobicity and regeneration of PVDF/SiO2 composite films. Applied Surface Science, 2017, 396, 1443-1449.	3.1	17
544	Superhydrophobic self-floating carbon nanofiber coating for efficient gravity-directed oil/water separation. Journal of Materials Chemistry A, 2017, 5, 2936-2946.	5.2	87
545	Robust superhydrophobic diamond microspheres for no-loss transport of corrosive liquid microdroplets. Chemical Communications, 2017, 53, 2355-2358.	2.2	18
546	Simplicity as a Route to Impact in Materials Research. Advanced Materials, 2017, 29, 1604681.	11.1	15
547	High-flux underwater superoleophobic hybrid membranes for effective oil–water separation from oil-contaminated water. RSC Advances, 2017, 7, 9051-9056.	1.7	18
548	Sprayable superhydrophobic nano-chains coating with continuous self-jumping of dew and melting frost. Scientific Reports, 2017, 7, 40300.	1.6	44
549	Direct Synthesis of Fractal Polymer Dispersions by Miniemulsion Polymerization. Macromolecular Rapid Communications, 2017, 38, 1600673.	2.0	2
550	An easy and environmentally-friendly approach to superamphiphobicity of aluminum surfaces. Applied Surface Science, 2017, 402, 301-307.	3.1	27
551	Two-Step Process To Create "Roll-Off―Superamphiphobic Paper Surfaces. ACS Applied Materials & Interfaces, 2017, 9, 9195-9203.	4.0	73
552	Fluorine-free, liquid-repellent surfaces made from ionic liquid-infused nanostructured silicon. Monatshefte FA1/4r Chemie, 2017, 148, 167-177.	0.9	16
553	Chemical and Equipment-Free Strategy To Fabricate Water/Oil Separating Materials for Emergent Oil Spill Accidents. Langmuir, 2017, 33, 2664-2670.	1.6	24
554	Self-wrapping of an ouzo drop induced by evaporation on a superamphiphobic surface. Soft Matter, 2017, 13, 2749-2759.	1.2	47
555	Designing Self-Healing Superhydrophobic Surfaces with Exceptional Mechanical Durability. ACS Applied Materials & Durability. ACS Applied M	4.0	198
556	Fast Dynamics of Water Droplets Freezing from the Outside In. Physical Review Letters, 2017, 118, 084101.	2.9	89
557	Fabrication of transparent superhydrophobic glass with fibered-silica network. Applied Surface Science, 2017, 407, 526-531.	3.1	28
558	Contactless Transport and Mixing of Liquids on Self-Sustained Sublimating Coatings. Langmuir, 2017, 33, 1799-1809.	1.6	7

#	Article	IF	Citations
559	Controlling the Structure of Supraballs by pH-Responsive Particle Assembly. Langmuir, 2017, 33, 1995-2002.	1.6	32
560	Superoleophilic Titania Nanoparticle Coatings with Fast Fingerprint Decomposition and High Transparency. ACS Applied Materials & Samp; Interfaces, 2017, 9, 8354-8360.	4.0	12
561	Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications. Nanoscale, 2017, 9, 3338-3366.	2.8	232
562	Silicone-Infused Antismudge Nanocoatings. ACS Applied Materials & Samp; Interfaces, 2017, 9, 9029-9037.	4.0	58
563	Facile Fabrication of Superomniphobic Polymer Hierarchical Structures for Directional Droplet Movement. ACS Applied Materials & Interfaces, 2017, 9, 9213-9220.	4.0	24
564	A Waterborne Coating System for Preparing Robust, Selfâ€healing, Superamphiphobic Surfaces. Advanced Functional Materials, 2017, 27, 1604261.	7.8	273
565	PDMS/camphor soot composite coating: towards a self-healing and a self-cleaning superhydrophobic surface. RSC Advances, 2017, 7, 15027-15040.	1.7	43
566	Smooth Water-Based Antismudge Coatings for Various Substrates. ACS Sustainable Chemistry and Engineering, 2017, 5, 2605-2613.	3.2	50
567	Superoleophobic surfaces on stainless steel substrates obtained by chemical bath deposition. Micro and Nano Letters, 2017, 12, 76-81.	0.6	19
568	Recyclable magnetic superhydrophobic straw soot sponge for highly efficient oil/water separation. Journal of Colloid and Interface Science, 2017, 497, 57-65.	5.0	166
569	A facile immersion-curing approach to surface-tailored poly(vinyl alcohol)/silica underwater superoleophobic coatings with improved transparency and robustness. Journal of Materials Chemistry A, 2017, 5, 10866-10875.	5.2	45
570	Numerical simulation of droplet impact on textured surfaces in a hybrid state. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	26
571	Cell adhesive spectra along surface wettability gradient from superhydrophilicity to superhydrophobicity. Science China Chemistry, 2017, 60, 614-620.	4.2	42
572	Simple spray deposition of a water-based superhydrophobic coating with high stability for flexible applications. Journal of Materials Chemistry A, 2017, 5, 9882-9890.	5.2	112
573	One-Step Fabrication of Non-Fluorinated Transparent Super-Repellent Surfaces with Tunable Wettability Functioning in Both Air and Oil. ACS Applied Materials & Interfaces, 2017, 9, 15857-15867.	4.0	42
574	Facile Design and Fabrication of Superwetting Surfaces with Excellent Wear-Resistance. ACS Applied Materials & Samp; Interfaces, 2017, 9, 15776-15784.	4.0	71
575	Effect of hydro-oleophobic perfluorocarbon chain on interfacial behavior and mechanism of perfluorooctane sulfonate in oil-water mixture. Scientific Reports, 2017, 7, 44694.	1.6	13
576	Contact Angle Measurement of Small Capillary Length Liquid in Super-repelled State. Scientific Reports, 2017, 7, 740.	1.6	16

#	Article	IF	CITATIONS
577	High performance metal oxide based sensing device using an electrode with a solid/liquid/air triphase interface. Nano Research, 2017, 10, 2998-3004.	5.8	10
578	Improved Interfacial Floatability of Superhydrophobic/Superhydrophilic Janus Sheet Inspired by Lotus Leaf. Advanced Functional Materials, 2017, 27, 1701466.	7.8	165
579	Zinc hydroxystannate microencapsulated to improve its safety and application to flame-retardant, smoke-suppressed polyvinyl chloride composites. Journal of Alloys and Compounds, 2017, 712, 768-780.	2.8	18
580	Fabrics coated with hot-iron-treated graphene oxide for a self-cleaning and mechanically robust water–oil separation material. RSC Advances, 2017, 7, 25796-25802.	1.7	10
581	Nanostructured fabric with robust superhydrophobicity induced by a thermal hydrophobic ageing process. RSC Advances, 2017, 7, 25597-25604.	1.7	37
582	Metamorphic Superomniphobic Surfaces. Advanced Materials, 2017, 29, 1700295.	11.1	104
583	Fabrication of SERS substrates containing dense "hot spots―by assembling star-shaped nanoparticles on superhydrophobic surfaces. New Journal of Chemistry, 2017, 41, 5028-5033.	1.4	9
584	Superoleophobic surfaces. Chemical Society Reviews, 2017, 46, 4168-4217.	18.7	613
585	Buoyancy increase and drag-reduction through a simple superhydrophobic coating. Nanoscale, 2017, 9, 7588-7594.	2.8	141
586	Oil/water separation techniques: a review of recent progresses and future directions. Journal of Materials Chemistry A, 2017, 5, 16025-16058.	5.2	859
587	Rough Structure of Electrodeposition as a Template for an Ultrarobust Self-Cleaning Surface. ACS Applied Materials & Distriction (2017), 9, 16571-16580.	4.0	93
588	Large-scale fabrication of translucent and repairable superhydrophobic spray coatings with remarkable mechanical, chemical durability and UV resistance. Journal of Materials Chemistry A, 2017, 5, 10622-10631.	5.2	164
589	Energy Dissipation of Moving Drops on Superhydrophobic and Superoleophobic Surfaces. Langmuir, 2017, 33, 107-116.	1.6	57
590	Enhancing CO ₂ Capture using Robust Superomniphobic Membranes. Advanced Materials, 2017, 29, 1603524.	11.1	68
591	Eco-friendly preparation of robust superhydrophobic Cu(OH) 2 coating for self-cleaning, oil-water separation and oil sorption. Surface and Coatings Technology, 2017, 325, 14-21.	2.2	42
592	Wetting Transitions in Polymer Nanograss Generated by Nanoimprinting. Macromolecular Chemistry and Physics, 2017, 218, 1700056.	1.1	5
593	Breath figure lithography for the construction of a hierarchical structure in sponges and their applications to oil/water separation. Journal of Materials Chemistry A, 2017, 5, 16369-16375.	5.2	42
594	Outmatching superhydrophobicity: bio-inspired re-entrant curvature for mighty superamphiphobicity in air. Journal of Materials Chemistry A, 2017, 5, 14480-14507.	5.2	75

#	ARTICLE	IF	Citations
595	Electrical characterization of flame-soot nanoparticle thin films. Synthetic Metals, 2017, 229, 89-99.	2.1	13
596	Drop spreading on a superhydrophobic surface: pinned contact line and bending liquid surface. Physical Chemistry Chemical Physics, 2017, 19, 14442-14452.	1.3	7
597	Preparation of fluoroalkyl end-capped vinyltrimethoxysilane oligomeric silica/phosphonic acids nanocomposites possessing superoleophobic/superhydrophilic and superoleophilic/superhydrophobic characteristics: application of these nanocomposites to the separation of oil and water. Journal of Coatings Technology Research, 2017, 14, 1183-1193.	1.2	1
598	<i>In Situ</i> Atomic-Scale Observation of Droplet Coalescence Driven Nucleation and Growth at Liquid/Solid Interfaces. ACS Nano, 2017, 11, 5590-5597.	7.3	34
599	A review on the mechanical and thermodynamic robustness of superhydrophobic surfaces. Advances in Colloid and Interface Science, 2017, 246, 133-152.	7.0	101
600	Mussel-Inspired Polyglycerol Coatings with Controlled Wettability: From Superhydrophilic to Superhydrophobic Surface Coatings. Langmuir, 2017, 33, 9508-9520.	1.6	28
601	A novel dissolution and resolidification method for preparing robust superhydrophobic polystyrene/silica composite. Chemical Engineering Journal, 2017, 326, 1066-1073.	6.6	52
602	Well-defined porous membranes for robust omniphobic surfaces via microfluidic emulsion templating. Nature Communications, 2017, 8, 15823.	5.8	143
603	Robust superhydrophobic candle soot and silica composite sponges for efficient oil/water separation in corrosive and hot water. Journal of Sol-Gel Science and Technology, 2017, 82, 817-826.	1.1	28
604	Fabrication of recyclable and durable superhydrophobic materials with wear/corrosion-resistance properties from kaolin and polyvinylchloride. Applied Surface Science, 2017, 410, 299-307.	3.1	28
605	Complex dynamics of capillary imbibition of poly(ethylene oxide) melts in nanoporous alumina. Journal of Chemical Physics, 2017, 146, 203320.	1.2	37
606	Facile fabrication approach for a novel multifunctional superamphiphobic coating based on chemically grafted montmorillonite/Al2O3-polydimethylsiloxane binary nanocomposite. Journal of Polymer Research, 2017, 24, 1.	1.2	19
607	Polymer/Halloysite Nanotubes Composites: Mechanical Robustness and Optical Transmittance. MRS Advances, 2017, 2, 27-32.	0.5	4
608	Robust superhydrophobicity on paper: Protection of spray-coated nanoparticles against mechanical wear by the microstructure of paper. Surface and Coatings Technology, 2017, 319, 301-308.	2.2	43
609	Robust transparent superamphiphobic coatings on non-fabric flat substrates with inorganic adhesive titania bonded silica. Journal of Materials Chemistry A, 2017, 5, 8352-8359.	5.2	35
610	Fabrication of a super-hydrophobic polyvinylidene fluoride hollow fiber membrane using a particle coating process. Journal of Membrane Science, 2017, 533, 130-140.	4.1	40
611	Robust fabrication of $\hat{l}\frac{1}{4}$ -patterns with tunable and durable wetting properties: hydrophilic to ultrahydrophobic via a vacuum process. Journal of Materials Chemistry A, 2017, 5, 7125-7136.	5.2	73
612	Highly transparent fluorine-free superhydrophobic silica nanotube coatings. Chemical Engineering Journal, 2017, 320, 244-252.	6.6	94

#	Article	IF	CITATIONS
613	Argon Plasma Treatment of Fluorineâ€Free Silane Coatings: A Facile, Environmentâ€Friendly Method to Prepare Durable, Superhydrophobic Fabrics. Advanced Materials Interfaces, 2017, 4, 1700027.	1.9	60
614	Colorful Superamphiphobic Coatings with Low Sliding Angles and High Durability Based on Natural Nanorods. ACS Applied Materials & Samp; Interfaces, 2017, 9, 1941-1952.	4.0	88
615	Durable, Transparent, and Hot Liquid Repelling Superamphiphobic Coatings from Polysiloxane-Modified Multiwalled Carbon Nanotubes. Langmuir, 2017, 33, 510-518.	1.6	77
616	Multifunctional superamphiphobic fabrics with asymmetric wettability for one-way fluid transport and templated patterning. Cellulose, 2017, 24, 1129-1141.	2.4	46
617	Omnidirectional Self-Assembly of Transparent Superoleophobic Nanotextures. ACS Nano, 2017, 11, 587-596.	7.3	104
618	Environmental stimuli-responsive self-repairing waterbased superhydrophobic coatings. RSC Advances, 2017, 7, 543-550.	1.7	40
619	Fabrication of recyclable superhydrophobic cotton fabrics. Applied Surface Science, 2017, 400, 405-412.	3.1	49
620	Stability Analysis of Printed Liquid Elbows. Langmuir, 2017, 33, 645-651.	1.6	1
621	Superwettable Microchips as a Platform toward Microgravity Biosensing. ACS Nano, 2017, 11, 621-626.	7.3	74
622	Superamphiphobic surfaces constructed by cross-linked hollow SiO 2 spheres. Applied Surface Science, 2017, 400, 162-171.	3.1	17
623	Constructing Fluorine-Free and Cost-Effective Superhydrophobic Surface with Normal-Alcohol-Modified Hydrophobic SiO ₂ Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2017, 9, 858-867.	4.0	106
624	Impact of Viscous Droplets on Superamphiphobic Surfaces. Langmuir, 2017, 33, 144-151.	1.6	67
625	Flexible PVDF membranes with exceptional robust superwetting surface for continuous separation of oil/water emulsions. Scientific Reports, 2017, 7, 14099.	1.6	33
626	Fabrication of Robust Superhydrophobic Te@C-TiO ₂ Nanocomposites Coating for Application in Oil/Water Separation. Nano, 2017, 12, 1750122.	0.5	1
627	Sustainable and Biodegradable Superhydrophobic Coating from Epoxidized Soybean Oil and ZnO Nanoparticles on Cellulosic Substrates for Efficient Oil/Water Separation. ACS Sustainable Chemistry and Engineering, 2017, 5, 11440-11450.	3.2	110
628	Molecular dimensions and surface diffusion assisted mechanically robust slippery perfluoropolyether impregnated mesoporous alumina interfaces. Nanotechnology, 2017, 28, 505605.	1.3	12
629	Mechanically robust, thermally stable, highly transparent superhydrophobic coating with low-temperature sol–gel process. RSC Advances, 2017, 7, 47357-47365.	1.7	48
630	Spontaneous self-dislodging of freezing water droplets and the role of wettability. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11040-11045.	3.3	73

#	Article	IF	CITATIONS
631	Superamphiphobic Coatings from Combination of a Biomimetic Catecholâ€Bearing Fluoropolymer and Halloysite Nanotubes. Advanced Materials Interfaces, 2017, 4, 1700907.	1.9	22
632	Laponite-Based Surfaces with Holistic Self-Cleaning Functionality by Combining Antistatics and Omniphobicity. ACS Applied Materials & Samp; Interfaces, 2017, 9, 39078-39085.	4.0	22
633	Spontaneous jumping, bouncing and trampolining of hydrogel drops on a heated plate. Nature Communications, 2017, 8, 905.	5.8	35
634	Organic Solvent-Free Fabrication of Durable and Multifunctional Superhydrophobic Paper from Waterborne Fluorinated Cellulose Nanofiber Building Blocks. ACS Nano, 2017, 11, 11091-11099.	7.3	154
635	Mechanical durability of liquid repellent coatings. Surface and Coatings Technology, 2017, 328, 182-191.	2.2	15
636	Large-Area Fabrication of Droplet Pancake Bouncing Surface and Control of Bouncing State. ACS Nano, 2017, 11, 9259-9267.	7.3	118
637	Self-Healing Superhydrophobic Materials Showing Quick Damage Recovery and Long-Term Durability. Langmuir, 2017, 33, 9972-9978.	1.6	53
638	Multiscale crack initiator promoted super-low ice adhesion surfaces. Soft Matter, 2017, 13, 6562-6568.	1.2	150
639	Super-hydrophobic coating used in corrosion protection of metal material: review, discussion and prospects. Metallurgical Research and Technology, 2017, 114, 203.	0.4	22
640	Enhanced Photocatalytic Reaction at Air–Liquid–Solid Joint Interfaces. Journal of the American Chemical Society, 2017, 139, 12402-12405.	6.6	186
641	Argonâ€Plasma Reinforced Superamphiphobic Fabrics. Small, 2017, 13, 1701891.	5.2	51
642	Publisher's note. Colloids and Surfaces B: Biointerfaces, 2017, 159, 898.	2.5	0
643	Environmentally safe, substrate-independent and repairable nanoporous coatings: large-scale preparation, high transparency and antifouling properties. Journal of Materials Chemistry A, 2017, 5, 20277-20288.	5.2	58
644	Robust and Self-Healable Bulk-Superhydrophobic Polymeric Coating. Chemistry of Materials, 2017, 29, 8720-8728.	3.2	65
645	Transparent smart surface with pH-induced wettability transition between superhydrophobicity and underwater superoleophobicity. Materials and Design, 2017, 135, 69-76.	3.3	27
646	Formation and mechanism of a super-hydrophobic surface with wear and salt spray resistance. RSC Advances, 2017, 7, 43181-43185.	1.7	10
647	Substrate-Versatile Approach to Robust Antireflective and Superhydrophobic Coatings with Excellent Self-Cleaning Property in Varied Environments. ACS Applied Materials & Samp; Interfaces, 2017, 9, 34367-34376.	4.0	91
648	A Superhydrophobic Smart Coating for Flexible and Wearable Sensing Electronics. Advanced Materials, 2017, 29, 1702517.	11.1	348

#	Article	IF	CITATIONS
649	Drop Impact onto Dry Surfaces with Complex Morphology. , 0, , 155-252.		1
650	Fabrication of Water Jet Resistant and Thermally Stable Superhydrophobic Surfaces by Spray Coating of Candle Soot Dispersion. Scientific Reports, 2017, 7, 7531.	1.6	65
651	A general and facile chemical avenue for the controlled and extreme regulation of water wettability in air and oil wettability under water. Chemical Science, 2017, 8, 6542-6554.	3.7	47
652	Flexible and Robust Superomniphobic Surfaces Created by Localized Photofluidization of Azopolymer Pillars. ACS Nano, 2017, 11, 7821-7828.	7.3	115
653	From fractal polymer dispersions to mechanically resistant waterborne superhydrophobic coatings. Polymer, 2017, 124, 12-19.	1.8	17
654	Fabrication of Nanostructured Omniphobic and Superomniphobic Surfaces with Inexpensive CO ₂ Laser Engraver. ACS Applied Materials & Interfaces, 2017, 9, 25656-25661.	4.0	53
655	Oneâ€Step Approach to the Growth of ZnO Nanoâ€∤Microrods on Cellulose toward Its Durable Superhydrophobicity. Advanced Materials Interfaces, 2017, 4, 1700550.	1.9	25
656	A facile and low-cost preparation of durable amphiphobic coatings with fluoride–silica@poly(methacrylic acid) hybrid nanocomposites. Journal of Coatings Technology Research, 2017, 14, 1369-1380.	1.2	4
657	A Facile, Sustainable Strategy towards the Preparation of Silicone Nanofilaments and Their Use as Antiwetting Coatings. ChemistrySelect, 2017, 2, 5463-5468.	0.7	7
658	Roughness Versus Chemistry: Effect of Different Surface Properties on Insect Adhesion. Biologically-inspired Systems, 2017, , 33-46.	0.4	0
659	Diverse wettability of superoleophilicity and superoleophobicity for oil spill cleanup and recycling. Applied Surface Science, 2017, 426, 1158-1166.	3.1	10
660	Questions and Answers on the Wettability of Nanoâ€Engineered Surfaces. Advanced Materials Interfaces, 2017, 4, 1700381.	1.9	69
661	Nanoparticles covered surfaces for post-functionalization with aromatic groups to obtain parahydrophobic surface with high water adhesion (petal effect). Journal of Bionic Engineering, 2017, 14, 468-475.	2.7	1
662	Waterborne Nonfluorinated Superhydrophobic Coatings with Exceptional Mechanical Durability Based on Natural Nanorods. Advanced Materials Interfaces, 2017, 4, 1700723.	1.9	48
663	Candle soot with broadband high absorptance for applications of infrared sensors. , 2017, , .		3
664	Durable and self-healing superhydrophobic polyvinylidene fluoride (PVDF) composite coating with in-situ gas compensation function. Surface and Coatings Technology, 2017, 327, 18-24.	2.2	27
665	Reducing the contact time using macro anisotropic superhydrophobic surfaces — effect of parallel wire spacing on the drop impact. NPG Asia Materials, 2017, 9, e415-e415.	3.8	79
666	<i>Nepenthes</i> Inspired Design of Selfâ€Repairing Omniphobic Slippery Liquid Infused Porous Surface (SLIPS) by Femtosecond Laser Direct Writing. Advanced Materials Interfaces, 2017, 4, 1700552.	1.9	120

#	Article	IF	CITATIONS
667	A highly SERS-active and flexible droplet based on carbon-metal composite nanoparticles., 2017,,.		5
668	Inorganic adhesives for robust, self-healing, superhydrophobic surfaces. Journal of Materials Chemistry A, 2017, 5, 19297-19305.	5.2	128
669	Facile transformation of soot nanoparticles into nanoporous fibers via single-step electrospinning. AIP Advances, $2017, 7, .$	0.6	10
670	Durable, high conductivity, superhydrophobicity bamboo timber surface for nanoimprint stamps. Progress in Natural Science: Materials International, 2017, 27, 669-673.	1.8	14
671	Biocompatible hollow polymeric particles produced by a mild solvent- and template free strategy. Colloids and Surfaces B: Biointerfaces, 2017, 160, 732-740.	2.5	2
672	Transparent, abrasion-insensitive superhydrophobic coatings for real-world applications. Scientific Reports, 2017, 7, 15078.	1.6	42
673	General Water-Based Strategy for the Preparation of Superhydrophobic Coatings on Smooth Substrates. Industrial & Substrat	1.8	12
674	Strategic Formulation of Graphene Oxide Sheets for Flexible Monoliths and Robust Polymeric Coatings Embedded with Durable Bioinspired Wettability. ACS Applied Materials & Samp; Interfaces, 2017, 9, 42354-42365.	4.0	26
675	Surface-Tuned and Metal-Ion-Responsive Supramolecular Gels Based on Nucleolipids. ACS Applied Materials & Samp; Interfaces, 2017, 9, 22864-22874.	4.0	31
676	Nearly Perfect Durable Superhydrophobic Surfaces Fabricated by a Simple One-Step Plasma Treatment. Scientific Reports, 2017, 7, 1981.	1.6	79
677	Durable, self-healing, superhydrophobic fabrics from fluorine-free, waterborne, polydopamine/alkyl silane coatings. RSC Advances, 2017, 7, 33986-33993.	1.7	58
678	Superhydrophobic copper coating: Switchable wettability, on-demand oil-water separation, and antifouling. Chemical Engineering Journal, 2017, 327, 849-854.	6.6	141
679	Submillimeter-Sized Bubble Entrapment and a High-Speed Jet Emission during Droplet Impact on Solid Surfaces. Langmuir, 2017, 33, 7225-7230.	1.6	49
680	Nature-inspired superwettability systems. Nature Reviews Materials, 2017, 2, .	23.3	1,212
681	Rapid development of thicknessâ€controllable superamphiphobic coating on the inner wall of long narrow pipes. AICHE Journal, 2017, 63, 3636-3641.	1.8	5
682	Durable superamphiphobic coatings repelling both cool and hot liquids based on carbon nanotubes. Journal of Colloid and Interface Science, 2017, 505, 622-630.	5.0	34
683	Facile fabrication of a robust superwetting three-dimensional (3D) nickel foam for oil/water separation. Journal of Materials Science, 2017, 52, 2169-2179.	1.7	27
684	Robust coating with superhydrophobic and self-cleaning properties in either air or oil based on natural zeolite. Surface and Coatings Technology, 2017, 309, 1045-1051.	2.2	67

#	Article	IF	CITATIONS
685	A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications. Journal of Materials Chemistry A, 2017, 5, 31-55.	5.2	515
686	A cost-effective method for preparing mechanically stable anti-corrosive superhydrophobic coating based on electrochemically exfoliated graphene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 513, 396-401.	2.3	53
687	Preparation of superhydrophobic and superoleophilic nanostructured layer on steel mesh for oil-water separation. Separation and Purification Technology, 2017, 172, 366-373.	3.9	94
688	An expanding horizon: Facile fabrication of highly superhydrophobic coatings. Materials Letters, 2017, 186, 357-360.	1.3	16
689	Fabrication and applications of two- and three-dimensional curved surfaces with robust underwater superoleophobic properties. Journal of Materials Science, 2017, 52, 1123-1136.	1.7	16
690	A versatile route to polymer-reinforced, broadband antireflective and superhydrophobic thin films without high-temperature treatment. Journal of Colloid and Interface Science, 2017, 486, 1-7.	5.0	38
691	Facile approach to the green synthesis of novel ternary composites with excellent superhydrophobic and thermal stability property: An expanding horizon. Chemical Engineering Journal, 2017, 309, 240-248.	6.6	35
692	Fluorine-free low surface energy organic coating for anti-stain applications. Progress in Organic Coatings, 2017, 103, 182-192.	1.9	29
693	Self-assembled and elastomeric arm decorated surfaces for high stress resistant super-repellent materials. Journal of Materials Chemistry A, 2017, 5, 699-711.	5.2	10
694	Robust electrochemical metal oxide deposition using an electrode with a superhydrophobic surface. Nanoscale, 2017, 9, 87-90.	2.8	18
695	Imbibition of water into substrates prepared by thermal treatment of polydimethylsiloxane layers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 521, 69-77.	2.3	6
697	Experimental Investigation on Flow Condensation Heat Transfer in Hydrophobic Annular Metal-Foam Tube. , 2017, , .		1
698	TiO ₂ nanowire-templated hierarchical nanowire network as water-repelling coating. Royal Society Open Science, 2017, 4, 171431.	1.1	6
699	The effect of different wear on superhydrophobic wax coatings. Nordic Pulp and Paper Research Journal, 2017, 32, 195-203.	0.3	2
700	Candle Soot Coating for Latent Fingermark Enhancement on Various Surfaces. Sensors, 2017, 17, 1612.	2.1	5
701	A Rapid One-Step Process for Fabrication of Biomimetic Superhydrophobic Surfaces by Pulse Electrodeposition. Materials, 2017, 10, 1229.	1.3	13
702	Review on the Processing and Properties of Polymer Nanocomposites and Nanocoatings and Their Applications in the Packaging, Automotive and Solar Energy Fields. Nanomaterials, 2017, 7, 74.	1.9	524
703	Preparation of Fluoroalkyl End-Capped Vinyltrimethoxysilane Oligomeric Silica Nanocomposites Containing Gluconamide Units Possessing Highly Oleophobic/Superhydrophobic, Highly Oleophobic/Superhydrophilic, and Superoleophilic/Superhydrophobic Characteristics on the Modified Surfaces. Polymers. 2017. 9. 292.	2.0	5

#	ARTICLE	IF	CITATIONS
704	On the Durability and Wear Resistance of Transparent Superhydrophobic Coatings. Coatings, 2017, 7, 12.	1.2	112
705	Droplets, Evaporation and a Superhydrophobic Surface: Simple Tools for Guiding Colloidal Particles into Complex Materials. Gels, 2017, 3, 15.	2.1	24
706	Noncovalent Spiropyran Coatings for Photoinduced Wettability Switching. Journal of Nanomaterials, 2017, 2017, 1-6.	1.5	1
707	Molecular Surface Arrangement to Control Dynamic Dewettability. , 2017, , 89-114.		1
708	Frontier of Inorganic Synthesis and Preparative Chemistry (I) Biomimetic Synthesis., 2017,, 687-721.		6
709	Simple Fabrication of Superhydrophobic Nickel Surface on Steel Substrate via Electrodeposition. International Journal of Electrochemical Science, 2017, 12, 40-49.	0.5	18
710	Numerical Control Device for Preparation Nano-Carbon Granule Coating Superhydrophobic Template and Its Application. IOP Conference Series: Materials Science and Engineering, 2017, 281, 012011.	0.3	0
711	Rolling viscous drops on a non-wettable surface containing both micro- and macro-scale roughness. Physics of Fluids, 2018, 30, .	1.6	26
712	Janus Gradient Meshes for Continuous Separation and Collection of Flowing Oils under Water. ACS Applied Materials & Samp; Interfaces, 2018, 10, 7504-7511.	4.0	36
713	Comprehensively durable superhydrophobic metallic hierarchical surfaces <i>via</i> tunable micro-cone design to protect functional nanostructures. RSC Advances, 2018, 8, 6733-6744.	1.7	43
714	Durable and fluorine-free superhydrophobic coatings from palygorskite-rich spent bleaching earth. Applied Clay Science, 2018, 157, 237-247.	2.6	14
715	Pneumatic smart surfaces with rapidly switchable dominant and latent superhydrophobicity. NPG Asia Materials, 2018, 10, e470-e470.	3.8	37
716	Flexible, Durable, and Unconditioned Superoleophobic/Superhydrophilic Surfaces for Controllable Transport and Oil–Water Separation. Advanced Functional Materials, 2018, 28, 1706867.	7.8	203
717	A combined criterion of surface free energy and roughness to predict the wettability of non-ideal low-energy surfaces. Progress in Organic Coatings, 2018, 119, 123-126.	1.9	36
718	Ultrafast Processing of Hierarchical Nanotexture for a Transparent Superamphiphobic Coating with Extremely Low Rollâ€Off Angle and High Impalement Pressure. Advanced Materials, 2018, 30, e1706529.	11,1	117
719	Ultra-repellency of Al surfaces: design and evaluation. Journal of Coatings Technology Research, 2018, 15, 633-641.	1.2	1
720	Probing Liquid–Solid and Vapor–Liquid–Solid Interfaces of Hierarchical Surfaces Using High-Resolution Microscopy. Langmuir, 2018, 34, 3720-3730.	1.6	5
721	Perfluoropolyether-Impregnated Mesoporous Alumina Composites Overcome the Dewetting–Tribological Properties Trade-Off. ACS Applied Materials & Universaces, 2018, 10, 10560-10570.	4.0	20

#	Article	IF	Citations
722	Superamphiphobic coatings based on liquid-core microcapsules with engineered capsule walls and functionality. Scientific Reports, 2018, 8, 3647.	1.6	11
723	One-step fabrication of robust superhydrophobic and superoleophilic surfaces with self-cleaning and oil/water separation function. Scientific Reports, 2018, 8, 3869.	1.6	102
724	Molecular dynamics study of nanodroplet diffusion on smooth solid surfaces. Frontiers of Physics, 2018, 13, 1.	2.4	4
725	Selfâ€Cleaning and Antibacterial Zeolitic Imidazolate Framework Coatings. Advanced Materials Interfaces, 2018, 5, 1800167.	1.9	41
726	A stretchable and super-robust graphene superhydrophobic composite for electromechanical sensor application. Journal of Materials Chemistry A, 2018, 6, 10404-10410.	5.2	74
727	Hydrophobic and oleophobic solâ€gel coatings on glass substrates for usage at high temperatures. International Journal of Applied Glass Science, 2018, 9, 413-420.	1.0	6
728	Engineering Proteins at Interfaces: From Complementary Characterization to Material Surfaces with Designed Functions. Angewandte Chemie - International Edition, 2018, 57, 12626-12648.	7.2	40
729	Durable and robust transparent superhydrophobic glass surfaces fabricated by a femtosecond laser with exceptional water repellency and thermostability. Journal of Materials Chemistry A, 2018, 6, 9049-9056.	5.2	146
730	Engineering von Proteinen an OberflÄ z hen: Von komplementÄ z er Charakterisierung zu MaterialoberflÄ z hen mit maÄŸgeschneiderten Funktionen. Angewandte Chemie, 2018, 130, 12806-12830.	1.6	3
731	Fabrication of a Waterborne Durable Superhydrophobic Material Functioning in Air and under Oil. Advanced Materials Interfaces, 2018, 5, 1701523.	1.9	20
732	Detachment of Rough Colloids from Liquid–Liquid Interfaces. Langmuir, 2018, 34, 4861-4873.	1.6	25
733	Cassie-Levitated Droplets for Distortion-Free Low-Energy Solid–Liquid Interactions. ACS Applied Materials & Cassie-Levitated Droplets for Distortion-Free Low-Energy Solid–Liquid Interactions. ACS Applied Materials & Cassie-Levitated Droplets for Distortion-Free Low-Energy Solid–Liquid Interactions. ACS Applied Materials & Cassie-Levitated Droplets for Distortion-Free Low-Energy Solid–Liquid Interactions. ACS Applied Materials & Cassie-Levitated Droplets for Distortion-Free Low-Energy Solid–Liquid Interactions. ACS Applied Materials & Cassie-Levitated Droplets for Distortion-Free Low-Energy Solid–Liquid Interactions. ACS Applied Materials & Cassie-Levitated Droplets for Distortion-Free Low-Energy Solid—Liquid Interactions. ACS Applied Materials & Cassie-Levitated Droplets for Distortion-Free Low-Energy Solid†"Liquid Interactions." ACS Applied Materials & Cassie-Levitated Droplets for Distortion Droplets for Distortion Droplets for Distortion Droplets for Droplets	4.0	14
734	Water-based acrylate copolymer/silica hybrids for facile preparation of robust and durable superhydrophobic coatings. Applied Surface Science, 2018, 447, 489-499.	3.1	46
735	Droplet Microarrays: From Surface Patterning to Highâ€Throughput Applications. Advanced Materials, 2018, 30, e1706111.	11.1	170
736	3D Printing of Bioinspired Liquid Superrepellent Structures. Advanced Materials, 2018, 30, e1800103.	11.1	135
737	Modifier-free fabrication of durable and multifunctional superhydrophobic paper with thermostability and anti-microbial property. Chemical Engineering Journal, 2018, 346, 94-103.	6.6	39
738	AIE-based superwettable microchips for evaporation and aggregation induced fluorescence enhancement biosensing. Biosensors and Bioelectronics, 2018, 111, 124-130.	5. 3	69
739	Capillary Imbibition of Polymer Mixtures in Nanopores. Macromolecules, 2018, 51, 3059-3065.	2.2	21

#	Article	IF	Citations
740	Morphology evolution and dynamics of droplet coalescence on superhydrophobic surfaces. AICHE Journal, 2018, 64, 2913-2921.	1.8	18
741	Naked-eye point-of-care testing platform based on a pH-responsive superwetting surface: toward the non-invasive detection of glucose. NPG Asia Materials, 2018, 10, 177-189.	3.8	57
742	Antiadhesion Function between a Biological Surface and a Metallic Device Interface at High Temperature by Wettability Control. ACS Biomaterials Science and Engineering, 2018, 4, 1891-1899.	2.6	4
743	Evaluating the resilience of superhydrophobic materials using the slip-length concept. Journal of Materials Chemistry A, 2018, 6, 4458-4465.	5.2	17
744	Thermally and Chemically Stable Candle Soot Superhydrophobic Surface with Excellent Self-Cleaning Properties in Air and Oil. ACS Applied Nano Materials, 2018, 1, 1204-1211.	2.4	85
745	Rational design and fabrication of highly transparent, flexible, and thermally stable superhydrophobic coatings from raspberry-like hollow silica nanoparticles. Applied Surface Science, 2018, 440, 700-711.	3.1	51
746	A novel UV/sunlight-curable anti-smudge coating system for various substrates. Chemical Engineering Journal, 2018, 345, 659-668.	6.6	42
747	Effects of modification of palygorskite on superamphiphobicity and microstructure of palygorskite@fluorinated polysiloxane superamphiphobic coatings. Applied Clay Science, 2018, 160, 144-152.	2.6	27
748	Advances in approaches and methods for self-cleaning of solar photovoltaic panels. Solar Energy, 2018, 162, 597-619.	2.9	172
749	Droplet Impact on Anisotropic Superhydrophobic Surfaces. Langmuir, 2018, 34, 3533-3540.	1.6	98
750	Photochromic Crystalline Systems Mimicking Bioâ€Functions. Chemistry - A European Journal, 2018, 24, 8491-8506.	1.7	32
751	Under-Oil Switchable Superhydrophobicity to Superhydrophilicity Transition on TiO ₂ Nanotube Arrays. ACS Nano, 2018, 12, 1074-1082.	7.3	87
752	A superhydrophobic aerogel with robust self-healability. Journal of Materials Chemistry A, 2018, 6, 4424-4431.	5.2	69
753	Maskless Hydrophilic Patterning of the Superhydrophobic Aluminum Surface by an Atmospheric Pressure Microplasma Jet for Water Adhesion Controlling. ACS Applied Materials & Interfaces, 2018, 10, 7497-7503.	4.0	46
754	Superamphiphobic Coatings with Low Sliding Angles from Attapulgite/Carbon Composites. Advanced Materials Interfaces, 2018, 5, 1701520.	1.9	22
755	lonic-Liquid-Infused Nanostructures as Repellent Surfaces. Langmuir, 2018, 34, 6894-6902.	1.6	26
756	Robust Super-Repellent Anisotropic Silica Films by Emulsion-Based Sol–Gel Growth. Nano, 2018, 13, 1850005.	0.5	5
758	Universal, Surfactantâ€Free Preparation of Hydrogel Beads on Superamphiphobic and Slippery Surfaces. Advanced Materials Interfaces, 2018, 5, 1701536.	1.9	12

#	Article	IF	CITATIONS
759	Transparent slippery liquid-infused nanoparticulate coatings. Chemical Engineering Journal, 2018, 337, 462-470.	6.6	98
760	Utilization of Peroxide Reduction Reaction at Air–Liquid–Solid Joint Interfaces for Reliable Sensing System Construction. Advanced Materials, 2018, 30, 1701473.	11.1	55
761	Durability, anti-corrosion and self-clean in air/oil of a transparent superhydrophobic polyimide film. Applied Materials Today, 2018, 10, 18-23.	2.3	21
762	Fabrication of Superhydrophobic Kapok Fiber Using CeO ₂ and Octadecyltrimethoxysilane. Environmental Engineering Science, 2018, 35, 696-702.	0.8	11
763	Facile preparation of superhydrophobic nano-aluminum/copper(II) oxide composite films with their exposure and heat-release stability. Materials Letters, 2018, 213, 294-297.	1.3	9
764	Wettability control between superoleophobic and superoleophilic characteristics on the modified superhydrophobic surfaces treated with fluoroalkyl end-capped vinyltrimethoxysilane oligomeric silica/poly(styrene-co-butadiene) nanocomposites: application to the separation of oil and water. lournal of Coatings Technology Research, 2018, 15, 211-222.	1.2	0
765	Roll-to-Roll Manufacturing of Robust Superhydrophobic Coating on Metallic Engineering Materials. ACS Applied Materials & Samp; Interfaces, 2018, 10, 2174-2184.	4.0	43
766	Water ring-bouncing on repellent singularities. Soft Matter, 2018, 14, 2227-2233.	1.2	79
767	Fast preparation of mechanically stable superhydrophobic surface by UV cross-linking of coating onto oxygen-inhibited layer of substrate. Chemical Engineering Journal, 2018, 338, 440-449.	6.6	52
768	High stiffness polymer composite with tunable transparency. Materials Today, 2018, 21, 475-482.	8.3	27
769	Low cost and facile preparation of robust multifunctional coatings with self-healing superhydrophobicity and high conductivity. Composites Science and Technology, 2018, 156, 177-185.	3.8	44
770	Superhydrophobic surfaces: a review on fundamentals, applications, and challenges. Journal of Coatings Technology Research, 2018, 15, 231-250.	1.2	388
771	Superwettable Electrochemical Biosensor toward Detection of Cancer Biomarkers. ACS Sensors, 2018, 3, 72-78.	4.0	84
772	Ballistic Jumping Drops on Superhydrophobic Surfaces via Electrostatic Manipulation. Advanced Materials, 2018, 30, 1703838.	11.1	68
773	An Aqueous Composition for Lubricantâ€Free, Robust, Slippery, Transparent Coatings on Diverse Substrates. Global Challenges, 2018, 2, 1700097.	1.8	5
774	Effect of geometrical parameters on rebound of impacting droplets on leaky superhydrophobic meshes. Soft Matter, 2018, 14, 1571-1580.	1.2	40
775	Impact of viscous droplets on different wettable surfaces: Impact phenomena, the maximum spreading factor, spreading time and post-impact oscillation. Journal of Colloid and Interface Science, 2018, 516, 86-97.	5.0	190
776	Superhydrophobic Graphene/Cellulose/Silica Aerogel with Hierarchical Structure as Superabsorbers for High Efficiency Selective Oil Absorption and Recovery. Industrial & Engineering Chemistry Research, 2018, 57, 1745-1755.	1.8	69

#	Article	IF	CITATIONS
777	Transparent superhydrophobic hollow films (TSHFs) with superior thermal stability and moisture resistance. RSC Advances, 2018, 8, 491-498.	1.7	26
778	Fabrication of a superamphiphobic coating by a simple and flexible method. Particuology, 2018, 39, 33-39.	2.0	10
779	Superhydrophobic and superoleophilic modified EPDM foam rubber fabricated by a facile approach for oil/water separation. Applied Surface Science, 2018, 451, 223-231.	3.1	66
780	Polymer-infiltrated approach to produce robust and easy repairable superhydrophobic mesh for high-efficiency oil/water separation. Journal of Materials Science, 2018, 53, 10554-10568.	1.7	23
781	Nonwettable Hierarchical Structure Effect on Droplet Impact and Spreading Dynamics. Langmuir, 2018, 34, 5480-5486.	1.6	17
782	Facile fabrication of durable superhydrophobic silica/epoxy resin coatings with compatible transparency and stability. Surface and Coatings Technology, 2018, 347, 191-198.	2.2	72
783	A review on wetting and water condensation - Perspectives for CO 2 Âcondensation. Advances in Colloid and Interface Science, 2018, 256, 291-304.	7.0	13
784	Chain reaction. Nature Materials, 2018, 17, 300-300.	13.3	0
785	Multilevel robustness. Nature Materials, 2018, 17, 298-300.	13.3	9
786	A robust and stretchable superhydrophobic PDMS/PVDF@KNFs membrane for oil/water separation and flame retardancy. Nanoscale, 2018, 10, 6695-6703.	2.8	85
787	Durable, Highly Electrically Conductive Cotton Fabrics with Healable Superamphiphobicity. ACS Applied Materials & District Superamphiphobicity Superamphiphobicity. ACS Applied Materials & District Superamphiphobicity Superamphiphobicity Superamphiphobicity. ACS Applied Materials & District Superamphiphobicity Superamphiphobicity Superamphiphobicity. ACS Applied Materials Superamphiphobicity Superamphiphob	4.0	101
788	Growth and roughness dependent wetting properties of CeO2 films prepared by glancing angle deposition. Ceramics International, 2018, 44, 9742-9745.	2.3	16
789	A Review of Femtosecond‣aserâ€Induced Underwater Superoleophobic Surfaces. Advanced Materials Interfaces, 2018, 5, 1701370.	1.9	95
790	Development of superamphiphobic alumina nanofiber mats using trimethoxysilane with a short perfluoroalkyl chain. Textile Reseach Journal, 2018, 88, 1803-1811.	1.1	7
791	Lowâ€Cost and Scaledâ€Up Production of Fluorineâ€Free, Substrateâ€Independent, Largeâ€Area Superhydrophobic Coatings Based on Hydroxyapatite Nanowire Bundles. Chemistry - A European Journal, 2018, 24, 416-424.	1.7	18
792	Facile design of superhydrophobic and superoleophilic copper mesh assisted by candle soot for oil water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 537, 294-302.	2.3	79
793	Facile synthesis N-doped hollow carbon spheres from spherical solid silica. Journal of Colloid and Interface Science, 2018, 511, 203-208.	5.0	16
794	A versatile and efficient method to fabricate recyclable superhydrophobic composites based on brucite and organosilane. Journal of Materials Science, 2018, 53, 396-408.	1.7	12

#	Article	IF	CITATIONS
795	Fabrication of superhydrophobic nano-aluminum films on stainless steel meshes by electrophoretic deposition for oil-water separation. Applied Surface Science, 2018, 427, 253-261.	3.1	147
796	Introduction of Nature's Complexity in Engineered Bloodâ€compatible Biomaterials. Advanced Healthcare Materials, 2018, 7, 1700505.	3.9	37
797	Droplet impact on superhydrophobic surfaces fully decorated with cylindrical macrotextures. Journal of Colloid and Interface Science, 2018, 509, 422-431.	5.0	88
798	Self-peeling of impacting droplets. Nature Physics, 2018, 14, 35-39.	6.5	58
799	Superwettable microchips with improved spot homogeneity toward sensitive biosensing. Biosensors and Bioelectronics, 2018, 102, 418-424.	5.3	47
800	Facile preparation of mechanically durable, self-healing and multifunctional superhydrophobic surfaces on solid wood. Materials and Design, 2018, 140, 30-36.	3.3	123
801	Robust and underwater superoleophobic coating with excellent corrosion and biofouling resistance in harsh environments. Applied Surface Science, 2018, 436, 152-161.	3.1	41
802	A significant reduction of ice adhesion on nanostructured surfaces that consist of an array of single-walled carbon nanotubes: A molecular dynamics simulation study. Applied Surface Science, 2018, 437, 202-208.	3.1	20
803	Bioinspired nanoparticle spray-coating for superhydrophobic flexible materials with oil/water separation capabilities. Bioinspiration and Biomimetics, 2018, 13, 024001.	1.5	30
804	Facing the rain after the phase out: Performance evaluation of alternative fluorinated and non-fluorinated durable water repellents for outdoor fabrics. Chemosphere, 2018, 193, 675-684.	4.2	32
805	Dynamically Gasâ€Phase Switchable Super(de)wetting States by Reversible Amphiphilic Functionalization: A Powerful Approach for Smart Fluid Gating Membranes. Advanced Functional Materials, 2018, 28, 1704423.	7.8	12
806	Multifunctional superamphiphobic SiO2 coating for crude oil transportation. Chemical Engineering Journal, 2018, 334, 1584-1593.	6.6	59
807	Remarkably facile fabrication of extremely superhydrophobic high-energy binary composite with ultralong lifespan. Chemical Engineering Journal, 2018, 335, 843-854.	6.6	29
808	Grooving of nanoparticles using sublimable liquid crystal for transparent omniphobic surface. Journal of Colloid and Interface Science, 2018, 513, 585-591.	5.0	17
810	Fabrication of Superhydrophobic-Superoleophilic Cement-Coated Meshes and Their Applications for Oil/Water Separation. IOP Conference Series: Earth and Environmental Science, 2018, 171, 012045.	0.2	0
811	Bioinspired Surfaces with Superamphiphobic Properties: Concepts, Synthesis, and Applications. Advanced Functional Materials, 2018, 28, 1707415.	7.8	206
812	Designing robust underwater superoleophobic microstructures on copper substrates. Nanoscale, 2018, 10, 20435-20442.	2.8	14
813	Candle soot-templated silica nanobiointerface chip for detecting circulating tumour cells from patients with urologic malignancies. RSC Advances, 2018, 8, 34566-34572.	1.7	5

#	Article	IF	Citations
814	Molding processed multi-layered and multi-functional nanocomposites with high structural ability, electrical conductivity and durable superhydrophobicity. Nanoscale, 2018, 10, 19916-19926.	2.8	18
815	Superwettable nanodendritic gold substrates for direct miRNA SERS detection. Nanoscale, 2018, 10, 20990-20994.	2.8	69
816	Large-scale fabrication of waterborne superamphiphobic coatings for flexible applications. RSC Advances, 2018, 8, 36375-36382.	1.7	14
817	Preparation of Assembled Carbon Soot Films and Hydrophobic Properties. Materials, 2018, 11, 2318.	1.3	8
818	Scalable Preparation of Superamphiphobic Coatings with Ultralow Sliding Angles and High Liquid Impact Resistance. ACS Applied Materials & Interfaces, 2018, 10, 41878-41882.	4.0	47
819	Introduction of Stimuli-Responsive Wetting/Dewetting Smart Surfaces and Interfaces. Biologically-inspired Systems, 2018, , 1-33.	0.4	0
820	One-Step Synthesis of Statically Amphiphilic/Dynamically Amphiphobic Fluoride-Free Transparent Coatings. ACS Applied Materials & Eamp; Interfaces, 2018, 10, 41824-41830.	4.0	35
821	Adaptable Fabrication Techniques for Mechanically Durable Superliquiphobic/philic Surfaces. Springer Series in Materials Science, 2018, , 327-427.	0.4	0
822	Study on self-cleaning performance and hydrophobicity of TiO ₂ /silane coatings. Pigment and Resin Technology, 2024, 53, 1-9.	0.5	10
823	One-Step Preparation of Durable Super-Hydrophobic MSR/SiO2 Coatings by Suspension Air Spraying. Micromachines, 2018, 9, 677.	1.4	7
825	Facile fabrication and mechanistic understanding of a transparent reversible superhydrophobic – superhydrophilic surface. Scientific Reports, 2018, 8, 18018.	1.6	43
826	Fabrication of Flexible Superhydrophobic Surface with Complex 3-D Structure by Mechanical Peeling. , 2018, , .		0
827	Water Impact Resistant and Antireflective Superhydrophobic Surfaces Fabricated by Spray Coating of Nanoparticles: Interface Engineering via End-Grafted Polymers. Macromolecules, 2018, 51, 10011-10020.	2.2	50
828	Fabrication of a superamphiphobic surface on the bamboo substrate. European Journal of Wood and Wood Products, 2018, 76, 1595-1603.	1.3	5
829	Early stage anti-bioadhesion behavior of superhydrophobic soot based coatings towards Pseudomonas putida. Materials and Design, 2018, 160, 395-404.	3.3	42
830	Superhydrophobic/oleophobic coatings based on a catalyst driven thiolâ€epoxyâ€acrylate ternary system. Journal of Applied Polymer Science, 2018, 135, 46710.	1.3	3
831	Water-free dedusting on antireflective glass with durable superhydrophobicity. Surface and Coatings Technology, 2018, 356, 123-131.	2.2	23
832	Reconfiguring surface functions using visible-light-controlled metal-ligand coordination. Nature Communications, 2018, 9, 3842.	5.8	59

#	Article	IF	CITATIONS
833	Multifunctional Silica Nanotube Aerogels Inspired by Polar Bear Hair for Light Management and Thermal Insulation. Chemistry of Materials, 2018, 30, 6849-6857.	3.2	124
834	Toward Condensation-Resistant Omniphobic Surfaces. ACS Nano, 2018, 12, 11013-11021.	7.3	62
835	Large-Area Preparation of Robust and Transparent Superomniphobic Polymer Films. ACS Nano, 2018, 12, 10338-10346.	7.3	83
836	Singular sublimation of ice and snow crystals. Nature Communications, 2018, 9, 4191.	5.8	37
837	A Reliable Photoelectrochemical Bioassay System Based on Cathodic Reaction at a Solid–Liquid–Air Joint Interface. Advanced Functional Materials, 2018, 28, 1804410.	7.8	27
838	Controlling Droplet Motion on an Organogel Surface by Tuning the Chain Length of DNA and Its Biosensing Application. CheM, 2018, 4, 2929-2943.	5.8	42
839	Bounce Behavior and Regulation of Pesticide Solution Droplets on Rice Leaf Surfaces. Journal of Agricultural and Food Chemistry, 2018, 66, 11560-11568.	2.4	60
840	Tunable Water Harvesting Surfaces Consisting of Biphilic Nanoscale Topography. ACS Nano, 2018, 12, 11022-11030.	7.3	111
841	Coatings super-repellent to ultralow surface tension liquids. Nature Materials, 2018, 17, 1040-1047.	13.3	289
842	Bioactive Hydrogel Marbles. Scientific Reports, 2018, 8, 15215.	1.6	12
843	Durable Broadband and Omnidirectional Ultra-antireflective Surfaces. ACS Applied Materials & Emp; Interfaces, 2018, 10, 40180-40188.	4.0	21
844	Cascade Freezing of Supercooled Water Droplet Collectives. ACS Nano, 2018, 12, 11274-11281.	7.3	26
845	Drop Cargo Transfer <i>via</i> Unidirectional Lubricant Spreading on Peristome-Mimetic Surface. ACS Nano, 2018, 12, 11307-11315.	7.3	33
846	Sequentially Reinforced Additive Coating for Transparent and Durable Superhydrophobic Glass. Langmuir, 2018, 34, 11316-11324.	1.6	25
847	Facile Preparation of Robust Superamphiphobic Surface by Electrochemical Etching Process Based on the SiC/Al Composites. Journal of the Electrochemical Society, 2018, 165, E563-E571.	1.3	7
848	Omniphobic Metal Surfaces with Low Contact Angle Hysteresis and Tilt Angles. Langmuir, 2018, 34, 11405-11413.	1.6	34
849	Bioinspired Designs of Superhydrophobic and Superhydrophilic Materials. ACS Central Science, 2018, 4, 1102-1112.	5.3	321
850	Superoleophobic Slippery Lubricantâ€Infused Surfaces: Combining Two Extremes in the Same Surface. Advanced Materials, 2018, 30, e1803890.	11.1	106

#	ARTICLE	IF	CITATIONS
851	Fabrication of superhydrophobic coating from non-fluorine siloxanes via a one-pot sol–gel method. Journal of Materials Science, 2018, 53, 11253-11264.	1.7	14
852	Soft elastic superhydrophobic cotton: A new material for contact time reduction in droplet bouncing. Surface and Coatings Technology, 2018, 347, 420-426.	2.2	20
853	Self-fibering growth in the soot-templated CVD coating of silica on mesh for efficient oil/water separation. Materials and Design, 2018, 154, 370-377.	3.3	10
854	Directional Passive Transport of Microdroplets in Oil-Infused Diverging Channels for Effective Condensate Removal. ACS Applied Materials & Samp; Interfaces, 2018, 10, 20910-20919.	4.0	22
855	Bioinspired Superwettability Electrospun Micro/Nanofibers and Their Applications. Advanced Functional Materials, 2018, 28, 1801114.	7.8	204
856	Effects of surface synergy for the dispersion of short carbon fibers sized by adipic acid modified epoxy resin potassium. Surface and Interface Analysis, 2018, 50, 771-778.	0.8	0
857	Selfâ€Healing Functional Surfaces. Advanced Materials Interfaces, 2018, 5, 1800293.	1.9	23
858	Robust, self-cleaning, amphiphobic coating with flower-like nanostructure on micro-patterned polymer substrate. Chemical Engineering Journal, 2018, 352, 173-181.	6.6	56
859	Fabrication of durable superamphiphobic materials on various substrates with wear-resistance and self-cleaning performance from kaolin. Applied Surface Science, 2018, 456, 737-750.	3.1	44
860	Preparation of superamphiphobic aluminium alloy surface based on laserâ€EDM method. Micro and Nano Letters, 2018, 13, 281-283.	0.6	6
861	3D re-entrant nanograss on microcones for durable superamphiphobic surfaces via laser-chemical hybrid method. Applied Surface Science, 2018, 456, 726-736.	3.1	45
862	Fabrication of robust and scalable superhydrophobic surfaces and investigation of their anti-icing properties. Materials and Design, 2018, 156, 320-328.	3.3	74
863	Shortâ€Fluorinated iCVD Coatings for Nonwetting Fabrics. Advanced Functional Materials, 2018, 28, 1707355.	7.8	77
864	Investigation on time-dependent wetting behavior of Ni-Cu-P ternary coating. Journal of Alloys and Compounds, 2018, 765, 221-228.	2.8	19
865	Effect of Varying Chain Length and Content of Poly(dimethylsiloxane) on Dynamic Dewetting Performance of NP-GLIDE Polyurethane Coatings. Langmuir, 2018, 34, 10102-10113.	1.6	51
866	A superhydrophobic polyacrylate film with good durability fabricated via spray coating. Journal of Materials Science, 2018, 53, 15390-15400.	1.7	12
867	Lotus-Seedpod-Bioinspired 3D Superhydrophobic Diatomite Porous Ceramics Comodified by Graphene and Carbon Nanobelts. ACS Applied Materials & Diatomite Porous Ceramics Comodified by Graphene and Carbon Nanobelts.	4.0	24
868	CuO Nanoparticles-Containing Highly Transparent and Superhydrophobic Coatings with Extremely Low Bacterial Adhesion and Excellent Bactericidal Property. ACS Applied Materials & Diterfaces, 2018, 10, 25717-25725.	4.0	99

#	Article	IF	CITATIONS
869	A mechanically robust transparent coating for anti-icing and self-cleaning applications. Journal of Materials Chemistry A, 2018, 6, 16043-16052.	5.2	99
870	Fabrication of Self-healing Superhydrophobic Surfaces from Water-Soluble Polymer Suspensions Free of Inorganic Particles through Polymer Thermal Reconstruction. Coatings, 2018, 8, 144.	1.2	16
871	Designing Assembly of Meshes Having Diverse Wettability for Reducing Liquid Ejection at Terminal Velocity Droplet Impact. Journal of Microelectromechanical Systems, 2018, 27, 866-873.	1.7	11
873	Macroscopic superhydrophobicity achieved by atomic decoration with silicones. Journal of Chemical Physics, 2018, 149, 014706.	1.2	1
874	Patternable Poly(chloro-p-xylylene) Film with Tunable Surface Wettability Prepared by Temperature and Humidity Treatment on a Polydimethylsiloxane/Silica Coating. Materials, 2018, 11, 486.	1.3	9
875	Facile, Scalable Spray-Coating of Stable Emulsion for Transparent Self-Cleaning Surface of Cellulose-Based Materials. ACS Sustainable Chemistry and Engineering, 2018, 6, 11335-11344.	3.2	44
876	Fabrication of self-healing waterbased superhydrophobic coatings from POSS modified silica nanoparticles. Materials Letters, 2018, 229, 281-285.	1.3	43
877	Mechanically Robust and Thermally Stable Colorful Superamphiphobic Coatings. Frontiers in Chemistry, 2018, 6, 144.	1.8	13
878	Polymer Surface Textured with Nanowire Bundles to Repel High-Speed Water Drops. Langmuir, 2018, 34, 5871-5879.	1.6	9
879	3D mossy structures of zinc filaments: A facile strategy for superamphiphobic surface design. Journal of Colloid and Interface Science, 2018, 526, 106-113.	5.0	11
880	Green and timesaving fabrication of a superhydrophobic surface and its application to anti-icing, self-cleaning and oil-water separation. Surface and Coatings Technology, 2018, 352, 609-618.	2.2	71
881	Biomimetic super durable and stable surfaces with superhydrophobicity. Journal of Materials Chemistry A, 2018, 6, 16731-16768.	5.2	136
882	Fabrication of UV-Triggered Liquid-Repellent Coatings with Long-Term Self-Repairing Performance. ACS Applied Materials & Diterfaces, 2018, 10, 31777-31783.	4.0	37
883	Efficiently texturing hierarchical superhydrophobic fluoride-free translucent films by AACVD with excellent durability and self-cleaning ability. Journal of Materials Chemistry A, 2018, 6, 17633-17641.	5.2	99
884	Elongated Bouncing and Reduced Contact Time of a Drop in the Janus State. Langmuir, 2018, 34, 10874-10879.	1.6	8
885	Spreading of impinging droplets on nanostructured superhydrophobic surfaces. Applied Physics Letters, 2018, 113, .	1.5	26
886	A comparative study about superamphiphobicity and stability of superamphiphobic coatings based on Palygorskite. Applied Clay Science, 2018, 165, 8-16.	2.6	25
887	Superamphiphobic and chemical repellent aramid fabrics for applications in protective clothing. Progress in Organic Coatings, 2018, 124, 49-54.	1.9	23

#	Article	IF	CITATIONS
888	Biomimetic Super Anti-Wetting Coatings from Natural Materials: Superamphiphobic Coatings Based on Nanoclays. Scientific Reports, 2018, 8, 12062.	1.6	24
889	Green Synthesis of Ant Nest-Inspired Superelastic Silicone Aerogels. ACS Sustainable Chemistry and Engineering, 2018, 6, 11222-11227.	3.2	22
890	Substrate-versatile approach to multifunctional superamphiphobic coatings with mechanical durable property from quartz sand. Surface and Coatings Technology, 2018, 352, 191-200.	2.2	20
891	Coexistence of superhydrophilicity and superoleophobicity: theory, experiments and applications in oil/water separation. Journal of Materials Chemistry A, 2018, 6, 15057-15063.	5.2	102
892	Tuneable spheroidal hydrogel particles for cell and drug encapsulation. Soft Matter, 2018, 14, 5622-5627.	1.2	21
893	Ultrahigh verapamil-loaded controlled release polymeric beads using superamphiphobic substrate: D-optimal statistical design, <i>in vitro</i> and <i>in vivo</i> performance. Drug Delivery, 2018, 25, 1448-1460.	2.5	7
894	Evaluation of Photoacoustic Transduction Efficiency of Candle Soot Nanocomposite Transmitters. IEEE Nanotechnology Magazine, 2018, 17, 985-993.	1.1	37
895	Recent Progress in Durable and Selfâ€Healing Superâ€Nonwettable Fabrics. Advanced Materials Interfaces, 2018, 5, 1800461.	1.9	49
896	Robust and self-repairing superamphiphobic coating from all-water-based spray. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553, 645-651.	2.3	33
897	Assessing omniphobicity by immersion. Journal of Colloid and Interface Science, 2019, 534, 156-162.	5.0	38
898	One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction. Journal of Colloid and Interface Science, 2019, 533, 198-206.	5.0	256
899	Improving the Flame Retardancy and Smoke Suppression of Poly(Lactic Acid) with a SiO ₂ @ammonium Molybdate Core-Shell Nanotubes. Polymer-Plastics Technology and Materials, 2019, 58, 843-853.	0.6	1
900	Durable and Flexible Superhydrophobic Materials: Abrasion/Scratching/Slicing/Droplet Impacting/Bending/Twisting-Tolerant Composite with Porcupinefish-Like Structure. ACS Applied Materials & Samp; Interfaces, 2019, 11, 32381-32389.	4.0	97
901	Catalyst-Free and Rapid Chemical Approach for in Situ Growth of "Chemically Reactive―and Porous Polymeric Coating. ACS Applied Materials & Samp; Interfaces, 2019, 11, 34316-34329.	4.0	12
902	Waterborne Fluorineâ€Free Superhydrophobic Surfaces Exhibiting Simultaneous CO 2 and Humidity Sorption. Advanced Materials Interfaces, 2019, 6, 1901013.	1.9	10
903	Designing Transparent Micro/Nano Re-Entrant-Coordinated Superamphiphobic Surfaces with Ultralow Solid/Liquid Adhesion. ACS Applied Materials & Solid (11, 29458-29465).	4.0	49
904	Formation, Deformation, Rolling and Sliding of Particles and Particle Aggregates: Mechanisms and Applications., 2019,, 89-114.		0
905	Durable and Scalable Candle Soot Icephobic Coating with Nucleation and Fracture Mechanism. ACS Applied Materials & Durable Candle Soot Icephobic Coating with Nucleation and Fracture Mechanism. ACS Applied Materials & Durable Candle Soot Icephobic Coating with Nucleation and Fracture Mechanism. ACS Applied Materials & Durable Candle Soot Icephobic Coating with Nucleation and Fracture Mechanism. ACS Applied Materials & Durable Candle Soot Icephobic Coating with Nucleation and Fracture Mechanism. ACS Applied Materials & Durable Candle Soot Icephobic Coating with Nucleation and Fracture Mechanism.	4.0	90

#	Article	IF	Citations
906	Facile fabrication of durable superhydrophobic mesh via candle soot for oil-water separation. Progress in Organic Coatings, 2019, 136, 105253.	1.9	31
907	Superhydrophobic, Transparent, and Stretchable 3D Hierarchical Wrinkled Filmâ€Based Sensors for Wearable Applications. Advanced Materials Technologies, 2019, 4, 1900230.	3.0	60
908	Carbon-templated conductive oxide supports for oxygen evolution catalysis. Nanoscale, 2019, 11, 14285-14293.	2.8	12
909	Fast Healable Superhydrophobic Material. ACS Applied Materials & Samp; Interfaces, 2019, 11, 29388-29395.	4.0	54
910	Trade-off in membrane distillation with monolithic omniphobic membranes. Nature Communications, 2019, 10, 3220.	5.8	106
911	Durable superamphiphobic silica aerogel surfaces for the culture of 3D cellular spheroids. National Science Review, 2019, 6, 1255-1265.	4.6	12
912	Droplet Asymmetric Bouncing on Inclined Superhydrophobic Surfaces. ACS Omega, 2019, 4, 12238-12243.	1.6	34
913	Remarkably Facile Preparation of Superhydrophobic Functionalized Bismuth Trioxide (Bi2O3) Coatings. Applied Sciences (Switzerland), 2019, 9, 2653.	1.3	4
914	Study of Oleophobic Modification of Fiber Material Surface and Its Performance. Fibers and Polymers, 2019, 20, 1145-1154.	1.1	1
915	Facile fabrication of omniphobic PVDF composite membrane via a waterborne coating for anti-wetting and anti-fouling membrane distillation. Journal of Membrane Science, 2019, 589, 117262.	4.1	77
916	Highly transparent superamphiphobic surfaces by elaborate microstructure regulation. Journal of Colloid and Interface Science, 2019, 554, 250-259.	5.0	27
917	Solvent-Free Synthesis of a Superamphiphobic Surface by Green Chemistry. ACS Applied Polymer Materials, 2019, 1, 2033-2043.	2.0	12
918	Surface charge printing for programmed droplet transport. Nature Materials, 2019, 18, 936-941.	13.3	401
919	Self-Limiting Processes in the Flame-Based Fabrication of Superhydrophobic Surfaces from Silicones. ACS Applied Materials & Samp; Interfaces, 2019, 11, 29231-29241.	4.0	11
920	Bouncing Droplets: A Hands-On Activity To Demonstrate the Properties and Applications of Superhydrophobic Surface Coatings. Journal of Chemical Education, 2019, 96, 1971-1976.	1.1	5
921	Superomniphobic Surfaces with Improved Mechanical Durability: Synergy of Hierarchical Texture and Mechanical Interlocking. Advanced Materials Interfaces, 2019, 6, 1900538.	1.9	18
922	Temperature-based adhesion tuning and superwettability switching on superhydrophobic aluminum surface for droplet manipulations. Surface and Coatings Technology, 2019, 375, 527-533.	2.2	26
923	Review of superoleophobic surfaces: Evaluation, fabrication methods, and industrial applications. Surfaces and Interfaces, 2019, 17, 100340.	1.5	37

#	Article	IF	Citations
924	Photo-Irresponsive Molecule-Amplified Cell Release on Photoresponsive Nanostructured Surfaces. ACS Applied Materials & Samp; Interfaces, 2019, 11, 29681-29688.	4.0	18
925	Efficient Hydrogen Peroxide Generation Utilizing Photocatalytic Oxygen Reduction at a Triphase Interface. IScience, 2019, 17, 67-73.	1.9	52
926	Transparent Omniphobic Coating with Glassâ€Like Wear Resistance and Polymerâ€Like Bendability. Angewandte Chemie - International Edition, 2019, 58, 12004-12009.	7.2	81
927	Biomimetic Polychrome Rubberized Fabric Constructed by Nonfluorinated Multiscale Hierarchical Superhydrophobic Latex Pigments. ACS Applied Materials & Superhydrophobic Pigments. ACS A	4.0	8
928	Omniâ€Liquid Droplet Manipulation Platform. Advanced Materials Interfaces, 2019, 6, 1900653.	1.9	33
929	Candle-Soot Carbon Nanoparticles in Photoacoustics: Advantages and Challenges for Laser Ultrasound Transmitters. IEEE Nanotechnology Magazine, 2019, 13, 13-28.	0.9	32
930	Fabrication of flower clustersâ€like superhydrophobic surface via a UV curable coating of ODA and Vâ€PDMS. Journal of Applied Polymer Science, 2019, 136, 48210.	1.3	8
931	Transparent Omniphobic Coating with Glassâ€Like Wear Resistance and Polymerâ€Like Bendability. Angewandte Chemie, 2019, 131, 12132-12137.	1.6	18
932	Drop Impact on Two-Tier Monostable Superrepellent Surfaces. ACS Applied Materials & Samp; Interfaces, 2019, 11, 43698-43707.	4.0	22
933	Robust Amphiphobic Few‣ayer Black Phosphorus Nanosheet with Improved Stability. Advanced Science, 2019, 6, 1901991.	5 . 6	36
934	Effect of granular particles on the properties of the fouling release coatings based on polydimethylsiloxane with the incorporation of phenylmethylsilicone oil, especially for the leaching behavior of phenylmethylsilicone oil. Progress in Organic Coatings, 2019, 136, 105266.	1.9	5
935	Biomimetic multifunctional materials: a review. Emergent Materials, 2019, 2, 391-415.	3.2	27
936	Silver-doped superhydrophobic carbon soot coatings with enhanced wear resistance and anti-microbial performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 582, 123880.	2.3	45
937	Biomimetics leading to liquid-infused surface based on vertical dendritic Co matrix: A barrier to inhibit bioadhesion and microbiologically induced corrosion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583, 124006.	2.3	18
938	The stability of the superhydrophobic surfaces. , 2019, , 123-159.		2
939	One-step fabrication of robust superhydrophobic coatings with corrosion resistance by a self-curing epoxy-resin-based adhesive. Surface and Coatings Technology, 2019, 380, 125086.	2.2	37
940	Totally Waterborne and Highly Durable Superamphiphobic Coatings for Antiâ€lcing and Anticorrosion. Advanced Materials Interfaces, 2019, 6, 1901255.	1.9	71
941	Strain-controlled optical transmittance tuning of three-dimensional carbon nanotube architectures. Journal of Materials Chemistry C, 2019, 7, 1927-1933.	2.7	3

#	Article	IF	Citations
942	Novel Carbon Nanoparticles Derived from Biodiesel Soot as Lubricant Additives. Nanomaterials, 2019, 9, 1115.	1.9	21
943	Ultra-black carbon@silica core-shell aerogels with controllable electrical conductivities. Advanced Composites and Hybrid Materials, 2019, 2, 743-752.	9.9	40
944	Ultrasensitive Anti-Interference Voice Recognition by Bio-Inspired Skin-Attachable Self-Cleaning Acoustic Sensors. ACS Nano, 2019, 13, 13293-13303.	7.3	122
946	Highly Floatable Superhydrophobic Metallic Assembly for Aquatic Applications. ACS Applied Materials & Lamp; Interfaces, 2019, 11, 48512-48517.	4.0	28
947	Fabrication of Impact-Resistant and Wear-Recoverable Superhydrophobic Surfaces. ACS Omega, 2019, 4, 19756-19764.	1.6	13
948	Nanostructured and oriented metal–organic framework films enabling extreme surface wetting properties. Beilstein Journal of Nanotechnology, 2019, 10, 1994-2003.	1.5	12
949	Understanding the correlations between the mechanical robustness, coating structures and surface composition for highly-/super-hydrophobic ceramic coatings. Surface and Coatings Technology, 2019, 378, 124929.	2.2	7
950	Ricocheting Droplets Moving on Superâ€Repellent Surfaces. Advanced Science, 2019, 6, 1901846.	5.6	20
951	Simple Design for Durable and Clear Self-Cleaning Coatings. ACS Applied Polymer Materials, 2019, 1, 2659-2667.	2.0	34
952	Thermally Stable Polypropylene Superhydrophobic Surface Due to the Formation of a Surface Crystalline Layer of Microsized Particles. Journal of Physical Chemistry C, 2019, 123, 23075-23081.	1.5	5
953	Soot cloud size of a single coal particle in air/oxy combustion under forced convection. International Journal of Greenhouse Gas Control, 2019, 90, 102794.	2.3	3
954	Robust superamphiphobic aluminum surfaces: fabrication and investigation. Journal of Coatings Technology Research, 2019, 16, 1707-1714.	1.2	9
955	Super-robust superamphiphobic surface with anti-icing property. RSC Advances, 2019, 9, 27702-27709.	1.7	14
956	A novel dual-layer approach towards omniphobic polyurethane coatings. RSC Advances, 2019, 9, 26703-26711.	1.7	27
957	One-Step Aqueous Spraying Process for the Fabrication of Omniphobic Fabrics Free of Long Perfluoroalkyl Chains. ACS Omega, 2019, 4, 16660-16666.	1.6	14
958	Facile fabrication of a low adhesion, stable and superhydrophobic filter paper modified with ZnO microclusters. Applied Surface Science, 2019, 496, 143743.	3.1	33
959	Surface-Initiated Atom Transfer Radical Polymerization for the Preparation of Well-Defined Organic–Inorganic Hybrid Nanomaterials. Materials, 2019, 12, 3030.	1.3	24
960	Wetting Transition on Liquid-Repellent Surfaces Probed by Surface Force Measurements and Confocal Imaging. Langmuir, 2019, 35, 13275-13285.	1.6	12

#	ARTICLE	IF	CITATIONS
961	Stress-localized durable icephobic surfaces. Materials Horizons, 2019, 6, 758-766.	6.4	128
962	Preparation and comparison of NP-GLIDE, SLIPS, superhydrophobic, and other coatings from identical precursors at different mixing ratios. Journal of Materials Chemistry A, 2019, 7, 1519-1528.	5.2	44
963	Facile fabrication and hydrophobic properties of Cu2O nanowire films on Cu substrates. Materials Chemistry and Physics, 2019, 226, 88-94.	2.0	16
964	Growth of hierarchical gold clusters for use in superomniphobic electrodes. RSC Advances, 2019, 9, 761-765.	1.7	4
965	Polymeric membranes based on cellulose acetate loaded with candle soot nanoparticles for water desalination. Journal of Macromolecular Science - Pure and Applied Chemistry, 2019, 56, 153-161.	1.2	38
966	Highly fluorinated chemicals in functional textiles can be replaced by re-evaluating liquid repellency and end-user requirements. Journal of Cleaner Production, 2019, 217, 134-143.	4.6	48
967	Superamphiphobic Cu/CuO Micropillar Arrays with High Repellency Towards Liquids of Extremely High Viscosity and Low Surface Tension. Scientific Reports, 2019, 9, 702.	1.6	10
968	Electrophoresis Assembly of Novel Superhydrophobic Molybdenum Trioxide (MoO3) Films with Great Stability. Materials, 2019, 12, 336.	1.3	5
969	Environmentally benign and durable superhydrophobic coatings based on SiO2 nanoparticles and silanes. Journal of Colloid and Interface Science, 2019, 542, 8-14.	5.0	71
970	Multifunctional diesel exhaust emission soot coated sponge for water treatment. Environmental Science and Pollution Research, 2019, 26, 8148-8156.	2.7	18
971	Fabrication and hydrodynamics performance of modified sieve tray with Janus feature. Separation and Purification Technology, 2019, 216, 74-82.	3.9	12
972	Fabrication of super-robust and nonfluorinated superhydrophobic coating based on diatomaceous earth. Surface and Coatings Technology, 2019, 362, 90-96.	2.2	36
973	Fabrication of oil-water separation stainless steel mesh via direct laser interference lithography, candle soot deposition, and thermal treatment. Journal of Laser Applications, 2019, 31, 012003.	0.8	11
974	Highly Sensitive Dissolved Oxygen Sensor with a Sustainable Antifouling, Antiabrasion, and Self-Cleaning Superhydrophobic Surface. ACS Omega, 2019, 4, 1715-1721.	1.6	21
975	Multicolored one-dimensional photonic crystal coatings with excellent mechanical robustness, strong substrate adhesion, and liquid and particle impalement resistance. Journal of Materials Chemistry C, 2019, 7, 3463-3470.	2.7	13
976	Self-Cleaning: From Bio-Inspired Surface Modification to MEMS/Microfluidics System Integration. Micromachines, 2019, 10, 101.	1.4	35
977	Selfâ€Organized Arrays of SnO ₂ Microplates with Photocatalytic and Antimicrobial Properties. European Journal of Inorganic Chemistry, 2019, 2019, 3171-3179.	1.0	4
978	Preparation of PDMS/EEC/SiO ₂ composite super-hydrophobic coatings with excellent anti-guano adhesion performance. Journal of Adhesion Science and Technology, 2019, 33, 1882-1894.	1.4	8

#	Article	IF	CITATIONS
979	Carbon Soot/n–carboxylic Acids Composites As Formâ€stable Phase Change Materials For Thermal Energy Storage. ChemistrySelect, 2019, 4, 7108-7115.	0.7	3
980	Durable Self-Cleaning Surfaces with Superhydrophobic and Highly Oleophobic Properties. Langmuir, 2019, 35, 8404-8412.	1.6	121
981	Silica coating with well-defined micro-nano hierarchy for universal and stable surface superhydrophobicity. Chemical Physics Letters, 2019, 730, 594-599.	1.2	10
982	Surface-Embedding of Functional Micro-/Nanoparticles for Achieving Versatile Superhydrophobic Interfaces. Matter, 2019, 1, 661-673.	5.0	119
983	Hydrophobic Metal–Organic Frameworks. Advanced Materials, 2019, 31, e1900820.	11.1	138
984	Surface topographies of biomimetic superamphiphobic materials: design criteria, fabrication and performance. Advances in Colloid and Interface Science, 2019, 269, 87-121.	7.0	41
985	Concomitant in Situ FTIR and Impedance Measurements To Address the 2-Methylcyclopentanone Vapor-Sensing Mechanism in MnO ₂ –Polymer Nanocomposites. ACS Omega, 2019, 4, 8324-8333.	1.6	19
986	High-efficiency bubble transportation in an aqueous environment on a serial wedge-shaped wettability pattern. Journal of Materials Chemistry A, 2019, 7, 13567-13576.	5.2	90
987	Nucleation of Condensed Phase in Water Vapor on the Nanostructured Surface of a \hat{I}^2 -Agl Crystal. 1. Spatial Organization. Colloid Journal, 2019, 81, 50-63.	0.5	2
988	Recent development in the fabrication of self-healing superhydrophobic surfaces. Chemical Engineering Journal, 2019, 373, 531-546.	6.6	200
989	Bioinspired superwettable micropatterns for biosensing. Chemical Society Reviews, 2019, 48, 3153-3165.	18.7	110
990	Reactive silica nanoparticles turn epoxy coating from hydrophilic to super-robust superhydrophobic. RSC Advances, 2019, 9, 12547-12554.	1.7	28
991	One-step synthesis of a steel-polymer wool for oil-water separation and absorption. Npj Clean Water, 2019, 2, .	3.1	17
992	Superhydrophobic behavior of magnesium oxychloride cement surface with a dual-level fractal structure. Construction and Building Materials, 2019, 210, 132-139.	3.2	23
993	Recent Advances in Robust Superwettable Membranes for Oil–Water Separation. Advanced Materials Interfaces, 2019, 6, 1900126.	1.9	107
994	Icephobic surfaces: Definition and figures of merit. Advances in Colloid and Interface Science, 2019, 269, 203-218.	7.0	115
995	Rendering hydrophilic glass-ceramic enamel surfaces hydrophobic by acid etching and surface silanization for heat transfer applications. Surface and Coatings Technology, 2019, 370, 82-96.	2.2	11
996	Two-Step Approach for Fabrication of Durable Superamphiphobic Fabrics for Self-Cleaning, Antifouling, and On-Demand Oil/Water Separation. Industrial & Engineering Chemistry Research, 2019, 58, 5490-5500.	1.8	36

#	ARTICLE	IF	CITATIONS
997	A Robust Cotton Textile-Based Material for High-Flux Oil–Water Separation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 13704-13713.	4.0	125
998	Segregation in Drying Binary Colloidal Droplets. ACS Nano, 2019, 13, 4972-4979.	7.3	81
999	Fabrication of superhydrophobic coatings with edible materials for super-repelling non-Newtonian liquid foods. Chemical Engineering Journal, 2019, 371, 833-841.	6.6	60
1000	Fast and Simple Fabrication of Superhydrophobic Coating by Polymer Induced Phase Separation. Nanomaterials, 2019, 9, 411.	1.9	16
1001	Intensification of the convective drying process of Arthrospira (Spirulina) platensis by capillary draining: effect of the draining support. Journal of Applied Phycology, 2019, 31, 2921-2931.	1.5	2
1002	Simply realizing durable dual Janus superwettable membranes integrating underwater low-oil-adhesive with super-water-repellent surfaces for controlled oil–water permeation. Journal of Membrane Science, 2019, 580, 248-255.	4.1	23
1003	A robust and versatile superhydrophobic coating: Wear-resistance study upon sandpaper abrasion. Applied Surface Science, 2019, 480, 738-748.	3.1	71
1004	Coal-Derived Soot Behaviors in O ₂ /N ₂ and O ₂ /CO ₂ Atmospheres, Studied through a 1-D Transient Coal Combustion Model. Energy & Samp; Fuels, 2019, 33, 3620-3629.	2.5	13
1005	A biodegradable polymer-based common chemical avenue for optimizing switchable, chemically reactive and tunable adhesive superhydrophobicity. Journal of Materials Chemistry A, 2019, 7, 9120-9129.	5.2	31
1006	Robust superhydrophobic surface with excellent adhesive properties based on benzoxazine/epoxy/mesoporous SiO2. Applied Surface Science, 2019, 481, 374-378.	3.1	75
1007	Controllable preparation of multiple superantiwetting surfaces: From dual to quadruple superlyophobicity. Chemical Engineering Journal, 2019, 369, 463-469.	6.6	24
1008	Superamphiphobic Porous Structure: Design and Implementation. Advanced Materials Interfaces, 2019, 6, 1801973.	1.9	5
1009	Substrate-versatile approach to fabricate mechanochemically robust and superhydrophobic surfaces from waste fly ash. Progress in Organic Coatings, 2019, 132, 353-361.	1.9	14
1010	Rational Use of Dual Chemical Reactivity in a Single Interface for Optimizing Both Superhydrophobicity and Underwater Superoleophobicity. Chemistry of Materials, 2019, 31, 1479-1484.	3.2	17
1011	Superwettabilityâ€Based Interfacial Chemical Reactions. Advanced Materials, 2019, 31, e1800718.	11.1	128
1012	Mechanically durable superhydrophobic PDMS-candle soot composite coatings with high biocompatibility. Journal of Industrial and Engineering Chemistry, 2019, 74, 79-85.	2.9	38
1013	An electric-field-dependent drop selector. Lab on A Chip, 2019, 19, 1296-1304.	3.1	6
1014	Shaping the Assembly of Superparamagnetic Nanoparticles. ACS Nano, 2019, 13, 3015-3022.	7.3	64

#	Article	IF	Citations
1015	Surface Chemistry Enhancements for the Tunable Super-Liquid Repellency of Low-Surface-Tension Liquids. Nano Letters, 2019, 19, 1892-1901.	4.5	39
1016	Superhydrophobic surface on aeronautical materials via the deposition of nanoparticles and a PDMS seal. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	5
1017	Robust Hyperbranched Polyester-Based Anti-Smudge Coatings for Self-Cleaning, Anti-Graffiti, and Chemical Shielding. ACS Applied Materials & Samp; Interfaces, 2019, 11, 14305-14312.	4.0	74
1018	Highâ€Performance Materials for 3D Printing in Chemical Synthesis Applications. Advanced Materials, 2019, 31, e1805982.	11.1	82
1019	An all superantiwetting surface in water–oil–air systems. Journal of Materials Chemistry A, 2019, 7, 6957-6962.	5.2	20
1020	Waterâ€Dispersible Candle Soot–Derived Carbon Nanoâ€Onion Clusters for Imagingâ€Guided Photothermal Cancer Therapy. Small, 2019, 15, e1804575.	5.2	80
1021	Transparent self-cleaning coating of modified polydimethylsiloxane (PDMS) for real outdoor application. Progress in Organic Coatings, 2019, 131, 232-239.	1.9	45
1022	Separation Mechanism and Construction of Surfaces with Special Wettability for Oil/Water Separation. ACS Applied Materials & Separation.	4.0	452
1023	A robust and flexible bulk superhydrophobic material from silicone rubber/silica gel prepared by thiol–ene photopolymerization. Journal of Materials Chemistry A, 2019, 7, 7242-7255.	5.2	78
1024	Bioinspired Sootâ€Deposited Janus Fabrics for Sustainable Solar Steam Generation with Saltâ€Rejection. Global Challenges, 2019, 3, 1800117.	1.8	73
1025	Formation of plasma-polymerized superhydrophobic coating using an atmospheric-pressure plasma jet. Thin Solid Films, 2019, 675, 34-42.	0.8	19
1026	Thermally-induced all-damage-healable superhydrophobic surface with photocatalytic performance from hierarchical BiOCl. Chemical Engineering Journal, 2019, 366, 439-448.	6.6	37
1027	A Green Route to Prepare Semitransparent Superhydrophobic-Oleophobic Coatings. IOP Conference Series: Materials Science and Engineering, 2019, 678, 012156.	0.3	0
1028	Wetting a superomniphobic porous system. Soft Matter, 2019, 15, 8621-8626.	1.2	5
1029	A highly fluorinated SiO ₂ particle assembled, durable superhydrophobic and superoleophobic coating for both hard and soft materials. Nanoscale, 2019, 11, 18338-18346.	2.8	40
1030	Ultrafast Laser Enabling Hierarchical Structures for Versatile Superhydrophobicity with Enhanced Cassie–Baxter Stability and Durability. Langmuir, 2019, 35, 16693-16711.	1.6	48
1031	Tuning the Porosity of Supraparticles. ACS Nano, 2019, 13, 13949-13956.	7.3	55
1032	In Situ Transmission Electron Microscope Liquid Cell 3D Profile Reconstruction and Analysis of Nanoscale Liquid Water Contact Line Movements. Langmuir, 2019, 35, 16712-16717.	1.6	7

#	Article	IF	CITATIONS
1033	Dual-Cross-Linked Supramolecular Polysiloxanes for Mechanically Tunable, Damage-Healable and Oil-Repellent Polymeric Coatings. ACS Applied Materials & Samp; Interfaces, 2019, 11, 47382-47389.	4.0	44
1034	Superhydrophobic Civil Engineering Materials: A Review from Recent Developments. Coatings, 2019, 9, 753.	1.2	36
1035	Tunable wettability and adsorption activity of candle soot coated steel mesh. Engineering Research Express, 2019, 1, 025044.	0.8	1
1036	Effect of Tier Surface Structure on Nonâ€wetting Materials and Robust Superamphiphobic Surface. ChemistrySelect, 2019, 4, 13045-13052.	0.7	0
1037	Fast Modulation of Surface Amphiphobicity/Amphiphilicity via Bidirectional Substitution between Perfluorinated Surfactants and Polyanions throughout Pre-Assembled Polyelectrolyte Multilayers. Langmuir, 2019, 35, 17122-17131.	1.6	6
1038	Abrasion resistant semitransparent self-cleaning coatings based on porous silica microspheres and polydimethylsiloxane. Ceramics International, 2019, 45, 401-408.	2.3	15
1039	Convective and infrared drying assisted by capillary drainage of spirulina: a real possibility to reduce the energy consumption. Heat and Mass Transfer, 2019, 55, 867-876.	1,2	3
1040	Candle soot: Journey from a pollutant to a functional material. Carbon, 2019, 144, 684-712.	5.4	87
1041	Reduction in the contact time of impacting droplets by decorating a rectangular ridge on superhydrophobic surfaces. International Journal of Heat and Mass Transfer, 2019, 132, 1105-1115.	2.5	62
1042	Control of wettability transition and coalescence dynamics of droplets on the surface via mechanical vibration: A molecular simulation exploration. Applied Surface Science, 2019, 473, 393-400.	3.1	32
1043	Oil- and Water-Resistant Coatings for Porous Cellulosic Substrates. ACS Applied Polymer Materials, 2019, 1, 103-111.	2.0	50
1044	A general and facile method for preparation of large-scale reduced graphene oxide films with controlled structures. Carbon, 2019, 143, 162-171.	5. 4	30
1045	How to Coat the Inside of Narrow and Long Tubes with a Superâ€Liquidâ€Repellent Layer—A Promising Candidate for Antibacterial Catheters. Advanced Materials, 2019, 31, e1801324.	11.1	65
1046	Durable, optically transparent, superhydrophobic polymer films. Applied Surface Science, 2019, 470, 187-195.	3.1	34
1047	Highly fluorinated and hierarchical HNTs/SiO2 hybrid particles for substrate-independent superamphiphobic coatings. Chemical Engineering Journal, 2019, 359, 626-640.	6.6	65
1048	Effect of particle morphology on mechanical properties of liquid marbles. Advanced Powder Technology, 2019, 30, 330-335.	2.0	30
1049	Hierarchical Structures for Superhydrophobic and Superoleophobic Surfaces. Langmuir, 2019, 35, 10689-10703.	1.6	105
1050	Clay-based superamphiphobic coatings with low sliding angles for viscous liquids. Journal of Colloid and Interface Science, 2019, 540, 228-236.	5.0	30

#	Article	IF	CITATIONS
1051	Inexpensive and non-fluorinated superhydrophobic concrete coating for anti-icing and anti-corrosion. Journal of Colloid and Interface Science, 2019, 541, 86-92.	5.0	170
1052	Graphdiyne: synthesis, properties, and applications. Chemical Society Reviews, 2019, 48, 908-936.	18.7	584
1053	Super-Efficient Synthesis of Mesh-like Superhydrophobic Nano-Aluminum/Iron (III) Oxide Energetic Films. Materials, 2019, 12, 234.	1.3	3
1054	Progress of binary cooperative complementary interfacial nanomaterials. Nano Today, 2019, 24, 48-80.	6.2	14
1055	Cu thin films on wood surface for robust superhydrophobicity by magnetron sputtering treatment with perfluorocarboxylic acid. European Journal of Wood and Wood Products, 2019, 77, 115-123.	1.3	14
1056	Liquidâ€Repellent Metal Oxide Photocatalysts. Chemistry - A European Journal, 2019, 25, 4535-4542.	1.7	8
1057	Hybrid laser and vacuum process for rapid ultrahydrophobic Ti-6Al-4â€√V surface formation. Applied Surface Science, 2019, 471, 759-766.	3.1	47
1058	Surface-engraved nanocomposite coatings featuring interlocked reflection-reducing, anti-fogging, and contamination-reducing performances. Progress in Organic Coatings, 2019, 127, 366-374.	1.9	17
1059	Superhydrophobic hierarchical three-level structures on 3D polypropylene surfaces. Journal of Micromechanics and Microengineering, 2019, 29, 025006.	1.5	10
1060	Water-based polyurethane formulations for robust superhydrophobic fabrics. Chemical Engineering Journal, 2019, 360, 445-451.	6.6	55
1061	Particulate Coatings with Optimized Haze Properties. Advanced Functional Materials, 2019, 29, 1806025.	7.8	13
1062	Organic WORM memory with carbon nanoparticle/epoxy active layer. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	33
1063	Robust Mg(OH)2/epoxy resin superhydrophobic coating applied to composite insulators. Applied Surface Science, 2019, 466, 126-132.	3.1	38
1064	Candle soot as a template for fabricating superhydrophobic titanium dioxide film by magnetron sputtering. Vacuum, 2019, 159, 29-36.	1.6	24
1065	Continuous manufacturing of reentrant structures via rollâ€toâ€roll process. Journal of Applied Polymer Science, 2019, 136, 46980.	1.3	11
1066	Preparation and characterization of a durable superhydrophobic hyperbranched poly(dimethylolbutanoic acid-glycidyl ester of versatic acid)/nano-SiO2 coating. Applied Surface Science, 2019, 466, 171-178.	3.1	14
1067	Effect of the texture geometry on the slippery behavior of liquid-infused nanoporous surfaces. Journal of Materials Science, 2019, 54, 2729-2739.	1.7	20
1068	Effect of irradiation on the surface morphology of nanostructured superhydrophobic surfaces fabricated by ion beam irradiation. Applied Surface Science, 2019, 477, 154-158.	3.1	15

#	Article	IF	CITATIONS
1069	Efficient Bioâ€Photoelectrochemical Reaction at a TiO ₂ Nanowire Arrayâ€Based Triphase Interface. Solar Rrl, 2020, 4, 1900185.	3.1	9
1070	Facilely Electrophoretic Derived Aluminum/Zinc (II) Oxide Nanocomposite with superhydrophobicity and thermostability. Ceramics International, 2020, 46, 1052-1058.	2.3	4
1071	Superhydrophobicity of composite surfaces created from polymer blends. Journal of Colloid and Interface Science, 2020, 560, 596-605.	5.0	23
1072	Transparent omniphobic polyurethane coatings containing partially acetylated β–cyclodextrin as the polyol. Chemical Engineering Journal, 2020, 380, 122554.	6.6	46
1073	Novel and cutting-edge applications for a solvent-responsive superoleophobic–superhydrophilic surface: Water-infused omniphobic surface and separating organic liquid mixtures. Chemical Engineering Journal, 2020, 381, 122629.	6.6	43
1074	A superhydrophobic coating to create multi-functional materials with mechanical/chemical/physical robustness. Chemical Engineering Journal, 2020, 381, 122539.	6.6	41
1075	Highly fluorinated F-APP-TiO2 particle with hierarchical core-shell structure and its application in multifunctional superamphiphobic surface: Mechanical robustness, self-recovery and flame retardancy. Journal of Colloid and Interface Science, 2020, 560, 777-786.	5.0	28
1076	Micro-nano surface structure construction and hydrophobic modification to prepare efficient oil-water separation melamine formaldehyde foam. Applied Surface Science, 2020, 505, 144577.	3.1	48
1077	Design of functionalized \hat{l} ±-Fe2O3 (III) films with long-term anti-wetting properties. Ceramics International, 2020, 46, 6129-6135.	2.3	11
1078	Robust and transparent superoleophobic coatings from one-step spraying of SiO2@fluoroPOS. Journal of Sol-Gel Science and Technology, 2020, 93, 79-90.	1.1	12
1079	Conversion of low-grade heat via thermal-evaporation-induced electricity generation on nanostructured carbon films. Applied Thermal Engineering, 2020, 166, 114623.	3.0	22
1080	Sponge-based materials for oil spill cleanups: A review. Frontiers of Chemical Science and Engineering, 2020, 14, 749-762.	2.3	32
1081	Prompting Splash Impact on Superamphiphobic Surfaces by Imposing a Viscous Part. Advanced Science, 2020, 7, 1902687.	5.6	34
1082	Superhydrophilic and mechanically robust phenolic resin as double layered photothermal materials for efficient solar steam generation. Materials Today Energy, 2020, 16, 100375.	2.5	31
1083	Manipulating the hydrophobicity of DNA as a universal strategy for visual biosensing. Nature Protocols, 2020, 15, 316-337.	5.5	19
1084	Candle soot nanoparticle-decorated wood for efficient solar vapor generation. Sustainable Energy and Fuels, 2020, 4, 354-361.	2.5	30
1085	Wear-resistant and robust superamphiphobic coatings with hierarchical TiO ₂ /SiO ₂ composite particles and inorganic adhesives. New Journal of Chemistry, 2020, 44, 1194-1203.	1.4	25
1086	Superwettable bulk Janus materials with mechanical robustness and underwater self-cleaning action. Chemical Engineering Journal, 2020, 385, 123920.	6.6	16

#	Article	IF	CITATIONS
1087	Coating "nano-armor―for robust superwetting micro/nanostructure. Chemical Engineering Journal, 2020, 385, 123924.	6.6	16
1088	Superhydrophobic and superhydrophilic properties of laser-ablated plane and curved surfaces. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	13
1089	Nature–Inspired self–cleaning surfaces: Mechanisms, modelling, and manufacturing. Chemical Engineering Research and Design, 2020, 155, 48-65.	2.7	79
1090	Robust Nacrelike Graphene Oxide–Calcium Carbonate Hybrid Mesh with Underwater Superoleophobic Property for Highly Efficient Oil/Water Separation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 4482-4493.	4.0	110
1091	Cross-Linked Organic–Inorganic Hybrid Composite Films for One-Step Fabrication of Robust Superhydrophobic Surfaces. Journal of Nanoscience and Nanotechnology, 2020, 20, 1028-1032.	0.9	2
1092	Candle soot-coated egg carton material for oil water separation and detergent adsorption. Bulletin of Materials Science, 2020, 43, 1.	0.8	10
1093	Facile preparation of superwetting surfaces by dip-coating of silane for efficient separation of different types of oils from water. Chemical Engineering Research and Design, 2020, 134, 226-238.	2.7	15
1094	Flexible Hierarchical Wraps Repel Drug-Resistant Gram-Negative and Positive Bacteria. ACS Nano, 2020, 14, 454-465.	7.3	42
1095	Analyzing the solid soot particulates formed in a fuelâ€rich flame by solventâ€free matrixâ€assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry. Rapid Communications in Mass Spectrometry, 2020, 34, e8596.	0.7	7
1096	Leidenfrost suppression and contact time reduction of a drop impacting on silicon nanowire array-coated surfaces. International Journal of Heat and Mass Transfer, 2020, 148, 118980.	2.5	18
1097	Development of underwater superoleophobic polyamide-imide (PAI) microfiltration membranes for oil/water emulsion separation. Separation and Purification Technology, 2020, 238, 116451.	3.9	53
1098	Robust Hydrogel Coating with Oil-Repellent Property in Air, Water, and Oil Surroundings. ACS Applied Materials & Interfaces, 2020, 12, 49138-49145.	4.0	65
1099	Energy conversion based on superhydrophobic surfaces. Physical Chemistry Chemical Physics, 2020, 22, 25430-25444.	1.3	5
1100	Drop impacting on a surface with adjustable wettability based on the dielectrowetting effect. Physics of Fluids, 2020, 32, .	1.6	17
1101	Bioinspired and Biomimetic Design of Multilayered and Multiscale Structures., 2020,, 3-19.		1
1102	Fabrication of micro-reentrant structures by liquid/gas interface shape-regulated electrochemical deposition. International Journal of Machine Tools and Manufacture, 2020, 159, 103637.	6.2	29
1103	Bioinspired Design for Energy Storage Devices. , 2020, , 193-211.		0
1104	Capillary rise and evaporation of a liquid in a corner between a plane and a cylinder: A model of imbibition into a nanofiber mat coating. European Physical Journal: Special Topics, 2020, 229, 1799-1818.	1.2	7

#	Article	IF	CITATIONS
1105	Preparation of an amphiphobic and electrically conductive coating with mushroom structure on flexible polymer substrate. Vacuum, 2020, 180, 109579.	1.6	5
1106	Bioinspired Underwater Propulsors. , 2020, , 113-139.		6
1107	Turning a Superhydrophilic Surface Weakly Hydrophilic: Topological Wetting States. Journal of the American Chemical Society, 2020, 142, 18491-18502.	6.6	25
1108	Robust anti-icing superhydrophobic aluminum alloy surfaces by grafting fluorocarbon molecular chains. Applied Materials Today, 2020, 21, 100815.	2.3	37
1109	Transparent and Flexible Thermal Insulation Window Material. Cell Reports Physical Science, 2020, 1, 100140.	2.8	12
1110	Aquatic Animals Operating at High Reynolds Numbers. , 2020, , 235-270.		1
1111	Few-layer N-doped porous carbon nanosheets derived from corn stalks as a bifunctional electrocatalyst for overall water splitting. Fuel, 2020, 280, 118567.	3.4	50
1112	Facile Strategy to Generate Charged Droplets with Desired Polarities. ACS Omega, 2020, 5, 26908-26913.	1.6	5
1113	Customizing oil-wettability in air—without affecting extreme water repellency. Nanoscale, 2020, 12, 24349-24356.	2.8	12
1114	Challenges and Prospects of Bio-Inspired and Multifunctional Transparent Substrates and Barrier Layers for Optoelectronics. ACS Nano, 2020, 14, 16241-16265.	7.3	27
1115	Surface-Charge-Assisted Microdroplet Generation on a Superhydrophobic Surface. Langmuir, 2020, 36, 14352-14360.	1.6	11
1118	Superhydrophobic Hair-Like Nanowire Membrane for the Highly Efficient Separation of Oil/Water Mixtures. Journal of Nanomaterials, 2020, 2020, 1-9.	1.5	1
1119	Top-down Approach for Fabrication of Polymer Microspheres by Interfacial Engineering. Chinese Journal of Polymer Science (English Edition), 2020, 38, 1286-1293.	2.0	3
1120	Multiscale 3D hybrid carbon microelectrodes with candle soot and reduced GO nanoparticles as binder-free anode: An approach beyond 3D for high rate & performance Li-ion batteries. Journal of Power Sources, 2020, 473, 228600.	4.0	15
1121	Highly durable antifogging coatings resistant to long-term airborne pollution and intensive UV irradiation. Materials and Design, 2020, 194, 108956.	3.3	25
1122	Facilely controllable synthesis of multi-functional aluminum/nickel/perfluorosilane composites for enhancing the thermal energy release stability and enhancing anti-wetting properties. Composites Science and Technology, 2020, 199, 108351.	3.8	3
1123	Oneâ€Pot Route for Fe@Poly(styreneâ€ <i>co</i> â€divinylbenzene) Foam with Robust Physical/Chemical Stability and Remote Magnetic Driven Capacity for Oil Removal. Macromolecular Materials and Engineering, 2020, 305, 2000160.	1.7	2
1124	Switchable Wettability and Adhesion of Micro/Nanostructured Elastomer Surface via Electric Field for Dynamic Liquid Droplet Manipulation. Advanced Science, 2020, 7, 2000772.	5.6	53

#	Article	IF	CITATIONS
1125	Femtosecond laser-patterned slippery surfaces on PET for liquid patterning and blood resistance. Optics and Laser Technology, 2020, 132, 106469.	2.2	8
1126	Ultra-low-voltage electrophoretic assembly of extremely water-repellent functional nano-Al films with long lifespan. Journal of Materials Science: Materials in Electronics, 2020, 31, 13503-13510.	1.1	1
1127	Smart Manipulation of Gas Bubbles in Harsh Environments Via a Fluorinert-Infused Shape-Gradient Slippery Surface. Transactions of Tianjin University, 2020, 26, 441-449.	3.3	12
1128	Microskeletonâ€Nanofiller Composite with Mechanical Superâ€Robust Superhydrophobicity against Abrasion and Impact. Advanced Functional Materials, 2020, 30, 1910665.	7.8	65
1129	Self-Lifting NaCl Crystals. Journal of Physical Chemistry Letters, 2020, 11, 7388-7393.	2.1	19
1131	Bioinspired Design of Dental Functionally Graded Multilayer Structures. , 2020, , 140-166.		0
1132	Bionic Organs. , 2020, , 167-192.		1
1133	Bioinspired Design of Nanostructures. , 2020, , 212-232.		0
1134	Flying of Insects. , 2020, , 271-299.		5
1135	Bioinspired Building Envelopes. , 2020, , 343-354.		0
1137	Development of latent fingerprints on different surface materials by candle soot coating. Chemkon - Chemie Konkret, Forum Fuer Unterricht Und Didaktik, 2020, 27, 397-400.	0.2	0
1138	Human Cortical Bone as a Structural Material. , 2020, , 20-44.		0
1139	Bamboo-Inspired Materials and Structures. , 2020, , 89-110.		5
1140	Designing Nature-Inspired Liquid-Repellent Surfaces. , 2020, , 300-319.		1
1141	A Mini Review on Superhydrophobic and Transparent Surfaces. Chemical Record, 2020, 20, 1257-1268.	2.9	33
1142	Biomimetic and Soft Robotics. , 2020, , 320-342.		0
1143	Designing Re-Entrant Geometry: Construction of a Superamphiphobic Surface with Large-Sized Particles. ACS Applied Materials & Samp; Interfaces, 2020, 12, 49155-49164.	4.0	21
1144	Bioinspired materials for water-harvesting: focusing on microstructure designs and the improvement of sustainability. Materials Advances, 2020, 1, 2592-2613.	2.6	23

#	Article	IF	CITATIONS
1145	Novel Strategy To Prepare Hierarchically Porous Ceramic Microspheres via a Self-Assembly Method on Tunable Superamphiphobic Surfaces. ACS Applied Materials & Interfaces, 2020, 12, 45429-45436.	4.0	19
1146	Durable Underwater Superoleophobic Coatings via Dispersed Micro Particle-Induced Hierarchical Structures Inspired by Pomfret Skin. ACS Applied Materials & Structures Inspired by Pomfret Skin. ACS Applied Materials & Structures Inspired by Pomfret Skin. ACS Applied Materials & Structures Inspired by Pomfret Skin. ACS Applied Materials & Structures Inspired by Pomfret Skin. ACS Applied Materials & Structures Inspired by Pomfret Skin. ACS Applied Materials & Structures Inspired by Pomfret Skin. ACS Applied Materials & Structures Inspired by Pomfret Skin. ACS Applied Materials & Structures Inspired by Pomfret Skin. ACS Applied Materials & Structures Inspired by Pomfret Skin. ACS Applied Materials & Structures Inspired by Pomfret Skin. ACS Applied Materials & Structures Inspired by Pomfret Skin. ACS Applied Materials & Structures Inspired by Pomfret Skin. ACS Applied Materials & Structures Inspired by Pomfret Skin. ACS Applied Materials & Structures Inspired by Pomfret Skin. ACS Applied Materials & Structures Inspired by Pomfret Skin. ACS Applied Materials & Structures Inspired by Pomfret Skin.	4.0	14
1147	Self-Concentrated Surface-Enhanced Raman Scattering-Active Droplet Sensor with Three-Dimensional Hot Spots for Highly Sensitive Molecular Detection in Complex Liquid Environments. ACS Sensors, 2020, 5, 3420-3431.	4.0	15
1148	Continuous 3D printing from one single droplet. Nature Communications, 2020, 11, 4685.	5.8	47
1149	Photopyroelectric microfluidics. Science Advances, 2020, 6, .	4.7	76
1150	Bioinspired Design of Multilayered Composites. , 2020, , 45-88.		0
1151	Influence of hydrostatic pressure on wetting state and corrosion of superhydrophobic coatings. International Journal of Advanced Manufacturing Technology, 2020, 110, 457-470.	1.5	4
1152	Lifting a sessile oil drop from a superamphiphobic surface with an impacting one. Science Advances, 2020, 6, eaba4330.	4.7	33
1153	A Stable and Indurative Superhydrophobic Film with Excellent Anti-Bioadhesive Performance for 6061 Al Protection. Materials, 2020, 13, 5564.	1.3	5
1154	Low fouling sulphonated carbon soot-polysulphone membranes for rapid dehydration of stabilized oil-water emulsions. Journal of Water Process Engineering, 2020, 38, 101590.	2.6	9
1155	SiO2-Based Nanostructured Superhydrophobic Film with High Optical Transmittance. Coatings, 2020, 10, 934.	1.2	7
1156	High transmittance and highly amphiphobic coatings for environmental protection of solar panels. Advances in Colloid and Interface Science, 2020, 286, 102309.	7.0	16
1157	Oneâ€Step Preparation of Highly Durable Superhydrophobic Carbon Nanothorn Arrays. Small, 2020, 16, e1907013.	5.2	19
1158	Superhydrophobic photothermal icephobic surfaces based on candle soot. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11240-11246.	3.3	220
1159	Durable superamphiphobic coatings with high static and dynamic repellency towards liquids with low surface tension and high viscosity. Journal of Colloid and Interface Science, 2020, 578, 262-272.	5.0	23
1160	Fabrication of super-hydrophobic and highly oleophobic Ti-6Al-4 V surfaces by a hybrid method. Materials Research Bulletin, 2020, 130, 110915.	2.7	10
1161	Design of robust superhydrophobic surfaces. Nature, 2020, 582, 55-59.	13.7	1,124
1162	Room temperature hydrogen gas sensor using candle carbon soot. International Journal of Hydrogen Energy, 2020, 45, 14997-15002.	3.8	10

#	Article	IF	Citations
1163	Fabrication of coral-reef structured nano silica for self-cleaning and super-hydrophobic textile applications. Chemical Engineering Journal, 2020, 401, 125859.	6.6	84
1164	Electrospun composite membrane with superhydrophobic-superoleophilic for efficient water-in-oil emulsion separation and oil adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602, 125158.	2.3	36
1165	Fabrication and characterization of cauliflower-like silica nanoparticles with hierarchical structure through ion beam irradiation. Journal of Solid State Chemistry, 2020, 289, 121528.	1.4	2
1166	Synthesis, self-assembly of perfluoropolyether based ABA-triblock copolymers for superhydrophobic surface applications. Polymer, 2020, 205, 122732.	1.8	16
1167	Solutionâ€Processed Transparent Superhydrophobic Protection Layers for Enhancing the Device Reliability of Flexible Organic Optoelectronics. Advanced Materials Technologies, 2020, 5, 2000449.	3.0	3
1168	Carbon nano-beads collected from candle soot as an anode material with a highly pseudocapacitive Na+ storage capability for dual-ion batteries. Ionics, 2020, 26, 4533-4542.	1.2	9
1169	Morphologyâ€Controlled Molybdenum Disulfide/Candle Soot Carbon Composite for Highâ€Performance Supercapacitor. ChemistrySelect, 2020, 5, 6809-6817.	0.7	13
1170	Robust superhydrophobic coatings prepared by cathodic electrophoresis of hydrophobic silica nanoparticles with the cationic resin as the adhesive for corrosion protection. Corrosion Science, 2020, 173, 108797.	3.0	49
1171	A Facile Modifier-free Approach to Fabricate Antistatic Superhydrophobic Composite Coatings with Remarkable Thermal Stability and Corrosion Resistance. Journal of Bionic Engineering, 2020, 17, 421-435.	2.7	17
1172	Waterâ€Based Robust Transparent Superamphiphobic Coatings for Resistance to Condensation, Frosting, Icing, and Fouling. Advanced Materials Interfaces, 2020, 7, 1902201.	1.9	22
1173	Fine Switching between Underwater Superoleophilicity and Underwater Superoleophobicity while Maintaining Superhydrophobicity. Langmuir, 2020, 36, 3300-3307.	1.6	4
1174	Influence of adhesives on the construction of a robust superamphiphobic surface. Journal of Alloys and Compounds, 2020, 831, 154741.	2.8	10
1175	Magnetically Actuated Carbon Soot Nanoparticle-Based Catalytic CARBOts Coated with Ni/Pt Nanofilms for Water Detoxification and Oil-Spill Recovery. ACS Applied Nano Materials, 2020, 3, 3459-3470.	2.4	19
1176	Grafting Silicone at Room Temperature—a Transparent, Scratch-resistant Nonstick Molecular Coating. Langmuir, 2020, 36, 4416-4431.	1.6	76
1177	Ultrarobust and Biomimetic Hierarchically Macroporous Ceramic Membrane for Oil–Water Separation Templated by Emulsion-Assisted Self-Assembly Method. ACS Applied Materials & Samp; Interfaces, 2020, 12, 35555-35562.	4.0	33
1178	Evaporation and particle deposition of bi-component colloidal droplets on a superhydrophobic surface. International Journal of Heat and Mass Transfer, 2020, 159, 120063.	2.5	18
1179	Rebound dynamics of two droplets simultaneously impacting a flat superhydrophobic surface. AICHE Journal, 2020, 66, e16647.	1.8	17
1180	Versatile, mechanochemically robust, sprayed superomniphobic coating enabling low surface tension and high viscous organic liquid bouncing. Chemical Engineering Journal, 2020, 402, 126160.	6.6	21

#	Article	IF	CITATIONS
1181	Robust Superhydrophobic Membrane for Solving Water-Accelerated Fatigue of ZDDP-Containing Lubricating Oils. Langmuir, 2020, 36, 8560-8569.	1.6	15
1182	A sunlight-responsive and robust anti-icing/deicing coating based on the amphiphilic materials. Chemical Engineering Journal, 2020, 402, 126161.	6.6	78
1183	Underwater Superoleophobic Surface Based on Silica Hierarchical Cylinder Arrays with a Low Aspect Ratio. ACS Nano, 2020, 14, 9166-9175.	7.3	30
1184	Fast self-healing superhydrophobic surfaces enabled by biomimetic wax regeneration. Chemical Engineering Journal, 2020, 390, 124311.	6.6	60
1185	Stretchable and Robust Candle-Soot Nanoparticle-Polydimethylsiloxane Composite Films for Laser-Ultrasound Transmitters. Micromachines, 2020, 11, 631.	1.4	15
1186	Microdroplet Contaminants: When and Why Superamphiphobic Surfaces Are Not Self-Cleaning. ACS Nano, 2020, 14, 3836-3846.	7.3	47
1187	Meter-scale fabrication of water-driven triboelectric nanogenerator based on in-situ grown layered double hydroxides through a bottom-up approach. Nano Energy, 2020, 71, 104646.	8.2	32
1188	Wrinkled smart surfaces: Enhanced switchable wettability and directional liquid transportation. Applied Surface Science, 2020, 513, 145810.	3.1	26
1189	Effect of Morphology Evolution on the Anticorrosion Performance of Superhydrophobic Surfaces and Lubricant-Infused Surfaces. ACS Sustainable Chemistry and Engineering, 2020, 8, 3170-3180.	3.2	18
1190	Highly Durable Superhydrophobic Polydimethylsiloxane/Silica Nanocomposite Surfaces with Good Self-Cleaning Ability. ACS Omega, 2020, 5, 4100-4108.	1.6	121
1191	Compression molding processed superhydrophobic CB/CeO2/PVDF/CF nanocomposites with highly robustness, reusability and multifunction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 590, 124533.	2.3	13
1192	Role of Surface Chemistry in the Superhydrophobicity of the Springtail Orchesella cincta (Insecta:Collembola). ACS Applied Materials & Samp; Interfaces, 2020, 12, 12294-12304.	4.0	10
1193	Smart Superhydrophobic Surface with Restorable Microstructure and Self-Healable Surface Chemistry. ACS Applied Materials & Samp; Interfaces, 2020, 12, 5157-5165.	4.0	63
1194	3D printing of bioinspired textured surfaces with superamphiphobicity. Nanoscale, 2020, 12, 2924-2938.	2.8	54
1195	Hydrophobic Silica Nanorod Arrays Vertically Grown on Melamine Foams for Oil/Water Separation. ACS Applied Nano Materials, 2020, 3, 1479-1488.	2.4	38
1196	Nacreâ€Inspired Mineralized Films with High Transparency and Mechanically Robust Underwater Superoleophobicity. Advanced Materials, 2020, 32, e1907413.	11.1	51
1197	Multi-stimuli-triggered and self-repairable fluorocarbon organic coatings with urea-formaldehyde microcapsules filled with fluorosilane. Journal of Materials Science and Technology, 2020, 45, 70-83.	5.6	33
1198	One-step synthesis of core shell cellulose-silica/n-octadecane microcapsules and their application in waterborne self-healing multiple protective fabric coatings. Journal of Colloid and Interface Science, 2020, 566, 401-410.	5.0	58

#	Article	IF	CITATIONS
1199	All Dry Bottomâ€Up Assembly of Omniphobic Interfaces. Advanced Materials Interfaces, 2020, 7, 1902159.	1.9	8
1200	Multifunctional and fluorine-free superhydrophobic composite coating based on PDMS modified MWCNTs/ZnO with self-cleaning, oil-water separation, and flame retardant properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 597, 124776.	2.3	70
1201	A facile, fast, and low-cost method for fabrication of micro/nano-textured superhydrophobic surfaces. Journal of Colloid and Interface Science, 2020, 573, 317-327.	5.0	45
1202	Passive Removal of Highly Wetting Liquids and Ice on Quasi-Liquid Surfaces. ACS Applied Materials & Liquids Interfaces, 2020, 12, 20084-20095.	4.0	66
1203	Acoustic-Controlled Bubble Generation and Fabrication of 3D Polymer Porous Materials. ACS Applied Materials & Samp; Interfaces, 2020, 12, 22318-22326.	4.0	20
1204	Bioinspired Superwettable Microspine Chips with Directional Droplet Transportation for Biosensing. ACS Nano, 2020, 14, 4654-4661.	7.3	81
1205	Current Status and Future Prospects of Applying Bioinspired Superhydrophobic Materials for Conservation of Stone Artworks. Coatings, 2020, 10, 353.	1.2	14
1206	A self-healing superamphiphobic coating for efficient corrosion protection of magnesium alloy. Journal of Colloid and Interface Science, 2020, 575, 140-149.	5.0	80
1207	High modulus, fluorine-free self-healing anti-smudge coatings. Progress in Organic Coatings, 2020, 145, 105703.	1.9	19
1208	Liquid marbles from soot films. Soft Matter, 2020, 16, 4512-4519.	1.2	15
1209	Restoration of superwetting switching on TiO2 coated shape memory polymer arrays. Chemical Engineering Journal, 2020, 394, 124996.	6.6	21
1210	Reliable and Robust Fabrication Rules for Springtail-Inspired Superomniphobic Surfaces. ACS Applied Materials & Samp; Interfaces, 2020, 12, 21120-21126.	4.0	9
1211	Facile Construction of Superhydrophobic Surfaces by Coating Fluoroalkylsilane/Silica Composite on a Modified Hierarchical Structure of Wood. Polymers, 2020, 12, 813.	2.0	17
1212	Springtailâ€Inspired Superamphiphobic Ordered Nanohoodoo Arrays with Quasiâ€Doubly Reentrant Structures. Small, 2020, 16, e2000779.	5.2	41
1213	Fabrication of superhydrophobic surfaces based on fluorosilane and TiO ₂ /SiO ₂ nanocomposites. Surface Engineering, 2021, 37, 271-277.	1.1	19
1214	Thermo and light-responsive strategies of smart titanium-containing composite material surface for enhancing bacterially anti-adhesive property. Chemical Engineering Journal, 2021, 407, 125783.	6.6	86
1215	<i>Salvinia</i> -like slippery surface with stable and mobile water/air contact line. National Science Review, 2021, 8, nwaa153.	4.6	47
1216	Oil-immersion stable superamphiphobic coatings for long-term super liquid-repellency. Chemical Engineering Journal, 2021, 420, 127606.	6.6	28

#	Article	IF	CITATIONS
1217	Green preparation of transparent superhydrophobic coatings with persistent dynamic impact resistance for outdoor applications. Chemical Engineering Journal, 2021, 404, 126456.	6.6	57
1218	Nonfluorinated, transparent, and spontaneous self-healing superhydrophobic coatings enabled by supramolecular polymers. Chemical Engineering Journal, 2021, 404, 126504.	6.6	53
1219	Droplet Retention on Superhydrophobic Surfaces: A Critical Review. Advanced Materials Interfaces, 2021, 8, 2001205.	1.9	56
1220	Mechanically robust, self-healing superhydrophobic anti-icing coatings based on a novel fluorinated polyurethane synthesized by a two-step thiol click reaction. Chemical Engineering Journal, 2021, 404, 127110.	6.6	92
1221	The past and future of sustainable concrete: A critical review and new strategies on cement-based materials. Journal of Cleaner Production, 2021, 281, 123558.	4.6	181
1222	Fabrication of robust selfâ€eleaning superhydrophobic coating by deposition of polymer layer on candle soot surface. Journal of Applied Polymer Science, 2021, 138, 49943.	1.3	26
1223	Superwetting Shape Memory Microstructure: Smart Wetting Control and Practical Application. Advanced Materials, 2021, 33, e2001718.	11,1	73
1224	Metallophobic Coatings to Enable Shape Reconfigurable Liquid Metal Inside 3D Printed Plastics. ACS Applied Materials & Description (2011), 12709-12718.	4.0	33
1225	One-step fabrication of transparent superhydrophobic surface. Applied Surface Science, 2021, 542, 148534.	3.1	47
1226	Biomimetic superhydrophobic membrane with multi-scale porous microstructure for waterproof and breathable application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 612, 125924.	2.3	16
1227	Porous and reactive polymeric interfaces: an emerging avenue for achieving durable and functional bio-inspired wettability. Journal of Materials Chemistry A, 2021, 9, 824-856.	5.2	24
1228	Developing a new superhydrophilic and superoleophobic poly(4-(1-vinyl-1H-imidazol-3-ium-3-yl)) Tj ETQq1 1 0.78-	4314 rgBT 1 . 2	Overlock 1
	highly efficient, stable, and durable oil/water separation. Journal of Coatings Technology Research, 2021. 18. 511-521.		
1229	Multifunctional superhydrophobic adsorbents by mixed-dimensional particles assembly for polymorphic and highly efficient oil-water separation. Journal of Hazardous Materials, 2021, 407, 124374.	6.5	30
1230	Evaporation-driven colloidal cluster assembly using droplets on superhydrophobic fractal-like structures. Soft Matter, 2021, 17, 506-515.	1.2	12
1231	Environment-responsive coatings with recoverable in-air superamphiphobicity and underwater superoleophobicity. Applied Surface Science, 2021, 541, 148474.	3.1	6
1232	Fabrication of superamphiphobic surfaces with controllable oil adhesion in air. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125708.	2.3	13
1233	Fabrication of superamphiphobic surface with hierarchical structures on metal substrate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 612, 125983.	2.3	15
1234	Superhydrophobic Flexible Supercapacitors Formed by Integrating Hydrogel with Functional Carbon Nanomaterials. Chinese Journal of Chemistry, 2021, 39, 1153-1158.	2.6	78

#	Article	IF	Citations
1235	Multifunctional 3D GO/g-C3N4/TiO2 foam for oil-water separation and dye adsorption. Applied Surface Science, 2021, 541, 148638.	3.1	46
1236	Superamphiphobic and flame-retardant coatings with highly chemical and mechanical robustness. Chemical Engineering Journal, 2021, 421, 127793.	6.6	37
1237	An instant oil separation by octadecyl-polysiloxane-reticulated recyclable superhydrophobic polyester fabric. Environmental Technology and Innovation, 2021, 21, 101322.	3.0	10
1238	Silane-triggered fabrication of stable waterborne superamphiphobic coatings. Chemical Engineering Journal, 2021, 406, 127153.	6.6	31
1239	Versatile snail-inspired superamphiphobic coatings with repeatable adhesion and recyclability. Chemical Engineering Science, 2021, 230, 116182.	1.9	16
1240	Highly efficient and recyclable spongy nanoporous graphene for remediation of organic pollutants. Chemical Engineering Research and Design, 2021, 148, 313-322.	2.7	7
1241	An experimental study of rain erosion effects on a hydro-/ice-phobic coating pertinent to Unmanned-Arial-System (UAS) inflight icing mitigation. Cold Regions Science and Technology, 2021, 181, 103196.	1.6	15
1242	Measurement of liquid surface tension and shape of a droplet on vertical plate by far field scattering technique. Optics Communications, 2021, 482, 126578.	1.0	2
1243	Synthesis and surface properties of amphiphilic fluorineâ€containing diblock copolymers. Journal of Applied Polymer Science, 2021, 138, 49714.	1.3	3
1244	Bioinspired superwetting surfaces for biosensing. View, 2021, 2, 20200053.	2.7	33
1245	Synchronous Detection to Reduce Offsets in Focus Error of an Optical Pickup Unit. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-8.	2.4	1
1246	A simple superhydrophobic/superhydrophilic Janus-paper with enhanced biocompatibility by PDMS and candle soot coating for actuator. Chemical Engineering Journal, 2021, 406, 126532.	6.6	65
1247	Superamphiphobic surfaces with robust self-cleaning, abrasion resistance and anti-corrosion. Chemical Engineering Journal, 2021, 406, 126753.	6.6	53
1248	Rational design of electrospun nanofibrous materials for oil/water emulsion separation. Materials Chemistry Frontiers, 2021, 5, 97-128.	3.2	55
1249	Biaxially Morphing Droplet Shape by an Active Surface. Advanced Materials Interfaces, 2021, 8, 2001199.	1.9	9
1250	Bioprocess-inspired synthesis of multilayered chitosan/CaCO ₃ composites with nacre-like structures and high mechanical properties. Journal of Materials Chemistry B, 2021, 9, 5691-5697.	2.9	3
1251	Molecularly Smooth and Conformal Nanocoating by Amine-Mediated Redox Modulation of Catechol. Chemistry of Materials, 2021, 33, 952-965.	3.2	9
1252	Droplet impact on pillar-arrayed non-wetting surfaces. Soft Matter, 2021, 17, 5932-5940.	1.2	21

#	Article	IF	CITATIONS
1253	Superhydrophobic, superamphiphobic and SLIPS materials as anti-corrosion and anti-biofouling barriers. New Journal of Chemistry, 2021, 45, 15170-15179.	1.4	48
1254	Robust superhydrophobicity: mechanisms and strategies. Chemical Society Reviews, 2021, 50, 4031-4061.	18.7	334
1255	Conducting and superhydrophobic hybrid 2D material from coronene and pyrene. Journal of Materials Chemistry C, 2021, 9, 10324-10333.	2.7	6
1256	Large-area fabrication of superhydrophobic micro-conical pillar arrays on various metallic substrates. Nanoscale, 2021, 13, 14023-14034.	2.8	32
1257	Anti-corrosion coatings derived from conducting polymeric nanocomposites., 2021,, 185-209.		0
1258	Molecular dynamics simulation on dynamic behaviors of nanodropletsimpinging on solid surfaces secorated with nanopillars. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 134704-134704.	0.2	3
1259	Anti-greasy and conductive superamphiphobic coating applied to the carbon brushes/conductive rings of hydro-generators. RSC Advances, 2021, 11, 12381-12391.	1.7	2
1260	Smart Janus titanium mesh used as a diode for both liquid droplet and air bubble transport. New Journal of Chemistry, 2021, 45, 17862-17870.	1.4	6
1261	Evaporation-induced self-assembly of silver nanospheres and gold nanorods on a super-hydrophobic substrate for SERS applications. Nanotechnology, 2021, 32, 135601.	1.3	13
1262	Tribological behavior of biodiesel soot. , 2021, , 91-106.		0
1263	Modulation of solid surface with desirable under-liquid wettability based on molecular hydrophilic–lipophilic balance. Chemical Science, 2021, 12, 6136-6142.	3.7	17
1264	Bioinspired Superoleophobic Materials for Oil–Water Separation. Environmental and Microbial Biotechnology, 2021, , 253-276.	0.4	1
1265	Microparticle Suspensions and Bacteria-Laden Droplets: Are They the Same in Terms of Wetting Signature?. Langmuir, 2021, 37, 1588-1595.	1.6	6
1266	Design of  tolerant and hard' superhydrophobic coatings to freeze physical deformation. Materials Horizons, 2021, 8, 2717-2725.	6.4	15
1267	Spatio-temporal maneuvering of impacting drops. Materials Horizons, 2021, 8, 3133-3140.	6.4	16
1268	Universal and tunable liquid–liquid separation by nanoparticle-embedded gating membranes based on a self-defined interfacial parameter. Nature Communications, 2021, 12, 80.	5.8	32
1269	A Review on Solar Panel Cleaning Through Chemical Self-cleaning Method. Lecture Notes in Mechanical Engineering, 2021, , 835-844.	0.3	4
1270	Life Cycle Cost and Market Prospect Analysis of Non-Fluorinated Super-Hydrophobic Concrete. Management Science and Engineering, 2021, 10, 128-134.	0.1	0

#	Article	IF	CITATIONS
1271	Bioinspired photocatalytic hedgehog coating for super liquid repellency. Materials Chemistry Frontiers, 2021, 5, 4174-4181.	3.2	6
1272	Superhydrophilic Coating of Pine Wood by Plasma Functionalization of Self-Assembled Polystyrene Spheres. Coatings, 2021, 11, 114.	1.2	6
1273	Laser Fabrication of Bioinspired Gradient Surfaces for Wettability Applications. Advanced Materials Interfaces, 2021, 8, 2001610.	1.9	48
1274	Polymer nanocomposite membranes for wastewater treatment. , 2021, , 605-672.		0
1275	Simple preparation of a durable and low-cost load-bearing three-dimensional porous material for emulsion separation. New Journal of Chemistry, 2021, 45, 17893-17901.	1.4	4
1276	Robust Superomniphobic Microâ€Hyperbola Structures Formed by Capillary Wrapping of a Photocurable Liquid around Micropillars. Advanced Functional Materials, 2021, 31, 2010053.	7.8	10
1277	Preparation of transparent and hydrophobic cerium oxide films with stable mechanical properties by magnetron sputtering. Vacuum, 2021, 184, 109888.	1.6	13
1278	The Role of the Fiber/Bead Hierarchical Microstructure on the Properties of PVDF Coatings Deposited by Electrospinning. Polymers, 2021, 13, 464.	2.0	8
1279	Functional and versatile superhydrophobic coatings via stoichiometric silanization. Nature Communications, 2021, 12, 982.	5.8	132
1280	Charge Density Gradient Propelled Ultrafast Sweeping Removal of Dropwise Condensates. Journal of Physical Chemistry B, 2021, 125, 1936-1943.	1.2	18
1281	Hard yet Flexible Transparent Omniphobic GPOSS Coatings Modified with Perfluorinated Agents. ACS Applied Materials & Coatings Modified With Perfluorinated Agents. ACS Applied Materials & Coatings Modified With Perfluorinated Agents. ACS Applied Materials & Coatings Modified With Perfluorinated Agents. ACS Applied Materials & Coatings Modified With Perfluorinated Agents. ACS Applied Materials & Coatings Modified With Perfluorinated Agents. ACS Applied Materials & Coatings Modified With Perfluorinated Agents. ACS Applied Materials & Coatings Modified With Perfluorinated Agents. ACS Applied Materials & Coatings Modified With Perfluorinated Agents. ACS Applied Materials & Coatings Modified With Perfluorinated Agents. ACS Applied Materials & Coatings With Perfluorinated Agents. ACS Applied Materials & Coatings With Perfluorinated Agents. ACS Applied Materials & Coatings With Perfluorinated Agents & Coatings & Co	4.0	38
1282	Wetting, Adhesion, and Droplet Impact on Face Masks. Langmuir, 2021, 37, 2810-2815.	1.6	23
1283	Bioinspired Tunable Structural Color Film with Janus Wettability and Interfacial Floatability towards Visible Water Quality Monitoring. Advanced Functional Materials, 2021, 31, 2010406.	7.8	30
1284	Transparent Super-Repellent Surfaces with Low Haze and High Jet Impact Resistance. ACS Applied Materials & Samp; Interfaces, 2021, 13, 13813-13821.	4.0	26
1285	Evaporation driven synthesis of supraparticles on liquid repellent surfaces. Journal of Industrial and Engineering Chemistry, 2021, 95, 170-181.	2.9	7
1286	Titanium Dioxide Derived Materials with Superwettability. Catalysts, 2021, 11, 425.	1.6	11
1287	Continuous Roll-to-Roll Production of Carbon Nanoparticles from Candle Soot. Nano Letters, 2021, 21, 3198-3204.	4.5	46
1288	Close to Real: Largeâ€Volume 3D Cell Spheroids on a Superamphiphobic Surface. Advanced Materials Interfaces, 2021, 8, 2100039.	1.9	6

#	Article	IF	CITATIONS
1289	In situ tunable droplet adhesion on a super-repellent surface via electrostatic induction effect. IScience, 2021, 24, 102208.	1.9	3
1290	The Roles of Membrane Technology in Artificial Organs: Current Challenges and Perspectives. Membranes, 2021, 11, 239.	1.4	33
1291	Robust Hybrid Omniphobic Surface for Stain Resistance. ACS Applied Materials & Samp; Interfaces, 2021, 13, 14562-14568.	4.0	19
1292	Universal and Switchable Omni-Repellency of Liquid-Infused Surfaces for On-Demand Separation of Multiphase Liquid Mixtures. ACS Nano, 2021, 15, 6977-6986.	7.3	20
1293	Multifunctional superamphiphobic fluorinated silica with a core-shell structure for anti-fouling and anti-corrosion applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615, 126155.	2.3	30
1294	Self-healing superhydrophobic conductive coatings for self-cleaning and humidity-insensitive hydrogen sensors. Chemical Engineering Journal, 2021, 410, 128353.	6.6	31
1295	Waxing the soot: Practical fabrication of all-organic superhydrophobic coatings from candle soot and carnauba wax. Progress in Organic Coatings, 2021, 153, 106169.	1.9	22
1296	Polymeric Microparticles Generated via Confinementâ€Free Fluid Instability. Advanced Materials, 2021, 33, e2007154.	11.1	7
1297	Robust and durable transparent superhydrophobic boehmite (\hat{I}^3 -AlOOH) film by a simple hydrothermal method. Ceramics International, 2021, 47, 11694-11701.	2.3	13
1298	Superhydrophobic Candle Soot as a Low Fouling Stable Coating on Water Treatment Membrane Feed Spacers. ACS Applied Bio Materials, 2021, 4, 4191-4200.	2.3	19
1299	Transparent and Robust Amphiphobic Surfaces Exploiting Nanohierarchical Surface-grown Metal–Organic Frameworks. Nano Letters, 2021, 21, 3480-3486.	4.5	20
1300	How to Efficiently Prepare Transparent Lubricant-Infused Surfaces: Inspired by Candle Soot. Langmuir, 2021, 37, 4869-4878.	1.6	5
1301	Recent advances in the mechanical durability of superamphiphobic surfaces: A review. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 235, 2474-2499.	1.0	7
1302	Spontaneous Directional Selfâ€Cleaning on the Feathers of the Aquatic Bird <i>Anser cygnoides domesticus </i> Induced by a Transient Superhydrophilicity. Advanced Functional Materials, 2021, 31, 2010634.	7.8	25
1303	A facile preparation of the superhydrophobic polydimethylsiloxane materials and its performances based on the supercritical fluid foaming. Journal of Applied Polymer Science, 2021, 138, 50858.	1.3	5
1304	A superhydrophobic magnetoelectric generator for high-performance conversion from raindrops to electricity. Nano Energy, 2021, 83, 105846.	8.2	13
1305	A bio-inspired method to fabricate the substrate-independent Janus membranes with outstanding floatability for precise oil/water separation. Bulletin of Materials Science, 2021, 44, 1.	0.8	4
1306	Porosity-induced mechanically robust superhydrophobicity by the sintering and silanization of hydrophilic porous diatomaceous earth. Journal of Colloid and Interface Science, 2021, 589, 242-251.	5.0	9

#	Article	IF	Citations
1307	Energy analysis on rebound dynamics of two droplets impacting a superhydrophobic surface simultaneously. AIP Advances, 2021, 11, 055007.	0.6	3
1308	Superhydrophobic composite graphene oxide membrane coated with fluorinated silica nanoparticles for hydrogen isotopic water separation in membrane distillation. Journal of Membrane Science, 2021, 626, 119136.	4.1	17
1309	Modelling of Electrowetting-Induced Droplet Detachment and Jumping over Topographically Micro-Structured Surfaces. Micromachines, 2021, 12, 592.	1.4	6
1310	Slippery damper of an overlay for arresting and manipulating droplets on nonwetting surfaces. Nature Communications, 2021, 12, 3154.	5.8	29
1311	Super liquid repellent coatings against the everyday life wear: Heating, freezing, scratching. IScience, 2021, 24, 102460.	1.9	6
1312	Bioinspired Omniphobic Microchamber Structure. Advanced Materials Interfaces, 2021, 8, 2100027.	1.9	4
1313	The role of drop shape in impact and splash. Nature Communications, 2021, 12, 3068.	5.8	35
1314	Superhydrophobic Coating Derived from the Spontaneous Orientation of Janus Particles. ACS Applied Materials & Samp; Interfaces, 2021, 13, 25392-25399.	4.0	21
1315	Designing and 3D Printing an Improved Method of Measuring Contact Angle in the Middle School Classroom. Journal of Chemical Education, 2021, 98, 1997-2004.	1.1	14
1316	A superhydrophobic coating harvesting mechanical robustness, passive anti-icing and active de-icing performances. Journal of Colloid and Interface Science, 2021, 590, 301-310.	5.0	128
1317	Robust Superhydrophobic and Repellent Coatings Based on Micro/Nano SiO2 and Fluorinated Epoxy. Coatings, 2021, 11, 663.	1.2	12
1318	Oneâ€Step Synthesis of a Durable and Liquidâ€Repellent Poly(dimethylsiloxane) Coating. Advanced Materials, 2021, 33, e2100237.	11.1	77
1319	Bioprocess-Inspired Room-Temperature Synthesis of Enamel-like Fluorapatite/Polymer Nanocomposites Controlled by Magnesium Ions. ACS Applied Materials & Samp; Interfaces, 2021, 13, 25260-25269.	4.0	15
1320	Fluorinated Metal–Organic Coatings with Selective Wettability. Journal of the American Chemical Society, 2021, 143, 9972-9981.	6.6	21
1321	Design of Hybrid Superwetting Surfaces with Selfâ€Driven Droplet Transport Feature for Enhanced Condensation. Advanced Materials Interfaces, 2021, 8, 2100284.	1.9	14
1322	Multiple Wetting–Dewetting States of a Water Droplet on Dual-Scale Hierarchical Structured Surfaces. Jacs Au, 2021, 1, 955-966.	3.6	3
1323	Fluororubber superhydrophobic coating: preparation, characterisation, and EMI shielding performance. Surface Engineering, 2021, 37, 1308-1319.	1.1	7
1324	Bouncing and coalescence dynamics during the impact of a falling drop with a sessile drop on different solid surfaces. Physics of Fluids, 2021, 33, .	1.6	28

#	Article	IF	CITATIONS
1325	Macrodropâ€Impactâ€Mediated Fluid Microdispensing. Advanced Science, 2021, 8, e2101331.	5.6	26
1326	A universal, multifunctional, high-practicability superhydrophobic paint for waterproofing grass houses. NPG Asia Materials, 2021, 13, .	3.8	26
1327	New insight into island-like structure driven from hydroxyl groups for high-performance superhydrophobic surfaces. Chemical Engineering Journal, 2021, 416, 129078.	6.6	12
1328	Facile Preparation of a Carbon-Based Hybrid Film for Efficient Solar-Driven Interfacial Water Evaporation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 33427-33436.	4.0	51
1329	Superamphiphobic triple-scale micro-/nanostructured aluminum surfaces with self-cleaning and anti-icing properties. Journal of Materials Science, 2021, 56, 15463-15480.	1.7	6
1330	Robust, flame-retardant and colorful superamphiphobic aramid fabrics for extreme conditions. Science China Technological Sciences, 2021, 64, 1765-1774.	2.0	7
1331	Fabrication of ultra-smooth hybrid thin coatings towards robust, highly transparent, liquid-repellent and antismudge coatings. Journal of Colloid and Interface Science, 2021, 594, 781-790.	5.0	21
1332	One-Step Preparation of Hydrophobic Surfaces Containing Hydrophilic Groups for Efficient Water Harvesting. Langmuir, 2021, 37, 9630-9636.	1.6	9
1333	A Strategy of Liquidâ€Grafted Slippery Sponges with Simultaneously Enhanced Absorption and Desorption Performances for Crude Oil Spill Remediation. Macromolecular Materials and Engineering, 2021, 306, 2100242.	1.7	10
1334	Design and applications of surfaces that control the accretion of matter. Science, 2021, 373, .	6.0	114
1335	A superhydrophobic and flame-retardant cotton fabric fabricated by an eco-friendly assembling method. Textile Reseach Journal, 2022, 92, 2873-2885.	1.1	5
1336	Optical Manipulation of Liquids by Thermal Marangoni Flow along the Air–Water Interfaces of a Superhydrophobic Surface. Langmuir, 2021, 37, 8677-8686.	1.6	10
1337	Recent Progress in the Fabrication and Characteristics of Selfâ€Repairing Superhydrophobic Surfaces. Advanced Materials Interfaces, 2021, 8, 2100228.	1.9	20
1338	Dynamic behaviors of two droplets impacting an inclined superhydrophobic substrate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 623, 126725.	2.3	12
1339	Renewable Superhydrophobic Surfaces Prepared by Nanoimprinting Using Anodic Porous Alumina Molds. Langmuir, 2021, 37, 10573-10578.	1.6	8
1340	Characterization and hydrophobic surface study of silicon-based TiO2, ZnO and recycled carbon additives on cementitious materials surface. Journal of Building Engineering, 2021, 40, 102689.	1.6	1
1341	Fabrication of multifunctional PET fabrics with flame retardant, antibacterial and superhydrophobic properties. Progress in Organic Coatings, 2021, 157, 106296.	1.9	22
1342	Microstructured Surfaces for Reducing Chances of Fomite Transmission via Virus-Containing Respiratory Droplets. ACS Nano, 2021, 15, 14049-14060.	7. 3	8

#	Article	IF	CITATIONS
1343	Ultrafast Bubble Bursting by Superamphiphobic Coatings. Advanced Materials, 2021, 33, e2101855.	11.1	19
1344	Ultra-thin self-healing vitrimer coatings for durable hydrophobicity. Nature Communications, 2021, 12, 5210.	5.8	89
1345	Nano-Al doped-MoO3 high-energy composite films with excellent hydrophobicity and thermal stability. Ceramics International, 2021, 47, 24039-24046.	2.3	5
1346	Highly durable amphiphobic coatings and surfaces: A comparative step-by-step exploration of the design variables. Surface and Coatings Technology, 2021, 421, 127419.	2.2	0
1347	Durable Super-repellent Surfaces: From Solid–Liquid Interaction to Applications. Accounts of Materials Research, 2021, 2, 920-932.	5.9	21
1348	Underwater Drag Reduction and Buoyancy Enhancement on Biomimetic Antiabrasive Superhydrophobic Coatings. ACS Applied Materials & Superhydrophobic Coatings. ACS Applied Materials & Superhydrophobic Coatings. ACS Applied Materials & Superhydrophobic Coatings.	4.0	40
1349	Multifunctional and superhydrophobic cellulose composite paper for electromagnetic shielding, hydraulic triboelectric nanogenerator and Joule heating applications. Chemical Engineering Journal, 2021, 420, 129864.	6.6	79
1350	Effective Approach to Render Stable Dynamic Omniphobicity and Icephobicity to Ultrasmooth Metal Surfaces. Langmuir, 2021, 37, 11771-11780.	1.6	2
1351	Rebound Behaviors of Multiple Droplets Simultaneously Impacting a Superhydrophobic Surface. Langmuir, 2021, 37, 11233-11241.	1.6	11
1352	A Simple Approach for Flexible and Stretchable Anti-icing Lubricant-Infused Tape. ACS Applied Materials & Lamp; Interfaces, 2021, 13, 45105-45115.	4.0	9
1353	Rapid preparation of hierarchically porous ceramic microspheres based on UV-curing-assisted molding. Journal of the European Ceramic Society, 2021, 41, 232-238.	2.8	7
1354	Preparation of biomimetic hair-like composite coatings with water-collecting and superamphiphobic properties. Progress in Organic Coatings, 2021, 158, 106372.	1.9	5
1355	Citrus-peel-like durable slippery surfaces. Chemical Engineering Journal, 2021, 420, 129599.	6.6	21
1356	Dynamic Antiâ€Icing Surfaces (DAIS). Advanced Science, 2021, 8, e2101163.	5.6	49
1357	Simple fabrication of asphalt-based superhydrophobic surface with controllable wetting transition from Cassie-Baxter to Wenzel wetting state. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625, 126927.	2.3	32
1358	Superhydrophobic self-similar nonwoven-titanate nanostructured materials. Journal of Colloid and Interface Science, 2021, 598, 93-103.	5.0	11
1359	Fabrication of transparent superhydrophobic polydimethylsiloxane elastomer by controlling the degree of combustion using thermal convection. Korean Journal of Chemical Engineering, 2021, 38, 2530-2535.	1.2	4
1360	Fast Self-Healing Superhydrophobic Thermal Energy Storage Coatings Fabricated by Bio-Based Beeswax and Artificially Cultivated Diatom Frustules. ACS Applied Materials & Interfaces, 2021, 13, 48088-48100.	4.0	21

#	Article	IF	CITATIONS
1361	Small molecules derived Tailored-Superhydrophobicity on fibrous and porous Substratesâ€"with superior tolerance. Chemical Engineering Journal, 2022, 430, 132597.	6.6	8
1362	Super liquid repellent surfaces for anti-foaming and froth management. Nature Communications, 2021, 12, 5358.	5.8	20
1363	High-performance bilayer solar evaporators constructed by candle-derived carbon nanoparticle/wood hybrid. Materials Today Communications, 2021, 28, 102636.	0.9	11
1364	Laser textured dimple-patterns to govern the surface wettability of superhydrophobic aluminum plates. Journal of Materials Science and Technology, 2021, 89, 59-67.	5. 6	30
1365	Design of mechanical robust superhydrophobic Cu coatings with excellent corrosion resistance and self-cleaning performance inspired by lotus leaf. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627, 127154.	2.3	45
1366	Turning a negative into a positive: Trends, guidelines and challenges of developing multifunctional non-wettable coatings based on industrial soot wastes. Fuel, 2021, 301, 121068.	3.4	13
1367	Simple and low cost fabrication of large area nanocoatings with mechanical robustness, enhanced broadband transmittance and antifogging. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127522.	2.3	10
1368	Robust epoxy-modified superhydrophobic coating for aircraft anti-icing systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127377.	2.3	40
1369	Recent developments in usage of fluorine-free nano structured materials in oil-water separation: A review. Surfaces and Interfaces, 2021, 27, 101455.	1.5	7
1370	Liquid-like transparent and flexible coatings for anti-graffiti applications. Progress in Organic Coatings, 2021, 161, 106476.	1.9	8
1371	Superhydrophobic, mechanically durable coatings for controllable light and magnetism driven actuators. Journal of Colloid and Interface Science, 2021, 603, 282-290.	5.0	47
1372	Biomass derived Fe,N-doped carbon material as bifunctional electrocatalysts for rechargeable Zn-air batteries. Journal of Alloys and Compounds, 2021, 888, 161464.	2.8	28
1373	Near-infrared light accurately controllable superhydrophobic surface from water sticking to repelling. Chemical Engineering Journal, 2022, 427, 131718.	6.6	36
1374	How water wets and self-hydrophilizes nanopatterns of physisorbed hydrocarbons. Journal of Colloid and Interface Science, 2022, 606, 57-66.	5.0	1
1375	Functional transformation of biodiesel soot. , 2021, , 147-199.		0
1376	Tailoring the Morphology of Supraparticles by Primary Colloids with Different Shapes, Sizes and Dispersities. Crystals, 2021, 11, 79.	1.0	6
1377	Fabrication of a superhydrophobic surface by modulating the morphology of organogels. Soft Matter, 2021, 17, 3745-3752.	1.2	4
1378	Fluoropolymers in biomedical applications: state-of-the-art and future perspectives. Chemical Society Reviews, 2021, 50, 5435-5467.	18.7	151

#	Article	IF	CITATIONS
1379	Self-healing and self-cleaning clear coating. Journal of Colloid and Interface Science, 2020, 577, 311-318.	5.0	33
1381	Friction and Adhesion of Microparticle Suspensions on Repellent Surfaces. Langmuir, 2020, 36, 13689-13697.	1.6	6
1382	Solvent-Free Fabrication of Robust Superhydrophobic Powder Coatings. ACS Applied Materials & Samp; Interfaces, 2021, 13, 1323-1332.	4.0	33
1383	Dual-Functional, Superhydrophobic Coatings with Bacterial Anticontact and Antimicrobial Characteristics. ACS Applied Materials & Interfaces, 2020, 12, 21311-21321.	4.0	67
1384	Challenges and Opportunities of Superhydrophobic/Superamphiphobic Coatings in Real Applications. RSC Smart Materials, 2016, , 209-243.	0.1	9
1385	Oblique droplet impact on superhydrophobic surfaces: Jets and bubbles. Physics of Fluids, 2020, 32, .	1.6	31
1386	Controllably facile design of electrophoretic-induced film-forming of nano tungsten oxide (VI) and their anti-wetting functionalization. Nanotechnology, 2020, 31, 505603.	1.3	2
1387	Tunable adsorption activity of candle soot nanoparticles depending on the flame height. Engineering Research Express, 2020, 2, 035018.	0.8	2
1388	Thermocapillary motion on lubricant-impregnated surfaces. Physical Review Fluids, 2016, 1, .	1.0	101
1389	Aerodynamic repellency of impacting liquids. Physical Review Fluids, 2018, 3, .	1.0	8
1390	Wetting over pre-existing liquid films. Physical Review Fluids, 2018, 3, .	1.0	9
1391	Predicting the maximum spreading of a liquid drop impacting on a solid surface: Effect of surface tension and entrapped air layer. Physical Review Fluids, 2019, 4, .	1.0	34
1392	Challenges and Opportunities in Fabrication of Transparent Superhydrophobic Surfaces. Current Nanoscience, 2016, 12, 429-447.	0.7	8
1393	Experimental Investigation to Improve the Energy Efficiency of Solar PV Panels Using Hydrophobic SiO2 Nanomaterial. Coatings, 2020, 10, 503.	1.2	35
1394	Fundamental, Fabrication and Applications of Superhydrophobic Surfaces. Advances in Chemical and Materials Engineering Book Series, 2016, , 341-368.	0.2	2
1395	Liquid repellency enabled antipathogen coatings. Materials Today Bio, 2021, 12, 100145.	2.6	7
1396	Competitive Wetting: A New Approach to Prevent Liquid Penetration through Porous Materials with Superior Synergistic Effect. Small, 2021, 17, e2103695.	5.2	2
1397	Effervescenceâ€Inspired Selfâ€Healing Plastrons for Longâ€Term Immersion Stability. Advanced Functional Materials, 2022, 32, 2107831.	7.8	7

#	Article	IF	CITATIONS
1398	Head-on Collision of Two Nanodroplets on a Solid Surface: A Molecular Dynamics Simulation Study. Langmuir, 2021, 37, 12346-12355.	1.6	6
1399	Integration of water collection and purification on cactus- and beetle-inspired eco-friendly superwettable materials. Water Research, 2021, 206, 117759.	5.3	40
1400	Robust and transparent superamphiphobic coating prepared via layer-by-layer spraying. Surface and Coatings Technology, 2021, 426, 127793.	2.2	12
1401	A Mechanically and Chemically Stable Superhydrophobic Coating for Preventing Marine Atmospheric Corrosion. Surfaces and Interfaces, 2021, 27, 101537.	1.5	9
1402	Surface Modifications Not Requiring Perfluorinated Compounds. Journal of the Japan Society of Colour Material, 2013, 86, 403-408.	0.0	0
1403	Polymer Single Crystals in Nanoparticle-Containing Hybrid Systems. , 2013, , 1-21.		0
1404	Preparation of bionic lotus leaf surfaces using SiO2 nanoparticle-filled polymer. Functional Materials Letters, 0, , 1550037.	0.7	0
1406	Superhydrophobic and Highly Oleophobic Zinc Sheet Surfaces Developed by a Simple Technique. Journal of Materials Science and Engineering B, 2016, 6, .	0.2	0
1407	Biomimetic Liquid Repellent Materials Learned from Biological Self-reparing Functionalities. Seikei-Kakou, 2017, 29, 72-75.	0.0	0
1409	Study of structure influence on wear resistance of hierarchial superhydrophobic coatings. Eastern-European Journal of Enterprise Technologies, 2017, 3, 44-49.	0.3	4
1410	Enhancing Water and Oil Repellency of Teflon Surface By Imparting Micro-Rough Structures Using Simple One-Step. Science Journal of University of Zakho, 2017, 5, 266.	0.1	0
1413	Superhydrophobic Interfaces for High-Performance/Advanced Application. Materials Horizons, 2019, , 411-457.	0.3	1
1414	Superwetting patterned PDMS/PMMA materials by facile one-step electro-spraying for signal expression and liquid transportation. Chemical Engineering Journal, 2022, 431, 133206.	6.6	11
1415	Preparation strategy and evaluation method of durable superhydrophobic rubber composites. Advances in Colloid and Interface Science, 2022, 299, 102549.	7.0	14
1416	Femtosecond Laser Regulated Ultrafast Growth of Mushroom-Like Architecture for Oil Repellency and Manipulation. Nano Letters, 2021, 21, 9301-9309.	4.5	22
1417	Mimicking nature to control bio-material surface wetting and adhesion. International Materials Reviews, 2022, 67, 658-681.	9.4	50
1418	Design of Icephobic Surfaces by Lowering Ice Adhesion Strength: A Mini Review. Coatings, 2021, 11, 1343.	1.2	34
1419	Preparation of superhydrophobic and oleophobic antireflective coating with high transmittance. Surface and Coatings Technology, 2021, 428, 127863.	2.2	6

#	Article	IF	CITATIONS
1420	Fabrication of Millicapsules from Slurry of Ingredient Particles and Monomer Liquid on a Superamphiphobic Surface. Kagaku Kogaku Ronbunshu, 2020, 46, 8-12.	0.1	1
1421	Mechanical Stability of Fabricated Superhydrophobic Aluminium Alloy and Enhancement of Its Oleophobic Characteristics. Lecture Notes on Multidisciplinary Industrial Engineering, 2020, , 73-84.	0.4	0
1422	Advanced Physical Applications of Modified Cotton. Textile Science and Clothing Technology, 2020, , 433-472.	0.4	2
1423	Facile Fabricating Strategy for Bioinspired Flexible Film with Cavitation: Liquid Superâ€Repellent Material with Stimulateâ€Response on Liquid Adhesion. Macromolecular Materials and Engineering, 2021, 306, 2000605.	1.7	0
1424	Fabrication of durable superamphiphobic PAâ€66 fabrics with wearâ€resistance performance. Micro and Nano Letters, 2021, 16, 117-120.	0.6	3
1425	Solvent-free fabrication of slippery coatings from edible raw materials for reducing yogurt adhesion. Progress in Organic Coatings, 2022, 162, 106590.	1.9	5
1426	Surface hydrophobicity and oleophilicity of hierarchical metal structures fabricated using ink-based selective laser melting of micro/nanoparticles. Nanotechnology Reviews, 2020, 9, 626-636.	2.6	4
1427	High Performance Super-Hydrophobic Flower-Like CeO ₂ Micro/Nano-Structure Fabricated by Hydro-Thermal Method. Advances in Material Chemistry, 2020, 08, 15-22.	0.0	O
1428	Green Functional Coatings Showing Excellent Liquid Sliding Properties. Oleoscience, 2020, 20, 259-265.	0.0	0
1429	Synthesis and Characterization of Hydrophobic Polystyrene Microspheres Film. Polymer Science - Series B, 2020, 62, 621-628.	0.3	0
1430	The robust superhydrophobic SiO2/Diatomite/PDMS/KH-570/Me-MQ composite coating for self-cleaning application of building surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634, 127936.	2.3	24
1431	Nonfluorinated, transparent, and antireflective hydrophobic coating with self-cleaning function. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634, 127919.	2.3	19
1432	Aqueous Dropâ€onâ€Drop Impact on Superâ€Repellent Surface. Advanced Materials Interfaces, 2022, 9, .	1.9	7
1433	Carbon Nanomaterials Derived from Black Carbon Soot: A Review of Materials and Applications. ACS Applied Nano Materials, 2021, 4, 12825-12844.	2.4	26
1434	Breaking the symmetry to suppress the Plateau–Rayleigh instability and optimize hydropower utilization. Nature Communications, 2021, 12, 6899.	5.8	32
1435	Michael Addition Reaction Assisted Derivation of Functional and Durable Superhydrophobic Interfaces. Chemistry of Materials, 2021, 33, 8941-8959.	3.2	14
1436	Superamphiphobic and flame-resistant cotton fabrics for protective clothing. Cellulose, 2022, 29, 619-632.	2.4	5
1437	Wetting of Hydrophobic and Hydrophilic Coatings. Journal of Engineering Physics and Thermophysics, 2021, 94, 1549-1556.	0.2	2

#	Article	IF	Citations
1438	Flame assisted synthesis of nanostructures for device applications. Advances in Physics: X, 2022, 7, .	1.5	0
1439	Icephobic and Anticorrosion Coatings Deposited by Electrospinning on Aluminum Alloys for Aerospace Applications. Polymers, 2021, 13, 4164.	2.0	15
1440	FRACTAL SURFACE RECOVERY AND SELF-HEALING CONTRIBUTED TO SUSTAINABLE SUPERHYDROPHOBICITY: A REVIEW. Fractals, 2024, 32, .	1.8	0
1441	Fabrication of abrasion-resistant micro-nano hierarchical structure on glass surface by a hydrothermal corrosion method. Ceramics International, 2022, 48, 8012-8024.	2.3	5
1442	Superhydrophobic and Photothermal PVDF/CNTs Durable Composite Coatings for Passive Antiâ€lcing/Active Deâ€lcing. Advanced Materials Interfaces, 2022, 9, 2101704.	1.9	26
1443	Cotton soot derived carbon nanoparticles for NiO supported processing temperature tuned ambient perovskite solar cells. Scientific Reports, 2021, 11, 23388.	1.6	13
1444	An On-Site Applicable Solvent-Free Flat Anti-Adhesion Coating Via Ambient Self-Crosslinking Chemistry. SSRN Electronic Journal, 0, , .	0.4	0
1445	Fabrication of cerium oxide films with thickness and hydrophobicity gradients. Surface and Coatings Technology, 2022, 430, 127985.	2.2	3
1446	All-weather-available electrothermal and solar–thermal wood-derived porous carbon-based steam generators for highly efficient water purification. Materials Chemistry Frontiers, 2022, 6, 306-315.	3.2	15
1447	Construction of ultrasmooth PTFE membrane for preventing bacterial adhesion and cholestasis. Colloids and Surfaces B: Biointerfaces, 2022, 213, 112332.	2.5	7
1448	A review of self-cleaning technology to reduce dust and ice accumulation in photovoltaic power generation using superhydrophobic coating. Renewable Energy, 2022, 185, 1034-1061.	4.3	40
1449	Realization of integrative hierarchy by in-situ solidification of â€~semi-cured' microcilia array in candle flame for robust and flexible superhydrophobicity. Chemical Engineering Journal, 2022, 432, 134400.	6.6	6
1450	Synergistic reinforced superhydrophobic paper with green, durability, and antifouling function. Applied Surface Science, 2022, 579, 152144.	3.1	18
1451	Additive-Free Super-reactive metastale intermixed C-doped Al/Co3O4 coating with excellent Structural, exothermic and hydrophobic stability for a Transient-chip. Applied Surface Science, 2022, 581, 152324.	3.1	8
1452	Preparation of a Transparent Coating with Superamphiphobic and Antifouling Properties. SSRN Electronic Journal, 0, , .	0.4	0
1453	Microfluidics-Enabled Soft Manufacture of Materials with Tailorable Wettability. Chemical Reviews, 2022, 122, 7010-7060.	23.0	44
1454	Wettability Control between Oleophobic/Superhydrophilic and Superoleophilic/Superhydrophobic Characteristics on the Modified Surface Treated with Fluoroalkyl End-Capped Oligomers/Micro-Sized Polystyrene Particle Composites. Open Journal of Composite Materials, 2022, 12, 41-55.	0.4	0
1455	Charging of drops impacting onto superhydrophobic surfaces. Soft Matter, 2022, 18, 1628-1635.	1.2	12

#	Article	IF	CITATIONS
1456	Exploiting Molecular Dynamics in Composite Coatings to Design Robust Superâ€Repellent Surfaces. Advanced Science, 2022, 9, e2104331.	5.6	9
1457	Highly Transparent and Selfâ€Healable Solar Thermal Antiâ€/Deicing Surfaces: When Ultrathin MXene Multilayers Marry a Solid Slippery Selfâ€Cleaning Coating. Advanced Materials, 2022, 34, e2108232.	11.1	76
1458	An Abrasion Resistant TPU/SH-SiO2 Superhydrophobic Coating for Anti-Icing and Anti-Corrosion Applications. Journal of Renewable Materials, 2022, 10, 1239-1255.	1.1	0
1459	A Materials Science Perspective of Midstream Challenges in the Utilization of Heavy Crude Oil. ACS Omega, 2022, 7, 1547-1574.	1.6	14
1460	Interfacial dynamics of viscous droplets impacting a superhydrophobic candle soot surface: Overview and comparison. Physics of Fluids, 2022, 34, .	1.6	12
1461	Driving Droplets on Liquid Repellent Surfaces via Lightâ€Driven Marangoni Propulsion. Advanced Functional Materials, 2022, 32, .	7.8	35
1462	Fabrication of Stretchable Superamphiphobic Surfaces with Deformationâ€Induced Rearrangeable Structures. Advanced Materials, 2022, 34, e2107901.	11.1	27
1463	A one-step deposition method to prepare separators with carbon soot loading for lithium-sulfur battery. Ionics, 2022, 28, 1693-1700.	1.2	2
1464	Sustainable Superhydrophobic Surface with Tunable Nanoscale Hydrophilicity for Water Harvesting Applications. Angewandte Chemie, 2022, 134, .	1.6	4
1465	Sustainable Superhydrophobic Surface with Tunable Nanoscale Hydrophilicity for Water Harvesting Applications. Angewandte Chemie - International Edition, 2022, 61, .	7.2	35
1466	Rapid fabrication of SiO2-PHEMA photonic crystal hydrogel composite microspheres. Dyes and Pigments, 2022, 199, 110089.	2.0	5
1467	Exudation behavior and pinning effect of the droplet on slippery liquid-infused porous surfaces (SLIPS). Surface and Coatings Technology, 2022, 433, 128062.	2.2	8
1468	Self-assembly of colloidal superballs under spherical confinement of a drying droplet. Jcis Open, 2022, 5, 100037.	1.5	6
1469	Super-alcohol-repellent coatings. Journal of Colloid and Interface Science, 2022, 613, 146-154.	5.0	3
1470	Remarkably convenient construction of self-protected nano-aluminum/nickel oxide/perfluorosilane energetic composite to largely enhance structural, anti-wetting and exothermic stability. Journal of Alloys and Compounds, 2022, 903, 164017.	2.8	4
1471	Superhydrophobic nanohybrid sponges for separation of oil/ water mixtures. Chemosphere, 2022, 294, 133644.	4.2	67
1472	Optimization of the synthesis conditions of gold nanoparticle–polydimethylsiloxane composites for ultrasound generation. Materials Advances, 2022, 3, 2850-2857.	2.6	1
1473	Superhydrophobic Candle Soot Coating Directly Deposited on Aluminum Substrate with Enhanced Robustness. Coatings, 2022, 12, 202.	1.2	3

#	Article	IF	CITATIONS
1474	Functionally Integrated Device with Robust and Durable Superhydrophobic Surface for Efficient, Continuous, and Recyclable Oil–Water Separation. Advanced Materials Interfaces, 2022, 9, .	1.9	4
1475	Oneâ€Step Bottomâ€Up Growth of Highly Liquid Repellent Wormâ€Like Surfaces on Planar Substrates. Advanced Materials Interfaces, 2022, 9, .	1.9	6
1476	Efficient oil–water separation coating with robust superhydrophobicity and high transparency. Scientific Reports, 2022, 12, 2187.	1.6	14
1477	Polymeric supports for water treatment applications. , 2022, , 397-433.		1
1480	Facile Fabrication of Highly Hydrophobic Onion-like Candle Soot-Coated Mesh for Durable Oil/Water Separation. Nanomaterials, 2022, 12, 761.	1.9	9
1481	Preparation and Performance of Lignin-Based Multifunctional Superhydrophobic Coating. Molecules, 2022, 27, 1440.	1.7	5
1482	Facile preparation of robust superhydrophobic coating on concrete surface through "all-covalent― strategy. Pigment and Resin Technology, 2022, ahead-of-print, .	0.5	1
1483	Preparation of Stable Superhydrophobic Coatings on Complexâ€Shaped Substrates. Advanced Materials Interfaces, 2022, 9, .	1.9	11
1484	Fabrication of Superamphiphobic Surfaces via Spray Coating; a Review. Advanced Materials Technologies, 2022, 7, .	3.0	22
1485	Droplet Bouncing: Fundamentals, Regulations, and Applications. Small, 2022, 18, e2200277.	5.2	34
1486	Evaluation of the Molecular Conformation of Surface Alkyl Chains of Alkylsilane-Derived Hybrid Films Using Sum-Frequency Generation Spectroscopy. Solids, 2022, 3, 147-154.	1.1	1
1487	Successive Rebounds of Impinging Water Droplets on Superhydrophobic Surfaces. Langmuir, 2022, 38, 3860-3867.	1.6	17
1488	How much biology is in the product? Role and relevance of biological evolution and function for bio-inspired design. Theory in Biosciences, 2022, , $1.$	0.6	4
1489	High temperature ceramic thermal insulation material. Nano Research, 2022, 15, 6662-6669.	5.8	12
1490	Superamphiphobic blood-repellent surface modification of porous fluoropolymer membranes for blood oxygenation applications. Journal of Membrane Science, 2022, 648, 120363.	4.1	22
1491	Durable ER@SiO2@PDMS superhydrophobic composite designed by double crosslinking strategy for efficient oil-water separation. Polymer, 2022, 245, 124722.	1.8	22
1492	Upcycling of biomass waste into photothermal superhydrophobic coating for efficient anti-icing and deicing. Materials Today Physics, 2022, 24, 100683.	2.9	23
1493	Preparation and mechanism of hydrophobic modified diatomite coatings for oil-water separation. Separation and Purification Technology, 2022, 288, 120708.	3.9	16

#	Article	IF	CITATIONS
1494	Vapor deposition of ultrathin hydrophilic polymer coatings enabling candle soot composite for highly sensitive humidity sensors. Materials Today Chemistry, 2022, 24, 100786.	1.7	5
1495	Ultra-stretchable and superhydrophobic textile-based bioelectrodes for robust self-cleaning and personal health monitoring. Nano Energy, 2022, 97, 107160.	8.2	64
1496	Facile method to convert petal effect surface to lotus effect surface for superhydrophobic polydimethylsiloxane. Surfaces and Interfaces, 2022, 30, 101901.	1.5	9
1497	A water collection system with ultra-high harvest rate and ultra-low energy consumption by integrating triboelectric plasma. Nano Energy, 2022, 96, 107081.	8.2	15
1498	Self-propelling superhydrophobic miniboat with a superhydrophilic wedge-shaped pattern. Results in Engineering, 2022, 14, 100388.	2.2	3
1499	Generating porous polymer microspheres with cellular surface via a gas-diffusion confined scCO2 foaming technology to endow the super-hydrophobic coating with hierarchical roughness. Chemical Engineering Journal, 2022, 442, 136192.	6.6	8
1500	Studying the wetting of a surface with combined structure. Thermophysics and Aeromechanics, 2021, 28, 849-856.	0.1	2
1501	Material Strategies for Ice Accretion Prevention and Easy Removal. , 2022, 4, 246-262.		38
1503	Controllable Directional Liquid Transport in Open Channel. Advanced Materials Interfaces, 0, , 2102547.	1.9	6
1504	Molecular Dynamics Simulation on Wetting of Silver Nanosolder on a Diamond Surface. Journal of Physical Chemistry C, 2022, 126, 7221-7229.	1.5	1
1505	Fabrication of fractal structured soot templated titania-silver nano-surfaces for photocatalysis and SERS sensing. Applied Surface Science, 2022, 594, 153383.	3.1	3
1507	Fabrication of a durable anti-icing composite coating based on polyurethane elastomer and silica nanoparticles. Materials Research Express, 2022, 9, 055504.	0.8	4
1508	Ultra-Scratch-Resistant, Hydrophobic and Transparent Organosilicon-Epoxy-Resin Coating with a Double Cross-Link Structure. Applied Sciences (Switzerland), 2022, 12, 4854.	1.3	1
1509	Long-Chain PFASs-Free Omniphobic Membranes for Sustained Membrane Distillation. ACS Applied Materials & Samp; Interfaces, 2022, 14, 23808-23816.	4.0	14
1510	UV Curable Robust Durable Hydrophobic Coating Based on Epoxy Polyhedral Oligomeric Silsesquioxanes (EP-POSS) and Their Derivatives. ACS Omega, 2022, 7, 17108-17118.	1.6	8
1511	Overflow Control for Sustainable Development by Superwetting Surface with Biomimetic Structure. Chemical Reviews, 2023, 123, 2276-2310.	23.0	32
1512	Superhydrophobic and thermochromic VO2-Based composite coatings for energy-saving smart windows. Composites Communications, 2022, 32, 101167.	3.3	11
1513	Durable Liquid- and Solid-Repellent Elastomeric Coatings Infused with Partially Crosslinked Lubricants. ACS Applied Materials & Samp; Interfaces, 2022, 14, 22466-22475.	4.0	7

#	Article	IF	Citations
1514	Synergistic assembly of micro-islands by lignin and dopamine for superhydrophobic surface: Preparative chemistry and oil/water separation performance. Journal of Environmental Chemical Engineering, 2022, 10, 107777.	3.3	14
1515	Transparent polyurethane coating with synergistically enhanced antibacterial mechanism composed of low surface free energy and biocide. Chemical Engineering Journal, 2022, 445, 136716.	6.6	15
1516	Cotton-derived green sustainable membrane with tailored wettability interface: Synergy of lignin and ethyl cellulose. Industrial Crops and Products, 2022, 183, 114993.	2.5	13
1517	Hovering spreading rebound on porous superhydrophobic surface with active air plastron for rapid drop detachment. Journal of Materials Chemistry A, 2022, 10, 13315-13324.	5. 2	4
1518	AlPO ₄ film with rose surface structure: Oneâ€step coating process, superhydrophilic and rapid superâ€spreading. Nano Select, 0, , .	1.9	0
1519	Liquidâ€Pressureâ€Guided Superhydrophobic Surfaces with Adaptive Adhesion and Stability. Advanced Materials, 2022, 34, .	11.1	20
1520	Advances in the development of superhydrophobic and icephobic surfaces. International Journal of Mechanics and Materials in Design, 2022, 18, 509-547.	1.7	9
1521	On the nature of wetting transition on high-aspect-ratio pNIPAAm micropillar structures. Surfaces and Interfaces, 2022, 31, 102062.	1.5	1
1522	Fabrication of robust ceramic based superhydrophobic coating on aluminum substrate via plasma electrolytic oxidation and chemical vapor deposition methods. Journal of Materials Processing Technology, 2022, 306, 117641.	3.1	29
1523	Molecular Dynamics Simulation of Nanodroplets Impacting Stripe-Textured Surfaces. Langmuir, 0, , .	1.6	3
1524	Bioinspired Multiâ€Transformability of Superhydrophobic Nanoâ€Magnetite Swarm for Adaptive Object Transportation. Advanced Functional Materials, 2022, 32, .	7.8	3
1525	Tuning the Wetting Properties of SiO ₂ -Based Nanofluids to Create Durable Surfaces with Special Wettability for Self-Cleaning, Anti-Fouling, and Oil–Water Separation. Industrial & Lamp; Engineering Chemistry Research, 2022, 61, 8005-8019.	1.8	6
1526	Fabrication of All-Polymeric Hierarchical Colloidal Particles with Tunable Wettability by <i>In Situ</i> Capping Raspberry-Like Precursors. Industrial & Engineering Chemistry Research, 2022, 61, 7939-7951.	1.8	0
1527	Mechanically robust superamphiphobic ceramic coatings with releasable nanoparticle-capsules. Chemical Engineering Journal, 2022, 446, 137336.	6.6	14
1528	Multi-applicable, durable superhydrophobic anti-icing coating through template-method and chemical vapor deposition. Surfaces and Interfaces, 2022, 32, 102100.	1.5	18
1529	Preparation of porous biomassâ€based sponge with zeinâ€alginate for oil absorption. Water and Environment Journal, 2022, 36, 704-712.	1.0	5
1530	Experimental and numerical investigations on the spreading dynamics of impinging liquid droplets on diverse wettable surfaces. International Journal of Multiphase Flow, 2022, 153, 104135.	1.6	18
1531	Incorporation of Superamphiphobic and Slippery Patterned Materials for Water Collection Inspired from Beetle, Cactus, and Nepenthes. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
1532	Efficient Oil-Water Separation by a Robust Superhydrophobic Coating Prepared Directly from Commercial Lacquer Using Silanized Multi-Walled Carbon Nanotubes as Filler. SSRN Electronic Journal, 0, , .	0.4	0
1533	Role of chemistry in bio-inspired liquid wettability. Chemical Society Reviews, 2022, 51, 5452-5497.	18.7	53
1534	Waterborne superamphiphobic coatings with network structure for enhancing mechanical durability. RSC Advances, 2022, 12, 16510-16516.	1.7	1
1535	Superhydrophobic photothermal coatings based on candle soot for prevention of biofilm formation. Journal of Materials Science and Technology, 2023, 132, 18-26.	5.6	46
1536	Rational Design of Durable Anti-fouling Coatings with High Transparency, Hardness, and Flexibility. ACS Applied Materials & Earny; Interfaces, 2022, 14, 29156-29166.	4.0	19
1537	Fucoidan-based hydrogels particles as versatile carriers for diabetes treatment strategies. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 1939-1954.	1.9	5
1538	A Skinâ€Inspired Design Integrating Mechano–Chemical–Thermal Robustness into Superhydrophobic Coatings. Advanced Materials, 2022, 34, .	11.1	40
1539	A Review of Physics of Droplet Impact on Various Solid Surfaces Ranging from Hydrophilic to Superhydrophobic and from Rigid to Flexible and its Current Advancements in Interfacial Science. SSRN Electronic Journal, 0, , .	0.4	0
1540	Large-area, daily, on-site-applicable antiadhesion coatings formed via ambient self-crosslinking. Chemical Engineering Journal, 2022, 450, 138156.	6.6	2
1541	On-Demand Maneuvering of Diverse Prodrug Liquids on a Light-Responsive Candle-Soot-Hybridized Lubricant-Infused Slippery Surface for Highly Effective Toxicity Screening. ACS Applied Materials & Libertaces, 2022, 14, 31667-31676.	4.0	6
1542	Recent Advances in Multifunctional Mechanical $\hat{a}\in \text{``Chemical Superhydrophobic Materials.}$ Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	8
1543	A Reactive Superhydrophobic Platform for Living Photolithography. Advanced Materials, 2022, 34, .	11.1	12
1544	Refreshable self-polishing superhydrophobic coating on Mg alloy to prohibit corrosion and biofouling in marine environment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651, 129693.	2.3	8
1545	Robust Superhydrophobic Surfaces via the Sand-In Method. ACS Applied Materials & Samp; Interfaces, 2022, 14, 35053-35063.	4.0	10
1546	Au Nanoparticles on Superhydrophobic Scaffolds for Large-Area Surface-Enhanced Raman Scattering Substrates. ACS Applied Nano Materials, 2022, 5, 11080-11090.	2.4	2
1547	Transparent and robust omniphobic surface using colloidal polymer layers. Journal of the Iranian Chemical Society, 0, , .	1.2	0
1548	Electrosynthesis of hydrogen peroxide via two-electron oxygen reduction reaction: A critical review focus on hydrophilicity/hydrophobicity of carbonaceous electrode. Chemical Engineering Journal, 2022, 450, 138246.	6.6	31
1549	Liquid-Repellent Surfaces. Langmuir, 2022, 38, 9073-9084.	1.6	16

#	Article	IF	CITATIONS
1550	Construction of highly hydrophobic and fast endothermic surfaces using candle soot and nano-TiO2. International Journal of Low-Carbon Technologies, 2022, 17, 1046-1051.	1.2	1
1551	Transparent and durable PDMS(O)/HDTMS anti-icing surfaces derived from candle soot. Surface and Coatings Technology, 2022, 445, 128717.	2.2	7
1552	Scalable Robust Superamphiphobic Coatings Enabled by Selfâ€Similar Structure, Protective Microâ€Skeleton, and Adhesive for Practical Antiâ€king of Highâ€Voltage Transmission Tower. Advanced Functional Materials, 2022, 32, .	7.8	48
1553	Candle Soot-Based Electrosprayed Superhydrophobic Coatings for Self-Cleaning, Anti-Corrosion and Oil/Water Separation. Materials, 2022, 15, 5300.	1.3	3
1554	Preparation and characterization of cross-linked waterborne acrylic /PTFE composite coating with good hydrophobicity and anticorrosion properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 653, 129872.	2.3	2
1555	Highly durable superhydrophobic surfaces based on a protective frame and crosslinked PDMS-candle soot coatings. Materials Research Express, 0, , .	0.8	1
1556	Superhydrophobic polyaniline/TiO2 composite coating with enhanced anticorrosion function. Reactive and Functional Polymers, 2022, 179, 105381.	2.0	22
1557	Nitrogen-doped nanocarbon derived from candle soot for persulfate activation on sulfamethoxazole removal: Performance and mechanism. Journal of Colloid and Interface Science, 2023, 629, 685-696.	5.0	15
1558	Transparent Composite Films Showing Durable Antifogging and Repeatable Self-Healing Properties Based on an Integral Blend Method. Langmuir, 2022, 38, 9874-9883.	1.6	5
1559	Simulation and Experiment of Localized Electrochemical Deposition with Reâ€Entrant Structures by Applying the Tip Effect. Advanced Engineering Materials, 2023, 25, .	1.6	3
1560	Advanced cellulose nanocrystals (CNC) and cellulose nanofibrils (CNF) aerogels: Bottom-up assembly perspective for production of adsorbents. International Journal of Biological Macromolecules, 2022, 222, 1-29.	3.6	23
1561	Preparation of PFDTS-kaolin/PU superamphiphobic coatings with antibacterial, antifouling and improved durability property. Progress in Organic Coatings, 2022, 173, 107145.	1.9	2
1562	Facile preparation of pliable superamphiphobic papers with high and durable liquid repellency for anti-corrosion and open surface microfluidics. Applied Surface Science, 2022, 606, 154845.	3.1	7
1563	Flexible Superhydrophobic Film with Micro-Nano-Ag Particles Fabricated by Spray Replacement. SSRN Electronic Journal, 0, , .	0.4	0
1564	Research progress on eco-friendly superhydrophobic materials in environment, energy and biology. Chemical Communications, 2022, 58, 11201-11219.	2.2	16
1565	On-demand, remote and lossless manipulation of biofluid droplets. Materials Horizons, 2022, 9, 2863-2871.	6.4	3
1566	Robust and durable liquid-repellent surfaces. Chemical Society Reviews, 2022, 51, 8476-8583.	18.7	105
1567	Robust Underwater Oil-Repellent Biomimetic Ceramic Surfaces: Combining the Stability and Reproducibility of Functional Structures. ACS Applied Materials & Samp; Interfaces, 2022, 14, 46077-46085.	4.0	1

#	Article	IF	CITATIONS
1568	Whether and When Superhydrophobic/Superoleophobic Surfaces Are Fingerprint Repellent. Research, 2022, 2022, .	2.8	2
1569	A review on control of droplet motion based on wettability modulation: principles, design strategies, recent progress, and applications. Science and Technology of Advanced Materials, 2022, 23, 473-497.	2.8	10
1570	Convenient design of anti-wetting nano-Al/WO3 metastable intermolecular composites (MICs) with an enhanced exothermic life-span. Defence Technology, 2023, 20, 84-92.	2.1	1
1571	lodine-Oxidized Diene-Based Rubbers as Anti-icing and Deicing Polymer Coatings. Langmuir, 2022, 38, 12382-12389.	1.6	4
1572	Dynamic characteristics of ellipsoidal Janus drop impact on a solid surface. Physics of Fluids, 2022, 34, 102104.	1.6	3
1573	Janus Charged Droplet Manipulation Mediated by Invisible Charge Walls. Advanced Science, 2022, 9, .	5.6	6
1574	Armored Nanocones Engraved by Selective Laser Doping Enhanced Plasma Etching for Robust Supertransmissivity. ACS Applied Materials & Supertransmissivity. ACS Applied Materials & Supertransmissivity. ACS Applied Materials & Supertransmissivity.	4.0	3
1575	A substrate-independent transparent UV-curable coating with excellent anti-smudge performance. Progress in Organic Coatings, 2022, 173, 107185.	1.9	2
1576	Recent Progress in Research on "Liquid-Like―Surfaces Showing Low Contact Angle Hysteresis and Excellent Liquid Sliding Behavior. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2021, 34, 639-650.	0.1	3
1577	Surface Modification, Topographic Design and Applications of Superhydrophobic Systems. Chemistry - A European Journal, 2022, 28, .	1.7	4
1578	Preparation of Janus Droplets and Hydrogels with Controllable Morphologies by an Aqueous Two-Phase System on the Superamphiphobic Surface. ACS Applied Materials & Diterfaces, 2022, 14, 50434-50443.	4.0	3
1579	Functional Microtextured Superhydrophobic Surface with Excellent Anti-Wear Resistance and Friction Reduction Properties. Langmuir, 2022, 38, 13166-13176.	1.6	10
1580	Engineering multifunctional bioadhesive powders through dynamic metal-ligand coordination. Science China Chemistry, 2022, 65, 2260-2273.	4.2	3
1581	Chemical vapor deposition of transparent superhydrophobic anti-lcing coatings with tailored polymer nanoarray architecture. Chemical Engineering Journal, 2023, 454, 139981.	6.6	53
1582	Microporous Structure Formation of Poly(methyl methacrylate) via Polymerization-Induced Phase Separation in the Presence of Poly(ethylene glycol). ACS Omega, 2022, 7, 38933-38941.	1.6	2
1583	Construction of mechanically robust superamphiphobic surfaces on fiber using large particles. Frontiers of Materials Science, 2022, 16, .	1.1	1
1584	Facile Preparation of Robust Superamphiphobic Coatings on Complex Substrates via Nonsolvent-Induced Phase Separation. ACS Applied Materials & Samp; Interfaces, 2022, 14, 49047-49058.	4.0	18
1585	Engineering Gas–Solid–Liquid Triple-Phase Interfaces for Electrochemical Energy Conversion Reactions. Electrochemical Energy Reviews, 2022, 5, .	13.1	20

#	Article	IF	CITATIONS
1586	Robust superhydrophobic composite fabricated by a dual-sized particle design. Composites Science and Technology, 2023, 231, 109785.	3.8	14
1587	Enhancing the lifespan and durability of superamphiphobic surfaces for potential industrial applications: A review. Advances in Colloid and Interface Science, 2022, 310, 102797.	7.0	18
1588	A facile method for fabricating super-slippery surface with long term and high-efficiency sustained release performance. Progress in Organic Coatings, 2023, 174, 107275.	1.9	3
1589	Engineering Biomimetic Nanostructured "Melanosome―Textiles for Advanced Solar-to-Thermal Devices. Nano Letters, 2022, 22, 9343-9350.	4.5	10
1590	Calcium stearate nanoparticles as building blocks for mechanically durable superhydrophobic coatings. Materials Chemistry and Physics, 2023, 294, 127040.	2.0	1
1591	Incorporation of superamphiphobic and slippery patterned materials for water collection inspired by beetle, cactus, and <i>Nepenthes</i> . New Journal of Chemistry, 2023, 47, 1962-1972.	1.4	1
1592	Synthesis of a high-fastness cationic silica/fluorine-free acrylate water repellent and its application in fabrics. New Journal of Chemistry, 0, , .	1.4	2
1593	Self-healing system of superhydrophobic surfaces inspired from and beyond nature. Nanoscale, 2023, 15, 1493-1512.	2.8	14
1594	Bioinspired superhydrophilic/underwater superoleophobic surfaces with robust wax-prevention, self-cleaning and oil/water separation function. New Journal of Chemistry, 0, , .	1.4	0
1595	Fully transparent and superhydrophobic electrodes enabled by soft interfaces. Surfaces and Interfaces, 2023, 36, 102576.	1.5	2
1596	Slippery liquid infused porous surfaces with anti-icing performance fabricated by direct laser interference lithography. Progress in Organic Coatings, 2023, 175, 107308.	1.9	10
1597	Robust superhydrophobic Ni-Co electrodeposited carbon felt for hot water repellency and controllable oil/water separation. Journal of Environmental Chemical Engineering, 2023, 11, 109102.	3.3	5
1598	Physics of droplet impact on flexible materials: A review. Advances in Mechanical Engineering, 2022, 14, 168781322211372.	0.8	5
1599	Durable and regenerative superhydrophobic surface using porous nanochannels. Chemical Engineering Journal, 2023, 455, 140527.	6.6	5
1600	Polystyrene-Based Slippery Surfaces Enable the Generation and Easy Retrieval of Tumor Spheroids. ACS Applied Bio Materials, 2022, 5, 5582-5594.	2.3	4
1601	Squeezing Drops: Force Measurements of the Cassie-to-Wenzel Transition. Langmuir, 2022, 38, 14666-14672.	1.6	3
1602	Biomimetic Superhydrophobic Materials Construct from Binary Structure: A Review on Design, Properties, and Applications. Advanced Materials Interfaces, 2023, 10, .	1.9	5
1603	Nature-inspired reentrant surfaces. Progress in Materials Science, 2023, 133, 101064.	16.0	17

#	Article	IF	CITATIONS
1604	Study on the Corrosion Resistance of Hydrophobic Cement Mortar. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 0, , .	1.0	1
1605	Ti ₃ C ₂ T _x MXeneâ€Based Superhydrophobic Broadband Terahertz Absorber with Large Poreâ€Size Foam Architecture. Advanced Materials Interfaces, 2023, 10, .	1.9	4
1606	Reversed micelles with well-amphiphobic properties from main-chain type semifluorinated alternating copolymer. Applied Surface Science, 2023, 614, 156199.	3.1	6
1607	Slippery Shape Memory Tube for Smart Droplet Transportation. ACS Applied Materials & Samp; Interfaces, 2022, 14, 57399-57407.	4.0	2
1608	Superâ€Slippery Poly(Dimethylsiloxane) Brush Surfaces: From Fabrication to Practical Application. ChemPlusChem, 2023, 88, .	1.3	7
1609	Physics of droplet impact on various substrates and its current advancements in interfacial science: A review. Journal of Applied Physics, 2023, 133, .	1.1	10
1610	3D Microprinting of Superâ€Repellent Microstructures: Recent Developments, Challenges, and Opportunities. Advanced Functional Materials, 2023, 33, .	7.8	7
1611	A review of droplet bouncing behaviors on superhydrophobic surfaces: Theory, methods, and applications. Physics of Fluids, 2023, 35, .	1.6	21
1612	Preparation of Anodic Porous Alumina with Gradient Hole Size for Directional Droplet Transport. Langmuir, 2023, 39, 862-869.	1.6	3
1613	Tuning static drop friction. , 2023, 2, .		5
1614	Omniphobic liquid-like surfaces. Nature Reviews Chemistry, 2023, 7, 123-137.	13.8	55
1615	Overview on Oil/Water Separation Techniques and Working Principles. ACS Symposium Series, 0, , 247-304.	0.5	2
1616	Flexible superhydrophobic film with micro-nano-Ag particles fabricated by spray replacement. Journal of Nanoparticle Research, 2023, 25, .	0.8	1
1617	Fabrication of Transferable and Micro/Nanostructured Superhydrophobic Surfaces Using Demolding and iCVD Processes. ACS Applied Materials & Demolding 15, 2368-2375.	4.0	8
1618	Passive Anti-Icing Performances of the Same Superhydrophobic Surfaces under Static Freezing, Dynamic Supercooled-Droplet Impinging, and Icing Wind Tunnel Tests. ACS Applied Materials & Samp; Interfaces, 2023, 15, 6013-6024.	4.0	24
1619	Largeâ€Scale, Abrasionâ€Resistant, and Solventâ€Free Superhydrophobic Objects Fabricated by a Selective Laser Sintering 3D Printing Strategy. Advanced Science, 2023, 10, .	5.6	30
1620	A wear and heat-resistant hydrophobic fluoride-free coating based on modified nanoparticles and waterborne-modified polyacrylic resin. RSC Advances, 2023, 13, 4542-4552.	1.7	0
1621	Recent development and emerging applications of robust biomimetic superhydrophobic wood. Journal of Materials Chemistry A, 2023, 11, 6772-6795.	5.2	18

#	Article	IF	CITATIONS
1622	Silanization enabled superhydrophobic PTFE membrane with antiwetting and antifouling properties for robust membrane distillation. Journal of Membrane Science, 2023, 674, 121546.	4.1	15
1623	Scalable fabrication of superhydrophobic armor microstructure arrays with enhanced tribocorrosion performance via maskless electrochemical machining. Surface and Coatings Technology, 2023, 461, 129427.	2.2	8
1624	Droplets impact on rotating cylinders. Chemical Engineering Science, 2023, 273, 118669.	1.9	3
1625	Robust UV-curable anti-smudge electrodeposition coating for self-cleaning, anti-graffiti and corrosion protection. Progress in Organic Coatings, 2023, 179, 107526.	1.9	2
1626	A facile approach to fabricate omniphobic and robust polyurethane coatings for anti-smudge, anti-ink. Progress in Organic Coatings, 2023, 179, 107488.	1.9	2
1627	Durable self-cleaning superhydrophobic coatings based on 5ÂMg(OH)2·MgSO4·2H2O whisker-SiO2 nanoparticles composites. Applied Surface Science, 2023, 622, 156940.	3.1	2
1628	Thin coating of silica/polystyrene core-shell nano/microparticles with hierarchical morphology onto polymeric films for fabrication of superhydrophobic surfaces. Materials Today Chemistry, 2023, 30, 101497.	1.7	1
1629	Regulation of droplet impacting on superhydrophobic surfaces: Coupled effects of macrostructures, wettability patterns, and surface motion. Applied Physics Letters, 2023, 122, .	1.5	19
1630	Self-cleaning and anti-fogging hierarchical structure arrays inspired by termite wing. Applied Surface Science, 2023, 616, 156484.	3.1	5
1631	Robust and UV-resistant multifunctional surface for self-cleaning, navigated oil absorption and oil/water separation. Surfaces and Interfaces, 2023, 37, 102670.	1.5	0
1632	Preparation and application of biodegradable and superhydrophobic polylactic acid/carnauba wax coating. Progress in Organic Coatings, 2023, 177, 107434.	1.9	7
1633	Self-Healing, Robust, Liquid-Repellent Coatings Exploiting the Donor–Acceptor Self-Assembly. ACS Applied Materials & Coatings Exploiting the Donor†Acceptor Self-Assembly. ACS Applied Materials & Coatings Exploiting the Donor†Acceptor Self-Assembly. ACS	4.0	4
1634	Mechanism and contact time of off-center impacts at relatively high Weber numbers. Physics of Fluids, 2023, 35, 027119.	1.6	2
1635	All-perfluoropolymer, nonlinear stability-assisted monolithic surface combines topology-specific superwettability with ultradurability. Innovation(China), 2023, 4, 100389.	5.2	2
1636	Hierarchically Nanostructured Janus Membranes Toward Sustainable and Efficient Solarâ€toâ€Thermal Management. Advanced Functional Materials, 2023, 33, .	7.8	12
1637	Spontaneous, scalable, and self-similar superhydrophobic coatings for all-weather deicing. Nano Research, 2023, 16, 7171-7179.	5.8	10
1638	An underwater stable superhydrophobic surface for robust ultra-long-lasting biofouling resistance. Chemical Engineering Journal, 2023, 462, 142091.	6.6	10
1639	Stretchable Superhydrophobic Supercapacitor with Excellent Self-Healing Ability. Energy & Stretchable Superhydrophobic Supercapacitor with Excellent Self-Healing Ability. Energy & Stretchable Superhydrophobic Supercapacitor with Excellent Self-Healing Ability. Energy & Stretchable Superhydrophobic Supercapacitor with Excellent Self-Healing Ability. Energy & Stretchable Superhydrophobic Supercapacitor with Excellent Self-Healing Ability. Energy & Stretchable Superhydrophobic Supercapacitor with Excellent Self-Healing Ability. Energy & Stretchable Superhydrophobic Supercapacitor with Excellent Self-Healing Ability. Energy & Stretchable Superhydrophobic Supercapacitor with Excellent Self-Healing Ability. Energy & Stretchable Superhydrophobic Super	2.5	4

#	Article	IF	CITATIONS
1640	Achieving Extreme Pressure Resistance to Liquids on a Superâ€Omniphobic Surface with Armored Reentrants. Small Methods, 0, , .	4.6	4
1641	Performance of a superamphiphobic self-cleaning passive subambient daytime radiative cooling coating on grain and oil storage structures. Heliyon, 2023, 9, e14599.	1.4	0
1642	Influence of the Atmosphere on the Wettability of Polymer Brushes. Langmuir, 2023, 39, 4872-4880.	1.6	0
1643	Effects of Carbon Templates in Tetraethyl Orthosilicate-Derived Superhydrophobic Coatings. Langmuir, 2023, 39, 5495-5504.	1.6	1
1644	Reducing the contact time of off-center impacts. Physics of Fluids, 2023, 35, .	1.6	2
1645	Fishing Netâ€Inspired Mutiscale Ionic Organohydrogels with Outstanding Mechanical Robustness for Flexible Electronic Devices. Advanced Functional Materials, 2023, 33, .	7.8	13
1646	From capture to transport: A review of engineered surfaces for fog collection. , 2023, 2, .		21
1647	Droplet interface in additive manufacturing: From process to application. , 2023, 2, .		4
1648	Fluorine-Free Super-Liquid-Repellent Surfaces: Pushing the Limits of PDMS. Nano Letters, 2023, 23, 3116-3121.	4.5	7
1649	Design of Fluoroâ€Free Surfaces Superâ€Repellent to Lowâ€Surfaceâ€Tension Liquids. Advanced Materials, 2023, 35, .	11.1	2
1650	Synergetic Role of Nano-/Microscale Structures of the <i>Trifolium</i> Leaf Surface for Self-Cleaning Properties. Langmuir, 2023, 39, 6178-6187.	1.6	1
1651	Reactive Superhydrophobic Surfaces for Interlayer Electrical Connectivity in Threeâ€dimensional Electronics. Angewandte Chemie - International Edition, 0, , .	7.2	0
1652	Porous bulk superhydrophobic nanocomposites for extreme environments. Matter, 2023, 6, 1992-2004.	5.0	8
1653	Reactive Superhydrophobic Surfaces for Interlayer Electrical Connectivity in Threeâ€dimensional Electronics. Angewandte Chemie, 0, , .	1.6	0
1654	Inhibition of Defect-Induced Ice Nucleation, Propagation, and Adhesion by Bioinspired Self-Healing Anti-Icing Coatings. Research, 2023, 6, .	2.8	5
1709	Self-healing Superhydrophobic Coatings. , 2023, , 403-427.		0
1712	Superhydrophobic Coatings: Types and Fabrication Approaches. , 2023, , 26-52.		0
1745	Transparent anti-fingerprint glass surfaces: comprehensive insights into theory, design, and prospects. Nanoscale, 2024, 16, 2695-2712.	2.8	О

#	Article	IF	CITATIONS
1753	The fabrication and application of triphase reaction interface based on superwettability for improved reaction efficiency. Journal of Materials Chemistry A, 0 , , .	5 . 2	0
1761	Superhydrophobic Surface-Assisted Preparation of Microspheres and Supraparticles and Their Applications. Nano-Micro Letters, 2024, 16, .	14.4	0
1778	Superhydrophobic Textiles for Protective Clothing. Indian Institute of Metals Series, 2024, , 225-252.	0.2	0