Resolution of ray-finned fish phylogeny and timing of d

Proceedings of the National Academy of Sciences of the Unite 109, 13698-13703

DOI: 10.1073/pnas.1206625109

Citation Report

#	Article	IF	CITATIONS
1	On the null-controllability of diffusion equations. ESAIM - Control, Optimisation and Calculus of Variations, 2011, 17, 1088-1100.	0.7	28
2	Mutualism with sea anemones triggered the adaptive radiation of clownfishes. BMC Evolutionary Biology, 2012, 12, 212.	3.2	86
3	Molecular phylogeny of microhylid frogs (Anura: Microhylidae) with emphasis on relationships among New World genera. BMC Evolutionary Biology, 2012, 12, 241.	3.2	72
4	Framing the Salmonidae Family Phylogenetic Portrait: A More Complete Picture from Increased Taxon Sampling. PLoS ONE, 2012, 7, e46662.	1.1	201
5	A multi-locus molecular timescale for the origin and diversification of eels (Order: Anguilliformes). Molecular Phylogenetics and Evolution, 2013, 69, 884-894.	1.2	43
6	Are flatfishes (Pleuronectiformes) monophyletic?. Molecular Phylogenetics and Evolution, 2013, 69, 664-673.	1.2	43
7	A new phylogeny of tetraodontiform fishes (Tetraodontiformes, Acanthomorpha) based on 22 loci. Molecular Phylogenetics and Evolution, 2013, 69, 177-187.	1.2	39
8	Molecular phylogenetics of Gobioidei and phylogenetic placement of European gobies. Molecular Phylogenetics and Evolution, 2013, 69, 619-633.	1.2	160
9	Evolution of Hoxgene clusters in deuterostomes. BMC Developmental Biology, 2013, 13, 26.	2.1	90
10	Mitogenomic sequences and evidence from unique gene rearrangements corroborate evolutionary relationships of myctophiformes (Neoteleostei). BMC Evolutionary Biology, 2013, 13, 111.	3.2	55
11	Genomics of sablefish (Anoplopoma fimbria): expressed genes, mitochondrial phylogeny, linkage map and identification of a putative sex gene. BMC Genomics, 2013, 14, 452.	1.2	99
12	Pike and salmon as sister taxa: Detailed intraclade resolution and divergence time estimation of Esociformes + Salmoniformes based on whole mitochondrial genome sequences. Gene, 2013, 530, 57-65.	1.0	54
13	Gobies are deeply divided: phylogenetic evidence from nuclear DNA (Teleostei: Gobioidei: Gobiidae). Systematics and Biodiversity, 2013, 11, 345-361.	0.5	45
14	Interspecific Variations of Inner Ear Structure in the Deepâ€5ea Fish Family Melamphaidae. Anatomical Record, 2013, 296, 1064-1082.	0.8	28
15	Authentication of Fish Products by Large-Scale Comparison of Tandem Mass Spectra. Journal of Proteome Research, 2013, 12, 5253-5259.	1.8	46
16	Marine Ecosystem Responses to Cenozoic Global Change. Science, 2013, 341, 492-498.	6.0	140
17	Efficient Sequencing of Anuran mtDNAs and a Mitogenomic Exploration of the Phylogeny and Evolution of Frogs. Molecular Biology and Evolution, 2013, 30, 1899-1915.	3.5	167
18	Phylogeny and biogeography of a shallow water fish clade (Teleostei: Blenniiformes). BMC Evolutionary Biology, 2013, 13, 210.	3.2	48

#	Article	IF	CITATIONS
19	Explosive diversification following a benthic to pelagic shift in freshwater fishes. BMC Evolutionary Biology, 2013, 13, 272.	3.2	30
20	Molecular and fossil evidence place the origin of cichlid fishes long after Gondwanan rifting. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131733.	1.2	158
21	TESTING FOR ANCIENT ADAPTIVE RADIATIONS IN NEOTROPICAL CICHLID FISHES. Evolution; International Journal of Organic Evolution, 2013, 67, no-no.	1.1	111
22	The effects of 11-ketotestosterone on ovarian physiology of previtellogenic captive hapuku (Polyprion) Tj ETQq1 2013, 166, 496-502.	1 0.78431 0.8	.4 rgBT /Ove 8
23	New nuclear markers and exploration of the relationships among Serraniformes (Acanthomorpha,) Tj ETQq0 0 0 rg 2013, 67, 140-155.	gBT /Over 1.2	lock 10 Tf 50 32
24	Phylogenetic relationships of Trachylepis skink species from Madagascar and the Seychelles (Squamata: Scincidae). Molecular Phylogenetics and Evolution, 2013, 67, 615-620.	1.2	18
25	EVOLUTIONARY ORIGIN AND EARLY BIOGEOGRAPHY OF OTOPHYSAN FISHES (OSTARIOPHYSI: TELEOSTEI). Evolution; International Journal of Organic Evolution, 2013, 67, 2218-2239.	1.1	86
26	Manipulation of Fgf and Bmp signaling in teleost fishes suggests potential pathways for the evolutionary origin of multicuspid teeth. Evolution & Development, 2013, 15, 107-118.	1.1	39
27	Evolutionary convergence in Neotropical cichlids and Nearctic centrarchids: evidence from morphology, diet, and stable isotope analysis. Biological Journal of the Linnean Society, 2013, 109, 146-164.	0.7	58
28	Impact of asymmetric gene repertoire between cyclostomes and gnathostomes. Seminars in Cell and Developmental Biology, 2013, 24, 119-127.	2.3	84
29	The evolution and development of vertebrate lateral line electroreceptors. Journal of Experimental Biology, 2013, 216, 2515-2522.	0.8	57
30	The sexually dimorphic on the Yâ€chromosome gene (<i>sdY</i>) is a conserved maleâ€specific Yâ€chromosome sequence in many salmonids. Evolutionary Applications, 2013, 6, 486-496.	1.5	293
31	Evolution of sympatric species: a case study of the coral reef fish genus <i><scp>P</scp>omacanthus</i> (<scp>P</scp> omacanthidae). Journal of Biogeography, 2013, 40, 1676-1687.	1.4	23
32	First molecular scombrid timetree (Percomorpha: Scombridae) shows recent radiation of tunas following invasion of pelagic habitat. Italian Journal of Zoology, 2013, 80, 210-221.	0.6	34
33	Colonization of the deep sea by fishes. Journal of Fish Biology, 2013, 83, 1528-1550.	0.7	58
34	Phylogeny and tempo of diversification in the superradiation of spiny-rayed fishes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12738-12743.	3.3	408
35	Thrash, Flip, or Jump: The Behavioral and Functional Continuum of Terrestrial Locomotion in Teleost Fishes. Integrative and Comparative Biology, 2013, 53, 295-306.	0.9	54
36	Evolution of Ancient Functions in the Vertebrate Insulin-Like Growth Factor System Uncovered by Study of Duplicated Salmonid Fish Genomes. Molecular Biology and Evolution, 2013, 30, 1060-1076.	3.5	102

#	Article	IF	CITATIONS
37	Kinematics of Terrestrial Capture of Prey by the Eel-Catfish Channallabes apus. Integrative and Comparative Biology, 2013, 53, 258-268.	0.9	27
38	First description of a musculoskeletal linkage in an adipose fin: innovations for active control in a primitively passive appendage. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122159.	1.2	14
39	Kinematics of ribbonâ€fin locomotion in the bowfin, <i>Amia calva</i> . Journal of Experimental Zoology, 2013, 319, 569-583.	1.2	27
40	EML1 (CNG-Modulin) Controls Light Sensitivity in Darkness and under Continuous Illumination in Zebrafish Retinal Cone Photoreceptors. Journal of Neuroscience, 2013, 33, 17763-17776.	1.7	33
41	Absence of major histocompatibility complex class II mediated immunity in pipefish, <i>Syngnathus typhle</i> : evidence from deep transcriptome sequencing. Biology Letters, 2013, 9, 20130044.	1.0	70
42	Molecular Phylogeny and Biogeography of Percocypris (Cyprinidae, Teleostei). PLoS ONE, 2013, 8, e61827.	1.1	18
43	Imperfect Isolation: Factors and Filters Shaping Madagascar's Extant Vertebrate Fauna. PLoS ONE, 2013, 8, e62086.	1.1	84
44	On the Measurement of Ecological Novelty: Scale-Eating Pupfish Are Separated by 168 my from Other Scale-Eating Fishes. PLoS ONE, 2013, 8, e71164.	1.1	50
45	Evolutionary Origin of the Scombridae (Tunas and Mackerels): Members of a Paleogene Adaptive Radiation with 14 Other Pelagic Fish Families. PLoS ONE, 2013, 8, e73535.	1.1	136
46	Clobal Biogeography of Reef Fishes: A Hierarchical Quantitative Delineation of Regions. PLoS ONE, 2013, 8, e81847.	1.1	181
48	Systematics and biogeography of Sternarchellini (Gymnotiformes: Apteronotidae): Diversification of electric fishes in large Amazonian rivers. Neotropical Ichthyology, 2014, 12, 565-584.	0.5	19
49	The Genome and Linkage Map of the Northern Pike (Esox lucius): Conserved Synteny Revealed between the Salmonid Sister Group and the Neoteleostei. PLoS ONE, 2014, 9, e102089.	1.1	122
50	New insights on early evolution of spiny-rayed fishes (Teleostei: Acanthomorpha). Frontiers in Marine Science, 2014, 1, .	1.2	58
51	Early fossils illuminate character evolution and interrelationships of Lampridiformes (Teleostei,) Tj ETQq1 1 0.784	1314 rgBT 1.0	/Oyerlock 10
52	Adaptive Functional Divergence of the Warm Temperature Acclimation-Related Protein (WAP65) in Fishes and the Ortholog Hemopexin (HPX) in Mammals. Journal of Heredity, 2014, 105, 237-252.	1.0	12
53	Tracing the Evolution of the p53 Tetramerization Domain. Structure, 2014, 22, 1301-1310.	1.6	27
54	Historical factors that have shaped the evolution of tropical reef fishes: a review of phylogenies, biogeography, and remaining questions. Frontiers in Genetics, 2014, 5, 394.	1.1	45
55	Comparative Mapping Between Coho Salmon (<i>Oncorhynchus kisutch</i>) and Three Other Salmonids Suggests a Role for Chromosomal Rearrangements in the Retention of Duplicated Regions Following a Whole Genome Duplication Event. G3: Genes. Genomes. Genetics. 2014, 4, 1717-1730.	0.8	57

#	Article	IF	CITATIONS
56	A Nonsynonymous Mutation in the Transcriptional Regulator lbh Is Associated with Cichlid Craniofacial Adaptation and Neural Crest Cell Development. Molecular Biology and Evolution, 2014, 31, 3113-3124.	3.5	51
57	Sustained periodic terrestrial locomotion in airâ€breathing fishes. Journal of Fish Biology, 2014, 84, 639-660.	0.7	53
58	Leptin in teleostean fish, towards the origins of leptin physiology. Journal of Chemical Neuroanatomy, 2014, 61-62, 200-206.	1.0	74
59	CRATER LAKE HABITAT PREDICTS MORPHOLOGICAL DIVERSITY IN ADAPTIVE RADIATIONS OF CICHLID FISHES. Evolution; International Journal of Organic Evolution, 2014, 68, 2145-2155.	1.1	30
60	A unique mode of tissue oxygenation and the adaptive radiation of teleost fishes. Journal of Experimental Biology, 2014, 217, 1205-1214.	0.8	65
61	Phylogeny of the Elopomorpha (Teleostei): Evidence from six nuclear and mitochondrial markers. Molecular Phylogenetics and Evolution, 2014, 70, 152-161.	1.2	56
62	Seven-locus molecular phylogeny of Myctophiformes (Teleostei; Scopelomorpha) highlights the utility of the order for studies of deep-sea evolution. Molecular Phylogenetics and Evolution, 2014, 76, 270-292.	1.2	26
63	Connectivity of vertebrate genomes: Paired-related homeobox (Prrx) genes in spotted gar, basal teleosts, and tetrapods. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2014, 163, 24-36.	1.3	22
64	Major issues in the origins of rayâ€finned fish (<scp>A</scp> ctinopterygii) biodiversity. Biological Reviews, 2014, 89, 950-971.	4.7	104
65	THE COMPLEX EVOLUTIONARY HISTORY OF SEEING RED: MOLECULAR PHYLOGENY AND THE EVOLUTION OF AN ADAPTIVE VISUAL SYSTEM IN DEEP-SEA DRAGONFISHES (STOMIIFORMES: STOMIIDAE). Evolution; International Journal of Organic Evolution, 2014, 68, 996-1013.	1.1	27
66	Species-specific bioluminescence facilitates speciation in the deep sea. Marine Biology, 2014, 161, 1139-1148.	0.7	77
67	A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132881.	1.2	369
68	The origins of adipose fins: an analysis of homoplasy and the serial homology of vertebrate appendages. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133120.	1.2	26
69	BOOM AND BUST: ANCIENT AND RECENT DIVERSIFICATION IN BICHIRS (POLYPTERIDAE: ACTINOPTERYGII), A RELICTUAL LINEAGE OF RAY-FINNED FISHES. Evolution; International Journal of Organic Evolution, 2014, 68, 1014-1026.	1.1	44
70	The fish tail as a derivation from axial musculoskeletal anatomy: an integrative analysis of functional morphology. Zoology, 2014, 117, 86-92.	0.6	23
71	The evolution of the vertebrate cerebellum: absence of a proliferative external granule layer in a nonâ€teleost rayâ€finned fish. Evolution & Development, 2014, 16, 92-100.	1.1	36
72	Mitogenomic circumscription of a novel percomorph fish clade mainly comprising "Syngnathoidei― (Teleostei). Gene, 2014, 542, 146-155.	1.0	26
73	The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nature Communications, 2014, 5, 3657.	5.8	814

#	Article	IF	CITATIONS
74	Fish as parasites: an insight into evolutionary convergence in adaptations for parasitism. Journal of Zoology, 2014, 294, 1-12.	0.8	10
75	The oldest ionoscopiform from China sheds new light on the early evolution of halecomorph fishes. Biology Letters, 2014, 10, 20140204.	1.0	24
76	A new and unique species of the genus Aphanius Nardo, 1827 (Teleostei: Cyprinodontidae) from Southern Iran: A case of regressive evolution. Zoologischer Anzeiger, 2014, 253, 327-337.	0.4	37
77	Evolution of long-toothed fishes and the changing nature of fish–benthos interactions on coral reefs. Nature Communications, 2014, 5, 3144.	5.8	58
78	On the Eocene cichlids from the Lumbrera Formation: additions and implications for the Neotropical ichthyofauna. Journal of Vertebrate Paleontology, 2014, 34, 49-58.	0.4	17
79	Organization of the Serotonergic System in the Central Nervous System of Two Basal Actinopterygian Fishes: the Cladistians <i>Polypterus senegalus</i> and <i>Erpetoichthys calabaricus</i> . Brain, Behavior and Evolution, 2014, 83, 54 76	0.9	21
80	Deepâ€sea bigscales, pricklefishes, gibberfishes and whalefishes (Teleostei: Stephanoberycoidei) off Brazil: new records, range extensions for the southâ€western Atlantic Ocean and remarks on the taxonomy of <i>Poromitra</i> . Journal of Fish Biology, 2014, 85, 1546-1570.	0.7	13
81	Temporal evolution of coral reef fishes: global patterns and disparity in isolated locations. Journal of Biogeography, 2014, 41, 2115-2127.	1.4	41
82	The vertebrate muscleâ€specific RING finger protein family includes MuRF4 – A novel, conserved E3â€ubiquitin ligase. FEBS Letters, 2014, 588, 4390-4397.	1.3	10
83	Origins and functional diversification of salinityâ€responsive Na ⁺ , K ⁺ <scp>ATP</scp> ase α1 paralogs in salmonids. Molecular Ecology, 2014, 23, 3483-3503.	2.0	15
84	Early fossils illuminate character evolution and interrelationships of Lampridiformes (Teleostei,) Tj ETQq0 0 0 rgB	[/Overlocl 1.0	2 10 Tf 50 34
85	â€ <i>Zappaichthys harzhauseri</i> , gen. et sp. nov., a new Miocene toadfish (Teleostei,) Tj ETQq1 1 0.784314 rg the fossil record of batrachoidiform fishes. Journal of Vertebrate Paleontology, 2014, 34, 1005-1017.	BT /Overlc 0.4	ock 10 Tf 500
86	Identification of the Origin and Localization of Chorion (Egg Envelope) Proteins in an Ancient Fish, the White Sturgeon, Acipenser transmontanus1. Biology of Reproduction, 2014, 90, 132.	1.2	24
87	Tooth replacement without a dental lamina: The search for epithelial stem cells in <i>Polypterus senegalus</i> . Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2014, 322, 281-293.	0.6	26
88	Mitochondrial genomic investigation of flatfish monophyly. Gene, 2014, 551, 176-182.	1.0	36
89	Organization of the orexin/hypocretin system in the brain of two basal actinopterygian fishes, the cladistians Polypterus senegalus and Erpetoichthys calabaricus. Peptides, 2014, 61, 23-37.	1.2	11
91	A revision of the Middle Triassic scanilepiform fish <i>Fukangichthys longidorsalis</i> from Xinjiang, China, with comments on the phylogeny of the Actinopteri. Journal of Vertebrate Paleontology, 2014, 34, 747-759.	0.4	32
92	Phylogenetic relationships and timing of diversification in gonorynchiform fishes inferred using nuclear gene DNA sequences (Teleostei: Ostariophysi). Molecular Phylogenetics and Evolution, 2014, 80, 297-307	1.2	23

#	Article	IF	CITATIONS
93	The Geography of Morphological Convergence in the Radiations of Pacific <i>Sebastes</i> Rockfishes. American Naturalist, 2014, 184, E115-E131.	1.0	33
94	Wnt signalling underlies the evolution of new phenotypes and craniofacial variability in Lake Malawi cichlids. Nature Communications, 2014, 5, 3629.	5.8	84
95	Whole-genome duplication in teleost fishes and its evolutionary consequences. Molecular Genetics and Genomics, 2014, 289, 1045-1060.	1.0	650
96	Evolution of endothelin receptors in vertebrates. General and Comparative Endocrinology, 2014, 209, 21-34.	0.8	35
97	A RAD-Tag Genetic Map for the Platyfish (<i>Xiphophorus maculatus</i>) Reveals Mechanisms of Karyotype Evolution Among Teleost Fish. Genetics, 2014, 197, 625-641.	1.2	80
98	Phylogenetic informativeness reconciles ray-finned fish molecular divergence times. BMC Evolutionary Biology, 2014, 14, 169.	3.2	77
99	The development of lateral line placodes: Taking a broader view. Developmental Biology, 2014, 389, 68-81.	0.9	55
100	Early Development of the Caudal Fin Skeleton of Capelin, <i>Mallotus villosus</i> (Osmeridae). Copeia, 2014, 2014, 355-365.	1.4	9
101	Phylogeny and taxonomy of sculpins, sandfishes, and snailfishes (Perciformes: Cottoidei) with comments on the phylogenetic significance of their early-life-history specializations. Molecular Phylogenetics and Evolution, 2014, 79, 332-352.	1.2	53
102	<i>Astyanax</i> Transgenesis and Husbandry: How Cavefish Enters the Laboratory. Zebrafish, 2014, 11, 291-299.	0.5	112
103	Species and shape diversification are inversely correlated among gobies and cardinalfishes (Teleostei:) Tj ETQq0 C	0 orgBT /C	verlock 10 T
104	Enigmatic Orthology Relationships between Hox Clusters of the African Butterfly Fish and Other Teleosts Following Ancient Whole-Genome Duplication. Molecular Biology and Evolution, 2014, 31, 2592-2611.	3.5	37
105	Cardiac myoglobin deficit has evolved repeatedly in teleost fishes. Biology Letters, 2014, 10, 20140225.	1.0	16
106	A comparison of the larval and juvenile dentition in <i>Polypterus senegalus</i> . Journal of Applied Ichthyology, 2014, 30, 790-795.	0.3	4
107	Host Performance as a Target of Manipulation by Parasites: A Meta-Analysis. Journal of Parasitology, 2014, 100, 399-410.	0.3	48
108	Salmonids Have an Extraordinary Complex Type I IFN System: Characterization of the IFN Locus in Rainbow Trout <i>Oncorhynchus mykiss</i> Reveals Two Novel IFN Subgroups. Journal of Immunology, 2014, 193, 2273-2286.	0.4	107
109	Appetite regulating peptides in red-bellied piranha, Pygocentrus nattereri: Cloning, tissue distribution and effect of fasting on mRNA expression levels. Peptides, 2014, 56, 116-124.	1.2	42
110	Four new basal acanthomorph fishes from the Late Cretaceous of Morocco. Journal of Vertebrate Paleontology, 2014, 34, 34-48.	0.4	18

#	Article	IF	Citations
111	The adductor mandibulae muscle complex in lower teleostean fishes (Osteichthyes: Actinopterygii): comparative anatomy, synonymy, and phylogenetic implications. Zoological Journal of the Linnean Society, 2014, 171, 554-622.	1.0	39
112	The gas bladder of puffers and porcupinefishes (Acanthomorpha: Tetraodontiformes): Phylogenetic interpretations. Journal of Morphology, 2014, 275, 894-901.	0.6	3
113	Evidence for mesothermy in dinosaurs. Science, 2014, 344, 1268-1272.	6.0	131
114	Characterization of the definitive classical calpain family of vertebrates using phylogenetic, evolutionary and expression analyses. Open Biology, 2014, 4, 130219.	1.5	30
116	Phylogenetic systematics of leaffishes (Teleostei: Polycentridae, Nandidae). Journal of Zoological Systematics and Evolutionary Research, 2015, 53, 259-272.	0.6	19
117	Corresponding morphological and molecular indicators of crude oil toxicity to the developing hearts of mahi mahi. Scientific Reports, 2015, 5, 17326.	1.6	93
118	Characterization of MHC class II genes in the critically endangered European eel (Anguilla anguilla). Conservation Genetics Resources, 2015, 7, 859-870.	0.4	12
119	Molecular phylogenetics reveals convergent evolution in lower Congo River spiny eels. BMC Evolutionary Biology, 2015, 15, 224.	3.2	23
120	ERK1 and ERK2 present functional redundancy in tetrapods despite higher evolution rate of ERK1. BMC Evolutionary Biology, 2015, 15, 179.	3.2	46
121	Testing a time hypothesis in the biogeography of the arowana genus <i>Scleropages</i> (Osteoglossidae). Journal of Biogeography, 2015, 42, 2427-2439.	1.4	10
122	Single origin of the Mascarene stick insects: ancient radiation on sunken islands?. BMC Evolutionary Biology, 2015, 15, 196.	3.2	92
123	Phylogenetic relationships of â€Luisiella feruglioi (Bordas) and the recognition of a new clade of freshwater teleosts from the Jurassic of Gondwana. BMC Evolutionary Biology, 2015, 15, 268.	3.2	15
124	Trophic position estimates of marine teleosts using amino acid compound specific isotopic analysis. Limnology and Oceanography: Methods, 2015, 13, 476-493.	1.0	126
125	Genetic and morphological variability of the European mudminnow <i>Umbra krameri</i> (Teleostei,) Tj ETQq1 1 of Fish Biology, 2015, 86, 1534-1548.	0.784314 0.7	rgBT /Over 6
126	Analysis of the nicotinamide phosphoribosyltransferase family provides insight into vertebrate adaptation to different oxygen levels during the waterâ€ŧoâ€ŀand transition. FEBS Journal, 2015, 282, 2858-2878.	2.2	6
127	Gross, histological and ultrastructural morphology of the aglomerular kidney in the lined seahorse <i>Hippocampus erectus</i> . Journal of Fish Biology, 2015, 87, 805-813.	0.7	5
128	Cloning and tissue distribution of appetiteâ€regulating peptides in pirapitinga (<i>Piaractus) Tj ETQq0 0 0 rgBT /0</i>	Overlock 1	0 Tf 50 102

129	Divergent evolution of two corticotropin-releasing hormone (CRH) genes in teleost fishes. Frontiers in Neuroscience, 2015, 9, 365.	1.4	53
-----	--	-----	----

#	Article	IF	CITATIONS
130	Egg quality in fish: Present and future challenges. Animal Frontiers, 2015, 5, 66-72.	0.8	62
131	Phylogenetic signal and major ecological shifts in the ecomorphological structure of stream fish in two river basins in Brazil. Neotropical Ichthyology, 2015, 13, 165-178.	0.5	17
132	Reevaluating Musculoskeletal Linkages in Suction-Feeding Fishes with X-Ray Reconstruction of Moving Morphology (XROMM). Integrative and Comparative Biology, 2015, 55, 36-47.	0.9	32
133	Bichir microRNA repertoire suggests a ray-finned fish affinity of Polypteriforme. Gene, 2015, 566, 242-247.	1.0	4
134	Identification of the notothenioid sister lineage illuminates the biogeographic history of an Antarctic adaptive radiation. BMC Evolutionary Biology, 2015, 15, 109.	3.2	52
135	When Tradition Meets Technology: Systematic Morphology of Fishes in the Early 21 st Century. Copeia, 2015, 103, 858-873.	1.4	15
136	A Cretaceous Cusk-Eel (Teleostei, Ophidiiformes) from Italy and the Mesozoic Diversification of Percomorph Fishes. Copeia, 2015, 103, 771-791.	1.4	23
137	Complexities of Early Teleostei and the Evolution of Particular Morphological Structures through Time. Copeia, 2015, 103, 999-1025.	1.4	39
138	Variation in the Posttemporal-Supracleithrum Articulation in Euteleosts. Copeia, 2015, 103, 751-770.	1.4	2
139	Discovery of conventional prolactin from the holocephalan elephant fish, Callorhinchus milii. General and Comparative Endocrinology, 2015, 224, 216-227.	0.8	19
140	Positive selection effects on the biochemical properties of fish pyroglutamylated RFamide peptide receptor (QRFPR). Italian Journal of Zoology, 2015, 82, 460-472.	0.6	3
141	Examining evolutionary relationships and shifts in depth preferences in batfishes (Lophiiformes:) Tj ETQq1 1 0.78	34314 rgB 1.2	T /gverlock
142	Comprehensive Transcriptome Analysis Reveals Accelerated Genic Evolution in a Tibet Fish, Gymnodiptychus pachycheilus. Genome Biology and Evolution, 2015, 7, 251-261.	1.1	112
143	Assessing Approaches for Inferring Species Trees from Multi-Copy Genes. Systematic Biology, 2015, 64, 325-339.	2.7	17
144	Evidence of a specialized feeding niche in a Late Triassic ray-finned fish: evolution of multidenticulate teeth and benthic scraping in â€Hemicalypterus. Die Naturwissenschaften, 2015, 102, 10.	0.6	15
145	Evolution of the branchiostegal membrane and restricted gill openings in <scp>A</scp> ctinopterygian fishes. Journal of Morphology, 2015, 276, 681-694.	0.6	19
146	Bipteria vetusta n. sp. – an old parasite in an old host: tracing the origin of myxosporean parasitism in vertebrates. International Journal for Parasitology, 2015, 45, 269-276.	1.3	27
147	Biased Gene Conversion and GC-Content Evolution in the Coding Sequences of Reptiles and Vertebrates. Genome Biology and Evolution, 2015, 7, 240-250.	1.1	67

#	Article	IF	CITATIONS
148	Deep sequencing of the olfactory epithelium reveals specific chemosensory receptors are expressed at sexual maturity in the <scp>E</scp> uropean eel <i><scp>A</scp>nguilla anguilla</i> . Molecular Ecology, 2015, 24, 822-834.	2.0	41
149	The early evolution of rayâ€finned fishes. Palaeontology, 2015, 58, 213-228.	1.0	84
150	Evolutionary history and epigenetic regulation of the three paralogous pax7 genes in rainbow trout. Cell and Tissue Research, 2015, 359, 715-727.	1.5	14
151	Evolutionary Relationships of the Deep-Sea Pearleyes (Aulopiformes: Scopelarchidae) and a New Genus of Pearleye from Antarctic Waters. Copeia, 2015, 103, 64-71.	1.4	11
152	Overview of fish immunity. , 2015, , 3-54.		39
153	Ancestral duplications and highly dynamic opsin gene evolution in percomorph fishes. Proceedings of the United States of America, 2015, 112, 1493-1498.	3.3	129
154	Molecular systematics of the Asian torrent minnows (Ostariophysi: Psilorhynchidae) inferred from nuclear and mitochondrial DNA sequence data. Journal of Zoological Systematics and Evolutionary Research, 2015, 53, 33-44.	0.6	5
155	Cloning, tissue distribution and effects of fasting on mRNA expression levels of leptin and ghrelin in red-bellied piranha (Pygocentrus nattereri). General and Comparative Endocrinology, 2015, 217-218, 20-27.	0.8	34
156	Molecular phylogeny of Percomorpha resolves Trichonotus as the sister lineage to Gobioidei (Teleostei: Gobiiformes) and confirms the polyphyly of Trachinoidei. Molecular Phylogenetics and Evolution, 2015, 93, 172-179.	1.2	35
158	Swimming muscles power suction feeding in largemouth bass. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8690-8695.	3.3	153
159	New Age of Fishes initiated by the Cretaceousâ^'Paleogene mass extinction. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8537-8542.	3.3	58
160	Origins, Innovations, and Diversification of Suction Feeding in Vertebrates. Integrative and Comparative Biology, 2015, 55, 134-145.	0.9	97
161	Life in the unthinking depths: energetic constraints on encephalization in marine fishes. Journal of Evolutionary Biology, 2015, 28, 1080-1090.	0.8	8
162	Phylogenetic analysis of molecular and morphological data highlights uncertainty in the relationships of fossil and living species of Elopomorpha (Actinopterygii: Teleostei). Molecular Phylogenetics and Evolution, 2015, 89, 205-218.	1.2	32
163	Demographic histories of two deep-sea eelpouts, Lycodes japonicus and Lycodes ocellatus: paleoenvironmental implications of the western North Pacific deep waters. Ichthyological Research, 2015, 62, 363-367.	0.5	10
164	A comprehensive analysis of teleost MHC class I sequences. BMC Evolutionary Biology, 2015, 15, 32.	3.2	81
165	The pH sensitivity of Aqp0 channels in tetraploid and diploid teleosts. FASEB Journal, 2015, 29, 2172-2184.	0.2	16
166	Multi-locus fossil-calibrated phylogeny of Atheriniformes (Teleostei, Ovalentaria). Molecular Phylogenetics and Evolution, 2015, 86, 8-23.	1.2	63

#	Article	IF	CITATIONS
167	A 190 base pair, TGF-β responsive tooth and fin enhancer is required for stickleback Bmp6 expression. Developmental Biology, 2015, 401, 310-323.	0.9	26
168	Functional morphology and kinematics of terrestrial feeding in the largescale foureyes (<i>Anableps) Tj ETQq1 1 C</i>	.784314 0.8	rgBT /Over
169	Whole Genome Sequencing of the Asian Arowana (<i>Scleropages formosus</i>) Provides Insights into the Evolution of Ray-Finned Fishes. Genome Biology and Evolution, 2015, 7, 2885-2895.	1.1	43
170	Are 100 enough? Inferring acanthomorph teleost phylogeny using Anchored Hybrid Enrichment. BMC Evolutionary Biology, 2015, 15, 113.	3.2	40
171	Elopomorpha (Teleostei) as a New Model Fish Group for Evolutionary Biology and Comparative Genomics. , 2015, , 329-344.		3
172	Exploring the utility of cross-laboratory RAD-sequencing datasets for phylogenetic analysis. BMC Research Notes, 2015, 8, 299.	0.6	29
173	Selecting Question-Specific Genes to Reduce Incongruence in Phylogenomics: A Case Study of Jawed Vertebrate Backbone Phylogeny. Systematic Biology, 2015, 64, 1104-1120.	2.7	105
174	A Uniform System for the Annotation of Vertebrate microRNA Genes and the Evolution of the Human microRNAome. Annual Review of Genetics, 2015, 49, 213-242.	3.2	467
175	The Teleost Intramandibular Joint: A mechanism That Allows Fish to Obtain Prey Unavailable to Suction Feeders. Integrative and Comparative Biology, 2015, 55, 85-96.	0.9	18
176	Rapid genome reshaping by multiple-gene loss after whole-genome duplication in teleost fish suggested by mathematical modeling. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14918-14923.	3.3	179
177	On the features of embryonic cleavage in diverse fish species. Russian Journal of Developmental Biology, 2015, 46, 326-332.	0.1	7
178	Identification of the Bones of the Snout in Fossil Lower Actinopterygians—A New Nomenclature Scheme Based on Characters. Copeia, 2015, 103, 838-857.	1.4	13
179	The impact of shifts in marine biodiversity hotspots on patterns of range evolution: Evidence from the Holocentridae (squirrelfishes and soldierfishes). Evolution; International Journal of Organic Evolution, 2015, 69, 146-161.	1.1	38
180	Why is Madagascar special? The extraordinarily slow evolution of pelican spiders (Araneae,) Tj ETQq1 1 0.784314	rgBT /Ove	erloçk 10 Tf
181	Chemokine receptors in Atlantic salmon. Developmental and Comparative Immunology, 2015, 49, 79-95.	1.0	37
182	The mitogenomic contributions to molecular phylogenetics and evolution of fishes: a 15-year retrospect. Ichthyological Research, 2015, 62, 29-71.	0.5	55
183	A reinvestigation of phylogeny and divergence times of Hynobiidae (Amphibia, Caudata) based on 29 nuclear genes. Molecular Phylogenetics and Evolution, 2015, 83, 1-6.	1.2	26
184	An evaluation of fossil tip-dating versus node-age calibrations in tetraodontiform fishes (Teleostei:) Tj ETQq1 1 0.7	'84314 rg 1.2	BT /Overlo

#	Article	IF	CITATIONS
185	Biogeography and speciation of terrestrial fauna in the southâ€western Australian biodiversity hotspot. Biological Reviews, 2015, 90, 762-793.	4.7	107
186	A new model army: Emerging fish models to study the genomics of vertebrate Evoâ€Devo. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2015, 324, 316-341.	0.6	98
188	A new species of Gymnogeophagus Miranda Ribeiro from Uruguay (Teleostei: Cichliformes). Neotropical Ichthyology, 2016, 14, .	0.5	9
189	Atlantic salmon populations reveal adaptive divergence of immune related genes - a duplicated genome under selection. BMC Genomics, 2016, 17, 610.	1.2	44
190	The genetic basis for ecological adaptation of the Atlantic herring revealed by genome sequencing. ELife, 2016, 5, .	2.8	143
191	Zebrafish offer aquaculture research their services. , 2016, , 165-194.		5
192	The Phylogenetic Intrarelationships of Spiny-Rayed Fishes (Acanthomorpha, Teleostei, Actinopterygii): Fossil Taxa Increase the Congruence of Morphology with Molecular Data. Frontiers in Ecology and Evolution, 2016, 4, .	1.1	32
193	The Brain of the Archerfish Toxotes chatareus: A Nissl-Based Neuroanatomical Atlas and Catecholaminergic/Cholinergic Systems. Frontiers in Neuroanatomy, 2016, 10, 106.	0.9	28
194	Repeated and Widespread Evolution of Bioluminescence in Marine Fishes. PLoS ONE, 2016, 11, e0155154.	1.1	78
195	Auto-Adhesion Potential of Extraocular Aqp0 during Teleost Development. PLoS ONE, 2016, 11, e0154592.	1.1	5
196	The Ancient Evolutionary History of Polyomaviruses. PLoS Pathogens, 2016, 12, e1005574.	2.1	190
197	The rainbow trout genome, an important landmark forÂaquaculture and genomeÂevolution. , 2016, , 21-43.		3
198	Repeated invasions into the twilight zone: evolutionary origins of a novel assemblage of fishes from deep Caribbean reefs. Molecular Ecology, 2016, 25, 3662-3682.	2.0	30
199	â€~Fish' (<scp>A</scp> ctinopterygii and <scp>E</scp> lasmobranchii) diversification patterns through deep time. Biological Reviews, 2016, 91, 950-981.	4.7	102
200	Evolution of Venomous Cartilaginous and Ray-Finned Fishes. Integrative and Comparative Biology, 2016, 56, 950-961.	0.9	44
201	Organization of the nitrergic neuronal system in the primitive bony fishes <i>Polypterus senegalus</i> and <i>Erpetoichthys calabaricus</i> (Actinopterygii: Cladistia). Journal of Comparative Neurology, 2016, 524, 1770-1804.	0.9	11
202	Enamel ribbons, surface nodules, and octacalcium phosphate in C57 <scp>BL</scp> /6 <i>Amelx</i> ^{<i>â^'/â^'</i>} mice and <i>Amelx</i> ^{<i>+/â^'</i>} lyonization. Molecular Genetics & amp; Genomic Medicine, 2016, 4. 641-661.	0.6	33
203	Evolution of the locomotory system in eels (Teleostei: Elopomorpha). BMC Evolutionary Biology, 2016, 16, 159.	3.2	9

#	Article	IF	CITATIONS
204	Exceptional preservation reveals gastrointestinal anatomy and evolution in early actinopterygian fishes. Scientific Reports, 2016, 6, 18758.	1.6	47
205	An Intact Retroviral Gene Conserved in Spiny-Rayed Fishes for over 100ÂMy. Molecular Biology and Evolution, 2016, 34, msw262.	3.5	21
206	PhyInformR: phylogenetic experimental design and phylogenomic data exploration in R. BMC Evolutionary Biology, 2016, 16, 262.	3.2	39
207	Three Distinct Glutamate Decarboxylase Genes in Vertebrates. Scientific Reports, 2016, 6, 30507.	1.6	26
208	The Asian arowana (Scleropages formosus) genome provides new insights into the evolution of an early lineage of teleosts. Scientific Reports, 2016, 6, 24501.	1.6	89
209	Food Web Structure Shapes the Morphology of Teleost Fish Brains. Brain, Behavior and Evolution, 2016, 87, 128-138.	0.9	17
210	Lipolytic enzymes involving lipolysis in Teleost: Synteny, structure, tissue distribution, and expression in grass carp (Ctenopharyngodon idella). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2016, 198, 110-118.	0.7	33
211	Eighty-five million years of Pacific Ocean gyre ecosystem structure: long-term stability marked by punctuated change. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160189.	1.2	26
212	Gene evolution and gene expression after whole genome duplication in fish: the PhyloFish database. BMC Genomics, 2016, 17, 368.	1.2	288
213	A new classification of viviparous brotulas (Bythitidae) – with family status for Dinematichthyidae – based on molecular, morphological and fossil data. Molecular Phylogenetics and Evolution, 2016, 100, 391-408.	1.2	31
214	An exceptionally preserved Eocene shark and the rise of modern predator–prey interactions in the coral reef food web. Zoological Letters, 2016, 2, 9.	0.7	17
215	Fishes: A Guide to their Diversity.— Philip A. Hastings, Harold Jack Walker Jr., Grantly R. Galland, editors Systematic Biology, 2016, 65, 345-346.	2.7	0
216	The Atlantic salmon genome provides insights into rediploidization. Nature, 2016, 533, 200-205.	13.7	1,021
217	Complete mitochondrial genome of the striped scat Selenotoca multifasciata (Perciformes:) Tj ETQq1 1 0.78431	4 rgBT /O\ 0.7	verlock 10 Tf
218	Authentication of Closely Related Fish and Derived Fish Products Using Tandem Mass Spectrometry and Spectral Library Matching. Journal of Agricultural and Food Chemistry, 2016, 64, 3669-3677.	2.4	19
219	ldentification, origin and evidence for retained functionality of two lήBα paralogs in Megalobrama amblycephala. Developmental and Comparative Immunology, 2016, 62, 89-96.	1.0	10
220	World-wide species distributions in the family Kyphosidae (Teleostei: Perciformes). Molecular Phylogenetics and Evolution, 2016, 101, 252-266.	1.2	37
221	Species delimitation and phylogenetic relationships in a genus of African weakly-electric fishes (Osteoglossiformes, Mormyridae, Campylomormyrus). Molecular Phylogenetics and Evolution, 2016, 101. 8-18.	1.2	24

		CITATION REPORT		
#	Article		IF	CITATIONS
222	Structure and variation of the mitochondrial genome of fishes. BMC Genomics, 2016,	17, 719.	1.2	187
223	Little evidence for enhanced phenotypic evolution in early teleosts relative to their livir sister group. Proceedings of the National Academy of Sciences of the United States of 113, 11531-11536.	ng fossil America, 2016,	3.3	66
224	Karyotype and Mapping of Repetitive DNAs in the African Butterfly Fish <i& buchholzi, </i& the Sole Species of the Family Pantodontidae. Cytogenet Research, 2016, 149, 312-320.	gt;Pantodon tic and Genome	0.6	15
225	Morphological Evolution of the Cave-, Spring-, and Swampfishes of the Amblyopsidae (Percopsiformes). Copeia, 2016, 104, 763-777.		1.4	10
226	Relaxed selective constraints drove functional modifications in peripheral photorecept cavefish P. andruzzii and provide insight into the time of cave colonization. Heredity, 2	ion of the 2016, 117, 383-392.	1.2	35
227	Comparative genomic evidence for duplication of TLR1 subfamily and miiuy croaker TL stimulation via MyD88 and TIRAP. Fish and Shellfish Immunology, 2016, 56, 336-348.	R1 perceives LPS	1.6	39
229	Goldfish morphology as a model for evolutionary developmental biology. Wiley Interdia Reviews: Developmental Biology, 2016, 5, 272-295.	sciplinary	5.9	46
230	The origin and divergence of Gobioninae fishes (Teleostei: Cyprinidae) based on compl mitochondrial genome sequences. Journal of Applied Ichthyology, 2016, 32, 32-39.	ete	0.3	10
231	Molecular, morphological and fossil input data for inferring relationship among viviparo (Bythitidae) – Resulting in a family status change for Dinematichthyidae. Data in Brie	ous brotulas ef, 2016, 8, 461-464.	0.5	1
232	Name changes and additions to the southern African freshwater fish fauna. African Jou Aquatic Science, 2016, 41, 345-351.	rnal of	0.5	31
233	Mosaicism in a new <scp>E</scp> ocene pufferfish highlights rapid morphological inno origin of crown tetraodontiforms. Palaeontology, 2016, 59, 499-514.	ovation near the	1.0	15
234	Scale ontogeny in the cardinalfish family Apogonidae. Zootaxa, 2016, 4196, 107.		0.2	1
235	New species of Plagioporus Stafford, 1904 (Digenea: Opecoelidae) from California, wit of the genus and a phylogeny of freshwater plagioporines of the Holarctic. Systematic 2016, 93, 731-748.	:h an amendment Parasitology,	0.5	21
236	Appetite regulating factors in dourado, Salminus brasiliensis: cDNA cloning and effects feeding on gene expression. General and Comparative Endocrinology, 2016, 237, 34-4	s of fasting and 2.	0.8	29
237	Ecological Influences and Morphological Correlates of Resting and Maximal Metabolic Teleost Fish Species. American Naturalist, 2016, 187, 592-606.	Rates across	1.0	188
238	Outgroups and Positive Selection: The Nothobranchius furzeri Case. Trends in Genetics 523-525.	s, 2016, 32,	2.9	12
239	Nothobranchius furzeri: A Model for Aging Research and More. Trends in Genetics, 201	16, 32, 543-552.	2.9	72
240	The genome of the miiuy croaker reveals well-developed innate immune and sensory sy Reports, 2016, 6, 21902.	stems. Scientific	1.6	67

#	Article	IF	CITATIONS
241	Molecular developmental mechanism in polypterid fish provides insight into the origin of vertebrate lungs. Scientific Reports, 2016, 6, 30580.	1.6	41
242	The fossil record of the Cladocera (Crustacea: Branchiopoda): Evidence and hypotheses. Earth-Science Reviews, 2016, 163, 162-189.	4.0	48
243	A second visual rhodopsin gene, <i>rh1-2</i> , is expressed in zebrafish photoreceptors and found in other ray-finned fishes. Journal of Experimental Biology, 2017, 220, 294-303.	0.8	29
244	Evolution and expression of tissue globins in ray-finned fishes. Genome Biology and Evolution, 2016, 9, evw266.	1.1	9
245	Evolutionary Genetics of the Cavefish Astyanax mexicanus. Advances in Genetics, 2016, 95, 117-159.	0.8	47
246	Reiterative expression of <i>pax1</i> directs pharyngeal pouch segmentation in medaka (<i>Oryzias) Tj ETQq1 I</i>	0.784314 1.2	4 rgBT /Overl
247	Zebrafish: a vertebrate tool for studying basal body biogenesis, structure, and function. Cilia, 2016, 5, 16.	1.8	8
248	Permian– <scp>T</scp> riassic <scp>O</scp> steichthyes (bony fishes): diversity dynamics and body size evolution. Biological Reviews, 2016, 91, 106-147.	4.7	88
249	Reproduction, larviculture and early development of the Bluebanded goby, <i>Lythrypnus dalli,</i> an emerging model organism for studies in evolutionary developmental biology and sexual plasticity. Aquaculture Research, 2016, 47, 1899-1916.	0.9	16
250	Characterization of type I and II procollagen α1chain in Amur sturgeon (Acipenser schrenckii) and comparison of their gene expression. Gene, 2016, 579, 8-16.	1.0	10
251	Neofunctionalization of Androgen Receptor by Gain-of-Function Mutations in Teleost Fish Lineage. Molecular Biology and Evolution, 2016, 33, 228-244.	3.5	41
252	Mechanosensation in an adipose fin. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152794.	1.2	30
253	The confounding complexity of innate immune receptors within and between teleost species. Fish and Shellfish Immunology, 2016, 53, 24-34.	1.6	26
254	Conserved structure and expression of hsp70 paralogs in teleost fishes. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2016, 18, 10-20.	0.4	24
255	Observations of terrestrial locomotion in wild <i>Polypterus senegalus</i> from Lake Albert, Uganda. African Journal of Aquatic Science, 2016, 41, 67-71.	0.5	10
256	Myxozoa + Polypodium : A Common Route to Endoparasitism. Trends in Parasitology, 2016, 32, 268-271.	1.5	8
257	Was Gondwanan breakup the cause of the intercontinental distribution of Osteoglossiformes? A time-calibrated phylogenetic test combining molecular, morphological, and paleontological evidence. Molecular Phylogenetics and Evolution, 2016, 99, 34-43.	1.2	29
258	The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics, 2016, 48, 427-437.	9.4	545

#	Article	IF	CITATIONS
259	Myxozoan infections of caecilians demonstrate broad host specificity and indicate a link with human activity. International Journal for Parasitology, 2016, 46, 375-381.	1.3	14
260	Multi-tissue transcriptome profiles for coho salmon (Oncorhynchus kisutch), a species undergoing rediploidization following whole-genome duplication. Marine Genomics, 2016, 25, 33-37.	0.4	19
261	Fishes: A Guide to their Diversity. — Philip A. Hastings, Harold Jack Walker Jr., Grantly R. Galland, editors Systematic Biology, 2016, 65, 178-179.	2.7	0
262	Enlarged Multilocus Data set Provides Surprisingly Younger Time of Origin for the Plethodontidae, the Largest Family of Salamanders. Systematic Biology, 2016, 65, 66-81.	2.7	64
263	Phylogeny and dating of divergences within the genus <i>Thymallus</i> (Salmonidae: Thymallinae) using complete mitochondrial genomes. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2016, 27, 3602-3611.	0.7	15
264	Phylogenetic placement of enigmatic percomorph families (Teleostei: Percomorphaceae). Molecular Phylogenetics and Evolution, 2016, 94, 565-576.	1.2	81
265	Multiple Genetic Mechanisms Contribute to Visual Sensitivity Variation in the Labridae. Molecular Biology and Evolution, 2016, 33, 201-215.	3.5	34
266	Parallelism and Epistasis in Skeletal Evolution Identified through Use of Phylogenomic Mapping Strategies. Molecular Biology and Evolution, 2016, 33, 162-173.	3.5	32
267	Fish semen proteomics — New opportunities in fish reproductive research. Aquaculture, 2017, 472, 81-92.	1.7	28
268	Molecular phylogenetic reconstruction and taxonomic investigation of eelpouts (Cottoidei:) Tj ETQq1 1 0.7843 Mapping, Sequencing, and Analysis, 2017, 28, 547-557.	14 rgBT /O 0.7	verlock 10 Tf 8
268 269	Molecular phylogenetic reconstruction and taxonomic investigation of eelpouts (Cottoidei:) Tj ETQq1 1 0.7843 Mapping, Sequencing, and Analysis, 2017, 28, 547-557. Climate change and the evolution of reef fishes: past and future. Fish and Fisheries, 2017, 18, 22-39.	2.7	verlock 10 Tf 8 45
268 269 270	 Molecular phylogenetic reconstruction and taxonomic investigation of eelpouts (Cottoidei:) Tj ETQq1 1 0.78432 Mapping, Sequencing, and Analysis, 2017, 28, 547-557. Climate change and the evolution of reef fishes: past and future. Fish and Fisheries, 2017, 18, 22-39. "Holostei versus Halecostomi―Problem: Insight from Cytogenetics of Ancient Nonteleost Actinopterygian Fish, Bowfin <i>Amia calva</i>. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2017, 328, 620-628. 	14 rgBT /O 0.7 2.7 0.6	everlock 10 Tf 8 45 25
268 269 270 271	Molecular phylogenetic reconstruction and taxonomic investigation of eelpouts (Cottoidei:) Tj ETQq1 1 0.78433 Mapping, Sequencing, and Analysis, 2017, 28, 547-557. Climate change and the evolution of reef fishes: past and future. Fish and Fisheries, 2017, 18, 22-39. "Holostei versus Halecostomi―Problem: Insight from Cytogenetics of Ancient Nonteleost Actinopterygian Fish, Bowfin <i>Amia calva </i> Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2017, 328, 620-628. Genome-wide interrogation advances resolution of recalcitrant groups in the tree of life. Nature Ecology and Evolution, 2017, 1, 20.	14 rgBT /O 0.7 2.7 0.6 3.4	everlock 10 Tf 8 45 25 193
268 269 270 271 272	 Molecular phylogenetic reconstruction and taxonomic investigation of eelpouts (Cottoidei:) Tj ETQq1 1 0.78433 Mapping, Sequencing, and Analysis, 2017, 28, 547-557. Climate change and the evolution of reef fishes: past and future. Fish and Fisheries, 2017, 18, 22-39. "Holostei versus Halecostomi―Problem: Insight from Cytogenetics of Ancient Nonteleost Actinopterygian Fish, Bowfin <i>Amia calva </i>. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2017, 328, 620-628. Genome-wide interrogation advances resolution of recalcitrant groups in the tree of life. Nature Ecology and Evolution, 2017, 1, 20. Relative benefits of aminoâ€acid, codon, degeneracy, DNA, and purineâ€pyrimidine character coding for phylogenetic analyses of exons. Journal of Systematics and Evolution, 2017, 55, 85-109. 	14 rgBT /O 0.7 2.7 0.6 3.4 1.6	everlock 10 Tf 8 45 25 193 24
268 269 270 271 272 273	Molecular phylogenetic reconstruction and taxonomic investigation of eelpouts (Cottoidei:) Tj ETQq1 1 0.78433 Mapping, Sequencing, and Analysis, 2017, 28, 547-557. Climate change and the evolution of reef fishes: past and future. Fish and Fisheries, 2017, 18, 22-39. "Holostei versus Halecostomi―Problem: Insight from Cytogenetics of Ancient Nonteleost Actinopterygian Fish, Bowfin <i>Amia calva</i> , Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2017, 328, 620-628. Genome-wide interrogation advances resolution of recalcitrant groups in the tree of life. Nature Ecology and Evolution, 2017, 1, 20. Relative benefits of aminoâ€acid, codon, degeneracy, DNA, and purineâ€pyrimidine character coding for phylogenetic analyses of exons. Journal of Systematics and Evolution, 2017, 55, 85-109. Fin Ray Stiffness and Fin Morphology Control Ribbon-Fin-Based Propulsion. Soft Robotics, 2017, 4, 103-116.	14 rgBT /O 0.7 0.6 3.4 1.6 4.6	everlock 10 Tf 45 25 193 24 30
268 269 270 271 272 273	Molecular phylogenetic reconstruction and taxonomic investigation of eelpouts (Cottoidei:) Tj ETQq1 1 0.7843: Mapping, Sequencing, and Analysis, 2017, 28, 547-557. Climate change and the evolution of reef fishes: past and future. Fish and Fisheries, 2017, 18, 22-39. â€ceHolostei versus Halecostomiâ€-Problem: Insight from Cytogenetics of Ancient Nonteleost Actinopterygian Fish, Bowfin <i>Amia calva</i> . Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2017, 328, 620-628. Genome-wide interrogation advances resolution of recalcitrant groups in the tree of life. Nature Ecology and Evolution, 2017, 1, 20. Relative benefits of aminoâ€ecid, codon, degeneracy, DNA, and purineâ€pyrimidine character coding for phylogenetic analyses of exons. Journal of Systematics and Evolution, 2017, 55, 85-109. Fin Ray Stiffness and Fin Morphology Control Ribbon-Fin-Based Propulsion. Soft Robotics, 2017, 4, 103-116. The biogeography of tropical reef fishes: endemism and provinciality through time. Biological Reviews, 2017, 92, 2112-2130.	14 rgBT /O 0.7 0.6 3.4 1.6 4.6 4.7	everlock 10 Tf 45 25 193 24 30 91
268 269 270 271 272 273 273	 Molecular phylogenetic reconstruction and taxonomic investigation of eelpouts (Cottoidei:) Tj ETQq1 1 0.78433: Mapping, Sequencing, and Analysis, 2017, 28, 547-557. Climate change and the evolution of reef fishes: past and future. Fish and Fisheries, 2017, 18, 22-39. âCœHolostei versus HalecostomiâC•Problem: Insight from Cytogenetics of Ancient Nonteleost Actinopterygian Fish, Bowfin <1>Amia calva, Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2017, 328, 620-628. Genome-wide interrogation advances resolution of recalcitrant groups in the tree of life. Nature Ecology and Evolution, 2017, 1, 20. Relative benefits of aminoâCacid, codon, degeneracy, DNA, and purineâCpyrimidine character coding for phylogenetic analyses of exons. Journal of Systematics and Evolution, 2017, 55, 85-109. Fin Ray Stiffness and Fin Morphology Control Ribbon-Fin-Based Propulsion. Soft Robotics, 2017, 4, 103-116. The biogeography of tropical reef fishes: endemism and provinciality through time. Biological Reviews, 2017, 92, 2112-2130. Issues with RNA-seq analysis in non-model organisms: A salmonid example. Developmental and Comparative Immunology, 2017, 75, 38-47. 	14 rgBT /O 2.7 0.6 3.4 1.6 4.6 4.7 1.0	everlock 10 Tf 45 25 193 24 30 91 7

#	Article	IF	CITATIONS
277	New insights on the sister lineage of percomorph fishes with an anchored hybrid enrichment dataset. Molecular Phylogenetics and Evolution, 2017, 110, 27-38.	1.2	40
278	A Dense Brown Trout (<i>Salmo trutta</i>) Linkage Map Reveals Recent Chromosomal Rearrangements in the <i>Salmo</i> Genus and the Impact of Selection on Linked Neutral Diversity. G3: Genes, Genomes, Genetics, 2017, 7, 1365-1376.	0.8	38
279	Molecular clocks indicate turnover and diversification of modern coleoid cephalopods during the Mesozoic Marine Revolution. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162818.	1.2	86
280	<i>Bajaichthys elegans</i> from the Eocene of Bolca (Italy) and the overlooked morphological diversity of Zeiformes (Teleostei, Acanthomorpha). Palaeontology, 2017, 60, 255-268.	1.0	8
282	The taxonomic placement of three fossil Fundulus species and the timing of divergence within the North American topminnows (Teleostei: Fundulidae). Zootaxa, 2017, 4250, 577-586.	0.2	9
283	Molecular phylogeny of obligate fish parasites of the family Cymothoidae (Isopoda, Crustacea): evolution of the attachment mode to host fish and the habitat shift from saline water to freshwater. Marine Biology, 2017, 164, 1.	0.7	59
284	Evolutionary changes in lamin expression in the vertebrate lineage. Nucleus, 2017, 8, 392-403.	0.6	4
285	Comprehensive transcriptomic analysis of Tibetan Schizothoracinae fish Gymnocypris przewalskii reveals how it adapts to a high altitude aquatic life. BMC Evolutionary Biology, 2017, 17, 74.	3.2	47
286	Pre- versus post-mass extinction divergence of Mesozoic marine reptiles dictated by time-scale dependence of evolutionary rates. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170241.	1.2	25
287	Phylogenomic analysis of a rapid radiation of misfit fishes (Syngnathiformes) using ultraconserved elements. Molecular Phylogenetics and Evolution, 2017, 113, 33-48.	1.2	49
288	Effects of gene choice, base composition and rate heterogeneity on inference and estimates of divergence times in cypriniform fishes. Biological Journal of the Linnean Society, 2017, 121, 319-339.	0.7	16
289	Fin modules: an evolutionary perspective on appendage disparity in basal vertebrates. BMC Biology, 2017, 15, 32.	1.7	42
290	Forkhead box O1 in grass carp Ctenopharyngodon idella: Molecular characterization, gene structure, tissue distribution and mRNA expression in insulin-inhibited adipocyte lipolysis. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2017, 204, 76-84.	0.8	14
291	Patterns of divergence in fish species separated by the Isthmus of Panama. BMC Evolutionary Biology, 2017, 17, 111.	3.2	30
292	Body shape variation within the Southern Cavefish, Typhlichthys subterraneus (Percopsiformes:) Tj ETQq0 0 0 rg8	3T /Overloo 0.4	ck ₅ 10 Tf 50 1
293	Functional Innovations and the Conquest ofÂtheÂOceans by Acanthomorph Fishes. Current Biology, 2017, 27, R550-R557.	1.8	56

294	Characterization of autonomous families of Tc1/mariner transposons in neoteleost genomes. Marine Genomics, 2017, 34, 67-77.	0.4	23
295	Phylogenomic Systematics of Ostariophysan Fishes: Ultraconserved Elements Support the Surprising Non-Monophyly of Characiformes. Systematic Biology, 2017, 66, 881-895.	2.7	74

#	Article	IF	CITATIONS
296	Testing for the Occurrence of Selective Episodes During the Divergence of Otophysan Fishes: Insights from Mitogenomics. Journal of Molecular Evolution, 2017, 84, 162-173.	0.8	5
297	Asymmetrically reduced expression of hand1 homeologs involving a single nucleotide substitution in a cis -regulatory element. Developmental Biology, 2017, 425, 152-160.	0.9	3
298	Sequence and functional characterization of hypoxia-inducible factors, HIF1α, HIF2αa, and HIF3α, from the estuarine fish, <i>Fundulus heteroclitus</i> . American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R412-R425.	0.9	16
299	Microscopic recognition and identification of fish meal in compound feeds. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2017, 34, 1364-1376.	1.1	5
300	Genome Compositional Organization in Gars Shows More Similarities to Mammals than to Other Rayâ€Finned Fish. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2017, 328, 607-619.	0.6	27
301	Evolution of gene expression after wholeâ€genome duplication: New insights from the spotted gar genome. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2017, 328, 709-721.	0.6	52
302	Early members of â€~living fossil' lineage imply later origin of modern ray-finned fishes. Nature, 2017, 549, 265-268.	13.7	85
303	Inactivation of thermogenic UCP1 as a historical contingency in multiple placental mammal clades. Science Advances, 2017, 3, e1602878.	4.7	78
304	Case Studies of Seven Gene Families with Unusual High Retention Rate Since the Vertebrate and Teleost Whole-Genome Duplications. , 2017, , 369-396.		3
305	Of Horse-Caterpillars and Homologies: Evolution of the Hippocampus and Its Name. Brain, Behavior and Evolution, 2017, 90, 7-14.	0.9	17
306	Terrestrial capture of prey by the reedfish, a model species for stem tetrapods. Ecology and Evolution, 2017, 7, 3856-3860.	0.8	10
307	Cold Fusion: Massive Karyotype Evolution in the Antarctic Bullhead Notothen Notothenia coriiceps. G3: Genes, Genomes, Genetics, 2017, 7, 2195-2207.	0.8	22
308	A novel viral lineage distantly related to herpesviruses discovered within fish genome sequence data. Virus Evolution, 2017, 3, vex016.	2.2	20
309	A gymnodont fish jaw with remarkable molariform teeth from the early Eocene of Gujarat, India (Teleostei, Tetraodontiformes). Journal of Vertebrate Paleontology, 2017, 37, e1369422.	0.4	5
310	Maximizing Power in Phylogenetics and Phylogenomics: A Perspective Illuminated by Fungal Big Data. Advances in Genetics, 2017, 100, 1-47.	0.8	28
311	Trunk dental tissue evolved independently from underlying dermal bony plates but is associated with surface bones in living odontode-bearing catfish. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171831.	1.2	17
312	SCPP Genes and Their Relatives in Gar: Rapid Expansion of Mineralization Genes in Osteichthyans. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2017, 328, 645-665.	0.6	25
313	MHC and adaptive immunity in teleost fishes. Immunogenetics, 2017, 69, 521-528.	1.2	62

		15	C
#	ARTICLE	IF	CHATIONS
314	the early ray-finned fish sterlet (Acipenser ruthenus). Cell Calcium, 2017, 61, 22-31.	1.1	9
315	Di- and tripeptide transport in vertebrates: the contribution of teleost fish models. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2017, 187, 395-462.	0.7	48
316	Revisiting the links between bone remodelling and osteocytes: insights from across phyla. Biological Reviews, 2017, 92, 1702-1719.	4.7	39
317	Explaining globalâ€scale diversification patterns in actinopterygian fishes. Journal of Biogeography, 2017, 44, 773-783.	1.4	40
318	Maternal investment in fish oocytes and eggs: The molecular cargo and its contributions to fertility and early development. Aquaculture, 2017, 472, 107-143.	1.7	134
319	Practical low overage genomewide sequencing of hundreds of individually barcoded samples for population and evolutionary genomics in nonmodel species. Molecular Ecology Resources, 2017, 17, 194-208.	2.2	104
320	Combined phylogeny of rayâ€finned fishes (Actinopterygii) and the use of morphological characters in largeâ€scale analyses. Cladistics, 2017, 33, 333-350.	1.5	53
321	<scp>discomark</scp> : nuclear marker discovery from orthologous sequences using draft genome data. Molecular Ecology Resources, 2017, 17, 257-266.	2.2	9
322	Small fishes crossed a large mountain range: Quaternary stream capture events and freshwater fishes on both sides of the Taebaek Mountains. Integrative Zoology, 2017, 12, 292-302.	1.3	6
323	Appetite regulating factors in pacu (Piaractus mesopotamicus): Tissue distribution and effects of food quantity and quality on gene expression. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2017, 203, 241-254.	0.8	38
324	Multiple colonisations of the Lake Malawi catchment by the genus Opsaridium (Teleostei: Cyprinidae). Molecular Phylogenetics and Evolution, 2017, 107, 256-265.	1.2	3
325	Molecular characterization and nutritional regulation of carnitine palmitoyltransferase (CPT) family in grass carp (Ctenopharyngodon idellus). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2017, 203, 11-19.	0.7	24
326	Phylogenetic classification of bony fishes. BMC Evolutionary Biology, 2017, 17, 162.	3.2	635
327	Insight into the population structure of hardhead silverside, <i>Atherinomorus stipes</i> (Teleostei:) Tj ETQq1 1	0.784314 0.8	rgßT /Overlo
329	Genomic signature of highland adaptation in fish: a case study in Tibetan Schizothoracinae species. BMC Genomics, 2017, 18, 948.	1.2	26
330	Fish larval recruitment to reefs is a thyroid hormone-mediated metamorphosis sensitive to the pesticide chlorpyrifos. ELife, 2017, 6, .	2.8	58
331	Comparative Physiology of Energy Metabolism: Fishing for Endocrine Signals in the Early Vertebrate Pool. Frontiers in Endocrinology, 2017, 8, 36.	1.5	45
332	The Role of Peroxisome Proliferator-Activated Receptor Gamma (PPARG) in Adipogenesis: Applying Knowledge from the Fish Aquaculture Industry to Biomedical Research. Frontiers in Endocrinology, 2017, 8, 102.	1.5	57

#	Article	IF	CITATIONS
333	Hook, Line and Infection. Advances in Parasitology, 2017, 98, 39-109.	1.4	25
334	Community assembly of coral reef fishes along the Melanesian biodiversity gradient. PLoS ONE, 2017, 12, e0186123.	1.1	4
335	Molecular systematics of the anchovy genus Encrasicholina in the Northwest Pacific. PLoS ONE, 2017, 12, e0181329.	1.1	11
336	Dorsal spine evolution in threespine sticklebacks via a splicing change in MSX2A. BMC Biology, 2017, 15, 115.	1.7	34
337	Unleashing the Potential of Undulating Fin Propulsion Using a Biomimetic Robotic Vessel. Marine Technology Society Journal, 2017, 51, 79-93.	0.3	4
338	Lateral Line Systems (Including Electroreception). , 2017, , 257-276.		1
339	Phylogeny and Taxonomy of Flatheads, Scorpionfishes, Sea Robins, and Stonefishes (Percomorpha:) Tj ETQq0 0 C	rgBT /Ove 1.4	erlock 10 Tf 5
340	Palaeodiversity and evolution in the Mesozoic world. Journal of Iberian Geology, 2018, 44, 1-5.	0.7	2
341	Central regulation of food intake in fish: an evolutionary perspective. Journal of Molecular Endocrinology, 2018, 60, R171-R199.	1.1	108
342	Teleost Fish-Specific Preferential Retention of Pigmentation Gene-Containing Families After Whole Genome Duplications in Vertebrates. G3: Genes, Genomes, Genetics, 2018, 8, 1795-1806.	0.8	40
343	The joint evolution of the Myxozoa and their alternate hosts: A cnidarian recipe for success and vast biodiversity. Molecular Ecology, 2018, 27, 1651-1666.	2.0	101
344	Evolution of caudal fin ray development and caudal fin hypural diastema complex in spotted gar, teleosts, and other neopterygian fishes. Developmental Dynamics, 2018, 247, 832-853.	0.8	25
345	The Divergent Genomes of Teleosts. Annual Review of Animal Biosciences, 2018, 6, 47-68.	3.6	134
346	Comparative morphology, phylogeny and classification of African seasonal killifishes of the tribe Nothobranchiini (Cyprinodontiformes: Aplocheilidae). Zoological Journal of the Linnean Society, 2018, 184, 115-135.	1.0	9
347	Redescription and phylogenetic reassessment of Asialepidotus shingyiensis (Holostei: Halecomorphi) from the Middle Triassic (Ladinian) of China. Zoological Journal of the Linnean Society, 2018, 184, 95-114.	1.0	11
348	Phylogenetic Relationships among Fishes in the Order Zeiformes Based on Molecular and Morphological Data. Copeia, 2018, 106, 20-48.	1.4	12
349	Automated Integration of Trees and Traits: A Case Study Using Paired Fin Loss Across Teleost Fishes. Systematic Biology, 2018, 67, 559-575.	2.7	11
350	Skeletogenesis in the Persian sturgeon <scp><i>Acipenser persicus</i></scp> and its correlation with gene expression of vitamin Kâ€dependent proteins during larval development. Journal of Fish Biology, 2018, 92, 452-469.	0.7	3

#	Article	IF	CITATIONS
351	Flow sensing in the deep sea: the lateral line system of stomiiform fishes. Zoological Journal of the Linnean Society, 2018, 183, 945-965.	1.0	14
352	Skeletal development in the heterocercal caudal fin of spotted gar (<i>lepisosteus oculatus</i>) and other lepisosteiformes. Developmental Dynamics, 2018, 247, 724-740.	0.8	9
353	Evolution of the growth hormone, prolactin, prolactin 2 and somatolactin family. General and Comparative Endocrinology, 2018, 264, 94-112.	0.8	45
354	Phylogenomic Perspective on the Relationships and Evolutionary History of the Major Otocephalan Lineages. Scientific Reports, 2018, 8, 205.	1.6	21
355	Phanerozoic survivors: Actinopterygian evolution through the Permoâ€Triassic and Triassicâ€Jurassic mass extinction events. Evolution; International Journal of Organic Evolution, 2018, 72, 348-362.	1.1	24
356	Light in the darkness: New perspective on lanternfish relationships and classification using genomic and morphological data. Molecular Phylogenetics and Evolution, 2018, 121, 71-85.	1.2	32
357	Genetic diversity within grouper species and a method for interspecific hybrid identification using DNA barcoding and RYR3 marker. Molecular Phylogenetics and Evolution, 2018, 121, 46-51.	1.2	22
358	Multilocus phylogeny, divergence times, and a major role for the benthic-to-pelagic axis in the diversification of grunts (Haemulidae). Molecular Phylogenetics and Evolution, 2018, 121, 212-223.	1.2	47
359	Whole genome duplications have provided teleosts with many roads to peptide loaded MHC class I molecules. BMC Evolutionary Biology, 2018, 18, 25.	3.2	39
360	Interferons type II and their receptors R1 and R2 in fish species: Evolution, structure, and function. Fish and Shellfish Immunology, 2018, 79, 140-152.	1.6	19
361	Persistence of the ABCC6 genes and the emergence of the bony skeleton in vertebrates. Scientific Reports, 2018, 8, 6027.	1.6	7
362	Phylogenetic analysis of trophic niche evolution reveals a latitudinal herbivory gradient in Clupeoidei (herrings, anchovies, and allies). Molecular Phylogenetics and Evolution, 2018, 124, 151-161.	1.2	37
363	Mate sampling influences the intensity of sexual selection and the evolution of costly sexual ornaments. Journal of Theoretical Biology, 2018, 447, 74-83.	0.8	14
364	Phylogenetic analysis shows the general diversification pattern of deep-sea notacanthiforms (Teleostei: Elopomorpha). Molecular Phylogenetics and Evolution, 2018, 124, 192-198.	1.2	2
365	Revised classification of the righteye flounders (Teleostei: Pleuronectidae) based on multilocus phylogeny with complete taxon sampling. Molecular Phylogenetics and Evolution, 2018, 125, 147-162.	1.2	26
366	Diversification Patterns of Lanternfishes Reveal Multiple Rate Shifts in a Critical Mesopelagic Clade Targeted for Human Exploitation. Current Biology, 2018, 28, 933-940.e4.	1.8	16
367	Explosive diversification of marine fishes at the Cretaceous–Palaeogene boundary. Nature Ecology and Evolution, 2018, 2, 688-696.	3.4	156
368	Bony labyrinth morphology in early neopterygian fishes (Actinopterygii: Neopterygii). Journal of Morphology, 2018, 279, 426-440.	0.6	14

#	Article	IF	CITATIONS
369	Discovery of the oldest <i>Gobius</i> (Teleostei, Gobiiformes) from a marine ecosystem of Early Miocene age. Journal of Systematic Palaeontology, 2018, 16, 493-513.	0.6	14
370	Comparative anatomy of the gill skeleton of fossil Aulopiformes (Teleostei: Eurypterygii). Journal of Systematic Palaeontology, 2018, 16, 1221-1245.	0.6	7
371	Detecting differential copy number variation between groups of samples. Genome Research, 2018, 28, 256-265.	2.4	9
372	Relative heart size and fish foraging ecology in a lake food web. Canadian Journal of Fisheries and Aquatic Sciences, 2018, 75, 1477-1484.	0.7	1
373	Post-Cretaceous bursts of evolution along the benthic-pelagic axis in marine fishes. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20182010.	1.2	30
374	Internal cranial anatomy of Early Triassic species of â€Saurichthys (Actinopterygii:) Tj ETQq1 1 0.784314 rgBT /Ov Evolutionary Biology, 2018, 18, 161.	verlock 10 3.2	Tf 50 547 To 21
375	Otomorphs (= otocephalans or ostarioclupeomorphs) revisited. Neotropical Ichthyology, 2018, 16, .	0.5	10
376	Double maternal-effect: duplicated nucleoplasmin 2 genes, npm2a and npm2b, with essential but distinct functions are shared by fish and tetrapods. BMC Evolutionary Biology, 2018, 18, 167.	3.2	8
377	A European Whitefish Linkage Map and Its Implications for Understanding Genome-Wide Synteny Between Salmonids Following Whole Genome Duplication. G3: Genes, Genomes, Genetics, 2018, 8, 3745-3755.	0.8	16
378	Evolution of the facial musculature in basal ray-finned fishes. Frontiers in Zoology, 2018, 15, 40.	0.9	19
379	Rhodopsin gene evolution in early teleost fishes. PLoS ONE, 2018, 13, e0206918.	1.1	10
380	A review of the systematic biology of fossil and living bony-tongue fishes, Osteoglossomorpha (Actinopterygii: Teleostei). Neotropical Ichthyology, 2018, 16, .	0.5	35
381	Functional and phylogenetic characterization of noncanonical vitamin B12–binding proteins in zebrafish suggests involvement in cobalamin transport. Journal of Biological Chemistry, 2018, 293, 17606-17621.	1.6	11
382	New Perspectives on the Evolutionary History of Vitellogenin Gene Family in Vertebrates. Genome Biology and Evolution, 2018, 10, 2709-2715.	1.1	20
383	Predicting nutrient content of ray-finned fishes using phylogenetic information. Nature Communications, 2018, 9, 3742.	5.8	23
384	Hybridization and Genetic Structure in Phenotypic Spotted Bass in Texas. Transactions of the American Fisheries Society, 2018, 147, 891-905.	0.6	6
385	The Bolca Lagerstäten: shallow marine life in the Eocene. Journal of the Geological Society, 2018, 175, 569-579.	0.9	30
386	Major Histocompatibility Receptors in Teleost Fishes. , 2018, , .		0

#	Article	IF	CITATIONS
387	Two pulses of morphological diversification in Pacific pelagic fishes following the Cretaceous–Palaeogene mass extinction. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181194.	1.2	22
388	A phylogenomic approach to reconstruct interrelationships of main clupeocephalan lineages with a critical discussion of morphological apomorphies. BMC Evolutionary Biology, 2018, 18, 158.	3.2	16
389	Diversified Sex Characteristics Developments in Teleost Fishes: Implication for Evolution of Androgen Receptor (AR) Gene Function. , 2018, , 113-126.		0
390	Review of the family Rivulidae (Cyprinodontiformes, Aplocheiloidei) and a molecular and morphological phylogeny of the annual fish genus Austrolebias Costa 1998. Neotropical Ichthyology, 2018, 16, .	0.5	26
391	Whole Genome Sequencing of the Pirarucu (Arapaima gigas) Supports Independent Emergence of Major Teleost Clades. Genome Biology and Evolution, 2018, 10, 2366-2379.	1.1	33
392	Clobal Rate Variation in Bony Vertebrates. Genome Biology and Evolution, 2018, 10, 1803-1815.	1.1	28
393	Eyes Wide Shut: the impact of dimâ€ŀight vision on neural investment in marine teleosts. Journal of Evolutionary Biology, 2018, 31, 1082-1092.	0.8	15
394	Resolving the ray-finned fish tree of life. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6107-6109.	3.3	6
395	Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6249-6254.	3.3	445
396	Swimming performance of a bio-inspired robotic vessel with undulating fin propulsion. Bioinspiration and Biomimetics, 2018, 13, 056006.	1.5	41
397	Flatfish monophyly refereed by the relationship of Psettodes in Carangimorphariae. BMC Genomics, 2018, 19, 400.	1.2	18
398	Biodiversity and host-parasite cophylogeny of Sphaerospora (sensu stricto) (Cnidaria: Myxozoa). Parasites and Vectors, 2018, 11, 347.	1.0	14
399	De novo transcriptome assembly, annotation and comparison of four ecological and evolutionary model salmonid fish species. BMC Genomics, 2018, 19, 32.	1.2	63
400	Organization of the Orexin/Hypocretin System in the Brain of Holostean Fishes: Assessment of Possible Relationships with Monoamines and Neuropeptide Y. Brain, Behavior and Evolution, 2018, 91, 228-251.	0.9	7
401	Wnt/β-catenin regulates an ancient signaling network during zebrafish scale development. ELife, 2018, 7, .	2.8	72
402	Independent losses of a xenobiotic receptor across teleost evolution. Scientific Reports, 2018, 8, 10404.	1.6	26
403	Modularity promotes morphological divergence in ray-finned fishes. Scientific Reports, 2018, 8, 7278.	1.6	53
404	Neopterygian phylogeny: the merger assay. Royal Society Open Science, 2018, 5, 172337.	1.1	36

#	Article	IF	CITATIONS
405	Comparative genomic analysis reveals the evolution and environmental adaptation strategies of vibrios. BMC Genomics, 2018, 19, 135.	1.2	71
406	Linking personality and cognition: a meta-analysis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170282.	1.8	153
407	Genomic analysis of Sparus aurata reveals the evolutionary dynamics of sex-biased genes in a sequential hermaphrodite fish. Communications Biology, 2018, 1, 119.	2.0	84
408	Functional distinctions associated with the diversity of sex steroid hormone receptors ESR and AR. Journal of Steroid Biochemistry and Molecular Biology, 2018, 184, 38-46.	1.2	48
409	Rapid evolution of a voltage-gated sodium channel gene in a lineage of electric fish leads to a persistent sodium current. PLoS Biology, 2018, 16, e2004892.	2.6	24
410	Phylogenetic Relationships of Spiruromorph Nematodes (Spirurina: Spiruromorpha) In North American Freshwater Fishes. Journal of Parasitology, 2018, 104, 496-504.	0.3	20
411	Optimal Rates for Phylogenetic Inference and Experimental Design in the Era of Genome-Scale Data Sets. Systematic Biology, 2019, 68, 145-156.	2.7	51
412	Gondwanan vicariance or trans-Atlantic dispersal of cichlid fishes: a review of the molecular evidence. Hydrobiologia, 2019, 832, 9-37.	1.0	23
413	Osteology of Ronquilus jordani (Zoarcoidei: Bathymasteridae), with a discussion of the developmental osteology and systematics of bathymasterid fishes. Acta Zoologica, 2019, 100, 389-407.	0.6	1
414	Functional divergence of a heterochromatinâ€binding protein during stickleback speciation. Molecular Ecology, 2019, 28, 1563-1578.	2.0	12
415	Ancestral biogeography and ecology of marine angelfishes (F: Pomacanthidae). Molecular Phylogenetics and Evolution, 2019, 140, 106596.	1.2	8
416	A phylogenomic perspective on diversity, hybridization and evolutionary affinities in the stickleback genus <i>Pungitius</i> . Molecular Ecology, 2019, 28, 4046-4064.	2.0	39
417	The South American and Australian percichthyids and perciliids. What is new about them?. Neotropical Ichthyology, 2019, 17, .	0.5	9
418	Contrasting genomic shifts underlie parallel phenotypic evolution in response to fishing. Science, 2019, 365, 487-490.	6.0	123
419	Feeding kinematics and morphology of the alligator gar (<i>Atractosteus spatula</i> , Lacépède, 1803). Journal of Morphology, 2019, 280, 1548-1570.	0.6	8
420	Subfunctionalization and evolution of liver-expressed antimicrobial peptide 2 (LEAP2) isoform genes in Siberian sturgeon (Acipenser baerii), a primitive chondrostean fish species. Fish and Shellfish Immunology, 2019, 93, 161-173.	1.6	7
421	Molecular phylogenetics of snailfishes (Cottoidei: Liparidae) based onÂMtDNA and RADseq genomic analyses, with comments on selectedÂmorphological characters. Zootaxa, 2019, 4642, 1-79.	0.2	39
422	<i>Vitellogenin</i> gene family in vertebrates: evolution and functions. , 2019, 86, 233-240.		24

	CITATION RE	PORT	
#	Article	IF	CITATIONS
423	Relaxed Selection Limits Lifespan by Increasing Mutation Load. Cell, 2019, 178, 385-399.e20.	13.5	94
424	A taxonomic revision of Cheilodactylidae and Latridae (Centrarchiformes: Cirrhitoidei) using morphological and genomic characters. Zootaxa, 2019, 4585, zootaxa.4585.1.7.	0.2	9
425	Cornelia Aust. The Jewish Economic Elite: Making Modern Europe American Historical Review, 2019, 124, 1512-1513.	0.0	0
426	A Comparison of the Innate and Adaptive Immune Systems in Cartilaginous Fish, Ray-Finned Fish, and Lobe-Finned Fish. Frontiers in Immunology, 2019, 10, 2292.	2.2	147
427	Overview on Karyotype Stasis in Atlantic Grunts (Eupercaria, Haemulidae) and the Evolutionary Extensions for Other Marine Fish Groups. Frontiers in Marine Science, 2019, 6, .	1.2	20
428	Origins and relationships of the Pleuronectoidei: Molecular and morphological analysis of living and fossil taxa. Zoologica Scripta, 2019, 48, 640-656.	0.7	13
429	Unexpected diversity of median caudal cartilages in teleosts. Zoological Journal of the Linnean Society, 2019, 186, 599-632.	1.0	3
430	Origins of Afrotropical freshwater fishes. Zoological Journal of the Linnean Society, 0, , .	1.0	6
431	A critical appraisal of appendage disparity and homology in fishes. Fish and Fisheries, 2019, 20, 1138-1175.	2.7	10
432	An integrated pathway for building regional phylogenies for ecological studies. Global Ecology and Biogeography, 2019, 28, 1899-1911.	2.7	9
433	Deciphering the Evolutionary History of Arowana Fishes (Teleostei, Osteoglossiformes,) Tj ETQq0 0 0 rgBT /Overl Sciences, 2019, 20, 4296.	ock 10 Tf ! 1.8	50 347 Td (O 17
434	Osteology and phylogeny of <i>Robustichthys luopingensis</i> , the largest holostean fish in the Middle Triassic. PeerJ, 2019, 7, e7184.	0.9	16
435	Discovery of a Novel MHC Class I Lineage in Teleost Fish which Shows Unprecedented Levels of Ectodomain Deterioration while Possessing an Impressive Cytoplasmic Tail Motif. Cells, 2019, 8, 1056.	1.8	13
436	Gill remodelling during terrestrial acclimation in the amphibious fish <scp><i>Polypterus senegalus</i></scp> . Journal of Morphology, 2019, 280, 329-338.	0.6	14
437	Assessing phylogenetic information to reveal uncertainty in historical data: An example using Goodeinae (Teleostei: Cyprinodontiformes: Goodeidae). Molecular Phylogenetics and Evolution, 2019, 134, 282-290.	1.2	6
438	The herbivorous fish family Kyphosidae (Teleostei: Perciformes) represents a recent radiation from higher latitudes. Journal of Biogeography, 2019, 46, 2067-2080.	1.4	18
439	Phylogenomic Analysis of a Putative Missing Link Sparks Reinterpretation of Leech Evolution. Genome Biology and Evolution, 2019, 11, 3082-3093.	1.1	22
440	Expansion of vomeronasal receptor genes (OlfC) in the evolution of fright reaction in Ostariophysan fishes. Communications Biology, 2019, 2, 235.	2.0	16

#	Article	IF	CITATIONS
441	Building a Body Shape Morphospace of Teleostean Fishes. Integrative and Comparative Biology, 2019, 59, 716-730.	0.9	53
442	Chromosomal and Genomic Dynamics of Satellite DNAs in Characidae (Characiformes, Teleostei) Species. Zebrafish, 2019, 16, 408-414.	0.5	2
443	Genes Encoding Teleost Fish Ligands and Associated Receptors Remained in Duplicate More Frequently than the Rest of the Genome. Genome Biology and Evolution, 2019, 11, 1451-1462.	1.1	6
444	Life History Evolution in Lampreys: Alternative Migratory and Feeding Types. , 2019, , 287-409.		24
445	On trends and patterns in macroevolution: Williston's law and the branchiostegal series of extant and extinct osteichthyans. BMC Evolutionary Biology, 2019, 19, 117.	3.2	9
446	Comparative Functional and Phylogenomic Analyses of Host Association in the Remoras (Echeneidae), a Family of Hitchhiking Fishes. Integrative Organismal Biology, 2019, 1, obz007.	0.9	7
447	Vision using multiple distinct rod opsins in deep-sea fishes. Science, 2019, 364, 588-592.	6.0	151
448	Divergence, evolution and adaptation in ray-finned fish genomes. Science China Life Sciences, 2019, 62, 1003-1018.	2.3	22
449	Climate effects on fish body size–trophic position relationship depend on ecosystem type. Ecography, 2019, 42, 1579-1586.	2.1	21
450	Gene markers for exon capture and phylogenomics in rayâ€finned fishes. Ecology and Evolution, 2019, 9, 3973-3983.	0.8	19
451	Enormous gill chambers of deepâ€sea coffinfishes (Lophiiformes: Chaunacidae) support unique ventilatory specialisations such as breath holding and extreme inflation. Journal of Fish Biology, 2019, 95, 502-509.	0.7	9
452	Transitions from Water to Land: Terrestrial Feeding in Fishes. Fascinating Life Sciences, 2019, , 139-158.	0.5	4
453	BIORESUSPENSION BEHAVIORS OF THE GOBIID, <i>VALENCIENNEA PUELLARIS, </i> AND THE BIOGENIC SEDIMENTARY STRUCTURES IT PRODUCES. Palaios, 2019, 34, 179-189.	0.6	4
454	Frequent nonrandom shifts in the temporal sequence of developmental landmark events during teleost evolutionary diversification. Evolution & Development, 2019, 21, 120-134.	1.1	2
455	Molecular phylogeny of the ghost knifefishes (Gymnotiformes: Apteronotidae). Molecular Phylogenetics and Evolution, 2019, 135, 297-307.	1.2	14
456	Phylogenetic relationships within the primitive acanthomorph fish genus Polymixia, with changes to species composition and geographic distributions. PLoS ONE, 2019, 14, e0212954.	1.1	4
457	Asymmetric paralog evolution between the "cryptic―gene Bmp16 and its well-studied sister genes Bmp2 and Bmp4. Scientific Reports, 2019, 9, 3136.	1.6	1,637
458	Comparative morphological examination of vertebral bodies of teleost fish using highâ€resolution microâ€CT scans. Journal of Morphology, 2019, 280, 778-795.	0.6	12

#	Article	IF	CITATIONS
459	The phylogenetic origin and evolution of acellular bone in teleost fishes: insights into osteocyte function in bone metabolism. Biological Reviews, 2019, 94, 1338-1363.	4.7	38
460	Into Africa via docked India: a fossil climbing perch from the Oligocene of Tibet helps solve the anabantid biogeographical puzzle. Science Bulletin, 2019, 64, 455-463.	4.3	15
461	Reconstructing evolution at the community level: A case study on Mediterranean amphibians. Molecular Phylogenetics and Evolution, 2019, 134, 211-225.	1.2	21
462	Complete mitochondrial genome of Pristicon trimaculatus (Kurtiformes, apogonidae): mitogenome characterization and phylogenetic analysis. Mitochondrial DNA Part B: Resources, 2019, 4, 288-289.	0.2	1
463	Adipose fin development and its relation to the evolutionary origins of median fins. Scientific Reports, 2019, 9, 512.	1.6	7
464	On Intraspecific and Interspecific Variation in Teleost Scleral Ossification. Anatomical Record, 2019, 302, 1238-1249.	0.8	Ο
465	Electroreception, electrogenesis and electric signal evolution. Journal of Fish Biology, 2019, 95, 92-134.	0.7	99
466	Glass in the water: Molecular phylogenetics and evolution of Indian glassy perchlets (Teleostei:) Tj ETQq1 1 0.78	4314 rgBT 0.6	⁻ /Qverlock 10
467	Chondrostean sturgeon hepcidin: An evolutionary link between teleost and tetrapod hepcidins. Fish and Shellfish Immunology, 2019, 88, 117-125.	1.6	12
468	Plasticity for colour adaptation in vertebrates explained by the evolution of the genes pomc , pmch and pmchl. Pigment Cell and Melanoma Research, 2019, 32, 510-527.	1.5	13
469	Complete mitochondrial genome of Stichaeus grigorjewi Herzenstein, 1890 (Zoarcales: Stichaeidae). Mitochondrial DNA Part B: Resources, 2019, 4, 899-901.	0.2	4
470	Using long and linked reads to improve an Atlantic herring (Clupea harengus) genome assembly. Scientific Reports, 2019, 9, 17716.	1.6	11
471	Draft genome assembly and transcriptome data of the icefish Chionodraco myersi reveal the key role of mitochondria for a life without hemoglobin at subzero temperatures. Communications Biology, 2019, 2, 443.	2.0	26
472	Adaptation and evolutionary responses to high CO2. Fish Physiology, 2019, 37, 369-395.	0.2	6
473	Exploring taxonomic and phylogenetic relationships to predict radiocaesium transfer to marine biota. Science of the Total Environment, 2019, 649, 916-928.	3.9	12
474	Phylogenetic analysis of protein sequences based on a novel k-mer natural vector method. Genomics, 2019, 111, 1298-1305.	1.3	20
475	Robotic device shows lack of momentum enhancement for gymnotiform swimmers. Bioinspiration and Biomimetics, 2019, 14, 024001.	1.5	7
476	Type II Na+-phosphate Cotransporters and Phosphate Balance in Teleost Fish. Pflugers Archiv European Journal of Physiology, 2019, 471, 193-212.	1.3	9

		TATION REPO	ORI	
#	Article		IF	CITATIONS
477	Integration and modularity of teleostean pectoral fin shape and its role in the diversification of acanthomorph fishes. Evolution; International Journal of Organic Evolution, 2019, 73, 401-411.		1.1	8
478	Phylogenomic incongruence, hypothesis testing, and taxonomic sampling: The monophyly of characiform fishes*. Evolution; International Journal of Organic Evolution, 2019, 73, 329-345.		1.1	78
479	Organization of the catecholaminergic systems in two basal actinopterygian fishes, <scp><i>Polypterus senegalus</i></scp> and <scp><i>Erpetoichthys calabaricus</i></scp> (Actinopterygii: Cladistia). Journal of Comparative Neurology, 2019, 527, 437-461.		0.9	14
480	Taxonomic, functional, and phylogenetic βâ€diversity patterns of stream fish assemblages in tropical agroecosystems. Freshwater Biology, 2019, 64, 447-460.		1.2	49
481	Live fast, diversify non-adaptively: evolutionary diversification of exceptionally short-lived annual killifishes. BMC Evolutionary Biology, 2019, 19, 10.		3.2	13
482	Vicariance and dispersal in southern hemisphere freshwater fish clades: a palaeontological perspective. Biological Reviews, 2019, 94, 662-699.		4.7	22
483	Fish: General Review. , 2019, , 129-137.			3
484	A shocking discovery of threat risks on newly described species of weakly electric fishes. Journal of Fish Biology, 2020, 96, 1077-1086.		0.7	3
485	Generation of MuRF-GFP transgenic zebrafish models for investigating murf gene expression and protein localization in Smyd1b and Hsp90α1 knockdown embryos. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2020, 240, 110368.		0.7	3
486	Molecular Biology and Evolution of Cancer: From Discovery to Action. Molecular Biology and Evolution, 2020, 37, 320-326.		3.5	43
487	Glycogen synthase kinase-3β (GSK-3β) of grass carp (Ctenopharyngodon idella): Synteny, structure, distribution and expression in oleic acid (OA)-induced adipocytes and hepatocytes. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2020, 241, 110391.	tissue	0.7	10
488	Zebrafish Phylogeny and Taxonomy. , 2020, , 15-24.			4
489	Serotonin systems in three socially communicating teleost species, the grunting toadfish (Allenbatrachus grunniens), a South American marine catfish (Ariopsis seemanni), and the upside-down catfish (Synodontis nigriventris). Journal of Chemical Neuroanatomy, 2020, 104, 10170	8.	1.0	9
490	Ecological redundancy between coral reef sharks and predatory teleosts. Reviews in Fish Biology and Fisheries, 2020, 30, 153-172.		2.4	11
491	Zebrafish Genetics. , 2020, , 25-39.			1
492	From Land to Water: Taking Fish Welfare Seriously. Animals, 2020, 10, 1585.		1.0	11
493	Dammed river: Short―and longâ€ŧerm consequences for fish species inhabiting a river in a Mediterr climate in central Chile. Aquatic Conservation: Marine and Freshwater Ecosystems, 2020, 30, 2254-2	anean 268.	0.9	7
494	Migratory patterns and evolutionary plasticity of cranial neural crest cells in ray-finned fishes. Developmental Biology, 2020, 467, 14-29.		0.9	8

#	Article	IF	CITATIONS
495	Genetic variation of native and introduced climbing perch Anabas testudineus (Bloch, 1792) derived from mitochondrial DNA analyses. Ecological Genetics and Genomics, 2020, 17, 100067.	0.3	4
496	Role of Paedomorphosis in the Emergence of the Skull Bauplan in Acipenseriformes (Actinopterygii). Biology Bulletin Reviews, 2020, 10, 427-440.	0.3	5
497	Changes in Nkx2.1, Sox2, Bmp4 , and Bmp16 expression underlying the lungâ€ŧoâ€gas bladder evolutionary transition in rayâ€finned fishes. Evolution & Development, 2020, 22, 384-402.	1.1	8
498	Tumor Necrosis Factor Superfamily: Ancestral Functions and Remodeling in Early Vertebrate Evolution. Genome Biology and Evolution, 2020, 12, 2074-2092.	1.1	6
499	Genomic Analysis of the Only Blind Cichlid Reveals Extensive Inactivation in Eye and Pigment Formation Genes. Genome Biology and Evolution, 2020, 12, 1392-1406.	1.1	14
500	Asymmetric Hybridization of Kaluga Acipenser dauricus Georgi, 1775 and Amur Sturgeon A. schrenckii Brandt, 1869 (Acipenseridae) in Nature as Follows from Analysis of Mitochondrial and Nuclear DNA Markers. Russian Journal of Genetics, 2020, 56, 718-724.	0.2	2
501	Directional divergence of Ep300 duplicates in teleosts and its implications. BMC Evolutionary Biology, 2020, 20, 140.	3.2	2
502	Isolation and Characterization of Three Sodium-Phosphate Cotransporter Genes and Their Transcriptional Regulation in the Grass Carp Ctenopharyngodon idella. International Journal of Molecular Sciences, 2020, 21, 8228.	1.8	5
503	Analysis of pallial/cortical interneurons in key vertebrate models of Testudines, Anurans and Polypteriform fishes. Brain Structure and Function, 2020, 225, 2239-2269.	1.2	4
504	cAMP-dependent protein kinase A in grass carp Ctenopharyngodon idella: Molecular characterization, gene structure, tissue distribution and mRNA expression in endoplasmic reticulum stress-induced adipocyte lipolysis. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2020. 250. 110479.	0.7	5
505	Historical biogeography identifies a possible role of Miocene wetlands in the diversification of the Amazonian rocket frogs (Aromobatidae: <i>Allobates</i>). Journal of Biogeography, 2020, 47, 2472-2482.	1.4	31
506	Footprints of local adaptation span hundreds of linked genes in the Atlantic silverside genome. Evolution Letters, 2020, 4, 430-443.	1.6	36
507	Importance of local and landscape variables on multiple facets of stream fish biodiversity in a Neotropical agroecosystem. Hydrobiologia, 2020, , 1.	1.0	5
508	A New Family Salwaichthyidae (Pisces, Perciformes s.l.) from the Lower Oligocene of the Caucasus and Carpathians. Paleontological Journal, 2020, 54, 392-400.	0.2	0
509	Unique duplication of IFNh genes in Nile tilapia (Oreochromis niloticus) reveals lineage-specific evolution of IFNh in perciform fishes. Fish and Shellfish Immunology, 2020, 107, 36-42.	1.6	6
510	A de novo chromosomeâ€level genome assembly of <i>Coregonus</i> sp. " <i>Balchen</i> â€level genome assembly of <i>Coregonus</i> sp. " <i>Balchen</i> â€level genome assembly of <i>Coregonus</i> sp. " <i>Balchen</i> alchen </td <td>2.2</td> <td>29</td>	2.2	29
511	Historical demography and climate driven distributional changes in a widespread Neotropical freshwater species with high economic importance. Ecography, 2020, 43, 1291-1304.	2.1	10
512	Effects of global warming on sex ratios in fishes. Journal of Fish Biology, 2020, 97, 596-606.	0.7	61

#	Article	IF	CITATIONS
513	A new stem-neopterygian fish from the Middle Triassic (Anisian) of Yunnan, China, with a reassessment of the relationships of early neopterygian clades. Zoological Journal of the Linnean Society, 2021, 191, 375-394.	1.0	15
514	Phylogenetic structure of Neotropical annual fish of the genusCynopoecilus(Cyprinodontiformes:) Tj ETQq1 1 0.7 Evolutionary Research, 2020, 58, 1123-1134.	784314 rg 0.6	BT /Overloc 3
515	Origin and adaptation of greenâ€sensitive (RH2) pigments in vertebrates. FEBS Open Bio, 2020, 10, 873-882.	1.0	17
516	Caveâ€adapted evolution in the North American amblyopsid fishes inferred using phylogenomics and geometric morphometrics. Evolution; International Journal of Organic Evolution, 2020, 74, 936-949.	1.1	13
517	What's the catch? Archaeological application of rapid collagen-based species identification for Pacific Salmon. Journal of Archaeological Science, 2020, 116, 105116.	1.2	19
518	Salmo salar glucocorticoid receptors analyses of alternative splicing variants under stress conditions. General and Comparative Endocrinology, 2020, 293, 113466.	0.8	7
519	Phylogeny of teleost connexins reveals highly inconsistent intra- and interspecies use of nomenclature and misassemblies in recent teleost chromosome assemblies. BMC Genomics, 2020, 21, 223.	1.2	8
520	A comprehensive non-redundant reference transcriptome for the Atlantic silverside Menidia menidia. Marine Genomics, 2020, 53, 100738.	0.4	6
521	Management of transboundary and straddling fish stocks in the Northeast Atlantic in view of climateâ€induced shifts in spatial distribution. Fish and Fisheries, 2020, 21, 1008-1026.	2.7	23
522	Basal teleosts provide new insights into the evolutionary history of teleost-duplicated aromatase. General and Comparative Endocrinology, 2020, 291, 113395.	0.8	16
523	A New Genus and Species of Scombrid Fish (Perciformes, Scombroidei, Scombridae) from the Lower Oligocene of the Caucasus. Paleontological Journal, 2020, 54, 59-67.	0.2	1
524	The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization. Nature Ecology and Evolution, 2020, 4, 841-852.	3.4	159
525	The lasting after-effects of an ancient polyploidy on the genomes of teleosts. PLoS ONE, 2020, 15, e0231356.	1.1	27
526	Transcriptome Ortholog Alignment Sequence Tools (TOAST) for phylogenomic dataset assembly. BMC Evolutionary Biology, 2020, 20, 41.	3.2	9
527	Comprehensive Transcriptome Analysis Reveals Insights into Phylogeny and Positively Selected Genes of Sillago Species. Animals, 2020, 10, 633.	1.0	5
528	The Polycomb Orthologues in Teleost Fishes and Their Expression in the Zebrafish Model. Genes, 2020, 11, 362.	1.0	2
529	The role of the chromosomal rearrangements in the evolution and speciation of Elopiformes fishes (Teleostei; Elopomorpha). Zoologischer Anzeiger, 2021, 290, 40-48.	0.4	3
530	The physiological ups and downs of thermal variability in temperate freshwater ecosystems. Journal of Fish Biology, 2021, 98, 1524-1535.	0.7	30

#	Article	IF	CITATIONS
531	Exon probe sets and bioinformatics pipelines for all levels of fish phylogenomics. Molecular Ecology Resources, 2021, 21, 816-833.	2.2	18
532	Melaninâ€concentrating hormone like and somatolactin. A teleostâ€specific hypothalamicâ€hypophyseal axis system linking physiological and morphological pigmentation. Pigment Cell and Melanoma Research, 2021, 34, 564-574.	1.5	9
533	Neotropical Riverine Cichlids: Adaptive Radiation and Macroevolution at Continental Scales. , 2021, , 135-173.		3
534	Offshore marine actinopterygian assemblages from the Maastrichtian–Paleogene of the Pindos Unit in Eurytania, Greece. PeerJ, 2021, 9, e10676.	0.9	7
535	Evolution of Tandemly Arranged Repetitive DNAs in Three Species of Cyprinoidei with Different Ploidy Levels. Cytogenetic and Genome Research, 2021, 161, 32-42.	0.6	3
536	Endogenous retroelemens of fish and molluscs. Visnik Ukrains Kogo Tovaristva Genetikiv I Selekcioneriv, 2021, 18, 34-43.	0.4	0
537	Coevolution of enamel, ganoin, enameloid, and their matrix SCPP genes in osteichthyans. IScience, 2021, 24, 102023.	1.9	27
539	Late Permian ichthyofauna from the North-Sudetic Basin, SW Poland. Acta Palaeontologica Polonica, 0, 66, .	0.4	2
540	Superoxide Dismutase Multigene Family from a Primitive Chondrostean Sturgeon, Acipenser baerii: Molecular Characterization, Evolution, and Antioxidant Defense during Development and Pathogen Infection. Antioxidants, 2021, 10, 232.	2.2	6
541	Chronological Incongruences between Mitochondrial and Nuclear Phylogenies of Aedes Mosquitoes. Life, 2021, 11, 181.	1.1	14
542	Latent developmental potential to form limb-like skeletal structures in zebrafish. Cell, 2021, 184, 899-911.e13.	13.5	36
543	Systematics and biogeography of the <i>Boana albopunctata</i> species group (Anura, Hylidae), with the description of two new species from Amazonia. Systematics and Biodiversity, 2021, 19, 375-399.	0.5	20
544	Temperature controls carbon cycling and biological evolution in the ocean twilight zone. Science, 2021, 371, 1148-1152.	6.0	41
545	Anatomy and evolution of bioluminescent organs in the slimeheads (Teleostei: Trachichthyidae). Journal of Morphology, 2021, 282, 820-832.	0.6	7
547	Diversification and colonization processes in Gobioidei predicted based on mitochondrial 12S rRNA with focusing on Oxudercidae. Mitochondrial DNA Part B: Resources, 2021, 6, 1166-1172.	0.2	1
548	Resolving the Early Divergence Pattern of Teleost Fish Using Genome-Scale Data. Genome Biology and Evolution, 2021, 13, .	1.1	7
549	Mitogenome analyses elucidate the evolutionary relationships of a probable Eocene wet tropics relic in the xerophilic lizard genus Acanthodactylus. Scientific Reports, 2021, 11, 4858.	1.6	2
550	Distinct tooth regeneration systems deploy a conserved battery of genes. EvoDevo, 2021, 12, 4.	1.3	16

ARTICLE IF CITATIONS Ovary structure and oogenesis in internally and externally fertilizing Osteoglossiformes 551 0.6 5 (Teleostei:Osteoglossomorpha). Acta Zoologica, 2022, 103, 346-364. Habitat influences skeletal morphology and density in the snailfishes (family Liparidae). Frontiers in Zoology, 2021, 18, 16. Tempo and mode in karyotype evolution revealed by a probabilistic model incorporating both 553 1.5 20 chromosome number and morphology. PLoS Genetics, 2021, 17, e1009502. A new Cenomanian acanthomorph fish from the El Chango quarry (Chiapas, southâ€eastern Mexico) and its implications for the early diversification and evolutionary trends of acanthopterygians. Papers in Palaeontology, 2021, 7, 1699-1726. 554 Phylogenomics and Historical Biogeography of Seahorses, Dragonets, Goatfishes, and Allies (Teleostei: Syngnatharia): Assessing Factors Driving Uncertainty in Biogeographic Inferences. Systematic Biology, 2021, 70, 1145-1162. 555 2.7 24 Large-scale sequencing of flatfish genomes provides insights into the polyphyletic origin of their specialized body plan. Nature Genetics, 2021, 53, 742-751. 9.4 Growth genes are implicated in the evolutionary divergence of sympatric piscivorous and 557 0.7 2 insectivorous rainbow trout (Oncorhynchus mykiss). Bmc Ecology and Evolution, 2021, 21, 63. Descriptions and records of liparid fishes (Scorpaeniformes, Liparidae) from the Mariana Islands. Ichthyological Research, 2022, 69, 46-59. The complete mitochondrial genome of the blue runner, Caranx crysos (Mitchill, 1815) (Teleostei:) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 560 On the origin of BAG(3) and its consequences for an expansion of BAG3's role in protein homeostasis.

001	Journal of Cellular Biochemistry, 2022, 123, 102-114.	1.2	0
562	Diversification of <i>Prochilodus</i> in the eastern Brazilian Shield: Evidence from complete mitochondrial genomes (Teleostei, Prochilodontidae). Journal of Zoological Systematics and Evolutionary Research, 2021, 59, 1053-1063.	0.6	8
563	Systematics of Damselfishes. Ichthyology and Herpetology, 2021, 109, .	0.3	30
565	Testing the Utility of Alternative Metrics of Branch Support to Address the Ancient Evolutionary Radiation of Tunas, Stromateoids, and Allies (Teleostei: Pelagiaria). Systematic Biology, 2021, 70, 1123-1144.	2.7	19
566	Coelacanth <i>SERINC2</i> Inhibits HIV-1 Infectivity and Is Counteracted by Envelope Glycoprotein from Foamy Virus. Journal of Virology, 2021, 95, e0022921.	1.5	8
567	Improved Understanding of the Role of Gene and Genome Duplications in Chordate Evolution With New Genome and Transcriptome Sequences. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	8
568	Taxonomy and Distribution of Deep-Sea Bigscales and Whalefishes (Teleostei: Stephanoberycoidei) Collected off Northeastern Brazil, Including Seamounts and Oceanic Islands. Ichthyology and Herpetology, 2021, 109, .	0.3	3
570	Accelerated Diversification Explains the Exceptional Species Richness of Tropical Characoid Fishes. Systematic Biology, 2021, 71, 78-92.	2.7	42
571	Temporal dynamics of teleost populations during the Pleistocene: a report from publicly available genome data. BMC Genomics, 2021, 22, 490.	1.2	6

#	Article	IF	CITATIONS
572	Adult body growth and reproductive investment vary markedly within and across Atlantic and Pacific herring: a meta-analysis and review of 26 stocks. Reviews in Fish Biology and Fisheries, 2021, 31, 685-708.	2.4	8
573	Ancestral transoceanic colonization and recent population reduction in a nonannual killifish from the Seychelles archipelago. Molecular Ecology, 2021, 30, 3610-3623.	2.0	9
574	Form and Function of the Caudal Fin Throughout the Phylogeny of Fishes. Integrative and Comparative Biology, 2021, 61, 550-572.	0.9	13
576	Function of Circular RNAs in Fish and Their Potential Application as Biomarkers. International Journal of Molecular Sciences, 2021, 22, 7119.	1.8	24
577	Advancing human disease research with fish evolutionary mutant models. Trends in Genetics, 2022, 38, 22-44.	2.9	23
578	The Natterin Proteins Diversity: A Review on Phylogeny, Structure, and Immune Function. Toxins, 2021, 13, 538.	1.5	23
579	Identification of type I and type II IFNs in a perciform fish, the snakehead Channa argus. Aquaculture Reports, 2021, 20, 100749.	0.7	2
580	Spiny and soft-rayed fin domains in acanthomorph fish are established through a BMP- <i>gremlin</i> - <i>shh</i> signaling network. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
581	Topology, tissue distribution, and transcriptional level of SLC34s in response to Pi and pH in grass carp Ctenopharyngodon idella. Fish Physiology and Biochemistry, 2021, 47, 1383-1393.	0.9	2
582	Longer or shorter spines: Reciprocal trait evolution in stickleback via triallelic regulatory changes in <i>Stanniocalcin2a</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
583	A fossil-calibrated time-tree of all Australian freshwater fishes. Molecular Phylogenetics and Evolution, 2021, 161, 107180.	1.2	2
584	The genetics and evolution of eye color in domestic pigeons (Columba livia). PLoS Genetics, 2021, 17, e1009770.	1.5	6
585	Phylogeny and time scale of diversification in the fossil-rich sunfishes and black basses (Teleostei:) Tj ETQq0 0 0 rg	gBT /Overlo 1.2	ock 10 Tf 50
586	The bowfin genome illuminates the developmental evolution of ray-finned fishes. Nature Genetics, 2021, 53, 1373-1384.	9.4	48
587	A Y-linked anti-Müllerian hormone type-II receptor is the sex-determining gene in ayu, Plecoglossus altivelis. PLoS Genetics, 2021, 17, e1009705.	1.5	25
588	Upper Cretaceous teleostean otoliths from the Severn Formation (Maastrichtian) of Maryland, USA, with an unusual occurrence of Siluriformes and Beryciformes and the oldest Atlantic coast Gadiformes. Cretaceous Research, 2021, 125, 104867.	0.6	3
589	The evolutionary puzzle solution for the origins of the partial loss of the Cτ2 exon in notothenioid fishes. Fish and Shellfish Immunology, 2021, 116, 124-139.	1.6	2

590The Emerging Phylogenetic Perspective on the Evolution of Actinopterygian Fishes. Annual Review of
Ecology, Evolution, and Systematics, 2021, 52, 427-452.3.841

#	Article	IF	CITATIONS
591	Holosteans contextualize the role of the teleost genome duplication in promoting the rise of evolutionary novelties in the ray-finned fish innate immune system. Immunogenetics, 2021, 73, 479-497.	1.2	11
592	Comprehensive phenotypic phylogenetic analysis supports the monophyly of stromateiform fishes (Teleostei: Percomorphacea). Zoological Journal of the Linnean Society, 2022, 195, 841-963.	1.0	10
593	Comprehensive analysis of miRNA-mRNA/IncRNA during gonadal development of triploid female rainbow trout (Oncorhynchus mykiss). Genomics, 2021, 113, 3533-3543.	1.3	10
594	A Hiatus Obscures the Early Evolution of Modern Lineages of Bony Fishes. Frontiers in Earth Science, 2021, 8, .	0.8	4
596	Genome-wide phylogenetic study of Percomorpha providing robust support for previous molecular classification. Marine and Freshwater Research, 2021, 72, 1387.	0.7	0
597	New insights into biogeographical disjunctions between Taiwan and the Eastern Himalayas: The case of <i>Prinsepia</i> (Rosaceae). Taxon, 2020, 69, 278-289.	0.4	5
598	Genomic Access to the Diversity of Fishes. Methods in Molecular Biology, 2020, 2090, 397-411.	0.4	4
599	Serum amyloid A is a positive acute phase protein in Russian sturgeon challenged with Aeromonas hydrophila. Scientific Reports, 2020, 10, 22162.	1.6	14
607	The Origins and Diversification of Coral Reef Butterflyfishes. , 2013, , 1-18.		5
608	Progress in Clupeiform Systematics. , 2014, , 3-42.		24
609	Multi-locus phylogenetic analysis reveals the pattern and tempo of bony fish evolution. PLOS Currents, 2013, 5, .	1.4	125
610	The Tree of Life and a New Classification of Bony Fishes. PLOS Currents, 2013, 5, .	1.4	526
611	A Phylogenomic Perspective on the Radiation of Ray-Finned Fishes Based upon Targeted Sequencing of Ultraconserved Elements (UCEs). PLoS ONE, 2013, 8, e65923.	1.1	247
612	Morphological and Genetic Evidence for Multiple Evolutionary Distinct Lineages in the Endangered and Commercially Exploited Red Lined Torpedo Barbs Endemic to the Western Ghats of India. PLoS ONE, 2013, 8, e69741.	1.1	11
613	Are characiform Fishes Gondwanan in Origin? Insights from a Time-Scaled Molecular Phylogeny of the Citharinoidei (Ostariophysi: Characiformes). PLoS ONE, 2013, 8, e77269.	1.1	42
614	The Covert World of Fish Biofluorescence: A Phylogenetically Widespread and Phenotypically Variable Phenomenon. PLoS ONE, 2014, 9, e83259.	1.1	135
615	The Infrabranchial Musculature and Its Bearing on the Phylogeny of Percomorph Fishes (Osteichthyes:) Tj ETQqO	0 0 rgBT /	Overlock 10 ⁻ 14

616	A Large-Scale Pattern o	of Ontogenetic	Shape Chan	ge in Ray-Finned Fisł	nes. PLoS ONE, 2016,	11, e0150841.	1.1	10
-----	-------------------------	----------------	------------	-----------------------	----------------------	---------------	-----	----

	Сітатіо	Citation Report	
#	Article	IF	Citations
617	Two UV-Sensitive Photoreceptor Proteins, Opn5m and Opn5m2 in Ray-Finned Fish with Distinct Molecular Properties and Broad Distribution in the Retina and Brain. PLoS ONE, 2016, 11, e0155339.	1.1	34
618	Phylogenetic Systematics, Biogeography, and Ecology of the Electric Fish Genus Brachyhypopomus (Ostariophysi: Gymnotiformes). PLoS ONE, 2016, 11, e0161680.	1.1	22
619	Redescription and Phylogenetic Placement of â€Hemicalypterus weiri Schaeffer, 1967 (Actinopterygii,) Tj ET Morphology, Ecological Niche, and Phylogeny. PLoS ONE, 2016, 11, e0163657.	Qq0 0 0 rgBT / 1.1	Overlock 10 15
620	A Time-Calibrated Mitogenome Phylogeny of Catfish (Teleostei: Siluriformes). PLoS ONE, 2016, 11, e0166988.	1.1	41
621	No evidence for the radiation time lag model after whole genome duplications in Teleostei. PLoS ONE, 2017, 12, e0176384.	1.1	11
622	A Target Enrichment Bait Set for Studying Relationships among Ostariophysan Fishes. Copeia, 2020, 108, 47.	1.4	20
623	Marine Habitat Transitions and Body-Shape Evolution in Lizardfishes and Their Allies (Aulopiformes). Copeia, 2020, 108, .	1.4	8
624	The Phylogeny of Carangiform Fishes: Morphological and Genomic Investigations of a New Fish Clade. Copeia, 2020, 108, 265.	1.4	23
625	MicroCT survey of larval skeletal mineralization in the Cuban gar Atractosteus tristoechus (Actinopterygii; Lepisosteiformes). MorphoMuseuM, 2017, 3, e3.	0.1	5
626	Duplication and diversification of insulin genes in ray-finned fish. Zoological Research, 2019, 40, 185-197.	0.9	8
627	Constraints on the timescale of animal evolutionary history. Palaeontologia Electronica, 0, , .	0.9	71
628	Feeding convergence among ray-finned fishes: teeth of the herbivorous actinopterygians from the latest Permian of East European Platform, Russia. Acta Palaeontologica Polonica, 0, 65, .	0.4	2
629	New holostean fishes (Actinopterygii: Neopterygii) from the Middle Triassic of the Monte San Giorgio (Canton Ticino, Switzerland). PeerJ, 2016, 4, e2234.	0.9	20
630	A comparison of blood gases, biochemistry, and hematology to ecomorphology in a health assessment of pinfish (<i>Lagodon rhomboides)</i> . PeerJ, 2016, 4, e2262.	0.9	26
631	Early-branching euteleost relationships: areas of congruence between concatenation and coalescent model inferences. PeerJ, 2017, 5, e3548.	0.9	8
632	Revisiting the mitogenomic phylogeny of Salmoninae: new insights thanks to recent sequencing advances. PeerJ, 2017, 5, e3828.	0.9	22
633	Phylogeny and divergence times of suckers (Cypriniformes: Catostomidae) inferred from Bayesian total-evidence analyses of molecules, morphology, and fossils. PeerJ, 2018, 6, e5168.	0.9	19
634	Fuyuanichthys wangigen. et sp. nov. from the Middle Triassic (Ladinian) of China highlights the early diversification of ginglymodian fishes. PeerJ, 2018, 6, e6054.	0.9	7

	CITATION REI	CITATION REPORT	
#	ARTICLE	IF	CITATIONS
635	phylogenetic relationships. PeerJ, 2020, 8, e9389.	0.9	9
639	Revision of the depth record of bony fishes with notes on hadal snailfishes (Liparidae,) Tj ETQq1 1 0.784314 rgBT	/Qverlock	10 Tf 50 7(
641	Yeast rises to the occasion. ELife, 2013, 2, e00933.	2.8	0
651	Structural characteristics of the control region of the Beaufortia kweichowensis mitochondrial genome. International Journal of Veterinary Science and Research, 2018, 4, 012-014.	0.1	1
653	Latent Developmental Potential to Form Limb-Like Skeletal Structures in Zebrafish. SSRN Electronic Journal, 0, , .	0.4	0
656	A Bird's Eye View: Hesperornithiforms as Environmental Indicators in the Late Cretaceous Western Interior Seaway. Transactions of the Kansas Academy of Science, 2019, 122, 193.	0.0	2
657	Dinosaurs, But Not Only: Vertebrate Evolution in the Mesozoic. Springer Textbooks in Earth Sciences, Geography and Environment, 2020, , 187-208.	0.1	0
667	Hierarchyâ€guided neural network for species classification. Methods in Ecology and Evolution, 2022, 13, 642-652.	2.2	3
668	Species variations in XRCC1 recruitment strategies for FHA domain-containing proteins. DNA Repair, 2022, 110, 103263.	1.3	0
669	A New Species of Stromateid Fish (Perciformes, Stromateoidei) of the Genus Pinichthys from the Tarkhanian (Lowermost Middle Miocene) of the Northwestern Caucasus. Paleontological Journal, 2021, 55, 671-677.	0.2	2
670	Genome biology of the darkedged splitfin, <i>Girardinichthys multiradiatus</i> , and the evolution of sex chromosomes and placentation. Genome Research, 2022, 32, 583-594.	2.4	9
671	Morphological characters in light of new molecular phylogenies: the caudal-fin skeleton of Ovalentaria. Royal Society Open Science, 2022, 9, 211605.	1.1	6
672	On the relationship between extant innate immune receptors and the evolutionary origins of jawed vertebrate adaptive immunity. Immunogenetics, 2022, 74, 111-128.	1.2	18
673	Different response of Acipenser gueldenstaedtii CRP/SAP and SAA to bacterial challenge and chronic thermal stress sheds light on the innate immune system of sturgeons. Fish and Shellfish Immunology, 2022, 121, 404-417.	1.6	6
674	Divergent evolution of progesterone and mineralocorticoid receptors in terrestrial vertebrates and fish influences endocrine disruption. Biochemical Pharmacology, 2022, 198, 114951.	2.0	7
675	Wholeâ€body endothermy: ancient, homologous and widespread among the ancestors of mammals, birds and crocodylians. Biological Reviews, 2022, 97, 766-801.	4.7	42
676	Stress and Immunity in Fish. , 2022, , 609-655.		1
677	Evolutionary Dynamics of Two Classes of Repetitive DNA in the Genomes of Two Species of Elopiformes (Teleostei, Elopomorpha). Zebrafish, 2022, 19, 24-31.	0.5	1

#	Article	IF	CITATIONS
678	Are plant and animal sex chromosomes really all that different?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210218.	1.8	5
679	Stress response gene family expansions correlate with invasive potential in teleost fish. Journal of Experimental Biology, 2022, 225, .	0.8	2
680	Phylogenetics of Archerfishes (Toxotidae) and Evolution of the Toxotid Shooting Apparatus. Integrative Organismal Biology, 2022, 4, .	0.9	4
681	Macro-evolutionary patterns of East Asian opsariichthyin-xenocyprinin-cultrin fishes related to the formation of river and river-lake environments under monsoon climate. , 2022, 1, 100036.		4
682	Diversification Rate is Associated with Rate of Molecular Evolution in Ray-Finned Fish (Actinopterygii). Journal of Molecular Evolution, 2022, 90, 200-214.	0.8	2
683	Phylogenomic analysis of Syngnathidae reveals novel relationships, origins of endemic diversity and variable diversification rates. BMC Biology, 2022, 20, 75.	1.7	19
685	The right tool for the right question: contrasting biogeographic patterns in the notothenioid fish <i>Harpagifer</i> spp. along the Magellan Province. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212738.	1.2	4
686	Identification of the Oligocene to early Miocene loricariid catfish â€ <i>Taubateia paraiba</i> as a member of the Rhinelepinae. Journal of Paleontology, 0, , 1-5.	0.5	0
687	Assessing temporal biases across aggregated historical spatial data: a case study of North Carolina's freshwater fishes. Ecosphere, 2021, 12, .	1.0	1
688	Musculotendinous system of mesopelagic fishes: Stomiiformes (Teleostei). Journal of Anatomy, 2021, , .	0.9	0
689	The Fossil Record of Ray-Finned Fishes (Actinopterygii) in Greece. , 2022, , 91-142.		3
690	Investigating the utility of Anchored Hybrid Enrichment data to investigate the relationships among the Killifishes (Actinopterygii: Cyprinodontiformes), a globally distributed group of fishes. Molecular Phylogenetics and Evolution, 2022, 173, 107482.	1.2	7
692	Phylogeography of the Korean endemic Coreoleuciscus (Cypriniformes: Gobionidae): the genetic evidence of colonization through Eurasian continent to the Korean Peninsula during Late Plio-Pleistocene. Genes and Genomics, 2022, 44, 709-719.	0.5	4
697	Convergent evolution of polyploid genomes from across the eukaryotic tree of life. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	16
698	The Complex Rostral Morphology and the Endoskeleton Ossification Process of two adult samples Of <i>Xiphias gladius</i> (Xiphiidae). Journal of Fish Biology, 2022, , .	0.7	2
699	Terrestrial capabilities of invasive fishes and their management implications. Integrative and Comparative Biology, 2022, , .	0.9	1
700	A young parasite in an old fish host: A new genus for proteocephalid tapeworms (Cestoda) of bowfin (Amia calva) (Holostei: Amiiformes), and a revised list of its cestodes. International Journal for Parasitology: Parasites and Wildlife, 2022, 18, 101-111.	0.6	1
701	A new â€Pachycormiformes (Actinopterygii) from the Upper Jurassic of Gondwana sheds light on the evolutionary history of the group. Journal of Systematic Palaeontology, 2021, 19, 1517-1550.	0.6	5

		CITATION REPORT		
#	Article		IF	Citations
702	A Permian fish reveals widespread distribution of neopterygian-like jaw suspension. ELife	, 2022, 11, .	2.8	4
703	A new perleidid neopterygian fish from the Early Triassic (Dienerian, Induan) of South Ch reassessment of the relationships of Perleidiformes. PeerJ, 0, 10, e13448.	ina, with a	0.9	4
705	Tetraploid Ancestry Provided Atlantic Salmon With Two Paralogue Functional T Cell Rece Regions Whereof One Is Completely Novel. Frontiers in Immunology, 0, 13, .	ptor Beta	2.2	4
706	A chromosome-level genome of <i>Brachymystax tsinlingensis</i> provides resources ar into salmonids evolution. G3: Genes, Genomes, Genetics, 0, , .	d insights	0.8	0
707	Molecular phylogenetics reveals the evolutionary history of marine fishes (Actinopterygi to the subtropical islands of the Southwest Pacific. Molecular Phylogenetics and Evolutio 107584.) endemic on, 2022, ,	1.2	1
709	Molecular phylogenetics of the Clupeiformes based on exon-capture data and a new clas the order. Molecular Phylogenetics and Evolution, 2022, 175, 107590.	sification of	1.2	9
710	Prolonged morphological expansion of spiny-rayed fishes following the end-Cretaceous. Ecology and Evolution, 2022, 6, 1211-1220.	Nature	3.4	39
711	The rise of biting during the Cenozoic fueled reef fish body shape diversification. Proceed National Academy of Sciences of the United States of America, 2022, 119, .	lings of the	3.3	9
712	A highly diverse set of novel immunoglobulin-like transcript (NILT) genes in zebrafish ind range of functions with complex relationships to mammalian receptors. Immunogenetics 53-69.	cates a wide s, 2023, 75,	1.2	5
713	DupScan: predicting and visualizing vertebrate genome duplication database. Nucleic Ac 2023, 51, D906-D912.	ids Research,	6.5	4
714	The Macroevolutionary History of Bony Fishes: A Paleontological View. Annual Review of Evolution, and Systematics, 2022, 53, .	Ecology,	3.8	3
715	Towards a DNA barcode library for Madagascar's threatened ichthyofauna. PLoS ON e0271400.	E, 2022, 17,	1.1	2
716	Paleogene emergence and evolutionary history of the Amazonian fossorial fish genus Ta (Teleostei: Tarumaniidae). Frontiers in Ecology and Evolution, 0, 10, .	rumania	1.1	0
717	A different transcriptional landscape sheds light on Russian sturgeon (Acipenser guelder mechanisms to cope with bacterial infection and chronic heat stress. Fish and Shellfish Ir 2022, 128, 505-522.	staedtii) nmunology,	1.6	5
718	Investigations into the ancestry of the Grape-eye Seabass (Hemilutjanus macrophthalmo limits and relationships for the Acropomatiformes (Teleostei: Percomorpha). Neotropical Ichthyology, 2022, 20, .	s) reveal novel	0.5	4
719	New Data on Nephron Microanatomy and Ultrastructure of Senegal Bichir (Polypterus se Biology, 2022, 11, 1374.	negalus).	1.3	0
720	The Mitogenome Structure of Righteye Flounders (Pleuronectidae): Molecular Phylogeny Systematics of the Family in East Asia. Diversity, 2022, 14, 805.	' and	0.7	1
721	The evolution of predator avoidance in cephalopods: A case of brain over brawn?. Frontie Science, 0, 9, .	ers in Marine	1.2	5

#	Article	IF	CITATIONS
722	The early diversification of rayâ€finned fishes (<scp>Actinopterygii</scp>): hypotheses, challenges and future prospects. Biological Reviews, 2023, 98, 284-315.	4.7	4
723	A New Species of Mackerel (Scomber, Scombroidei) from the Tarkhanian (Lowermost Middle Miocene) of the Northwestern Caucasus. Paleontological Journal, 2022, 56, 574-582.	0.2	0
724	Bone Density Variation in Rattails (<i>Macrouridae, Gadiformes</i>): Buoyancy, Depth, Body Size, and Feeding. Integrative Organismal Biology, 2022, 4, .	0.9	2
725	Origin, form and function of extraembryonic structures in teleost fishes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	1.8	5

Concordance and Discordance in the Phylogenomics of the Wrasses and Parrotfishes (Teleostei:) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 5

727	Sequencing and analysis of the complete mitochondrial genome of <i>Datnioides campbelli</i> (Datnioididae). Mitochondrial DNA Part B: Resources, 2022, 7, 1975-1978.	0.2	0
728	A high-quality chromosome-level genome assembly of Pelteobagrus vachelli provides insights into its environmental adaptation and population history. Frontiers in Genetics, 0, 13, .	1.1	0
729	Intraspecific diversity of threespine stickleback (Gasterosteus aculeatus) populations in eastern Canada. Environmental Biology of Fishes, 2023, 106, 1177-1194.	0.4	1
730	A Chromosome-level assembly of the Japanese eel genome, insights into gene duplication and chromosomal reorganization. GigaScience, 2022, 11, .	3.3	4
731	Genetic dissection of steroid-hormone modulated social behavior: Novel paralogous genes are a boon for discovery. Hormones and Behavior, 2023, 147, 105295.	1.0	8
732	Features of Erythropoiesis of the Mesonephros and Peripheral Blood in Polypterus senegalus (Polypteridae). Journal of Ichthyology, 0, , .	0.2	0
733	Phylogenomics of the Ancient and Species-Depauperate Gars Tracks 150 Million Years of Continental Fragmentation in the Northern Hemisphere. Systematic Biology, 2023, 72, 213-227.	2.7	3
735	Ganoin and acrodin formation on scales and teeth in spotted gar: A vital role of enamelin in the unique process of enamel mineralization. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2023, 340, 455-468.	0.6	2
736	Integrative approach for discovering of the new species within the genus Allocreadium Looss, 1900 (Trematoda: Allocreadiidae) and framing of biogeographical hypotheses for the genus. Systematic Parasitology, 2023, 100, 189-213.	0.5	4
737	A new beardfish (Teleostei, Polymixiiformes) from the Eocene Fur Formation, Denmark. Journal of Vertebrate Paleontology, 2022, 42, .	0.4	7
738	Evolutionary Origin of Left-Right Eye Asymmetry. , 2022, , 269-296.		0
739	Performance of intron 7 of the β-fibrinogen gene for phylogenetic analysis: An example using gladiator frogs, Boana Gray, 1825 (Anura, Hylidae, Cophomantinae). ZooKeys, 0, 1149, 145-169.	0.5	0
740	Species delimitation, molecular phylogeny and historical biogeography of the sweetlips fish (Perciformes, Haemulidae). Zoosystematics and Evolution, 2023, 99, 135-147.	0.4	1

#	Article	IF	CITATIONS
741	<i>Butyrumichthys henricii</i> gen. et sp. nov.: a new stromateiform fish from the lower Eocene Fur Formation, Denmark. Journal of Vertebrate Paleontology, 2022, 42, .	0.4	3
742	Teratorn and Its Related Elements – a Novel Group of Herpesviruses Widespread in Teleost Genomes. Zoological Science, 2023, 40, .	0.3	1
744	Functional Evolution of Clustered Aquaporin Genes Reveals Insights into the Oceanic Success of Teleost Eggs. Molecular Biology and Evolution, 2023, 40, .	3.5	4
745	Genome structures resolve the early diversification of teleost fishes. Science, 2023, 379, 572-575.	6.0	18
761	Animal models to study cardiac regeneration. Nature Reviews Cardiology, 2024, 21, 89-105.	6.1	3