Valorization of Biomass: Deriving More Value from Was

Science 337, 695-699

DOI: 10.1126/science.1218930

Citation Report

#	Article	IF	CITATIONS
1	Ambient-Temperature Carbon–Oxygen Bond Cleavage of an α-Aryloxy Ketone with Cp ₂ Ti(BTMSA) and Selective Protonolysis of the Resulting Ti–OR Bonds. Organometallics, 2012, 31, 7625-7628.	1.1	15
2	Towards an understanding of the role of clay minerals in crude oil formation, migration and accumulation. Earth-Science Reviews, 2012, 115, 373-386.	4.0	119
3	Membrane processes in biorefinery applications. Journal of Membrane Science, 2013, 444, 285-317.	4.1	198
4	H3PO4/metal halide induces a one-pot solvent-free esterification–halogenation of glycerol and diols. RSC Advances, 2013, 3, 8805.	1.7	4
5	Synthesis of \hat{I}^3 -valerolactone using a continuous-flow reactor. RSC Advances, 2013, 3, 16283.	1.7	58
6	Toward Functional Polyester Building Blocks from Renewable Glycolaldehyde with Sn Cascade Catalysis. ACS Catalysis, 2013, 3, 1786-1800.	5.5	97
7	Conversion of glucose and cellulose into value-added products in water and ionic liquids. Green Chemistry, 2013, 15, 2619.	4.6	256
8	Conversion of Levulinate into Succinate through Catalytic Oxidative CarbonCarbon Bond Cleavage with Dioxygen. ChemSusChem, 2013, 6, 2255-2258.	3.6	24
9	Green Carbon Science: Scientific Basis for Integrating Carbon Resource Processing, Utilization, and Recycling. Angewandte Chemie - International Edition, 2013, 52, 9620-9633.	7.2	750
10	Conversion of fructose into 5-hydroxymethylfurfural and alkyl levulinates catalyzed by sulfonic acid-functionalized carbon materials. Green Chemistry, 2013, 15, 2895.	4.6	188
12	Material Resources, Energy, and Nutrient Recovery from Waste: Are Waste Refineries the Solution for the Future? Environmental Science & Environmental	4.6	23
13	Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Scientific Reports, 2013, 3, 1919.	1.6	409
14	Catalytic Investigation of in Situ Generated Ni Metal Nanoparticles for Tar Conversion during Biomass Pyrolysis. Journal of Physical Chemistry C, 2013, 117, 23812-23831.	1.5	94
15	Efficient dehydration of carbohydrates to 5-hydroxymethylfurfural in ionic liquids catalyzed by tin(IV) phosphonate and zirconium phosphonate. Science China Chemistry, 2013, 56, 1578-1585.	4.2	10
16	Shale Gas Revolution: An Opportunity for the Production of Biobased Chemicals?. Angewandte Chemie - International Edition, 2013, 52, 11980-11987.	7.2	278
17	Die Schiefergasrevolution: eine Chance zur Herstellung von Chemikalien auf Biobasis?. Angewandte Chemie, 2013, 125, 12198-12206.	1.6	40
18	Green chemistry: development trajectory. Russian Chemical Reviews, 2013, 82, 616-623.	2.5	24
19	Efficient conversion of glucose and cellulose to 5-hydroxymethylfurfural in DBU-based ionic liquids. RSC Advances, 2013, 3, 20085.	1.7	22

#	Article	IF	Citations
20	Food waste biomass: a resource for high-value chemicals. Green Chemistry, 2013, 15, 307.	4.6	386
21	Simultaneous formation of sorbitol and gluconic acid from cellobiose using carbon-supported ruthenium catalysts. Journal of Energy Chemistry, 2013, 22, 290-295.	7.1	14
22	5-Hydroxymethylfurfural Synthesis from Hexoses Is Autocatalytic. ACS Catalysis, 2013, 3, 760-763.	5.5	90
23	Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy and Environmental Science, 2013, 6, 426.	15.6	874
24	High-Yielding One-Pot Synthesis of Glucose from Cellulose Using Simple Activated Carbons and Trace Hydrochloric Acid. ACS Catalysis, 2013, 3, 581-587.	5. 5	198
25	Immobilised enzymes in biorenewables production. Chemical Society Reviews, 2013, 42, 6491.	18.7	232
26	Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis. Energy and Environmental Science, 2013, 6, 1415.	15.6	651
27	Chemical Conversion of Sugars to Lactic Acid by Alkaline Hydrothermal Processes. ChemSusChem, 2013, 6, 989-992.	3.6	107
28	Nanocomposite Catalyst with Palladium Nanoparticles Encapsulated in a Polymeric Acid: A Model for Tandem Environmental Catalysis. ACS Sustainable Chemistry and Engineering, 2013, 1, 381-388.	3.2	16
29	From Hazardous Waste to Valuable Raw Material: Hydrolysis of CCAâ€treated Wood for the Production of Chemicals. ChemSusChem, 2013, 6, 813-815.	3.6	1
30	Next generation biofuel engineering in prokaryotes. Current Opinion in Chemical Biology, 2013, 17, 462-471.	2.8	139
31	Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass. Green Chemistry, 2013, 15, 1740.	4.6	419
32	Regioselectively Functionalized Pyridines from Sustainable Resources. Angewandte Chemie - International Edition, 2013, 52, 6326-6329.	7.2	175
33	Diesel and Alkane Fuels From Biomass by Organocatalysis and Metal–Acid Tandem Catalysis. ChemSusChem, 2013, 6, 2236-2239.	3.6	89
34	Organocatalytic conversion of cellulose into a platform chemical. Chemical Science, 2013, 4, 196-199.	3.7	73
36	Enzymatic transformation of nonfood biomass to starch. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7182-7187.	3.3	144
37	Next generation biorefineries will solve the food, biofuels, and environmental trilemma in the energy–food–water nexus. Energy Science and Engineering, 2013, 1, 27-41.	1.9	90
38	Lignin: Characterization of a Multifaceted Crop Component. Scientific World Journal, The, 2013, 2013, 1-25.	0.8	122

#	Article	IF	CITATIONS
39	Photocatalytic Degradation of Lignin Model Compounds and Kraft Pine Lignin by CdS/TiO2 under Visible Light Irradiation. BioResources, 2014, 10 , .	0.5	12
40	Hydrolysis in Near- and SupercriticalÂWater for Biomass Conversion andÂMaterial Recycling. , 2014, , 139-156.		8
42	The synthesis of pyrroles via acceptorless dehydrogenative condensation of secondary alcohols and 1,2-amino alcohols mediated by a robust and reusable catalyst based on nanometer-sized iridium particles. Catalysis Science and Technology, 2014, 4, 4188-4192.	2.1	88
43	Catalytic Transformation of Fructose and Sucrose to HMF with Proline-Derived Ionic Liquids under Mild Conditions. International Journal of Chemical Engineering, 2014, 2014, 1-7.	1.4	18
44	Current Challenges in Commercially Producing Biofuels from Lignocellulosic Biomass. ISRN Biotechnology, 2014, 2014, 1-31.	1.9	355
45	Polyâ€benzylic Ammonium Chloride Resins as Solid Catalysts for Fructose Dehydration. ChemSusChem, 2014, 7, 2120-2124.	3.6	45
46	Enzymatic Saccharification of Cassava Residues and Glucose Inhibitory Kinetics on \hat{l}^2 -Glucosidase from <i>Hypocrea orientalis</i>). Journal of Agricultural and Food Chemistry, 2014, 62, 11512-11518.	2.4	11
47	ReaxFF Study of the Oxidation of Softwood Lignin in View of Carbon Fiber Production. Energy & Energy & Fuels, 2014, 28, 7007-7013.	2.5	37
48	Saltâ€free production of γâ€aminobutyric acid from glutamate using glutamate decarboxylase separated from <i>Escherichia coli</i> . Journal of Chemical Technology and Biotechnology, 2014, 89, 1432-1436.	1.6	13
49	Supported acid-catalyzed flash vacuum thermolysis on the valorisation of labdanum resin. Biomass and Bioenergy, 2014, 71, 363-369.	2.9	3
50	Robust Heterogeneous Nickel Catalysts with Tailored Porosity for the Selective Hydrogenolysis of Aryl Ethers. ChemCatChem, 2014, 6, 91-95.	1.8	84
51	Efficient Conversion of Levulinic Acid into \hat{I}^3 -Valerolactone over Raney Ni Catalyst Prepared from Melt-quenching Alloy. Catalysis Letters, 2014, 144, 1766-1771.	1.4	25
52	Strain Design of Ashbya gossypii for Single-Cell Oil Production. Applied and Environmental Microbiology, 2014, 80, 1237-1244.	1.4	29
53	Structural Analysis of Glucuronoxylan-specific Xyn30D and Its Attached CBM35 Domain Gives Insights into the Role of Modularity in Specificity*. Journal of Biological Chemistry, 2014, 289, 31088-31101.	1.6	32
54	New biobased epoxy materials from cardanol. European Journal of Lipid Science and Technology, 2014, 116, 63-73.	1.0	136
55	Bio(chemo)technological strategies for biomass conversion into bioethanol and key carboxylic acids. Green Chemistry, 2014, 16, 2386.	4.6	62
56	Electrocatalytic selective oxidation of glycerol to tartronate on Au/C anode catalysts in anion exchange membrane fuel cells with electricity cogeneration. Applied Catalysis B: Environmental, 2014, 154-155, 360-368.	10.8	101
57	Rice Huskâ€Đerived Graphene with Nanoâ€ S ized Domains and Clean Edges. Small, 2014, 10, 2766-2770.	5.2	181

#	ARTICLE	IF	CITATIONS
58	Microbial <i>n</i> i>â€butanol production from <scp>C</scp> lostridia to nonâ€Clostridial hosts. Engineering in Life Sciences, 2014, 14, 16-26.	2.0	37
59	Unprecedented photocatalytic activity of carbonized leather skin residues containing chromium oxide phases. Applied Catalysis B: Environmental, 2014, 150-151, 432-437.	10.8	13
60	Lignin depolymerization via an integrated approach of anode oxidation and electro-generated H2O2 oxidation. RSC Advances, 2014, 4, 6232.	1.7	58
61	Cycloaddition of Carbon Dioxide and Epoxides using Pentaerythritol and Halides as Dual Catalyst System. ChemSusChem, 2014, 7, 1357-1360.	3.6	151
63	Nanomaterials for electrochemical energy storage. Frontiers of Physics, 2014, 9, 323-350.	2.4	86
64	Control of selectivity, activity and durability of simple supported nickel catalysts for hydrolytic hydrogenation of cellulose. Green Chemistry, 2014, 16, 637-644.	4.6	70
65	Energy and nutrient recovery efficiencies in biocrude oil produced via hydrothermal liquefaction of Chlorella pyrenoidosa. RSC Advances, 2014, 4, 16958.	1.7	91
66	Lignin Valorization: Improving Lignin Processing in the Biorefinery. Science, 2014, 344, 1246843.	6.0	2,994
67	Top Chemical Opportunities from Carbohydrate Biomass: A Chemist's View of the Biorefinery. Topics in Current Chemistry, 2014, 353, 1-40.	4.0	125
68	Utilization of economical substrate-derived carbohydrates by solventogenic clostridia: pathway dissection, regulation and engineering. Current Opinion in Biotechnology, 2014, 29, 124-131.	3.3	69
69	lonic liquid modified montmorillonite-supported Ru nanoparticles: highly efficient heterogeneous catalysts for the hydrodeoxygenation of phenolic compounds to cycloalkanes. Catalysis Science and Technology, 2014, 4, 2658.	2.1	36
70	Catalytic Conversion of Fructose, Glucose, and Sucrose to 5-(Hydroxymethyl)furfural and Levulinic and Formic Acids in Î ³ -Valerolactone As a Green Solvent. ACS Catalysis, 2014, 4, 1470-1477.	5.5	277
71	Catalytic Conversion of Nonfood Woody Biomass Solids to Organic Liquids. Accounts of Chemical Research, 2014, 47, 1503-1512.	7.6	307
72	Profile of developments in biomass-based bioenergy research: a 20-year perspective. Scientometrics, 2014, 99, 507-521.	1.6	61
73	Rapid Ether and Alcohol C–O Bond Hydrogenolysis Catalyzed by Tandem High-Valent Metal Triflate + Supported Pd Catalysts. Journal of the American Chemical Society, 2014, 136, 104-107.	6.6	123
74	Spectroscopic and electrochemical characterization of heteropoly acids for their optimized application in selective biomass oxidation to formic acid. Green Chemistry, 2014, 16, 226-237.	4.6	120
75	Production of sugar alcohols from real biomass by supported platinum catalyst. Catalysis Today, 2014, 226, 204-209.	2,2	52
76	Biobased Thermosetting Epoxy: Present and Future. Chemical Reviews, 2014, 114, 1082-1115.	23.0	852

#	ARTICLE	IF	Citations
77	Homogeneous catalysis for the conversion of biomass and biomass-derived platform chemicals. Catalysis Science and Technology, 2014, 4, 1174-1196.	2.1	267
78	A Photochemical Strategy for Lignin Degradation at Room Temperature. Journal of the American Chemical Society, 2014, 136, 1218-1221.	6.6	372
79	Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chemistry, 2014, 16, 950-963.	4.6	1,323
80	Organocatalysis in biorefining for biomass conversion and upgrading. Green Chemistry, 2014, 16, 964-981.	4.6	92
81	Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature, 2014, 515, 249-252.	13.7	955
82	Kinetic Study of Catalytic Conversion of Cellulose to Sugar Alcohols under Lowâ€Pressure Hydrogen. ChemCatChem, 2014, 6, 230-236.	1.8	54
84	Microbial enzyme systems for lignin degradation and their transcriptional regulation. Frontiers in Biology, 2014, 9, 448-471.	0.7	48
85	Entropically Favored Adsorption of Cellulosic Molecules onto Carbon Materials through Hydrophobic Functionalities. ChemSusChem, 2014, 7, 1443-1450.	3.6	91
86	One-pot formal synthesis of biorenewable terephthalic acid from methyl coumalate and methyl pyruvate. Green Chemistry, 2014, 16, 2111-2116.	4.6	39
87	Intramolecular dehydration of mannitol in high-temperature liquid water without acid catalysts. RSC Advances, 2014, 4, 45575-45578.	1.7	23
88	The degradation of the lignin in Phyllostachys heterocycla cv. pubescens in an ethanol solvothermal system. Green Chemistry, 2014, 16, 3107-3116.	4.6	91
89	(Co)Polymerization of vinyl levulinate by cobalt-mediated radical polymerization and functionalization by ketoxime click chemistry. Polymer Chemistry, 2014, 5, 2973-2979.	1.9	35
90	Upgrading malic acid to bio-based benzoates via a Diels–Alder-initiated sequence with the methyl coumalate platform. RSC Advances, 2014, 4, 45657-45664.	1.7	31
91	Catalytic conversion of biomass-derived carbohydrates to formic acid using molecular oxygen. Green Chemistry, 2014, 16, 2614.	4.6	107
92	Hydrothermal decarboxylation of amino acid derived imidazolium zwitterions: a sustainable approach towards ionic liquids. Green Chemistry, 2014, 16, 3705.	4.6	44
93	Oneâ€Step Approach to 2,5â€Diformylfuran from Fructose by Using a Bifunctional and Recyclable Acidic Polyoxometalate Catalyst. ChemPlusChem, 2014, 79, 1448-1454.	1.3	69
94	Lignin valorization through integrated biological funneling and chemical catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12013-12018.	3.3	652
95	Synthesis of biobased succinimide from glutamic acid via silver-catalyzed decarboxylation. RSC Advances, 2014, 4, 27541-27544.	1.7	20

#	Article	IF	CITATIONS
96	Electrochemical Cleavage of Aryl Ethers Promoted by Sodium Borohydride. Journal of Organic Chemistry, 2014, 79, 10189-10195.	1.7	49
97	Production of platform molecules from sweet sorghum. RSC Advances, 2014, 4, 2081-2088.	1.7	27
98	Room-temperature transfer hydrogenation and fast separation of unsaturated compounds over heterogeneous catalysts in an aqueous solution of formic acid. Green Chemistry, 2014, 16, 3746-3751.	4.6	79
99	Current and future trends in food waste valorization for the production of chemicals, materials and fuels: a global perspective. Biofuels, Bioproducts and Biorefining, 2014, 8, 686-715.	1.9	148
100	Thiol-ene coupling: An efficient tool for the synthesis of new biobased aliphatic amines for epoxy curing. Polymer, 2014, 55, 5561-5570.	1.8	20
101	Electrochemical depolymerization of lignin into renewable aromatic compounds in a non-diaphragm electrolytic cell. RSC Advances, 2014, 4, 29917.	1.7	79
102	Selective conversion of lignin in corncob residue to monophenols with high yield and selectivity. Green Chemistry, 2014, 16, 4257-4265.	4.6	113
103	Catalytic Conversion of Biomass by Natural Gas for Oil Quality Upgrading. Industrial & Camp; Engineering Chemistry Research, 2014, 53, 15862-15870.	1.8	34
104	A Closed-Loop Process from Microwave-Assisted Hydrothermal Degradation of Starch to Utilization of the Obtained Degradation Products as Starch Plasticizers. ACS Sustainable Chemistry and Engineering, 2014, 2, 2172-2181.	3.2	46
105	Mesoporous zirconia-based mixed oxides as versatile acid catalysts for producing bio-additives from furfuryl alcohol and glycerol. Applied Catalysis A: General, 2014, 487, 148-157.	2.2	31
106	A comparison of biochars from lignin, cellulose and wood as the sorbent to an aromatic pollutant. Journal of Hazardous Materials, 2014, 280, 450-457.	6.5	135
107	Degradation of Cellulose to Organic Acids in its Homogeneous Alkaline Aqueous Solution. ACS Sustainable Chemistry and Engineering, 2014, 2, 897-901.	3.2	46
108	Biobased building blocks for the rational design of renewable block polymers. Soft Matter, 2014, 10, 7405-7424.	1.2	136
109	Biobased Terephthalic Acid Technologies: A Literature Review. Industrial Biotechnology, 2014, 10, 91-105.	0.5	127
110	A comprehensive study on the kinetics, mass transfer and reaction engineering aspects of solvent-free glycerol hydrochlorination. Chemical Engineering Science, 2014, 120, 88-104.	1.9	13
111	Integrating kinetics with thermodynamics to study the alkaline extraction of protein from <i>Caragana korshinskii</i> Kom. Biotechnology and Bioengineering, 2014, 111, 1801-1808.	1.7	4
112	Synthesis and Characterization of Thermosetting Furan-Based Epoxy Systems. Macromolecules, 2014, 47, 3332-3342.	2.2	165
114	Deoxydehydration of glycerol to allyl alcohol catalyzed by rhenium derivatives. Catalysis Science and Technology, 2014, 4, 3697-3704.	2.1	55

#	Article	IF	CITATIONS
116	Very efficient conversion of glucose to 5-hydroxymethylfurfural in DBU-based ionic liquids with benzenesulfonate anion. Green Chemistry, 2014, 16, 3935-3941.	4.6	65
117	Toward stable nickel catalysts for aqueous phase reforming of biomass-derived feedstock under reducing and alkaline conditions. Journal of Catalysis, 2014, 319, 27-35.	3.1	53
118	Selective Conversion of Cellulose in Corncob Residue to Levulinic Acid in an Aluminum Trichloride–Sodium Chloride System. ChemSusChem, 2014, 7, 2482-2488.	3.6	68
119	Vanillin, a promising biobased building-block for monomer synthesis. Green Chemistry, 2014, 16, 1987-1998.	4.6	373
120	Integration of a kraft pulping mill into a forest biorefinery: Pre-extraction of hemicellulose by steam explosion versus steam treatment. Bioresource Technology, 2014, 153, 236-244.	4.8	64
121	ReaxFF Study of the Oxidation of Lignin Model Compounds for the Most Common Linkages in Softwood in View of Carbon Fiber Production. Journal of Physical Chemistry A, 2014, 118, 803-814.	1.1	68
123	Bioconversion of food waste to energy: A review. Fuel, 2014, 134, 389-399.	3.4	534
124	Catalytic Biorefining of Plant Biomass to Nonâ€Pyrolytic Lignin Bioâ€Oil and Carbohydrates through Hydrogen Transfer Reactions. Angewandte Chemie - International Edition, 2014, 53, 8634-8639.	7.2	383
125	Catalytic transformation of cellulose into platform chemicals. Applied Catalysis B: Environmental, 2014, 145, 1-9.	10.8	245
126	Microscopy Characterization of Silica-Rich Agrowastes to be used in Cement Binders: Bamboo and Sugarcane Leaves. Microscopy and Microanalysis, 2015, 21, 1314-1326.	0.2	25
127	Sustainable Synthesis of Chiral Tetrahydrofurans through the Selective Dehydration of Pentoses. Chemistry - A European Journal, 2015, 21, 15947-15950.	1.7	14
128	Synthesis of cardanol oil building blocks for polymer synthesis. Green Materials, 2015, 3, 59-70.	1.1	15
130	Glucose―and Celluloseâ€Derived Ni/Câ€SO ₃ H Catalysts for Liquid Phase Phenol Hydrodeoxygenation. Chemistry - A European Journal, 2015, 21, 1567-1577.	1.7	14
131	Metalloâ€Deuteroporphyrin as a Biomimetic Catalyst for the Catalytic Oxidation of Lignin to Aromatics. ChemSusChem, 2015, 8, 1768-1778.	3.6	41
132	Kraft Lignin Depolymerization in an Ionic Liquid without a Catalyst. BioResources, 2015, 10, .	0.5	31
133	New Trends in Cosmetics: By-Products of Plant Origin and Their Potential Use as Cosmetic Active Ingredients. Cosmetics, 2015, 2, 82-92.	1.5	113
134	Efficient Catalytic Conversion of Cellulose to Platform Chemicals Using Mechanical Treatment. Journal of the Japan Petroleum Institute, 2015, 58, 1-8.	0.4	8
135	Midinfrared FT-IR as a Tool for Monitoring Herbaceous Biomass Composition and Its Conversion to Furfural. Journal of Spectroscopy, 2015, 2015, 1-12.	0.6	42

#	Article	IF	CITATIONS
139	The effects of emulsion on sugar dehydration to 5-hydroxymethylfurfural in a biphasic system. Green Chemistry, 2015, 17, 3751-3755.	4.6	19
140	Hydrothermally Stable, Conformal, Sulfated Zirconia Monolayer Catalysts for Glucose Conversion to 5-HMF. ACS Catalysis, 2015, 5, 4345-4352.	5.5	137
141	Phosphorus-doped porous carbon derived from rice husk as anode for lithium ion batteries. RSC Advances, 2015, 5, 55136-55142.	1.7	45
142	Vegetable Oil Biorefineries. , 2015, , 247-270.		2
143	Aromatic Monomers by in Situ Conversion of Reactive Intermediates in the Acid-Catalyzed Depolymerization of Lignin. Journal of the American Chemical Society, 2015, 137, 7456-7467.	6.6	477
144	Role of Cu–Mg–Al Mixed Oxide Catalysts in Lignin Depolymerization in Supercritical Ethanol. ACS Catalysis, 2015, 5, 7359-7370.	5.5	165
145	A Systems View of Lignocellulose Hydrolysis. , 2015, , 387-419.		9
146	Changes in the Structure and the Thermal Properties of Kraft Lignin during Its Dissolution in Cholinium Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2015, 3, 2951-2958.	3.2	69
147	Microbial Factories., 2015,,.		14
148	The periodic table: icon and inspiration. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140211.	1.6	8
149	Catalytic Hydrogenolysis of Aryl Ethers: A Key Step in Lignin Valorization to Valuable Chemicals. ACS Catalysis, 2015, 5, 1675-1684.	5.5	214
150	Environmentally Friendly Synthesis of \hat{l}^3 -Valerolactone by Direct Catalytic Conversion of Renewable Sources. ACS Catalysis, 2015, 5, 1882-1894.	5.5	182
151	Pd-catalyzed decarboxylation of glutamic acid and pyroglutamic acid to bio-based 2-pyrrolidone. Green Chemistry, 2015, 17, 2263-2270.	4.6	50
152	Supramolecular Interactions in Secondary Plant Cell Walls: Effect of Lignin Chemical Composition Revealed with the Molecular Theory of Solvation. Journal of Physical Chemistry Letters, 2015, 6, 206-211.	2.1	60
153	Simultaneous Recovery of Organic and Inorganic Content of Paper Deinking Residue through Low-Temperature Microwave-Assisted Pyrolysis. Environmental Science & Environmental Science & 2398-2404.	4.6	16
155	From Lignocellulosic Biomass to Lactic―and Glycolicâ€Acid Oligomers: A Gramâ€Scale Microwaveâ€Assisted Protocol. ChemSusChem, 2015, 8, 1342-1349.	3.6	21
156	Porous carbon made from rice husk as electrode material for electrochemical double layer capacitor. Applied Energy, 2015, 153, 41-47.	5.1	191
157	Engineering < i > Ashbya gossypii < /i > for efficient biolipid production. Bioengineered, 2015, 6, 119-123.	1.4	22

#	ARTICLE	IF	CITATIONS
158	Quantified monophenols in the bio-oil derived from lignin fast pyrolysis. Journal of Analytical and Applied Pyrolysis, 2015, 111, 27-32.	2.6	54
159	Recycling PLA to multifunctional oligomeric compatibilizers for PLA/starch composites. European Polymer Journal, 2015, 64, 126-137.	2.6	45
160	The protein fraction from wheat-based dried distiller's grain with solubles (DDGS): extraction and valorization. New Biotechnology, 2015, 32, 606-611.	2.4	21
161	An enzyme mimic ammonium polymer as a single catalyst for glucose dehydration to 5-hydroxymethylfurfural. Green Chemistry, 2015, 17, 2348-2352.	4.6	59
162	Direct and selective hydrogenolysis of arenols and aryl methyl ethers. Nature Communications, 2015, 6, 6296.	5.8	83
164	Valorization of Lignin Waste: Carbons from Hydrothermal Carbonization of Renewable Lignin as Superior Sorbents for CO ₂ and Hydrogen Storage. ACS Sustainable Chemistry and Engineering, 2015, 3, 1658-1667.	3.2	144
165	Precipitate obtained following membrane separation of hydrothermally pretreated rice straw liquid revealed by 2D NMR to have high lignin content. Biotechnology for Biofuels, 2015, 8, 88.	6.2	20
166	Enzymes for food waste remediation and valorisation. , 2015, , 123-145.		6
167	Balance and saving of GHG emissions in thermochemical biorefineries. Applied Energy, 2015, 147, 444-455.	5.1	14
168	Use of Gamma-Valerolactone as an Illuminating Liquid and Lighter Fluid. ACS Sustainable Chemistry and Engineering, 2015, 3, 1899-1904.	3.2	60
169	Influence of solid alkali application on corn stalk dissolution and degradation in solvent systems. Polymer Degradation and Stability, 2015, 120, 98-106.	2.7	2
170	Expanding the scope of biogenic substrates for the selective production of formic acid from water-insoluble and wet waste biomass. Green Chemistry, 2015, 17, 5164-5171.	4.6	70
171	Separation of polysaccharides from rice husk and wheat bran using solvent system consisting of BMIMOAc and DMI. Carbohydrate Polymers, 2015, 133, 517-523.	5.1	23
172	Production of indoles via thermo-catalytic conversion and ammonization of bio-derived furfural. Chemical Engineering Journal, 2015, 280, 74-81.	6.6	41
173	Integrated Bio- and Chemocatalytic Processing for Biorenewable Chemicals and Fuels., 2015, , 157-177.		11
174	Food waste generation and industrial uses: A review. Waste Management, 2015, 45, 32-41.	3.7	526
175	Fragmentation of structural units of lignin promoted by persulfate through selective C–C cleavage under mild conditions. Organic Chemistry Frontiers, 2015, 2, 1066-1070.	2.3	21
176	Lignin coating to quench photocatalytic activity of titanium dioxide nanoparticles for potential skin care applications. RSC Advances, 2015, 5, 57453-57461.	1.7	38

#	Article	IF	CITATIONS
177	Chemoselective conversion of biologically sourced polyols into chiral synthons. Nature Chemistry, 2015, 7, 576-581.	6.6	91
178	Renewable pyridinium ionic liquids from the continuous hydrothermal decarboxylation of furfural-amino acid derived pyridinium zwitterions. Green Chemistry, 2015, 17, 4151-4156.	4.6	35
179	Direct conversion of cellulose into glycolic acid by a zinc-stabilized UV-Fenton reaction. RSC Advances, 2015, 5, 5741-5744.	1.7	10
180	Hydrogenolysis vs. aqueous phase reforming (APR) of glycerol promoted by a heterogeneous Pd/Fe catalyst. Catalysis Science and Technology, 2015, 5, 4466-4473.	2.1	37
181	Chemo-enzymatic Synthesis, Derivatizations, and Polymerizations of Renewable Phenolic Monomers Derived from Ferulic Acid and Biobased Polyols: An Access to Sustainable Copolyesters, Poly(ester-urethane)s, and Poly(ester-alkenamer)s. ACS Symposium Series, 2015, , 41-68.	0.5	9
182	The excellent performance of amorphous Cr2O3, SnO2, SrO and graphene oxide–ferric oxide in glucose conversion into 5-HMF. Catalysis Communications, 2015, 69, 76-80.	1.6	40
183	Shape-selective zeolite catalysis for bioplastics production. Science, 2015, 349, 78-80.	6.0	289
184	Renewable (semi)aromatic polyesters from symmetrical vanillin-based dimers. Polymer Chemistry, 2015, 6, 6058-6066.	1.9	129
185	Green Solvents in Carbohydrate Chemistry: From Raw Materials to Fine Chemicals. Chemical Reviews, 2015, 115, 6811-6853.	23.0	296
186	Greening the global phosphorus cycle: how green chemistry can help achieve planetary P sustainability. Green Chemistry, 2015, 17, 2087-2099.	4.6	170
187	Polyurethane Coatings Based on Chemically Unmodified Fractionated Lignin. ACS Sustainable Chemistry and Engineering, 2015, 3, 1145-1154.	3.2	159
188	Forest harvesting reduces the soil metagenomic potential for biomass decomposition. ISME Journal, 2015, 9, 2465-2476.	4.4	96
189	One-step method to produce methyl- <scp>d</scp> -glucoside from lignocellulosic biomass. RSC Advances, 2015, 5, 38783-38791.	1.7	17
190	Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps. Energy and Environmental Science, 2015, 8, 1748-1763.	15.6	688
191	Dairy manure protein analysis using UV-vis based on the Bradford method. Analytical Methods, 2015, 7, 2645-2652.	1.3	24
193	Copper–Zinc Alloy Nanopowder: A Robust Preciousâ€Metalâ€Free Catalyst for the Conversion of 5â€Hydroxymethylfurfural. ChemSusChem, 2015, 8, 1323-1327.	3.6	106
194	Deoxygenation of biobased molecules by decarboxylation and decarbonylation – a review on the role of heterogeneous, homogeneous and bio-catalysis. Green Chemistry, 2015, 17, 3231-3250.	4.6	167
195	Improving the kinetics of the CO 2 gasification of char through the catalyst/biomass integration concept. Fuel, 2015, 154, 217-221.	3.4	17

#	ARTICLE	IF	CITATIONS
196	Tailored one-pot production of furan-based fuels from fructose in an ionic liquid biphasic solvent system. Chinese Journal of Catalysis, 2015, 36, 1638-1646.	6.9	48
197	A Sustainable Multicomponent Pyrimidine Synthesis. Journal of the American Chemical Society, 2015, 137, 12804-12807.	6.6	199
198	11. Lignin biorefinery: structure, pretreatment and use. , 2015, , 257-282.		0
199	Depolymerization of Oxidized Lignin Catalyzed by Formic Acid Exploits an Unconventional Elimination Mechanism Involving 3c–4e Bonding: A DFT Mechanistic Study. ACS Catalysis, 2015, 5, 6386-6396.	5.5	46
200	A thermochemical–biochemical hybrid processing of lignocellulosic biomass for producing fuels and chemicals. Biotechnology Advances, 2015, 33, 1799-1813.	6.0	80
201	Selective Ether/Ester C–O Cleavage of an Acetylated Lignin Model via Tandem Catalysis. ACS Catalysis, 2015, 5, 7004-7007.	5.5	69
202	Organocatalyzed One-Step Synthesis of Functionalized <i>N-</i> Alkyl-Pyridinium Salts from Biomass Derived 5-Hydroxymethylfurfural. Organic Letters, 2015, 17, 5244-5247.	2.4	33
203	Conversion of levulinic acid into Î ³ -valerolactone using Fe ₃ (CO) ₁₂ : mimicking a biorefinery setting by exploiting crude liquors from biomass acid hydrolysis. Chemical Communications, 2015, 51, 14199-14202.	2.2	58
204	Catalytic Transformation of Lignin for the Production of Chemicals and Fuels. Chemical Reviews, 2015, 115, 11559-11624.	23.0	2,200
205	Valorisation of protein waste: An enzymatic approach to make commodity chemicals. Frontiers of Chemical Science and Engineering, 2015, 9, 295-307.	2.3	25
206	A new approach for bio-jet fuel generation from palm oil and limonene in the absence of hydrogen. Chemical Communications, 2015, 51, 17249-17252.	2.2	49
207	Combining C6 and C5 sugar metabolism for enhancing microbial bioconversion. Current Opinion in Chemical Biology, 2015, 29, 49-57.	2.8	77
208	Heat inactivation kinetics of Hypocrea orientalis \hat{l}^2 -glucosidase with enhanced thermal stability by glucose. International Journal of Biological Macromolecules, 2015, 81, 1012-1018.	3.6	9
209	Catalytic Deoxygenation of Guaiacol Using Methane. ACS Sustainable Chemistry and Engineering, 2015, 3, 2606-2610.	3.2	18
210	Efficient catalytic hydrotreatment of Kraft lignin to alkylphenolics using supported NiW and NiMo catalysts in supercritical methanol. Green Chemistry, 2015, 17, 5046-5057.	4.6	106
211	Advances in Bioprocess Technology. , 2015, , .		6
212	Highly efficient conversion of biomass-derived levulinic acid into \hat{I}^3 -valerolactone over Ni/MgO catalyst. RSC Advances, 2015, 5, 72037-72045.	1.7	39
213	Selective photocatalytic C–C bond cleavage under ambient conditions with earth abundant vanadium complexes. Chemical Science, 2015, 6, 7130-7142.	3.7	142

#	Article	IF	CITATIONS
214	Compressive strength sensitivity of cement mortar using rice husk-derived graphene with a high specific surface area. Construction and Building Materials, 2015, 96, 189-197.	3.2	67
215	Selective conversion of glycerol to lactic acid with iron pincer precatalysts. Chemical Communications, 2015, 51, 16201-16204.	2.2	86
216	ADMET polymerization of bio-based biphenyl compounds. Polymer Chemistry, 2015, 6, 7693-7700.	1.9	51
217	Solvolysis, Electrochemistry, and Development of Synthetic Building Blocks from Sawdust. Journal of Organic Chemistry, 2015, 80, 11953-11962.	1.7	42
218	Bioâ€Based Nitriles from the Heterogeneously Catalyzed Oxidative Decarboxylation of Amino Acids. ChemSusChem, 2015, 8, 345-352.	3.6	32
219	Selective Hydrogenation of Biomass-Based 5-Hydroxymethylfurfural over Catalyst of Palladium Immobilized on Amine-Functionalized Metal–Organic Frameworks. ACS Catalysis, 2015, 5, 722-733.	5 . 5	165
220	A new porous Zr-containing catalyst with a phenate group: an efficient catalyst for the catalytic transfer hydrogenation of ethyl levulinate to \hat{I}^3 -valerolactone. Green Chemistry, 2015, 17, 1626-1632.	4.6	163
221	Renewable alternating aliphatic-aromatic poly(ester-urethane)s prepared from ferulic acid and bio-based diols. European Polymer Journal, 2015, 63, 186-193.	2.6	64
222	Exploring the catalytic properties of supported palladium catalysts in the transfer hydrogenolysis of glycerol. Applied Catalysis B: Environmental, 2015, 166-167, 121-131.	10.8	76
223	Toward concise metrics for the production of chemicals from renewable biomass. Catalysis Today, 2015, 239, 3-6.	2.2	56
224	Heavy metals removal in aqueous environments using bark as a biosorbent. International Journal of Environmental Science and Technology, 2015, 12, 391-404.	1.8	92
225	New vanillin-derived diepoxy monomers for the synthesis of biobased thermosets. European Polymer Journal, 2015, 67, 527-538.	2.6	205
226	Upgrading of glycerol acetals by thermal catalyst-free transesterification of dialkyl carbonates under continuous-flow conditions. Green Chemistry, 2015, 17, 1008-1023.	4.6	17
227	Hydrogenation of levulinic acid to \hat{I}^3 -valerolactone over copper catalysts supported on \hat{I}^3 -Al2O3. Catalysis Today, 2015, 250, 209-217.	2.2	100
228	A biomass-derived safe medium to replace toxic dipolar solvents and access cleaner Heck coupling reactions. Green Chemistry, 2015, 17, 365-372.	4.6	120
229	New aromatic amine based on cardanol giving new biobased epoxy networks with cardanol. European Journal of Lipid Science and Technology, 2015, 117, 178-189.	1.0	57
230	Effects of Large-Scale Manure Treatment Processes on Pathogen Reduction, Protein Distributions, and Nutrient Concentrations. Transactions of the ASABE, 2016, 59, 695-702.	1.1	5
231	Discovering Valorisation Paths in Waste Biorefineries using an Ontology Engineering Approach. Computer Aided Chemical Engineering, 2016, 38, 2079-2084.	0.3	5

#	Article	IF	CITATIONS
232	Chemicals From Renewable Sources. , 2016, , .		3
233	Effects of Large-Scale Manure Treatment Processes on Pathogen Reduction, Protein Distributions, and Nutrient Concentrations. Transactions of the ASABE, 2016, 59, 695-702.	1.1	6
234	Microbial Production of Short Chain Fatty Acids from Lignocellulosic Biomass: Current Processes and Market. BioMed Research International, 2016, 2016, 1-15.	0.9	84
235	Recovery and Utilization of Lignin Monomers as Part of the Biorefinery Approach. Energies, 2016, 9, 808.	1.6	69
236	Biopolymers from Waste Biomass $\hat{a} \in ``Extraction, Modification and Ulterior Uses. , 0, , .$		20
237	Biofuel production from food wastes. , 2016, , 617-653.		7
238	Hydrolysis of Corncob Using a Modified Carbon-based Solid Acid Catalyst. BioResources, 2016, 11, .	0.5	10
239	Enzymatic Synthesis of Biobased Polyesters and Polyamides. Polymers, 2016, 8, 243.	2.0	181
240	Engineering a highly active thermophilic \hat{l}^2 -glucosidase to enhance its pH stability and saccharification performance. Biotechnology for Biofuels, 2016, 9, 147.	6.2	55
241	Protein-Rich By-Products: Production Statistics, Legislative Restrictions, and Management Options. , 2016, , 1-18.		8
242	Efficient Degradation of Cellulose in Its Homogeneously Aqueous Solution over 3D Metal-Organic Framework/Graphene Hydrogel Catalyst. Chinese Journal of Chemical Physics, 2016, 29, 742-748.	0.6	10
243	Lignin Valorization through Catalytic Lignocellulose Fractionation: A Fundamental Platform for the Future Biorefinery. ChemSusChem, 2016, 9, 1544-1558.	3.6	469
244	Preparation of polyethylene/lignin nanocomposites from hollow spherical ligninâ€supported vanadiumâ€based Ziegler–Natta catalyst. Polymers for Advanced Technologies, 2016, 27, 1351-1354.	1.6	20
245	Direct Conversion of Mono―and Polysaccharides into 5â€Hydroxymethylfurfural Using Ionicâ€Liquid Mixtures. ChemSusChem, 2016, 9, 2089-2096.	3.6	49
246	Chemo―and Regioselective Hydrogenolysis of Diaryl Ether Câ^'O Bonds by a Robust Heterogeneous Ni/C Catalyst: Applications to the Cleavage of Complex Ligninâ€Related Fragments. Angewandte Chemie, 2016, 128, 1496-1500.	1.6	34
247	Chemo―and Regioselective Hydrogenolysis of Diaryl Ether Câ^'O Bonds by a Robust Heterogeneous Ni/C Catalyst: Applications to the Cleavage of Complex Ligninâ€Related Fragments. Angewandte Chemie - International Edition, 2016, 55, 1474-1478.	7.2	129
248	Selective Liquid Phase Adsorption of Biogenic HMF on Hydrophobic Spherical Activated Carbons. Chemie-Ingenieur-Technik, 2016, 88, 355-362.	0.4	16
249	Functional and structural characterization of a potent <scp>GH</scp> 74 <i>endo</i> å€xyloglucanase from the soil saprophyte <i>Cellvibrio japonicus</i> unravels the first step of xyloglucan degradation. FEBS Journal, 2016, 283, 1701-1719.	2.2	29

#	Article	IF	CITATIONS
250	Net-Immobilization of β-glucosidase on Nonwoven Fabrics to Lower the Cost of "Cellulosic Ethanol― and Increase Cellulose Conversions. Scientific Reports, 2016, 6, 23437.	1.6	9
251	A chemical platform approach on cardanol oil: from the synthesis of building blocks to polymer synthesis. OCL - Oilseeds and Fats, Crops and Lipids, 2016, 23, D511.	0.6	14
252	Fractionation for further conversion: from raw corn stover to lactic acid. Scientific Reports, 2016, 6, 38623.	1.6	50
253	Functional diversity of family 3 \hat{l}^2 -glucosidases from thermophilic cellulolytic fungus Humicola insolens Y1. Scientific Reports, 2016, 6, 27062.	1.6	24
254	Identification of Lignin-Derived <i>p</i> -Bis(2,6-dimethoxyphenol)yl Compounds in Bio-oil with Mass Spectrometry. Energy & Energy	2.5	6
255	Valorization of Romanian silver fir tree bark (Abies alba Mill.) wastes as low-cost sorbent of Cu(II) ions from polluted waters. Water Science and Technology, 2016, 74, 2314-2324.	1.2	5
256	Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. Bioresource Technology, 2016, 215, 2-12.	4.8	635
257	Oxidation of olefins with H2O2 catalyzed by gallium(III) nitrate and aluminum(III) nitrate in solution. Journal of Molecular Catalysis A, 2016, 422, 216-220.	4.8	11
258	<i>n</i> -butanol: challenges and solutions for shifting natural metabolic pathways into a viable microbial production. FEMS Microbiology Letters, 2016, 363, fnw070.	0.7	12
259	Mechanism of Vanadium-Catalyzed Selective C–O and C–C Cleavage of Lignin Model Compound. ACS Catalysis, 2016, 6, 4399-4410.	5.5	90
260	Comparative Study of Reactive Flash Distillation vs Semibatch Reactor Technologies for the Glycerol Hydrochlorination with Gaseous HCl. Industrial & Engineering Chemistry Research, 2016, 55, 5500-5513.	1.8	1
261	Transformation of Chitin and Waste Shrimp Shells into Acetic Acid and Pyrrole. ACS Sustainable Chemistry and Engineering, 2016, 4, 3912-3920.	3.2	154
262	Phosphoric acid doped polybenzimidazole as anÂheterogeneous catalyst for selective and efficient dehydration of saccharides to 5-hydroxymethylfurfural. RSC Advances, 2016, 6, 47890-47896.	1.7	5
263	Environmental implications of the use of agroâ€industrial residues for biorefineries: application of a deterministic model for indirect landâ€use changes. GCB Bioenergy, 2016, 8, 690-706.	2.5	101
264	Thermodynamic Strategies for C–O Bond Formation and Cleavage via Tandem Catalysis. Accounts of Chemical Research, 2016, 49, 824-834.	7.6	72
265	Green chemistry and resource efficiency: towards a green economy. Green Chemistry, 2016, 18, 3180-3183.	4.6	166
266	The Techno-Economic Basis for Coproduct Manufacturing To Enable Hydrocarbon Fuel Production from Lignocellulosic Biomass. ACS Sustainable Chemistry and Engineering, 2016, 4, 3196-3211.	3.2	121
267	Understanding the cleavage of inter- and intramolecular linkages in corncob residue for utilization of lignin to produce monophenols. Green Chemistry, 2016, 18, 4109-4115.	4.6	55

#	ARTICLE	IF	CITATIONS
268	Advanced millireactor technology for the kinetic investigation of very rapid reactions: Dehydrochlorination of 1,3-dichloro-2-propanol to epichlorohydrin. Chemical Engineering Science, 2016, 149, 35-41.	1.9	7
269	Dynamic modelling of homogeneously catalysed glycerol hydrochlorination in bubble column reactor. Chemical Engineering Science, 2016, 149, 277-295.	1.9	6
270	Utilization of Seawater for the Biorefinery of Lignocellulosic Biomass: Ionic Liquid Pretreatment, Enzymatic Hydrolysis, and Microbial Lipid Production. ACS Sustainable Chemistry and Engineering, 2016, 4, 5659-5666.	3.2	36
271	Electrically conductive cement mortar: Incorporating rice husk-derived high-surface-area graphene. Construction and Building Materials, 2016, 125, 632-642.	3.2	52
272	Design of a heterogeneous catalytic process for the continuous and direct synthesis of lactide from lactic acid. Green Chemistry, 2016, 18, 5978-5983.	4.6	40
273	Graphite encapsulated molybdenum carbide core/shell nanocomposite for highly selective conversion of guaiacol to phenolic compounds in methanol. Applied Catalysis A: General, 2016, 528, 123-130.	2.2	24
274	Effect of Temperature on Molecular Weight Distribution of Pyridinium Acetate Treated Kraft Lignin. Procedia Engineering, 2016, 148, 1363-1368.	1.2	6
275	Characterization of depolymerized lignin and renewable phenolic compounds from liquefied waste biomass. RSC Advances, 2016, 6, 95698-95707.	1.7	31
276	Photocatalytic Oxidation–Hydrogenolysis of Lignin β-O-4 Models via a Dual Light Wavelength Switching Strategy. ACS Catalysis, 2016, 6, 7716-7721.	5.5	165
277	Waste Informatics: Establishing Characteristics of Contemporary U.S. Landfill Quantities and Practices. Environmental Science & Environmental Science	4.6	27
278	Direct fast pyrolysis bio-oil fuel cell. Fuel, 2016, 185, 85-93.	3.4	8
279	Acidic Ultrafine Tungsten Oxide Molecular Wires for Cellulosic Biomass Conversion. Angewandte Chemie - International Edition, 2016, 55, 10234-10238.	7.2	27
280	Esters, Including Triglycerides, and Hydrogen as Feedstocks for the Ruthenium atalyzed Direct Nâ€Alkylation of Amines. Angewandte Chemie - International Edition, 2016, 55, 11049-11053.	7.2	30
281	General and Mild Cobalt-Catalyzed C-Alkylation of Unactivated Amides and Esters with Alcohols. Journal of the American Chemical Society, 2016, 138, 10786-10789.	6.6	205
282	Bio-based epoxy networks incorporating covalent and melamine cyanurate-type multiple hydrogen-bonding crosslinkages. Journal of Polymer Research, 2016, 23, 1.	1.2	2
283	Wood biorefinery based on î³-valerolactone/water fractionation. Green Chemistry, 2016, 18, 5466-5476.	4.6	84
284	Cascade Biocatalysis for Sustainable Asymmetric Synthesis: From Biobased <scp> </scp> â€Phenylalanine to Highâ€Value Chiral Chemicals. Angewandte Chemie - International Edition, 2016, 55, 11647-11650.	7.2	69
285	Facile synthesis of hierarchical pore foam catalysts with Brønsted–Lewis acid sites for the one-pot conversion of cellulose to 5-hydroxymethylfurfural. RSC Advances, 2016, 6, 80368-80382.	1.7	8

#	Article	IF	CITATIONS
286	Modelling the Basic Research Competitiveness Index (BR-CI) with an application to the biomass energy field. Scientometrics, 2016, 108, 1221-1241.	1.6	8
287	From Ligninâ€derived Aromatic Compounds to Novel Biobased Polymers. Macromolecular Rapid Communications, 2016, 37, 9-28.	2.0	296
288	Esters, Including Triglycerides, and Hydrogen as Feedstocks for the Rutheniumâ€Catalyzed Direct Nâ€Alkylation of Amines. Angewandte Chemie, 2016, 128, 11215-11219.	1.6	13
289	Food waste valorization via anaerobic processes: a review. Reviews in Environmental Science and Biotechnology, 2016, 15, 499-547.	3.9	194
290	Acidic Ultrafine Tungsten Oxide Molecular Wires for Cellulosic Biomass Conversion. Angewandte Chemie, 2016, 128, 10390-10394.	1.6	9
291	Cascade Biocatalysis for Sustainable Asymmetric Synthesis: From Biobased <scp>l</scp> â€Phenylalanine to Highâ€Value Chiral Chemicals. Angewandte Chemie, 2016, 128, 11819-11822.	1.6	30
292	Electrocatalytic Conversion of Furanic Compounds. ACS Catalysis, 2016, 6, 6704-6717.	5.5	226
293	Decoding how a soil bacterium extracts building blocks and metabolic energy from ligninolysis provides road map for lignin valorization. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5802-E5811.	3.3	76
294	Metal Triflates for the Production of Aromatics from Lignin. ChemSusChem, 2016, 9, 2974-2981.	3.6	82
295	Enhancing Aromatic Production from Reductive Lignin Disassembly: <i>in Situ</i> O-Methylation of Phenolic Intermediates. ACS Sustainable Chemistry and Engineering, 2016, 4, 6877-6886.	3.2	52
296	PdPb-Catalyzed Decarboxylation of Proline to Pyrrolidine: Highly Selective Formation of a Biobased Amine in Water. ACS Catalysis, 2016, 6, 7303-7310.	5.5	27
297	Fragmentation of Lignin Samples with Commercial Pd/C under Ambient Pressure of Hydrogen. ACS Catalysis, 2016, 6, 7385-7392.	5.5	86
298	Oneâ€Step Production of 1,3â€Butadiene from 2,3â€Butanediol Dehydration. Chemistry - A European Journal, 2016, 22, 12290-12294.	1.7	39
299	Waste Biorefinery: A New Paradigm for a Sustainable Bioelectro Economy. Trends in Biotechnology, 2016, 34, 852-855.	4.9	95
300	Ring-locking enables selective anhydrosugar synthesis from carbohydrate pyrolysis. Green Chemistry, 2016, 18, 5438-5447.	4.6	29
301	Efficiency of a novel "Food to waste to food―system including anaerobic digestion of food waste and cultivation of vegetables on digestate in a bubble-insulated greenhouse. Waste Management, 2016, 56, 466-476.	3.7	92
302	Biocatalysis and Biomass Conversion in Alternative Reaction Media. Chemistry - A European Journal, 2016, 22, 12984-12999.	1.7	149
303	Direct and relative rate coefficients for the gas-phase reaction of OH radicals with 2-methyltetrahydrofuran at room temperature. Reaction Kinetics, Mechanisms and Catalysis, 2016, 119, 5-18.	0.8	4

#	Article	IF	CITATIONS
304	Genesis of a bi-functional acid–base site on a Cr-supported layered double hydroxide catalyst surface for one-pot synthesis of furfurals from xylose with a solid acid catalyst. Catalysis Science and Technology, 2016, 6, 8200-8211.	2.1	21
305	Selective arene production from transfer hydrogenolysis of benzyl phenyl ether promoted by a co-precipitated Pd/Fe ₃ O ₄ catalyst. Catalysis Science and Technology, 2016, 6, 7937-7941.	2.1	76
306	Facile and selective hydrogenolysis of β-O-4 linkages in lignin catalyzed by Pd–Ni bimetallic nanoparticles supported on ZrO ₂ . Green Chemistry, 2016, 18, 6229-6235.	4.6	85
307	High Yield Production of Natural Phenolic Alcohols from Woody Biomass Using a Nickelâ€Based Catalyst. ChemSusChem, 2016, 9, 3353-3360.	3.6	104
308	Mechanistic studies on the VO(acac) ₂ -catalyzed oxidative cleavage of lignin model compounds in acetic acid. RSC Advances, 2016, 6, 110229-110234.	1.7	20
309	Facile fabrication of rice husk based silicon dioxide nanospheres loaded with silver nanoparticles as a rice antibacterial agent. Scientific Reports, 2016, 6, 21423.	1.6	51
310	Microsized Porous SiO _{<i>x</i>} @C Composites Synthesized through Aluminothermic Reduction from Rice Husks and Used as Anode for Lithium-Ion Batteries. ACS Applied Materials & Lithium Rices, 2016, 8, 30239-30247.	4.0	131
311	Bio-based polycarbonate as synthetic toolbox. Nature Communications, 2016, 7, 11862.	5.8	214
312	Valorization of biomass derivatives: Keggin heteropolyacids supported on titania as catalysts in the suitable synthesis of 2-phenoxyethyl-2-furoate. Journal of Molecular Catalysis A, 2016, 425, 266-274.	4.8	17
314	Photo-induced reduction of biomass-derived 5-hydroxymethylfurfural using graphitic carbon nitride supported metal catalysts. RSC Advances, 2016, 6, 101968-101973.	1.7	56
315	Catalytic Conversion of Renewable Resources into Bulk and Fine Chemicals. Chemical Record, 2016, 16, 2787-2800.	2.9	39
316	Single-catalyst high-weight% hydrogen storage in an N-heterocycle synthesized from lignin hydrogenolysis products and ammonia. Nature Communications, 2016, 7, 13201.	5.8	146
317	A New Class of Renewable Thermoplastics with Extraordinary Performance from Nanostructured Ligninâ€Elastomers. Advanced Functional Materials, 2016, 26, 2677-2685.	7.8	87
318	Toward a microbial palm oil substitute: oleaginous yeasts cultured on lignocellulose. Biofuels, Bioproducts and Biorefining, 2016, 10, 316-334.	1.9	37
319	Production of Glucaric Acid from Hemicellulose Substrate by Rosettasome Enzyme Assemblies. Molecular Biotechnology, 2016, 58, 489-496.	1.3	17
320	Performance of hydrothermal liquefaction (HTL) of biomass by multivariate data analysis. Fuel Processing Technology, 2016, 150, 94-103.	3.7	41
321	The Glycoside Hydrolase Family 8 Reducing-End Xylose-Releasing Exo-oligoxylanase Rex8A from Paenibacillus barcinonensis BP-23 Is Active on Branched Xylooligosaccharides. Applied and Environmental Microbiology, 2016, 82, 5116-5124.	1.4	27
322	Toward the complete utilization of rice straw: Methane fermentation and lignin recovery by a combinational process involving mechanical milling, supporting material and nanofiltration. Bioresource Technology, 2016, 216, 830-837.	4.8	24

#	Article	IF	CITATIONS
323	Acid-free microwave-assisted hydrothermal extraction of pectin and porous cellulose from mango peel waste $\hat{a} \in \text{``towards a zero waste mango biorefinery. Green Chemistry, 2016, 18, 5280-5287.}$	4.6	64
324	Transition metal (Ti, Mo, Nb, W) nitride catalysts for lignin depolymerisation. Chemical Communications, 2016, 52, 9375-9378.	2.2	36
325	Large scale applications of immobilized enzymes call for sustainable and inexpensive solutions: rice husks as renewable alternatives to fossil-based organic resins. RSC Advances, 2016, 6, 63256-63270.	1.7	37
326	Direct Catalytic Hydrogenolysis of Kraft Lignin to Phenols in Choline-Derived Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2016, 4, 3850-3856.	3.2	54
327	Characterization of liquid products from hydrothermal liquefaction (HTL) of biomass via solid-phase microextraction (SPME). Biomass and Bioenergy, 2016, 88, 116-125.	2.9	20
328	Epoxidation and etherification of alkaline lignin to prepare water-soluble derivatives and its performance in improvement of enzymatic hydrolysis efficiency. Biotechnology for Biofuels, 2016, 9, 87.	6.2	38
329	Advanced Model Compounds for Understanding Acid-Catalyzed Lignin Depolymerization: Identification of Renewable Aromatics and a Lignin-Derived Solvent. Journal of the American Chemical Society, 2016, 138, 8900-8911.	6.6	202
330	From models to lignin: Transition metal catalysis for selective bond cleavage reactions. Coordination Chemistry Reviews, 2016, 306, 510-532.	9.5	221
331	Hydrogenation of biomassâ€derived levulinic acid to γâ€valerolactone over copper catalysts supported on <scp>ZrO₂</scp> . Journal of Chemical Technology and Biotechnology, 2016, 91, 769-776.	1.6	37
332	SiOx/C composite from rice husks as an anode material for lithium-ion batteries. Electrochimica Acta, 2016, 191, 411-416.	2.6	77
333	Green chemistry, catalysis and valorization of waste biomass. Journal of Molecular Catalysis A, 2016, 422, 3-12.	4.8	150
334	Chemoselective oxidant-free dehydrogenation of alcohols in lignin using Cp*lr catalysts. Green Chemistry, 2016, 18, 2029-2036.	4.6	83
335	Strategies for the Conversion of Lignin to High-Value Polymeric Materials: Review and Perspective. Chemical Reviews, 2016, 116, 2275-2306.	23.0	1,100
336	Mapping reactivities of aromatic models with a lignin disassembly catalyst. Steps toward controlling product selectivity. Catalysis Science and Technology, 2016, 6, 2984-2994.	2.1	42
337	Opportunity for high value-added chemicals from food supply chain wastes. Bioresource Technology, 2016, 215, 123-130.	4.8	145
338	Influence of particle size and particle loading on mechanical and dielectric properties of biochar particulate-reinforced polymer nanocomposites. International Journal of Polymer Analysis and Characterization, 2016, 21, 462-477.	0.9	64
339	Vapor–Liquid Equilibrium Study of the Gamma-Valerolactone–Water Binary System. Journal of Chemical & Chem	1.0	42
340	Engineering a more sustainable world through catalysis and green chemistry. Journal of the Royal Society Interface, 2016, 13, 20160087.	1.5	97

#	Article	IF	CITATIONS
341	Bifunctional Ni catalysts for the one-pot conversion of Organosolv lignin into cycloalkanes. Catalysis Today, 2016, 269, 48-55.	2.2	93
342	Valorization of Waste Lipids through Hydrothermal Catalytic Conversion to Liquid Hydrocarbon Fuels with in Situ Hydrogen Production. ACS Sustainable Chemistry and Engineering, 2016, 4, 1775-1784.	3.2	39
343	Catalysis making the world a better place: satellite meeting. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150358.	1.6	6
344	Efficient Pretreatment of Wheat Straw Using Novel Renewable Cholinium Ionic Liquids To Improve Enzymatic Saccharification. Industrial & Engineering Chemistry Research, 2016, 55, 1788-1795.	1.8	59
345	Hydrolysis of Cellulose to Glucose Using Carbon Catalysts. Springer Theses, 2016, , 43-75.	0.0	1
346	Influence of Acidic (H ₃ PO ₄) and Alkaline (NaOH) Additives on the Catalytic Reductive Fractionation of Lignocellulose. ACS Catalysis, 2016, 6, 2055-2066.	5.5	191
347	Direct dehydration of 1,3-butanediol into butadiene over aluminosilicate catalysts. Catalysis Science and Technology, 2016, 6, 5830-5840.	2.1	49
348	A Study on Catalytic Conversion of Non-Food Biomass into Chemicals. Springer Theses, 2016, , .	0.0	5
349	Fabrication of Lignosulfonate Vesicular Reverse Micelles to Immobilize Horseradish Peroxidase. Industrial & Engineering Chemistry Research, 2016, 55, 2731-2737.	1.8	20
350	Catalytic dehydrogenation of 1,2- and 1,3-diols. Journal of Molecular Catalysis A, 2016, 416, 81-87.	4.8	4
351	Transition-metal catalyzed valorization of lignin: the key to a sustainable carbon-neutral future. Organic and Biomolecular Chemistry, 2016, 14, 1853-1914.	1.5	145
352	Effect of polycarbosilane addition to a mixture of rice husk and coconut shell on SiC whisker growth. Ceramics International, 2016, 42, 2393-2401.	2.3	37
353	Selective laccase-catalyzed dimerization of phenolic compounds derived from lignin: Towards original symmetrical bio-based (bis) aromatic monomers. Journal of Molecular Catalysis B: Enzymatic, 2016, 125, 34-41.	1.8	64
354	Metal-Oxide-Catalyzed Efficient Conversion of Cellulose to Oxalic Acid in Alkaline Solution under Low Oxygen Pressure. ACS Sustainable Chemistry and Engineering, 2016, 4, 305-311.	3.2	43
355	New insights into the catalytic cleavage of the lignin \hat{l}^2 -O-4 linkage in multifunctional ionic liquid media. Catalysis Science and Technology, 2016, 6, 1882-1891.	2.1	50
356	Cascade catalytic transfer hydrogenationâ \in cyclization of ethyl levulinate to \hat{I}^3 -valerolactone with Alâ \in Tr mixed oxides. Applied Catalysis A: General, 2016, 510, 11-19.	2.2	96
357	Exploitation of Food Industry Waste for High-Value Products. Trends in Biotechnology, 2016, 34, 58-69.	4.9	416
358	Metagenomics for the development of new biocatalysts to advance lignocellulose saccharification for bioeconomic development. Critical Reviews in Biotechnology, 2016, 36, 998-1009.	5.1	29

#	Article	IF	CITATIONS
359	Biochemical characterization of a halotolerant feruloyl esterase from Actinomyces spp.: refolding and activity following thermal deactivation. Applied Microbiology and Biotechnology, 2016, 100, 1777-1787.	1.7	9
360	Hydrolysis of woody biomass by a biomass-derived reusable heterogeneous catalyst. Chemical Science, 2016, 7, 692-696.	3.7	98
361	Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products. Waste Management, 2016, 47, 69-77.	3.7	191
362	Niobium phytate prepared from phytic acid and NbCl5: a highly efficient and heterogeneous acid catalyst. Catalysis Science and Technology, 2016, 6, 1070-1076.	2.1	20
363	A newly discovered arabinoxylan-specific arabinofuranohydrolase. Synergistic action with xylanases from different glycosyl hydrolase families. Applied Microbiology and Biotechnology, 2016, 100, 1743-1751.	1.7	12
364	A combined experimental and computational study of the mechanism of fructose dehydration to 5-hydroxymethylfurfural in dimethylsulfoxide using Amberlyst 70, PO43â°'/niobic acid, or sulfuric acid catalysts. Applied Catalysis B: Environmental, 2016, 181, 874-887.	10.8	61
365	The effects of water tolerant Lewis acids on the hydrothermal liquefaction of lignocellulosic biomass. Journal of the Energy Institute, 2016, 89, 627-635.	2.7	30
366	Fabrication of mesoporous lignin-based biosorbent from rice straw and its application for heavy-metal-ion removal. Journal of Environmental Sciences, 2017, 53, 132-140.	3.2	39
367	Effects of Particle Loading and Particle Size on Tribological Properties of Biochar Particulate Reinforced Polymer Composites. Journal of Tribology, 2017, 139, .	1.0	22
368	Lowâ€Energy Catalytic Electrolysis for Simultaneous Hydrogen Evolution and Lignin Depolymerization. ChemSusChem, 2017, 10, 847-854.	3.6	74
369	Ruthenium-catalyzed solvent-free conversion of furfural to furfuryl alcohol. RSC Advances, 2017, 7, 3331-3335.	1.7	34
370	Catalytic glycerol hydrogenolysis to 1,3-propanediol in a gas–solid fluidized bed. RSC Advances, 2017, 7, 3853-3860.	1.7	47
371	Catalytic pyrolysis of recalcitrant, insoluble humin byproducts from C6 sugar biorefineries. Journal of Analytical and Applied Pyrolysis, 2017, 123, 134-143.	2.6	46
372	Recent advances in the production of γâ€valerolactone from biomassâ€derived feedstocks via heterogeneous catalytic transfer hydrogenation. Journal of Chemical Technology and Biotechnology, 2017, 92, 1125-1135.	1.6	92
373	High surface area C/SiO2 composites from rice husks as a high-performance anode for lithium ion batteries. Powder Technology, 2017, 311, 1-8.	2.1	94
374	Biological valorization strategies for converting lignin into fuels and chemicals. Renewable and Sustainable Energy Reviews, 2017, 73, 610-621.	8.2	206
375	Synthesis of ketones from biomass-derived feedstock. Nature Communications, 2017, 8, 14190.	5.8	115
376	Microwaveâ€Assisted Valorization of Biowastes to Levulinic Acid. ChemistrySelect, 2017, 2, 1375-1380.	0.7	27

#	Article	IF	CITATIONS
377	Utilization of xylose by engineered strains of Ashbya gossypii for the production of microbial oils. Biotechnology for Biofuels, 2017, 10, 3.	6.2	22
378	Manganâ€katalysierte Mehrkomponentensynthese von Pyrimidinen aus Alkoholen und Amidinen. Angewandte Chemie, 2017, 129, 1685-1688.	1.6	64
379	Manganeseâ€Catalyzed Multicomponent Synthesis of Pyrimidines from Alcohols and Amidines. Angewandte Chemie - International Edition, 2017, 56, 1663-1666.	7.2	248
380	Catalytic valorization of starch-rich food waste into hydroxymethylfurfural (HMF): Controlling relative kinetics for high productivity. Bioresource Technology, 2017, 237, 222-230.	4.8	121
381	Catalysis Meets Nonthermal Separation for the Production of (Alkyl)phenols and Hydrocarbons from Pyrolysis Oil. Angewandte Chemie - International Edition, 2017, 56, 2334-2339.	7.2	79
382	A bacterial GH6 cellobiohydrolase with a novel modular structure. Applied Microbiology and Biotechnology, 2017, 101, 2943-2952.	1.7	7
383	Sustainability Metrics for Biomass-Based Carbon Chemicals. ACS Sustainable Chemistry and Engineering, 2017, 5, 2734-2740.	3.2	47
384	Ru-Catalyzed Hydrogenation–Decarbonylation of Amino Acids to Bio-based Primary Amines. ACS Sustainable Chemistry and Engineering, 2017, 5, 3290-3295.	3.2	41
385	Designing Block Copolymer Architectures toward Tough Bioplastics from Natural Rosin. Macromolecules, 2017, 50, 2069-2077.	2.2	55
386	Vanillin-Derived High-Performance Flame Retardant Epoxy Resins: Facile Synthesis and Properties. Macromolecules, 2017, 50, 1892-1901.	2.2	343
387	CRISPR EnAbled Trackable genome Engineering for isopropanol production in Escherichia coli. Metabolic Engineering, 2017, 41, 1-10.	3.6	82
388	Biological approach for the production of vanillin from lignocellulosic biomass (Bambusa tulda). Journal of Cleaner Production, 2017, 149, 485-490.	4.6	50
389	Sustainable sources need reliable standards. Faraday Discussions, 2017, 202, 281-301.	1.6	8
390	Esters production via carboxylates from anaerobic paper mill wastewater treatment. Bioresource Technology, 2017, 237, 186-192.	4.8	18
391	Biotechnological Production of Organic Acids from Renewable Resources. Advances in Biochemical Engineering/Biotechnology, 2017, 166, 373-410.	0.6	16
392	Increasing the Greenness of Lignocellulosic Biomass Biorefining Processes by Means of Biocompatible Separation Strategies. ACS Sustainable Chemistry and Engineering, 2017, 5, 3339-3345.	3.2	11
393	One-pot lignin extraction and modification in \hat{l}^3 -valerolactone from steam explosion pre-treated lignocellulosic biomass. Journal of Cleaner Production, 2017, 151, 152-162.	4.6	43
394	Fast purification method of functional LPMOs from Streptomyces ambofaciens by affinity adsorption. Carbohydrate Research, 2017, 448, 205-211.	1.1	21

#	Article	IF	CITATIONS
395	Organic waste as a sustainable feedstock for platform chemicals. Faraday Discussions, 2017, 202, 175-195.	1.6	92
396	Performance of Dimethyl Sulfoxide and Br $ ilde{A}$, nsted Acid Catalysts in Fructose Conversion to 5-Hydroxymethylfurfural. ACS Catalysis, 2017, 7, 2199-2212.	5.5	100
397	Mining the global diversity for bioenergy traits of barley straw: genomewide association study under varying plant water status. GCB Bioenergy, 2017, 9, 1356-1369.	2.5	10
398	Butyric anhydride modified lignin and its oil-water interfacial properties. Chemical Engineering Science, 2017, 165, 55-64.	1.9	22
399	Base-catalysed, one-step mechanochemical conversion of chitin and shrimp shells into low molecular weight chitosan. Green Chemistry, 2017, 19, 2783-2792.	4.6	133
400	Chemocatalytic Conversion of Cellulosic Biomass to Methyl Glycolate, Ethylene Glycol, and Ethanol. ChemSusChem, 2017, 10, 1390-1394.	3.6	73
401	Carbon Source-Dependent Inducible Metabolism of Veratryl Alcohol and Ferulic Acid in Pseudomonas putida CSV86. Applied and Environmental Microbiology, 2017, 83, .	1.4	25
402	Metal-catalyzed reductive deamination of glutamic acid to bio-based dimethyl glutarate and methylamines. Green Chemistry, 2017, 19, 1866-1876.	4.6	19
403	Conversion of biomass to hydroxymethylfurfural: A review of catalytic systems and underlying mechanisms. Bioresource Technology, 2017, 238, 716-732.	4.8	400
404	Expanding the biomass derived chemical space. Chemical Science, 2017, 8, 4724-4738.	3.7	101
405	An Intermediate-Temperature Biomass Fuel Cell Using Wood Sawdust and Pulp Directly as Fuel. Journal of the Electrochemical Society, 2017, 164, F557-F563.	1.3	53
407	Enhancement of fermentative biohydrogen production from textile desizing wastewater via coagulation-pretreatment. International Journal of Hydrogen Energy, 2017, 42, 12153-12158.	3.8	31
408	Bifunctional Lewis and BrÃ,nsted acidic zeolites permit the continuous production of bio-renewable furanic ethers. Green Chemistry, 2017, 19, 2846-2854.	4.6	42
409	Novel biobased and food contact epoxy coatings for glass toughening applications. Progress in Organic Coatings, 2017, 109, 1-8.	1.9	17
410	Sequential lignin depolymerization by combination of biocatalytic and formic acid/formate treatment steps. Applied Microbiology and Biotechnology, 2017, 101, 2575-2588.	1.7	20
411	Manganâ€katalysierte nachhaltige Synthese von Pyrrolen aus Alkoholen und Aminoalkoholen. Angewandte Chemie, 2017, 129, 7367-7371.	1.6	37
412	Manganese atalyzed Sustainable Synthesis of Pyrroles from Alcohols and Amino Alcohols. Angewandte Chemie - International Edition, 2017, 56, 7261-7265.	7.2	193
413	Reductive Cleavage of C—O Bond in Model Compounds of Lignin. Chinese Journal of Chemistry, 2017, 35, 938-942.	2.6	8

#	ARTICLE	IF	CITATIONS
414	An effective pathway for 5-brominemethylfurfural synthesis from biomass sugars in deep eutectic solvent. Journal of Chemical Technology and Biotechnology, 2017, 92, 2929-2933.	1.6	15
415	Catalytic transfer hydrogenation of butyl levulinate to Î ³ -valerolactone over zirconium phosphates with adjustable Lewis and Brønsted acid sites. Applied Catalysis B: Environmental, 2017, 214, 67-77.	10.8	209
416	Biological Routes for the Synthesis of Platform Chemicals from Biomass Feedstocks., 2017,, 153-166.		5
417	A facile and mild Pd-catalyzed one-pot process for direct hydrodeoxygenation (HDO) phenols to arenes through a ArOSO 2 F intermediates transformation. Tetrahedron Letters, 2017, 58, 2340-2343.	0.7	42
418	Cobaltâ€Catalyzed Alkylation of Secondary Alcohols with Primary Alcohols via Borrowing Hydrogen/Hydrogen Autotransfer. Chemistry - A European Journal, 2017, 23, 12110-12113.	1.7	111
419	UV-thermal dual cured anti-bacterial thiol-ene networks with superior performance from renewable resources. Polymer, 2017, 108, 215-222.	1.8	48
420	Quantitative analysis of acid-catalyzed levulinic acid product mixture from cellulose by mixed-mode liquid chromatography. Carbohydrate Polymers, 2017, 173, 150-156.	5.1	1
421	Intramolecular dehydration of biomass-derived sugar alcohols in high-temperature water. Physical Chemistry Chemical Physics, 2017, 19, 2714-2722.	1.3	27
422	Manganese-Catalyzed Aminomethylation of Aromatic Compounds with Methanol as a Sustainable C1 Building Block. Journal of the American Chemical Society, 2017, 139, 8812-8815.	6.6	177
423	Production of Caproic Acid from Mixed Organic Waste: An Environmental Life Cycle Perspective. Environmental Science & Environmental Envi	4.6	120
424	Bio-Based Functional Styrene Monomers Derived from Naturally Occurring Ferulic Acid for Poly(vinylcatechol) and Poly(vinylguaiacol) via Controlled Radical Polymerization. Macromolecules, 2017, 50, 4206-4216.	2.2	83
425	Increasing the revenue from lignocellulosic biomass: Maximizing feedstock utilization. Science Advances, 2017, 3, e1603301.	4.7	352
426	Lignin-first biomass fractionation: the advent of active stabilisation strategies. Energy and Environmental Science, 2017, 10, 1551-1557.	15.6	503
427	Lignin nanoparticles by ultrasonication and their incorporation in waterborne polymer nanocomposites. Journal of Applied Polymer Science, 2017, 134, 45318.	1.3	82
428	Potential of commodity chemicals to become bioâ€based according to maximum yields and petrochemical prices. Biofuels, Bioproducts and Biorefining, 2017, 11, 798-810.	1.9	83
429	Hydrogenation of \hat{I}^3 -valerolactone to 1,4-pentanediol in a continuous flow reactor. Applied Catalysis A: General, 2017, 542, 289-295.	2.2	41
430	Liquefaction of kraft lignin by hydrocracking with simultaneous use of a novel dual acid-base catalyst and a hydrogenation catalyst. Bioresource Technology, 2017, 243, 100-106.	4.8	69
431	Amphiphilic dipyridinium-phosphotungstate as an efficient and recyclable catalyst for triphasic fatty ester epoxidation and oxidative cleavage with hydrogen peroxide. Green Chemistry, 2017, 19, 2855-2862.	4.6	26

#	Article	IF	CITATIONS
432	Gold-mediated selective transformation of lignin models to aromatic esters in the presence of molecular oxygen. Catalysis Today, 2017, 298, 190-196.	2.2	4
433	Effect of SiO ₂ support properties on the performance of Cu–SiO ₂ catalysts for the hydrogenation of levulinic acid to gamma valerolactone using formic acid as a hydrogen source. Catalysis Science and Technology, 2017, 7, 3073-3083.	2.1	62
434	High Performance Anode for Direct Cellulosic Biomass Fuel Cells Operating at Intermediate Temperatures. Bulletin of the Chemical Society of Japan, 2017, 90, 1017-1026.	2.0	32
435	Rice husk silica derived nanomaterials for sustainable applications. Renewable and Sustainable Energy Reviews, 2017, 80, 453-466.	8.2	191
436	Natural acetylation impacts carbohydrate recovery during deconstruction of Populus trichocarpa wood. Biotechnology for Biofuels, 2017, 10, 48.	6.2	40
437	Aromatic biobased polymer latex from cardanol. European Polymer Journal, 2017, 93, 785-794.	2.6	36
438	Controlled defunctionalisation of biobased organic acids. Chemical Communications, 2017, 53, 5682-5693.	2.2	14
439	Centrifugal partition chromatography in a biorefinery context: Optimisation and scale-up of monosaccharide fractionation from hydrolysed sugar beet pulp. Journal of Chromatography A, 2017, 1497, 56-63.	1.8	19
440	Renewable Aromatics from Kraft Lignin with Molybdenumâ€Based Catalysts. ChemCatChem, 2017, 9, 2717-2726.	1.8	29
441	Probing the Lignin Disassembly Pathways with Modified Catalysts Based on Cu-Doped Porous Metal Oxides. ACS Sustainable Chemistry and Engineering, 2017, 5, 3158-3169.	3.2	42
442	Catalysis Meets Nonthermal Separation for the Production of (Alkyl)phenols and Hydrocarbons from Pyrolysis Oil. Angewandte Chemie, 2017, 129, 2374-2379.	1.6	23
443	Depolymerization of lignin via a non-precious Ni–Fe alloy catalyst supported on activated carbon. Green Chemistry, 2017, 19, 1895-1903.	4.6	178
445	Phenolic acetals from lignins of varying compositions via iron(<scp>iii</scp>) triflate catalysed depolymerisation. Green Chemistry, 2017, 19, 2774-2782.	4.6	136
446	Intensification studies of heterogeneous catalysts: probing and overcoming catalyst deactivation during liquid phase operation. Green Chemistry, 2017, 19, 2711-2728.	4.6	72
447	Catalytic conversion of corncob and corncob pretreatment hydrolysate to furfural in a biphasic system with addition of sodium chloride. Bioresource Technology, 2017, 226, 247-254.	4.8	78
448	lonic liquids and deep eutectic solvents for lignocellulosic biomass fractionation. Physical Chemistry Chemical Physics, 2017, 19, 2636-2665.	1.3	217
449	Kinetics of guaiacol deoxygenation using methane over the Pt–Bi catalyst. Reaction Chemistry and Engineering, 2017, 2, 36-43.	1.9	8
450	A Model Study to Unravel the Complexity of Bioâ€Oil from Organic Wastes. ChemSusChem, 2017, 10, 171-181.	3.6	25

#	Article	IF	CITATIONS
451	Effects of Extraction Methods on Structure and Valorization of Corn Stover Lignin by a Pd/C Catalyst. ChemCatChem, 2017, 9, $1135-1143$.	1.8	36
452	Role of Water in Catalyzing Proton Transfer in Glucose Dehydration to 5â€Hydroxymethylfurfural. ChemCatChem, 2017, 9, 2784-2789.	1.8	27
453	A novel and highly efficient Zr-containing catalyst based on humic acids for the conversion of biomass-derived ethyl levulinate into gamma-valerolactone. Fuel, 2017, 193, 322-330.	3.4	43
454	Catalytic depolymerization of the hydrolyzed lignin over mesoporous catalysts. Bioresource Technology, 2017, 226, 125-131.	4.8	112
455	Effect of residual lignins present in cholinium ionic liquid-pretreated rice straw on the enzymatic hydrolysis of cellulose. Chemical Engineering Science, 2017, 161, 48-56.	1.9	26
456	Biocatalytic Reduction of HMF to 2,5â€Bis(hydroxymethyl)furan by HMFâ€Tolerant Whole Cells. ChemSusChem, 2017, 10, 372-378.	3.6	92
457	Characterization of Kraft Lignin Fractions Obtained by Sequential Ultrafiltration and Their Potential Application as a Biobased Component in Blends with Polyethylene. ACS Sustainable Chemistry and Engineering, 2017, 5, 11770-11779.	3.2	80
458	Double-active sites cooperatively catalyzed transfer hydrogenation of ethyl levulinate over a ruthenium-based catalyst. Molecular Catalysis, 2017, 442, 181-190.	1.0	18
459	Hydrogen Gas-Mediated Deoxydehydration/Hydrogenation of Sugar Acids: Catalytic Conversion of Glucarates to Adipates. Journal of the American Chemical Society, 2017, 139, 14001-14004.	6.6	61
460	Biobased Nanographene Oxide Creates Stronger Chitosan Hydrogels with Improved Adsorption Capacity for Trace Pharmaceuticals. ACS Sustainable Chemistry and Engineering, 2017, 5, 11525-11535.	3.2	51
461	Added value of lignin as lignin-based hybrid polyurethane for a compatibilizing agent. IOP Conference Series: Materials Science and Engineering, 2017, 223, 012033.	0.3	11
462	Catalytic Hydrogenation of Alkali Lignin Into Bio-Oil via Nano-Lamellar MoSe ₂ -Based Composite Catalysts. Nano, 2017, 12, 1750121.	0.5	5
463	Upgrading of oxygenated compounds present in aqueous biomass-derived feedstocks over NbO _x -based catalysts. Catalysis Science and Technology, 2017, 7, 5495-5499.	2.1	15
464	Synthesis of sustainable lignin-derived mesoporous carbon for supercapacitors using a nano-sized MgO template coupled with Pluronic F127. RSC Advances, 2017, 7, 48324-48332.	1.7	34
465	Flowthrough Reductive Catalytic Fractionation of Biomass. Joule, 2017, 1, 613-622.	11.7	197
466	Influence of ligand substitution on molybdenum catalysts with tridentate Schiff base ligands for the organic solvent-free oxidation of limonene using aqueous TBHP as oxidant. Molecular Catalysis, 2017, 443, 52-59.	1.0	27
467	Energy resources of the 21st century: problems and forecasts. Can renewable energy sources replace fossil fuels?. Russian Chemical Reviews, 2017, 86, 777-804.	2,5	107
468	Selective Hydrodeoxygenation of Lignin-Derived Phenols to Cyclohexanols over Co-Based Catalysts. ACS Sustainable Chemistry and Engineering, 2017, 5, 8594-8601.	3 . 2	111

#	Article	IF	CITATIONS
469	Direct use of humic acid mixtures to construct efficient Zr-containing catalysts for Meerwein–Ponndorf–Verley reactions. Green Chemistry, 2017, 19, 4829-4837.	4.6	58
470	Microwave-Assisted, Green Synthesis of $4(3 < i > H < /i >)$ -Quinazolinones under CO Pressure in \hat{I}^3 -Valerolactone and Reusable Pd/ \hat{I}^2 -Cyclodextrin Cross-Linked Catalyst. ACS Sustainable Chemistry and Engineering, 2017, 5, 9233-9243.	3.2	22
471	Selective Utilization of the Methoxy Group in Lignin to Produce Acetic Acid. Angewandte Chemie - International Edition, 2017, 56, 14868-14872.	7.2	72
472	Bio-based amines through sustainable heterogeneous catalysis. Green Chemistry, 2017, 19, 5303-5331.	4.6	210
473	Catalytic transfer hydrogenation of ethyl levulinate to \hat{I}^3 -valerolactone over zirconium (IV) Schiff base complexes on mesoporous silica with isopropanol as hydrogen source. Molecular Catalysis, 2017, 441, 168-178.	1.0	24
474	Novel Strategies for the Production of Fuels, Lubricants, and Chemicals from Biomass. Accounts of Chemical Research, 2017, 50, 2589-2597.	7.6	159
475	Water-Assisted Selective Hydrodeoxygenation of Guaiacol to Cyclohexanol over Supported Ni and Co Bimetallic Catalysts. ACS Sustainable Chemistry and Engineering, 2017, 5, 8824-8835.	3.2	128
476	Direct conversion of lignin into arene products catalyzed by a niobium-based material. Science Bulletin, 2017, 62, 1231-1232.	4.3	3
477	Survey of Lignin-Structure Changes and Depolymerization during Ionic Liquid Pretreatment. ACS Sustainable Chemistry and Engineering, 2017, 5, 10116-10127.	3.2	77
478	Self-hydrogen transfer hydrogenolysis of β-O-4 linkages in lignin catalyzed by MIL-100(Fe) supported Pd–Ni BMNPs. Green Chemistry, 2017, 19, 4538-4543.	4.6	76
479	Polar aprotic solvent-water mixture as the medium for catalytic production of hydroxymethylfurfural (HMF) from bread waste. Bioresource Technology, 2017, 245, 456-462.	4.8	71
480	Oneâ€Pot Enantioselective Synthesis of <scp>d</scp> â€Phenylglycines from Racemic Mandelic Acids, Styrenes, or Biobased <scp>l</scp> â€Phenylalanine <i>via</i> Cascade Biocatalysis. Advanced Synthesis and Catalysis, 2017, 359, 4305-4316.	2.1	38
481	Multiâ€criteria analysis of a biorefinery for coâ€production of lactic acid and ethanol from sugarcane lignocellulose. Biofuels, Bioproducts and Biorefining, 2017, 11, 971-990.	1.9	65
482	Secondary pyrolysis pathway of monomeric aromatics resulting from oxidized \hat{l}^2 -O-4 lignin dimeric model compounds. Fuel Processing Technology, 2017, 168, 11-19.	3.7	9
483	Selective Utilization of the Methoxy Group in Lignin to Produce Acetic Acid. Angewandte Chemie, 2017, 129, 15064-15068.	1.6	13
484	Lignin Valorization: Two Hybrid Biochemical Routes for the Conversion of Polymeric Lignin into Value-added Chemicals. Scientific Reports, 2017, 7, 8420.	1.6	110
485	Promotion catalytic role of ethanol on BrÃ, nsted acid for the sequential dehydration-etherification of fructose to 5-ethoxymethylfurfural. Journal of Catalysis, 2017, 352, 586-598.	3.1	40
486	Surfactant properties of PEGylated lignins: Anomalous interfacial activities at low grafting density. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 530, 200-208.	2.3	19

#	Article	IF	CITATIONS
487	Selective production of arenes via direct lignin upgrading over a niobium-based catalyst. Nature Communications, 2017, 8, 16104.	5.8	346
488	Effect of Brønsted/Lewis Acid Ratio on Conversion of Sugars to 5â€Hydroxymethylfurfural over Mesoporous Nb and Nbâ€W Oxides. Chinese Journal of Chemistry, 2017, 35, 1529-1539.	2.6	26
489	Direct deoxygenation of lignin model compounds into aromatic hydrocarbons through hydrogen transfer reaction. Applied Catalysis A: General, 2017, 547, 30-36.	2.2	67
490	Bioconversion of beverage waste to high fructose syrup as a value-added product. Food and Bioproducts Processing, 2017, 105, 179-187.	1.8	27
491	Deconstruction of lignocellulosic biomass with hydrated cerium (III) chloride in water and ethanol. Applied Catalysis A: General, 2017, 546, 67-78.	2.2	12
492	The selective hydrogenolysis of C–O bonds in lignin model compounds by Pd–Ni bimetallic nanoparticles in ionic liquids. Dalton Transactions, 2017, 46, 11884-11889.	1.6	19
493	Super impact absorbing bio-alloys from inedible plants. Green Chemistry, 2017, 19, 4503-4508.	4.6	9
494	Whole-cell biocatalytic selective oxidation of 5-hydroxymethylfurfural to 5-hydroxymethyl-2-furancarboxylic acid. Green Chemistry, 2017, 19, 4544-4551.	4.6	78
495	Adsorption and Separation of Aromatic Amino Acids from Aqueous Solutions Using Metal–Organic Frameworks. ACS Applied Materials & Distriction (1988) and Separation of Aromatic Amino Acids from Aqueous Solutions Using Metal–Organic Frameworks. ACS Applied Materials & Distriction (1988) and Separation of Aromatic Amino Acids from Aqueous Solutions Using Metal–Organic Frameworks. ACS Applied Materials & Distriction (1988) and Dis	4.0	35
496	Upgrade of Solvent-Free Acetone–Butanol–Ethanol Mixture to High-Value Biofuels over Ni-Containing MgO–SiO2 Catalysts with Greatly Improved Water-Resistance. ACS Sustainable Chemistry and Engineering, 2017, 5, 8181-8191.	3.2	25
497	Direct N-alkylation of unprotected amino acids with alcohols. Science Advances, 2017, 3, eaao6494.	4.7	82
498	Cellulose Hydrolysis Using Oxidized Carbon Catalyst in a Plug-Flow Slurry Process. Industrial & Camp; Engineering Chemistry Research, 2017, 56, 14471-14478.	1.8	16
499	Economically Efficient Synthesis of Lactide Using a Solid Catalyst. Organic Process Research and Development, 2017, 21, 1980-1984.	1.3	14
500	Rice husk-derived hybrid lithium-ion capacitors with ultra-high energy. Journal of Materials Chemistry A, 2017, 5, 24502-24507.	5. 2	49
501	(â^²)ESI/CAD MS ^{<i>n</i>} Procedure for Sequencing Lignin Oligomers Based on a Study of Synthetic Model Compounds with β-O-4 and 5-5 Linkages. Analytical Chemistry, 2017, 89, 13089-13096.	3.2	22
503	A novel route for green conversion of cellulose to HMF by cascading enzymatic and chemical reactions. AICHE Journal, 2017, 63, 4920-4932.	1.8	44
504	High-rate lactic acid production from food waste and waste activated sludge via interactive control of pH adjustment and fermentation temperature. Chemical Engineering Journal, 2017, 328, 197-206.	6.6	80
505	Selective transformation of renewable furfural catalyzed by diverse active species derived from 2D co-based metal-organic frameworks. Journal of Catalysis, 2017, 352, 480-490.	3.1	26

#	Article	IF	CITATIONS
506	The effect of structural properties of natural silica precursors in the mesoporogen-free synthesis of hierarchical ZSM-5 below 100°C. Advanced Powder Technology, 2017, 28, 443-452.	2.0	36
507	Synthesis and evaluation of acid-base bi-functionalized SBA-15 catalyst for biomass energy conversation. Chemical Engineering Journal, 2017, 313, 1593-1606.	6.6	56
508	Effective transformation of cellulose to 5-hydroxymethylfurfural catalyzed by fluorine anion-containing ionic liquid modified biochar sulfonic acids in water. Cellulose, 2017, 24, 95-106.	2.4	35
509	Strategy for dual production of bioethanol and d-psicose as value-added products from cruciferous vegetable residue. Bioresource Technology, 2017, 223, 34-39.	4.8	38
510	Ferulic acid-based renewable esters and amides-containing epoxy thermosets from wheat bran and beetroot pulp: Chemo-enzymatic synthesis and thermo-mechanical properties characterization. Industrial Crops and Products, 2017, 95, 83-95.	2.5	67
511	Isobutyrate biosynthesis via methanol chain elongation: converting organic wastes to platform chemicals. Journal of Chemical Technology and Biotechnology, 2017, 92, 1370-1379.	1.6	27
512	Grape Winery Waste as Feedstock for Bioconversions: Applying the Biorefinery Concept. Waste and Biomass Valorization, 2017, 8, 1011-1025.	1.8	123
513	Alâ€doped SBAâ€15 Catalysts for Lowâ€temperature Dehydration of 1,3â€Butanediol into Butadiene. ChemCatChem, 2017, 9, 258-262.	1.8	25
514	The E factor 25 years on: the rise of green chemistry and sustainability. Green Chemistry, 2017, 19, 18-43.	4.6	912
515	Interfacial acidity in ligand-modified ruthenium nanoparticles boosts the hydrogenation of levulinic acid to gamma-valerolactone. Green Chemistry, 2017, 19, 2361-2370.	4.6	58
516	Catalytic Transformation of Lignocellulose into Chemicals and Fuel Products in Ionic Liquids. Chemical Reviews, 2017, 117, 6834-6880.	23.0	706
517	Lignin depolymerization to aromatic monomers and oligomers in isopropanol assisted by microwave heating. Polymer Degradation and Stability, 2017, 135, 54-60.	2.7	53
518	Conversion of Biomass Using Simultaneous Chemo- and Bio-catalysis. Biofuels and Biorefineries, 2017, , 347-378.	0.5	1
519	Vermicomposting: A sustainable tool for environmental equilibria. Environmental Quality Management, 2017, 27, 23-40.	1.0	30
520	Bio- and chemocatalysis cascades as a bridge between biology and chemistry for green polymer synthesis. Cellular and Molecular Biology Letters, 2017, 22, 28.	2.7	6
521	Biocatalytic Valorization of Furans: Opportunities for Inherently Unstable Substrates. ChemSusChem, 2017, 10, 4123-4134.	3.6	85
522	Recycling of Sulfuric Acid in the Valorization of Biomass Residues. Periodica Polytechnica: Chemical Engineering, 2017, 61, 283.	0.5	1
523	Lignin from Micro- to Nanosize: Applications. International Journal of Molecular Sciences, 2017, 18, 2367.	1.8	136

#	Article	IF	CITATIONS
524	Investigating the Combustion and Emissions Characteristics of Biomass-Derived Platform Fuels as Gasoline Extenders in a Single Cylinder Spark-Ignition Engine., 0,,.		3
525	Structural Characterization of Lignin Isolated from Wheat-Straw during the Alkali Cooking Process. BioResources, 2017, 12, .	0.5	4
526	Pretreatment of Lignocellulosic Biomass with Ionic Liquids and Ionic Liquid-Based Solvent Systems. Molecules, 2017, 22, 490.	1.7	117
527	Catalytic Oxidation of Lignin in Solvent Systems for Production of Renewable Chemicals: A Review. Polymers, 2017, 9, 240.	2.0	72
528	Chemicals From Lignin., 2017,, 573-585.		51
529	Initial Considerations. , 2017, , 3-16.		3
530	Catalytic Acetalization: An Efficient Strategy for High-Value Utilization of Biodiesel-Derived Glycerol. Catalysts, 2017, 7, 184.	1.6	9
531	Composition of Lignin-to-Liquid Solvolysis Oils from Lignin Extracted in a Semi-Continuous Organosolv Process. International Journal of Molecular Sciences, 2017, 18, 225.	1.8	15
532	Upgrading Lignocellulosic Biomasses: Hydrogenolysis of Platform Derived Molecules Promoted by Heterogeneous Pd-Fe Catalysts. Catalysts, 2017, 7, 78.	1.6	42
533	Metabolism of aromatics by Trichosporon oleaginosus while remaining oleaginous. Microbial Cell Factories, 2017, 16, 206.	1.9	35
534	Enhanced polyhydroxyalkanoate (PHA) production from the organic fraction of municipal solid waste by using mixed microbial culture. Biotechnology for Biofuels, 2017, 10, 201.	6.2	96
535	Catalytic Natural Gas Utilization on Unconventional Oil Upgrading. , 2017, , .		1
536	Cellulose Isolation from Corn Stalk Treated by Alkaline Biochars in Solvent Systems. BioResources, 2017, 13, .	0.5	2
537	Photocatalytic conversion of biomass into valuable products: a meaningful approach?. Green Chemistry, 2018, 20, 1169-1192.	4.6	181
538	Utilization of lignite derivatives to construct Zr-based catalysts for the conversion of biomass-derived ethyl levulinate. Fuel, 2018, 217, 122-130.	3.4	16
539	Cellulose recovery from Quercus sp. sawdust using Ethanosolv pretreatment. Biomass and Bioenergy, 2018, 111, 114-124.	2.9	16
540	The Road to Biorenewables: Carbohydrates to Commodity Chemicals. ACS Sustainable Chemistry and Engineering, 2018, 6, 4464-4480.	3.2	120
541	A rapid and efficient hydrothermal conversion of coconut husk into formic acid and acetic acid. Process Biochemistry, 2018, 68, 131-135.	1.8	26

#	Article	IF	Citations
542	Toward engineering <i>E. coli</i> with an autoregulatory system for lignin valorization. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2970-2975.	3.3	101
543	Conservative evolution and industrial metabolism in Green Chemistry. Green Chemistry, 2018, 20, 2171-2191.	4.6	45
544	Selective Fragmentation of Biorefinery Corncob Lignin into <i>>p</i> i>â€Hydroxycinnamic Esters with a Supported Zinc Molybdate Catalyst. ChemSusChem, 2018, 11, 2114-2123.	3.6	73
545	On the thermal behavior of protein isolated from different legumes investigated by <scp>DSC</scp> and <scp>TGA</scp> . Journal of the Science of Food and Agriculture, 2018, 98, 5368-5377.	1.7	66
546	N-Heterocyclic Carbene Promoted Decarboxylation of Lignin-Derived Aromatic Acids. ACS Sustainable Chemistry and Engineering, 2018, 6, 7232-7238.	3.2	19
547	Chemoselective deoxygenation of ether-substituted alcohols and carbonyl compounds by B(C ₆ F ₅) ₃ -catalyzed reduction with (HMe ₂ SiCH ₂) ₂ . Chemical Communications, 2018, 54, 4834-4837.	2.2	26
548	Sustainable green pretreatment approach to biomass-to-energy conversion using natural hydro-low-transition-temperature mixtures. Bioresource Technology, 2018, 261, 361-369.	4.8	35
549	Directed combinatorial mutagenesis of Escherichia coli for complex phenotype engineering. Metabolic Engineering, 2018, 47, 10-20.	3.6	32
550	Propylene carbonate and \hat{I}^3 -valerolactone as green solvents enhance Sn($\langle scp \rangle iv \langle scp \rangle$)-catalysed hydroxymethylfurfural (HMF) production from bread waste. Green Chemistry, 2018, 20, 2064-2074.	4.6	85
551	The Green ChemisTREE: 20 years after taking root with the 12 principles. Green Chemistry, 2018, 20, 1929-1961.	4.6	499
552	A nitrogen-ligated nickel-catalyst enables selective intermolecular cyclisation of \hat{l}^2 - and \hat{l}^3 -amino alcohols with ketones: access to five and six-membered N-heterocycles. Green Chemistry, 2018, 20, 2250-2256.	4.6	77
553	Homogeneous polymetallic ruthenium(<scp>ii</scp>)^zinc(<scp>ii</scp>) complexes: robust catalysts for the efficient hydrogenation of levulinic acid to γ-valerolactone. Catalysis Science and Technology, 2018, 8, 2370-2380.	2.1	17
554	Total Hydrogenation of Furfural over Pd/Al ₂ O ₃ and Ru/ZrO ₂ Mixture under Mild Conditions: Essential Role of Tetrahydrofurfural as an Intermediate and Support Effect. ACS Sustainable Chemistry and Engineering, 2018, 6, 6957-6964.	3.2	63
555	Exploiting waste: towards a sustainable production of biodiesel using <i>Musa acuminata</i> peel ash as a heterogeneous catalyst. Green Chemistry, 2018, 20, 2365-2373.	4.6	175
556	Palladium atalyzed Formal Cross oupling of Diaryl Ethers with Amines: Slicing the 4â€ <i>O</i> à65 Linkage in Lignin Models. Angewandte Chemie, 2018, 130, 3814-3819.	1.6	37
557	Integrated processing of plant-derived waste to produce value-added products based on the biorefinery concept. Trends in Food Science and Technology, 2018, 74, 119-131.	7.8	115
558	Temperatureâ€Directed Biocatalysis for the Sustainable Production of Aromatic Aldehydes or Alcohols. Angewandte Chemie - International Edition, 2018, 57, 1214-1217.	7.2	43
560	Palladium atalyzed Formal Cross oupling of Diaryl Ethers with Amines: Slicing the 4â€ <i>O</i> à6€5 Linkage in Lignin Models. Angewandte Chemie - International Edition, 2018, 57, 3752-3757.	7.2	90

#	Article	IF	CITATIONS
561	Promising bulk production of a potentially benign bisphenol A replacement from a hardwood lignin platform. Green Chemistry, 2018, 20, 1050-1058.	4.6	66
562	Bright Side of Lignin Depolymerization: Toward New Platform Chemicals. Chemical Reviews, 2018, 118, 614-678.	23.0	1,473
563	Evaluating Gold and Selenium Chemistry for Selective Transformations of Lignin Model Compounds. Advanced Synthesis and Catalysis, 2018, 360, 1376-1383.	2.1	8
564	Green and Sustainable Separation of Natural Products from Agro-Industrial Waste: Challenges, Potentialities, and Perspectives on Emerging Approaches. Topics in Current Chemistry, 2018, 376, 3.	3.0	109
565	Temperatureâ€Directed Biocatalysis for the Sustainable Production of Aromatic Aldehydes or Alcohols. Angewandte Chemie, 2018, 130, 1228-1231.	1.6	7
566	Fabrication and Evaluation of Multiâ€Walled Carbon Nanotubes Supported Novel Catalyst for Select Conversion of Cellulose to 5â€Hydroxymethylfurfural. Energy Technology, 2018, 6, 1633-1641.	1.8	10
567	Lignin Functionalized with Succinic Anhydride as Building Block for Biobased Thermosetting Polyester Coatings. ACS Sustainable Chemistry and Engineering, 2018, 6, 3392-3401.	3.2	66
568	Highly efficient conversion of glucose into methyl levulinate catalyzed by tin-exchanged montmorillonite. Renewable Energy, 2018, 120, 231-240.	4.3	27
569	Characterization of Lignin Streams during Bionic Liquid-Based Pretreatment from Grass, Hardwood, and Softwood. ACS Sustainable Chemistry and Engineering, 2018, 6, 3079-3090.	3.2	70
570	Complete lignocellulose conversion with integrated catalyst recycling yielding valuable aromatics and fuels. Nature Catalysis, 2018, 1, 82-92.	16.1	350
571	Lignin-first depolymerization of native corn stover with an unsupported MoS ₂ catalyst. RSC Advances, 2018, 8, 1361-1370.	1.7	35
572	Cobalt Nanocluster Supported on ZrRE _{<i>n</i>} O _{<i>x</i>} for the Selective Hydrogenation of Biomass Derived Aromatic Aldehydes and Ketones in Water. ACS Catalysis, 2018, 8, 1268-1277.	5.5	66
573	Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chemical Society Reviews, 2018, 47, 852-908.	18.7	1,708
574	Phenol preparation from catalytic pyrolysis of palm kernel shell at low temperatures. Bioresource Technology, 2018, 253, 214-219.	4.8	30
575	Impact of increasing methyl branches in aromatic hydrocarbons on diesel engine combustion and emissions. Fuel, 2018, 216, 579-588.	3.4	31
576	Understanding the relationship between the structure and depolymerization behavior of lignin. Fuel, 2018, 217, 202-210.	3.4	59
577	Magnetic nickel ferrite nanoparticles as highly durable catalysts for catalytic transfer hydrogenation of bio-based aldehydes. Catalysis Science and Technology, 2018, 8, 790-797.	2.1	74
578	High {0†0†1} faceted TiO2 nanoparticles for the valorization of oxygenated compounds present in aqueous biomass-derived feedstocks. Journal of Catalysis, 2018, 358, 266-276.	3.1	16

#	Article	IF	CITATIONS
579	Size-dependent catalytic performance of ruthenium nanoparticles in the hydrogenolysis of a \hat{l}^2 -O-4 lignin model compound. Catalysis Science and Technology, 2018, 8, 735-745.	2.1	65
580	In vitro and in vivo characterization of three Cellvibrio japonicus glycoside hydrolase family 5 members reveals potent xyloglucan backbone-cleaving functions. Biotechnology for Biofuels, 2018, 11, 45.	6.2	24
581	Improved synthesis of 2,5-bis(hydroxymethyl)furan from 5-hydroxymethylfurfural using acclimatized whole cells entrapped in calcium alginate. Bioresource Technology, 2018, 262, 177-183.	4.8	52
582	Conversion of Carbohydrates to Chemicals. Series on Chemistry, Energy and the Environment, 2018, , 19-76.	0.3	0
583	Catalytic condensation for the formation of polycyclic heteroaromatic compounds. Nature Communications, 2018, 9, 1751.	5.8	39
584	Review on Catalytic Cleavage of C–C Inter-unit Linkages in Lignin Model Compounds: Towards Lignin Depolymerisation. Topics in Catalysis, 2018, 61, 183-198.	1.3	112
585	Controlling the selectivity to chemicals from catalytic depolymerization of kraft lignin with in-situ H2. Bioresource Technology, 2018, 264, 1-6.	4.8	32
586	Catalytic oxidation of cellulose to formic acid in $V(V)$ -Fe(III)-H2SO4 aqueous solution with O2. Fuel Processing Technology, 2018, 173, 197-204.	3.7	19
587	Synergetic Dissolution of Branched Xylan and Lignin Opens the Way for Enzymatic Hydrolysis of Poplar Cell Wall. Journal of Agricultural and Food Chemistry, 2018, 66, 3449-3456.	2.4	15
588	Nitrogen, Phosphorus, and Antioxidant Contents in Crop Residues for Potential Cascade Utilization. Waste and Biomass Valorization, 2018, 9, 1535-1542.	1.8	5
589	Characterization of the solid products from hydrothermal liquefaction of waste feedstocks from food and agricultural industries. Journal of Supercritical Fluids, 2018, 133, 665-673.	1.6	64
590	Effect of solid state fermentation of peanut shell on its dye adsorption performance. Bioresource Technology, 2018, 249, 307-314.	4.8	61
591	Liquid fuels from biomass: An energy self-sustained process integrating H2 recovery and liquid refining. Fuel, 2018, 212, 353-363.	3.4	18
592	Manganese Complexes for (De)Hydrogenation Catalysis: A Comparison to Cobalt and Iron Catalysts. Angewandte Chemie - International Edition, 2018, 57, 46-60.	7.2	446
593	Biowaste-to-biomethane or biowaste-to-energy? An LCA study on anaerobic digestion of organic waste. Journal of Cleaner Production, 2018, 174, 462-476.	4.6	143
594	Mangankomplexe in der (De)Hydrierâ€Katalyse – ein Vergleich mit Cobalt―und Eisenkatalysatoren. Angewandte Chemie, 2018, 130, 48-63.	1.6	113
595	Combined approaches to obtain cellulose nanocrystals, nanofibrils and fermentable sugars from elephant grass. Carbohydrate Polymers, 2018, 180, 38-45.	5.1	50
596	Using benzene carboxylic acids to prepare zirconium-based catalysts for the conversion of biomass-derived furfural. International Journal of Coal Science and Technology, 2018, 5, 464-472.	2.7	9

#	Article	IF	Citations
597	Influence of the Anion on the Oxidation of 5â€Hydroxymethylfurfural by Using Ionicâ€Polymerâ€Supported Platinum Nanoparticle Catalysts. ChemPlusChem, 2018, 83, 19-23.	1.3	27
598	Overexpression of <i>SbMyb60</i> in <i>Sorghum bicolor</i> impacts both primary and secondary metabolism. New Phytologist, 2018, 217, 82-104.	3.5	42
599	Kraft lignin biorefinery: A perspective. Bioresource Technology, 2018, 247, 1181-1183.	4.8	174
600	Role of Biocatalysis in Sustainable Chemistry. Chemical Reviews, 2018, 118, 801-838.	23.0	1,175
601	Ethanol production from bamboo using mild alkaline pre-extraction followed by alkaline hydrogen peroxide pretreatment. Bioresource Technology, 2018, 247, 242-249.	4.8	74
602	Cobalt-catalyzed acceptorless dehydrogenative coupling of aminoalcohols with alcohols: direct access to pyrrole, pyridine and pyrazine derivatives. Chemical Communications, 2018, 54, 90-93.	2.2	105
603	Valorization of Grass Lignins: Swift and Selective Recovery of Pendant Aromatic Groups with Ozone. ACS Sustainable Chemistry and Engineering, 2018, 6, 71-76.	3.2	30
604	Effects of cultivation period on catch crop chemical composition and potential for bioenergy production. Industrial Crops and Products, 2018, 111, 787-793.	2.5	4
605	Hydrodynamic cavitation as a strategy to enhance the efficiency of lignocellulosic biomass pretreatment. Critical Reviews in Biotechnology, 2018, 38, 483-493.	5.1	61
606	Towards the Shell Biorefinery: Sustainable Synthesis of the Anticancer Alkaloid Proximicinâ€A from Chitin. ChemSusChem, 2018, 11, 532-535.	3.6	79
607	Quantitative analysis of products from lignin depolymerisation in high-temperature water. European Polymer Journal, 2018, 99, 38-48.	2.6	28
608	Overcoming catalyst deactivation during the continuous conversion of sugars to chemicals: maximising the performance of Sn-Beta with a little drop of water. Reaction Chemistry and Engineering, 2018, 3, 155-163.	1.9	39
609	Hydrothermal CO 2 reduction using biomass derivatives as reductants. Journal of Supercritical Fluids, 2018, 133, 658-664.	1.6	20
610	Repurposing paper by-product lignosulfonate as a sulfur donor/acceptor for high performance lithium–sulfur batteries. Sustainable Energy and Fuels, 2018, 2, 422-429.	2.5	26
611	Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability. Chemical Reviews, 2018, 118, 505-613.	23.0	898
612	Metrics of Green Chemistry and Sustainability: Past, Present, and Future. ACS Sustainable Chemistry and Engineering, 2018, 6, 32-48.	3.2	673
613	Positional Selectivity in the Hydrosilylative Partial Deoxygenation of Disaccharides by Boron Catalysts. ACS Catalysis, 2018, 8, 81-85.	5.5	26
614	Valorisation of lignin by depolymerisation and fractionation using supercritical fluids and conventional solvents. Journal of Supercritical Fluids, 2018, 133, 690-695.	1.6	26

#	Article	IF	CITATIONS
615	Efficient Vaporâ€Phase Selective Hydrogenolysis of Bioâ€Levulinic Acid to γâ€Valerolactone Using Cu Supported on Hydrotalcite Catalysts. Global Challenges, 2018, 2, 1800028.	1.8	14
616	Comparison of two multifunctional catalysts [M/Nb ₂ O ₅ (M = Pd, Pt)] for one-pot hydrodeoxygenation of lignin. Catalysis Science and Technology, 2018, 8, 6129-6136.	2.1	26
617	Solvent-free mechanochemical oxidation and reduction of biomass-derived 5-hydroxymethyl furfural. Green Chemistry, 2018, 20, 5261-5265.	4.6	19
618	Aerobic oxidation of 5-hydroxymethylfurfural to 5-hydroxymethyl-2-furancarboxylic acid and its derivatives by heterogeneous NHC-catalysis. Organic and Biomolecular Chemistry, 2018, 16, 8955-8964.	1.5	50
619	Copper-catalyzed three-component synthesis of pyrimidines from amidines and alcohols. Organic and Biomolecular Chemistry, 2018, 16, 9487-9491.	1.5	25
620	Microwave-assisted preparation of Ag/Ag ₂ S carbon hybrid structures from pig bristles as efficient HER catalysts. Journal of Materials Chemistry A, 2018, 6, 21516-21523.	5.2	48
621	Noble metal-free upgrading of multi-unsaturated biomass derivatives at room temperature: silyl species enable reactivity. Green Chemistry, 2018, 20, 5327-5335.	4.6	28
624	Nickel-Catalyzed Synthesis of <i>N</i> -Substituted Pyrroles Using Diols with Aryl- and Alkylamines. Journal of Organic Chemistry, 2018, 83, 15406-15414.	1.7	43
625	Editorial: Nano-(Bio)Catalysis in Lignocellulosic Biomass Valorization. Frontiers in Chemistry, 2018, 6, 577.	1.8	4
626	Mild Hydrothermal Liquefaction of High Water Content Agricultural Residue for Bio-Crude Oil Production: A Parametric Study. Energies, 2018, 11, 3129.	1.6	19
627	State-of-the-art catalytic hydrogenolysis of lignin for the production of aromatic chemicals. Catalysis Science and Technology, 2018, 8, 6275-6296.	2.1	90
628	Shell biorefinery: A comprehensive introduction. Green Energy and Environment, 2018, 3, 318-327.	4.7	79
629	Biorefining of protein waste for production of sustainable fuels and chemicals. Biotechnology for Biofuels, 2018, 11, 256.	6.2	58
630	Photocatalytic Oxidation and Subsequent Hydrogenolysis of Lignin β-O-4 Models to Aromatics Promoted by In Situ Carbonic Acid. ACS Sustainable Chemistry and Engineering, 2018, 6, 15032-15039.	3.2	47
631	Solar energy-driven lignin-first approach to full utilization of lignocellulosic biomass under mild conditions. Nature Catalysis, 2018, 1, 772-780.	16.1	442
632	Light/Copper Relay for Aerobic Fragmentation of Lignin Model Compounds. Asian Journal of Organic Chemistry, 2018, 7, 2431-2434.	1.3	16
633	UV-Vis Spectroscopy and Chemometrics for the Monitoring of Organosolv Pretreatments. ChemEngineering, 2018, 2, 45.	1.0	7
634	Reversible Thermal Cycling of DNA Material for Efficient Cellulose Hydrolysis. ACS Applied Bio Materials, 2018, 1, 1118-1123.	2.3	3

#	Article	IF	CITATIONS
635	Advancement in technologies for the depolymerization of lignin. Fuel Processing Technology, 2018, 181, 115-132.	3.7	159
636	Lignin-Containing Photoactive Resins for 3D Printing by Stereolithography. ACS Applied Materials & Lignin-Containing Photoactive Resins for 3D Printing by Stereolithography. ACS Applied Materials & Lignin-Containing Photoactive Resins for 3D Printing by Stereolithography. ACS Applied Materials & Lignin-Containing Photoactive Resins for 3D Printing by Stereolithography. ACS Applied Materials & Lignin-Containing Photoactive Resins for 3D Printing by Stereolithography. ACS Applied Materials & Lignin-Containing Photoactive Resins for 3D Printing by Stereolithography. ACS Applied Materials & Lignin-Containing Photoactive Resins for 3D Printing by Stereolithography. ACS Applied Materials & Lignin-Containing Photoactive Resins for 3D Printing by Stereolithography. ACS Applied Materials & Lignin-Containing Photoactive Resins for 3D Printing Photoactive	4.0	127
637	Ni nanoparticles entrapped in nickel phyllosilicate for selective hydrogenation of guaiacol to 2-methoxycyclohexanol. Applied Catalysis A: General, 2018, 568, 231-241.	2.2	53
638	Preparation and Application of Biochar-Based Catalysts for Biofuel Production. Catalysts, 2018, 8, 346.	1.6	167
639	Hybrid Adsorbent Materials Obtained by the Combination of Poly(ethylene-alt-maleic anhydride) with Lignin and Lignosulfonate. Journal of Polymers and the Environment, 2018, 26, 4293-4302.	2.4	13
640	Transforming food waste: how immobilized enzymes can valorize waste streams into revenue streams. Npj Science of Food, 2018, 2, 19.	2.5	74
642	Scalable Synthesis of Bio-Based Functional Styrene: Protected Vinyl Catechol from Caffeic Acid and Controlled Radical and Anionic Polymerizations Thereof. ACS Sustainable Chemistry and Engineering, 2018, 6, 13681-13686.	3.2	39
643	Reviewing the Anaerobic Digestion of Food Waste: From Waste Generation and Anaerobic Process to Its Perspectives. Applied Sciences (Switzerland), 2018, 8, 1804.	1.3	138
644	Cu(II)–Glucose: Sustainable Catalyst for the Synthesis of Quinazolinones in a Biomass-Derived Solvent 2-MethylTHF and Application for the Synthesis of Diproqualone. ACS Sustainable Chemistry and Engineering, 2018, 6, 14283-14291.	3.2	24
645	Homogeneous Catalysis by Cobalt and Manganese Pincer Complexes. ACS Catalysis, 2018, 8, 11435-11469.	5.5	412
646	Manganese-catalyzed hydroboration of carbon dioxide and other challenging carbonyl groups. Nature Communications, 2018, 9, 4521.	5.8	104
647	Acetone/water oxidation of corn stover for the production of bioethanol and prebiotic oligosaccharides. Bioresource Technology, 2018, 270, 208-215.	4.8	15
648	Green and Sustainable Separation of Natural Products from Agro-Industrial Waste: Challenges, Potentialities, and Perspectives on Emerging Approaches. Topics in Current Chemistry Collections, 2018, , 229-282.	0.2	11
649	Synthesis of a lignin-based phosphorus-containing flame retardant and its application in polyurethane. RSC Advances, 2018, 8, 32252-32261.	1.7	50
650	Catalytic Lewis Pair Polymerization of Renewable Methyl Crotonate to High-Molecular-Weight Polymers. ACS Catalysis, 2018, 8, 9877-9887.	5 . 5	60
651	Systematic procedure and framework for synthesis and evaluation of bioethanol production processes from lignocellulosic biomass. Bioresource Technology Reports, 2018, 4, 29-39.	1.5	14
652	Efficient bioconversion of furfural to furfuryl alcohol by <i>Bacillus coagulans</i> NLO1. RSC Advances, 2018, 8, 26720-26727.	1.7	40
653	Advanced Sustainable Thermoplastics Based on Wood Residue Using Interface Nanomodification Technique. Advanced Sustainable Systems, 2018, 2, 1800050.	2.7	12

#	Article	IF	CITATIONS
654	Highly Active Catalytic Ruthenium/TiO2Nanomaterials for Continuous Production of $\hat{l}^3 \hat{a} \in V$ alerolactone. ChemSusChem, 2018, 11, 2604-2611.	3.6	23
655	Comparative material balances and preliminary technical analysis of the pilot scale sugarcane bagasse alkaline pretreatment to 2G ethanol production. Industrial Crops and Products, 2018, 120, 187-197.	2.5	16
656	Aerobic Oxidation of 5â€(Hydroxymethyl)furfural Cyclic Acetal Enables Selective Furanâ€2,5â€dicarboxylic Acid Formation with CeO ₂ â€Supported Gold Catalyst. Angewandte Chemie, 2018, 130, 8367-8371.	1.6	34
657	A new route to synthesize aryl acetates from carbonylation of aryl methyl ethers. Science Advances, 2018, 4, eaaq0266.	4.7	19
658	Recycling of food waste into chemical building blocks. Current Opinion in Green and Sustainable Chemistry, 2018, 13, 118-122.	3.2	24
659	Ruthenium Supported on Highâ€Surfaceâ€Area Zirconia as an Efficient Catalyst for the Baseâ€Free Oxidation of 5â€Hydroxymethylfurfural to 2,5â€Furandicarboxylic Acid. ChemSusChem, 2018, 11, 2083-2090.	3.6	60
660	Bioproduction of Benzylamine from Renewable Feedstocks via a Nineâ€Step Artificial Enzyme Cascade and Engineered Metabolic Pathways. ChemSusChem, 2018, 11, 2221-2228.	3.6	28
661	Zirconium tripolyphosphate as an efficient catalyst for the hydrogenation of ethyl levulinate to \hat{I}^3 -valerolactone with isopropanol as hydrogen donor. Reaction Kinetics, Mechanisms and Catalysis, 2018, 125, 71-84.	0.8	4
662	Modeling pyrolytic behavior of pre-oxidized lignin using four representative \hat{l}^2 -ether-type lignin-like model polymers. Fuel Processing Technology, 2018, 176, 221-229.	3.7	12
663	Decomposition and isomerization of 1-pentanol radicals and the pyrolysis of 1-pentanol. Combustion and Flame, 2018, 196, 500-514.	2.8	23
664	Kaolin: A Natural Low-Cost Material as Catalyst for Isomerization of Glucose to Fructose. ACS Sustainable Chemistry and Engineering, 2018, 6, 8782-8789.	3.2	22
665	Acidogenic Biorefinery: Food Waste Valorization to Biogas and Platform Chemicals. , 2018, , 203-218.		19
666	Food Supply Chain Waste: A Functional Periodic Table of Bio-Based Resources., 2018,, 219-236.		2
667	Characterization of a uronate dehydrogenase from Thermobispora bispora for production of glucaric acid from hemicellulose substrate. World Journal of Microbiology and Biotechnology, 2018, 34, 102.	1.7	21
668	Serendipitous Synthesis Found in the Nuances of Homoleptic Zinc Complex Formation. Inorganic Chemistry, 2018, 57, 8169-8180.	1.9	5
669	Solid Phase Extraction of Bio-Oil Model Compounds and Lignin-Derived Bio-Oil Using Amine-Functionalized Mesoporous Silicas. ACS Sustainable Chemistry and Engineering, 2018, 6, 9716-9724.	3.2	15
670	Catalytic transfer hydrogenation of biomass-derived 5-hydroxymethylfurfural into 2,5-bis(hydroxymethyl)furan over tunable Zr-based bimetallic catalysts. Catalysis Science and Technology, 2018, 8, 4474-4484.	2.1	58
671	Cobalt-Catalyzed Oxidation of the \hat{I}^2 -O-4 Bond in Lignin and Lignin Model Compounds. ACS Omega, 2018, 3, 8386-8392.	1.6	30

#	Article	IF	CITATIONS
672	Preparation of a Sepia Melanin and Poly(ethylene-alt-maleic Anhydride) Hybrid Material as an Adsorbent for Water Purification. Nanomaterials, 2018, 8, 54.	1.9	15
673	Response surface optimization, kinetic study and process design of n-butyl levulinate synthesis. Chemical Engineering Research and Design, 2018, 137, 577-588.	2.7	28
675	Biomass-Derived Building Block Chemicals. , 2018, , 177-200.		2
676	Plant Carbohydrates and Production of Renewable Biofuel from Starch, Sugar, and Cellulose. , 2018, , 87-107.		3
677	Increasing Profits in Food Waste Biorefinery—A Techno-Economic Analysis. Energies, 2018, 11, 1551.	1.6	82
678	Alternatives for Chemical and Biochemical Lignin Valorization: Hot Topics from a Bibliometric Analysis of the Research Published During the 2000–2016 Period. Processes, 2018, 6, 98.	1.3	47
679	Development of a production chain from vegetable biowaste to platform chemicals. Microbial Cell Factories, 2018, 17, 90.	1.9	12
680	Isolation and characterization of lignin from beech wood and chestnut sawdust for the preparation of lignin nanoparticles (LNPs) from wood industry side-streams. Holzforschung, 2018, 72, 961-972.	0.9	28
681	Catalytic Transfer Hydrogenolysis as an Effective Tool for the Reductive Upgrading of Cellulose, Hemicellulose, Lignin, and Their Derived Molecules. Catalysts, 2018, 8, 313.	1.6	58
682	Bio-Based Compounds from Grape Seeds: A Biorefinery Approach. Molecules, 2018, 23, 1888.	1.7	84
683	Characterization of Two Endo- \hat{l}^2 -1, 4-Xylanases from Myceliophthora thermophila and Their Saccharification Efficiencies, Synergistic with Commercial Cellulase. Frontiers in Microbiology, 2018, 9, 233.	1.5	52
684	A Bibliometric Study of Scientific Publications regarding Hemicellulose Valorization during the 2000–2016 Period: Identification of Alternatives and Hot Topics. ChemEngineering, 2018, 2, 7.	1.0	26
685	Biochar from Biosolids Pyrolysis: A Review. International Journal of Environmental Research and Public Health, 2018, 15, 956.	1.2	136
686	Production of Micro- and Nanoscale Lignin from Wheat Straw Using Different Precipitation Setups. Molecules, 2018, 23, 633.	1.7	32
688	Preparation and application of energy materials from biomass. International Journal of Modern Physics B, 2018, 32, 1840081.	1.0	3
689	A comparative study for the organic byproducts from hydrothermal carbonizations of sugarcane bagasse and its bio-refined components cellulose and lignin. PLoS ONE, 2018, 13, e0197188.	1.1	19
690	Lignocellulosic Biomass Transformations via Greener Oxidative Pretreatment Processes: Access to Energy and Value-Added Chemicals. Frontiers in Chemistry, 2018, 6, 141.	1.8	208
691	Lignin-Based Composite Materials for Photocatalysis and Photovoltaics. Topics in Current Chemistry, 2018, 376, 20.	3.0	53

#	Article	IF	Citations
692	Aerobic Oxidation of 5â€(Hydroxymethyl)furfural Cyclic Acetal Enables Selective Furanâ€2,5â€dicarboxylic Acid Formation with CeO ₂ â€Supported Gold Catalyst. Angewandte Chemie - International Edition, 2018, 57, 8235-8239.	7.2	163
693	Molecular tools for selective recovery and detection of lignin-derived molecules. Green Chemistry, 2018, 20, 2829-2839.	4.6	8
694	Enhancing the conversion of ethyl levulinate to \hat{I}^3 -valerolactone over Ru/UiO-66 by introducing sulfonic groups into the framework. RSC Advances, 2018, 8, 16611-16618.	1.7	15
695	Graphene enhanced transformation of lignin in laccase-ABTS system by accelerating electron transfer. Enzyme and Microbial Technology, 2018, 119, 17-23.	1.6	8
696	Formal Cross-Coupling of Diaryl Ethers with Ammonia by Dual C(Ar)–O Bond Cleavages. ACS Catalysis, 2018, 8, 8873-8878.	5. 5	50
697	Bacterial cellulose for increasing barrier properties of paper products. Cellulose, 2018, 25, 6093-6105.	2.4	39
698	Catalytic Strategies Towards Lignin-Derived Chemicals. Topics in Current Chemistry, 2018, 376, 36.	3.0	75
699	Coupling of hydrothermal and ionic liquid pretreatments for sequential biorefinery of Tamarix austromongolica. Applied Energy, 2018, 229, 745-755.	5.1	20
700	Festschrift in Honor of Istv \tilde{A}_i n T. Horv \tilde{A}_i th. ACS Sustainable Chemistry and Engineering, 2018, 6, 9523-9529.	3.2	3
701	Photoinduced Deaminative Borylation of Alkylamines. Journal of the American Chemical Society, 2018, 140, 10700-10704.	6.6	310
702	Assessment of sugarcane industry: Suitability for production, consumption, and utilization. Annals of Agrarian Science, 2018, 16, 389-395.	1,2	65
703	Catalytic Transfer Hydrogenolysis of Lignin-Derived Aromatic Ethers Promoted by Bimetallic Pd/Ni Systems. ACS Sustainable Chemistry and Engineering, 2018, 6, 9269-9276.	3.2	112
704	Thermal characterization and pyrolysis of digestate for phenol production. Fuel, 2018, 232, 141-146.	3.4	34
705	Fractionation of Soda Pulp Lignin in Aqueous Solvent through Membrane-Assisted Ultrafiltration. ACS Sustainable Chemistry and Engineering, 2018, 6, 9056-9064.	3.2	24
706	Making Sustainable Biofuels and Sunscreen from Corncobs To Introduce Students to Integrated Biorefinery Concepts and Techniques. Journal of Chemical Education, 2018, 95, 1376-1380.	1.1	26
707	Active Site Hydration Governs the Stability of Sn-Beta during Continuous Glucose Conversion. ACS Catalysis, 2018, 8, 7131-7140.	5.5	43
708	Circular supply chains and renewable chemical feedstocks: a network configuration analysis framework. Production Planning and Control, 2018, 29, 464-482.	5.8	16
709	Life-cycle assessment and techno-economic analysis of the utilization of bio-oil components for the production of three chemicals. Green Chemistry, 2018, 20, 3287-3301.	4.6	41

#	Article	IF	CITATIONS
710	Novel Synthesis of Immobilized BrÃ,nsted―Acidic Ionic Liquid: Application in Lignin Depolymerization. ChemistrySelect, 2018, 3, 5461-5470.	0.7	19
711	Cleave and couple: toward fully sustainable catalytic conversion of lignocellulose to value added building blocks and fuels. Chemical Communications, 2018, 54, 7725-7745.	2.2	58
712	Catalytic Transfer Hydrogenation Using Biomass as Hydrogen Source. ChemSusChem, 2019, 12, 3094-3098.	3.6	31
713	ZSM-5 zeolite as a promising catalyst for the preparation and upgrading of lignocellulosic biomass-derived chemicals. Current Opinion in Green and Sustainable Chemistry, 2019, 15, 13-19.	3.2	23
714	A potential biotechnological process for the sustainable production of vitamin K ₁ . Critical Reviews in Biotechnology, 2019, 39, 1-19.	5.1	42
715	Borrowing Hydrogen-Mediated N-Alkylation Reactions by a Well-Defined Homogeneous Nickel Catalyst. ACS Catalysis, 2019, 9, 9051-9059.	5.5	102
716	Biochemical characterization of a novel exo-oligoxylanase from Paenibacillus barengoltzii suitable for monosaccharification from corncobs. Biotechnology for Biofuels, 2019, 12, 190.	6.2	12
717	Iron-Catalyzed Ligand Free α-Alkylation of Methylene Ketones and β-Alkylation of Secondary Alcohols Using Primary Alcohols. Journal of Organic Chemistry, 2019, 84, 11676-11686.	1.7	42
718	Identification of strategic molecules for future circular supply chains using large reaction networks. Reaction Chemistry and Engineering, 2019, 4, 1969-1981.	1.9	16
719	Production of lignocellulose nanofibers from wheat straw by different fibrillation methods. Comparison of its viability in cardboard recycling process. Journal of Cleaner Production, 2019, 239, 118083.	4.6	63
720	Construction of Spirocyclic Tetrahydro- \hat{l}^2 -carbolines via Cross-Annulation of Phenols with Tryptamines in Water. Organic Letters, 2019, 21, 7033-7037.	2.4	29
721	Sustainable valorization of lignin with levulinic acid and its application in polyimine thermosets. Green Chemistry, 2019, 21, 4964-4970.	4.6	43
722	Nickel-catalyzed intelligent reductive transformation of the aldehyde group using hydrogen. Green Chemistry, 2019, 21, 5828-5840.	4.6	23
723	Ligand-Controlled Photocatalysis of CdS Quantum Dots for Lignin Valorization under Visible Light. ACS Catalysis, 2019, 9, 8443-8451.	5 . 5	128
724	Comparative study of microwave and conventional solvothermal synthesis for magnetic carbon nanocomposites and bio-oil from rice husk. Journal of Environmental Chemical Engineering, 2019, 7, 103266.	3.3	15
725	Recent advances in the pretreatment of lignocellulosic biomass for biofuels and value-added products. Current Opinion in Green and Sustainable Chemistry, 2019, 20, 18-24.	3.2	100
726	Photocatalytic conversion of lignocellulosic biomass to valuable products. Green Chemistry, 2019, 21, 4266-4289.	4.6	180
727	Molecular and Biochemical Characterization of a Bimodular Xylanase From Marinifilaceae Bacterium Strain SPP2. Frontiers in Microbiology, 2019, 10, 1507.	1.5	19

#	Article	IF	CITATIONS
728	Cleavage of lignin model compounds and lignin ^{ox} using aqueous oxalic acid. Organic and Biomolecular Chemistry, 2019, 17, 7408-7415.	1.5	11
729	Fabrication and Properties of a Bio-Based Biodegradable Thermoplastic Polyurethane Elastomer. Polymers, 2019, 11, 1121.	2.0	17
730	Catalytic Transformation of Biomass Derivatives to Valueâ€Added Chemicals and Fuels in Continuous Flow Microreactors. ChemCatChem, 2019, 11, 4671-4708.	1.8	67
731	Lignin Engineering in Forest Trees. Frontiers in Plant Science, 2019, 10, 912.	1.7	92
732	Valorization of wood biomass-lignin via selective bond scission: A minireview. Applied Catalysis B: Environmental, 2019, 257, 117936.	10.8	73
733	$\langle i \rangle 110$ th Anniversary $\langle i \rangle$: Carbon Dioxide and Chemical Looping: Current Research Trends. Industrial & Engineering Chemistry Research, 2019, 58, 16235-16257.	1.8	39
734	Organocatalytic Decarboxylation of Amino Acids as a Route to Bioâ€based Amines and Amides. ChemCatChem, 2019, 11, 4297-4306.	1.8	21
735	Highly Selective Oxidation of 5-Hydroxymethylfurfural to 5-Hydroxymethyl-2-Furancarboxylic Acid by a Robust Whole-Cell Biocatalyst. Catalysts, 2019, 9, 526.	1.6	26
736	The development of a biorefining strategy for the production of biofuel from sorghum milling waste. Biochemical Engineering Journal, 2019, 150, 107288.	1.8	11
737	The periodic table of the elements of green and sustainable chemistry. Green Chemistry, 2019, 21, 6545-6566.	4.6	90
738	Bimetallic effects in the catalytic hydrogenolysis of lignin and its model compounds on Nickel-Ruthenium catalysts. Fuel Processing Technology, 2019, 194, 106126.	3.7	57
739	M-Gallate (M = Ni, Co) Metal–Organic Framework-Derived Ni/C and Bimetallic Ni–Co/C Catalysts for Lignin Conversion into Monophenols. ACS Sustainable Chemistry and Engineering, 2019, 7, 12955-12963.	3.2	69
740	A SO2F2 mediated mild, practical, and gram-scale dehydroxylative transforming primary alcohols to quaternary ammonium salts. Tetrahedron, 2019, 75, 4648-4656.	1.0	6
741	Lignin Conversion Using Catalytic Ionic Liquids: Understanding the Role of Cations, Anions, and Hammett Acidity Functions. Industrial & Engineering Chemistry Research, 2019, 58, 21273-21284.	1.8	28
742	Detection of Lignin Motifs with RuO ₂ -DNA as an Active Catalyst via Surface-Enhanced Raman Scattering Studies. ACS Sustainable Chemistry and Engineering, 2019, 7, 18463-18475.	3.2	18
743	Valorization of Carbohydrates of Agricultural Residues and Food Wastes: A Key Strategy for Carbon Conservation. ACS Sustainable Chemistry and Engineering, 2019, 7, 17799-17807.	3.2	17
744	H2-Generation from Alcohols by the MOF-Based Noble Metal-Free Photocatalyst Ni/CdS/TiO2@MIL-101. Australian Journal of Chemistry, 2019, 72, 842.	0.5	14
745	Oneâ€Pot Enzyme Cascade for Controlled Synthesis of Furancarboxylic Acids from 5â€Hydroxymethylfurfural by H ₂ O ₂ Internal Recycling. ChemSusChem, 2019, 12, 4764-4768.	3.6	45

#	Article	IF	Citations
746	Celluloseâ€Derived Functional Polyacetal by Cationic Ringâ€Opening Polymerization of Levoglucosenyl Methyl Ether. Angewandte Chemie, 2019, 131, 18663-18666.	1.6	6
747	Iridium Catalyzed Synthesis of Tetrahydro-1H-Indoles by Dehydrogenative Condensation. Inorganics, 2019, 7, 97.	1.2	7
748	From Wood to Tetrahydro-2-benzazepines in Three Waste-Free Steps: Modular Synthesis of Biologically Active Lignin-Derived Scaffolds. ACS Central Science, 2019, 5, 1707-1716.	5. 3	82
749	Hydrogen Bond Promoted Lignin Solubilization and Electrospinning in Low Cost Protic Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2019, 7, 18593-18602.	3.2	24
750	Synthesis and characterization of thermally stable bio-based poly(ester amide)s from sustainable feedstock. European Polymer Journal, 2019, 120, 109228.	2.6	6
751	Celluloseâ€Derived Functional Polyacetal by Cationic Ringâ€Opening Polymerization of Levoglucosenyl Methyl Ether. Angewandte Chemie - International Edition, 2019, 58, 18492-18495.	7.2	25
752	Tandem Hydrogenolysis–Hydrogenation of Ligninâ€Derived Oxygenates over Integrated Dual Catalysts with Optimized Interoperations. ChemSusChem, 2019, 12, 5199-5206.	3.6	18
753	Stepwise degradation of hydroxyl compounds to aldehydes <i>via</i> successive C–C bond cleavage. Chemical Communications, 2019, 55, 925-928.	2.2	22
754	Synthesis, thermal, rheological characteristics, and enzymatic degradation of aliphatic polyesters with ligninâ€based aromatic pendant groups. Journal of Polymer Science Part A, 2019, 57, 2314-2323.	2.5	9
7 55	One-Pot Solvent-Free Synthesis of N,N-Bis(2-Hydroxyethyl) Alkylamide from Triglycerides Using Zinc-Doped Calcium Oxide Nanospheroids as a Heterogeneous Catalyst. Catalysts, 2019, 9, 774.	1.6	4
756	Amination of \hat{l}^2 -hydroxyl acid esters via cooperative catalysis enables access to bio-based \hat{l}^2 -amino acid esters. Communications Chemistry, 2019, 2, .	2.0	18
757	Visibleâ€Lightâ€Driven Cleavage of Câ°'O Linkage for Lignin Valorization to Functionalized Aromatics. ChemSusChem, 2019, 12, 5023-5031.	3.6	86
758	Water-Tolerant DUT-Series Metal–Organic Frameworks: A Theoretical–Experimental Study for the Chemical Fixation of CO ₂ and Catalytic Transfer Hydrogenation of Ethyl Levulinate to γ-Valerolactone. ACS Applied Materials & Samp; Interfaces, 2019, 11, 41458-41471.	4.0	55
759	Selective Hydroboration of Carboxylic Acids with a Homogeneous Manganese Catalyst. Journal of Organic Chemistry, 2019, 84, 1570-1579.	1.7	33
760	Genetically encoded biosensors for lignocellulose valorization. Biotechnology for Biofuels, 2019, 12, 246.	6.2	21
762	Electrochemical Aminoxyl-Mediated Oxidation of Primary Alcohols in Lignin to Carboxylic Acids: Polymer Modification and Depolymerization. Journal of the American Chemical Society, 2019, 141, 15266-15276.	6.6	118
763	Valorisation of pumpkin seeds and peels into biodegradable packaging films. Food and Bioproducts Processing, 2019, 118, 58-66.	1.8	33
764	Si-based materials derived from biomass: synthesis and applications in electrochemical energy storage. Journal of Materials Chemistry A, 2019, 7, 22123-22147.	5.2	95

#	ARTICLE	IF	Citations
765	Computational design of catalysts for bio-waste upgrading. Current Opinion in Chemical Engineering, 2019, 26, 20-27.	3.8	7
766	Natural-Wood-Derived Lignosulfonate lonomer as Multifunctional Binder for High-Performance Lithium–Sulfur Battery. ACS Sustainable Chemistry and Engineering, 2019, 7, 17580-17586.	3.2	43
767	Sustainable Preparation of Bio-Based Polybenzoxazine Resins from Amino Acid and Their Application in CO ₂ Adsorption. ACS Sustainable Chemistry and Engineering, 2019, 7, 17313-17324.	3.2	51
768	Unraveling the Dynamic Network in the Reactions of an Alkyl Aryl Ether Catalyzed by Ni∫i³-Al ₂ O ₃ in 2-Propanol. Journal of the American Chemical Society, 2019, 141, 17370-17381.	6.6	23
769	Double-metal cyanide-supported Pd catalysts for highly efficient hydrogenative ring-rearrangement of biomass-derived furanic aldehydes to cyclopentanone compounds. Journal of Catalysis, 2019, 378, 201-208.	3.1	51
770	Lignin Characterization and Catalytic Pyrolysis for Phenol-Rich Oil with TiO ₂ -Based Catalysts. Energy & Energ	2.5	23
771	Readily recyclable, high-performance thermosetting materials based on a lignin-derived spiro diacetal trigger. Journal of Materials Chemistry A, 2019, 7, 1233-1243.	5.2	142
772	Influence of Composition and Preparation Method on the Continuous Performance of Sn-Beta for Glucose-Fructose Isomerisation. Topics in Catalysis, 2019, 62, 1178-1191.	1.3	25
773	Waste-to-useful: a biowaste-derived heterogeneous catalyst for a green and sustainable Henry reaction. New Journal of Chemistry, 2019, 43, 2134-2140.	1.4	57
774	Selective utilization of methoxy groups in lignin for $\langle i \rangle N \langle i \rangle$ -methylation reaction of anilines. Chemical Science, 2019, 10, 1082-1088.	3.7	33
775	Microwave-Assisted Dehydrogenative Cross Coupling Reactions in \hat{I}^3 -valerolactone with a Reusable Pd/ \hat{I}^2 -cyclodextrin Crosslinked Catalyst. Molecules, 2019, 24, 288.	1.7	19
776	Fractionation of Lignocellulosic Biomass over Core–Shell Ni@Al ₂ O ₃ Catalysts with Formic Acid as a Cocatalyst and Hydrogen Source. ChemSusChem, 2019, 12, 1743-1762.	3.6	33
777	D-Excess-LaA Production Directly from Biomass by Trivalent Yttrium Species. IScience, 2019, 12, 132-140.	1.9	19
778	Extraction of Lignin with High & Samp; #946; -O-4 Content by Mild Ethanol Extraction and Its Effect on the Depolymerization Yield. Journal of Visualized Experiments, 2019, , .	0.2	27
779	Proteinâ€Rich Biomass Waste as a Resource for Future Biorefineries: State of the Art, Challenges, and Opportunities. ChemSusChem, 2019, 12, 1272-1303.	3.6	60
780	Monodisperse nickel-nanoparticles for stereo- and chemoselective hydrogenation of alkynes to alkenes. Journal of Catalysis, 2019, 370, 372-377.	3.1	30
781	Medium Chain Carboxylic Acids from Complex Organic Feedstocks by Mixed Culture Fermentation. Molecules, 2019, 24, 398.	1.7	105
782	Oxidative filtration for flyash & amp; tar removal from 1.0 MWth fixed-bed biomass air gasification. Biomass and Bioenergy, 2019, 122, 145-155.	2.9	13

#	Article	IF	CITATIONS
783	Valorization of Residues From Beverage Production. , 2019, , 451-494.		7
784	Manganeseâ€Catalyzed Selective Upgrading of Ethanol with Methanol into Isobutanol. ChemSusChem, 2019, 12, 3069-3072.	3.6	43
785	Renewable Resource-Based Polymers. , 2019, , 1-28.		5
786	Applications of lignin-derived catalysts for green synthesis. Green Energy and Environment, 2019, 4, 210-244.	4.7	91
787	Continuous flow synthesis of amines from the cascade reactions of nitriles and carbonyl-containing compounds promoted by Pt-modified titania catalysts. Green Chemistry, 2019, 21, 300-306.	4.6	21
788	Synthesis of levulinic acid based poly(amine- <i>co</i> -ester)s. Green Chemistry, 2019, 21, 123-128.	4.6	18
789	Efficient hydrodeoxygenation of lignin-derived phenols and dimeric ethers with synergistic [Bmim]PF ₆ -Ru/SBA-15 catalysis under acid free conditions. Green Chemistry, 2019, 21, 597-605.	4.6	41
790	Sequential Catalytic Modification of the Lignin α-Ethoxylated β-O-4 Motif To Facilitate C–O Bond Cleavage by Ruthenium-Xantphos Catalyzed Hydrogen Transfer. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	8
791	Value-added chemicals from food supply chain wastes: State-of-the-art review and future prospects. Chemical Engineering Journal, 2019, 375, 121983.	6.6	218
792	Facile One-Pot Synthesis of Bimetallic Co/Mn-MOFs@Rice Husks, and its Carbonization for Supercapacitor Electrodes. Scientific Reports, 2019, 9, 8984.	1.6	16
793	Synthesis of Biomassâ€Derived Ethers for Use as Fuels and Lubricants. ChemSusChem, 2019, 12, 2835-2858.	3.6	56
794	Molybdenumâ€Catalyzed Oxidative Cleavage of Raw Poplar Sawdust into Monoâ€Aromatics and Organic Acid Esters. Asian Journal of Organic Chemistry, 2019, 8, 1348-1353.	1.3	1
795	New Colorless and Transparent Poly(ether imide) Derived from a Biobased Plant Oil (Anethole): Synthesis and Properties. ACS Sustainable Chemistry and Engineering, 2019, 7, 11728-11734.	3.2	18
796	High Aluminum Content Beta Zeolite as an Active Lewis Acid Catalyst for \hat{I}^3 -Valerolactone Decarboxylation. Industrial & Engineering Chemistry Research, 2019, 58, 11841-11848.	1.8	12
797	Lignin-based hydrogels: A review of preparation, properties, and application. International Journal of Biological Macromolecules, 2019, 135, 1006-1019.	3.6	184
798	Valorization of food-waste hydrolysate by Lentibacillus salarius NS12IITR for the production of branched chain fatty acid enriched lipid with potential application as a feedstock for improved biodiesel. Waste Management, 2019, 94, 1-9.	3.7	13
799	High-performance, command-degradable, antibacterial Schiff base epoxy thermosets: synthesis and properties. Journal of Materials Chemistry A, 2019, 7, 15420-15431.	5.2	180
800	Zeolite-supported metal catalysts for selective hydrodeoxygenation of biomass-derived platform molecules. Green Chemistry, 2019, 21, 3744-3768.	4.6	200

#	Article	IF	CITATIONS
801	Unlocking the door to highly efficient Ag-based nanoparticles catalysts for NaBH4-assisted nitrophenol reduction. Nano Research, 2019, 12, 2407-2436.	5.8	113
802	Synthesis and Characterization of Aluminum Containing Silica Aerogel Catalysts for Degradation of PLA. International Journal of Chemical Reactor Engineering, 2019, 17, .	0.6	0
803	Continuous flow hydrogenation of methyl and ethyl levulinate: an alternative route to $\langle i \rangle \hat{I}^3 \langle i \rangle$ -valerolactone production. Royal Society Open Science, 2019, 6, 182233.	1.1	11
804	When Will 5â€Hydroxymethylfurfural, the "Sleeping Giant―of Sustainable Chemistry, Awaken?. ChemSusChem, 2019, 12, 2976-2982.	3.6	154
805	Nitrate-Mediated Alcohol Oxidation on Cadmium Sulfide Photocatalysts. ACS Catalysis, 2019, 9, 5732-5741.	5.5	60
806	Synthesis of an aromatic N-heterocycle derived from biomass and its use as a polymer feedstock. Nature Communications, 2019, 10, 2107.	5.8	99
807	Graphite oxide- and graphene oxide-supported catalysts for microwave-assisted glucose isomerisation in water. Green Chemistry, 2019, 21, 4341-4353.	4.6	80
808	Orange peel valorization by pyrolysis under the carbon dioxide environment. Bioresource Technology, 2019, 285, 121356.	4.8	33
809	Transfer Hydrogenation of Methyl and Ethyl Levulinate Promoted by a ZrO ₂ Catalyst: Comparison of Batch vs Continuous Gas-Flow Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 9937-9947.	3.2	51
810	Biomass Derivative Valorization Using Nano Core-Shell Magnetic Materials Based on Keggin-Heteropolyacids: Levulinic Acid Esterification Kinetic Study with N-Butanol. Journal of Nanomaterials, 2019, 2019, 1-14.	1.5	12
811	Mechanistic picture of the redox-neutral C C bond cleavage in 1,3-dilignol lignin model compound catalyzed by [Ru(Cl)(H)(PPh3)3]/triphos. Molecular Catalysis, 2019, 471, 77-84.	1.0	6
812	Organosolv Treatment Using 1-Butanol and Degradation of Extracted Lignin Fractions into Phenolic Compounds over Iron Oxide Catalyst. Journal of the Japan Petroleum Institute, 2019, 62, 37-44.	0.4	12
813	One-Pot Synthesis of 2,5-Diformylfuran from Fructose by Bifunctional Polyaniline-Supported Heteropolyacid Hybrid Catalysts. Catalysts, 2019, 9, 445.	1.6	14
814	Mechanistic Approaches toward Rational Design of a Heterogeneous Catalyst for Ring-Opening and Deoxygenation of Biomass-Derived Cyclic Compounds. ACS Sustainable Chemistry and Engineering, 2019, 7, 10165-10181.	3.2	30
815	Anaerobic Thermophilic Mixed Culture Fermentation Processes. , 2019, , 437-460.		0
816	Techno-economic Analysis of Fermentation-Based Biorefinery: Creating Value from Food Residues., 2019,,535-552.		1
817	Industrial Food Waste Valorization: A General Overview., 2019,, 253-277.		24
818	Microbial fuel cell application for sludge remediation and minimization. , 2019, , 783-795.		0

#	Article	IF	CITATIONS
819	Performance analysis of a biomass gasification-based CCHP system integrated with variable-effect LiBr-H2O absorption cooling and desiccant dehumidification. Energy, 2019, 176, 961-979.	4.5	29
820	W–Nb–O oxides with tunable acid properties as efficient catalysts for the transformation of biomass-derived oxygenates in aqueous systems. Catalysis Science and Technology, 2019, 9, 3126-3136.	2.1	16
821	Deoxydehydration of glycerol in presence of rhenium compounds: reactivity and mechanistic aspects. Catalysis Science and Technology, 2019, 9, 3036-3046.	2.1	23
822	One-pot catalytic hydrogenolysis of rice straw into biogasoline. Cellulose, 2019, 26, 8417-8428.	2.4	6
823	Green synthesis of gamma-valerolactone (GVL) through hydrogenation of biomass-derived levulinic acid using non-noble metal catalysts: A critical review. Chemical Engineering Journal, 2019, 372, 992-1006.	6.6	259
824	Sustainable bioconversion of food waste into high-value products by immobilized enzymes to meet bio-economy challenges and opportunities – A review. Food Research International, 2019, 123, 226-240.	2.9	123
825	Valorization of Humins-Extracted 5-Methoxymethylfurfural: Toward High Added Value Furanics via Continuous Flow Catalytic Hydrogenation. Industrial & Engineering Chemistry Research, 2019, 58, 16065-16070.	1.8	13
826	Mechanochemically Synthesized Supported Magnetic Fe-Nanoparticles as Catalysts for Efficient Vanillin Production. Catalysts, 2019, 9, 290.	1.6	8
827	Sustainable Biomass Materials for Biomedical Applications. ACS Biomaterials Science and Engineering, 2019, 5, 2079-2092.	2.6	36
828	Harnessing Nature's Anaerobes for Biotechnology and Bioprocessing. Annual Review of Chemical and Biomolecular Engineering, 2019, 10, 105-128.	3.3	22
830	A Chemical Blowing Strategy to Fabricate Biomassâ€Derived Carbonâ€Aerogels with Grapheneâ€Like Nanosheet Structures for Highâ€Performance Supercapacitors. ChemSusChem, 2019, 12, 2462-2470.	3.6	53
831	Biomass-Derived Renewable Carbonaceous Materials for Sustainable Chemical and Environmental Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 6458-6470.	3.2	227
832	Ringâ€Opening Metathesis Polymerization of Biomassâ€Derived Levoglucosenol. Angewandte Chemie, 2019, 131, 6790-6793.	1.6	16
833	Selective Transformations of Triglycerides into Fatty Amines, Amides, and Nitriles by using Heterogeneous Catalysis. ChemSusChem, 2019, 12, 3115-3125.	3.6	25
834	Preparation of Lignin Nanoparticles from Wood Waste for Wood Surface Treatment. Nanomaterials, 2019, 9, 281.	1.9	79
835	Two-Step Fractionation of a Model Technical Lignin by Combined Organic Solvent Extraction and Membrane Ultrafiltration. ACS Omega, 2019, 4, 4615-4626.	1.6	31
836	Host Matrix Materials for Luminescent Solar Concentrators: Recent Achievements and Forthcoming Challenges. Frontiers in Materials, 2019, 6, .	1.2	55
837	Cell-surface display technology and metabolic engineering of <i> Saccharomyces cerevisiae </i> for enhancing xylitol production from woody biomass. Green Chemistry, 2019, 21, 1795-1808.	4.6	33

#	Article	IF	CITATIONS
838	Ringâ€Opening Metathesis Polymerization of Biomassâ€Derived Levoglucosenol. Angewandte Chemie - International Edition, 2019, 58, 6718-6721.	7.2	48
839	Lignin valorization meets synthetic biology. Engineering in Life Sciences, 2019, 19, 463-470.	2.0	19
840	Ru-Catalyzed Hydrogenolysis of Lignin: Base-Dependent Tunability of Monomeric Phenols and Mechanistic Study. ACS Catalysis, 2019, 9, 4054-4064.	5 . 5	106
841	Electrocatalytic Upgrading of Phenolic Compounds Observed after Lignin Pyrolysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 8375-8386.	3.2	69
842	Pyrolysis of waste feedstocks in CO2 for effective energy recovery and waste treatment. Journal of CO2 Utilization, 2019, 31, 173-180.	3.3	121
843	Continuous Flow Synthesis of High Valuable N-Heterocycles via Catalytic Conversion of Levulinic Acid. Frontiers in Chemistry, 2019, 7, 103.	1.8	21
844	Biological Conversion of Amino Acids to Higher Alcohols. Trends in Biotechnology, 2019, 37, 855-869.	4.9	47
845	Fluorine removal and calcium fluoride recovery from rare-earth smelting wastewater using ï¬,uidized bed crystallization process. Journal of Hazardous Materials, 2019, 373, 313-320.	6.5	60
846	Sequential utilization of bamboo biomass through reductive catalytic fractionation of lignin. Bioresource Technology, 2019, 285, 121335.	4.8	74
847	A Transitionâ€Metalâ€Free Oneâ€Pot Cascade Process for Transformation of Primary Alcohols (RCH ₂ OH) to Nitriles (RCN) Mediated by SO ₂ F ₂ . European Journal of Organic Chemistry, 2019, 2019, 3190-3194.	1.2	20
848	Mechanistic insight into the self-coupling of 5-hydroxymethyl furfural to C12 fuel intermediate catalyzed by ionic liquids. RSC Advances, 2019, 9, 10825-10831.	1.7	2
849	Electro-oxidation of ethylene glycol on Pt Co metal synergy for direct ethylene glycol fuel cells: Reduced graphene oxide imparting a notable surface of action. International Journal of Hydrogen Energy, 2019, 44, 10023-10032.	3.8	35
850	From Agricultural Byproducts to Value-Added Materials: Wheat Straw-Based Hydrogels as Soil Conditioners?. ACS Sustainable Chemistry and Engineering, 2019, 7, 8604-8612.	3.2	28
851	Catalytic transfer hydrogenation of furfural into furfuryl alcohol over Ni–Feâ€layered double hydroxide catalysts. Journal of the Chinese Chemical Society, 2019, 66, 1610-1618.	0.8	11
852	In situ synthesis of biomass-derived Ni/C catalyst by self-reduction for the hydrogenation of levulinic acid to \hat{I}^3 -valerolactone. Journal of Energy Chemistry, 2019, 37, 204-214.	7.1	53
853	Depolymerization and hydrodeoxygenation of lignin to aromatic hydrocarbons with a Ru catalyst on a variety of Nb-based supports. Chinese Journal of Catalysis, 2019, 40, 609-617.	6.9	57
854	Selective C–O Bond Cleavage of Lignin Systems and Polymers Enabled by Sequential Palladium-Catalyzed Aerobic Oxidation and Visible-Light Photoredox Catalysis. ACS Catalysis, 2019, 9, 2252-2260.	5 . 5	95
856	Lignin-derived platform molecules through TEMPO catalytic oxidation strategies. Progress in Energy and Combustion Science, 2019, 72, 59-89.	15.8	55

#	Article	IF	CITATIONS
857	Catalytic depolymerization of organosolv lignin to phenolic monomers and low molecular weight oligomers. Fuel, 2019, 244, 247-257.	3.4	76
858	Hydrogenolysis of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran under Mild Conditions without Any Additive. ACS Sustainable Chemistry and Engineering, 2019, 7, 5711-5716.	3.2	33
859	Geminal Coordinatively Unsaturated Sites on MOFâ€808 for the Selective Uptake of Phenolics from a Real Bioâ€Oil Mixture. ChemSusChem, 2019, 12, 1256-1266.	3.6	29
860	A comparative study on enzyme adsorption and hydrolytic performance of different scale corn stover by two-step kinetics. Bioresource Technology, 2019, 282, 384-389.	4.8	9
861	Catalytic hydrogenation of furfural and furfuryl alcohol to fuel additives andvalue-added chemicals. Turkish Journal of Chemistry, 2019, 43, 24-38.	0.5	7
862	Modifying MgO with Carbon for Valorization of Lignin to Aromatics. ACS Sustainable Chemistry and Engineering, 2019, 7, 5751-5763.	3.2	19
863	lonic Liquid Binary Mixtures, Zeolites, and Ultrasound Irradiation: A Combination to Promote Carbohydrate Conversion into 5-Hydroxymethylfurfural. ACS Sustainable Chemistry and Engineering, 2019, 7, 5818-5826.	3.2	45
864	Corncob Biorefinery for Platform Chemicals and Lignin Coproduction: Metal Chlorides as Catalysts. ACS Sustainable Chemistry and Engineering, 2019, 7, 5309-5317.	3.2	18
865	From waste biomass to chemicals and energy <i>via</i> microwave-assisted processes. Green Chemistry, 2019, 21, 1202-1235.	4.6	103
866	Kinetic analysis of delignification of cedar wood during organosolv treatment with a two-phase solvent using the unreacted-core model. Chemical Engineering Journal, 2019, 368, 71-78.	6.6	25
867	Chemodivergent hydrogenolysis of eucalyptus lignin with Ni@ZIF-8 catalyst. Green Chemistry, 2019, 21, 1498-1504.	4.6	65
868	Biogas Production from Vegetable and Fruit Markets Wasteâ€"Compositional and Batch Characterizations. Sustainability, 2019, 11, 6790.	1.6	24
869	Exploring Microemulsion-Prepared Lanthanum Catalysts for Natural Gas Valorisation. Johnson Matthey Technology Review, 2019, 63, 265-276.	0.5	5
870	Butanol-Based Organosolv Lignin and Reactive Modification of Poly(ethylene-glycidyl methacrylate). Industrial & Digineering Chemistry Research, 2019, 58, 20300-20308.	1.8	8
871	Nutrient Source and Tillage Effects on Maize: II. Yield, Soil Carbon, and Carbon Dioxide Emissions. , 2019, 2, 1-8.		2
872	Visible light induced redox neutral fragmentation of 1,2-diol derivatives. Chemical Communications, 2019, 55, 13144-13147.	2.2	29
873	Lignocellulosic Biomass Fractionation by Mineral Acids and Resulting Extract Purification Processes: Conditions, Yields, and Purities. Molecules, 2019, 24, 4273.	1.7	38
874	Self-supported hydrogenolysis of aromatic ethers to arenes. Science Advances, 2019, 5, eaax6839.	4.7	39

#	Article	IF	CITATIONS
875	Upgrading of Kraft Lignin-Derived Bio-Oil over Hierarchical and Nonhierarchical Ni and/or Zn/HZSM5 Catalysts. Industrial & Engineering Chemistry Research, 2019, 58, 22791-22803.	1.8	6
877	The Characteristics of Products from Pyrolysis of Seaweed in Molten Carbonates. Transactions of the ASABE, 2019, 62, 787-794.	1.1	5
878	SO ₂ F ₂ mediated cascade dehydrogenative Morita–Baylis–Hillman reaction of the C(sp ³)–H of primary alcohols with the C(sp ²)–H of electron-deficient olefins for the assembly of allylic alcohols. RSC Advances, 2019, 9, 29784-29787.	1.7	5
879	A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential. Bioresource Technology, 2019, 271, 462-472.	4.8	386
880	Aluminium-biochar composites as sustainable heterogeneous catalysts for glucose isomerisation in a biorefinery. Green Chemistry, 2019, 21, 1267-1281.	4.6	157
881	Conversion of lignin into renewable carboxylic acid compounds by advanced oxidation processes. Renewable Energy, 2019, 135, 951-962.	4.3	41
882	Highly Porous Hypercrosslinked Polymers Derived from Biobased Molecules. ChemSusChem, 2019, 12, 839-847.	3.6	16
883	Sustainable Carbonaceous Materials Derived from Biomass as Metalâ€Free Electrocatalysts. Advanced Materials, 2019, 31, e1805718.	11.1	102
884	Supercritical Carbon Dioxide Extraction of Value-Added Products and Thermochemical Synthesis of Platform Chemicals from Food Waste. ACS Sustainable Chemistry and Engineering, 2019, 7, 2821-2829.	3.2	23
885	Hydrotreatment of Kraft Lignin to Alkylphenolics and Aromatics Using Ni, Mo, and W Phosphides Supported on Activated Carbon. ACS Sustainable Chemistry and Engineering, 2019, 7, 2044-2055.	3.2	43
886	Production of biofuels and chemicals from xylose using native and engineered yeast strains. Biotechnology Advances, 2019, 37, 271-283.	6.0	98
887	Integrated Separation Process of C5 Sugars and Phenolics from Poplar Wood Using CO ₂ -Assisted Hydrolysis Followed by Hydrogenolysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 526-536.	3.2	14
888	First-Row Transition Metal (De)Hydrogenation Catalysis Based On Functional Pincer Ligands. Chemical Reviews, 2019, 119, 2681-2751.	23.0	608
889	Valorization of Methyl Azelaaldehydate – A Vegetable Oil Based Platform Molecule for the Synthesis of Monomers through Stetter Reaction. European Journal of Organic Chemistry, 2019, 2019, 1251-1256.	1.2	4
890	ReO _{<i>x</i>} /AC-Catalyzed Cleavage of Câ€"O Bonds in Lignin Model Compounds and Alkaline Lignins. ACS Sustainable Chemistry and Engineering, 2019, 7, 208-215.	3.2	47
891	3d-Metal Catalyzed N- and C-Alkylation Reactions via Borrowing Hydrogen or Hydrogen Autotransfer. Chemical Reviews, 2019, 119, 2524-2549.	23.0	606
892	Selective Synthesis of Furfuryl Alcohol from Biomass-Derived Furfural Using Immobilized Yeast Cells. Catalysts, 2019, 9, 70.	1.6	24
893	Integrated production of polymer-grade lactide from aqueous lactic acid by combination of heterogeneous catalysis and solvent crystallization with ethanol. Korean Journal of Chemical Engineering, 2019, 36, 203-209.	1.2	6

#	Article	IF	CITATIONS
894	A comparative study of pig manure with different waste straws in an ectopic fermentation system with thermophilic bacteria during the aerobic process: Performance and microbial community dynamics. Bioresource Technology, 2019, 281, 202-208.	4.8	25
895	Bio-Based Chemicals from Renewable Biomass for Integrated Biorefineries. Energies, 2019, 12, 233.	1.6	236
896	Synergistic Catalysis of Brønsted Acid and Lewis Acid Coexisted on Ordered Mesoporous Resin for One-Pot Conversion of Glucose to 5-Hydroxymethylfurfural. ACS Omega, 2019, 4, 1053-1059.	1.6	10
897	Bioethanol Production from Unpretreated Cellulose under Neutral Selfsustainable Hydrolysis/Hydrogenolysis Conditions Promoted by the Heterogeneous Pd/Fe ₃ O ₄ Catalyst. ACS Omega, 2019, 4, 352-357.	1.6	25
898	Highly selective, sustainable synthesis of limonene cyclic carbonate from bio-based limonene oxide and CO2: A kinetic study. Journal of CO2 Utilization, 2019, 29, 126-133.	3.3	49
899	Catalytic Conversion of Carbon Dioxide through C-N Bond Formation. Molecules, 2019, 24, 182.	1.7	32
900	Hydrothermal liquefaction of sewage sludge to produce bio-oil: Effect of co-pretreatment with subcritical water and mixed surfactants. Journal of Supercritical Fluids, 2019, 144, 28-38.	1.6	47
901	Towards Improved Biorefinery Technologies: 5â€Methylfurfural as a Versatile C ₆ Platform for Biofuels Development. ChemSusChem, 2019, 12, 185-189.	3.6	42
902	Explaining the role of vanadium in homogeneous glucose transformation reactions using NMR and EPR spectroscopy. Applied Catalysis A: General, 2019, 570, 262-270.	2.2	25
903	Simultaneously high-rate furfural hydrogenation and oxidation upgrading on nanostructured transition metal phosphides through electrocatalytic conversion at ambient conditions. Applied Catalysis B: Environmental, 2019, 244, 899-908.	10.8	115
904	Protein-derived nitrogen and sulfur co-doped carbon for efficient adsorptive removal of heavy metals. Chinese Journal of Chemical Engineering, 2019, 27, 2581-2586.	1.7	10
905	One-Step Approach to 2,5-Diformylfuran from Fructose over Molybdenum Oxides Supported on Carbon Spheres. ACS Sustainable Chemistry and Engineering, 2019, 7, 315-323.	3.2	27
906	Novel extremophilic proteases from <i>Pseudomonas aeruginosa</i> M211 and their application in the hydrolysis of dried distiller's grain with solubles. Biotechnology Progress, 2019, 35, e2728.	1.3	7
907	Environmental Catalysis: Present and Future. ChemCatChem, 2019, 11, 18-38.	1.8	87
908	Developments in the Atomistic Modelling of Catalytic Processes for the Production of Platform Chemicals from Biomass. ChemCatChem, 2019, 11, 357-367.	1.8	3
909	Selectively transform lignin into value-added chemicals. Chinese Chemical Letters, 2019, 30, 15-24.	4.8	90
910	Mechanism of Ni-catalyzed selective C O cleavage of lignin model compound benzyl phenyl ether under mild conditions. Journal of the Energy Institute, 2019, 92, 74-81.	2.7	51
911	Anaerobic Biohydrogen Production Using Rice Husk-Based Biologics. Waste and Biomass Valorization, 2020, 11, 1059-1068.	1.8	6

#	ARTICLE	IF	CITATIONS
912	Transfer hydrogenolysis of aromatic ethers promoted by the bimetallic Pd/Co catalyst. Catalysis Today, 2020, 357, 511-517.	2.2	25
913	State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chemical Reviews, 2020, 120, 1438-1511.	23.0	1,505
914	Highly dispersed Pd catalysts supported on various carbons for furfural hydrogenation. Catalysis Today, 2020, 350, 71-79.	2.2	30
915	Significantly improved oxidation of bio-based furans into furan carboxylic acids using substrate-adapted whole cells. Journal of Energy Chemistry, 2020, 41, 20-26.	7.1	24
916	Catalytic Oxidation of Methoxy Substituted Benzyl Alcohols as Model for Lignin Valorisation. Catalysis Today, 2020, 357, 15-21.	2.2	10
917	Genome engineering of E.Âcoli for improved styrene production. Metabolic Engineering, 2020, 57, 74-84.	3.6	34
918	Utilising Biomass in Biotechnology. Green Energy and Technology, 2020, , .	0.4	6
919	Development of a solvometallurgical process for the separation of yttrium and europium by Cyanex 923 from ethylene glycol solutions. Separation and Purification Technology, 2020, 235, 116193.	3.9	26
920	Thermodynamically unconstrained forced concentration cycling of methane catalytic partial oxidation over CeO2 FeCralloy catalysts. Chemical Engineering Journal, 2020, 380, 122470.	6.6	17
921	Metalloporphyrin as a Biomimetic Catalyst for the Catalytic Oxidative Degradation of Lignin to Produce Aromatic Monomers. Waste and Biomass Valorization, 2020, 11, 4481-4489.	1.8	8
922	"Carbohydrate-Universal―electrolyzer for energy-saving hydrogen production with Co3FePx@NF as bifunctional electrocatalysts. Applied Catalysis B: Environmental, 2020, 263, 118109.	10.8	27
923	Selective production of ethylbenzene from lignin oil over FeOx modified Ru/Nb2O5 catalyst. Applied Catalysis B: Environmental, 2020, 260, 118143.	10.8	57
924	Egg shell waste as an activation agent for the manufacture of porous carbon. Chinese Journal of Chemical Engineering, 2020, 28, 896-900.	1.7	22
925	Steam explosion pretreatment to obtain eco-friendly building blocks from oil palm mesocarp fiber. Industrial Crops and Products, 2020, 143, 111907.	2.5	32
926	Synthesis of novel magnetic carbon nano-composite from waste biomass: A comparative study of industrially adoptable hydro/solvothermal co-precipitation route. Journal of Environmental Chemical Engineering, 2020, 8, 103519.	3.3	22
927	Fatigue damage and lifetime prediction of fiber-reinforced ceramic-matrix composites., 2020,, 269-333.		0
928	Valorization of Waste: Sustainable Organocatalysts from Renewable Resources. ChemSusChem, 2020, 13, 439-468.	3.6	33
929	Downregulated CHI3L1 alleviates skeletal muscle stem cell injury in a mouse model of sepsis. IUBMB Life, 2020, 72, 214-225.	1.5	3

#	Article	IF	CITATIONS
930	Environmental life cycle assessment of different biorefinery platforms valorizing municipal solid waste to bioenergy, microbial protein, lactic and succinic acid. Renewable and Sustainable Energy Reviews, 2020, 117, 109493.	8.2	136
932	Sequential extraction of hemicelluloses and lignin for wood fractionation using acid hydrotrope at mild conditions. Industrial Crops and Products, 2020, 145, 112086.	2.5	25
933	Making natural products from renewable feedstocks: back to the roots?. Natural Product Reports, 2020, 37, 380-424.	5.2	56
934	Cycloamination strategies for renewable N-heterocycles. Green Chemistry, 2020, 22, 582-611.	4.6	100
935	Rice husk-derived carbon@SnO2@graphene anode with stable electrochemical performance used in lithium-ion batteries. Materials Research Express, 2020, 7, 015021.	0.8	8
936	Ligninolytic Enzymes Mediated Ligninolysis: An Untapped Biocatalytic Potential to Deconstruct Lignocellulosic Molecules in a Sustainable Manner. Catalysis Letters, 2020, 150, 524-543.	1.4	43
937	Successive Organic Solvent Fractionation and Characterization of Heterogeneous Lignin Extracted by <i>p-</i> Toluenesulfonic Acid from Hybrid Poplar. Energy & Energy	2.5	14
938	Rhodium-terpyridine catalyzed redox-neutral depolymerization of lignin in water. Green Chemistry, 2020, 22, 33-38.	4.6	51
939	Formic-Acid-Induced using Recyclable-Ionic Liquids as Catalysts for Lignin Conversion into Aromatic Co-Products. Waste and Biomass Valorization, 2020, 11, 6261-6272.	1.8	7
940	Soya agricultural waste as a rich source of isoflavones. Food Research International, 2020, 130, 108949.	2.9	28
941	Structural regulation of lignin/silica nanocomposites by altering the content of quaternary ammonium groups grafted into softwood kraft lignin. Industrial Crops and Products, 2020, 144, 112039.	2.5	18
943	Food industry waste biorefineries: future energy, valuable recovery, and waste treatment. , 2020, , 391-406.		2
944	Insights into Microwave-Assisted Synthesis of 5-Ethoxymethylfurfural and Ethyl Levulinate Using Tungsten Disulfide as a Catalyst. ACS Sustainable Chemistry and Engineering, 2020, 8, 1721-1729.	3.2	30
945	Evolution Process and Controlled Synthesis of Humins with 5â€Hydroxymethylfurfural (HMF) as Model Molecule. ChemSusChem, 2020, 13, 513-519.	3.6	59
946	Grape Seeds: Chromatographic Profile of Fatty Acids and Phenolic Compounds and Qualitative Analysis by FTIR-ATR Spectroscopy. Foods, 2020, 9, 10.	1.9	93
947	Quantitative production of butenes from biomass-derived \hat{I}^3 -valerolactone catalysed by hetero-atomic MFI zeolite. Nature Materials, 2020, 19, 86-93.	13.3	74
948	Hydrogel synthesis based on lignin/sodium alginate and application in agriculture. International Journal of Biological Macromolecules, 2020, 144, 219-230.	3.6	120
949	Connecting precursors to a protic ionic liquid: Effects of hydrogen bond synergy in acid-base binary mixtures on the solvent-solute interactions. Journal of Molecular Liquids, 2020, 297, 111746.	2.3	4

#	ARTICLE	IF	CITATIONS
950	Catalytic synthesis of 2,5-bis(hydroxymethyl)furan from 5-hydroxymethylfurfual by recombinant Saccharomyces cerevisiae. Enzyme and Microbial Technology, 2020, 134, 109491.	1.6	33
951	Hydrogenolysis of Organosolv Lignin in Ethanol/Isopropanol Media without Added Transition-Metal Catalyst. ACS Sustainable Chemistry and Engineering, 2020, 8, 1023-1030.	3.2	55
952	Kinetic analyses of intramolecular dehydration of hexitols in high-temperature water. Carbohydrate Research, 2020, 487, 107880.	1.1	3
953	Theoretical studies on the noncovalent interaction of fructose and functionalized ionic liquids. Carbohydrate Research, 2020, 487, 107882.	1.1	13
954	HMF and furfural: Promising platform molecules in rhodium-catalyzed carbonylation reactions for the synthesis of furfuryl esters and tertiary amides. Journal of Catalysis, 2020, 381, 215-221.	3.1	20
955	Development of BPA-free anticorrosive epoxy coatings from agroindustrial waste. Progress in Organic Coatings, 2020, 139, 105449.	1.9	12
956	Towards cleaner downstream processing of biomass waste chemical products by liquid chromatography: A review and recommendations. Journal of Cleaner Production, 2020, 253, 119937.	4.6	7
958	One-pot hydrodeoxygenation (HDO) of lignin monomers to C9 hydrocarbons co-catalysed by Ru/C and Nb ₂ O ₅ . Green Chemistry, 2020, 22, 7406-7416.	4.6	33
959	Reductive catalytic fractionation of agricultural residue and energy crop lignin and application of lignin oil in antimicrobials. Green Chemistry, 2020, 22, 7435-7447.	4.6	48
960	An overview of subcritical and supercritical water treatment of different biomasses for protein and amino acids production and recovery. Journal of Environmental Chemical Engineering, 2020, 8, 104406.	3.3	43
961	Recent advancement in deoxygenation of fatty acids via homogeneous catalysis for biofuel production. Molecular Catalysis, 2022, 523, 111207.	1.0	10
963	Flexible NiCo-based catalyst for direct hydrodeoxygenation of guaiacol to cyclohexanol. New Journal of Chemistry, 2020, 44, 18906-18916.	1.4	40
964	Evidences of starch–microwave interactions under hydrolytic and pyrolytic conditions. Green Chemistry, 2020, 22, 7109-7118.	4.6	14
965	Adaptive laboratory evolution of Pseudomonas putida KT2440 improves p-coumaric and ferulic acid catabolism and tolerance. Metabolic Engineering Communications, 2020, 11, e00143.	1.9	73
966	Organocatalytic Approach to Photochemical Lignin Fragmentation. Organic Letters, 2020, 22, 8082-8085.	2.4	33
967	Highly Efficient Reductive Catalytic Fractionation of Lignocellulosic Biomass over Extremely Low-Loaded Pd Catalysts. ACS Catalysis, 2020, 10, 12487-12506.	5.5	36
968	Clean energy production from lignocellulose-based agricultural crops: importance and necessity from environmental prospects., 2020,, 181-193.		1
969	Towards the sustainable production of bulk-chemicals using biotechnology. New Biotechnology, 2020, 59, 59-64.	2.4	32

#	Article	IF	CITATIONS
970	Synthesis of iron nanoparticles-based hydrochar catalyst for ex-situ catalytic microwave-assisted pyrolysis of lignocellulosic biomass to renewable phenols. Fuel, 2020, 279, 118532.	3.4	40
971	One-step synthesis of rice husk carbon with dangling CC bonds loaded g-C3N4 for enhanced photocatalytic degradation. Journal of Cleaner Production, 2020, 272, 122625.	4.6	12
972	Controlling the Reaction Networks for Efficient Conversion of Glucose into 5â€Hydroxymethylfurfural. ChemSusChem, 2020, 13, 4812-4832.	3.6	73
973	Biomass Transformation of Cellulose via N-Heterocyclic Carbene-Catalyzed Umpolung of 5-(Chloromethyl)furfural. Cell Reports Physical Science, 2020, 1, 100071.	2.8	12
974	NaCl-promoted phase transition and glycosidic bond cleavage under microwave heating for energy-efficient biorefinery of rice starch. Green Chemistry, 2020, 22, 7355-7365.	4.6	18
975	Solventâ€Activated Hafniumâ€Containing Zeolites Enable Selective and Continuous Glucose–Fructose Isomerisation. Angewandte Chemie, 2020, 132, 20192-20198.	1.6	6
976	Solventâ€Activated Hafniumâ€Containing Zeolites Enable Selective and Continuous Glucose–Fructose Isomerisation. Angewandte Chemie - International Edition, 2020, 59, 20017-20023.	7.2	31
977	Lignocellulosic Ethanol Production from a Biorefinery Perspective. , 2020, , .		4
978	Ni Supported on Natural Clays as a Catalyst for the Transformation of Levulinic Acid into \hat{I}^3 -Valerolactone without the Addition of Molecular Hydrogen. Energies, 2020, 13, 3448.	1.6	10
979	Molecular Engineering in Catalysis: Immobilization of Shvo's Ruthenium Catalyst to Silica Coated Magnetic Nanoparticles. Periodica Polytechnica: Chemical Engineering, 2020, 65, 1-11.	0.5	1
980	Production of <i>p</i> -Coumaric Acid from Corn GVL-Lignin. ACS Sustainable Chemistry and Engineering, 2020, 8, 17427-17438.	3.2	41
981	Valorization of agricultural wastes for multidimensional use. , 2020, , 41-78.		4
982	Highly selective aromatic ring hydrogenation of lignin-derived compounds over macroporous Ru/Nb2O5 with the lost acidity at room temperature. Fuel, 2020, 282, 118869.	3.4	27
983	Effective and facile solvent-free synthesis route to novel biobased monomers from vanillic acid: Structure–thermal property relationships of sustainable polyesters. Polymer Degradation and Stability, 2020, 181, 109315.	2.7	15
984	Transcriptional shifts in delignificationâ€defective mutants of the whiteâ€rot fungus <i>PleurotusÂostreatus</i> . FEBS Letters, 2020, 594, 3182-3199.	1.3	14
985	Life cycle assessment of lignocellulosic biorefineries. , 2020, , 259-277.		1
987	Downstream Processing Strategies for Ligninâ€First Biorefinery. ChemSusChem, 2020, 13, 5199-5212.	3.6	62
988	Photocatalytic transformations of lignocellulosic biomass into chemicals. Chemical Society Reviews, 2020, 49, 6198-6223.	18.7	374

#	Article	IF	CITATIONS
989	High-value utilization of biomass waste: from garbage floating on the ocean to high-performance rechargeable Zn–MnO ₂ batteries with superior safety. Journal of Materials Chemistry A, 2020, 8, 18198-18206.	5.2	22
990	Cellulose, hemicellulose, lignin, and their derivatives as multi-components of bio-based feedstocks for 3D printing. Carbohydrate Polymers, 2020, 250, 116881.	5.1	76
991	Discovering Biomass Structural Determinants Defining the Properties of Plant-Derived Renewable Carbon Fiber. IScience, 2020, 23, 101405.	1.9	12
993	Facile and rapid fractionation of bamboo wood with a p-toluenesulfonic acid-based three-constituent deep eutectic solvent. Industrial Crops and Products, 2020, 158, 113018.	2.5	33
995	Lignin-Based Nanoparticles: A Review on Their Preparations and Applications. Polymers, 2020, 12, 2471.	2.0	86
996	Valorization of Biomass-Derived Platform Molecules via Photoredox Sustainable Catalysis. Transactions of Tianjin University, 2020, 26, 325-340.	3.3	17
997	Cell-Free Biocatalysis for the Production of Platform Chemicals. Frontiers in Energy Research, 2020, 8, .	1.2	31
998	Enzymatic kinetic resolution of desmethylphosphinothricin indicates that phosphinic group is a bioisostere of carboxyl group. Communications Chemistry, 2020, 3, .	2.0	5
999	Paving the Way for the Lignin Hydrogenolysis Mechanism by Deuterium-Incorporated \hat{l}^2 -O-4 Mimics. ACS Catalysis, 2020, 10, 12229-12238.	5.5	38
1000	Assessment of agricultural waste-derived activated carbon in multiple applications. Environmental Research, 2020, 191, 110176.	3.7	34
1001	Aromatics from Lignocellulosic Biomass: A Platform for High-Performance Thermosets. ACS Sustainable Chemistry and Engineering, 2020, 8, 15072-15096.	3.2	64
1002	The production of fuels and chemicals in the new world: critical analysis of the choice between crude oil and biomass vis-Ã-vis sustainability and the environment. Clean Technologies and Environmental Policy, 2020, 22, 1757-1774.	2.1	86
1003	Hydrogenation of Trans, Trans-Muconic Acid to Bio-Adipic Acid: Mechanism Identification and Kinetic Modelling. Processes, 2020, 8, 929.	1.3	3
1004	Biosourced vanillin Schiff base platform monomers as substitutes for DGEBA in thermoset epoxy. Polymer Engineering and Science, 2020, 60, 2593-2605.	1.5	12
1005	Green chemistry and the plastic pollution challenge: towards a circular economy. Green Chemistry, 2020, 22, 6310-6322.	4.6	204
1006	Thermal Regeneration of Sn-Containing Silicates and Consequences for Biomass Upgrading: From Regeneration to Preactivation. ACS Catalysis, 2020, 10, 11545-11555.	5.5	15
1007	Protein hydrolysates from <i>Alphitobius diaperinus</i> and <i>Hermetia illucens</i> larvae treated with commercial proteases. Journal of Insects As Food and Feed, 2020, 6, 393-404.	2.1	25
1008	Mechanistic insight into the azo radical-promoted dehydrogenation of heteroarene towards N-heterocycles. Catalysis Science and Technology, 2020, 10, 6309-6318.	2.1	35

#	Article	IF	CITATIONS
1009	An Industrial and Sustainable Platform for the Production of Bioactive Micronized Powders and Extracts Enriched in Polyphenols From Olea europaea L. and Vitis vinifera L. Wastes. Frontiers in Nutrition, 2020, 7, 120.	1.6	28
1010	Conversion of biomass-derived levulinate esters to \hat{I}^3 -valerolactone with a robust CuNi bimetallic catalyst. New Journal of Chemistry, 2020, 44, 15671-15676.	1.4	15
1011	Biobased Resins Using Lignin and Glyoxal. ACS Sustainable Chemistry and Engineering, 2020, 8, 18789-18809.	3.2	61
1012	Field Evaluation of Sorghum (Sorghum bicolor) Lines that Overexpress Two Monolignol-Related Genes that Alter Cell Wall Composition. Bioenergy Research, 2020, , 1.	2.2	1
1013	Recent advances in the production of \hat{I}^3 -valerolactone with liquid hydrogen source. IOP Conference Series: Earth and Environmental Science, 2020, 571, 012116.	0.2	0
1014	Hydrogen-Free Production of 4-Alkylphenols from Lignin via Self-Reforming-Driven Depolymerization and Hydrogenolysis. ACS Catalysis, 2020, 10, 15197-15206.	5.5	57
1015	Cell-based and cell-free biocatalysis for the production of d-glucaric acid. Biotechnology for Biofuels, 2020, 13, 203.	6.2	13
1016	Strategies and mechanisms of metal–ligand cooperativity in first-row transition metal complex catalysts. Chemical Society Reviews, 2020, 49, 8933-8987.	18.7	181
1017	The Increasing Value of Biomass: Moving From C6 Carbohydrates to Multifunctionalized Building Blocks via 5â€(hydroxymethyl)furfural. ChemistryOpen, 2020, 9, 1135-1148.	0.9	16
1018	Engineering <i>Trichoderma reesei</i> for Hyperproduction of Cellulases on Glucose to Efficiently Saccharify Pretreated Corncobs. Journal of Agricultural and Food Chemistry, 2020, 68, 12671-12682.	2.4	28
1019	The role of renewable chemicals and biofuels in building a bioeconomy. Biofuels, Bioproducts and Biorefining, 2020, 14, 830-844.	1.9	96
1020	Wax ester production in nitrogen-rich conditions by metabolically engineered Acinetobacter baylyi ADP1. Metabolic Engineering Communications, 2020, 10, e00128.	1.9	16
1021	The Future is Garbage: Repurposing of Food Waste to an Integrated Biorefinery. ACS Sustainable Chemistry and Engineering, 2020, 8, 8124-8136.	3.2	42
1022	Unlocking Structure–Reactivity Relationships for Catalytic Hydrogenolysis of Lignin into Phenolic Monomers. ChemSusChem, 2020, 13, 4548-4556.	3.6	58
1023	Aromatics Production from Lignocellulosic Biomass: Shape Selective Dealkylation of Lignin-Derived Phenolics over Hierarchical ZSM-5. ACS Sustainable Chemistry and Engineering, 2020, 8, 8713-8722.	3.2	45
1024	Photocatalytic Cleavage of \hat{I}^2 -O-4 Ether Bonds in Lignin over Ni/TiO2. Molecules, 2020, 25, 2109.	1.7	25
1025	Metal organic frameworks for biomass conversion. Chemical Society Reviews, 2020, 49, 3638-3687.	18.7	176
1026	Preparation and Uses of Chlorinated Glycerol Derivatives. Molecules, 2020, 25, 2511.	1.7	8

#	Article	IF	Citations
1027	Efficient use of waste carton for power generation, tar and fertilizer through direct carbon solid oxide fuel cell. Renewable Energy, 2020, 158, 410-420.	4.3	20
1028	Introduction: sources and characterization of food waste and food industry wastes., 2020,, 1-13.		9
1029	Biotechnology for Biofuels: A Sustainable Green Energy Solution. , 2020, , .		4
1030	Insights in supported rhenium carbide catalysts for hydroconversion of lignin-derived compounds. Applied Catalysis A: General, 2020, 599, 117600.	2.2	17
1031	Reductive catalytic routes towards sustainable production of hydrogen, fuels and chemicals from biomass derived polyols. Renewable and Sustainable Energy Reviews, 2020, 127, 109852.	8.2	58
1032	Selective Hydrogenation of 5-Hydroxymethylfurfural into 2,5-Bis(hydroxymethyl)furan over a Cheap Carbon-Nanosheets-Supported Zr/Ca Bimetallic Catalyst. Energy & Ener	2.5	26
1033	Lignin-based smart materials: a roadmap to processing and synthesis for current and future applications. Materials Horizons, 2020, 7, 2237-2257.	6.4	129
1034	Encapsulation of Bioactive Compounds from Aloe Vera Agrowastes in Electrospun Poly (Ethylene) Tj ETQq $1\ 1\ 0.$	784314 rg 2.0	BT/Overlock
1035	One-pot biosynthesis of furfuryl alcohol and lactic acid via a glucose coupled biphasic system using single Bacillus coagulans NL01. Bioresource Technology, 2020, 313, 123705.	4.8	32
1036	An Introduction to Model Compounds of Lignin Linking Motifs; Synthesis and Selection Considerations for Reactivity Studies. ChemSusChem, 2020, 13, 4238-4265.	3.6	50
1037	Perspective on the transformation of carbohydrates under green and sustainable reaction conditions., 2020,, 3-71.		6
1038	A review of conversion of lignocellulose biomass to liquid transport fuels by integrated refining strategies. Fuel Processing Technology, 2020, 208, 106485.	3.7	103
1039	Valorization of Lignin via Oxidative Depolymerization with Hydrogen Peroxide: Towards Carboxyl-Rich Oligomeric Lignin Fragments. Molecules, 2020, 25, 2717.	1.7	14
1040	Recent Advancement in Bio-precursor derived graphene quantum dots: Synthesis, Characterization and Toxicological Perspective. Nanotechnology, 2020, 31, 292001.	1.3	36
1041	Critical Review on Biocharâ€Supported Catalysts for Pollutant Degradation and Sustainable Biorefinery. Advanced Sustainable Systems, 2020, 4, 1900149.	2.7	93
1042	Immobilized laccase on magnetic nanoparticles for enhanced lignin model compounds degradation. Chinese Journal of Chemical Engineering, 2020, 28, 2152-2159.	1.7	29
1043	Animal Biopolymer-Plant Biomass Composites: Synergism and Improved Sorption Efficiency. Journal of Composites Science, 2020, 4, 15.	1.4	11
1044	Hydro(deoxygenation) Reaction Network of Lignocellulosic Oxygenates. ChemSusChem, 2020, 13, 2894-2915.	3.6	19

#	Article	IF	CITATIONS
1045	State-of-the-Art Production Chains for Peas, Beans and Chickpeasâ€"Valorization of Agro-Industrial Residues and Applications of Derived Extracts. Molecules, 2020, 25, 1383.	1.7	55
1046	Direct Precipitation of Lignin Nanoparticles from Wheat Straw Organosolv Liquors Using a Static Mixer. Molecules, 2020, 25, 1388.	1.7	30
1047	Lignin Chemistry. Topics in Current Chemistry Collections, 2020, , .	0.2	7
1048	Valorization of lignocellulosic-based wastes. , 2020, , 383-410.		11
1049	Synthesis of Diaryl Hydroxyl Dicarboxylic Acids from Amino Acids. Journal of Organic Chemistry, 2020, 85, 5799-5806.	1.7	4
1050	Perylene supported metal free brÃ,nsted acid-functionalized porphyrin intertwined with benzimidazolium moiety for enhanced photocatalytic etherification of furfuryl alcohol. Fuel, 2020, 278, 118394.	3.4	14
1051	Hydrodeoxygenation of Ligninâ€Derived Monomers and Dimers over a Ru Supported Solid Super Acid Catalyst for Cycloalkane Production. Advanced Sustainable Systems, 2020, 4, 1900136.	2.7	18
1052	Chemists around the World, Take Your Part in the Circular Economy!. Chemistry - A European Journal, 2020, 26, 9665-9673.	1.7	10
1053	One-pot dual catalysis for the hydrogenation of heteroarenes and arenes. Catalysis Science and Technology, 2020, 10, 5163-5170.	2.1	24
1054	Lipid-derived hybrid bionanocomposites from spent hens. Materials Today Communications, 2020, 25, 101327.	0.9	7
1055	Hydrogenolysis of Aryl Ether Bond over Heterogeneous Cobalt-Based Catalyst. Industrial & Engineering Chemistry Research, 2020, 59, 17357-17364.	1.8	20
1056	Efficient biotransformation of 5-hydroxymethylfurfural to 5-hydroxymethyl-2-furancarboxylic acid by a new whole-cell biocatalyst <i>Pseudomonas aeruginosa</i> PC-1. Reaction Chemistry and Engineering, 2020, 5, 1397-1404.	1.9	21
1057	Biocatalysis and biomass conversion: enabling a circular economy. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190274.	1.6	44
1058	Impact of feedstock composition on pyrolysis of low-cost, protein- and lignin-rich biomass: A review. Journal of Analytical and Applied Pyrolysis, 2020, 147, 104780.	2.6	93
1059	Î ² -Cyclodextrin Polymerized in Cross-Flowing Channels of Biomass Sawdust for Rapid and Highly Efficient Pharmaceutical Pollutants Removal from Water. ACS Applied Materials & Samp; Interfaces, 2020, 12, 32817-32826.	4.0	28
1060	Selective hydrogenation of aromatic furfurals into aliphatic tetrahydrofurfural derivatives. Green Chemistry, 2020, 22, 4937-4942.	4.6	34
1061	Electrochemically assisted pyrolysis of rice straw in molten carbonates. Renewable Energy, 2020, 159, 929-937.	4.3	7
1062	Enhancing Photocatalytic β-O-4 Bond Cleavage in Lignin Model Compounds by Silver-Exchanged Cadmium Sulfide. ACS Catalysis, 2020, 10, 8465-8475.	5.5	70

#	Article	IF	Citations
1063	Limited life cycle and cost assessment for the bioconversion of ligninâ€derived aromatics into adipic acid. Biotechnology and Bioengineering, 2020, 117, 1381-1393.	1.7	32
1064	The production of 4-ethyltoluene <i>via</i> directional valorization of lignin. Green Chemistry, 2020, 22, 2191-2196.	4.6	13
1065	Integrated biorefinery approach to valorize winery waste: A review from waste to energy perspectives. Science of the Total Environment, 2020, 719, 137315.	3.9	90
1066	Multistep Engineering of Synergistic Catalysts in a Metal–Organic Framework for Tandem C–O Bond Cleavage. Journal of the American Chemical Society, 2020, 142, 4872-4882.	6.6	48
1067	Advances in biological conversion technologies: new opportunities for reaction engineering. Reaction Chemistry and Engineering, 2020, 5, 632-640.	1.9	15
1068	A sustainable wood biorefinery for low–carbon footprint chemicals production. Science, 2020, 367, 1385-1390.	6.0	631
1069	A methodological framework for comparing fractionated and non-fractionated products in life cycle assessments: The case of milk concentrates. Journal of Cleaner Production, 2020, 257, 120478.	4.6	4
1070	The Roles of H2O/Tetrahydrofuran System in Lignocellulose Valorization. Frontiers in Chemistry, 2020, 8, 70.	1.8	16
1071	Highly Efficient and Atom Economic Route for the Production of Methyl Acrylate and Acetic Acid from a Biorefinery Side Stream. ACS Sustainable Chemistry and Engineering, 2020, 8, 1705-1708.	3.2	8
1072	Facile synthesis of "digestibleâ€; rigid-and-flexible, bio-based building block for high-performance degradable thermosetting plastics. Green Chemistry, 2020, 22, 1275-1290.	4.6	64
1073	Designing for a green chemistry future. Science, 2020, 367, 397-400.	6.0	645
1074	Management of Fruit Industrial By-Products—A Case Study on Circular Economy Approach. Molecules, 2020, 25, 320.	1.7	180
1075	Novel approach for the treatment of the organic fraction of municipal solid waste: Coupling thermal hydrolysis with anaerobic digestion and photo-fermentation. Science of the Total Environment, 2020, 714, 136845.	3.9	22
1076	MnO2 mediated sequential oxidation/olefination of alkyl-substituted heteroarenes with alcohols. Tetrahedron, 2020, 76, 130968.	1.0	19
1077	Total utilization of lignin and carbohydrates in Eucalyptus grandis: an integrated biorefinery strategy towards phenolics, levulinic acid, and furfural. Biotechnology for Biofuels, 2020, 13, 2.	6.2	45
1078	Preparativeâ€Scale Enzymatic Synthesis of <i>rac</i> à€Glycerolâ€1â€phosphate from Crude Glycerol Using Acid Phosphatases and Phosphate. ChemSusChem, 2020, 13, 1759-1763.	3.6	7
1079	Mechanocatalytic Synergy for Expedited Cellulosic Ethanol Production Compatible with Integrated Biorefinery. ACS Sustainable Chemistry and Engineering, 2020, 8, 2399-2408.	3.2	11
1080	Effects of Solid Acid Supports on the Bifunctional Catalysis of Levulinic Acid to γâ€Valerolactone: Catalytic Activity and Stability. Chemistry - an Asian Journal, 2020, 15, 1182-1201.	1.7	47

#	Article	IF	CITATIONS
1081	The importance and future of biochemical engineering. Biotechnology and Bioengineering, 2020, 117, 2305-2318.	1.7	13
1082	Cleavage of C–C and C–O Bonds in β-O-4 Linkage of Lignin Model Compound by Cyclopentadienone Group 8 and 9 Metal Complexes. Chemistry Letters, 2020, 49, 477-480.	0.7	4
1083	Sustainable and Selective Alkylation of Deactivated Secondary Alcohols to Ketones by Nonâ€bifunctional Pincer Nâ€heterocyclic Carbene Manganese. ChemSusChem, 2020, 13, 2557-2563.	3.6	48
1084	Towards a more sustainable circular bioeconomy. Innovative approaches to rice residue valorization: The RiceRes case study. Bioresource Technology Reports, 2020, 11, 100427.	1.5	13
1085	Selective conversion of lignin model veratryl alcohol by photosynthetic pigment via photo-generated reactive oxygen species. Chemical Engineering Journal, 2020, 393, 124772.	6.6	5
1086	Environmental and economic assessment of torrefied wood pellets from British Columbia. Energy Conversion and Management, 2020, 208, 112513.	4.4	20
1087	A web-based geographic interface system to support decision making for municipal solid waste management in England. Journal of Cleaner Production, 2020, 263, 121461.	4.6	20
1088	Fruit and vegetable waste management: Conventional and emerging approaches. Journal of Environmental Management, 2020, 265, 110510.	3.8	235
1089	Dearomatization–Rearomatization Strategy for Synthesizing Carbazoles with 2,2′-Biphenols and Ammonia by Dual C(Ar)–OH Bond Cleavages. Journal of Agricultural and Food Chemistry, 2020, 68, 13200-13205.	2.4	15
1090	Mechanistic Investigation of Biomass Oxidation Using Nickel Oxide Nanoparticles in a CO ₂ -Saturated Electrolyte for Paired Electrolysis. Journal of Physical Chemistry Letters, 2020, 11, 2941-2948.	2.1	88
1091	Selective catalytic degradation of a lignin model compound into phenol over transition metal sulfates. RSC Advances, 2020, 10, 3013-3019.	1.7	8
1092	Unraveling the Structural Transformation of Wood Lignin During Deep Eutectic Solvent Treatment. Frontiers in Energy Research, 2020, 8, .	1.2	34
1093	The Management of Agricultural Waste Biomass in the Framework of Circular Economy and Bioeconomy: An Opportunity for Greenhouse Agriculture in Southeast Spain. Agronomy, 2020, 10, 489.	1.3	84
1094	Catechyl Lignin Extracted from Castor Seed Coats Using Deep Eutectic Solvents: Characterization and Depolymerization. ACS Sustainable Chemistry and Engineering, 2020, 8, 7031-7038.	3.2	70
1095	Recent progresses in the application of lignin derived (nano)catalysts in oxidation reactions. Molecular Catalysis, 2020, 489, 110942.	1.0	29
1096	Efficient Synthesis of Phenylacetate and 2â€Phenylethanol by Modular Cascade Biocatalysis. ChemBioChem, 2020, 21, 2676-2679.	1.3	9
1097	Domino lignin depolymerization and reconnection to complex molecules mediated by boryl radicals. Catalysis Science and Technology, 2020, 10, 3008-3014.	2.1	4
1098	Extraction and Modification of Lignin from Red Pine Using Ionic Liquid. Journal of the Japan Petroleum Institute, 2020, 63, 102-105.	0.4	4

#	Article	IF	CITATIONS
1099	A Simple Iron-Catalyst for Alkenylation of Ketones Using Primary Alcohols. Molecules, 2020, 25, 1590.	1.7	9
1100	Methods of extracting silica and silicon from agricultural waste ashes and application of the produced silicon in solar cells: a mini-review. International Journal of Sustainable Engineering, 2021, 14, 57-78.	1.9	17
1101	Chemicals from lignocellulosic biomass: A critical comparison between biochemical, microwave and thermochemical conversion methods. Critical Reviews in Environmental Science and Technology, 2021, 51, 1479-1532.	6.6	50
1102	Sustainable and rapid production of biofuel γ-valerolactone from biomass-derived levulinate enabled by a fluoride-ionic liquid. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2021, 43, 905-915.	1.2	3
1103	Limits to circular bioeconomy in the transition towards decentralized biowaste management systems. Resources, Conservation and Recycling, 2021, 164, 105207.	5. 3	35
1104	Critical success and risk factors for circular business models valorising agricultural waste and by-products. Resources, Conservation and Recycling, 2021, 165, 105236.	5.3	112
1105	Dearomatizationâ€Rearomatization Strategy for <i>ortho</i> òê€elective Alkylation of Phenols with Primary Alcohols. Angewandte Chemie - International Edition, 2021, 60, 4043-4048.	7.2	33
1106	Production of Adipic Acid Derivatives from d-Glucaric Acid by Hydrodeoxygenation Mediated with Hydroiodic Acid. Catalysis Letters, 2021, 151, 338-343.	1.4	6
1107	Highly efficient synthesis of \hat{l}^3 -valerolactone by catalytic conversion of biomass-derived levulinate esters over support-free mesoporous Ni. Renewable Energy, 2021, 163, 1023-1032.	4.3	27
1108	Synthesize and introduce bio-based aromatic s-triazine in epoxy resin: Enabling extremely high thermal stability, mechanical properties, and flame retardancy to achieve high-performance sustainable polymers. Chemical Engineering Journal, 2021, 406, 126881.	6.6	107
1109	Experimental investigation of the adsorption and desorption of cellulase enzymes on zeolite- \hat{l}^2 for enzyme recycling applications. Bioprocess and Biosystems Engineering, 2021, 44, 495-505.	1.7	1
1110	Guidelines for performing lignin-first biorefining. Energy and Environmental Science, 2021, 14, 262-292.	15.6	416
1111	Biorefinery roadmap based on catalytic production and upgrading 5-hydroxymethylfurfural. Green Chemistry, 2021, 23, 119-231.	4.6	223
1112	Lignin valorization beyond energy use: has lignin's time finally come?. Biofuels, Bioproducts and Biorefining, 2021, 15, 32-36.	1.9	24
1113	Selective Construction of Câ^C and C=C Bonds by Manganese Catalyzed Coupling of Alcohols with Phosphorus Ylides. Advanced Synthesis and Catalysis, 2021, 363, 1096-1104.	2.1	9
1114	Synthesis of 2,5-Diaryl Nonsymmetric Furans C6-Platform Chemicals <i>via</i> Catalytic Conversion of Biomass and the Formal Synthesis of Dantrolene. Journal of Organic Chemistry, 2021, 86, 515-524.	1.7	10
1115	CO ₂ â€Based Dualâ€Tone Resists for Electron Beam Lithography. Advanced Functional Materials, 2021, 31, 2007417.	7.8	20
1116	Theoretical insight into the hydrogenolysis mechanism of lignin dimer compounds based on experiments. Renewable Energy, 2021, 163, 1831-1837.	4.3	33

#	Article	IF	CITATIONS
1117	Hybrid-functional material for sorption-enhanced hydrogen-rich syngas production from biomass: Effect of material preparation process. Biomass and Bioenergy, 2021, 144, 105886.	2.9	11
1118	Isobaric Vapor–Liquid Equilibria for Binary Mixtures of Gamma-Valerolactone + Toluene. Journal of Chemical & Engineering Data, 2021, 66, 568-574.	1.0	7
1119	Hydroconversion of Kraft lignin for biofuels production using bifunctional rhenium-molybdenum supported zeolitic imidazolate framework nanocatalyst. Bioresource Technology, 2021, 321, 124443.	4.8	21
1120	New Opportunities in the Valorization of Technical Lignins. ChemSusChem, 2021, 14, 1016-1036.	3.6	94
1121	One-Pot Cascade Conversion of Renewable Furfural to Levulinic Acid over a Bifunctional H ₃ PW ₁₂ O ₄₀ /SiO ₂ Catalyst in the Absence of External H ₂ . Energy & Description of External External H ₂ .	2.5	18
1122	A Hybrid Catalytic Conversion of Corncob to Furfurylamine in Tandem Reaction with Aluminium-Based Alkaline-Treated Graphite and ω-Transaminase Biocatalyst in γ-Valerolactone–Water. Catalysis Letters, 2021, 151, 1834-1841.	1.4	3
1123	Low temperature co-pyrolysis of food waste with PVC-derived char: Products distributions, char properties and mechanism of bio-oil upgrading. Energy, 2021, 219, 119670.	4.5	18
1124	One-step lignocellulose depolymerization and saccharification to high sugar yield and less condensed isolated lignin. Green Chemistry, 2021, 23, 1200-1211.	4.6	28
1125	Dearomatizationâ€Rearomatization Strategy for ortho â€Selective Alkylation of Phenols with Primary Alcohols. Angewandte Chemie, 2021, 133, 4089-4094.	1.6	20
1126	Use of semibatch reactor technology for the investigation of reaction mechanism and kinetics: Heterogeneously catalyzed epoxidation of fatty acid esters. Chemical Engineering Science, 2021, 230, 116206.	1.9	23
1127	Salt effects on liquid-liquid equilibria in the ternary water/n-butanol/HMF system and solvent effects on HMF separation from water. Journal of Molecular Liquids, 2021, 325, 114551.	2.3	5
1128	Decolourization of noxious safranin-T from waste water using Mangifera indica as precursor. Environmental Sustainability, 2021, 4, 355-364.	1.4	14
1129	Organic carbonate as a green solvent for biocatalysis. , 2021, , 253-275.		6
1130	Enhancing product selectivity in biomass and bioalcohol reactions over Cu-doped porous metal oxides. Advances in Inorganic Chemistry, 2021, 77, 299-341.	0.4	3
1131	Solvolysis of benzyl phenyl ether in high-temperature aqueous methanol solution under high-pressure carbon dioxide. Green Chemistry, 2021, 23, 1658-1664.	4.6	5
1132	Towards atomic precision in HMF and methane oxidation electrocatalysts. Chemical Communications, 2021, 57, 4230-4238.	2.2	7
1133	Recent advances in (chemo)enzymatic cascades for upgrading bio-based resources. Chemical Communications, 2021, 57, 10661-10674.	2.2	28
1134	Electrochemical upgrading of depolymerized lignin: a review of model compound studies. Green Chemistry, 2021, 23, 2868-2899.	4.6	65

#	Article	IF	CITATIONS
1135	A plug-and-play chemobiocatalytic route for the one-pot controllable synthesis of biobased C4 chemicals from furfural. Green Chemistry, 2021, 23, 8604-8610.	4.6	12
1136	Heterogeneous photocatalyzed acceptorless dehydrogenation of 5-hydroxymethylfurfural upon visible-light illumination. Green Chemistry, 2021, 23, 6604-6613.	4.6	23
1137	Metal phosphate catalysts to upgrade lignocellulose biomass into value-added chemicals and biofuels. Green Chemistry, 2021, 23, 3818-3841.	4.6	33
1138	Nanostructured Bimetallic Pd-based Catalysts for the Valorization of Lignocellulosic Biomasses. , 2021, , 127-153.		0
1139	Mechanistic Studies of Continuous Glucose Upgrading over Lewis Acidic Silicates by ⟨i⟩Operando⟨/i⟩UV–Vis and HSQC NMR. ACS Catalysis, 2021, 11, 1296-1308.	5.5	9
1140	Wine By-Products as Raw Materials for the Production of Biopolymers and of Natural Reinforcing Fillers: A Critical Review. Polymers, 2021, 13, 381.	2.0	37
1141	Poly(propylene vanillate): A Sustainable Lignin-Based Semicrystalline Engineering Polyester. ACS Sustainable Chemistry and Engineering, 2021, 9, 1383-1397.	3.2	20
1142	Lipids as versatile solvents for chemical synthesis. Green Chemistry, 2021, 23, 7219-7227.	4.6	9
1143	Xylochemicals and where to find them. Chemical Communications, 2021, 57, 9979-9994.	2.2	5
1144	Design of task-specific metal phosphides for the sustainable manufacture of advanced biofuels. Advances in Inorganic Chemistry, 2021, 77, 219-239.	0.4	5
1145	Recovery of Agricultural Waste Biomass: A Sustainability Strategy for Moving Towards a Circular Bioeconomy., 2021,, 1-30.		0
1146	Development of Glass Ceramics from Agricultural Wastes. , 2021, , 229-250.		0
1147	Regulating TiO ₂ /MXenes catalysts to promote photocatalytic performance of highly selective oxidation of <scp>d</scp> -xylose. Green Chemistry, 2021, 23, 1382-1388.	4.6	21
1148	Emerging heterogeneous catalysts for biomass conversion: studies of the reaction mechanism. Chemical Society Reviews, 2021, 50, 11270-11292.	18.7	102
1149	Solar fuels and feedstocks: the quest for renewable black gold. Energy and Environmental Science, 2021, 14, 1402-1419.	15.6	25
1150	A review of thermal and thermocatalytic valorization of food waste. Green Chemistry, 2021, 23, 2806-2833.	4.6	28
1151	Polyamides containing a biorenewable aromatic monomer based on coumalate esters: from synthesis to evaluation of the thermal and mechanical properties. Polymer Chemistry, 2021, 12, 2379-2388.	1.9	3
1152	Production of Biofuel from Disposed Food and Dairy Waste., 2021, , 123-138.		3

#	Article	IF	CITATIONS
1153	Plant-derived alkyl phenol as green solvents: Properties and applications., 2021,, 229-251.		1
1154	Kinetic Modeling of Solketal Synthesis from Glycerol and Acetone Catalyzed by an Iron(III) Complex. Catalysts, 2021, 11, 83.	1.6	15
1156	Comparative study of the solvolytic deconstruction of corn stover lignin in batch and flow-through reactors. Green Chemistry, 2021, 23, 7731-7742.	4.6	17
1157	Resource recovery from food waste via biological processes. , 2021, , 327-354.		0
1158	An efficient method to prepare aryl acetates by the carbonylation of aryl methyl ethers or phenols. New Journal of Chemistry, 2021, 45, 2683-2687.	1.4	3
1159	Food waste valorization to green energy vehicles: sustainability assessment. Energy and Environmental Science, 2021, 14, 3651-3663.	15.6	43
1160	Synthesis of amides and esters containing furan rings under microwave-assisted conditions. Open Chemistry, 2021, 19, 265-280.	1.0	3
1161	Lignin Depolymerization Strategy and Role of Ionic Liquids. Clean Energy Production Technologies, 2021, , 157-173.	0.3	1
1162	A promiscuous glycosyltransferase generates poly- \hat{l}^2 -1,4-glucan derivatives that facilitate mass spectrometry-based detection of cellulolytic enzymes. Organic and Biomolecular Chemistry, 2021, 19, 5529-5533.	1.5	6
1163	New Mechanistic Insights into the Lignin \hat{l}^2 -O-4 Linkage Acidolysis with Ethylene Glycol Stabilization Aided by Multilevel Computational Chemistry. ACS Sustainable Chemistry and Engineering, 2021, 9, 2388-2399.	3.2	32
1164	CaCl ₂ molten salt hydrate-promoted conversion of carbohydrates to 5-hydroxymethylfurfural: an experimental and theoretical study. Green Chemistry, 2021, 23, 2058-2068.	4.6	19
1165	Photostability of Ambient-Processed, Conjugated Polymer Electrochromic Devices Encapsulated by Bioderived Barrier Films. ACS Sustainable Chemistry and Engineering, 2021, 9, 2937-2945.	3.2	11
1166	Efficient hydrogenation of biomass-derived phenol to cyclohexanol over 3D mesoporous silica-supported Ni catalysts in a continuous gas phase conditions. Biomass Conversion and Biorefinery, 2023, 13, 2757-2768.	2.9	3
1168	Selective oxidation of 5-hydroxymethylfurfural to 5-hydroxymethyl-2-furancarboxylic acid using silver oxide supported on calcium carbonate. Molecular Catalysis, 2021, 502, 111374.	1.0	12
1169	Green chemistry design in polymers derived from lignin: review and perspective. Progress in Polymer Science, 2021, 113, 101344.	11.8	103
1170	Exploiting Nature's Most Abundant Polymers: Developing New Pathways for the Conversion of Cellulose, Hemicellulose, Lignin and Chitin into Platform Molecules (and Beyond). Chemistry - an Asian Journal, 2021, 16, 604-620.	1.7	16
1171	Bioeconomy and biofuels: the case of sugarcane ethanol in Brazil. Biofuels, Bioproducts and Biorefining, 2021, 15, 899-912.	1.9	47
1172	A novel, facile and straightforward approach to achieve high-performance and efficient utilization of sustainable tyrosine cyclic peptide. Polymer, 2021, 217, 123417.	1.8	4

#	Article	IF	CITATIONS
1173	Ring-Opening Metathesis Polymerization of Unsaturated Carbohydrate Derivatives: Levoglucosenyl Alkyl Ethers. Macromolecules, 2021, 54, 2720-2728.	2.2	19
1174	Pharmaceutically relevant (hetero)cyclic compounds and natural products from lignin-derived monomers: Present and perspectives. IScience, 2021, 24, 102211.	1.9	32
1175	Electrochemical Routes for the Valorization of Biomass-Derived Feedstocks: From Chemistry to Application. ACS Energy Letters, 0, , 1205-1270.	8.8	130
1176	Kinetic modeling of anaerobic degradation of plant-derived aromatic mixtures by Rhodopseudomonas palustris. Biodegradation, 2021, 32, 179-192.	1.5	4
1178	Production of (R)-mandelic acid from styrene, L-phenylalanine, glycerol, or glucose via cascade biotransformations. Bioresources and Bioprocessing, 2021, 8, .	2.0	14
1179	Synergy of carbon defect and transition metal on tungsten carbides for boosting the selective cleavage of aryl ether C O bond. Applied Catalysis A: General, 2021, 613, 118023.	2.2	7
1180	Oxidative α-C–C Bond Cleavage of 2° and 3° Alcohols to Aromatic Acids with O ₂ at Room Temperature via Iron Photocatalysis. Organic Letters, 2021, 23, 2915-2920.	2.4	27
1181	Î ³ -Valerolactone as a promising solvent and basic chemical product. Catalytic synthesis from components of vegetable biomass. Kataliz V Promyshlennosti, 2021, 1, 97-116.	0.2	0
1182	Understanding and harnessing the glutamate metabolism in Escherichia coli. Journal of the Taiwan Institute of Chemical Engineers, 2021, 121, 115-121.	2.7	8
1183	Recent Advances in Bio-Based Sustainable Aliphatic and Aromatic Epoxy Resins for Composite Applications. Key Engineering Materials, 0, 882, 121-131.	0.4	3
1184	Thermo-acoustic and mechanical characterization of novel bio-based plasters: The valorisation of lignin as by-product from biomass extraction for green building applications. Construction and Building Materials, 2021, 278, 122373.	3.2	15
1185	<i>O,O</i> -Silyl Group Migrations in Quinic Acid Derivatives: An Opportunity for Divergent Synthesis. Organic Letters, 2021, 23, 3083-3087.	2.4	2
1186	Use of Deep Eutectic Solvents in the Treatment of Agro-Industrial Lignocellulosic Wastes for Bioactive Compounds. , 0, , .		6
1187	Socio-Economic and Environmental Impacts of Biomass Valorisation: A Strategic Drive for Sustainable Bioeconomy. Sustainability, 2021, 13, 4200.	1.6	32
1188	Efficient honeycomb–shaped biochar anodes for lithium-ion batteries from Eichhornia crassipes biomass. Environmental Chemistry Letters, 2021, 19, 3505-3510.	8.3	11
1189	Steam explosion pretreatment improves acetic acid organosolv delignification of oil palm mesocarp fibers and sugarcane bagasse. International Journal of Biological Macromolecules, 2021, 175, 304-312.	3.6	35
1190	Fabrication of cellulose nanocrystal-decorated hydroxyapatite nanostructures using ultrasonication for biomedical applications. Biomass Conversion and Biorefinery, 2023, 13, 5861-5874.	2.9	8
1191	Non-hazardous industrial waste in the United States: 100 Million tonnes of recoverable resources. Resources, Conservation and Recycling, 2021, 167, 105369.	5.3	9

#	Article	IF	CITATIONS
1192	New deep eutectic solvent assisted extraction of highly pure lignin from maritime pine sawdust (Pinus) Tj ETQq0 C	0 g.gBT /0	Overlock 10 1
1194	Phosphonated and methacrylated biobased cardanol monomer: Synthesis, characterization and application. Progress in Organic Coatings, 2021, 153, 106093.	1.9	12
1195	A New Conceptual â€~Cylinder' Framework for Sustainable Bioeconomy Systems and Their Actors. Journal of Agricultural and Environmental Ethics, 2021, 34, 11.	0.9	13
1197	Perspectives on Multifunctional Catalysts Derived from Layered Double Hydroxides toward Upgrading Reactions of Biomass Resources. ACS Catalysis, 2021, 11, 6440-6454.	5. 5	46
1198	One Step Bioremediation of Olive-Oil-Mill Waste by Organoinorganic Catalyst for Humics-Rich Soil Conditioner Production. Agronomy, 2021, 11, 1114.	1.3	10
1199	A Structured Approach to Recover Valuable Compounds from Agri-food Side Streams. Food and Bioprocess Technology, 2021, 14, 1387-1406.	2.6	20
1200	Process development of enzymatically-generated algal protein hydrolysates for specialty food applications. Algal Research, 2021, 55, 102248.	2.4	12
1203	Introduction: biopolymers and biocomposites. ChemistrySelect, 2021, .	0.7	0
1204	Void-Enriched and Highly Strained Porous Au–Ag Nanoalloy as a Bifunctional Electro-Catalyst in Alkaline Direct Alcohol Fuel Cell. ACS Applied Energy Materials, 2021, 4, 5367-5374.	2.5	4
1205	Highly active biomorphic MgO/C supported Cu NPs direct catalytic coupling of 1,4-butanediol dehydrogenation and acetophenone hydrogenation using in-situ liberated H2. Molecular Catalysis, 2021, 507, 111561.	1.0	2
1206	Life cycle analysis of fermentative production of succinic acid from bread waste. Waste Management, 2021, 126, 861-871.	3.7	35
1207	Ethylene Glycol from Lignocellulosic Biomass: Impact of Lignin on Catalytic Hydrogenolysis. Industrial & Degineering Chemistry Research, 2021, 60, 7043-7049.	1.8	15
1208	Selective Cleavage of the Diphenyl Ether C–O Bond over a Ni Catalyst Supported on AC with Different Pore Structures and Hydrophilicities. Energy & Structures and Hydrophilicities.	2.5	23
1209	Engineering Promiscuous Alcohol Dehydrogenase Activity of a Reductive Aminase AspRedAm for Selective Reduction of Biobased Furans. Frontiers in Chemistry, 2021, 9, 610091.	1.8	6
1210	Metal–Organic Framework-Confined Single-Site Base-Metal Catalyst for Chemoselective Hydrodeoxygenation of Carbonyls and Alcohols. Inorganic Chemistry, 2021, 60, 9029-9039.	1.9	16
1211	The Impact of Biomass and Acid Loading on Methanolysis during Two-Step Lignin-First Processing of Birchwood. Catalysts, 2021, 11, 750.	1.6	11
1212	Alcoholâ€Activated Vanadiumâ€Containing Polyoxometalate Complexes in Homogeneous Glucose Oxidation Identified with ⁵¹ Vâ€NMR and EPR Spectroscopy. ChemCatChem, 2021, 13, 3662-3670.	1.8	12
1213	Impact of Moderate Cold and Salt Stress on the Accumulation of Antioxidant Flavonoids in the Leaves of Two <i>Capsicum</i> Cultivars. Journal of Agricultural and Food Chemistry, 2021, 69, 6431-6443.	2.4	33

#	Article	IF	CITATIONS
1214	Flow reactor approach for the facile and continuous synthesis of efficient Pd@Pt core-shell nanoparticles for acceptorless dehydrogenative synthesis of pyrimidines from alcohols and amidines. Applied Catalysis A: General, 2021, 619, 118158.	2.2	9
1215	Copperâ€Catalyzed Oxidative Câ^'C Cleavage of Carbohydrates: An Efficient Access to Quinazolinone Scaffolds. Asian Journal of Organic Chemistry, 2021, 10, 1795-1800.	1.3	17
1216	Environment and sustainability approach to manage sweet bakery waste product. Science of the Total Environment, 2021, 772, 145557.	3.9	5
1217	Lignin-assisted construction of well-defined 3D graphene aerogel/PEG form-stable phase change composites towards efficient solar thermal energy storage. Solar Energy Materials and Solar Cells, 2021, 224, 111013.	3.0	52
1218	Streamlining Design, Engineering, and Applications of Enzymes for Sustainable Biocatalysis. ACS Sustainable Chemistry and Engineering, 2021, 9, 8032-8052.	3.2	60
1219	Computational Insights into the Hydrodeoxygenation of Phenolic Compounds over Pt–Fe Catalysts. Journal of Physical Chemistry C, 2021, 125, 14239-14252.	1.5	4
1220	Biobased acrylic pressure-sensitive adhesives. Progress in Polymer Science, 2021, 117, 101396.	11.8	41
1221	Leaf-derived porous carbon synthesized by carbothermic reduction. Renewable Energy, 2021, 171, 116-123.	4. 3	4
1222	Selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran over niobium incorporated MCM-41 catalyst. Molecular Catalysis, 2021, 510, 111682.	1.0	9
1223	Recovery approaches for sulfuric acid from the concentrated acid hydrolysis of lignocellulosic feedstocks: A mini-review. Energy Conversion and Management: X, 2021, 10, 100074.	0.9	10
1224	Facile synthesis of bio-based tetra-functional epoxy resin and its potential application as high-performance composite resin matrix. Composites Part B: Engineering, 2021, 214, 108749.	5.9	49
1225	Enhancing Energy Recovery in Form of Biogas, from Vegetable and Fruit Wholesale Markets By-Products and Wastes, with Pretreatments. Plants, 2021, 10, 1298.	1.6	11
1226	Recent advances in lignocellulose prior-fractionation for biomaterials, biochemicals, and bioenergy. Carbohydrate Polymers, 2021, 261, 117884.	5.1	72
1227	Natural magnolol derivatives as platform chemicals for bio-based phthalonitrile thermoset: Achieving high performances without an external curing agent. Polymer, 2021, 226, 123814.	1.8	20
1228	Metal Sulfide Photocatalysts for Lignocellulose Valorization. Advanced Materials, 2021, 33, e2007129.	11.1	106
1230	Renewable mycelium based composite– sustainable approach for lignocellulose waste recovery and alternative to synthetic materials– a review. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2021, 76, 431-442.	0.6	14
1231	Cognitive Research on the Development of Agricultural Waste Resource Treatment Technology for a Sustainable Environment. IOP Conference Series: Earth and Environmental Science, 2021, 811, 012002.	0.2	1
1232	Facile synthesis of lignin-based epoxy resins with excellent thermal-mechanical performance. International Journal of Biological Macromolecules, 2021, 182, 276-285.	3.6	38

#	Article	IF	CITATIONS
1233	Catalytic transfer hydrogenolysis of C–O bonds in lignin model compounds without arene hydrogenation. Green Chemical Engineering, 2022, 3, 25-33.	3.3	10
1234	Choline Chloride-based Deep Eutectic Solvents for Degradation of Waste Cotton Fibrics to 5-Hydroxymethylfurfural. Fibers and Polymers, 2022, 23, 98-106.	1.1	6
1235	Î ³ -Valerolactone as a Promising Solvent and Basic Chemical Product: Catalytic Synthesis from Plant Biomass Components. Catalysis in Industry, 2021, 13, 289-308.	0.3	2
1236	Characteristics of the process of biohydrogen production from simple and complex substrates with different biopolymer composition. International Journal of Hydrogen Energy, 2021, 46, 26289-26297.	3.8	12
1237	Effective extraction of aromatic monomers from lignin oil using a binary petroleum ether/dichloromethane solvent. Separation and Purification Technology, 2021, 267, 118599.	3.9	21
1238	Processing of agricultural apple fruit waste into sugar rich feedstocks for the catalytic production of 5-HMF over a Sn Amberlyst-15 resin catalyst. Journal of Industrial and Engineering Chemistry, 2021, 99, 443-448.	2.9	12
1239	Valorization of cigarette butts for synthesis of levulinic acid as top value-added chemicals. Scientific Reports, 2021, 11, 15775.	1.6	10
1240	Biofuel Resources Plan: Theoretical Case Assessment of Automotive Industries. Engineering and Technology Journal, 2021, 06, .	0.0	0
1241	Phosphoric Acid Modification of $H\hat{I}^2$ Zeolite for Guaiacol Hydrodeoxygenation. Catalysts, 2021, 11, 962.	1.6	8
1242	Protein hydrolysates from silkworm (<i>Bombyx mori</i>) pupae protein treated with a novel neutral protease. Journal of Insects As Food and Feed, 2022, 8, 295-311.	2.1	3
1243	Fungal glycosyl hydrolases for sustainable plant biomass valorization: Talaromyces amestolkiae as a model fungus. International Microbiology, 2021, 24, 545-558.	1.1	17
1244	Catalytic Pyrolysis of Lignin Model Compounds (Pyrocatechol, Guaiacol, Vanillic and Ferulic Acids) over Nanoceria Catalyst for Biomass Conversion. Applied Sciences (Switzerland), 2021, 11, 7205.	1.3	9
1245	The CirCo (Circular Coffee) Project: A Case Study on Valorization of Coffee Silverskin in the Context of Circular Economy in Italy. Sustainability, 2021, 13, 9069.	1.6	7
1246	Optimizing the carburization conditions of supported rhenium carbide for guaiacol conversion. Applied Catalysis A: General, 2021, 623, 118267.	2.2	4
1247	Raney Ni as a Versatile Catalyst for Biomass Conversion. ACS Catalysis, 2021, 11, 10508-10536.	5.5	49
1248	A Putative Lignin Copper Oxidase from Trichoderma reesei. Journal of Fungi (Basel, Switzerland), 2021, 7, 643.	1.5	5
1249	Pyrolysis of Aesculus chinensis Bunge Seed with Fe2O3/NiO as nanocatalysts for the production of bio-oil material. Journal of Hazardous Materials, 2021, 416, 126012.	6. 5	16
1250	Chemoenzymatic access to enantiopure N-containing furfuryl alcohol from chitin-derived N-acetyl-D-glucosamine. Bioresources and Bioprocessing, 2021, 8, .	2.0	7

#	Article	IF	CITATIONS
1251	Firstâ€Row Transitionâ€Metal Catalyzed Acceptorless Dehydrogenation and Related Reactions: A Personal Account. Chemical Record, 2021, 21, 3839-3871.	2.9	19
1252	Utilization of a Methoxy Group in Lignin to Prepare Amides by the Carbonylation of Amines. ACS Sustainable Chemistry and Engineering, 2021, 9, 11667-11673.	3.2	4
1253	Synthesis of <i>N</i> â€Heterocycles via Oxidantâ€Free Dehydrocyclization of Alcohols Using Heterogeneous Catalysts. Angewandte Chemie - International Edition, 2021, 60, 25188-25202.	7.2	70
1254	Synthesis of <i>N</i> â€Heterocycles via Oxidantâ€Free Dehydrocyclization of Alcohols Using Heterogeneous Catalysts. Angewandte Chemie, 2021, 133, 25392-25406.	1.6	8
1255	Enhanced selective removal of Pb(II) by modification low-cost bio-sorbent: Experiment and theoretical calculations. Journal of Cleaner Production, 2021, 316, 128372.	4.6	38
1256	Valorization and extraction optimization of Citrus seeds for food and functional food applications. Food Chemistry, 2021, 355, 129609.	4.2	53
1257	Sulfonated carbon-catalyzed deamination of alanine under hydrothermal conditions. Journal of Supercritical Fluids, 2021, 175, 105275.	1.6	2
1258	Glycerol Oxidation Pairs with Carbon Monoxide Reduction for Low-Voltage Generation of C ₂ and C ₃ Product Streams. ACS Energy Letters, 2021, 6, 3538-3544.	8.8	36
1259	Renewable Vanillylamine Synthesis from Lignin-Derived Feedstocks. ACS Agricultural Science and Technology, 2021, 1, 566-571.	1.0	13
1260	Oxidative Catalytic Fractionation of Lignocellulosic Biomass under Non-alkaline Conditions. Journal of the American Chemical Society, 2021, 143, 15462-15470.	6.6	65
1261	Zeoliteâ€Tailored Active Site Proximity for the Efficient Production of Pentanoic Biofuels. Angewandte Chemie - International Edition, 2021, 60, 23713-23721.	7.2	43
1262	Zeoliteâ€Tailored Active Site Proximity for the Efficient Production of Pentanoic Biofuels. Angewandte Chemie, 2021, 133, 23906-23914.	1.6	10
1263	Analysis of phenolation potential of spruce kraft lignin and construction of its molecular structure model. Industrial Crops and Products, 2021, 167, 113506.	2.5	22
1264	Controlled Synthesis of <scp>l</scp> -Lactide Using Sn-Beta Zeolite Catalysts in a One-Step Route. Industrial & Lagrangian Chemistry Research, 2021, 60, 13534-13541.	1.8	11
1265	Photocycloadditions of Arenes Derived from Lignin. Journal of Organic Chemistry, 2021, 86, 13310-13321.	1.7	6
1266	Selective Câ€alkylation Between Alcohols Catalyzed by Nâ€Heterocyclic Carbene Molybdenum. Chemistry - an Asian Journal, 2021, 16, 3124-3128.	1.7	9
1267	Improved value and carbon footprint by complete utilization of corncob lignocellulose. Chemical Engineering Journal, 2021, 419, 129565.	6.6	50
1268	Efficient transformation of rice husk to a high-performance Si@SiO2@C anode material by a mechanical milling and molten salt coactivated magnesiothermic reduction. Journal of Alloys and Compounds, 2021, 875, 159974.	2.8	13

#	Article	IF	CITATIONS
1269	Bio-based polymers with performance-advantaged properties. Nature Reviews Materials, 2022, 7, 83-103.	23.3	268
1270	Microbial itaconic acid production from starchy food waste by newly isolated thermotolerant Aspergillus terreus strain. Bioresource Technology, 2021, 337, 125426.	4.8	24
1271	Hydrodeoxygenation of phenol and pyrolysis oil using Raney Ni and IL/Zr-SBA-15 catalysts. Journal of Environmental Chemical Engineering, 2021, 9, 105848.	3.3	3
1272	Catalytic hydrogenolysis of castor seeds C-lignin in deep eutectic solvents. Industrial Crops and Products, 2021, 169, 113666.	2.5	22
1273	Facile preparation of lignosulfonate induced silver nanoparticles for high efficient removal of organic contaminants in wastewater. Industrial Crops and Products, 2021, 169, 113644.	2.5	19
1274	Environmental and economic trade-off-based approaches towards urban household waste and crop straw disposal for biogas power generation project -a case study from China. Journal of Cleaner Production, 2021, 319, 128620.	4.6	17
1275	Recent advances in enzymatic synthesis of \hat{l}^2 -glucan and cellulose. Carbohydrate Research, 2021, 508, 108411.	1.1	18
1276	Environmentally-friendly and sustainable synthesis of bimetallic NiCo-based carbon nanosheets for catalytic cleavage of lignin dimers. Inorganic Chemistry Communication, 2021, 132, 108816.	1.8	9
1277	Controlling Diphenyl Ether Hydrogenolysis Selectivity by Tuning the Pt Support and H-Donors under Mild Conditions. ACS Catalysis, 2021, 11, 12661-12672.	5.5	20
1278	Effect of boron-based additives on char agglomeration and boron doped carbon microspheres structure from lignin pyrolysis. Fuel, 2021, 303, 121237.	3.4	15
1279	Recent nanobiotechnological advancements in lignocellulosic biomass valorization: A review. Journal of Environmental Management, 2021, 297, 113422.	3.8	43
1280	Progresses in polysaccharide and lignin-based ionic liquids: Catalytic applications and environmental remediation. Journal of Molecular Liquids, 2021, 342, 117559.	2.3	37
1281	Porosity roles of micro-mesostructured ZSM-5 in catalytic fast pyrolysis of cellulolytic enzyme lignin for aromatics. Energy Conversion and Management, 2021, 247, 114753.	4.4	15
1282	Chemoautotroph Cupriavidus necator as a potential game-changer for global warming and plastic waste problem: A review. Bioresource Technology, 2021, 340, 125693.	4.8	50
1283	Upcycling the anaerobic digestion streams in a bioeconomy approach: A review. Renewable and Sustainable Energy Reviews, 2021, 151, 111635.	8.2	24
1284	Turning biomass into functional composite materials: Rice husk for fully renewable immobilized biocatalysts. EFB Bioeconomy Journal, 2021, 1, 100008.	1.1	8
1285	Ligninsulfonate/trimesoylchloride nanocomposite membrane with transmembrane nanochannels via bionic cell membrane for molecular separation. Journal of Membrane Science, 2021, 638, 119741.	4.1	4
1286	Photo-/thermal synergies in heterogeneous catalysis: Towards low-temperature (solar-driven) processing for sustainable energy and chemicals. Applied Catalysis B: Environmental, 2021, 296, 120320.	10.8	66

#	Article	IF	CITATIONS
1287	Synthesis and optimization of chitosan supported magnetic carbon bio-nanocomposites and bio-oil production by solvothermal carbonization co-precipitation for advanced energy applications. Renewable Energy, 2021, 178, 587-599.	4.3	10
1288	Biological upgrading of pyrolysis-derived wastewater: Engineering Pseudomonas putida for alkylphenol, furfural, and acetone catabolism and (methyl)muconic acid production. Metabolic Engineering, 2021, 68, 14-25.	3.6	20
1289	Ultrastructural change in lignocellulosic biomass during hydrothermal pretreatment. Bioresource Technology, 2021, 341, 125807.	4.8	54
1290	Biorefinery concept of simultaneous saccharification and co-fermentation: Challenges and improvements. Chemical Engineering and Processing: Process Intensification, 2021, 169, 108634.	1.8	12
1291	Coke formation during rapid quenching of volatile vapors from fast pyrolysis of cellulose. Fuel, 2021, 306, 121658.	3.4	19
1292	Complete conversion of lignocellulosic biomass into three high-value nanomaterials through a versatile integrated technical platform. Chemical Engineering Journal, 2022, 428, 131373.	6.6	69
1293	Using an improved Si-rich husk ash to decrease inorganic arsenic in rice grain. Science of the Total Environment, 2022, 803, 150102.	3.9	12
1294	Biomass-derived carbon-based and silica-based materials for catalytic and adsorptive applications- An update since 2010. Chemosphere, 2022, 287, 132222.	4.2	8
1295	Selective hydrodeoxygenation of lignin-derived phenolics to cycloalkanes over highly stable NiAl2O4 spinel-supported bifunctional catalysts. Chemical Engineering Journal, 2022, 429, 132181.	6.6	20
1296	Disassembling catechyl and guaiacyl/syringyl lignins coexisting in Euphorbiaceae seed coats. Green Chemistry, 2021, 23, 7235-7242.	4.6	25
1297	Cost and energy efficient cyclic separation of 5-hydroxymethyl furfural from an aqueous solution. Green Chemistry, 2021, 23, 4008-4023.	4.6	15
1298	Efficient reduction of 5-hydroxymethylfurfural to 2, 5-bis (hydroxymethyl) furan by a fungal whole-cell biocatalyst. Molecular Catalysis, 2021, 500, 111341.	1.0	16
1299	Fractionation, Characterization, and Valorization of Lignin Derived from Engineered Plants. , 2021, , 245-288.		0
1300	Homogeneous transition metal catalyzed conversion of levulinic acid to gamma-valerolactone. Advances in Inorganic Chemistry, 2021, 77, 1-25.	0.4	8
1301	The thousand faces of Cu-doped porous mixed oxides (Cu-PMO) in the conversion of renewable resources and beyond. Advances in Inorganic Chemistry, 2021, , 59-98.	0.4	4
1302	Catalytic Conversion of Tetrahydrofurfuryl Alcohol over Stable Pt/MoS2 Catalysts. Catalysis Letters, 2021, 151, 2734-2747.	1.4	6
1303	A facile spectroscopic method for measuring lignin content in lignocellulosic biomass. Green Chemistry, 2021, 23, 5106-5112.	4.6	46
1304	Controlled lignosulfonate depolymerization <i>via</i> solvothermal fragmentation coupled with catalytic hydrogenolysis/hydrogenation in a continuous flow reactor. Green Chemistry, 2021, 23, 9894-9905.	4.6	16

#	ARTICLE	IF	Citations
1306	Implications: Convergence of Knowledge and Technology for a Sustainable Society. Science Policy Reports, 2013, , 371-431.	0.1	3
1307	Effect of Hydrothermal Processing on Hemicellulose Structure. , 2017, , 45-94.		19
1308	Enzymatic Conversion of First- and Second-Generation Sugars. , 2018, , 169-189.		8
1309	Biofuels: Sources, Modern Technology Developments and Views on Bioenergy Management., 2020, , 197-219.		2
1310	Introduction to Lignocellulosic Ethanol. , 2020, , 1-21.		2
1311	Hydrothermal carbonization as a sustainable strategy for integral valorisation of apple waste. Bioresource Technology, 2020, 309, 123395.	4.8	36
1312	Valorization of refractory keratinous waste using a new and sustainable bio-catalysis. Chemical Engineering Journal, 2020, 397, 125420.	6.6	23
1313	Roles of water and aluminum sulfate for selective dissolution and utilization of hemicellulose to develop sustainable corn stover-based biorefinery. Renewable and Sustainable Energy Reviews, 2020, 122, 109724.	8.2	16
1314	A Mechanistic Investigation of Sustainable Solvent-Free, Seed-Directed Synthesis of ZSM-5 Zeolites in the Absence of an Organic Structure-Directing Agent. ACS Omega, 2021, 6, 925-933.	1.6	30
1315	Chapter 7. Non-fuel Applications of Sugars in Brazil. RSC Green Chemistry, 0, , 228-257.	0.0	2
1316	Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chemical Society Reviews, 2020, 49, 4273-4306.	18.7	559
1317	Discovery of Microorganisms and Enzymes Involved in High-Solids Decomposition of Rice Straw Using Metagenomic Analyses. PLoS ONE, 2013, 8, e77985.	1.1	50
1318	Preparation of kraft lignin-based activated carbon fiber electrodes for electric double layer capacitors using an ionic liquid electrolyte. Holzforschung, 2020, 74, 577-588.	0.9	6
1319	Biomass Valorization in High-temperature Liquid Water. Journal of the Japan Petroleum Institute, 2014, 57, 155-163.	0.4	9
1320	Ecogenomics Based Microbial Enzyme for Biofuel Industry. Science International, 2016, 4, 1-11.	0.4	4
1321	Effect of diet on growth, survival and fatty acid profile of marine amphipods: implications for utilisation as a feed ingredient for sustainable aquaculture. Aquaculture Environment Interactions, 2019, 11, 481-491.	0.7	12
1322	A Review of Biohydrogen Productions from Lignocellulosic Precursor via Dark Fermentation: Perspective on Hydrolysate Composition and Electron-Equivalent Balance. Energies, 2020, 13, 2451.	1.6	18
1323	Exploring Orange Peel Treatment with Deep Eutectic Solvents and Diluted Organic Acids. Natural Products Chemistry & Research, 2016, 04, .	0.2	4

#	Article	IF	CITATIONS
1324	Scientific specialties in Green Chemistry. Iberoamerican Journal of Science Measurement and Communication, 2020, $1,005$.	1.6	4
1325	Synthesis and characterization of graphene from rice husks. Tanso, 2016, 2016, 182-190.	0.1	7
1326	Biocatalysis in ionic liquids: state-of-the-union. Green Chemistry, 2021, 23, 8406-8427.	4.6	30
1327	A Fe single atom on N,S-doped carbon catalyst for performing N-alkylation of aromatic amines under solvent-free conditions. Journal of Materials Chemistry A, 2021, 9, 25128-25135.	5.2	34
1328	Biocascading: General Strategy for the Recovery of Valuable Substances from Food Waste., 2021,, 109-167.		1
1329	Zirconia and Phosphotungstic Acid Supported on TS-1 as An Active Catalyst for One-Pot Selective Conversion of Furfuryl Alcohol to $\langle i \rangle \hat{I}^3 \langle i \rangle$ -Valerolactone. Science of Advanced Materials, 2021, 13, 1078-1087.	0.1	0
1330	Nickelâ€Catalyzed Selective Synthesis of αâ€Alkylated Ketones via Dehydrogenative Crossâ€Coupling of Primary and Secondary Alcohols. Advanced Synthesis and Catalysis, 2022, 364, 47-52.	2.1	23
1331	Catalytic Conversion of Lignin to Liquid Fuels with an Improved H/C _{eff} Value over Bimetallic NiMo-MOF-Derived Catalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 13937-13952.	3.2	20
1332	Exploring the potential of ligninolytic armory for lignin valorization – A way forward for sustainable and cleaner production. Journal of Cleaner Production, 2021, 326, 129420.	4.6	20
1333	A Comprehensive Review and Status of Renewable Resources and Oil & Gas Under the Supply and Demand Dynamics in the World., 2021,,.		3
1334	Recent Progress on Electrocatalytic Valorization of Biomassâ€Derived Organics. Energy and Environmental Materials, 2022, 5, 1117-1138.	7.3	38
1335	Renewable and flexible thermosetting epoxies based on functionalized biorefinery lignin fractions. Materials Today Sustainability, 2021, 15, 100083.	1.9	14
1336	From waste to wealth: upcycling of plastic and lignocellulosic wastes to <scp>PHAs</scp> . Journal of Chemical Technology and Biotechnology, 2022, 97, 3217-3240.	1.6	11
1337	Progress of the Pyrolyzer Reactors and Advanced Technologies for Biomass Pyrolysis Processing. Sustainability, 2021, 13, 11061.	1.6	44
1338	Selective Transformation of Vicinal Glycols to \hat{l} ±-Hydroxy Acetates in Water via a Dehydrogenation and Oxidization Relay Process by a Self-Supported Single-Site Iridium Catalyst. ACS Catalysis, 2021, 11, 12833-12839.	5.5	26
1339	Enzyme-Assisted Transformation of Lignin-Based Food Bio-residues into High-Value Products with a Zero-Waste Theme: A Review. Waste and Biomass Valorization, 0, , 1.	1.8	3
1340	Efficient oxidation of 5-Hydroxymethylfurfural to 2,5-furandicarboxylic acid over FeNPs@NH2-SBA-15 catalyst in water. Molecular Catalysis, 2021, 516, 111951.	1.0	6
1342	Renewable Energy Derived from Food Waste and Co-digestion of Food Waste with Waste-Activated Sludge., 2015,, 257-278.		0

#	Article	IF	CITATIONS
1343	Conversion of bagasse to char-water fuel by pyrolysis. , 2015, , .		3
1344	GREEN CHEMISTRY: NEW CHEMICAL PHILOSOPHY. Vìsnik Odesʹkogo Nacìonalʹnogo Unìversitetu: Hìm 2015, 20, 93.	iìâ, O.1	O
1345	Phenolics Value Chain and I-Lactic Acid Bioproduction from Agricultural Biomass. Green Chemistry and Sustainable Technology, 2016, , 319-347.	0.4	0
1346	The Potential Incorporation of Biochar into a Char-Water Fuel â€" Study of Chemical and Physical Properties. International Journal of Environmental Science and Development, 2018, 9, 127-130.	0.2	1
1347	Lignin as Bio-industrial Materials: Focused on Cosmetic Ingredients. KSBB Journal, 2018, 33, 215-226.	0.1	2
1348	YER FISTIĞI KABUĞUNDAN BİYOETANOL ÜRETİMİ. Gıda, 0, , 291-300.	0.1	1
1351	Biotechnology Application of Pretreated Biomass. Green Energy and Technology, 2020, , 67-81.	0.4	1
1352	lonic Liquids for Enhanced Enzymatic Saccharification of Cellulose-Based Materials. Nanotechnology in the Life Sciences, 2020, , 113-135.	0.4	0
1353	From Lignin to Valuable Aromatic Chemicals: Lignin Depolymerization and Monomer Separation via Centrifugal Partition Chromatography. ACS Central Science, 2021, 7, 1831-1837.	5.3	59
1354	Bio Discarded from Waste to Resource. Foods, 2021, 10, 2652.	1.9	12
1355	The Importance of Natural Products in Cosmetics. Advanced Structured Materials, 2021, , 643-685.	0.3	8
1356	Spectroscopic analysis of organic materials susceptible to transformation processes. ECORFAN Journal Bolivia, 0, , 1-6.	0.0	O
1357	Insight into Tar Formation Mechanism during Catalytic Pyrolysis of Biomass over Waste Aluminum Dross. Applied Sciences (Switzerland), 2021, 11, 246.	1.3	1
1358	Development of Glass Ceramics from Agricultural Wastes. , 2020, , 1-22.		0
1359	The multiscale solvation effect on the reactivity of \hat{l}^2 -O-4 of lignin dimers in deep eutectic solvents. Physical Chemistry Chemical Physics, 2021, 23, 25699-25705.	1.3	5
1361	Valorization of Marine Waste: Use of Industrial By-Products and Beach Wrack Towards the Production of High Added-Value Products. Frontiers in Marine Science, 2021, 8, .	1.2	35
1362	Isomerization of Glucoseâ€ŧoâ€Fructose in Water over a Continuous Flow Reactor using Caâ^'Al Mixed Oxide as Heterogeneous Catalyst. ChemCatChem, 2022, 14, .	1.8	8
1363	Computational understanding of Fe-Pt synergy in promoting guaiacol hydrodeoxygenation. Surface Science, 2022, 717, 121985.	0.8	4

#	Article	IF	CITATIONS
1364	Applying triplet-triplet annihilation upconversion in degradation of oxidized lignin model with good selectivity. Chemical Engineering Journal, 2022, 431, 133377.	6.6	9
1367	Subcritical water hydrolysis of poultry feathers for amino acids production. Journal of Supercritical Fluids, 2022, 181, 105492.	1.6	16
1369	Synthetic Approach to Rice Waste-Derived Carbon-Based Nanomaterials and Their Applications. Nanomanufacturing, 2021, 1, 109-159.	1.8	18
1370	A well-defined diamine from lignin depolymerization mixtures for constructing bio-based polybenzoxazines. Chem Catalysis, 2021, 1, 1466-1466.	2.9	9
1371	Effect of the Support Functionalization of Mono- and Bimetallic Ni/Co Supported on Graphene in Hydrodeoxygenation of Guaiacol. Industrial & Engineering Chemistry Research, 2021, 60, 18870-18879.	1.8	11
1372	Semiâ∈Batch Hydrotreatment of Ligninâ∈Derived Phenolic Compounds over Raneyâ∈Ni with a Continuous Regeneration of the Hâ∈Donor Solvent. ChemSusChem, 2022, 15, .	3.6	4
1373	Guiding stars to the field of dreams: Metabolically engineered pathways and microbial platforms for a sustainable lignin-based industry. Metabolic Engineering, 2022, 71, 13-41.	3.6	36
1374	One-pot production of diethyl maleate <i>via</i> catalytic conversion of raw lignocellulosic biomass. Green Chemistry, 2021, 23, 10116-10122.	4.6	7
1375	Value addition of lignin to zingerone using recyclable AlPO4 and Ni/LRC catalysts. Chemical Engineering Journal, 2022, 431, 134130.	6.6	10
1376	Synergistic effects during co-pyrolysis of milled wood lignin and polyolefins at the gas phase and liquid/solid phase contacting modes. Chemical Engineering Journal, 2022, 431, 134030.	6.6	16
1377	5-Sulfosalicylic acid as an acid hydrotrope for the rapid and green fractionation of woody biomass. Industrial Crops and Products, 2022, 177, 114435.	2.5	11
1378	Extremophiles and extremozymes in lignin bioprocessing. Renewable and Sustainable Energy Reviews, 2022, 157, 112069.	8.2	25
1379	Recent Advances in the Catalytic Upgrading of Biomass Platform Chemicals Via Hydrotalcite-Derived Metal Catalysts. Transactions of Tianjin University, 2022, 28, 89-111.	3.3	17
1380	Odor and Constituent Odorants of HDPE–Lignin Blends of Different Lignin Origin. Polymers, 2022, 14, 206.	2.0	6
1381	Nanosized copper stabilized on ternary P, N, S-doped graphene from chitosan shellfish waste: preparation and catalysis of single and double A3-type amine coupling. Materials Today Sustainability, 2022, 18, 100109.	1.9	4
1382	Liquid–Liquid Equilibria of Ternary Mixtures Containing n-Tetradecane + γ-Valerolactone + Aldehyde [Butanal or Pentanal or (E)-2-Undecenal] at 298.15 K. Journal of Chemical & Engineering Data, 2022, 67, 393-403.	1.0	4
1383	Oxovanadium complexes catalyzed oxidation of lignin and lignin dimers in acetonitrile/water under O2. Biomass Conversion and Biorefinery, 2024, 14, 607-619.	2.9	2
1384	Green Chemistry, Biocatalysis, and the Chemical Industry of the Future. ChemSusChem, 2022, 15, .	3.6	63

#	Article	IF	CITATIONS
1385	Roles and impacts of bioethanol and biodiesel on climate change mitigation., 2022, , 373-400.		5
1386	Synthetic Study of 5â€Hydroxymethylfurfural in Groebkeâ€Blackburnâ€Bienaymé Reaction. European Journal of Organic Chemistry, 2022, 2022, .	1.2	5
1387	Fabricating nickel phyllosilicate-like nanosheets to prepare a defect-rich catalyst for the one-pot conversion of lignin into hydrocarbons under mild conditions. Green Chemistry, 2022, 24, 846-857.	4.6	15
1388	Applications of heteropoly acids in industry. , 2022, , 305-373.		1
1389	Polysaccharides in Agro-Industrial Biomass Residues. Polysaccharides, 2022, 3, 95-120.	2.1	22
1390	Isolation and Characterization of Lignocellulose-Degrading <i>Geobacillus thermoleovorans</i> from Yellowstone National Park. Applied and Environmental Microbiology, 2022, 88, AEM0095821.	1.4	2
1391	Conversion of Biomass-Derived Methyl Levulinate to Methyl Vinyl Ketone. ACS Sustainable Chemistry and Engineering, 2022, 10, 766-775.	3.2	8
1393	Promising and efficient lignin degradation versatile strategy based on DFT calculations. IScience, 2022, 25, 103755.	1.9	4
1394	Depolymerization of Lignin via a Microscopic Reverse Biosynthesis Pathway. ACS Catalysis, 2022, 12, 2532-2539.	5.5	8
1395	Evaluation of effective parameters on the non-aqueous solvent extraction of samarium and gadolinium to n-dodecane/D2EHPA. Progress in Nuclear Energy, 2022, 144, 104072.	1.3	3
1396	A modified ionization difference UV–vis method for fast quantitation of guaiacyl-type phenolic hydroxyl groups in lignin. International Journal of Biological Macromolecules, 2022, 201, 330-337.	3.6	8
1397	Catalytic hydrogenation of aromatic ring over ruthenium nanoparticles supported on α-Al2O3 at room temperature. Applied Catalysis B: Environmental, 2022, 307, 121137.	10.8	37
1398	Recovery of Agricultural Waste Biomass: A Sustainability Strategy for Moving Towards a Circular Bioeconomy., 2022,, 467-496.		1
1399	A one-pot and two-stage Baeyer–Villiger reaction using 2,2′-diperoxyphenic acid under biomolecule-compatible conditions. Green Chemistry, 2022, 24, 2232-2239.	4.6	4
1400	A spectroscopic method for quantitating lignin in lignocellulosic biomass based on the completely dissolved solution of biomass in LiCl/DMSO. Green Chemistry, 2022, 24, 2212-2221.	4.6	8
1401	Sustainable Sorbitol Dehydration to Isosorbide using Solid Acid Catalysts: Transition from Batch Reactor to Continuousâ€Flow System. ChemSusChem, 2022, 15, .	3.6	13
1402	Mechanochemical Transformations of Biomass into Functional Materials. ChemSusChem, 2022, 15, .	3.6	25
1403	Efficient Synthesis of Bis(5â€arylfuranâ€2â€yl)methane Scaffolds Utilizing Biomassâ€Derived Starting Materials. European Journal of Organic Chemistry, 0, , .	1.2	1

#	Article	IF	CITATIONS
1404	Synergistic catalysis of species in molten salt hydrate for conversion of cellulose to 5-hydroxymethylfurfural. Biomass and Bioenergy, 2022, 158, 106363.	2.9	14
1405	Defective Ni3S2 nanowires as highly active electrocatalysts for ethanol oxidative upgrading. Nano Research, 2022, 15, 2987-2993.	5.8	11
1406	Biomass upgrading coupled with H ₂ production <i>via</i> a nonprecious and versatile Cu-doped nickel nanotube electrocatalyst. Journal of Materials Chemistry A, 2022, 10, 10181-10191.	5.2	23
1407	Synthesis of indoles and carbazoles from a lignin model compound α-hydroxyacetophenone. Green Chemistry, 2022, 24, 2919-2926.	4.6	9
1408	Tailored one-pot lignocellulose fractionation to maximize biorefinery toward versatile xylochemicals and nanomaterials. Green Chemistry, 2022, 24, 3257-3268.	4.6	43
1409	Solvent-free transformation of levulinic acid into valeric acid and its esters using the nickel phosphine complex and metal triflate co-catalytic system. Green Chemistry, 2022, 24, 3143-3151.	4.6	4
1410	One-pot synthesis to prepare lignin/photoacid nanohybrids for multifunctional biosensors and photo-triggered singlet oxygen generation. Green Chemistry, 2022, 24, 2904-2918.	4.6	6
1411	Stable and Functionally Diverse Versatile Peroxidases Designed Directly from Sequences. Journal of the American Chemical Society, 2022, 144, 3564-3571.	6.6	30
1412	Hydrothermal conversion of fructose to lactic acid and derivatives: Synergies of metal and acid/base catalysts. Chinese Journal of Chemical Engineering, 2023, 53, 381-401.	1.7	4
1413	Complexation of Lignin Dimers with β-Cyclodextrin and Binding Stability Analysis by ESI-MS, Isothermal Titration Calorimetry, and Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2022, 126, 1655-1667.	1.2	2
1414	Selective Electrooxidation of Biomassâ€Derived Alcohols to Aldehydes in a Neutral Medium: Promoted Water Dissociation over a Nickelâ€Oxideâ€Supported Ruthenium Singleâ€Atom Catalyst. Angewandte Chemie - International Edition, 2022, 61, .	7.2	125
1415	Selective Electrooxidation of Biomassâ€Derived Alcohols to Aldehydes in a Neutral Medium: Promoted Water Dissociation over a Nickelâ€Oxideâ€Supported Ruthenium Singleâ€Atom Catalyst. Angewandte Chemie, 2022, 134, .	1.6	41
1416	Residual Biomass: A Comprehensive Review on the Importance, Uses and Potential in a Circular Bioeconomy Approach. Resources, 2022, 11, 35.	1.6	21
1417	Biowaste valorization for production of bacterial cellulose and its multifarious applications contributing to environmental sustainability. Environmental Sustainability, 2022, 5, 51-63.	1.4	1
1418	Computational Mechanism of Methyl Levulinate Conversion to \hat{l}^3 -Valerolactone on UiO-66 Metal Organic Frameworks. ACS Sustainable Chemistry and Engineering, 2022, 10, 3567-3573.	3.2	8
1419	Biomass to drugs: Green production of salicylic acid from 2-furoic acid in two steps. Molecular Catalysis, 2022, 521, 112187.	1.0	1
1420	Implicated by scale: Anthropochemicals and the experience of ecology. Sociological Review, 0, , 003802612210847.	0.9	0
1421	High-Productivity Continuous Conversion of Glucose to α-Hydroxy Esters over Postsynthetic and Hydrothermal Sn-Beta Catalysts. ACS Sustainable Chemistry and Engineering, 2022, 10, 4391-4403.	3.2	9

#	Article	IF	CITATIONS
1422	Catalytic roles of Mo-based sites on MoS2 for ethanolysis of enzymatic hydrolysis lignin into aromatic monomers. Catalysis Today, 2023, 408, 211-222.	2.2	5
1424	Biomass conversion to alkyl levulinates using heteropoly acid carbon mesoporous composites. Chemical Engineering Research and Design, 2022, 160, 988-1000.	2.7	9
1425	Corynebacterium glutamicum as an Efficient Omnivorous Microbial Host for the Bioconversion of Lignocellulosic Biomass. Frontiers in Bioengineering and Biotechnology, 2022, 10, 827386.	2.0	6
1426	Fabrication of a bi-hydroxyl-bi-DOPO compound with excellent quenching and charring capacities for lignin-based epoxy resin. International Journal of Biological Macromolecules, 2022, 205, 539-552.	3.6	19
1427	Engineered biochar derived from pyrolyzed waste tea as a carbon support for Fe-N-C electrocatalysts for the oxygen reduction reaction. Electrochimica Acta, 2022, 412, 140128.	2.6	33
1428	Selective Biocatalytic Defunctionalization of Raw Materials. ChemSusChem, 2022, 15, .	3.6	11
1429	A Oneâ€Pot Approach for Bioâ€Based Arylamines via a Combined Photooxidative Dearomatizationâ€Rearomatization Strategy. Chemistry - A European Journal, 2022, 28, .	1.7	5
1430	Production of 100% bio-based semi-aromatic nylon by aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid with bio aliphatic diamine. Chemical Engineering Journal, 2022, 437, 135361.	6.6	22
1431	Flavonoids as biopesticides – Systematic assessment of sources, structures, activities and environmental fate. Science of the Total Environment, 2022, 824, 153781.	3.9	32
1432	High-purity cellulose production from birch wood by \hat{I}^3 -valerolactone/water fractionation and IONCELL-P process. Carbohydrate Polymers, 2022, 288, 119364.	5.1	9
1433	Photocatalytic Radical Addition to Levoglucosenone. European Journal of Organic Chemistry, 2022, 2022, .	1.2	5
1434	Fructose to Sorbents: Synthesis of Metal–Organic Frameworks Directly from Biomass for Humid Shale Gas Separation. ACS Sustainable Chemistry and Engineering, 2021, 9, 17310-17318.	3.2	4
1435	Production of \hat{l}^2 -ketoadipic acid from glucose in Pseudomonas putida KT2440 for use in performance-advantaged nylons. Cell Reports Physical Science, 2022, 3, 100840.	2.8	18
1436	Bioconversion of Agricultural Wastes into a Value-Added Product: Straw of Norwegian Grains Composted with Dairy Manure Food Waste Digestate in Mushroom Cultivation. Horticulturae, 2022, 8, 331.	1.2	4
1449	H ₂ O ₂ -promoted C–C bond oxidative cleavage of β-O-4 lignin models to benzanilides using water as a solvent under metal-free conditions. Green Chemistry, 2022, 24, 4395-4398.	4.6	7
1451	Microwave-assisted depolymerization of lignin with synergic alkali catalysts and a transition metal catalyst in the aqueous system. Reaction Chemistry and Engineering, 2022, 7, 1750-1761.	1.9	2
1452	Discovering Circular Process Solutions through Automated Reaction Network Optimization. ACS Engineering Au, 2022, 2, 333-349.	2.3	1
1453	Technology Overview of Fast Pyrolysis of Lignin: Current State and Potential for Scaleâ€Up. ChemSusChem, 2022, 15, .	3.6	7

#	Article	IF	CITATIONS
1454	Lignin-based sulfonated carbon as an efficient biomass catalyst for clean benzylation of benzene ring compounds. Journal of Industrial and Engineering Chemistry, 2022, 111, 369-379.	2.9	10
1455	Bioinspired Supercharging of Photoredox Catalysis for Applications in Energy and Chemical Manufacturing. Accounts of Chemical Research, 2022, 55, 1423-1434.	7.6	18
1456	Direct synthesis of lactide from concentrated lactic acid catalyzed by hierarchical Sn-beta zeolite. Scientia Sinica Chimica, 2022, 52, 1127-1139.	0.2	2
1457	Aquivion perfluorosulfonic superacid as an effective catalyst for selective epoxidation of vegetable oils. Royal Society Open Science, 2022, 9, .	1.1	4
1458	Enzymatic <i>N</i> -Allylation of Primary and Secondary Amines Using Renewable Cinnamic Acids Enabled by Bacterial Reductive Aminases. ACS Sustainable Chemistry and Engineering, 2022, 10, 6794-6806.	3.2	9
1459	A review on lignin antioxidants: Their sources, isolations, antioxidant activities and various applications. International Journal of Biological Macromolecules, 2022, 210, 716-741.	3.6	96
1460	Catalytic conversion of Kraft lignin into platform chemicals in supercritical ethanol over a Mo(OCH2CH3)x/NaCl catalyst. Catalysis Today, 2023, 408, 204-210.	2.2	2
1461	Emerging biotechnological strategies for food waste management: A green leap towards achieving high-value products and environmental abatement. Energy Nexus, 2022, 6, 100077.	3.3	14
1462	SOME RECENT DEVELOPMENTS IN VALORIZATION OF CHITOSAN TO A VALUABLE PLATFORM CHEMICAL 5-HYDROXYMETHYLFURFURAL (5-HMF): A SHORT REVIEW. Catalysis in Green Chemistry and Engineering, 2022, 5, 1-18.	0.2	1
1463	Bioremediation of Textile Industrial Effluents Using Nutraceutical Industrial Spent: Laboratory-Scale Demonstration of Circular Economy. Nanomaterials, 2022, 12, 1684.	1.9	7
1465	Machine Learning Screening of Efficient Ionic Liquids for Targeted Cleavage of the β–O–4 Bond of Lignin. Journal of Physical Chemistry B, 2022, 126, 3693-3704.	1.2	6
1466	Recent advances in the treatment of lignin in papermaking wastewater. World Journal of Microbiology and Biotechnology, 2022, 38, 116.	1.7	11
1468	Integration of lignin microcapsulated pesticide production into lignocellulose biorefineries through FeCl ₃ -mediated deep eutectic solvent pretreatment. Green Chemistry, 2022, 24, 5242-5254.	4.6	14
1469	Complete utilization of waste lignin: preparation of lignin-derived carbon supports and conversion of lignin-derived guaiacol to nylon precursors. Catalysis Science and Technology, 2022, 12, 5021-5031.	2.1	3
1470	"VALORIZATION OF RICE STRAW VIA PRODUCTION OF MODIFIED XYLANS AND XYLOOLIGOSACCHARIDES FOR THEIR POTENTIAL APPLICATION IN FOOD INDUSTRY". Cellulose Chemistry and Technology, 2022, 56, 293-307.	0.5	4
1471	Lessons From Insect Fungiculture: From Microbial Ecology to Plastics Degradation. Frontiers in Microbiology, 2022, 13, .	1.5	5
1472	Green process intensification using microreactor technology for the synthesis of biobased chemicals and fuels. Chemical Engineering and Processing: Process Intensification, 2022, 177, 109002.	1.8	14
1473	Barriers to organic waste management in a circular economy. Journal of Cleaner Production, 2022, 362, 132282.	4.6	26

#	Article	IF	CITATIONS
1474	Experimental and ReaxFF molecular dynamic study on pyrolysis of phenylalanine. Fuel, 2022, 324, 124690.	3.4	10
1475	Recent advances on solid acid catalyic systems for production of 5-Hydroxymethylfurfural from biomass derivatives. Fuel Processing Technology, 2022, 234, 107338.	3.7	25
1476	Catalyst and reactor design considerations for selective production of acids by oxidative cleavage of alkenes and unsaturated fatty acids with H ₂ O ₂ . Reaction Chemistry and Engineering, 2022, 7, 2054-2065.	1.9	4
1478	Mechanistic Differences between Electrochemical Hydrogenation and Hydrogenolysis of 5â€Hydroxymethylfurfural and Their pH Dependence. ChemSusChem, 2022, 15, .	3.6	18
1479	Evolution Process of Humins Derived from Glucose. ChemistrySelect, 2022, 7, .	0.7	5
1480	Strategies for Controlling or Releasing the Influence Due to the Volume Expansion of Silicon inside Siâ°'C Composite Anode for High-Performance Lithium-Ion Batteries. Materials, 2022, 15, 4264.	1.3	11
1481	Thermal-induced self-healing bio-based vitrimers: Shape memory, recyclability, degradation, and intrinsic flame retardancy. Polymer Degradation and Stability, 2022, 202, 110039.	2.7	6
1482	Value-added product development from food scraps. , 2022, , 417-435.		0
1483	A holistic green system coupling hydrogen production with wastewater valorisation. EcoMat, 0, , .	6.8	1
1484	Turning Food Protein Waste into Sustainable Technologies. Chemical Reviews, 2023, 123, 2112-2154.	23.0	58
1485	Deciphering glutamate and aspartate metabolism to improve production of succinate in Escherichia coli. Journal of the Taiwan Institute of Chemical Engineers, 2022, 136, 104417.	2.7	6
1486	Salt-Promoted Water Removal from Reflux Toluene for Efficient One-Step Lactide Synthesis. Industrial & Lactide Synthesis amp; Engineering Chemistry Research, 2022, 61, 9962-9969.	1.8	1
1487	Nickelâ€Catalysis Enabling αâ€Alkylation of Ketones by Secondary Alcohols. Advanced Synthesis and Catalysis, 2022, 364, 2815-2821.	2.1	10
1488	Efficient Cleavage of Lignin Model Compounds into Phenols and Aldehydes over NiOOH Catalyst. ChemCatChem, 2022, 14, .	1.8	3
1489	Zeolite-encapsulated Cu nanoparticles with enhanced performance for ethanol dehydrogenation. Journal of Catalysis, 2022, 413, 565-574.	3.1	16
1490	A Novel Tannic Acid-Based Carbon-Supported Cobalt Catalyst for Transfer Hydrogenation of Biomass Derived Ethyl Levulinate. Frontiers in Chemistry, 0, 10, .	1.8	1
1491	Promoting Effect of Ni on the Catalytic Production of Alanine from Lactic Acid over RuNi/AC Catalyst. Industrial & Description of Alanine from Lactic Acid over RuNi/AC Catalyst.	1.8	5
1492	Insights into the Play of Novel BrÃ,nsted Acid-Based Deep Eutectic Solvents for the Conversion of Glucose into 5-Hydroxymethylfurfural without Additional Catalysts. Industrial & Engineering Chemistry Research, 2022, 61, 11645-11654.	1.8	3

#	Article	IF	CITATIONS
1493	Base-catalysed depolymerization of lignins in supercritical water: Influence of lignin nature and valorisation of pulping and biorefinery by-products. Biomass and Bioenergy, 2022, 163, 106536.	2.9	6
1494	Formation and evolution of pectin-derived hydrothermal carbon from pectin. Fuel, 2022, 326, 124997.	3.4	16
1495	Towards efficient and greener processes for furfural production from biomass: A review of the recent trends. Science of the Total Environment, 2022, 847, 157599.	3.9	24
1496	Increasing Value of Winery Residues through Integrated Biorefinery Processes: A Review. Molecules, 2022, 27, 4709.	1.7	19
1497	Selective hydrodeoxygenation of 5-hydroxymethylfurfural (HMF) to 2,5-dimethylfuran (DMF) over carbon supported copper catalysts using isopropyl alcohol as a hydrogen donor. Applied Catalysis B: Environmental, 2022, 317, 121790.	10.8	23
1498	Acid-based organosolv lignin extraction from wheat straw: Kinetic and structural analysis. Industrial Crops and Products, 2022, 187, 115328.	2.5	7
1499	Selective Supercritical CO2 Extraction and Biocatalytic Valorization of Cucurbita pepo L. Industrial Residuals. Molecules, 2022, 27, 4783.	1.7	0
1500	(Chemo)biocatalytic Upgrading of Biobased Furanic Platforms to Chemicals, Fuels, and Materials: A Comprehensive Review. ACS Catalysis, 2022, 12, 10080-10114.	5 . 5	50
1501	Rational highly dispersed ruthenium for reductive catalytic fractionation of lignocellulose. Nature Communications, 2022, 13, .	5.8	52
1502	Engineering a Feruloyl–Coenzyme A Synthase for Bioconversion of Phenylpropanoid Acids into High-Value Aromatic Aldehydes. Journal of Agricultural and Food Chemistry, 2022, 70, 9948-9960.	2.4	10
1503	The temptation from homogeneous linear catechyl lignin. Trends in Chemistry, 2022, 4, 948-961.	4.4	21
1504	The synergy between pristine rice husk biomass reuse and clean energy production. Bioresource Technology Reports, 2022, 19, 101179.	1.5	3
1505	Green and sustainable extraction of proteins from agro-industrial waste: An overview and a closer look to Latin America. Current Opinion in Green and Sustainable Chemistry, 2022, 37, 100661.	3.2	10
1506	Rice husk derived capacitive carbon prepared by one-step molten salt carbonization for supercapacitors. Journal of Energy Storage, 2022, 55, 105437.	3.9	19
1507	A sustainable and environmental benign catalytic process for the production of valuable flavors and fragrances from lignin platform chemicals. Industrial Crops and Products, 2022, 187, 115460.	2.5	0
1508	Hardwood Kraft lignin-derived carbon microfibers with enhanced electrochemical performance. International Journal of Biological Macromolecules, 2022, 220, 733-742.	3.6	4
1509	Experimental study and kinetic modeling of continuous flow conversion of fructose to 5-(chloromethyl)furfural using micro- and millistructured coiled flow inverter. Chemical Engineering Journal, 2022, 450, 138243.	6.6	4
1510	Supramolecular bioamphiphile facilitated bioemulsification and concomitant treatment of recalcitrant hydrocarbons in petroleum refining industry oily waste. Environmental Pollution, 2022, 313, 120164.	3.7	3

#	Article	IF	CITATIONS
1511	Performance and environmental implication assessments of green bio-composite from rice straw and bamboo. Journal of Cleaner Production, 2022, 375, 134037.	4.6	18
1512	Instant catapult steam explosion: An efficient preprocessing step for the robust and cost-effective chemical pretreatment of lignocellulosic biomass. Industrial Crops and Products, 2022, 188, 115664.	2.5	10
1513	Recent advances in glycerol hydrochlorination: Impact of reaction temperature, hydrogen chloride solubility and reaction intermediates. Chemical Engineering Science, 2022, 263, 118064.	1.9	0
1514	Ionic liquids enhance the electrocatalysis of lignin model compounds towards generating valuable aromatic molecules. Journal of Molecular Liquids, 2022, 367, 120407.	2.3	4
1515	Reinforced adsorption mechanism of fluorine ions by calcium-depleted hydroxyapatite and application in the raffinate from the vanadium industry. Chemical Engineering Journal, 2023, 452, 139379.	6.6	6
1516	Liquid phase catalytic transfer hydrogenation of ethyl levulinate to \hat{I}^3 -valerolactone over ZrO ₂ /SBA-15. Catalysis Science and Technology, 2022, 12, 5611-5619.	2.1	5
1517	Fermentation for the production of biobased chemicals in a circular economy: a perspective for the period 2022–2050. Green Chemistry, 2022, 24, 6373-6405.	4.6	29
1518	Microflow chemistry and its electrification for sustainable chemical manufacturing. Chemical Science, 2022, 13, 10644-10685.	3.7	11
1519	Quantitative sustainable design (QSD) for the prioritization of research, development, and deployment of technologies: a tutorial and review. Environmental Science: Water Research and Technology, 2022, 8, 2439-2465.	1.2	7
1520	Nickel(<scp>i</scp>)-catalyzed (de)hydrogenative coupling of amines and alkyl heteroarenes with alcohols. Green Chemistry, 2022, 24, 7368-7375.	4.6	10
1521	A hemicellulose and lignin-first process for corn stover valorization catalyzed by aluminum sulfate in \hat{I}^3 -butyrolactone/water co-solvent. Green Chemistry, 2022, 24, 7429-7441.	4.6	3
1522	Production of \hat{I}^3 -valerolactone over mesoporous CuO catalysts using formic acid as the hydrogen source. Reaction Chemistry and Engineering, 0, , .	1.9	0
1523	Haber-independent, asymmetric synthesis of the marine alkaloid <i>epi</i> leptosphaerin from a chitin-derived chiral pool synthon. Organic and Biomolecular Chemistry, 2022, 20, 6562-6565.	1.5	6
1524	The Pioneering Role of Enzymes in the Valorization of Waste: An Insight into the Mechanism of Action. Clean Energy Production Technologies, 2022, , 79-123.	0.3	0
1525	Glutamate as a non-conventional substrate for high production of the recombinant protein in Escherichia coli. Frontiers in Microbiology, 0, 13, .	1.5	2
1526	Successive Cleavage and Reconstruction of Lignin βâ€Oâ€4 Models and Polymer to Access Quinoxalines. ChemSusChem, 2022, 15, .	3.6	11
1527	Rice husk-derived carbon materials for aqueous Zn-ion hybrid supercapacitors. Applied Surface Science, 2023, 608, 155215.	3.1	15
1528	Mapping out the reaction network of humin formation at the initial stage of fructose dehydration in water. Green Energy and Environment, 2022, , .	4.7	3

#	Article	IF	CITATIONS
1529	New Bifunctional Monomers from Methyl Vinyl Glycolate. Chemical Communications, 0, , .	2.2	0
1530	Transformation of tobacco biomass into value-added carbohydrate, aromatics, and biochar. Biomass Conversion and Biorefinery, 0, , .	2.9	0
1531	Designed High-Redox Potential Laccases Exhibit High Functional Diversity. ACS Catalysis, 2022, 12, 13164-13173.	5.5	19
1532	Role of Anions in 5â€Hydroxymethylfurfural Solvation in Ionic Liquids from Molecular Dynamics Simulations. Advanced Theory and Simulations, 2022, 5, .	1.3	2
1534	Impact of Torrefaction on Fuel Properties of Aspiration Cleaning Residues. Materials, 2022, 15, 6949.	1.3	3
1535	Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chemical Reviews, 2023, 123, 2609-2734.	23.0	53
1536	Co@CoO: An efficient catalyst for the depolymerization and upgrading of lignocellulose to alkylcyclohexanols with cellulose intact. Journal of Energy Chemistry, 2023, 77, 191-199.	7.1	13
1537	Biochar-assisted upgradation of pyrolytic oil via slow pyrolysis of rice husk under a carbon dioxide environment. Biomass Conversion and Biorefinery, 0, , .	2.9	0
1538	Comparative investigation on the catalytic performance of HT/SBA-15 and SBA-15/HT composites for the isomerization of glucose to fructose. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 286, 116052.	1.7	0
1539	Valorization of hexoses into 5-hydroxymethylfurfural and levulinic acid in acidic seawater under microwave hydrothermal conditions. Environmental Technology (United Kingdom), 0, , 1-10.	1.2	0
1540	NIST-UNIFAC parametrization for phase equilibrium calculation of mixtures containing lactones. Fluid Phase Equilibria, 2023, 565, 113673.	1.4	1
1541	Solvent effect on the production of spherical lignin nanoparticles. Green Chemistry, 2023, 25, 993-1003.	4.6	10
1542	Poplar lignin structural changes during extraction in \hat{I}^3 -valerolactone (GVL). Green Chemistry, 2023, 25, 336-347.	4.6	10
1543	Biomass-derived carbon material as efficient electrocatalysts for the oxygen reduction reaction. Biomass and Bioenergy, 2023, 168, 106676.	2.9	11
1544	Discovering the role of N-heterocyclic carbene as hydrogen borrowing organocatalyst: metal-free, direct $\langle i \rangle N \langle i \rangle$ -alkylation of amines with benzyl alcohols. Organic Chemistry Frontiers, 2023, 10, 730-744.	2.3	7
1545	Systems metabolic engineering upgrades Corynebacterium glutamicum to high-efficiency cis, cis-muconic acid production from lignin-based aromatics. Metabolic Engineering, 2023, 75, 153-169.	3.6	15
1546	Recent advances in the development of green furan ring-containing polymeric materials based on renewable plant biomass. Chemical Society Reviews, 2023, 52, 836-862.	18.7	18
1547	High-solids saccharification and fermentation of ball-milled corn stover enabling high titer bioethanol production. Renewable Energy, 2023, 202, 336-346.	4.3	9

#	Article	IF	CITATIONS
1548	Efficient acceptorless dehydrogenation of 5-Hydroxymethylfurfural (HMF) to 2,5-Diformylfuran (DFF) over Pt/CdS under visible light. Journal of Catalysis, 2023, 417, 178-184.	3.1	13
1549	Highly porous niobium-containing silica glasses applied to the microwave-assisted conversion of fructose into HMF. Catalysis Communications, 2023, 174, 106577.	1.6	1
1550	Catalytic photochemical enantioselective \hat{l}_{\pm} -alkylation with pyridinium salts. Chemical Science, 2023, 14, 586-592.	3.7	7
1551	Finding values in lignin: A promising yet under-utilized component of the lignocellulosic biomass. Frontiers in Chemical Engineering, 0, 4, .	1.3	4
1552	Delignification of empty fruit bunch using deep eutectic solvent for biobased-chemical production. IOP Conference Series: Earth and Environmental Science, 2022, 1108, 012013.	0.2	1
1553	Efficient electrooxidation of biomass-derived aldehydes over ultrathin NiV-layered double hydroxides films. Journal of Energy Chemistry, 2023, 78, 412-421.	7.1	20
1554	Degradation of Lignosulfonate to Vanillic Acid Using Ferrate. Advanced Sustainable Systems, 2023, 7, .	2.7	4
1555	Ruthenium Pincer-Catalyzed Selective Synthesis of Alkanes and Alkenes via Deoxygenative Coupling of Primary Alcohols. Organometallics, 2023, 42, 55-61.	1.1	1
1556	Hydrogenolysis of Lignin and C–O Linkages Containing Lignin-Related Compounds over a Macroporous Silicalite-1 Array-Supported Ru-Ni Phosphide Composite. Catalysts, 2022, 12, 1625.	1.6	0
1557	Larix Sibirica Arabinogalactan Hydrolysis over Zr-SBA-15; Depolymerization Insight. Molecules, 2022, 27, 8756.	1.7	1
1558	Zeolitic Imidazolate Framework Decorated Molybdenum Carbide Catalysts for Hydrodeoxygenation of Guaiacol to Phenol. Catalysts, 2022, 12, 1605.	1.6	3
1559	Selective hydrodeoxygenation of lignin-derived phenols to alkyl cyclohexanols over highly dispersed RuFe bimetallic catalysts. Fuel, 2023, 339, 126916.	3.4	10
1560	Lignin-First Biorefinery for Converting Lignocellulosic Biomass into Fuels and Chemicals. Energies, 2023, 16, 125.	1.6	10
1561	Electrocatalytic oxidation of 5â€hydroxymethylfurfural for sustainable 2,5â€furandicarboxylic acid productionâ€"From mechanism to catalysts design. SusMat, 2023, 3, 21-43.	7.8	22
1562	Influence and stability of the surface density of MoO _{<i>x</i>} on TiO ₂ in deoxydehydration: structureâ€"activity correlations. Catalysis Science and Technology, 2023, 13, 1087-1097.	2.1	6
1563	Sustainable Vanillin-Based Epoxy Resin with Excellent Flame Retardancy and Mechanical Properties. ACS Applied Polymer Materials, 2023, 5, 1312-1324.	2.0	11
1564	Sustainable production of biofuels and bioderivatives from aquaculture and marine waste. Frontiers in Chemical Engineering, 0, 4, .	1.3	2
1565	Moving towards the Application of Biocatalysis in Food Waste Biorefinery. Fermentation, 2023, 9, 73.	1.4	3

#	Article	IF	CITATIONS
1566	Selective Electrochemical Degradation of Lignosulfonate to Bioâ€Based Aldehydes. ChemSusChem, 2023, 16, .	3.6	6
1567	The E factor at 30: a passion for pollution prevention. Green Chemistry, 2023, 25, 1704-1728.	4.6	54
1568	Machine learning for hydrothermal treatment of biomass: A review. Bioresource Technology, 2023, 370, 128547.	4.8	38
1569	Evaluation of oxy-organosolv pretreatment on lignin extraction from wheat straw. International Journal of Biological Macromolecules, 2023, 229, 861-872.	3.6	2
1570	Ultrasound enhanced solubilization of forest biorefinery hydrolysis lignin in mild alkaline conditions. Ultrasonics Sonochemistry, 2023, 93, 106288.	3.8	1
1571	A strategy for generating value-added aromatic monomers and lignocellulosic nanofibrils simultaneously from lignocellulosic biomass via polyoxometalate-mediated oxidative fractionation. Industrial Crops and Products, 2023, 193, 116215.	2.5	5
1572	Aldehyde Hydrogenation by Pt/TiO ₂ Catalyst in Aqueous Phase: Synergistic Effect of Oxygen Vacancy and Solvent Water. Jacs Au, 2023, 3, 143-153.	3.6	5
1573	Electrochemical Biorefinery Towards Chemicals Synthesis and Bio-Oil Upgrading from Lignin. Engineering, 2022, , .	3.2	1
1574	Determinants of Farmers' Participation in the Agricultural Sector Support Project for the Adoption of Improved Technology in Traditional Poultry Farming: Evidence from Rural Togo., 2022, 116, 87-108.		0
1575	Challenges to biofuel production. , 2023, , 67-89.		0
1576	Hydrodeoxygenation of guaiacol to phenol using endogenous hydrogen induced by chemo-splitting of water over a versatile nano-porous Ni catalyst. Green Chemistry, 2023, 25, 1955-1969.	4.6	10
1577	One-Pot Protolignin Extraction by Targeted Unlocking Lignin–Carbohydrate Esters via Nucleophilic Addition–Elimination Strategy. Research, 2023, 6, 0069.	2.8	16
1578	Catalytic transformations for agro-waste conversion to 5-hydroxymethylfurfural and furfural: Chemistry and scale-up development. Green Chemistry, 2023, 25, 849-870.	4.6	8
1580	Processing renewable and waste-based feedstocks with fluid catalytic cracking: Impact on catalytic performance and considerations for improved catalyst design. Frontiers in Chemistry, $0,11,1$	1.8	4
1581	Ligninâ€Based Materials for Additive Manufacturing: Chemistry, Processing, Structures, Properties, and Applications. Advanced Science, 2023, 10, .	5.6	22
1582	A Review on the Challenges and Choices for Food Waste Valorization: Environmental and Economic Impacts. ACS Environmental Au, 2023, 3, 58-75.	3.3	38
1583	Efficient <i>O</i> -demethylation of lignin-derived aromatic compounds under moderate conditions. RSC Advances, 2023, 13, 5925-5932.	1.7	8
1584	High-purity lignin from selective biomass fractionation with ternary deep eutectic solvents. Green Chemistry, 2023, 25, 3137-3151.	4.6	4

#	Article	IF	CITATIONS
1585	Biomass-derived additives as blends in fuels. , 2023, , 85-96.		0
1586	Electronic and surface engineering of Mo doped Ni@C nanocomposite boosting catalytic upgrading of aqueous bio-ethanol to bio-jet fuel precursors. Chemical Engineering Journal, 2023, 461, 141888.	6.6	8
1587	Elucidating the effect of the physicochemical properties of organosolv lignins on its solubility and reductive catalytic depolymerization. Chemical Engineering Journal, 2023, 461, 141999.	6.6	7
1588	Recent progress of metal single-atom catalysts for energy applications. Nano Energy, 2023, 111, 108404.	8.2	37
1589	Selective hydrodeoxygenation of guaiacol to cyclohexanol over core-shell Cox@C@Ni catalysts under mild condition. Fuel Processing Technology, 2023, 245, 107729.	3.7	3
1590	Current strategies for industrial plastic production from non-edible biomass. Current Opinion in Green and Sustainable Chemistry, 2023, 41, 100780.	3.2	3
1591	Photoreforming of Waste Polymers for Sustainable Hydrogen Fuel and Chemicals Feedstock: Waste to Energy. Chemical Reviews, 2023, 123, 4443-4509.	23.0	47
1592	A Review on Catalytic Depolymerization of Lignin towards High-Value Chemicals: Solvent and Catalyst. Fermentation, 2023, 9, 386.	1.4	7
1593	Improving yields, compatibility and tailoring the properties of hydrothermal liquefaction bio-crude using yellow grease. Fuel, 2023, 344, 128066.	3.4	2
1594	Carbohydrate-active enzymes in animal feed. Biotechnology Advances, 2023, 65, 108145.	6.0	6
1595	Employing Cu(II) complexes of N,O-donor ligand for catalysis in visible light driven cleavage of lignin C-C bonds. Molecular Catalysis, 2023, 537, 112947.	1.0	1
1596	Characterisation of chemical properties of the produced organic fractions via hydrothermal liquefaction of biosolids from a wastewater treatment plant. Biomass and Bioenergy, 2023, 170, 106703.	2.9	1
1597	Effect of carbon support and functionalization on the synthesis of rhenium carbide and its use on HDO of guaiacol. Catalysis Today, 2023, 420, 114031.	2.2	1
1598	High Temperature Lignin Separation for Improved Yields in Ethanol Organosolv Pre-Treatment. Sustainability, 2023, 15, 3006.	1.6	1
1599	Ruâ€Catalyzed Direct Asymmetric Reductive Amination of Bioâ€Based Levulinic Acid and Ester for the Synthesis of Chiral Pyrrolidinone. ChemSusChem, 2023, 16, .	3.6	5
1600	Engineering Photosynthetic Microbial Consortia for Carbonâ€Negative Biosynthesis. Angewandte Chemie, 2023, 135, .	1.6	1
1601	Engineering Photosynthetic Microbial Consortia for Carbonâ€Negative Biosynthesis. Angewandte Chemie - International Edition, 2023, 62, .	7.2	1
1602	High-Strength, Degradable and Recyclable Epoxy Resin Based on Imine Bonds for Its Carbon-Fiber-Reinforced Composites. Materials, 2023, 16, 1604.	1.3	5

#	Article	IF	CITATIONS
1603	Bio-Derived Furanic Compounds with Natural Metabolism: New Sustainable Possibilities for Selective Organic Synthesis. International Journal of Molecular Sciences, 2023, 24, 3997.	1.8	2
1604	Identification of Active Sites Formed on Cobalt Oxyhydroxide in Glucose Electrooxidation. Angewandte Chemie, 2023, 135, .	1.6	5
1605	Identification of Active Sites Formed on Cobalt Oxyhydroxide in Glucose Electrooxidation. Angewandte Chemie - International Edition, 2023, 62, .	7.2	16
1606	An Efficient Strategy for Chemoenzymatic Conversion of Corn Stover to Furfuryl Alcohol in Deep Eutectic Solvent ChCl:PEG10000â^'Water Medium. Catalysts, 2023, 13, 467.	1.6	2
1608	D-Psicose., 2023,, 209-243.		0
1609	Lipids: Valorization of biomass for lipids production. , 2023, , 87-111.		0
1610	Unlocking the photo-dehydrogenation ability of naphthalene monoimide towards the synthesis of quinazolinones. Green Chemistry, 2023, 25, 2840-2845.	4.6	5
1611	Recent Advances on Transitionâ€Metalâ€Based Layered Double Hydroxides Nanosheets for Electrocatalytic Energy Conversion. Advanced Science, 2023, 10, .	5.6	30
1612	Selective and effective oxidation of 5-hydroxymethylfurfural by tuning the intermediates adsorption on Co-Cu-CNx. Nano Research, 2023, 16, 6670-6678.	5.8	5
1613	Perspective on oligomeric products from lignin depolymerization: their generation, identification, and further valorization., 2023, 1, 207-223.		8
1615	Doped Mn Enhanced NiS Electrooxidation Performance of HMF into FDCA at Industrial‣evel Current Density. Advanced Functional Materials, 2023, 33, .	7.8	23
1616	A CoPd nanoalloy embedded N-doped porous carbon catalyst for the selective reduction and reductive amination of levulinic acid using formic acid in water. Sustainable Energy and Fuels, 2023, 7, 1855-1869.	2.5	5
1617	Ionic liquids and deep eutectic solvents in wastewater treatment: recent endeavours. International Journal of Environmental Science and Technology, 2024, 21, 977-996.	1.8	0
1618	Eco-Friendly Catalytic Synthesis of Top Value Chemicals from Valorization of Cellulose Waste. Polymers, 2023, 15, 1501.	2.0	2
1619	Isobaric Vapor–Liquid Equilibria for Binary Mixtures of Biomass-Derived Gamma-Valerolactone + 1,4-Pentanediol and 1,2-Ethanediol. Journal of Chemical & Engineering Data, 2023, 68, 900-908.	1.0	0
1620	Grape pomace's potential on semiâ€arid soil health enhances performance of maize, wheat, and grape crops. Journal of Plant Nutrition and Soil Science, 0, , .	1.1	0
1621	Bifunctional NHC atalyzed Remote Enantioselective Mannichâ€type Reaction of 5â€(Chloromethyl)furfural via Trienolate Intermediates. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4
1622	Bifunctional NHCâ€Catalyzed Remote Enantioselective Mannichâ€type Reaction of 5â€(Chloromethyl)furfural via Trienolate Intermediates. Angewandte Chemie, 2023, 135, .	1.6	1

#	Article	IF	CITATIONS
1623	Biobased Epoxy Composites Reinforced with Acetylated Corn Straw. ACS Omega, 2023, 8, 12644-12652.	1.6	2
1624	Biomass carbon mining to develop nature-inspired materials for a circular economy. IScience, 2023, 26, 106549.	1.9	4
1625	TiO ₂ (P25) nanoparticle catalyzed C-alkylation and quinoline synthesis <i>via</i> the borrowing hydrogen method. New Journal of Chemistry, 2023, 47, 8751-8758.	1.4	2
1626	Recent Advances in Solid Residues Resource Utilization in Traditional Chinese Medicine. ChemistrySelect, 2023, 8, .	0.7	2
1627	Boron Adsorption Kinetics of Microcrystalline Cellulose and Polymer Resin. Langmuir, 2023, 39, 5384-5395.	1.6	2
1628	Hierarchical Emulsion-Templated Monoliths (polyHIPEs) as Scaffolds for Covalent Immobilization of P.Âacidilactici. Polymers, 2023, 15, 1862.	2.0	O
1629	Ether cleavage and chemical removal of SU-8. SciPost Chemistry, 2023, 2, .	2.0	0
1630	Gradient Alloyed Quantum Dots for Photocatalytic Lignin Valorization via Proton Coupled Electron Transfer. ACS Applied Nano Materials, 0, , .	2.4	1
1631	Selective furanyl ring hydrogenation of 5-hydroxymethylfurfural at sub-ambient temperature via steric effect on decorated Pd surfaces. International Journal of Hydrogen Energy, 2023, , .	3.8	0
1632	Recent Trends in Sustainable Solar Energy Conversion Technologies: Mechanisms, Prospects, and Challenges. Energy & Energ	2.5	11
1633	Surface modified mesoporous KIT-5: A catalytic approach to obtain butyl levulinate from starch. Renewable Energy, 2023, 211, 227-235.	4.3	1
1634	Unveiling lignin structures and lignin-carbohydrate complex (LCC) linkages of bamboo (Phyllostachys) Tj ETQq1 1 241, 124461.	0.784314 3.6	rgBT /Over
1638	Biomass as a Source of Energy, Fuels and Chemicals. , 2021, , 589-741.		0
1676	The lignin challenge in catalytic conversion of biomass solids to chemicals and fuels., 0,,.		O
1679	Biorefining renewable aromatic carbon. , 2023, , 407-440.		0
1682	Metal-Free Synthesis of Biobased Polyisoxazolines toward Sustainable Circular Materials. ACS Applied Polymer Materials, 0, , .	2.0	O
1684	From vanillin to biobased aromatic polymers. Polymer Chemistry, 2023, 14, 4255-4274.	1.9	4
1694	Sustainable Production of Nitriles from Biomass. Biofuels and Biorefineries, 2023, , 143-162.	0.5	O

#	Article	IF	CITATIONS
1712	Flame Retardancy of Textilesâ€"New Strategies and Mechanisms. Advanced Structured Materials, 2023, , 279-317.	0.3	0
1714	Thermal, photonic, and electrocatalysis in lignin depolymerization research. RSC Advances, 2023, 13, 32627-32640.	1.7	0
1721	Reactivity of metal–oxo clusters towards biomolecules: from discrete polyoxometalates to metal–organic frameworks. Chemical Society Reviews, 2024, 53, 84-136.	18.7	5
1741	Bio-based hyperbranched epoxy resins: synthesis and recycling. Chemical Society Reviews, 0, , .	18.7	3
1750	PGM-Free Biomass-Derived Electrocatalysts for Oxygen Reduction in Energy Conversion Devices: Promising Materials. Electrochemical Energy Reviews, 2024, 7, .	13.1	0
1763	Recent advances in agriculture waste for nanomaterial production. , 2024, , 331-344.		0
1780	Nanophotocatalytic conversion of biomass to bioenergy. , 2024, , 189-214.		0