Revealing structure and assembly cues for Arabidopsis microbiota

Nature 488, 91-95 DOI: 10.1038/nature11336

Citation Report

#	Article	IF	CITATIONS
2	Microbial life in the phyllosphere. Nature Reviews Microbiology, 2012, 10, 828-840.	13.6	1,600
4	Wired to the roots. Plant Signaling and Behavior, 2012, 7, 1598-1604.	1.2	14
5	Defining the core Arabidopsis thaliana root microbiome. Nature, 2012, 488, 86-90.	13.7	2,475
6	Cell Biology — Building blocks for dynamic development and behaviors. Current Opinion in Plant Biology, 2012, 15, 575-577.	3.5	0
7	Who's who in the plant root microbiome?. Nature Biotechnology, 2012, 30, 961-962.	9.4	176
8	The Impact of Beneficial Plant-Associated Microbes on Plant Phenotypic Plasticity. Journal of Chemical Ecology, 2013, 39, 826-839.	0.9	180
9	Volatile Organic Compound Mediated Interactions at the Plant-Microbe Interface. Journal of Chemical Ecology, 2013, 39, 810-825.	0.9	209
10	Plant-Soil Feedbacks and Soil Sickness: From Mechanisms to Application in Agriculture. Journal of Chemical Ecology, 2013, 39, 232-242.	0.9	248
11	Weeds influence soil bacterial and fungal communities. Plant and Soil, 2013, 373, 107-123.	1.8	13
12	Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME Journal, 2013, 7, 2248-2258.	4.4	468
13	Practical innovations for high-throughput amplicon sequencing. Nature Methods, 2013, 10, 999-1002.	9.0	787
14	Microbial natural products: molecular blueprints for antitumor drugs. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 1181-1210.	1.4	60
15	The mixotrophic nature of photosynthetic plants. Functional Plant Biology, 2013, 40, 425.	1.1	33
16	Minimization of chloroplast contamination in 16S rRNA gene pyrosequencing of insect herbivore bacterial communities. Journal of Microbiological Methods, 2013, 95, 149-155.	0.7	181
17	Culture-Independent Molecular Tools for Soil and Rhizosphere Microbiology. Diversity, 2013, 5, 581-612.	0.7	88
18	Mycorrhizosphere Complexity. Developments in Environmental Science, 2013, 13, 151-177.	0.5	5
19	Inside the root microbiome: Bacterial root endophytes and plant growth promotion. American Journal of Botany, 2013, 100, 1738-1750.	0.8	500
20	Culture dependent and independent analysis of bacterial communities associated with commercial salad leaf vegetables. BMC Microbiology, 2013, 13, 274.	1.3	176

TATION REDO

#	ARTICLE	IF	CITATIONS
21	Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology, 2013, 11, 789-799.	13.6	2,669
22	Plant–bacteria interactions in the removal of pollutants. Current Opinion in Biotechnology, 2013, 24, 467-473.	3.3	118
23	Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proceedings of the United States of America, 2013, 110, 6548-6553.	3.3	1,594
24	The plant microbiome. Genome Biology, 2013, 14, 209.	3.8	1,028
25	Relationships between <i>Arabidopsis</i> genotype-specific biomass accumulation and associated soil microbial communities. Botany, 2013, 91, 123-126.	0.5	46
26	Symbiosis and the social network of higher plants. Current Opinion in Plant Biology, 2013, 16, 118-127.	3.5	130
27	Diversity of endophytic bacteria in Malaysian plants as revealed by 16S rRNA encoding gene sequence based method of bacterial identification. Journal of Young Pharmacists, 2013, 5, 95-97.	0.1	13
28	Structure and Functions of the Bacterial Microbiota of Plants. Annual Review of Plant Biology, 2013, 64, 807-838.	8.6	2,589
29	The molecular architecture of the plant nuclear pore complex. Journal of Experimental Botany, 2013, 64, 823-832.	2.4	78
30	Arbuscular mycorrhizal fungi reduce growth and infect roots of the nonâ€host plant <i><scp>A</scp>rabidopsis thaliana</i> . Plant, Cell and Environment, 2013, 36, 1926-1937.	2.8	97
31	Back to the basics: The need for ecophysiological insights to enhance our understanding of microbial behaviour in the rhizosphere. Plant and Soil, 2013, 373, 1-15.	1.8	34
32	Design Principles of Regulatory Networks: Searching for the Molecular Algorithms of the Cell. Molecular Cell, 2013, 49, 202-212.	4.5	139
33	Tomato Below Ground–Above Ground Interactions: <i>Trichoderma longibrachiatum</i> Affects the Performance of <i>Macrosiphum euphorbiae</i> and Its Natural Antagonists. Molecular Plant-Microbe Interactions, 2013, 26, 1249-1256.	1.4	103
34	The endophytic mycobiota of Arabidopsis thaliana. Fungal Diversity, 2013, 60, 71-89.	4.7	51
35	Evolution of the plant–microbe symbiotic â€~toolkit'. Trends in Plant Science, 2013, 18, 298-304.	4.3	159
36	Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytologist, 2013, 198, 264-273.	3.5	245
37	Insights into functional bacterial diversity and its effects on Alpine bog ecosystem functioning. Scientific Reports, 2013, 3, 1955.	1.6	71
38	The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 2013, 37, 634-663.	3.9	1,929

#	Article	IF	Citations
40	The root microbiota—a fingerprint in the soil?. Plant and Soil, 2013, 370, 671-686.	1.8	84
41	Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction. Trends in Microbiology, 2013, 21, 641-651.	3.5	429
42	The rhizosphere revisited: root microbiomics. Frontiers in Plant Science, 2013, 4, 165.	1.7	372
43	Crosstalk between endophytes and a plant host within information-processing networks. Biopolymers and Cell, 2013, 29, 234-243.	0.1	16
44	Plant growth in Arabidopsis is assisted by compost soil-derived microbial communities. Frontiers in Plant Science, 2013, 4, 235.	1.7	48
45	Reconstructing the Genomic Content of Microbiome Taxa through Shotgun Metagenomic Deconvolution. PLoS Computational Biology, 2013, 9, e1003292.	1.5	41
46	More beneath the surface? Root versus shoot antifungal plant defenses. Frontiers in Plant Science, 2013, 4, 256.	1.7	26
47	Microscopic elucidation of abundant endophytic bacteria colonizing the cell wall–plasma membrane peri-space in the shoot-tip tissue of banana. AoB PLANTS, 2013, 5, .	1.2	57
48	Multiple control levels of root system remodeling in arbuscular mycorrhizal symbiosis. Frontiers in Plant Science, 2013, 4, 204.	1.7	121
49	Application of Natural Blends of Phytochemicals Derived from the Root Exudates of Arabidopsis to the Soil Reveal That Phenolic-related Compounds Predominantly Modulate the Soil Microbiome. Journal of Biological Chemistry, 2013, 288, 4502-4512.	1.6	452
50	Belowground biotic complexity drives aboveground dynamics: a test of the soil community feedback model. New Phytologist, 2013, 197, 1300-1310.	3.5	96
51	Bacterial communities associated with <i><scp>B</scp>rassica napus</i> â€ <scp>L</scp> . grown on trace elementâ€contaminated and nonâ€contaminated fields: a genotypic and phenotypic comparison. Microbial Biotechnology, 2013, 6, 371-384.	2.0	75
52	Unraveling Root Developmental Programs Initiated by Beneficial <i>Pseudomonas</i> spp. Bacteria Â. Plant Physiology, 2013, 162, 304-318.	2.3	288
53	Different bacterial communities in ectomycorrhizae and surrounding soil. Scientific Reports, 2013, 3, 3471.	1.6	77
54	Next-Generation Bio-Products Sowing the Seeds of Success for Sustainable Agriculture. Agronomy, 2013, 3, 648-656.	1.3	150
55	A Multifactor Analysis of Fungal and Bacterial Community Structure in the Root Microbiome of Mature Populus deltoides Trees. PLoS ONE, 2013, 8, e76382.	1.1	315
56	THE BENEFICIAL ROLE OF RHIZOSPHERE MICROORGANISMS IN PLANT HEALTH AND PRODUCTIVITY: IMPROVING ROOT DEVELOPMENT AND NUTRIENT ACQUISITION. Acta Horticulturae, 2013, , 241-250.	0.1	3
58	Bacterial Communities Associated with the Leaves and the Roots of Arabidopsis thaliana. PLoS ONE, 2013, 8, e56329.	1.1	679

#	Article	IF	CITATIONS
59	The Antimicrobial Compound Xantholysin Defines a New Group of Pseudomonas Cyclic Lipopeptides. PLoS ONE, 2013, 8, e62946.	1.1	84
60	Comparative Genomic Analysis Indicates that Niche Adaptation of Terrestrial Flavobacteria Is Strongly Linked to Plant Glycan Metabolism. PLoS ONE, 2013, 8, e76704.	1.1	95
61	Bespoke microbiome therapy to manage plant diseases. Frontiers in Microbiology, 2013, 4, 355.	1.5	77
62	Vertical transmission explains the specific Burkholderia pattern in Sphagnum mosses at multi-geographic scale. Frontiers in Microbiology, 2013, 4, 394.	1.5	43
63	Catch the Best: Novel Screening Strategy to Select Stress Protecting Agents for Crop Plants. Agronomy, 2013, 3, 794-815.	1.3	38
64	Analysis of Plant-Bacteria Interactions in Their Native Habitat: Bacterial Communities Associated with Wild Tobacco Are Independent of Endogenous Jasmonic Acid Levels and Developmental Stages. PLoS ONE, 2014, 9, e94710.	1.1	43
65	Understanding Cultivar-Specificity and Soil Determinants of the Cannabis Microbiome. PLoS ONE, 2014, 9, e99641.	1.1	73
66	Changes in the Bacterial Community of Soybean Rhizospheres during Growth in the Field. PLoS ONE, 2014, 9, e100709.	1.1	243
67	Detecting rare gene transfer events in bacterial populations. Frontiers in Microbiology, 2014, 4, 415.	1.5	43
68	Scanning a microhabitat: plant-microbe interactions revealed by confocal laser microscopy. Frontiers in Microbiology, 2014, 5, 94.	1.5	63
69	Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce. Frontiers in Microbiology, 2014, 5, 144.	1.5	320
70	The impact of the pathogen Rhizoctonia solani and its beneficial counterpart Bacillus amyloliquefaciens on the indigenous lettuce microbiome. Frontiers in Microbiology, 2014, 5, 175.	1.5	141
71	Pinus flexilis and Piceae engelmannii share a simple and consistent needle endophyte microbiota with a potential role in nitrogen fixation. Frontiers in Microbiology, 2014, 5, 333.	1.5	81
72	Beneficial properties, colonization, establishment and molecular diversity of endophytic bacteria in legumes and non legumes. African Journal of Microbiology Research, 2014, 8, 1562-1572.	0.4	54
73	Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops. Plant Biotechnology Journal, 2014, 12, 1193-1206.	4.1	238
74	Unraveling the Dark Septate Endophyte Functions: Insights from the Arabidopsis Model. , 2014, , 115-141.		27
75	Two grass species fail to display differing species-specific effects on soil bacterial community structures after one season of greenhouse growth. Plant and Soil, 2014, 385, 241-254.	1.8	8
76	Profile of Paul Schulze-Lefert. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 570-572.	3.3	0

#	Article	IF	CITATIONS
77	Live cell imaging reveals extensive intracellular cytoplasmic colonization of banana by normally non-cultivable endophytic bacteria. AoB PLANTS, 2014, 6, .	1.2	58
78	Unraveling the plant microbiome: looking back and future perspectives. Frontiers in Microbiology, 2014, 5, 148.	1.5	498
79	Analysis of a Plant Complex Resistance Gene Locus Underlying Immune-Related Hybrid Incompatibility and Its Occurrence in Nature. PLoS Genetics, 2014, 10, e1004848.	1.5	54
80	Pyrosequencing detects human and animal pathogenic taxa in the grapevine endosphere. Frontiers in Microbiology, 2014, 5, 327.	1.5	32
81	A Synthetic Community Approach Reveals Plant Genotypes Affecting the Phyllosphere Microbiota. PLoS Genetics, 2014, 10, e1004283.	1.5	369
82	The potential for give and take in plantââ,¬â€œmicrobiome relationships. Frontiers in Plant Science, 2014, 5, 287.	1.7	106
83	Experimental approaches to study plant cell walls during plant-microbe interactions. Frontiers in Plant Science, 2014, 5, 540.	1.7	21
84	A Vavilovian approach to discovering crop-associated microbes with potential to enhance plant immunity. Frontiers in Plant Science, 2014, 5, 492.	1.7	22
85	Differences between the rhizosphere microbiome of Beta vulgaris ssp. maritimaââ,¬â€ancestor of all beet cropsââ,¬â€and modern sugar beets. Frontiers in Microbiology, 2014, 5, 415.	1.5	124
86	Toward a systems understanding of plantââ,¬â€œmicrobe interactions. Frontiers in Plant Science, 2014, 5, 423.	1.7	42
87	Ecological Succession and Stochastic Variation in the Assembly of Arabidopsis thaliana Phyllosphere Communities. MBio, 2014, 5, e00682-13.	1.8	252
88	Intraspecific plant–soil feedback and intraspecific overyielding in <i><scp>A</scp>rabidopsis thaliana</i> . Ecology and Evolution, 2014, 4, 2533-2545.	0.8	44
89	Unravelling potassium nutrition in ectomycorrhizal associations. New Phytologist, 2014, 201, 707-709.	3.5	22
90	The interâ€kingdom volatile signal indole promotes root development by interfering with auxin signalling. Plant Journal, 2014, 80, 758-771.	2.8	162
91	Metaproteomic Identification of Diazotrophic Methanotrophs and Their Localization in Root Tissues of Field-Grown Rice Plants. Applied and Environmental Microbiology, 2014, 80, 5043-5052.	1.4	101
92	Detection and quantification of native microbial populations on soil-grown rice roots by catalyzed reporter deposition-fluorescence <i>in situ</i> hybridization. FEMS Microbiology Ecology, 2014, 87, 390-402.	1.3	66
93	An introduction to the analysis of shotgun metagenomic data. Frontiers in Plant Science, 2014, 5, 209.	1.7	446
94	Analysis of plant microbe interactions in the era of next generation sequencing technologies. Frontiers in Plant Science, 2014, 5, 216.	1.7	194

		15	0
#	ARTICLE	IF	CITATIONS
95	The microbial ecology of flowers: an emerging frontier in phyllosphere research. Botany, 2014, 92, 253-266.	0.5	173
96	Endophytic microbial community in two transgenic maize genotypes and in their near-isogenic non-transgenic maize genotype. BMC Microbiology, 2014, 14, 332.	1.3	51
97	FunCoup 3.0: database of genome-wide functional coupling networks. Nucleic Acids Research, 2014, 42, D380-D388.	6.5	96
98	Endophytic Actinobacteria: Diversity and Ecology. , 2014, , 27-59.		30
99	Environmental Implications of Herbicide Resistance: Soil Biology and Ecology. Weed Science, 2014, 62, 415-426.	0.8	20
100	Short-term dynamics of culturable bacteria in a soil amended with biotransformed dry olive residue. Systematic and Applied Microbiology, 2014, 37, 113-120.	1.2	9
101	Different behaviour of methanogenic archaea and <i>Thaumarchaeota</i> in rice field microcosms. FEMS Microbiology Ecology, 2014, 87, 18-29.	1.3	40
102	Specific Archaeal Communities are Selected on the Root Surfaces of Ruppia spp. and Phragmites australis. Wetlands, 2014, 34, 403-411.	0.7	17
103	Recurrent X chromosome-linked deletions: discovery of new genetic factors in male infertility. Journal of Medical Genetics, 2014, 51, 340-344.	1.5	38
104	Composition and activity of rhizosphere microbial communities associated with healthy and diseased greenhouse tomatoes. Plant and Soil, 2014, 380, 337-347.	1.8	62
105	A systems-wide comparison of red rice (Oryza longistaminata) tissues identifies rhizome specific genes and proteins that are targets for cultivated rice improvement. BMC Plant Biology, 2014, 14, 46.	1.6	43
106	De-coupling of root–microbiome associations followed by antagonist inoculation improves rhizosphere soil suppressiveness. Biology and Fertility of Soils, 2014, 50, 217-224.	2.3	66
107	Synthetic biology approaches to engineering the nitrogen symbiosis in cereals. Journal of Experimental Botany, 2014, 65, 1939-1946.	2.4	160
108	Nature Biotechnology's academic spinouts of 2013. Nature Biotechnology, 2014, 32, 229-238.	9.4	9
109	Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany, 2014, 92, 267-275.	0.5	547
110	Recent studies on biological control of plant diseases in Japan. Journal of General Plant Pathology, 2014, 80, 287-302.	0.6	18
111	Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecology Letters, 2014, 17, 717-726.	3.0	266
112	Decreased abundance of type III secretion system-inducing signals in <i>Arabidopsis mkp1</i> enhances resistance against <i>Pseudomonas syringae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6846-6851.	3.3	97

#	Article	IF	CITATIONS
113	Increasing phytoremediation efficiency and reliability using novel omics approaches. Trends in Biotechnology, 2014, 32, 271-280.	4.9	148
114	The foliar microbiome. Trends in Plant Science, 2014, 19, 278-280.	4.3	103
115	Quantitative divergence of the bacterial root microbiota in <i>Arabidopsis thaliana</i> relatives. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 585-592.	3.3	539
116	Interkingdom Transfer of the Acne-Causing Agent, Propionibacterium acnes, from Human to Grapevine. Molecular Biology and Evolution, 2014, 31, 1059-1065.	3.5	54
117	Spatial distribution analyses of natural phyllosphereâ€colonizing bacteria on <scp><i>A</i></scp> <i>rabidopsis thaliana</i> revealed by fluorescence <i>in situ</i> hybridization. Environmental Microbiology, 2014, 16, 2329-2340.	1.8	125
118	Anatomy of Root from Eyes of a Microbiologist. Soil Biology, 2014, , 3-22.	0.6	34
119	Detection of a novel intracellular microbiome hosted in arbuscular mycorrhizal fungi. ISME Journal, 2014, 8, 257-270.	4.4	128
120	Root exudates: the hidden part of plant defense. Trends in Plant Science, 2014, 19, 90-98.	4.3	537
121	Rhizosphere microbiome assemblage is affected by plant development. ISME Journal, 2014, 8, 790-803.	4.4	1,128
122	Endophyte consortia for xenobiotic phytoremediation: the root to success?. Plant and Soil, 2014, 385, 389-394.	1.8	22
123	Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nature Communications, 2014, 5, 5320.	5.8	322
124	Functional Soil Microbiome: Belowground Solutions to an Aboveground Problem Â. Plant Physiology, 2014, 166, 689-700.	2.3	299
125	Niche and host-associated functional signatures of the root surface microbiome. Nature Communications, 2014, 5, 4950.	5.8	305
126	Microbial genome-enabled insights into plant–microorganism interactions. Nature Reviews Genetics, 2014, 15, 797-813.	7.7	187
127	Diversity of Plant Associated Actinobacteria. Sustainable Development and Biodiversity, 2014, , 41-99.	1.4	14
128	Shaping Bacterial Symbiosis With Legumes by Experimental Evolution. Molecular Plant-Microbe Interactions, 2014, 27, 956-964.	1.4	33
129	Microbial community dynamics of soil mesocosms using Orychophragmus violaceus combined with Rhodococcus ruber Em1 for bioremediation of highly PAH-contaminated soil. Applied Microbiology and Biotechnology, 2014, 98, 10243-10253.	1.7	29
130	Bacterial Community Assemblages Associated with the Phyllosphere, Dermosphere, and Rhizosphere of Tree Species of the Atlantic Forest are Host Taxon Dependent. Microbial Ecology, 2014, 68, 567-574.	1.4	92

#	Article	IF	Citations
131	Bacterial Diversity in the Rhizosphere of Cucumbers Grown in Soils Covering a Wide Range of Cucumber Cropping Histories and Environmental Conditions. Microbial Ecology, 2014, 68, 794-806.	1.4	59
132	Host signature effect on plant rootâ€associated microbiomes revealed through analyses of resident <i>vs</i> . active communities. Environmental Microbiology, 2014, 16, 2157-2167.	1.8	158
133	Annual ryegrass-associated bacteria with potential for plant growth promotion. Microbiological Research, 2014, 169, 768-779.	2.5	39
134	Potential Role of Flavobacterial Gliding-Motility and Type IX Secretion System Complex in Root Colonization and Plant Defense. Molecular Plant-Microbe Interactions, 2014, 27, 1005-1013.	1.4	49
135	Induced Systemic Resistance by Beneficial Microbes. Annual Review of Phytopathology, 2014, 52, 347-375.	3.5	2,193
136	Taxonomical and functional microbial community selection in soybean rhizosphere. ISME Journal, 2014, 8, 1577-1587.	4.4	633
137	Filamentous pathogen effector functions: of pathogens, hosts and microbiomes. Current Opinion in Plant Biology, 2014, 20, 96-103.	3.5	242
138	An analysis of <scp><i>P</i></scp> <i>seudomonas</i> genomic diversity in takeâ€all infected wheat fields reveals the lasting impact of wheat cultivars on the soil microbiota. Environmental Microbiology, 2015, 17, 4764-4778.	1.8	48
139	Integration of photosynthesis, development and stress as an opportunity for plant biology. New Phytologist, 2015, 208, 647-655.	3.5	25
140	Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nature Plants, 2015, 1, .	4.7	345
141	Removal of floral microbiota reduces floral terpene emissions. Scientific Reports, 2014, 4, 6727.	1.6	73
142	Metagenomic insights into communities, functions of endophytes and their associates with infection by root-knot nematode, Meloidogyne incognita, in tomato roots. Scientific Reports, 2015, 5, 17087.	1.6	185
143	Dynamic changes in the bacterial community in Moutai liquor fermentation process characterized by deep sequencing. Journal of the Institute of Brewing, 2015, 121, 603-608.	0.8	59
144	From environmental microbiology to ecogenomics: spotting the emerging field of fungal–bacterial interactions. Environmental Microbiology Reports, 2015, 7, 15-17.	1.0	3
145	Seasonal variation of bacterial endophytes in urban trees. Frontiers in Microbiology, 2015, 6, 427.	1.5	65
146	Metatranscriptome analysis reveals host-microbiome interactions in traps of carnivorous Genlisea species. Frontiers in Microbiology, 2015, 6, 526.	1.5	23
147	Primer and platform effects on 16S rRNA tag sequencing. Frontiers in Microbiology, 2015, 6, 771.	1.5	435
148	Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 – a review. Frontiers in Microbiology, 2015, 6, 780.	1.5	482

#	Article	IF	CITATIONS
149	Microbiomes: unifying animal and plant systems through the lens of community ecology theory. Frontiers in Microbiology, 2015, 6, 869.	1.5	118
150	Bacterial endophyte communities in the foliage of coast redwood and giant sequoia. Frontiers in Microbiology, 2015, 6, 1008.	1.5	49
151	The Scion/Rootstock Genotypes and Habitats Affect Arbuscular Mycorrhizal Fungal Community in Citrus. Frontiers in Microbiology, 2015, 6, 1372.	1.5	24
152	Transplanting Soil Microbiomes Leads to Lasting Effects on Willow Growth, but not on the Rhizosphere Microbiome. Frontiers in Microbiology, 2015, 6, 1436.	1.5	98
153	Baseline Survey of Root-Associated Microbes of Taxus chinensis (Pilger) Rehd. PLoS ONE, 2015, 10, e0123026.	1.1	14
154	A Legume Genetic Framework Controls Infection of Nodules by Symbiotic and Endophytic Bacteria. PLoS Genetics, 2015, 11, e1005280.	1.5	97
155	Beneficial Bacteria Isolated from Grapevine Inner Tissues Shape Arabidopsis thaliana Roots. PLoS ONE, 2015, 10, e0140252.	1.1	41
156	Biodiversity of genes encoding anti-microbial traits within plant associated microbes. Frontiers in Plant Science, 2015, 6, 231.	1.7	56
157	Characterization of culturable bacterial endophytes and their capacity to promote plant growth from plants grown using organic or conventional practices. Frontiers in Plant Science, 2015, 6, 490.	1.7	135
158	Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering. Frontiers in Plant Science, 2015, 6, 507.	1.7	176
159	A meta-analysis approach for assessing the diversity and specificity of belowground root and microbial volatiles. Frontiers in Plant Science, 2015, 6, 707.	1.7	98
160	Signaling in the phytomicrobiome: breadth and potential. Frontiers in Plant Science, 2015, 6, 709.	1.7	73
161	Inter-organismal signaling and management of the phytomicrobiome. Frontiers in Plant Science, 2015, 6, 722.	1.7	72
162	Pseudomonas spp. as models for plant-microbe interactions. Frontiers in Plant Science, 2015, 6, 787.	1.7	45
163	Epigenetic Mechanisms and Microbiota as a Toolbox for Plant Phenotypic Adjustment to Environment. Frontiers in Plant Science, 2015, 6, 1159.	1.7	41
164	Root Microbiome Assemblage is Modulated by Plant Host Factors. Advances in Botanical Research, 2015, 75, 57-79.	0.5	28
165	Planting molecular functions in an ecological context with Arabidopsis thaliana. ELife, 2015, 4, .	2.8	50
166	The bacterial rhizobiome of hyperaccumulators: future perspectives based on omics analysis and advanced microscopy. Frontiers in Plant Science, 2014, 5, 752.	1.7	61

#	Article	IF	CITATIONS
167	Antibiotic resistance genes in manure-amended soil and vegetables at harvest. Journal of Hazardous Materials, 2015, 299, 215-221.	6.5	263
168	Stable Fluorescent and Enzymatic Tagging of <i>Bradyrhizobium diazoefficiens</i> to Analyze Host-Plant Infection and Colonization. Molecular Plant-Microbe Interactions, 2015, 28, 959-967.	1.4	38
169	Microbiota and Host Nutrition across Plant and Animal Kingdoms. Cell Host and Microbe, 2015, 17, 603-616.	5.1	628
170	Microbiomics: An Approach to Community Microbiology. , 2015, , 633-653.		1
171	Rhizobacterial volatiles and photosynthesisâ€related signals coordinate <i><scp>MYB</scp>72</i> expression in Arabidopsis roots during onset of induced systemic resistance and ironâ€deficiency responses. Plant Journal, 2015, 84, 309-322.	2.8	171
172	Halotolerant PGPRs Prevent Major Shifts in Indigenous Microbial Community Structure Under Salinity Stress. Microbial Ecology, 2015, 70, 196-208.	1.4	37
173	Understanding and managing soil biodiversity: a major challenge in agroecology. Agronomy for Sustainable Development, 2015, 35, 67-81.	2.2	93
174	Biodegradation of Dichlorodiphenyltrichloroethanes (DDTs) and Hexachlorocyclohexanes (HCHs) with Plant and Nutrients and Their Effects on the Microbial Ecological Kinetics. Microbial Ecology, 2015, 69, 281-292.	1.4	16
175	The importance of the microbiome of the plant holobiont. New Phytologist, 2015, 206, 1196-1206.	3.5	1,509
176	Seasonal Community Succession of the Phyllosphere Microbiome. Molecular Plant-Microbe Interactions, 2015, 28, 274-285.	1.4	275
177	Root surface as a frontier for plant microbiome research. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2299-2300.	3.3	110
179	Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E911-20.	3.3	2,016
180	Different Bacterial Populations Associated with the Roots and Rhizosphere of Rice Incorporate Plant-Derived Carbon. Applied and Environmental Microbiology, 2015, 81, 2244-2253.	1.4	114
181	Introduction to Plant Growth-promoting Bacteria. , 2015, , 1-28.		21
182	Influence of cyanobacterial inoculation on the culturable microbiome and growth of rice. Microbiological Research, 2015, 171, 78-89.	2.5	97
183	Uncovering potential â€~herbal probiotics' in Juzen-taiho-to through the study of associated bacterial populations. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 466-469.	1.0	18
184	Nitrogen fertilizer dose alters fungal communities in sugarcane soil and rhizosphere. Scientific Reports, 2015, 5, 8678.	1.6	155
185	Foliar bacterial communities of trembling aspen in a common garden. Canadian Journal of Microbiology, 2015, 61, 143-149.	0.8	10

#	Article	IF	CITATIONS
186	Towards a holistic understanding of the beneficial interactions across the <i>Populus</i> microbiome. New Phytologist, 2015, 205, 1424-1430.	3.5	131
188	Greater than the sum of their parts: characterizing plant microbiomes at the community-level. Current Opinion in Plant Biology, 2015, 24, 82-86.	3.5	93
190	Pairwise Transcriptomic Analysis of the Interactions Between the Ectomycorrhizal Fungus Laccaria bicolor S238N and Three Beneficial, Neutral and Antagonistic Soil Bacteria. Microbial Ecology, 2015, 69, 146-159.	1.4	30
191	Structure and Function of the Bacterial Root Microbiota in Wild and Domesticated Barley. Cell Host and Microbe, 2015, 17, 392-403.	5.1	1,102
192	Does plant immunity play a critical role during initiation of the legume-rhizobium symbiosis?. Frontiers in Plant Science, 2015, 06, 401.	1.7	69
194	Roots Shaping Their Microbiome: Global Hotspots for Microbial Activity. Annual Review of Phytopathology, 2015, 53, 403-424.	3.5	595
195	Not Just Sweet Talkers. Advances in Botanical Research, 2015, , 1-20.	0.5	24
196	Preceding crop and weed management history affect denitrification and denitrifier community structure throughout the development of durum wheat. Agriculture, Ecosystems and Environment, 2015, 212, 49-63.	2.5	6
197	Roots from distinct plant developmental stages are capable of rapidly selecting their own microbiome without the influence of environmental and soil edaphic factors. Soil Biology and Biochemistry, 2015, 89, 206-209.	4.2	69
198	Natural Products as Pharmaceuticals and Sources for Lead Structures**Note: This chapter reflects the opinions of the authors, not necessarily those of the US Government. , 2015, , 101-139.		13
199	Diversity of endophytic and rhizoplane bacterial communities associated with exotic <i>Spartina alterniflora</i> and native mangrove using Illumina amplicon sequencing. Canadian Journal of Microbiology, 2015, 61, 723-733.	0.8	67
200	Genes and Hearing Loss: Relationship to Oxidative Stress and Free Radical Formation. Oxidative Stress in Applied Basic Research and Clinical Practice, 2015, , 353-376.	0.4	1
201	Microbial population dynamics in response to Pectobacterium atrosepticum infection in potato tubers. Scientific Reports, 2015, 5, 11606.	1.6	67
202	Metagenomics of Plant–Microbe Interactions. , 2015, , 135-153.		0
203	Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science, 2015, 349, 860-864.	6.0	957
204	Exercising influence: distinct biotic interactions shape root microbiomes. Current Opinion in Plant Biology, 2015, 26, 32-36.	3.5	18
205	Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition. ISME Journal, 2015, 9, 2349-2359.	4.4	302
206	Role of root microbiota in plant productivity. Journal of Experimental Botany, 2015, 66, 2167-2175.	2.4	171

#	Article	IF	CITATIONS
207	Wounding of Arabidopsis halleri leaves enhances cadmium accumulation that acts as a defense against herbivory. BioMetals, 2015, 28, 521-528.	1.8	25
208	Theories, Mechanisms and Patterns of Microbiome Species Coexistence in an Era of Climate Change. SpringerBriefs in Ecology, 2015, , 13-53.	0.2	11
209	Mutualismââ,¬â€œparasitism paradigm synthesized from results of root-endophyte models. Frontiers in Microbiology, 2014, 5, 776.	1.5	106
210	The significance and scope of evolutionary developmental biology: a vision for the 21st century. Evolution & Development, 2015, 17, 198-219.	1.1	92
211	Housing helpful invaders: the evolutionary and molecular architecture underlying plant root-mutualist microbe interactions. Journal of Experimental Botany, 2015, 66, 2177-2186.	2.4	27
212	Impacts of bulk soil microbial community structure on rhizosphere microbiomes of Zea mays. Plant and Soil, 2015, 392, 115-126.	1.8	155
213	Colonization of lettuce rhizosphere and roots by tagged Streptomyces. Frontiers in Microbiology, 2015, 6, 25.	1.5	79
214	Haplotype-resolved genome sequencing: experimental methods and applications. Nature Reviews Genetics, 2015, 16, 344-358.	7.7	156
215	Bacterial diversity amplifies nutrientâ€based plant–soil feedbacks. Functional Ecology, 2015, 29, 1341-1349.	1.7	78
216	The Soil Microbiome Influences Grapevine-Associated Microbiota. MBio, 2015, 6, .	1.8	747
218	Successional Trajectories of Rhizosphere Bacterial Communities over Consecutive Seasons. MBio, 2015, 6, e00746.	1.8	232
219	Unearthing the genomes of plant-beneficial Pseudomonas model strains WCS358, WCS374 and WCS417. BMC Genomics, 2015, 16, 539.	1.2	184
220	Probing strigolactone receptors in <i>Striga hermonthica</i> with fluorescence. Science, 2015, 349, 864-868.	6.0	230
221	Plant microbiome blueprints. Science, 2015, 349, 788-789.	6.0	42
222	Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5013-20.	3.3	336
223	Functional overlap of the Arabidopsis leaf and root microbiota. Nature, 2015, 528, 364-369.	13.7	1,062
224	Curating communities from plants. Nature, 2015, 528, 340-341.	13.7	34
225	In wild tobacco, <i>Nicotiana attenuata </i> , variation among bacterial communities of isogenic plants is mainly shaped by the local soil microbiota independently of the plants' capacity to produce jasmonic acid. Communicative and Integrative Biology, 2015, 8, e1017160.	0.6	8

#	Article	IF	CITATIONS
226	Relocation, highâ€latitude warming and host genetic identity shape the foliar fungal microbiome of poplars. Molecular Ecology, 2015, 24, 235-248.	2.0	125
227	Bacterial networks and coâ€occurrence relationships in the lettuce root microbiota. Environmental Microbiology, 2015, 17, 239-252.	1.8	241
228	Spatio Temporal Influence of Isoflavonoids on Bacterial Diversity in the Soybean Rhizosphere. Molecular Plant-Microbe Interactions, 2015, 28, 22-29.	1.4	28
229	The Plant Microbiome at Work. Molecular Plant-Microbe Interactions, 2015, 28, 212-217.	1.4	493
230	Spatial structuring of bacterial communities within individual <scp><i>G</i></scp> <i>inkgo biloba</i> trees. Environmental Microbiology, 2015, 17, 2352-2361.	1.8	94
231	Plant-Soil Biota Interactions. , 2015, , 311-338.		46
232	Evolution of bacterial communities in the wheat crop rhizosphere. Environmental Microbiology, 2015, 17, 610-621.	1.8	297
233	Colonization of rice roots with methanogenic archaea controls photosynthesisâ€derived methane emission. Environmental Microbiology, 2015, 17, 2254-2260.	1.8	29
235	Selection on soil microbiomes reveals reproducible impacts on plant function. ISME Journal, 2015, 9, 980-989.	4.4	549
236	Interspecific Competition in Arabidopsis thaliana: A Knowledge Gap Is Starting to Close. Progress in Botany Fortschritte Der Botanik, 2015, , 303-319.	0.1	10
237	Reviving of the endophytic bacterial community as a putative mechanism of plant resistance. Plant and Soil, 2015, 388, 367-377.	1.8	96
238	Reduced dependence of rhizosphere microbiome on plant-derived carbon in 32-year long-term inorganic and organic fertilized soils. Soil Biology and Biochemistry, 2015, 80, 70-78.	4.2	176
239	Progress in Botany. Progress in Botany Fortschritte Der Botanik, 2015, , .	0.1	7
240	Mechanisms of Early Microbial Establishment on Growing Root Surfaces. Vadose Zone Journal, 2016, 15, 1-13.	1.3	56
241	Networking in the Plant Microbiome. PLoS Biology, 2016, 14, e1002378.	2.6	355
242	Endophytic Microbiota Associated with the Root Tips and Leaves of Baccharis dracunculifolia. Brazilian Archives of Biology and Technology, 2016, 59, .	0.5	7
243	Functional abilities of cultivable plant growth promoting bacteria associated with wheat (Triticum) Tj ETQq0 0 0 i	rgBT /Over 0.6	lock 10 Tf 50

244Rhizosphere Microbiomes of European + Seagrasses Are Selected by the Plant, But Are Not Species1.5153244Specific. Frontiers in Microbiology, 2016, 7, 440.1.5153

ARTICLE IF CITATIONS Performance of 16s rDNA Primer Pairs in the Study of Rhizosphere and Endosphere Bacterial 245 1.5 237 Microbiomes in Metabarcoding Studies. Frontiers in Microbiology, 2016, 7, 650. Concentration of Petroleum-Hydrocarbon Contamination Shapes Fungal Endophytic Community 246 1.5 19 Structure in Plant Roots. Frontiers in Microbiology, 2016, 7, 685. Bacterial Endophytes Isolated from Plants in Natural Oil Seep Soils with Chronic Hydrocarbon 247 1.5 55 Contamination. Frontiers in Microbiology, 2016, 7, 755. Evaluation of Strategies to Separate Root-Associated Microbial Communities: A Crucial Choice in 248 Rhizobiome Research. Frontiers in Microbiology, 2016, 7, 773. Exploitation of Endophytic Bacteria to Enhance the Phytoremediation Potential of the Wetland 249 1.5 77 Helophyte Juncus acutús. Frontiers in Microbiology, 2016, 07, 1016. Whole-Transcriptome Analysis of Verocytotoxigenic Escherichia coli O157:H7 (Sakai) Suggests Plant-Species-Specific Metabolic Responses on Exposure to Spinach and Lettuce Extracts. Frontiers in 1.5 Microbiology, 2016, 7, 1088. Aboveground Whitefly Infestation-Mediated Reshaping of the Root Microbiota. Frontiers in 251 1.5 74 Microbiology, 2016, 7, 1314. The Interaction between Plants and Bacteria in the Remediation of Petroleum Hydrocarbons: An 1.5 176 Environmental Perspective. Frontiers in Microbiology, 2016, 7, 1836. Microbiome Selection Could Spur Next-Generation Plant Breeding Strategies. Frontiers in 253 1.5 175 Microbiology, 2016, 7, 1971. 254 Root Exudation: The Ecological Driver of Hydrocarbon Rhizoremediation. Agronomy, 2016, 6, 19. 1.3 Plant-Endophyte Partnerships to Assist Petroleum Hydrocarbon Remediation., 2016, , 1-34. 255 2 Microbiome and Exudates of the Root and Rhizosphere of Brachypodium distachyon, a Model for 1.1 211 Wheat. PLoS ONE, 2016, 11, e0164533. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of 257 1.1 96 Non-Cultivated Plants. PLoS ONE, 2016, 11, e0150895. Specific Microbial Communities Associate with the Rhizosphere of Welwitschia mirabilis, a Living 1.1 Fossil. PLoS ONE, 2016, 11, e0153353. Ecologically Different Fungi Affect Arabidopsis Development: Contribution of Soluble and Volatile 259 1.1 26 Compounds. PLoS ONE, 2016, 11, e0168236. Rhizospheric Bacterial Community of Endemic Rhododendron arboreum Sm. Ssp. delavayi along 14 Eastern Himalayan Slope in Tawang. Frontiers in Plant Science, 2016, 07, 1345. Giving back to the community: microbial mechanisms of plantâ€"soil interactions. Functional Ecology, 261 1.7 89 2016, 30, 1043-1052. Endophytic microbial diversity of the halophyte<i>Arthrocnemum macrostachyum</i>across plant 1.3 compartments. FEMS Microbiology Ecology, 2016, 92, fiw145.

#	Article	IF	CITATIONS
263	The core root microbiome of sugarcanes cultivated under varying nitrogen fertilizer application. Environmental Microbiology, 2016, 18, 1338-1351.	1.8	149
264	Contrasting microbial biogeographical patterns between anthropogenic subalpine grasslands and natural alpine grasslands. New Phytologist, 2016, 209, 1196-1207.	3.5	28
265	Analysis of single root tip microbiomes suggests that distinctive bacterial communities are selected by <scp><i>P</i></scp> <i>inus sylvestris</i> roots colonized by different ectomycorrhizal fungi. Environmental Microbiology, 2016, 18, 1470-1483.	1.8	79
266	How does the tree root microbiome assemble? Influence of ectomycorrhizal species on <scp><i>P</i></scp> <i>inus sylvestris</i> root bacterial communities. Environmental Microbiology, 2016, 18, 1303-1305.	1.8	11
267	Subalpine conifers in different geographical locations host highly similar foliar bacterial endophyte communities. FEMS Microbiology Ecology, 2016, 92, fiw124.	1.3	23
268	Terroir is a key driver of seedâ€associated microbial assemblages. Environmental Microbiology, 2016, 18, 1792-1804.	1.8	150
269	Mycorrhizosphere: The Extended Rhizosphere and Its Significance. , 2016, , 97-124.		14
270	Microbial Ecology at Rhizosphere: Bioengineering and Future Prospective. , 2016, , 63-96.		8
271	Complete Genome Sequences of the Endophytic <i>Streptomyces</i> Strains EN16, EN23, and EN27, Isolated from Wheat Plants. Genome Announcements, 2016, 4, .	0.8	7
272	Shifts in plant foliar and floral metabolomes in response to the suppression of the associated microbiota. BMC Plant Biology, 2016, 16, 78.	1.6	40
273	Wheat seed embryo excision enables the creation of axenic seedlings and Koch's postulates testing of putative bacterial endophytes. Scientific Reports, 2016, 6, 25581.	1.6	45
274	An atlas of transcriptional, chromatin accessibility, and surface marker changes in human mesoderm development. Scientific Data, 2016, 3, 160109.	2.4	47
275	Examining Biochar Impacts on Soil Abiotic and Biotic Processes and Exploring the Potential for Pyrosequencing Analysis. , 2016, , 133-162.		4
276	Integrated analysis of root microbiomes of soybean and wheat from agricultural fields. Scientific Reports, 2016, 6, 28084.	1.6	198
277	Endemic plants harbour specific Trichoderma communities with an exceptional potential for biocontrol of phytopathogens. Journal of Biotechnology, 2016, 235, 162-170.	1.9	37
278	A Friend in Need (of Nutrients) Is a…. Cell, 2016, 165, 269-271.	13.5	5
279	Stable isotope probing of carbon flow in the plant holobiont. Current Opinion in Biotechnology, 2016, 41, 9-13.	3.3	98
280	Bacterial populations in juvenile maize rhizospheres originate from both seed and soil. Plant and Soil, 2016, 405, 337-355.	1.8	207

#	Article	IF	CITATIONS
281	A fungal pathogen secretes plant alkalinizing peptides to increase infection. Nature Microbiology, 2016, 1, 16043.	5.9	249
282	Structural and functional differentiation of the root-associated bacterial microbiomes of perennial ryegrass. Soil Biology and Biochemistry, 2016, 98, 1-10.	4.2	99
283	Comparisons of diazotrophic communities in native and agricultural desert ecosystems reveal plants as important drivers in diversity. FEMS Microbiology Ecology, 2016, 92, fiv166.	1.3	37
284	Life cycle specialization of filamentous pathogens — colonization and reproduction in plant tissues. Current Opinion in Microbiology, 2016, 32, 31-37.	2.3	21
285	Plants of the fynbos biome harbour host species-specific bacterial communities. FEMS Microbiology Letters, 2016, 363, fnw122.	0.7	16
286	Cross-species comparisons of host genetic associations with the microbiome. Science, 2016, 352, 532-535.	6.0	233
287	Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens. Science, 2016, 352, 535-538.	6.0	341
288	Characterization of bacterial communities associated with <i>Brassica napus</i> L. growing on a Zn-contaminated soil and their effects on root growth. International Journal of Phytoremediation, 2016, 18, 985-993.	1.7	15
289	Analysis of microbial diversity and dynamics during wine fermentation of Grenache grape variety by high-throughput barcoding sequencing. LWT - Food Science and Technology, 2016, 72, 317-321.	2.5	107
290	The Genetics Underlying Natural Variation in the Biotic Interactions of Arabidopsis thaliana. Current Topics in Developmental Biology, 2016, 119, 111-156.	1.0	39
291	Plant–Microbiota Interactions as a Driver of the Mineral Turnover in the Rhizosphere. Advances in Applied Microbiology, 2016, 95, 1-67.	1.3	105
292	Seed endophytic microbiota in a coastal plant and phytobeneficial properties of the fungus Cladosporium cladosporioides. Fungal Ecology, 2016, 24, 53-60.	0.7	21
293	Advances in the rhizosphere: stretching the interface of life. Plant and Soil, 2016, 407, 1-8.	1.8	78
294	Systems-level Proteomics of Two Ubiquitous Leaf Commensals Reveals Complementary Adaptive Traits for Phyllosphere Colonization. Molecular and Cellular Proteomics, 2016, 15, 3256-3269.	2.5	48
295	A consortium of nonâ€rhizobial endophytic microbes from <i>Typha angustifolia</i> functions as probiotic in rice and improves nitrogen metabolism. Plant Biology, 2016, 18, 938-946.	1.8	25
296	The Microbial Signature Provides Insight into the Mechanistic Basis of Coral Success across Reef Habitats. MBio, 2016, 7, .	1.8	175
297	New frontiers in belowground ecology for plant protection from root-feeding insects. Applied Soil Ecology, 2016, 108, 96-107.	2.1	49
298	Calling in the Dark: The Role of Volatiles for Communication in the Rhizosphere. Signaling and Communication in Plants, 2016, , 175-210.	0.5	30

#	Article	IF	CITATIONS
299	Effect of Wild and Cultivated Rice Genotypes on Rhizosphere Bacterial Community Composition. Rice, 2016, 9, 42.	1.7	75
300	Solanum lycopersicum (tomato) hosts robust phyllosphere and rhizosphere bacterial communities when grown in soil amended with various organic and synthetic fertilizers. Science of the Total Environment, 2016, 573, 555-563.	3.9	51
301	Microbially Mediated Plant Salt Tolerance and Microbiome-based Solutions for Saline Agriculture. Biotechnology Advances, 2016, 34, 1245-1259.	6.0	315
302	Comparative analysis of bacterial diversity in the rhizosphere of tomato by culture-dependent and -independent approaches. Journal of Microbiology, 2016, 54, 823-831.	1.3	62
303	Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nature Communications, 2016, 7, 12151.	5.8	754
304	The Plant Microbiota: Systems-Level Insights and Perspectives. Annual Review of Genetics, 2016, 50, 211-234.	3.2	627
305	Deciphering Chemical Language of Plant Communication. Signaling and Communication in Plants, 2016, , .	0.5	18
306	Plant nodulation inducers enhance horizontal gene transfer of <i>Azorhizobium caulinodans</i> symbiosis island. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13875-13880.	3.3	82
307	Root nodule symbiosis in <i>Lotus japonicus</i> drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7996-E8005.	3.3	258
308	Specialized Microbiome of a Halophyte and its Role in Helping Non-Host Plants to Withstand Salinity. Scientific Reports, 2016, 6, 32467.	1.6	181
309	Climate and edaphic controllers influence rhizosphere community assembly for a wild annual grass. Ecology, 2016, 97, 1307-1318.	1.5	111
310	<i>Streptomyces</i> as a plant's best friend?. FEMS Microbiology Ecology, 2016, 92, fiw119.	1.3	228
311	Nitrogen fertilization affects bacteria utilizing plant-derived carbon in the rhizosphere of beech seedlings. Plant and Soil, 2016, 407, 203-215.	1.8	29
312	Evidence for foliar endophytic nitrogen fixation in a widely distributed subalpine conifer. New Phytologist, 2016, 210, 657-668.	3.5	135
313	Organ-specific regulation of growth-defense tradeoffs by plants. Current Opinion in Plant Biology, 2016, 29, 129-137.	3.5	62
314	A perspective on inter-kingdom signaling in plant–beneficial microbe interactions. Plant Molecular Biology, 2016, 90, 537-548.	2.0	97
315	The effects of the growth substrate on cultivable and total endophytic assemblages of Arabidopsis thaliana. Plant and Soil, 2016, 405, 325-336.	1.8	22
316	The holistic rhizosphere: integrating zones, processes, and semantics in the soil influenced by roots. Journal of Experimental Botany, 2016, 67, 3629-3643.	2.4	204

		CITATION REPORT		
#	Article		IF	CITATIONS
317	Studying Bacterial Multispecies Biofilms: Where to Start?. Trends in Microbiology, 2016	5, 24, 503-513.	3.5	150
318	An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultura Sustainability. Trends in Ecology and Evolution, 2016, 31, 440-452.	al	4.2	879
319	Bioprospecting plant-associated microbiomes. Journal of Biotechnology, 2016, 235, 17	1-180.	1.9	53
320	Disentangling the factors shaping microbiota composition across the plant holobiont. I Phytologist, 2016, 209, 454-457.	New	3.5	97
321	Beneficial Microbes Affect Endogenous Mechanisms Controlling Root Development. Tr Science, 2016, 21, 218-229.	ends in Plant	4.3	298
322	Environmental behaviors of phenolic acids dominated their rhizodeposition in boreal population forest soils. Journal of Soils and Sediments, 2016, 16, 1858-1870.	oplar	1.5	31
323	Lignin engineering in field-grown poplar trees affects the endosphere bacterial microbic Proceedings of the National Academy of Sciences of the United States of America, 201	ome. 6, 113, 2312-2317.	3.3	99
324	Signaling in the Rhizosphere. Trends in Plant Science, 2016, 21, 187-198.		4.3	465
325	Temporal changes of bacterial communities in the Tuber melanosporum ectomycorrhiz ascocarp development. Mycorrhiza, 2016, 26, 389-399.	osphere during	1.3	75
326	Root–Root Interactions: Towards A Rhizosphere Framework. Trends in Plant Science,	2016, 21, 209-217.	4.3	149
327	A Renaissance in Plant Growth-Promoting and Biocontrol Agents by Endophytes. , 2016	5, , 37-60.		18
328	Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting Plant Molecular Biology, 2016, 90, 623-634.	rhizobacteria.	2.0	140
329	Elucidating the role of the host genome in shaping microbiome composition. Gut Micro 178-184.	obes, 2016, 7,	4.3	76
330	Fluorescent in situ hybridization for the localization of viruses, bacteria and other micro in insect and plant tissues. Methods, 2016, 98, 74-81.	oorganisms	1.9	19
331	Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biolog 575-587.	gy, 2016, 90,	2.0	523
332	New Methods To Unravel Rhizosphere Processes. Trends in Plant Science, 2016, 21, 24	-3-255.	4.3	163
333	Tools for the Microbiome: Nano and Beyond. ACS Nano, 2016, 10, 6-37.		7.3	137
334	The interaction between iron nutrition, plant species and soil type shapes the rhizosphe Plant Physiology and Biochemistry, 2016, 99, 39-48.	ere microbiome.	2.8	182

#	Article	IF	CITATIONS
335	The plant microbiome explored: implications for experimental botany. Journal of Experimental Botany, 2016, 67, 995-1002.	2.4	424
336	Description of Vogesella oryzae sp. nov., isolated from the rhizosphere of saline tolerant pokkali rice. Systematic and Applied Microbiology, 2016, 39, 20-24.	1.2	27
337	Symbiosis within Symbiosis: Evolving Nitrogen-Fixing Legume Symbionts. Trends in Microbiology, 2016, 24, 63-75.	3.5	245
338	Nicotiana Roots Recruit Rare Rhizosphere Taxa as Major Root-Inhabiting Microbes. Microbial Ecology, 2016, 71, 469-472.	1.4	71
339	Plant compartment and biogeography affect microbiome composition in cultivated and native <i>Agave</i> species. New Phytologist, 2016, 209, 798-811.	3.5	663
340	Can functional hologenomics aid tackling current challenges in plant breeding?. Briefings in Functional Genomics, 2016, 15, 288-297.	1.3	52
341	A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment. ISME Journal, 2016, 10, 389-399.	4.4	315
342	Endophytic bacterial community composition in wheat (Triticum aestivum) is determined by plant tissue type, developmental stage and soil nutrient availability. Plant and Soil, 2016, 405, 381-396.	1.8	128
343	Bacterial diversity in the rhizosphere of two phylogenetically closely related plant species across environmental gradients. Journal of Soils and Sediments, 2017, 17, 122-132.	1.5	13
344	Combined pre-seed treatment with microbial inoculants and Mo nanoparticles changes composition of root exudates and rhizosphere microbiome structure of chickpea (Cicer arietinum L.) plants. Symbiosis, 2017, 73, 57-69.	1.2	39
345	Effects of jasmonic acid signalling on the wheat microbiome differ between body sites. Scientific Reports, 2017, 7, 41766.	1.6	105
346	Microbial catabolic diversity in and beyond the rhizosphere of plant species and plant genotypes. Pedobiologia, 2017, 61, 43-49.	0.5	16
347	Two cultivated legume plants reveal the enrichment process of the microbiome in the rhizocompartments. Molecular Ecology, 2017, 26, 1641-1651.	2.0	134
348	Colonization and beneficial effects on annual ryegrass by mixed inoculation with plant growth promoting bacteria. Microbiological Research, 2017, 198, 47-55.	2.5	48
349	A distinctive root-inhabiting denitrifying community with high N2O/(N2O+N2) product ratio. Soil Biology and Biochemistry, 2017, 109, 118-123.	4.2	29
350	Plant cultivars imprint the rhizosphere bacterial community composition and association networks. Soil Biology and Biochemistry, 2017, 109, 145-155.	4.2	191
351	Environmental degradation results in contrasting changes in the assembly processes of stream bacterial and fungal communities. Oikos, 2017, 126, 1291-1298.	1.2	25
352	Endophytic actinomycetes: promising source of novel bioactive compounds. Journal of Antibiotics, 2017, 70, 514-519.	1.0	114

#	Article	IF	Citations
353	Simplified and representative bacterial community of maize roots. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2450-E2459.	3.3	487
354	Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome, 2017, 5, 25.	4.9	406
355	Fungal and bacterial contributions to nitrogen cycling in cheatgrass-invaded and uninvaded native sagebrush soils of the western USA. Plant and Soil, 2017, 416, 271-281.	1.8	34
356	Specificity of root microbiomes in nativeâ€grown <i>Nicotiana attenuata</i> and plant responses to <scp>UVB</scp> increase <i>Deinococcus</i> colonization. Molecular Ecology, 2017, 26, 2543-2562.	2.0	23
357	Deciphering composition and function of the root microbiome of a legume plant. Microbiome, 2017, 5, 2.	4.9	152
358	Impact of Next-Generation Sequencing Technology in Plant–Microbe Interaction Study. , 2017, , 269-294.		5
359	Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change. Microbiology and Molecular Biology Reviews, 2017, 81, .	2.9	456
360	The unseen rhizosphere root–soil–microbe interactions for crop production. Current Opinion in Microbiology, 2017, 37, 8-14.	2.3	250
361	Microbial communities associated with plants: learning from nature to apply it in agriculture. Current Opinion in Microbiology, 2017, 37, 29-34.	2.3	94
362	Life in earth – the root microbiome to the rescue?. Current Opinion in Microbiology, 2017, 37, 23-28.	2.3	61
363	Unique Rhizosphere Micro-characteristics Facilitate Phytoextraction of Multiple Metals in Soil by the Hyperaccumulating Plant <i>Sedum alfredii</i> . Environmental Science & Technology, 2017, 51, 5675-5684.	4.6	158
364	The rhizosheath – a potential trait for future agricultural sustainability occurs in orders throughout the angiosperms. Plant and Soil, 2017, 418, 115-128.	1.8	92
365	The â€~known' genetic potential for microbial communities to degrade organic phosphorus is reduced in lowâ€pH soils. MicrobiologyOpen, 2017, 6, e00474.	1.2	34
366	The state of rhizospheric science in the era of multi-omics: A practical guide to omics technologies. Rhizosphere, 2017, 3, 212-221.	1.4	66
367	From data to knowledge: The future of multi-omics data analysis for the rhizosphere. Rhizosphere, 2017, 3, 222-229.	1.4	30
368	Plant microbial diversity is suggested as the key to future biocontrol and health trends. FEMS Microbiology Ecology, 2017, 93, .	1.3	376
369	Microbial Strategies for Vegetable Production. , 2017, , .		14
370	Understanding and exploiting plant beneficial microbes. Current Opinion in Plant Biology, 2017, 38, 155-163.	3.5	538

#	Article	IF	CITATIONS
371	Application of Struvite Alters the Antibiotic Resistome in Soil, Rhizosphere, and Phyllosphere. Environmental Science & Technology, 2017, 51, 8149-8157.	4.6	196
372	Ecological diversity and co-occurrence patterns of bacterial community through soil profile in response to long-term switchgrass cultivation. Scientific Reports, 2017, 7, 3608.	1.6	50
373	Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiology Reviews, 2017, 41, 392-416.	3.9	337
374	Emergent macrophytes modify the abundance and community composition of ammonia oxidizers in their rhizosphere sediments. Journal of Basic Microbiology, 2017, 57, 625-632.	1.8	4
375	Bacterial Rhizoplane Colonization Patterns of Buchloe dactyloides Growing in Metalliferous Mine Tailings Reflect Plant Status and Biogeochemical Conditions. Microbial Ecology, 2017, 74, 853-867.	1.4	20
376	Illumina-based analysis of endophytic bacterial diversity of tree peony (Paeonia Sect. Moutan) roots and leaves. Brazilian Journal of Microbiology, 2017, 48, 695-705.	0.8	90
377	Interactions between soil phototrophs and vascular plants in Himalayan cold deserts. Soil Biology and Biochemistry, 2017, 115, 568-578.	4.2	16
378	Adaptation, specialization, and coevolution within phytobiomes. Current Opinion in Plant Biology, 2017, 38, 109-116.	3.5	51
379	Let the Core Microbiota Be Functional. Trends in Plant Science, 2017, 22, 583-595.	4.3	317
380	Can soil microbial diversity influence plant metabolites and life history traits of a rhizophagous insect? A demonstration in oilseed rape. Insect Science, 2017, 24, 1045-1056.	1.5	22
382	Mobilization of Iron by Plant-Borne Coumarins. Trends in Plant Science, 2017, 22, 538-548.	4.3	156
383	Shining a light on the dark world of plant root–microbe interactions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4281-4283.	3.3	49
385	Live imaging of root–bacteria interactions in a microfluidics setup. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4549-4554.	3.3	233
386	Biotechnological Intervention to Enhance the Potential Ability of Bioenergy Plants for Phytoremediation. , 2017, , 387-408.		0
387	Defining the Core Citrus Leaf- and Root-Associated Microbiota: Factors Associated with Community Structure and Implications for Managing Huanglongbing (Citrus Greening) Disease. Applied and Environmental Microbiology, 2017, 83, .	1.4	78
388	Phytoremediation Potential of Bioenergy Plants. , 2017, , .		23
389	Effects of biochar on reducing the abundance of oxytetracycline, antibiotic resistance genes, and human pathogenic bacteria in soil and lettuce. Environmental Pollution, 2017, 224, 787-795.	3.7	195
390	Diversity and composition of bacterial community in the rhizosphere sediments of submerged macrophytes revealed by 454 pyrosequencing. Annals of Microbiology, 2017, 67, 313-319.	1.1	15

ARTICLE IF CITATIONS Identification and genomic analysis of antifungal property of a tomato root endophyte Pseudomonas 391 0.7 16 sp. p21. Antonie Van Leeuwenhoek, 2017, 110, 387-397. Analysis of gut microbiota – An ever changing landscape. Gut Microbes, 2017, 8, 268-275. 4.3 393 Genetics and Genomics of Setaria. Plant Genetics and Genomics: Crops and Models, 2017, , . 0.3 18 Bioprospecting Soil Metagenomes for Antibiotics. Topics in Biodiversity and Conservation, 2017, , 0.3 113-136. Ecology and Habitat Distribution of Actinobacteria., 2017, , 123-149. 396 13 Root-associated fungal microbiota of nonmycorrhizal <i>Arabis alpina</i> and its contribution to plant phosphorus nutrition. Proceedings of the National Academy of Sciences of the United States of 3.3 239 America, 2017, 114, E9403-E9412. Bacterial microbiomes of individual ectomycorrhizal <i>Pinus sylvestris</i> roots are shaped by soil 398 horizon and differentially sensitive to nitrogen addition. Environmental Microbiology, 2017, 19, 1.8 35 4736-4753. Role of Endophytic Bacteria in Stress Tolerance of Agricultural Plants: Diversity of Microorganisms 399 and Molecular Mechanisms., 2017, , 1-29. Differences in root-associated bacterial communities among fine root branching orders of poplar (Populus \tilde{A} — euramericana (Dode) Guinier.). Plant and Soil, 2017, 421, 123-135. 400 1.8 17 Plant Microbiome: Composition and Functions in Plant Compartments., 2017,, 7-20. 24 Endophytic and Epiphytic Modes of Microbial Interactions and Benefits., 2017,, 227-253. 403 19 "l've Got the Magic in Me― The Microbiome of Conventional vs Organic Production Systems. , 2017, , 404 85-95. Root-Associated Bacteria: Rhizoplane and Endosphere., 2017, , 161-176. 405 7 Urban habitat restoration provides a human health benefit through microbiome rewilding: the 406 1.4 129 Microbiome Rewilding Hypothesis. Restoration Ecology, 2017, 25, 866-872. 407 Metagenomics of Plant Microbiomes., 2017, , 179-200. 7 Taxonomic structure and functional association of foxtail millet root microbiome. GigaScience, 2017, 408 1,228 Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews 410 2,087 13.6 Microbiology, 2017, 15, 579-590. Plant Microbiome Identification and Characterization. Current Protocols in Plant Biology, 2017, 2, 2.8 135-146.

	CITATION RI	PORT	
#	ARTICLE Influence of microbial community diversity and function on pollutant removal in ecological	IF	CITATIONS
412	wastewater treatment. Applied Microbiology and Biotechnology, 2017, 101, 7293-7302.	1.7	12
413	Evolutionary conservation of a core root microbiome across plant phyla along a tropical soil chronosequence. Nature Communications, 2017, 8, 215.	5.8	244
414	Insights into the functionality of endophytic actinobacteria with a focus on their biosynthetic potential and secondary metabolites production. Scientific Reports, 2017, 7, 11809.	1.6	123
415	Identifying the Active Microbiome Associated with Roots and Rhizosphere Soil of Oilseed Rape. Applied and Environmental Microbiology, 2017, 83, .	1.4	141
416	Structural and functional variability in root-associated bacterial microbiomes of Cd/Zn hyperaccumulator Sedum alfredii. Applied Microbiology and Biotechnology, 2017, 101, 7961-7976.	1.7	52
417	Taxonomic and functional shifts in the beech rhizosphere microbiome across a natural soil toposequence. Scientific Reports, 2017, 7, 9604.	1.6	77
418	Unravelling the Interaction of Plant and Their Phyllosphere Microbiome. , 2017, , 157-172.		3
419	Metagenome of Rhizosphere and Endophytic Ecosystem. , 2017, , 125-156.		5
420	Understanding the holobiont: the interdependence of plants and their microbiome. Current Opinion in Microbiology, 2017, 38, 188-196.	2.3	230
421	Sphingomonads in Microbe-Assisted Phytoremediation: Tackling Soil Pollution. Trends in Biotechnology, 2017, 35, 883-899.	4.9	72
422	Drought Stress Results in a Compartment-Specific Restructuring of the Rice Root-Associated Microbiomes. MBio, 2017, 8, .	1.8	336
423	Rhizosphere Sampling Protocols for Microbiome (16S/18S/ITS rRNA) Library Preparation and Enrichment for the Isolation of Drought Tolerance-Promoting Microbes. Methods in Molecular Biology, 2017, 1631, 349-362.	0.4	20
424	Toward a Resilient, Functional Microbiome: Drought Tolerance-Alleviating Microbes for Sustainable Agriculture. Methods in Molecular Biology, 2017, 1631, 69-84.	0.4	26
425	Intercropping affects genetic potential for inorganic nitrogen cycling by root-associated microorganisms in Medicago sativa and Dactylis glomerata. Applied Soil Ecology, 2017, 119, 260-266.	2.1	45
426	Environment and geographic distance differ in relative importance for determining fungal community of rhizosphere and bulk soil. Environmental Microbiology, 2017, 19, 3649-3659.	1.8	78
427	The effect of crop rotation between wetland rice and upland maize on the microbial communities associated with roots. Plant and Soil, 2017, 419, 435-445.	1.8	40
428	Microbiome analysis and confocal microscopy of used kitchen sponges reveal massive colonization by Acinetobacter, Moraxella and Chryseobacterium species. Scientific Reports, 2017, 7, 5791.	1.6	41
429	Establishing Causality: Opportunities of Synthetic Communities for Plant Microbiome Research. Cell Host and Microbe, 2017, 22, 142-155.	5.1	404

		CITATION REPORT	
# 430	ARTICLE Co-cultivation of Piriformospora indica with Azotobacter sp., , 2017, , 135-148.	IF	Citations
432	Highâ€resolution synchrotron imaging shows that root hairs influence rhizosphere soil structure formation. New Phytologist, 2017, 216, 124-135.	3.5	116
433	Hairy Root Composite Plant Systems in Root-Microbe Interaction Research. , 2017, , 17-44.		3
434	Effect of pruned material, extracts, and polyphenols of tea on enzyme activities and microbial community structure in soil. Soil Science and Plant Nutrition, 2017, 63, 607-615.	0.8	4
435	Phytomicrobiome: A Reservoir for Sustainable Agriculture. , 2017, , 117-132.		4
436	Soil Microbiome for Enhanced Crop Productivity. , 2017, , 227-247.		2
437	Endophytic Actinobacteria: Beneficial Partners for Sustainable Agriculture. Sustainable Developm and Biodiversity, 2017, , 171-191.	ent 1.4	8
438	Endophytes: Biology and Biotechnology. Sustainable Development and Biodiversity, 2017, , .	1.4	11
439	Shifts in microbial communities in soil, rhizosphere and roots of two major crop systems under elevated CO2 and O3. Scientific Reports, 2017, 7, 15019.	1.6	75
440	Effects of discrete bioactive microbial volatiles on plants and fungi. Plant, Cell and Environment, 2017, 40, 2042-2067.	2.8	138
441	Impact of salicylic acid- and jasmonic acid-regulated defences on root colonization by <i>Trichodo harzianum</i> T-78. Plant Signaling and Behavior, 2017, 12, e1345404.	erma 1.2	47
442	High taxonomic diversity of cultivation-recalcitrant endophytic bacteria in grapevine field shoots, their in vitro introduction, and unsuspected persistence. Planta, 2017, 246, 879-898.	1.6	17
443	Emerging Significance of Rhizospheric Probiotics and Its Impact on Plant Health: Current Perspec Towards Sustainable Agriculture. , 2017, , 233-251.	tive	6
444	Beneficial traits of bacterial endophytes belonging to the core communities of the tomato root microbiome. Agriculture, Ecosystems and Environment, 2017, 247, 149-156.	2.5	81
445	Bacterial and fungal core microbiomes associated with small grain silages during ensiling and aerobic spoilage. BMC Microbiology, 2017, 17, 50.	1.3	116
446	Diurnal cycling of rhizosphere bacterial communities is associated with shifts in carbon metabolis Microbiome, 2017, 5, 65.	m. 4.9	62
447	Linking rhizosphere microbiome composition of wild and domesticated <i>Phaseolus vulgaris</i> genotypic and root phenotypic traits. ISME Journal, 2017, 11, 2244-2257.	to 4.4	298
448	Does organically produced lettuce harbor higher abundance of antibiotic resistance genes than conventionally produced?. Environment International, 2017, 98, 152-159.	4.8	205

#	Article	IF	CITATIONS
449	Cultivation Versus Molecular Analysis of Banana (Musa sp.) Shoot-Tip Tissue Reveals Enormous Diversity of Normally Uncultivable Endophytic Bacteria. Microbial Ecology, 2017, 73, 885-899.	1.4	25
450	Exploring the diversity of the root-associated microbiome of llex paraguariensis St. Hil. (Yerba Mate). Applied Soil Ecology, 2017, 109, 23-31.	2.1	21
451	Biocharâ€stimulated plant performance is strongly linked to microbial diversity and metabolic potential in the rhizosphere. New Phytologist, 2017, 213, 1393-1404.	3.5	201
452	Emergence of plant and rhizospheric microbiota as stable interactomes. Protoplasma, 2017, 254, 617-626.	1.0	34
453	Root microbiota dynamics of perennial <i>Arabis alpina</i> are dependent on soil residence time but independent of flowering time. ISME Journal, 2017, 11, 43-55.	4.4	133
454	Root-associated bacteria promote grapevine growth: from the laboratory to the field. Plant and Soil, 2017, 410, 369-382.	1.8	40
455	No adverse effects of transgenic maize on population dynamics of endophytic <i>Bacillus subtilis</i> strain B916-gfp. MicrobiologyOpen, 2017, 6, e00404.	1.2	23
456	Microbial community composition but not diversity changes along succession in arctic sand dunes. Environmental Microbiology, 2017, 19, 698-709.	1.8	32
457	Shared and hostâ€specific microbiome diversity and functioning of grapevine and accompanying weed plants. Environmental Microbiology, 2017, 19, 1407-1424.	1.8	100
458	Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, <i>Helianthus annuus</i> . New Phytologist, 2017, 214, 412-423.	3.5	185
459	Harnessing the microbiomes of Brassica vegetables for health issues. Scientific Reports, 2017, 7, 17649.	1.6	47
460	Bacterial Rhizoremediation of Petroleum Hydrocarbons (PHC). , 2017, , 495-519.		5
461	Belowground Microbial Crosstalk and Rhizosphere Biology. , 2017, , 695-752.		6
462	Production of Plant Derived Natural Compounds through Hairy Root Culture. , 2017, , .		6
463	Plant Communication With Associated Microbiota in the Spermosphere, Rhizosphere andÂPhyllosphere. Advances in Botanical Research, 2017, , 101-133.	0.5	54
464	Cowpea Nodules Harbor Non-rhizobial Bacterial Communities that Are Shaped by Soil Type Rather than Plant Genotype. Frontiers in Plant Science, 2016, 7, 2064.	1.7	85
465	Community Structure, Species Variation, and Potential Functions of Rhizosphere-Associated Bacteria of Different Winter Wheat (Triticum aestivum) Cultivars. Frontiers in Plant Science, 2017, 8, 132.	1.7	137
466	Abiotic Stress Responses and Microbe-Mediated Mitigation in Plants: The Omics Strategies. Frontiers in Plant Science, 2017, 8, 172.	1.7	574

#	Article	IF	CITATIONS
467	The Influence of Land Use Intensity on the Plant-Associated Microbiome of Dactylis glomerata L Frontiers in Plant Science, 2017, 8, 930.	1.7	57
468	Dominant Groups of Potentially Active Bacteria Shared by Barley Seeds become Less Abundant in Root Associated Microbiome. Frontiers in Plant Science, 2017, 8, 1005.	1.7	70
469	The Role of Soil Microorganisms in Plant Mineral Nutrition—Current Knowledge and Future Directions. Frontiers in Plant Science, 2017, 8, 1617.	1.7	820
470	Rhizosphere Microbiome Recruited from a Suppressive Compost Improves Plant Fitness and Increases Protection against Vascular Wilt Pathogens of Tomato. Frontiers in Plant Science, 2017, 8, 2022.	1.7	82
471	Bacterial Endophyte Colonization and Distribution within Plants. Microorganisms, 2017, 5, 77.	1.6	426
472	Transmission of Bacterial Endophytes. Microorganisms, 2017, 5, 70.	1.6	308
473	The Value of a Comparative Approach to Understand the Complex Interplay between Microbiota and Host Immunity. Frontiers in Immunology, 2017, 8, 1114.	2.2	8
474	Comparative Evaluation of Four Bacteria-Specific Primer Pairs for 16S rRNA Gene Surveys. Frontiers in Microbiology, 2017, 8, 494.	1.5	242
475	Bacterial Root Microbiome of Plants Growing in Oil Sands Reclamation Covers. Frontiers in Microbiology, 2017, 8, 849.	1.5	80
476	A Small Number of Low-abundance Bacteria Dominate Plant Species-specific Responses during Rhizosphere Colonization. Frontiers in Microbiology, 2017, 8, 975.	1.5	87
477	Crop Establishment Practices Are a Driver of the Plant Microbiota in Winter Oilseed Rape (Brassica) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5
478	Plant Phylogeny and Life History Shape Rhizosphere Bacterial Microbiome of Summer Annuals in an Agricultural Field. Frontiers in Microbiology, 2017, 8, 2414.	1.5	56
479	Inner Plant Values: Diversity, Colonization and Benefits from Endophytic Bacteria. Frontiers in Microbiology, 2017, 8, 2552.	1.5	488
480	Host Specificity for Bacterial, Archaeal and Fungal Communities Determined for High- and Low-Microbial Abundance Sponge Species in Two Genera. Frontiers in Microbiology, 2017, 8, 2560.	1.5	47
481	Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biology, 2017, 15, e2001793.	2.6	640
482	Huanglongbing impairs the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome. Microbiome, 2017, 5, 97.	4.9	177
483	Image-Based Analysis to Dissect Vertical Distribution and Horizontal Asymmetry of Conspecific Root System Interactions in Response to Planting Densities, Nutrients and Root Exudates in Arabidopsis thaliana. Plants, 2017, 6, 46.	1.6	3
484	Plant-Microbe Ecology: Interactions of Plants and Symbiotic Microbial Communities. , 0, , .		15

#	Article	IF	CITATIONS
485	Interacting effect of diclofop-methyl on the rice rhizosphere microbiome and denitrification. Pesticide Biochemistry and Physiology, 2018, 146, 90-96.	1.6	34
486	Commonalities and Differences in Controlling Multipartite Intracellular Infections of Legume Roots by Symbiotic Microbes. Plant and Cell Physiology, 2018, 59, 666-677.	1.5	21
487	Plant growth and oil contamination alter the diversity and composition of bacterial communities in agricultural soils across China. Land Degradation and Development, 2018, 29, 1660-1671.	1.8	17
488	Managing soil microbiology: realising opportunities for the productive land-based sectors. New Zealand Journal of Agricultural Research, 2018, 61, 358-376.	0.9	6
489	Harnessing plant-bacteria-fungi interactions to improve plant growth and degradation of organic pollutants. Journal of Plant Interactions, 2018, 13, 119-130.	1.0	65
490	Enhanced phytoremdiation of Robinia pseudoacacia in heavy metal-contaminated soils with rhizobia and the associated bacterial community structure and function. Chemosphere, 2018, 197, 729-740.	4.2	64
491	Colonization on Cucumber Root and Enhancement of Chlorimuron-ethyl Degradation in the Rhizosphere by <i>Hansschlegelia zhihuaiae</i> S113 and Root Exudates. Journal of Agricultural and Food Chemistry, 2018, 66, 4584-4591.	2.4	18
492	Meta-scale mountain grassland observatories uncover commonalities as well as specific interactions among plant and non-rhizosphere soil bacterial communities. Scientific Reports, 2018, 8, 5758.	1.6	15
493	Plant Cognition and Behavior: From Environmental Awareness to Synaptic Circuits Navigating Root Apices. Signaling and Communication in Plants, 2018, , 51-77.	0.5	7
494	Microbial diversity changes with rhizosphere and hydrocarbons in contrasting soils. Ecotoxicology and Environmental Safety, 2018, 156, 434-442.	2.9	37
495	The effects of host species and sexual dimorphism differ among root, leaf and flower microbiomes of wild strawberries in situ. Scientific Reports, 2018, 8, 5195.	1.6	56
496	Root microbiota shift in rice correlates with resident time in the field and developmental stage. Science China Life Sciences, 2018, 61, 613-621.	2.3	204
497	Exploiting ecosystem services in agriculture for increased food security. Global Food Security, 2018, 17, 57-63.	4.0	84
498	Cadmium Exposure-Sedum alfredii Planting Interactions Shape the Bacterial Community in the Hyperaccumulator Plant Rhizosphere. Applied and Environmental Microbiology, 2018, 84, .	1.4	60
499	Biogeography and ecological processes affecting root-associated bacterial communities in soybean fields across China. Science of the Total Environment, 2018, 627, 20-27.	3.9	53
500	Structure and assembly cues for rhizospheric nirK- and nirS-type denitrifier communities in long-term fertilized soils. Soil Biology and Biochemistry, 2018, 119, 32-40.	4.2	100
501	A 5-year field study showed no apparent effect of the Bt transgenic 741 poplar on the arthropod community and soil bacterial diversity. Scientific Reports, 2018, 8, 1956.	1.6	29
502	Root-Associated Bacterial and Fungal Community Profiles of <i>Arabidopsis thaliana</i> Are Robust Across Contrasting Soil P Levels. Phytobiomes Journal, 2018, 2, 24-34.	1.4	37

		CITATION REPORT		
#	Article		IF	CITATIONS
503	Rhizobia: from saprophytes to endosymbionts. Nature Reviews Microbiology, 2018, 16	5, 291-303.	13.6	395
504	Comparative analysis of microbial diversity and bacterial seedling diseaseâ€suppressiv organicâ€farmed and standardized commercial conventional soils for rice nursery culti of Phytopathology, 2018, 166, 249-264.	e activity in ivation. Journal	0.5	10
505	Legume, Microbiome, and Regulatory Functions of miRNAs in Systematic Regulation o Microorganisms for Sustainability, 2018, , 255-282.	f Symbiosis.	0.4	8
506	Native soils with their microbiotas elicit a state of alert in tomato plants. New Phytolog 1296-1308.	gist, 2018, 220,	3.5	93
507	Harnessing the Plant Microbiome for Improved Abiotic Stress Tolerance. Microorganis Sustainability, 2018, , 21-43.	ns for	0.4	35
508	Cropping practices manipulate abundance patterns of root and soil microbiome memb way to smart farming. Microbiome, 2018, 6, 14.	pers paving the	4.9	399
509	Assembly and ecological function of the root microbiome across angiosperm plant spe Proceedings of the National Academy of Sciences of the United States of America, 202	cies. 18, 115, E1157-E1165.	3.3	739
510	Inter- and intracellular colonization of Arabidopsis roots by endophytic actinobacteria impact of plant hormones on their antimicrobial activity. Antonie Van Leeuwenhoek, 2	and the 018, 111, 679-690.	0.7	54
511	Key microbial taxa in the rhizosphere of sorghum and sunflower grown in crop rotation the Total Environment, 2018, 624, 530-539.	1. Science of	3.9	69
512	Long-term fertilization changes bacterial diversity and bacterial communities in the ma of Chinese Mollisols. Applied Soil Ecology, 2018, 125, 88-96.	ize rhizosphere	2.1	94
513	A Functional General Stress Response of <i>Bradyrhizobium diazoefficiens</i> Is Requ Stages of Host Plant Infection. Molecular Plant-Microbe Interactions, 2018, 31, 537-54	ired for Early 17.	1.4	24
514	Genomic features of bacterial adaptation to plants. Nature Genetics, 2018, 50, 138-15	50.	9.4	480
515	Specificity in Arabidopsis thaliana recruitment of root fungal communities from soil an Fungal Biology, 2018, 122, 231-240.	d rhizosphere.	1.1	58
516	The banana microbiome: stability and potential health indicators. Acta Horticulturae, 2	018, , 1-8.	0.1	3
517	A genetically and functionally diverse group of non-diazotrophic Bradyrhizobium spp. o root endophytic compartment of Arabidopsis thaliana. BMC Plant Biology, 2018, 18, 6	colonizes the 1.	1.6	26
518	Microbial interactions within the plant holobiont. Microbiome, 2018, 6, 58.		4.9	833
519	From Mycorrhizosphere to Rhizosphere Microbiome: The Paradigm Shift. Soil Biology,	2018, , 487-500.	0.6	10
520	Silage review: Using molecular approaches to define the microbial ecology of silage. Jo Science, 2018, 101, 4060-4074.	urnal of Dairy	1.4	112

#	Article	IF	Citations
521	Not only priming: Soil microbiota may protect tomato from root pathogens. Plant Signaling and Behavior, 2018, 13, 1-9.	1.2	8
522	Conservation tillage and organic farming induce minor variations in Pseudomonas abundance, their antimicrobial function and soil disease resistance. FEMS Microbiology Ecology, 2018, 94, .	1.3	10
523	Diversity of <i>Bacillus</i> -like bacterial community in the rhizospheric and non-rhizospheric soil of halophytes (<i>Salsola stocksii</i> and <i>Atriplex amnicola</i>), and characterization of osmoregulatory genes in halophilic <i>Bacilli</i> . Canadian Journal of Microbiology, 2018, 64, 567-579.	0.8	25
524	Subterranean infestation by Holotrichia parallela larvae is associated with changes in the peanut (Arachis hypogaea L.) rhizosphere microbiome. Microbiological Research, 2018, 211, 13-20.	2.5	26
525	Niche Construction and Exploitation by Agrobacterium: How to Survive and Face Competition in Soil and Plant Habitats. Current Topics in Microbiology and Immunology, 2018, 418, 55-86.	0.7	28
526	Gut microbiota analysis of juvenile genetically improved farmed tilapia (Oreochromis niloticus) by dietary supplementation of different resveratrol concentrations. Fish and Shellfish Immunology, 2018, 77, 200-207.	1.6	37
527	Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiology, 2018, 3, 470-480.	5.9	1,268
528	Broad-spectrum inhibition of Phytophthora infestans by fungal endophytes. FEMS Microbiology Ecology, 2018, 94, .	1.3	14
529	Finding a needle in a haystack: <i>Bacteroides fragilis</i> polysaccharide A as the archetypical symbiosis factor. Annals of the New York Academy of Sciences, 2018, 1417, 116-129.	1.8	47
530	The Cucurbita pepo seed microbiome: genotype-specific composition and implications for breeding. Plant and Soil, 2018, 422, 35-49.	1.8	131
531	Adipose Tissue LPL Methylation is Associated with Triglyceride Concentrations in the Metabolic Syndrome. Clinical Chemistry, 2018, 64, 210-218.	1.5	30
532	Rhizosphereâ€associated <i>Pseudomonas</i> induce systemic resistance to herbivores at the cost of susceptibility to bacterial pathogens. Molecular Ecology, 2018, 27, 1833-1847.	2.0	58
533	Protists are an integral part of the <i>Arabidopsis thaliana</i> microbiome. Environmental Microbiology, 2018, 20, 30-43.	1.8	85
534	Influence of resistance breeding in common bean on rhizosphere microbiome composition and function. ISME Journal, 2018, 12, 212-224.	4.4	296
535	Feed Your Friends: Do Plant Exudates Shape the Root Microbiome?. Trends in Plant Science, 2018, 23, 25-41.	4.3	1,256
536	The plant circadian clock influences rhizosphere community structure and function. ISME Journal, 2018, 12, 400-410.	4.4	106
537	Assembly of seed-associated microbial communities within and across successive plant generations. Plant and Soil, 2018, 422, 67-79.	1.8	91
538	Colonization of Paracoccus sp. QCT6 and Enhancement of Metribuzin Degradation in Maize Rhizosphere Soil. Current Microbiology, 2018, 75, 156-162.	1.0	7

#	Article	IF	CITATIONS
539	Variation in the bacteriome of the tropical liverwort, Marchantia inflexa, between the sexes and across habitats. Symbiosis, 2018, 75, 93-101.	1.2	12
540	Bulk soil bacterial community mediated by plant community in Mediterranean ecosystem, Israel. Applied Soil Ecology, 2018, 124, 104-109.	2.1	11
541	Sustained Bauxite Residue Rehabilitation with Gypsum and Organic Matter 16 years after Initial Treatment. Environmental Science & Technology, 2018, 52, 152-161.	4.6	79
542	Chemical signaling involved in plant–microbe interactions. Chemical Society Reviews, 2018, 47, 1652-1704.	18.7	149
543	Root type and soil phosphate determine the taxonomic landscape of colonizing fungi and the transcriptome of fieldâ€grown maize roots. New Phytologist, 2018, 217, 1240-1253.	3.5	80
544	Archaea Are Interactive Components of Complex Microbiomes. Trends in Microbiology, 2018, 26, 70-85.	3.5	203
545	Olive orchard microbiome: characterisation of bacterial communities in soil-plant compartments and their comparison between sustainable and conventional soil management systems. Plant Ecology and Diversity, 2018, 11, 597-610.	1.0	46
546	Quantifying the Spatiotemporal Dynamics of Plant Root Colonization by Beneficial Bacteria in a Microfluidic Habitat. Advanced Biology, 2018, 2, 1800048.	3.0	31
547	Below-ground-above-ground Plant-microbial Interactions: Focusing on Soybean, Rhizobacteria and Mycorrhizal Fungi. Open Microbiology Journal, 2018, 12, 261-279.	0.2	78
548	Quantitative Genetics of the Maize Leaf Microbiome. Phytobiomes Journal, 2018, 2, 208-224.	1.4	110
549	Desert plant bacteria reveal host influence and beneficial plant growth properties. PLoS ONE, 2018, 13, e0208223.	1.1	76
550	Characterization and activity of endophytic bacteria from â€~Prata Anã' banana crop (Musa sp., AAB). Revista Ceres, 2018, 65, 381-387.	0.1	7
551	A Review on Genetically Modified Plants Designed to Phytoremediate Polluted Soils: Biochemical Responses and International Regulation. Pedosphere, 2018, 28, 697-712.	2.1	14
553	The structure and function of the global citrus rhizosphere microbiome. Nature Communications, 2018, 9, 4894.	5.8	304
554	The Rootstock Regulates Microbiome Diversity in Root and Rhizosphere Compartments of Vitis vinifera Cultivar Lambrusco. Frontiers in Microbiology, 2018, 9, 2240.	1.5	54
555	Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome, 2018, 6, 231.	4.9	240
557	The Role of Host Genetic Signatures on Root–Microbe Interactions in the Rhizosphere and Endosphere. Frontiers in Plant Science, 2018, 9, 1896.	1.7	45
558	Cities, biodiversity and health: we need healthy urban microbiome initiatives. Cities and Health, 2018, 2, 143-150.	1.6	23

#	Article	IF	CITATIONS
559	Responses of the Endophytic Bacterial Communities of Juncus acutus to Pollution With Metals, Emerging Organic Pollutants and to Bioaugmentation With Indigenous Strains. Frontiers in Plant Science, 2018, 9, 1526.	1.7	35
560	Bacterial Diversity Associated With the Rhizosphere and Endosphere of Two Halophytes: Glaux maritima and Salicornia europaea. Frontiers in Microbiology, 2018, 9, 2878.	1.5	73
561	Variation of the Bacterial Community in the Rhizoplane Iron Plaque of the Wetland Plant Typha latifolia. International Journal of Environmental Research and Public Health, 2018, 15, 2610.	1.2	8
562	Gene mutation associated with esl mediates shifts on fungal community composition in rhizosphere soil of rice at grain-filling stage. Scientific Reports, 2018, 8, 17521.	1.6	2
563	Interactions of Mycorrhiza and Protists in the Rhizosphere Systemically Alter Microbial Community Composition, Plant Shoot-to-Root Ratio and Within-Root System Nitrogen Allocation. Frontiers in Environmental Science, 2018, 6, .	1.5	41
564	Interactions Involving Rhizobacteria and Foliar-Feeding Insects. Ecological Studies, 2018, , 117-133.	0.4	4
565	Practical considerations for sampling and data analysis in contemporary metagenomics-based environmental studies. Journal of Microbiological Methods, 2018, 154, 14-18.	0.7	12
566	Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nature Biotechnology, 2018, 36, 1100-1109.	9.4	506
567	Beneficial Soil Microbiome for Sustainable Agriculture Production. Sustainable Agriculture Reviews, 2018, , 443-481.	0.6	27
568	Soil productivity and structure of bacterial and fungal communities in unfertilized arable soil. PLoS ONE, 2018, 13, e0204085.	1.1	13
569	RHIZOSPHERE MICROBIOME: AN EMERGING FRONTIER IN CAUSING AND CURING INFECTIOUS DISEASES. Asian Journal of Pharmaceutical and Clinical Research, 2018, 11, 65.	0.3	2
570	Focus on a locus. Nature Ecology and Evolution, 2018, 2, 1838-1839.	3.4	1
571	Impacts of Paraburkholderia phytofirmans Strain PsJN on Tomato (Lycopersicon esculentum L.) Under High Temperature. Frontiers in Plant Science, 2018, 9, 1397.	1.7	56
572	Biocontrol traits of Bacillus licheniformis GL174, a culturable endophyte of Vitis vinifera cv. Glera. BMC Microbiology, 2018, 18, 133.	1.3	45
573	Deciphering the bacterial composition in the rhizosphere of Baphicacanthus cusia (NeeS) Bremek. Scientific Reports, 2018, 8, 15831.	1.6	15
574	Microbial Interkingdom Interactions in Roots Promote Arabidopsis Survival. Cell, 2018, 175, 973-983.e14.	13.5	707
575	Relationship between foliar endophytes and apple cultivar disease resistance in an organic orchard. Biological Control, 2018, 127, 139-144.	1.4	20
576	Host species identity in annual Brassicaceae has a limited effect on the assembly of root-endophytic fungal communities. Plant Ecology and Diversity, 2018, 11, 569-580.	1.0	16

#	Article	lF	CITATIONS
577	Quantification of the Composition Dynamics of a Maize Root-associated Simplified Bacterial Community and Evaluation of Its Biological Control Effect. Bio-protocol, 2018, 8, .	0.2	10
578	Cultivar-specific response of bacterial community to cadmium contamination in the rhizosphere of rice (Oryza sativa L.). Environmental Pollution, 2018, 241, 63-73.	3.7	67
579	Plant Growth Promoting Rhizobacteria Impact on <i>Typha latifolia</i> and <i>Phragmites australis</i> Growth and Dissolved Oxygen. Clean - Soil, Air, Water, 2018, 46, 1700353.	0.7	8
580	Bacterial endophyte communities in Pinus flexilis are structured by host age, tissue type, and environmental factors. Plant and Soil, 2018, 428, 335-352.	1.8	32
581	Antimicrobial peptide expression in a wild tobacco plant reveals the limits of host-microbe-manipulations in the field. ELife, 2018, 7, .	2.8	19
582	Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7368-7373.	3.3	435
583	Distinct biogeographic patterns of rhizobia and non-rhizobial endophytes associated with soybean nodules across China. Science of the Total Environment, 2018, 643, 569-578.	3.9	39
584	Exploring the resilience of wheat crops grown in short rotations through minimising the build-up of an important soil-borne fungal pathogen. Scientific Reports, 2018, 8, 9550.	1.6	12
585	Rhizosphere Metabolite Profiling: An Opportunity to Understand Plant-Microbe Interactions for Crop Improvement. , 2018, , 343-361.		11
586	Rhizosphere Microbiome Modulators: Contributions of Nitrogen Fixing Bacteria towards Sustainable Agriculture. International Journal of Environmental Research and Public Health, 2018, 15, 574.	1.2	161
587	Microbial Endophytes that Live within the Seeds of Two Tomato Hybrids Cultivated in Argentina. Agronomy, 2018, 8, 136.	1.3	26
588	Activation of the salicylic acid signalling pathway in wheat had no significant short-term impact on the diversity of root-associated microbiomes. Pedobiologia, 2018, 70, 6-11.	0.5	10
589	Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota. PLoS Biology, 2018, 16, e2006352.	2.6	236
590	A Community-Based Culture Collection for Targeting Novel Plant Growth-Promoting Bacteria from the Sugarcane Microbiome. Frontiers in Plant Science, 2017, 8, 2191.	1.7	99
591	Drought Stress and Root-Associated Bacterial Communities. Frontiers in Plant Science, 2017, 8, 2223.	1.7	417
592	What Is There in Seeds? Vertically Transmitted Endophytic Resources for Sustainable Improvement in Plant Growth. Frontiers in Plant Science, 2018, 9, 24.	1.7	208
593	Core Microbiome of Medicinal Plant Salvia miltiorrhiza Seed: A Rich Reservoir of Beneficial Microbes for Secondary Metabolism?. International Journal of Molecular Sciences, 2018, 19, 672.	1.8	109
594	Removal of Hydrocarbons and Other Related Chemicals Via the Rhizosphere of Plants. , 2018, , 1-13.		1

ARTICLE IF CITATIONS Bacterial Production of Indole Related Compounds Reveals Their Role in Association Between 595 1.8 75 Duckweeds and Endophytes. Frontiers in Chemistry, 2018, 6, 265. Rhizosphere biodiversity as a premise for application in bio-economy. Agriculture, Ecosystems and 2.5 Environment, 2018, 265, 524-534. Structural development and assembly patterns of the root-associated microbiomes during 597 3.9 60 phytoremediation. Science of the Total Environment, 2018, 644, 1591-1601. Influence of Belowground Herbivory on the Dynamics of Root and Rhizosphere Microbial Communities. Frontiers in Ecology and Evolution, 2018, 6, . Low Light Availability Alters Root Exudation and Reduces Putative Beneficial Microorganisms in 599 1.5 88 Seagrass Roots. Frontiers in Microbiology, 2017, 8, 2667. Rhizosphere Competence and Biocontrol Effect of Pseudomonas sp. RU47 Independent from Plant Species and Soil Type at the Field Scale. Frontiers in Microbiology, 2018, 9, 97. 1.5 Diversity of the Bacterial Microbiome in the Roots of Four Saccharum Species: S. spontaneum, S. 601 1.5 56 robustum, S. barberi, and S. officinarum. Frontiers in Microbiology, 2018, 9, 267. Dynamic and Assembly of Epiphyte and Endophyte Lactic Acid Bacteria During the Life Cycle of 1.5 46 Origanum vulgare L.. Frontiers in Microbiology, 2018, 9, 1372. Identification of Major Rhizobacterial Taxa Affected by a Glyphosate-Tolerant Soybean Line via 603 1.0 9 Shotgun Metagenomic Approach. Genes, 2018, 9, 214. Compatibility between Legumes and Rhizobia for the Establishment of a Successful Nitrogen-Fixing 604 1.0 Symbiosis. Genes, 2018, 9, 125. Modular Traits of the Rhizobiales Root Microbiota and Their Evolutionary Relationship with 605 5.1244 Symbiotic Rhizobia. Cell Host and Microbe, 2018, 24, 155-167.e5. Colonization cues of leaf- and root-inhabiting bacterial microbiota of Atractylodes lancea derived in 606 1.8 vitro and in vivo. Plant and Soil, 2018, 430, 49-58. Microbial communities in the rhizosphere and the root of lettuce as affected by 607 1.3 13 Salmonella-contaminated irrigation water. FEMS Microbiology Ecology, 2018, 94, . Microbial community response to growing season and plant nutrient optimisation in a boreal Norway spruce forest. Soil Biology and Biochemistry, 2018, 125, 197-209. 608 4.2 64 Bacterial community assemblages in the rhizosphere soil, root endosphere and cyst of soybean cyst 609 1.3 78 nematode-suppressive soil challenged with nematodes. FEMS Microbiology Ecology, 2018, 94, . A microorganisms' journey between plant generations. Microbiome, 2018, 6, 79. The rhizosphere microbiome: Significance in rhizoremediation of polyaromatic hydrocarbon 611 3.8 86 contaminated soil. Journal of Environmental Management, 2018, 217, 858-870. Adipose tissue inflammation and VDR expression and methylation in colorectal cancer. Clinical 1.8

CITATION REPORT

Epigenetics, 2018, 10, 60.

#	Article	IF	CITATIONS
613	An Endophytic Bacterial Consortium modulates multiple strategies to improve Arsenic Phytoremediation Efficacy in Solanum nigrum. Scientific Reports, 2018, 8, 6979.	1.6	40
614	Mycobiome analysis of asymptomatic and symptomatic Norway spruce trees naturally infected by the conifer pathogens <i>Heterobasidion</i> spp Environmental Microbiology Reports, 2018, 10, 532-541.	1.0	43
615	Molecular characterization of long-term impacts of macrophytes harvest management in constructed wetlands. Bioresource Technology, 2018, 268, 514-522.	4.8	38
616	Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nature Communications, 2018, 9, 3429.	5.8	184
617	Marchantia liverworts as a proxy to plants' basal microbiomes. Scientific Reports, 2018, 8, 12712.	1.6	46
618	Challenges and Approaches in Microbiome Research: From Fundamental to Applied. Frontiers in Plant Science, 2018, 9, 1205.	1.7	127
619	Seed Endophyte Microbiome of Crotalaria pumila Unpeeled: Identification of Plant-Beneficial Methylobacteria. International Journal of Molecular Sciences, 2018, 19, 291.	1.8	49
620	Nitrogen Fixation in Cereals. Frontiers in Microbiology, 2018, 9, 1794.	1.5	180
621	VOCs-mediated hormonal signaling and crosstalk with plant growth promoting microbes. Critical Reviews in Biotechnology, 2018, 38, 1277-1296.	5.1	85
622	The culturable endophytic fungal communities of switchgrass grown on a coal-mining site and their effects on plant growth. PLoS ONE, 2018, 13, e0198994.	1.1	20
623	Chromatin immunoprecipitation improvements for the processing of small frozen pieces of adipose tissue. PLoS ONE, 2018, 13, e0192314.	1.1	6
624	Ecotype-Dependent Response of Bacterial Communities Associated with <i>Arabidopsis</i> to Cold Acclimation. Phytobiomes Journal, 2018, 2, 3-13.	1.4	8
625	Ethylene induced plant stress tolerance by Enterobacter sp. SA187 is mediated by 2â€ketoâ€4â€methylthiobutyric acid production. PLoS Genetics, 2018, 14, e1007273.	1.5	95
626	Applying predictive models to decipher rhizobacterial modifications in common reed die-back affected populations. Science of the Total Environment, 2018, 642, 708-722.	3.9	14
627	The Functional Potential of the Rhizospheric Microbiome of an Invasive Tree Species, Acacia dealbata. Microbial Ecology, 2019, 77, 191-200.	1.4	46
628	Soil-plant compartments affect fungal microbiome diversity and composition in grapevine. Fungal Ecology, 2019, 41, 234-244.	0.7	85
629	Microbiome-driven identification of microbial indicators for postharvest diseases of sugar beets. Microbiome, 2019, 7, 112.	4.9	68
630	Exploring Diversity of Bacterial Endophyte Communities Using Advanced Sequencing Technology. , 2019, , 447-481.		5

	CITATION	CITATION REPORT	
#	ARTICLE	IF	Citations
631	Prospecting Crop Wild Relatives for Beneficial Endophytes. , 2019, , 390-410.		4
632	Adaptive phenotypic divergence in an annual grass differs across biotic contexts*. Evolution; International Journal of Organic Evolution, 2019, 73, 2230-2246.	1.1	22
633	Organic amendment strengthens interkingdom associations in the soil and rhizosphere of barley (Hordeum vulgare). Science of the Total Environment, 2019, 695, 133885.	3.9	27
634	Perceptions of Microbe–Microbe and Plant–Microbiome Interfaces: The Metagenomic Maneuver. , 2019, , 483-505.		0
635	Microbes: An Important Resource for Sustainable Agriculture. , 2019, , 53-77.		2
636	Circadian Rhythms in Plant-Microbe Interaction: For Better Performance of Bioinoculants in the Agricultural Fields. Soil Biology, 2019, , 317-332.	0.6	1
637	Community Structures and Antifungal Activity of Root-Associated Endophytic Actinobacteria of Healthy and Diseased Soybean. Microorganisms, 2019, 7, 243.	1.6	38
638	Stable Isotope Probing. Methods in Molecular Biology, 2019, , .	0.4	17
639	Stable Isotope Probing of Microbiota Structure and Function in the Plant Rhizosphere. Methods in Molecular Biology, 2019, 2046, 233-243.	0.4	5
640	Influence of Environment and Host Plant Genotype on the Structure and Diversity of the <i>Brassica napus</i> Seed Microbiota. Phytobiomes Journal, 2019, 3, 326-336.	1.4	34
641	Nitrogen Fertilizers Shape the Composition and Predicted Functions of the Microbiota of Field-Grown Tomato Plants. Phytobiomes Journal, 2019, 3, 315-325.	1.4	26
643	Plant-Endophyte Partnerships to Assist Petroleum Hydrocarbon Remediation. , 2019, , 123-156.		0
644	The Plant Microbiome: Diversity, Dynamics, and Role in Food Safety. , 2019, , 229-257.		5
645	Petunia- and Arabidopsis-Specific Root Microbiota Responses to Phosphate Supplementation. Phytobiomes Journal, 2019, 3, 112-124.	1.4	37
646	An Apple a Day: Which Bacteria Do We Eat With Organic and Conventional Apples?. Frontiers in Microbiology, 2019, 10, 1629.	1.5	87
647	Enrichments/Derichments of Root-Associated Bacteria Related to Plant Growth and Nutrition Caused by the Growth of an EPSPS-Transgenic Maize Line in the Field. Frontiers in Microbiology, 2019, 10, 1335.	1.5	18
648	The Evolution, Ecology, and Mechanisms of Infection by Gram-Positive, Plant-Associated Bacteria. Annual Review of Phytopathology, 2019, 57, 341-365.	3.5	38
649	Assembly of root-associated microbiomes of typical rice cultivars in response to lindane pollution. Environment International, 2019, 131, 104975.	4.8	49
#	Article	IF	CITATIONS
-----	--	-----	-----------
650	Orchard Conditions and Fruiting Body Characteristics Drive the Microbiome of the Black Truffle Tuber aestivum. Frontiers in Microbiology, 2019, 10, 1437.	1.5	31
651	Decoding Wheat Endosphere–Rhizosphere Microbiomes in Rhizoctonia solani–Infested Soils Challenged by Streptomyces Biocontrol Agents. Frontiers in Plant Science, 2019, 10, 1038.	1.7	46
652	Interactions and Coadaptation in Plant Metaorganisms. Annual Review of Phytopathology, 2019, 57, 483-503.	3.5	28
653	A preliminary examination of bacterial, archaeal, and fungal communities inhabiting different rhizocompartments of tomato plants under real-world environments. Scientific Reports, 2019, 9, 9300.	1.6	91
654	The Composition and Assembly of Bacterial Communities across the Rhizosphere and Phyllosphere Compartments of Phragmites Australis. Diversity, 2019, 11, 98.	0.7	21
655	Bacterial and fungal diversity in rhizosphere and bulk soil under different long-term tillage and cereal/legume rotation. Soil and Tillage Research, 2019, 194, 104302.	2.6	63
657	Compositional response of Phaseolus vulgaris rhizomicrobiome to a changing soil environment is regulated by long-distance plant signaling. Plant and Soil, 2019, 442, 257-269.	1.8	4
658	Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nature Ecology and Evolution, 2019, 3, 1445-1454.	3.4	234
659	Culturable plant pathogenic fungi associated with sugarcane in southern China. Fungal Diversity, 2019, 99, 1-104.	4.7	62
660	A Bioinformatics Guide to Plant Microbiome Analysis. Frontiers in Plant Science, 2019, 10, 1313.	1.7	54
661	Root-AssociatedStreptomycesIsolates HarboringmelCGenes Demonstrate Enhanced Plant Colonization. Phytobiomes Journal, 2019, 3, 165-176.	1.4	11
662	Species matter for predicting the functioning of evolving microbial communities – An eco-evolutionary model. PLoS ONE, 2019, 14, e0218692.	1.1	4
663	The mycobiota: fungi take their place between plants and bacteria. Current Opinion in Microbiology, 2019, 49, 18-25.	2.3	48
664	Next generation microbiome applications for crop production — limitations and the need of knowledge-based solutions. Current Opinion in Microbiology, 2019, 49, 59-65.	2.3	59
665	Reductionist synthetic community approaches in root microbiome research. Current Opinion in Microbiology, 2019, 49, 97-102.	2.3	105
666	The Impact of Type VI Secretion System, Bacteriocins and Antibiotics on Bacterial Competition of Pectobacterium carotovorum subsp. brasiliense and the Regulation of Carbapenem Biosynthesis by Iron and the Ferric-Uptake Regulator. Frontiers in Microbiology, 2019, 10, 2379.	1.5	23
667	Microbial secondary metabolites and plant–microbe communications in the rhizosphere. , 2019, , 93-111.		5
668	Effect of aridity and dune type on rhizosphere soil bacterial communities of Caragana microphylla in desert regions of northern China. PLoS ONE, 2019, 14, e0224195.	1.1	31

~			~	
(ПТ	ΔΤΙ	ON	17 F D	OPT
			IVLI.	

#	Article	IF	CITATIONS
669	Relatively rare root endophytic bacteria drive plant resource allocation patterns and tissue nutrient concentration in unpredictable ways. American Journal of Botany, 2019, 106, 1423-1434.	0.8	9
670	A horizon scan of priorities for coastal marine microbiome research. Nature Ecology and Evolution, 2019, 3, 1509-1520.	3.4	77
672	Variations in phyllosphere microbial community along with the development of angular leaf-spot of cucumber. AMB Express, 2019, 9, 76.	1.4	34
673	Conservation of Endophyte Bacterial Community Structure Across Two Panicum Grass Species. Frontiers in Microbiology, 2019, 10, 2181.	1.5	19
674	Metatranscriptomics reveals climate change effects on the rhizosphere microbiomes in European grassland. Soil Biology and Biochemistry, 2019, 138, 107604.	4.2	33
676	Deciphering the microbiome shift during fermentation of medicinal plants. Scientific Reports, 2019, 9, 13461.	1.6	12
677	Improvement of semi-continuous anaerobic digestion of pre-treated orange peel waste by the combined use of zero valent iron and granular activated carbon. Biomass and Bioenergy, 2019, 129, 105337.	2.9	46
678	Root-specific camalexin biosynthesis controls the plant growth-promoting effects of multiple bacterial strains. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15735-15744.	3.3	134
679	Rice root Fe plaque enhances paddy soil N2O emissions via Fe(II) oxidation-coupled denitrification. Soil Biology and Biochemistry, 2019, 139, 107610.	4.2	18
680	Beyond pathogens: microbiota interactions with the plant immune system. Current Opinion in Microbiology, 2019, 49, 7-17.	2.3	171
681	Temporal dynamics of soil bacterial communities and multifunctionality are more sensitive to introduced plants than to microbial additions in a multicontaminated soil. Land Degradation and Development, 2019, 30, 852-865.	1.8	15
682	Enterobacteriaceae dominate the core microbiome and contribute to the resistome of arugula (Eruca) Tj ETQq1 1	0,784314	4 rgBT ∕Over
683	Balancing trade-offs between biotic and abiotic stress responses through leaf age-dependent variation in stress hormone cross-talk. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2364-2373.	3.3	205
684	Bacterial communities associated to Chilean altiplanic native plants from the Andean grasslands soils. Scientific Reports, 2019, 9, 1042.	1.6	32
685	Enrichment of soil rare bacteria in root by an invasive plant Ageratina adenophora. Science of the Total Environment, 2019, 683, 202-209.	3.9	28
686	Trophic Regulations of the Soil Microbiome. Trends in Microbiology, 2019, 27, 771-780.	3.5	232
687	Diversity, distribution and multiâ€functional attributes of bacterial communities associated with the rhizosphere and endosphere of timothy (<i>Phleum pratense</i> L.). Journal of Applied Microbiology, 2019, 127, 794-811.	1.4	10
688	Systems Biology of Plant-Microbiome Interactions. Molecular Plant, 2019, 12, 804-821.	3.9	299

		CITATION R	EPORT	
#	Article		IF	CITATIONS
689	Biocontrol of Cereal Crop Diseases Using Streptomycetes. Pathogens, 2019, 8, 78.		1.2	91
690	Abundance of Plant-Associated Gammaproteobacteria Correlates with Immunostimula Angelica sinensis. Medicines (Basel, Switzerland), 2019, 6, 62.	tory Activity of	0.7	3
691	Sphingomonas sp. Cra20 Increases Plant Growth Rate and Alters Rhizosphere Microbia Structure of Arabidopsis thaliana Under Drought Stress. Frontiers in Microbiology, 201	ıl Community .9, 10, 1221.	1.5	100
692	Complexity of bacterial communities within the rhizospheres of legumes drives phenar degradation. Geoderma, 2019, 353, 1-10.	nthrene	2.3	20
693	Bacterial community associated with rhizosphere of maize and cowpea in a subsequen Applied Soil Ecology, 2019, 143, 26-34.	t cultivation.	2.1	31
694	Occurrence of diverse Bradyrhizobium spp. in roots and rhizospheres of two commerc sugarcane cultivars. Brazilian Journal of Microbiology, 2019, 50, 759-767.	ial Brazilian	0.8	13
695	Plant-derived coumarins shape the composition of an <i>Arabidopsis</i> synthetic roo Proceedings of the National Academy of Sciences of the United States of America, 201	t microbiome. 9, 116, 12558-12565.	3.3	313
696	Role of Vertical Transmission of Shoot Endophytes in Root-Associated Microbiome Ass Heavy Metal Hyperaccumulation in <i>Sedum alfredii</i> . Environmental Science &am 2019, 53, 6954-6963.	embly and p; Technology,	4.6	88
697	Microbial diversity in the rhizosphere of plants growing under extreme environments a on crop improvement. Environmental Sustainability, 2019, 2, 329-338.	nd its impact	1.4	24
698	Endophytic Communities of Transgenic Poplar Were Determined by the Environment a Than by Transgenic Events. Frontiers in Microbiology, 2019, 10, 588.	nd Niche Rather	1.5	23
699	A specialized metabolic network selectively modulates <i>Arabidopsis</i> root microbi 2019, 364, .	iota. Science,	6.0	470
700	Rhizosphere microbiomes diverge among Populus trichocarpa plant-host genotypes ar but it depends on soil origin. Microbiome, 2019, 7, 76.	id chemotypes,	4.9	109
701	Exploring the diversity and dynamic of bacterial community vertically distributed in Tor National Nature Reserve in Hainan Island, China. Brazilian Journal of Microbiology, 201	ıgguling 9, 50, 729-737.	0.8	1
702	Searching for Novel Fungal Biological Control Agents for Plant Disease Control Among 2019, , 25-51.	Endophytes. ,		29
703	Inheritance of seed and rhizosphere microbial communities through plant–soil feedb memory. Environmental Microbiology Reports, 2019, 11, 479-486.	ack and soil	1.0	50
704	Rice straw serves as additional carbon source for rhizosphere microorganisms and reduexudate consumption. Soil Biology and Biochemistry, 2019, 135, 235-238.	uces root	4.2	44
705	Meta-Omics Approach to Unravel the Endophytic Bacterial Communities of <i>Brassica Other Agronomically Important Crops in Response to Agricultural Practices. , 2019, , 2</i>	a napus and 32-249.		4
706	Rhizocompartments and environmental factors affect microbial composition and varia plants. Journal of Microbiology, 2019, 57, 550-561.	tion in native	1.3	8

#	Article	IF	CITATIONS
707	Effect of Drought Stress and Developmental Stages on Microbial Community Structure and Diversity in Peanut Rhizosphere Soil. International Journal of Molecular Sciences, 2019, 20, 2265.	1.8	63
708	Recently duplicated sesterterpene (C25) gene clusters in Arabidopsis thaliana modulate root microbiota. Science China Life Sciences, 2019, 62, 947-958.	2.3	52
709	Impact of Climate Change on Soil Carbon Exchange, Ecosystem Dynamics, and Plant–Microbe Interactions. , 2019, , 379-413.		9
710	Differences in resource use lead to coexistence of seed-transmitted microbial populations. Scientific Reports, 2019, 9, 6648.	1.6	17
711	Ecology and Evolution of Plant Microbiomes. Annual Review of Microbiology, 2019, 73, 69-88.	2.9	379
712	Plant Stage, Not Drought Stress, Determines the Effect of Cultivars on Bacterial Community Diversity in the Rhizosphere of Broomcorn Millet (Panicum miliaceum L.). Frontiers in Microbiology, 2019, 10, 828.	1.5	31
713	Varieties of immunity activities and gut contents in tilapia with seasonal changes. Fish and Shellfish Immunology, 2019, 90, 466-476.	1.6	15
714	Long-term N fertilization altered 13C-labeled fungal community composition but not diversity in wheat rhizosphere of Chinese black soil. Soil Biology and Biochemistry, 2019, 135, 117-126.	4.2	21
715	Fine-scale diversity patterns in belowground microbial communities are consistent across kingdoms. FEMS Microbiology Ecology, 2019, 95, .	1.3	8
716	NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nature Biotechnology, 2019, 37, 676-684.	9.4	641
717	Effect of longâ€ŧerm organic and mineral fertilization strategies on rhizosphere microbiota assemblage and performance of lettuce. Environmental Microbiology, 2019, 21, 2426-2439.	1.8	42
718	Identification and Characterization of the Core Rice Seed Microbiome. Phytobiomes Journal, 2019, 3, 148-157.	1.4	73
719	Plant terpenes that mediate belowâ€ground interactions: prospects for bioengineering terpenoids for plant protection. Pest Management Science, 2019, 75, 2368-2377.	1.7	52
720	Biotic filtering of endophytic fungal communities in Bromus tectorum. Oecologia, 2019, 189, 993-1003.	0.9	11
721	Disease Incidence in Sugar Beet Fields Is Correlated with Microbial Diversity and Distinct Biological Markers. Phytobiomes Journal, 2019, 3, 22-30.	1.4	47
722	Beneficial effects of endophytic fungi colonization on plants. Applied Microbiology and Biotechnology, 2019, 103, 3327-3340.	1.7	157
723	Insight into the Bacterial Endophytic Communities of Peach Cultivars Related to Crown Gall Disease Resistance. Applied and Environmental Microbiology, 2019, 85, .	1.4	42
724	Temporal dynamics of bacterial and fungal communities during the infection of Brassica rapa roots by the protist Plasmodiophora brassicae. PLoS ONE, 2019, 14, e0204195.	1.1	45

#	Article	IF	CITATIONS
725	The soybean rhizosphere: Metabolites, microbes, and beyond—A review. Journal of Advanced Research, 2019, 19, 67-73.	4.4	119
726	Foliar-feeding insects acquire microbiomes from the soil rather than the host plant. Nature Communications, 2019, 10, 1254.	5.8	135
727	Reshaping fecal gut microbiota composition by growing with Polygonum cuspidatum, Houttuynia cordata, and Ipomoea aquatica. Canadian Journal of Microbiology, 2019, 65, 522-529.	0.8	16
728	From Imaging to Functional Traits in Interactions Between Roots and Microbes. Rhizosphere Biology, 2019, , 227-239.	0.4	1
729	No "Gadgil effect― Temperate tree roots and soil lithology are effective predictors of wood decomposition. Forest Pathology, 2019, 49, e12506.	0.5	8
730	Native and Invading Yellow Starthistle (Centaurea solstitialis) Microbiomes Differ in Composition and Diversity of Bacteria. MSphere, 2019, 4, .	1.3	20
731	Rhizobacterial Community Assembly Patterns Vary Between Crop Species. Frontiers in Microbiology, 2019, 10, 581.	1.5	42
732	Root endophytic fungi show low levels of interspecific competition in planta. Fungal Ecology, 2019, 39, 184-191.	0.7	13
733	Antibiotic Resistomes in Plant Microbiomes. Trends in Plant Science, 2019, 24, 530-541.	4.3	233
734	Distinct co-occurrence patterns and driving forces of rare and abundant bacterial subcommunities following a glacial retreat in the eastern Tibetan Plateau. Biology and Fertility of Soils, 2019, 55, 351-364.	2.3	50
735	Relating Urban Biodiversity to Human Health With the â€~Holobiont' Concept. Frontiers in Microbiology, 2019, 10, 550.	1.5	64
736	Utilization of carbon sources in the rice rhizosphere and nonrhizosphere soils with different longâ€ŧerm fertilization management. Journal of Basic Microbiology, 2019, 59, 621-631.	1.8	19
737	Diversity analysis of the rhizospheric and endophytic bacterial communities of <i>Senecio vulgaris</i> L. (Asteraceae) in an invasive range. PeerJ, 2019, 6, e6162.	0.9	26
738	Pathogen Detection and Microbiome Analysis of Infected Wheat Using a Portable DNA Sequencer. Phytobiomes Journal, 2019, 3, 92-101.	1.4	33
740	Distinct endophytes are used by diverse plants for adaptation to karst regions. Scientific Reports, 2019, 9, 5246.	1.6	26
741	Role of the Plant Root Microbiome in Abiotic Stress Tolerance. , 2019, , 273-311.		20
742	Comparative analysis of the rhizomicrobiome of the wild versus cultivated crop: insights from rice and soybean. Archives of Microbiology, 2019, 201, 879-888.	1.0	22
743	Pre-colonization of PGPR triggers rhizosphere microbiota succession associated with crop yield enhancement. Plant and Soil, 2019, 439, 553-567.	1.8	58

#	Article	IF	CITATIONS
744	Machine Learning of Stem Cell Identities From Single-Cell Expression Data via Regulatory Network Archetypes. Frontiers in Genetics, 2019, 10, 2.	1.1	14
745	Plant hosts control microbial denitrification activity. FEMS Microbiology Ecology, 2019, 95, .	1.3	30
746	Diversity and Functionality of Culturable Endophytic Bacterial Communities in Chickpea Plants. Plants, 2019, 8, 42.	1.6	49
747	Green Technology: Bacteria-Based Approach Could Lead to Unsuspected Microbe–Plant–Animal Interactions. Microorganisms, 2019, 7, 44.	1.6	17
748	Culturable endophytic fungal communities associated with plants in organic and conventional farming systems and their effects on plant growth. Scientific Reports, 2019, 9, 1669.	1.6	62
749	Convergent gain and loss of genomic islands drive lifestyle changes in plant-associated <i>Pseudomonas</i> . ISME Journal, 2019, 13, 1575-1588.	4.4	84
750	The Impact of Soil-Applied Biochars From Different Vegetal Feedstocks on Durum Wheat Plant Performance and Rhizospheric Bacterial Microbiota in Low Metal-Contaminated Soil. Frontiers in Microbiology, 2019, 10, 2694.	1.5	27
751	<i>Lotus japonicus</i> Symbiosis Genes Impact Microbial Interactions between Symbionts and Multikingdom Commensal Communities. MBio, 2019, 10, .	1.8	41
752	Divulging diazotrophic bacterial community structure in Kuwait desert ecosystems and their N2-fixation potential. PLoS ONE, 2019, 14, e0220679.	1.1	14
753	Abiotic and biotic drivers of endosymbiont community assembly in Jatropha curcas. Ecosphere, 2019, 10, e02941.	1.0	3
754	Plant-Microbiome Interaction and the Effects of Biotic and Abiotic Components in Agroecosystem. , 2019, , 517-546.		6
755	Genome-Resolved Proteomic Stable Isotope Probing of Soil Microbial Communities Using 13CO2 and 13C-Methanol. Frontiers in Microbiology, 2019, 10, 2706.	1.5	23
756	Rhizosphere Metagenomics of Paspalum scrobiculatum L. (Kodo Millet) Reveals Rhizobiome Multifunctionalities. Microorganisms, 2019, 7, 608.	1.6	20
757	Silicon application and related changes in soil bacterial community dynamics reduced ginseng black spot incidence in Panax ginseng in a short-term study. BMC Microbiology, 2019, 19, 263.	1.3	17
758	Niche differentiation rather than biogeography shapes the diversity and composition of microbiome of Cycas panzhihuaensis. Microbiome, 2019, 7, 152.	4.9	86
759	Cultivar-Dependent Variation of the Cotton Rhizosphere and Endosphere Microbiome Under Field Conditions. Frontiers in Plant Science, 2019, 10, 1659.	1.7	49
761	Land Management and Microbial Seed Load Effect on Rhizosphere and Endosphere Bacterial Community Assembly in Wheat. Frontiers in Microbiology, 2019, 10, 2625.	1.5	18
762	Diversity of microorganisms associated to Ananas spp. from natural environment, cultivated and ex situ conservation areas. Scientia Horticulturae, 2019, 243, 544-551.	1.7	11

#	Article	IF	CITATIONS
763	Host Specificity and Spatial Distribution Preference of Three Pseudomonas Isolates. Frontiers in Microbiology, 2018, 9, 3263.	1.5	17
764	Repeated evolutionary transitions of flavobacteria from marine to nonâ€marine habitats. Environmental Microbiology, 2019, 21, 648-666.	1.8	43
765	Bioinformatics analysis of metagenomics data of biogas-producing microbial communities in anaerobic digesters: A review. Renewable and Sustainable Energy Reviews, 2019, 100, 110-126.	8.2	107
766	Rootstocks Shape the Rhizobiome: Rhizosphere and Endosphere Bacterial Communities in the Grafted Tomato System. Applied and Environmental Microbiology, 2019, 85, .	1.4	77
767	Mutual interplay between phytopathogenic powdery mildew fungi and other microorganisms. Molecular Plant Pathology, 2019, 20, 463-470.	2.0	35
768	Linking bacterial and eukaryotic microbiota to litter chemistry: Combining next generation sequencing with 13C CPMAS NMR spectroscopy. Soil Biology and Biochemistry, 2019, 129, 110-121.	4.2	65
769	Site-specific differences in microbial community structure and function within the rhizosphere and rhizoplane of wetland plants is plant species dependent. Rhizosphere, 2019, 9, 56-68.	1.4	35
770	Analysis of the community composition and bacterial diversity of the rhizosphere microbiome across different plant taxa. MicrobiologyOpen, 2019, 8, e00762.	1.2	41
771	Resilience and Assemblage of Soil Microbiome in Response to Chemical Contamination Combined with Plant Growth. Applied and Environmental Microbiology, 2019, 85, .	1.4	46
772	Isolation and characterization of bacteria associated with the rhizosphere of halophytes (Salsola) Tj ETQq1 1 0.7 Microbiology, 2019, 50, 85-97.	'84314 rgl 0.8	3T /Overlock 48
772 773	Isolation and characterization of bacteria associated with the rhizosphere of halophytes (Salsola) Tj ETQq1 1 0.7 Microbiology, 2019, 50, 85-97. Characterizing both bacteria and fungi improves understanding of the Arabidopsis root microbiome. Scientific Reports, 2019, 9, 24.	284314 rgl 0.8 1.6	3T /Overlock 48 135
772 773 774	Isolation and characterization of bacteria associated with the rhizosphere of halophytes (Salsola) Tj ETQq1 1 0.7 Microbiology, 2019, 50, 85-97. Characterizing both bacteria and fungi improves understanding of the Arabidopsis root microbiome. Scientific Reports, 2019, 9, 24. Genotype and rhizobium inoculation modulate the assembly of soybean rhizobacterial communities. Plant, Cell and Environment, 2019, 42, 2028-2044.	284314 rgl 0.8 1.6 2.8	3T /Overlock 48 135 76
772 773 774 775	Isolation and characterization of bacteria associated with the rhizosphere of halophytes (Salsola) Tj ETQq1 1 0.7 Microbiology, 2019, 50, 85-97. Characterizing both bacteria and fungi improves understanding of the Arabidopsis root microbiome. Scientific Reports, 2019, 9, 24. Genotype and rhizobium inoculation modulate the assembly of soybean rhizobacterial communities. Plant, Cell and Environment, 2019, 42, 2028-2044. Endophytic bacterial communities in peels and pulp of five root vegetables. PLoS ONE, 2019, 14, e0210542.	/84314 rg/ 0.8 1.6 2.8 1.1	3T /Overlock 48 135 76 21
772 773 774 775 776	Isolation and characterization of bacteria associated with the rhizosphere of halophytes (Salsola) Tj ETQq1 1 0.7 Microbiology, 2019, 50, 85-97. Characterizing both bacteria and fungi improves understanding of the Arabidopsis root microbiome. Scientific Reports, 2019, 9, 24. Genotype and rhizobium inoculation modulate the assembly of soybean rhizobacterial communities. Plant, Cell and Environment, 2019, 42, 2028-2044. Endophytic bacterial communities in peels and pulp of five root vegetables. PLoS ONE, 2019, 14, e0210542. Legacy of land use history determines reprogramming of plant physiology by soil microbiome. ISME Journal, 2019, 13, 738-751.	284314 rg 0.8 1.6 2.8 1.1 4.4	3T /Overlock 48 135 76 21 166
772 773 774 775 776 777	Isolation and characterization of bacteria associated with the rhizosphere of halophytes (Salsola) Tj ETQq1 1 0.7 Microbiology, 2019, 50, 85-97. Characterizing both bacteria and fungi improves understanding of the Arabidopsis root microbiome. Scientific Reports, 2019, 9, 24. Genotype and rhizobium inoculation modulate the assembly of soybean rhizobacterial communities. Plant, Cell and Environment, 2019, 42, 2028-2044. Endophytic bacterial communities in peels and pulp of five root vegetables. PLoS ONE, 2019, 14, e0210542. Legacy of land use history determines reprogramming of plant physiology by soil microbiome. ISME Journal, 2019, 13, 738-751. Responses of paddy soil bacterial community assembly to different long-term fertilizations in southeast China. Science of the Total Environment, 2019, 656, 625-633.	284314 rgl 0.8 1.6 2.8 1.1 4.4 3.9	BT /Overlock 48 135 76 21 166 73
772 773 774 775 776 777	Isolation and characterization of bacteria associated with the rhizosphere of halophytes (Salsola) Tj ETQq1 1 0.7 Microbiology, 2019, 50, 85-97. Characterizing both bacteria and fungi improves understanding of the Arabidopsis root microbiome. Scientific Reports, 2019, 9, 24. Genotype and rhizobium inoculation modulate the assembly of soybean rhizobacterial communities. Plant, Cell and Environment, 2019, 42, 2028-2044. Endophytic bacterial communities in peels and pulp of five root vegetables. PLoS ONE, 2019, 14, e0210542. Legacy of land use history determines reprogramming of plant physiology by soil microbiome. ISME Journal, 2019, 13, 738-751. Responses of paddy soil bacterial community assembly to different long-term fertilizations in southeast China. Science of the Total Environment, 2019, 656, 625-633. Plant adaptation and speciation studied by population genomic approaches. Development Growth and Differentiation, 2019, 61, 12-24.	284314 rgl 0.8 1.6 2.8 1.1 4.4 3.9 0.6	BT /Overlock 48 135 76 21 166 73 18
 772 773 774 775 776 777 778 779 	Isolation and characterization of bacteria associated with the rhizosphere of halophytes (Salsola) TJ ETQq1 1 0.7 Microbiology, 2019, 50, 85-97. Characterizing both bacteria and fungi improves understanding of the Arabidopsis root microbiome. Scientific Reports, 2019, 9, 24. Genotype and rhizobium inoculation modulate the assembly of soybean rhizobacterial communities. Plant, Cell and Environment, 2019, 42, 2028-2044. Endophytic bacterial communities in peels and pulp of five root vegetables. PLoS ONE, 2019, 14, e0210542. Legacy of land use history determines reprogramming of plant physiology by soil microbiome. ISME Journal, 2019, 13, 738-751. Responses of paddy soil bacterial community assembly to different long-term fertilizations in southeast China. Science of the Total Environment, 2019, 656, 625-633. Plant adaptation and speciation studied by population genomic approaches. Development Growth and Differentiation, 2019, 61, 12-24. Cultivar and phosphorus effects on switchgrass yield and rhizosphere microbial diversity. Applied Microbiology and Biotechnology, 2019, 103, 1973-1987.	284314 rgl 0.8 1.6 2.8 1.1 4.4 3.9 0.6 1.7	BT /Overlock 48 135 76 21 166 73 18 16

ARTICLE IF CITATIONS Apple rootstocks of different nitrogen tolerance affect the rhizosphere bacterial community 781 1.4 15 composition. Journal of Applied Microbiology, 2019, 126, 595-607. Response of microbial communities to different organochlorine pesticides (OCPs) contamination 4.2 levels in contaminated soils. Chemosphere, 2019, 215, 461-469. Potentials and pitfalls in the analysis of bipartite networks to understand plant–microbe 783 1.7 24 interactions in changing environments. Functional Ecology, 2019, 33, 107-117. Soil Characteristics Overwhelm Cultivar Effects on the Structure and Assembly of Root-Associated 784 Microbiomes of Modern Maize. Pedosphere, 2019, 29, 360-373. Contrasting Water Quality Treatments Result in Structural and Functional Changes to Wetland 785 10 1.4 Plant-Associated Microbial Communities in Lab-Scale Mesocosms. Microbial Ecology, 2020, 79, 50-63. Host-Associated Quantitative Abundance Profiling Reveals the Microbial Load Variation of Root 3.6 Microbiome. Plant Communications, 2020, 1, 100003. Interactive Effects of Microbes and Nitrogen on <i>Panicum virgatum</i> Root Functional Traits and 787 0.6 10 Patterns of Phenotypic Selection. International Journal of Plant Sciences, 2020, 181, 20-32. In Planta Colonization and Role of T6SS in Two Rice <i>Kosakonia</i> Endophytes. Molecular 1.4 Plant-Microbe Interactions, 2020, 33, 349-363. 789 Bioeconomy for Sustainable Development., 2020, , . 70 Illumina sequencing of 16S rRNA tag shows disparity in rhizobial and non-rhizobial diversity associated with root nodules of mung bean (Vigna radiata L.) growing in different habitats in Pakistan. Microbiological Research, 2020, 231, 126356. 790 2.5 Plant Growth Promoting and Stress Mitigating Abilities of Soil Born Microorganisms. Recent Patents 791 0.5 27 on Food, Nutrition & amp; Agriculture, 2020, 11, 96-104. Mecanismos de acci \tilde{A}^3 n de <i>Bacillus</i> spp. (Bacillaceae) contra microorganismos 793 0.1 fitopatógenos durante su interacción con plantas. Acta Biologica Cólombiana, 2020, 25, 112-125. Time-dependent gut microbiota analysis of juvenile Oreochromis niloticus by dietary supplementation 794 1.0 13 of resveratrol. Archives of Microbiology, 2020, 202, 43-53. Agricultural activities affect the pattern of the resistome within the phyllosphere microbiome in 795 6.5 peri-urban environments. Journal of Hazardous Materials, 2020, 382, 121068. Remediation mechanism of endophytic fungus Phomopsis liquidambaris on phenanthrene inÂvivo. 796 4.2 14 Chemosphere, 2020, 243, 125305. Root Endophytes of Coffee (<i>Coffea</i> <i>arabica</i>): Variation Across Climatic Gradients and 797 1.4 Relationships with Functional Traits. Phytobiomes Journal, 2020, 4, 27-39. Crop-dependent root-microbe-soil interactions induce contrasting natural attenuation of 798 3.7 13 organochlorine lindane in soils. Environmental Pollution, 2020, 257, 113580. Locally Adapted <i>Mimulus</i> Ecotypes Differentially Impact Rhizosphere Bacterial and Archaeal 799 1.4 Communities in an Environment-Dependent Manner. Phytobiomes Journal, 2020, 4, 53-63.

#	Article	IF	CITATIONS
800	Sediment microbiomes associated with the rhizosphere of emergent macrophytes in a shallow, subtropical lake. Limnology and Oceanography, 2020, 65, S38.	1.6	46
801	Drivers of the composition of active rhizosphere bacterial communities in temperate grasslands. ISME Journal, 2020, 14, 463-475.	4.4	141
802	Distinct factors drive the assembly of quinoa-associated microbiomes along elevation. Plant and Soil, 2020, 448, 55-69.	1.8	21
803	Unique bacterial assembly, composition, and interactions in a parasitic plant and its host. Journal of Experimental Botany, 2020, 71, 2198-2209.	2.4	22
804	The versatility of Pseudomonas putida in the rhizosphere environment. Advances in Applied Microbiology, 2020, 110, 149-180.	1.3	14
805	Steering root microbiomes of a commercial horticultural crop with plant-soil feedbacks. Applied Soil Ecology, 2020, 150, 103468.	2.1	26
806	Leaf-derived bacterial communities adapt to the local environment. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 808-810.	3.3	9
807	Apple rootstocks with different phosphorus efficiency exhibit alterations in rhizosphere bacterial structure. Journal of Applied Microbiology, 2020, 128, 1460-1471.	1.4	7
808	Assembly of root-associated microbial community of typical rice cultivars in different soil types. Biology and Fertility of Soils, 2020, 56, 249-260.	2.3	65
809	Enhanced optimal removal of nitrogen and organics from intermittently aerated vertical flow constructed wetlands: Relative COD/N ratios and microbial responses. Chemosphere, 2020, 244, 125556.	4.2	64
810	Endophytic bacterial communities of oilseed rape associate with genotype-specific resistance against Verticillium longisporum. FEMS Microbiology Ecology, 2020, 96, .	1.3	8
811	A Tripartite Interaction among the Basidiomycete <i>Rhodotorula mucilaginosa</i> , N ₂ -Fixing Endobacteria, and Rice Improves Plant Nitrogen Nutrition. Plant Cell, 2020, 32, 486-507.	3.1	29
812	Host identity determines plant associated resistomes. Environmental Pollution, 2020, 258, 113709.	3.7	23
813	Rhizosphere modelling reveals spatiotemporal distribution of daidzein shaping soybean rhizosphere bacterial community. Plant, Cell and Environment, 2020, 43, 1036-1046.	2.8	63
814	Tomato RNA-seq Data Mining Reveals the Taxonomic and Functional Diversity of Root-Associated Microbiota. Microorganisms, 2020, 8, 38.	1.6	15
815	Tomato Genotype Modulates Selection and Responses to Root Microbiota. Phytobiomes Journal, 2020, 4, 314-326.	1.4	17
816	Root-Secreted Coumarins and the Microbiota Interact to Improve Iron Nutrition in Arabidopsis. Cell Host and Microbe, 2020, 28, 825-837.e6.	5.1	199
817	Novel Xanthomonas Species From the Perennial Ryegrass Seed Microbiome – Assessing the Bioprotection Activity of Non-pathogenic Relatives of Pathogens. Frontiers in Microbiology, 2020, 11,	1.5	18

#	Article	IF	Citations
818	Effects of <i>Hedysarum</i> leguminous plants on soil bacterial communities in the Mu Us Desert, northwest China. Ecology and Evolution, 2020, 10, 11423-11439.	0.8	15
819	Plant pathological condition is associated with fungal community succession triggered by root exudates in the plant-soil system. Soil Biology and Biochemistry, 2020, 151, 108046.	4.2	33
820	Global patterns and determinants of bacterial communities associated with ectomycorrhizal root tips of Alnus species. Soil Biology and Biochemistry, 2020, 148, 107923.	4.2	5
821	The Apoplast: A Key Player in Plant Survival. Antioxidants, 2020, 9, 604.	2.2	66
822	A Compost Treatment Acts as a Suppressive Agent in Phytophthora capsici – Cucurbita pepo Pathosystem by Modifying the Rhizosphere Microbiota. Frontiers in Plant Science, 2020, 11, 885.	1.7	19
823	Wheat Microbiome: Present Status and Future Perspective. , 2020, , 191-223.		12
824	Rice <i>SST</i> Variation Shapes the Rhizosphere Bacterial Community, Conferring Tolerance to Salt Stress through Regulating Soil Metabolites. MSystems, 2020, 5, .	1.7	35
825	Diversity, function and assembly of mangrove root-associated microbial communities at a continuous fine-scale. Npj Biofilms and Microbiomes, 2020, 6, 52.	2.9	68
826	Many roads to bacterial generalism. FEMS Microbiology Ecology, 2020, 97, .	1.3	21
827	Factors influencing the persistence of enteropathogenic bacteria in wetland habitats and implications for water quality. Journal of Applied Microbiology, 2020, 131, 513-526.	1.4	2
828	Structure and Function of Bacterial Microbiota in Eucommia ulmoides Bark. Current Microbiology, 2020, 77, 3623-3632.	1.0	15
829	Soil microbiota influences clubroot disease by modulating <i>Plasmodiophora brassicae</i> and <i>Brassica napus</i> transcriptomes. Microbial Biotechnology, 2020, 13, 1648-1672.	2.0	22
830	Bacillus. , 2020, , 107-132.		7
831	The Exopolysaccharide Cepacian Plays a Role in the Establishment of the Paraburkholderia phymatum – Phaseolus vulgaris Symbiosis. Frontiers in Microbiology, 2020, 11, 1600.	1.5	13
832	Impact of Quorum Sensing Molecules on Plant Growth and Immune System. Frontiers in Microbiology, 2020, 11, 1545.	1.5	46
833	Profiling the <i>Lolium perenne</i> Microbiome: From Seed to Seed. Phytobiomes Journal, 2020, 4, 281-289.	1.4	34
834	Phylogenetic signal of host plants in the bacterial and fungal root microbiomes of cultivated angiosperms. Plant Journal, 2020, 104, 522-531.	2.8	19
835	The endosphere bacteriome of diseased and healthy tomato plants. Archives of Microbiology, 2020, 202, 202, 2629-2642.	1.0	10

#	Article	IF	CITATIONS
836	Domestication-driven changes in plant traits associated with changes in the assembly of the rhizosphere microbiota in tetraploid wheat. Scientific Reports, 2020, 10, 12234.	1.6	38
837	Physiological change alters endophytic bacterial community in clubroot of tumorous stem mustard infected by Plasmodiophora brassicae. BMC Microbiology, 2020, 20, 244.	1.3	9
838	Trifolium repens-Associated Bacteria as a Potential Tool to Facilitate Phytostabilization of Zinc and Lead Polluted Waste Heaps. Plants, 2020, 9, 1002.	1.6	13
839	Biological nitrification inhibition in the rhizosphere: determining interactions and impact on microbially mediated processes and potential applications. FEMS Microbiology Reviews, 2020, 44, 874-908.	3.9	73
840	Specific root respiration of three plant species as influenced by storage time and conditions. Plant and Soil, 2020, 453, 615-626.	1.8	9
841	Changes in the core endophytic mycobiome of carrot taproots in response to crop management and genotype. Scientific Reports, 2020, 10, 13685.	1.6	11
843	Microbiome manipulation by a soil-borne fungal plant pathogen using effector proteins. Nature Plants, 2020, 6, 1365-1374.	4.7	118
844	How directed is a directed network?. Royal Society Open Science, 2020, 7, 201138.	1.1	30
845	Testing the Two-Step Model of Plant Root Microbiome Acquisition Under Multiple Plant Species and Soil Sources. Frontiers in Microbiology, 2020, 11, 542742.	1.5	20
846	Effect of Inorganic N Top Dressing and Trichoderma harzianum Seed-Inoculation on Crop Yield and the Shaping of Root Microbial Communities of Wheat Plants Cultivated Under High Basal N Fertilization. Frontiers in Plant Science, 2020, 11, 575861.	1.7	32
847	Environmental adaptation of the root microbiome in two rice ecotypes. Microbiological Research, 2020, 241, 126588.	2.5	8
848	Niche Specialization and Functional Overlap of Bamboo Leaf and Root Microbiota. Frontiers in Microbiology, 2020, 11, 571159.	1.5	12
849	Plants endophytes: unveiling hidden agenda for bioprospecting toward sustainable agriculture. Critical Reviews in Biotechnology, 2020, 40, 1210-1231.	5.1	81
850	Growth of Arabidopsis thaliana in rhizobox culture system evaluated through the lens of root microbiome. Plant and Soil, 2020, 455, 467-487.	1.8	2
851	The Nexus Between Plant and Plant Microbiome: Revelation of the Networking Strategies. Frontiers in Microbiology, 2020, 11, 548037.	1.5	39
852	Microbe-Plant Growing Media Interactions Modulate the Effectiveness of Bacterial Amendments on Lettuce Performance Inside a Plant Factory with Artificial Lighting. Agronomy, 2020, 10, 1456.	1.3	22
853	The volatile organic compounds of Floccularia luteovirens modulate plant growth and metabolism in Arabidopsis thaliana. Plant and Soil, 2020, 456, 207-221.	1.8	16
854	Root Fungal Endophytes and Microbial Extracellular Enzyme Activities Show Patterned Responses in Tall Fescues under Drought Conditions. Agronomy, 2020, 10, 1076.	1.3	9

#	Article	IF	CITATIONS
855	Alteration of Bacterial Wilt Resistance in Tomato Plant by Microbiota Transplant. Frontiers in Plant Science, 2020, 11, 1186.	1.7	36
856	Dynamic Changes in the Microbiome of Rice During Shoot and Root Growth Derived From Seeds. Frontiers in Microbiology, 2020, 11, 559728.	1.5	29
857	Characterization of rhizome transcriptome and identification of a rhizomatous ER body in the clonal plant Cardamine leucantha. Scientific Reports, 2020, 10, 13291.	1.6	4
858	Soil potassium is correlated with root secondary metabolites and root-associated core bacteria in licorice of different ages. Plant and Soil, 2020, 456, 61-79.	1.8	33
859	The Prevention of Bio-Organic Fertilizer Fermented from Cow Manure Compost by Bacillus sp. XG-1 on Watermelon Continuous Cropping Barrier. International Journal of Environmental Research and Public Health, 2020, 17, 5714.	1.2	3
860	What is the Molecular Basis of Nonhost Resistance?. Molecular Plant-Microbe Interactions, 2020, 33, 1253-1264.	1.4	47
861	Comparative study of neighboring Holm oak and olive trees-belowground microbial communities subjected to different soil management. PLoS ONE, 2020, 15, e0236796.	1.1	10
862	A hyperaccumulator plant Sedum alfredii recruits Cd/Zn-tolerant but not Pb-tolerant endospheric bacterial communities from its rhizospheric soil. Plant and Soil, 2020, 455, 257-270.	1.8	12
863	Plant-PGPR interaction study of plant growth-promoting diazotrophs <i>Kosakonia radicincitans</i> BA1 and <i>Stenotrophomonas maltophilia</i> COA2 to enhance growth and stress-related gene expression in <i>Saccharum</i> spp Journal of Plant Interactions, 2020, 15, 427-445.	1.0	32
864	Effect of Co-Inoculation of Bradyrhizobium and Trichoderma on Growth, Development, and Yield of Arachis hypogaea L. (Peanut). Agronomy, 2020, 10, 1415.	1.3	14
865	AHL-priming for enhanced resistance as a tool in sustainable agriculture. FEMS Microbiology Ecology, 2020, 96, .	1.3	16
866	Rhizosphere microbiome: Engineering bacterial competitiveness for enhancing crop production. Journal of Advanced Research, 2020, 24, 337-352.	4.4	172
867	Microbial assemblages associated with the rhizosphere and endosphere of an herbage, <i>Leymus chinensis</i> . Microbial Biotechnology, 2020, 13, 1390-1402.	2.0	30
868	Effects of Epichloë gansuensis Endophyte on the Root and Rhizosphere Soil Bacteria of Achnatherum inebrians Under Different Moisture Conditions. Frontiers in Microbiology, 2020, 11, 747.	1.5	29
869	Shifts in the bacterial community along with root-associated compartments of maize as affected by goethite. Biology and Fertility of Soils, 2020, 56, 1201-1210.	2.3	15
870	Diversity and abundance of resistome in rhizosphere soil. Science China Life Sciences, 2020, 63, 1946-1949.	2.3	1
871	Contrasting Patterns in Diversity and Community Assembly of Phragmites australis Root-Associated Bacterial Communities from Different Seasons. Applied and Environmental Microbiology, 2020, 86, .	1.4	39
872	Tree Root Zone Microbiome: Exploring the Magnitude of Environmental Conditions and Host Tree Impact. Frontiers in Microbiology, 2020, 11, 749.	1.5	20

#	Article	IF	CITATIONS
873	Pollution adaptive responses of root-associated microbiomes induced the promoted but different attenuation of soil residual lindane: Differences between maize and soybean. Science of the Total Environment, 2020, 732, 139170.	3.9	18
874	Dynamics Relationship of Phyllosphere and Rhizosphere Bacterial Communities During the Development of Bothriochloa ischaemum in Copper Tailings. Frontiers in Microbiology, 2020, 11, 869.	1.5	5
875	Ecology and genomics of Actinobacteria: new concepts for natural product discovery. Nature Reviews Microbiology, 2020, 18, 546-558.	13.6	188
876	Insights into factors driving the transmission of antibiotic resistance from sludge compost-amended soil to vegetables under cadmium stress. Science of the Total Environment, 2020, 729, 138990.	3.9	30
877	It takes three to tango: the importance of microbes, host plant, and soil management to elucidate manipulation strategies for the plant microbiome. Canadian Journal of Microbiology, 2020, 66, 413-433.	0.8	44
878	Nitrogen Substrate Utilization in Three Rhizosphere Bacterial Strains Investigated Using Proteomics. Frontiers in Microbiology, 2020, 11, 784.	1.5	6
879	Novel cultivated endophytic Verrucomicrobia reveal deep-rooting traits of bacteria to associate with plants. Scientific Reports, 2020, 10, 8692.	1.6	30
880	The Plant Microbiome: From Ecology to Reductionism and Beyond. Annual Review of Microbiology, 2020, 74, 81-100.	2.9	225
881	Community structure and diversity of the microbiomes of two microhabitats at the root–soil interface: implications of meta-analysis of the root-zone soil and root endosphere microbial communities in Xiong'an New Area. Canadian Journal of Microbiology, 2020, 66, 605-622.	0.8	10
882	Diazotrophic communities are more responsive to maize cultivation than phosphorus fertilization in an acidic soil. Plant and Soil, 2020, 452, 499-512.	1.8	11
883	Engineering CRISPR/Cas9 to mitigate abundant host contamination for 16S rRNA gene-based amplicon sequencing. Microbiome, 2020, 8, 80.	4.9	27
884	Crop management system and carrot genotype affect endophyte composition and Alternaria dauci suppression. PLoS ONE, 2020, 15, e0233783.	1.1	19
885	<i>Streptomyces</i> Endophytes Promote Host Health and Enhance Growth across Plant Species. Applied and Environmental Microbiology, 2020, 86, .	1.4	44
886	Multi-omics analysis on an agroecosystem reveals the significant role of organic nitrogen to increase agricultural crop yield. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14552-14560.	3.3	77
887	Phytopathogenic Rhodococcus Have Diverse Plasmids With Few Conserved Virulence Functions. Frontiers in Microbiology, 2020, 11, 1022.	1.5	18
888	Tissue-Specific Dynamics in the Endophytic Bacterial Communities in Arctic Pioneer Plant Oxyria digyna. Frontiers in Plant Science, 2020, 11, 561.	1.7	14
889	Drought Drives Spatial Variation in the Millet Root Microbiome. Frontiers in Plant Science, 2020, 11, 599.	1.7	42
890	Effects of Distinct Revegetation Methods on Growth and Microbial Properties of Vallisneria natans. Water (Switzerland), 2020, 12, 1294.	1.2	1

ARTICLE IF CITATIONS # Divergent biotic and abiotic filtering of root endosphere and rhizosphere soil fungal communities 891 1.3 11 along ecological gradients. FEMS Microbiology Ecology, 2020, 96, . The Bacterial Microbiome of Meloidogyne-Based Disease Complex in Coffee and Tomato. Frontiers in 892 1.7 34 Plant Science, 2020, 11, 136. 893 Plant Microbiomes for Sustainable Agriculture. Sustainable Development and Biodiversity, 2020, , . 1.4 134 An amplification-selection model for quantified rhizosphere microbiota assembly. Science Bulletin, 894 64 2020, 65, 983-986. Tailoring plant-associated microbial inoculants in agriculture: a roadmap for successful application. 895 2.4 118 Journal of Experimental Botany, 2020, 71, 3878-3901. Characterization of the Gut Microbiota of the Antarctic Heart Urchin (Spatangoida) Abatus agassizii. 1.5 Frontiers in Microbiology, 2020, 11, 308. Rhizosphere Microbial Community Structure Is Selected by Habitat but Not Plant Species in Two 897 1.5 33 Tropical Seagrass Beds. Frontiers in Microbiology, 2020, 11, 161. 898 Entry, colonization, and distribution of endophytic microorganisms in plants. , 2020, , 1-33. 24 Spatio-Temporal and Cultivar-Dependent Variations in the Cannabis Microbiome. Frontiers in 899 1.5 28 Microbiology, 2020, 11, 491. Root-Bacteria Associations Boost Rhizosheath Formation in Moderately Dry Soil through Ethylene 2.3 Responses. Plant Physiology, 2020, 183, 780-792. 901 Plant Microbe Symbiosis., 2020,,. 13 Do soilâ€borne fungal pathogens mediate plant diversity–productivity relationships? Evidence and 49 future opportunities. Journal of Ecology, 2020, 108, 1810-1821. Influence of salt stress on the rhizosphere soil bacterial community structure and growth 903 1.1 34 performance of groundnut (Arachis hypogaea L.). International Microbiology, 2020, 23, 453-465. Response of rhizospheric and endophytic bacterial communities of white mustard (Sinapis alba) to bioaugmentation of soil with the Pseudomonas sp. H15 strain. Ecotoxicology and Environmental 904 Safety, 2020, 194, 110434. Symbiolite formation: a powerful in vitro model to untangle the role of bacterial communities in the 905 4.4 14 photosynthesis-induced formation of microbialites. ISME Journal, 2020, 14, 1533-1546. Agricultural Selection of Wheat Has Been Shaped by Plant-Microbe Interactions. Frontiers in 906 53 Microbiology, 2020, 11, 132. Scientific Prospects for Cannabis-Microbiome Research to Ensure Quality and Safety of Products. 907 1.6 30 Microorganisms, 2020, 8, 290. Mutualistic Outcomes Across Plant Populations, Microbes, and Environments in the Duckweed Lemna 908 1.4

CITATION REPORT

minor. Microbial Ecology, 2020, 80, 384-397.

#	Article	IF	CITATIONS
909	Unveiling the Microbiota Diversity of the Xerophyte Argania spinosa L. Skeels Root System and Residuesphere. Microbial Ecology, 2020, 80, 822-836.	1.4	8
910	The Presence of Plant-Associated Bacteria Alters Responses to N-acyl Homoserine Lactone Quorum Sensing Signals that Modulate Nodulation in Medicago Truncatula. Plants, 2020, 9, 777.	1.6	10
911	Quantitative comparison between the rhizosphere effect of <i>Arabidopsis thaliana</i> and co-occurring plant species with a longer life history. ISME Journal, 2020, 14, 2433-2448.	4.4	27
912	Distinct rhizobacterial functional assemblies assist two Sedum alfredii ecotypes to adopt different survival strategies under lead stress. Environment International, 2020, 143, 105912.	4.8	31
913	Prairie plants harbor distinct and beneficial root-endophytic bacterial communities. PLoS ONE, 2020, 15, e0234537.	1.1	0
914	Short-Term Effects of Eco-Friendly Fertilizers on a Soil Bacterial Community in the Topsoil and Rhizosphere of an Irrigated Agroecosystem. Sustainability, 2020, 12, 4803.	1.6	1
915	Aquaponics using a fish farm effluent shifts bacterial communities profile in halophytes rhizosphere and endosphere. Scientific Reports, 2020, 10, 10023.	1.6	9
916	Changes of endophytic bacterial community and pathogens in pepper (Capsicum annuum L.) as affected by reclaimed water irrigation. Applied Soil Ecology, 2020, 156, 103627.	2.1	20
917	Plant microbiome–an account of the factors that shape community composition and diversity. Current Plant Biology, 2020, 23, 100161.	2.3	213
918	Duckweed hosts a taxonomically similar bacterial assemblage as the terrestrial leaf microbiome. PLoS ONE, 2020, 15, e0228560.	1.1	51
919	Enantioselective effects of imazethapyr on Arabidopsis thaliana root exudates and rhizosphere microbes. Science of the Total Environment, 2020, 716, 137121.	3.9	37
920	Core microbiomes: Characterization and identification. , 2020, , 43-84.		0
921	Molecular mechanism of plant-microbe interactions. , 2020, , 85-136.		1
922	Lisa: inferring transcriptional regulators through integrative modeling of public chromatin accessibility and ChIP-seq data. Genome Biology, 2020, 21, 32.	3.8	161
923	Rhizobium Inoculation Drives the Shifting of Rhizosphere Fungal Community in a Host Genotype Dependent Manner. Frontiers in Microbiology, 2019, 10, 3135.	1.5	23
924	Advances in the control of phytopathogenic fungi that infect crops through their root system. Advances in Applied Microbiology, 2020, 111, 123-170.	1.3	18
925	Enrichment of potentially beneficial bacteria from the consistent microbial community confers canker resistance on tomato. Microbiological Research, 2020, 234, 126446.	2.5	4
926	Assembly and shifts of the bacterial rhizobiome of field grown transgenic maize line carrying mcry1Ab and mcry2Ab genes at different developmental stages. Plant Growth Regulation, 2020, 91, 113-126.	1.8	8

#	Article	IF	CITATIONS
927	Myxobacterial Response to Methyljasmonate Exposure Indicates Contribution to Plant Recruitment of Micropredators. Frontiers in Microbiology, 2020, 11, 34.	1.5	10
929	The influence of hostâ€plant connectivity on fungal assemblages in the root microbiota of Brachypodium pinnatum. Ecology, 2020, 101, e02976.	1.5	10
930	Microbial ecology in sustainable fruit growing: Genetic, functional, and metabolic responses. , 2020, , 317-324.		0
931	Clonality as a key but overlooked driver of biotic interactions in plants. Perspectives in Plant Ecology, Evolution and Systematics, 2020, 43, 125510.	1.1	31
932	The variability of bacterial communities in both the endosphere and ectosphere of different niches in Chinese chives (Allium tuberosum). PLoS ONE, 2020, 15, e0227671.	1.1	7
933	Efficacy of Trichoderma asperellum TC01 against anthracnose and growth promotion of Camellia sinensis seedlings. Biological Control, 2020, 143, 104205.	1.4	23
934	Insect herbivory reshapes a native leaf microbiome. Nature Ecology and Evolution, 2020, 4, 221-229.	3.4	78
935	Rare Species Shift the Structure of Bacterial Communities Across Sphagnum Compartments in a Subalpine Peatland. Frontiers in Microbiology, 2019, 10, 3138.	1.5	18
936	Revealing the Variation and Stability of Bacterial Communities in Tomato Rhizosphere Microbiota. Microorganisms, 2020, 8, 170.	1.6	57
937	Modulation of the Root Microbiome by Plant Molecules: The Basis for Targeted Disease Suppression and Plant Growth Promotion. Frontiers in Plant Science, 2019, 10, 1741.	1.7	354
938	Core and Differentially Abundant Bacterial Taxa in the Rhizosphere of Field Grown Brassica napus Genotypes: Implications for Canola Breeding. Frontiers in Microbiology, 2019, 10, 3007.	1.5	39
939	Influence of Plant Fraction, Soil, and Plant Species on Microbiota: a Multikingdom Comparison. MBio, 2020, 11, .	1.8	126
940	Mercury alters the rhizobacterial community in Brazilian wetlands and it can be bioremediated by the plant-bacteria association. Environmental Science and Pollution Research, 2020, 27, 13550-13564.	2.7	23
941	Bioinformatics analysis of endophytic bacteria related to berberine in the Chinese medicinal plant Coptis teeta Wall. 3 Biotech, 2020, 10, 96.	1.1	20
942	Rhizosphere bacteria are more strongly related to plant root traits than fungi in temperate montane forests: insights from closed and open forest patches along an elevational gradient. Plant and Soil, 2020, 450, 183-200.	1.8	24
943	An Arabidopsis Secondary Metabolite Directly Targets Expression of the Bacterial Type III Secretion System to Inhibit Bacterial Virulence. Cell Host and Microbe, 2020, 27, 601-613.e7.	5.1	66
944	Responses of soil bacterial community and Cd phytoextraction to a Sedum alfredii-oilseed rape (Brassica napus L. and Brassica juncea L.) intercropping system. Science of the Total Environment, 2020, 723, 138152.	3.9	61
945	Root filtering, rather than host identity or age, determines the composition of root-associated fungi and oomycetes in three naturally co-occurring Brassicaceae. Soil Biology and Biochemistry, 2020, 146, 107806.	4.2	28

#	Article	IF	CITATIONS
946	Toward Comprehensive Plant Microbiome Research. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	35
947	Phylogenetic Structure of Soil Bacterial Communities along Age Sequence of Subtropical Cunninghamia Lanceolata Plantations. Sustainability, 2020, 12, 1864.	1.6	5
948	Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean. ISME Journal, 2020, 14, 1915-1928.	4.4	154
949	Endophytic microbial assemblage in grapevine. FEMS Microbiology Ecology, 2020, 96, .	1.3	60
950	Analysis of endophytic and rhizosphere bacterial diversity and function in the endangered plant Paeonia ludlowii. Archives of Microbiology, 2020, 202, 1717-1728.	1.0	19
951	Elucidation of the rhizosphere microbiome linked to Spartina alterniflora phenotype in a salt marsh on Skidaway Island, Georgia, USA. FEMS Microbiology Ecology, 2020, 96, .	1.3	21
952	Comparison of the Rhizosphere Soil Microbial Community Structure and Diversity Between Powdery Mildew-Infected and Noninfected Strawberry Plants in a Greenhouse by High-Throughput Sequencing Technology. Current Microbiology, 2020, 77, 1724-1736.	1.0	18
953	Overview and challenges in the implementation of plant beneficial microbes. , 2020, , 1-18.		3
954	Molecular aspects of biocontrol species of Streptomyces in agricultural crops. , 2020, , 89-109.		10
955	Volatile organic compounds mediated plant-microbe interactions in soil. , 2020, , 209-219.		6
956	Insights into the community structure and lifestyle of the fungal root endophytes of tomato by combining amplicon sequencing and isolation approaches with phytohormone profiling. FEMS Microbiology Ecology, 2020, 96, .	1.3	31
957	Tapping into the maize root microbiome to identify bacteria that promote growth under chilling conditions. Microbiome, 2020, 8, 54.	4.9	63
958	The preceding root system drives the composition and function of the rhizosphere microbiome. Genome Biology, 2020, 21, 89.	3.8	61
959	Bacterial Community Selection of Russula griseocarnosa Mycosphere Soil. Frontiers in Microbiology, 2020, 11, 347.	1.5	13
960	Comparative Analysis of Rhizosphere Microbiomes of Southern Highbush Blueberry (Vaccinium) Tj ETQq0 0 0 rgB Frontiers in Microbiology, 2020, 11, 370.	BT /Overloo 1.5	ck 10 Tf 50 1 22
961	Rhizosphere microbial diversity and community dynamics during potato cultivation. European Journal of Soil Biology, 2020, 98, 103176.	1.4	60
962	Antibiotic resistome in the livestock and aquaculture industries: Status and solutions. Critical Reviews in Environmental Science and Technology, 2021, 51, 2159-2196.	6.6	109
963	Impacts of cadmium addition on the alteration of microbial community and transport of antibiotic resistance genes in oxytetracycline contaminated soil. Journal of Environmental Sciences, 2021, 99, 51-58.	3.2	23

ARTICLE IF CITATIONS # Root microbiome assembly of Asâ€hyperaccumulator <scp><i>Pteris vittata</i></scp> and its efficacy in 964 1.8 25 arsenic requisition. Environmental Microbiology, 2021, 23, 1959-1971. Assembly and variation of root-associated microbiota of rice during their vegetative growth phase 2.4 19 with and without lindane pollutant. Soil Ecology Letters, 2021, 3, 207-219. Colonization and performance of a pyrene-degrading bacterium Mycolicibacterium sp. Pyr9 on root 966 4.2 25 surfaces of white clover. Chemosphere, 2021, 263, 127918. CO2 is a key constituent of the plant growth-promoting volatiles generated by bacteria in a sealed system. Plant Cell Reports, 2021, 40, 59-68. Pinpointing secondary metabolites that shape the composition and function of the plant microbiome. 968 2.4 124 Journal of Experimental Botany, 2021, 72, 57-69. The microbial community, its biochemical potential, and the antimicrobial resistance of Enterococcus spp. in Arctic lakes under natural and anthropogenic impact (West Spitsbergen). Science of the Total Environment, 2021, 763, 142998. The Switchgrass Microbiome: A Review of Structure, Function, and Taxonomic Distribution. 970 1.4 29 Phytobiomes Journal, 2021, 5, 14-28. Rhizobacterial communities, enzyme activity, and soil properties affect rice seedling's nitrogen use. 971 Agronomy Journal, 2021, 113, 633-644. Microbial structure of carbon source utilization in rice rhizosphere and non $\hat{e}_{\mathbf{f}}$ hizosphere soils with 972 1.8 1 different shortâ€term tillage management. Land Degradation and Development, 2021, 32, 1570-1580. Interacting effects of land use type, microbes and plant traits on soil aggregate stability. Soil Biology 4.2 38 and Biochemistry, 2021, 154, 108072. Metabolomics in plant-microbe interactions in the roots. Advances in Botanical Research, 2021, 98, 974 0.5 11 133-161. Application of a microbial consortium improves the growth of <i>Camellia sinensis</i> the indigenous rhizosphere bacterial communities. Journal of Applied Microbiology, 2021, 130, 1.4 2029-2040. Secondary metabolites from bacteria and viruses., 2021, , 19-40. 976 7 Maize endophytic microbial-communities revealed by removing PCR and 16S rRNA sequencing and their synthetic applications to suppress maize banded leaf and sheath blight. Microbiological Research, 2021, 242, 126639. 2.5 Niche-adaptation in plant-associated <i>Bacteroidetes</i> favours specialisation in organic 978 4.4 74 phosphorus mineralisation. ISME Journal, 2021, 15, 1040-1055. Hormones as goâ€betweens in plant microbiome assembly. Plant Journal, 2021, 105, 518-541. 979 2.8 Application of pharmaceutical waste sludge compost alters the antibiotic resistome in soil under the 980 4.6 17 Chinese cabbage system. Journal of Cleaner Production, 2021, 291, 125229. Nitrogen removal performance and bacterial communities in zeolite trickling filter under different influent C/N ratios. Environmental Science and Pollution Research, 2021, 28, 15909-15922.

#	Article	IF	CITATIONS
982	Modern biotechnological tools: an opportunity to discover complex phytobiomes of horticulture crops. , 2021, , 85-124.		3
983	Comparison of performance of two large-scale vertical-flow constructed wetlands treating wastewater treatment plant tail-water: Contaminants removal and associated microbial community. Journal of Environmental Management, 2021, 278, 111564.	3.8	49
984	From macro to micro: a combined bioluminescenceâ€fluorescence approach to monitor bacterial localization. Environmental Microbiology, 2021, 23, 2070-2085.	1.8	9
986	Host selection shapes crop microbiome assembly and network complexity. New Phytologist, 2021, 229, 1091-1104.	3.5	349
991	Impact of long-term fertilizer and summer warming treatments on bulk soil and birch rhizosphere microbial communities in mesic arctic tundra. Arctic, Antarctic, and Alpine Research, 2021, 53, 196-211.	0.4	2
992	Soil microbial influences on "One Healthâ€, , 2021, , 681-700.		0
993	Development of Biofertilizers and Microbial Consortium an Approach to Sustainable Agriculture Practices. Rhizosphere Biology, 2021, , 315-348.	0.4	1
994	Methods for studying the forest tree microbiome. , 2021, , 35-58.		1
996	Emerging approaches to manipulate the plant microbiome and implications. , 2021, , 63-68.		0
997	Long Sequencing Tools for Rhizosphere Study. Rhizosphere Biology, 2021, , 213-233.	0.4	0
998	Bioefficacy of Endophytes in the Control of Plant Diseases. Sustainable Development and Biodiversity, 2021, , 11-34.	1.4	0
999	Natural Bacterial Assemblages in Arabidopsis thaliana Tissues Become More Distinguishable and Diverse during Host Development. MBio, 2021, 12, .	1.8	18
1000	Microbial management of crop abiotic stresses: Current trends and prospects. , 2021, , 251-260.		1
1001	Coupling the endophytic microbiome with the host transcriptome in olive roots. Computational and Structural Biotechnology Journal, 2021, 19, 4777-4789.	1.9	8
1002	Genomics and functional traits required for the successful use of biofertilizers. , 2021, , 45-56.		0
1004	Ecology and performance of rhizosphere and endosphere microbiomes. , 2021, , 125-136.		0
1005	Manoeuvring Soil Microbiome and Their Interactions: A Resilient Technology for Conserving Soil and Plant Health. , 2021, , 405-433.		1
1006	Structural variability and differentiation of niches in the rhizosphere and endosphere bacterial microbiome of moso bamboo (Phyllostachys edulis). Scientific Reports, 2021, 11, 1574.	1.6	18

		CITATION REPORT		
#	Article		IF	Citations
1007	Rhizosphere Dynamics: An OMICS Perspective. Rhizosphere Biology, 2021, , 73-88.		0.4	2
1009	Orchid-Associated Bacteria and Their Plant Growth Promotion Capabilities. Reference S Phytochemistry, 2021, , 1-26.	Series in	0.2	0
1011	Intracellular Bacteria in Plants: Elucidation of Abundant and Diverse Cytoplasmic Bacter Plant Cells Using In Vitro Cell and Callus Cultures. Microorganisms, 2021, 9, 269.	ria in Healthy	1.6	12
1012				

#	Article	IF	CITATIONS
1029	Diversity and structure of phenanthrene degrading bacterial communities associated with fungal bioremediation in petroleum contaminated soil. Journal of Hazardous Materials, 2021, 403, 123895.	6.5	40
1030	Phyllosphere microbiota: Community dynamics and its interaction with plant hosts. Journal of Integrative Plant Biology, 2021, 63, 297-304.	4.1	61
1031	Deciphering bacterial mechanisms of root colonization. Environmental Microbiology Reports, 2021, 13, 428-444.	1.0	75
1032	Antibiotics and Antibiotic Resistance Genes in Animal Manure – Consequences of Its Application in Agriculture. Frontiers in Microbiology, 2021, 12, 610656.	1.5	125
1033	Plant-Bacteria Interactions for the Elimination of Atmospheric Contaminants in Cities. Agronomy, 2021, 11, 493.	1.3	11
1034	Determination of Microbial Diversity and Community Composition in Unfermented and Fermented Washing Rice Water by High-Throughput Sequencing. Current Microbiology, 2021, 78, 1730-1740.	1.0	7
1035	Plants Specifically Modulate the Microbiome of Root-Lesion Nematodes in the Rhizosphere, Affecting Their Fitness. Microorganisms, 2021, 9, 679.	1.6	7
1036	Proteomic analysis reveals how pairing of a Mycorrhizal fungus with plant <scp>growthâ€promoting</scp> bacteria modulates growth and defense in wheat. Plant, Cell and Environment, 2021, 44, 1946-1960.	2.8	26
1037	Seedâ€borne, endospheric and rhizospheric core microbiota as predictors of plant functional traits across rice cultivars are dominated by deterministic processes. New Phytologist, 2021, 230, 2047-2060.	3.5	70
1038	<scp><i>Paenibacillus polymyxa</i></scp> , a Jack of all trades. Environmental Microbiology, 2021, 23, 5659-5669.	1.8	47
1040	Variable influences of soil and seed-associated bacterial communities on the assembly of seedling microbiomes. ISME Journal, 2021, 15, 2748-2762.	4.4	63
1041	A Degeneration Gradient of Poplar Trees Contributes to the Taxonomic, Functional, and Resistome Diversity of Bacterial Communities in Rhizosphere Soils. International Journal of Molecular Sciences, 2021, 22, 3438.	1.8	10
1042	Potato plant spheres and to a lesser extent the soil type influence the proportion and diversity of bacterial isolates with <i>in vitro</i> antagonistic activity towards <i>Ralstonia solanacearum</i> . FEMS Microbiology Ecology, 2021, 97, .	1.3	7
1043	An Ecological Insight into the Multifaceted World of Plant-Endophyte Association. Critical Reviews in Plant Sciences, 2021, 40, 127-146.	2.7	28
1044	The Himalayan Onion (Allium wallichii Kunth) Harbors Unique Spatially Organized Bacterial Communities. Microbial Ecology, 2021, 82, 909-918.	1.4	8
1047	Rootstocks Shape Their Microbiome—Bacterial Communities in the Rhizosphere of Different Grapevine Rootstocks. Microorganisms, 2021, 9, 822.	1.6	18
1048	Functional assembly of rootâ€associated microbial consortia improves nutrient efficiency and yield in soybean. Journal of Integrative Plant Biology, 2021, 63, 1021-1035.	4.1	34
1049	Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. Nature Plants, 2021, 7, 481-499.	4.7	247

#	Article	IF	CITATIONS
1050	Soil Microsite Outweighs Cultivar Genotype Contribution to Brassica Rhizobacterial Community Structure. Frontiers in Microbiology, 2021, 12, 645784.	1.5	1
1051	Microbeâ€mediated adaptation in plants. Ecology Letters, 2021, 24, 1302-1317.	3.0	33
1052	Prevalence of antibiotic resistance genes and bacterial pathogens along the soil–mangrove root continuum. Journal of Hazardous Materials, 2021, 408, 124985.	6.5	27
1053	The hierarchy of root branching order determines bacterial composition, microbial carrying capacity and microbial filtering. Communications Biology, 2021, 4, 483.	2.0	30
1054	Sources and Assembly of Microbial Communities in Vineyards as a Functional Component of Winegrowing. Frontiers in Microbiology, 2021, 12, 673810.	1.5	39
1055	Harnessing the plant microbiome to promote the growth of agricultural crops. Microbiological Research, 2021, 245, 126690.	2.5	84
1056	Microbiome-Assisted Breeding to Understand Cultivar-Dependent Assembly in Cucurbita pepo. Frontiers in Plant Science, 2021, 12, 642027.	1.7	24
1058	Wheat-root associated prokaryotic community: interplay between plant selection and location. Plant and Soil, 2021, 464, 183.	1.8	10
1059	Rhizosphere shotgun metagenomic analyses fail to show differences between ancestral and modern wheat genotypes grown under low fertilizer inputs. FEMS Microbiology Ecology, 2021, 97, .	1.3	3
1061	Bacterial Endophytes: The Hidden Actor in Plant Immune Responses against Biotic Stress. Plants, 2021, 10, 1012.	1.6	60
1062	The Composition of Root-Associated Bacteria and Fungi of Astragalus mongholicus and Their Relationship With the Bioactive Ingredients. Frontiers in Microbiology, 2021, 12, 642730.	1.5	11
1063	Soil Microbial Diversity Impacts Plant Microbiota More than Herbivory. Phytobiomes Journal, 2021, 5, 408-417.	1.4	15
1064	The Interaction between Rice Genotype and Magnaporthe oryzae Regulates the Assembly of Rice Root-Associated Microbiota. Rice, 2021, 14, 40.	1.7	6
1065	Rhizosphere bacteria degrade auxin to promote root growth. Soil Ecology Letters, 2022, 4, 93-96.	2.4	2
1066	Maintaining Symbiotic Homeostasis: How Do Plants Engage With Beneficial Microorganisms While at the Same Time Restricting Pathogens?. Molecular Plant-Microbe Interactions, 2021, 34, 462-469.	1.4	52
1068	Specific and conserved patterns of microbiota-structuring by maize benzoxazinoids in the field. Microbiome, 2021, 9, 103.	4.9	57
1069	Plant-microbe interactions in response to grassland herbivory and nitrogen eutrophication. Soil Biology and Biochemistry, 2021, 156, 108208.	4.2	9
1070	Insights into the endophytic bacterial community comparison and their potential role in the dimorphic seeds of halophyte Suaeda glauca. BMC Microbiology, 2021, 21, 143.	1.3	5

#	Article	IF	CITATIONS
1071	Plant Genetics as a Tool for Manipulating Crop Microbiomes: Opportunities and Challenges. Frontiers in Bioengineering and Biotechnology, 2021, 9, 567548.	2.0	16
1072	Tobacco Root Endophytic <i>Arthrobacter</i> Harbors Genomic Features Enabling the Catabolism of Host-Specific Plant Specialized Metabolites. MBio, 2021, 12, e0084621.	1.8	14
1073	The microbiome and mosquito vectorial capacity: rich potential for discovery and translation. Microbiome, 2021, 9, 111.	4.9	81
1074	Dynamics of Bacterial Community Structure in the Rhizosphere and Root Nodule of Soybean: Impacts of Growth Stages and Varieties. International Journal of Molecular Sciences, 2021, 22, 5577.	1.8	14
1075	New insight into the divergent responses of plants to warming in the context of root endophytic bacterial and fungal communities. PeerJ, 2021, 9, e11340.	0.9	8
1076	Insights into the taxonomic and functional characterization of agricultural crop core rhizobiomes and their potential microbial drivers. Scientific Reports, 2021, 11, 10068.	1.6	15
1077	The Citrus Microbiome: From Structure and Function to Microbiome Engineering and Beyond. Phytobiomes Journal, 2021, 5, 249-262.	1.4	16
1078	Niche specificity and functional diversity of the bacterial communities associated with Ginkgo biloba and Panax quinquefolius. Scientific Reports, 2021, 11, 10803.	1.6	6
1080	Coordination of microbe–host homeostasis by crosstalk with plant innate immunity. Nature Plants, 2021, 7, 814-825.	4.7	95
1081	Physiochemical, microbiological and flavor characteristics of traditional Chinese fermented food Kaili Red Sour Soup. LWT - Food Science and Technology, 2021, 142, 110933.	2.5	28
1082	Genome wide association study reveals plant loci controlling heritability of the rhizosphere microbiome. ISME Journal, 2021, 15, 3181-3194.	4.4	97
1083	Structure of Bacterial Communities Associated with Some Aquatic Plants. IOP Conference Series: Earth and Environmental Science, 2021, 790, 012030.	0.2	2
1084	Investigating the Role of Root Exudates in Recruiting Streptomyces Bacteria to the Arabidopsis thaliana Microbiome. Frontiers in Molecular Biosciences, 2021, 8, 686110.	1.6	18
1085	Insights into the mechanism of the effects of rhizosphere microorganisms on the quality of authentic Angelica sinensis under different soil microenvironments. BMC Plant Biology, 2021, 21, 285.	1.6	12
1086	Rice domestication influences the composition and function of the rhizosphere bacterial chemotaxis systems. Plant and Soil, 2021, 466, 81-99.	1.8	16
1087	Revealing Microbiome Structure and Assembly Process in Three Rhizocompartments of Achyranthes bidentata Under Continuous Monoculture Regimes. Frontiers in Microbiology, 2021, 12, 677654.	1.5	4
1088	Root-associated (rhizosphere and endosphere) microbiomes of the Miscanthus sinensis and their response to the heavy metal contamination. Journal of Environmental Sciences, 2021, 104, 387-398.	3.2	53
1089	Soil, senescence and exudate utilisation: characterisation of theÂParagon var. spring bread wheat root microbiome. Environmental Microbiomes, 2021, 16, 12.	2.2	19

#	Article	IF	CITATIONS
1090	The plant NADPH oxidase RBOHD is required for microbiota homeostasis in leaves. Nature Microbiology, 2021, 6, 852-864.	5.9	70
1091	The Macleaya cordata Symbiont: Revealing the Effects of Plant Niches and Alkaloids on the Bacterial Community. Frontiers in Microbiology, 2021, 12, 681210.	1.5	12
1093	Microbiome and Metagenome Analysis Reveals Huanglongbing Affects the Abundance of Citrus Rhizosphere Bacteria Associated with Resistance and Energy Metabolism. Horticulturae, 2021, 7, 151.	1.2	6
1094	Assembly strategies of the wheat root-associated microbiome in soils contaminated with phenanthrene and copper. Journal of Hazardous Materials, 2021, 412, 125340.	6.5	25
1095	From Microbial Dynamics to Functionality in the Rhizosphere: A Systematic Review of the Opportunities With Synthetic Microbial Communities. Frontiers in Plant Science, 2021, 12, 650609.	1.7	30
1096	Plant–Microbiome Crosstalk: Dawning from Composition and Assembly of Microbial Community to Improvement of Disease Resilience in Plants. International Journal of Molecular Sciences, 2021, 22, 6852.	1.8	44
1097	Host preference and invasiveness of commensal bacteria in the Lotus and Arabidopsis root microbiota. Nature Microbiology, 2021, 6, 1150-1162.	5.9	89
1098	Time outweighs the effect of host developmental stage on microbial community composition. FEMS Microbiology Ecology, 2021, 97, .	1.3	13
1099	Phyllosphere bacterial assemblage is affected by plant genotypes and growth stages. Microbiological Research, 2021, 248, 126743.	2.5	15
1100	Diversity, Phylogeny and Antagonistic Activity of Fungal Endophytes Associated with Endemic Species of Cycas (Cycadales) in China. Journal of Fungi (Basel, Switzerland), 2021, 7, 572.	1.5	12
1101	Possible role of arbuscular mycorrhizal fungi and associated bacteria in the recruitment of endophytic bacterial communities by plant roots. Mycorrhiza, 2021, 31, 527-544.	1.3	18
1102	Plastic film mulch changes the microbial community in maize root-associated compartments. Plant and Soil, 2022, 470, 5-20.	1.8	20
1103	The Effects of Host Plant Genotype and Environmental Conditions on Fungal Community Composition and Phosphorus Solubilization in Willow Short Rotation Coppice. Frontiers in Plant Science, 2021, 12, 647709.	1.7	10
1104	Tomato Cultivars With Variable Tolerances to Water Deficit Differentially Modulate the Composition and Interaction Patterns of Their Rhizosphere Microbial Communities. Frontiers in Plant Science, 2021, 12, 688533.	1.7	10
1106	Diversity and function of culturable actinobacteria in the root-associated of Salvia miltiorrhiza Bunge. PeerJ, 2021, 9, e11749.	0.9	3
1107	Designing specific bacterial 16S primers to sequence and quantitate plant endo-bacteriome. Science China Life Sciences, 2022, 65, 1000-1013.	2.3	11
1108	Fungal Endophytic Community and Diversity Associated with Desert Shrubs Driven by Plant Identity and Organ Differentiation in Extremely Arid Desert Ecosystem. Journal of Fungi (Basel, Switzerland), 2021, 7, 578.	1.5	26
1109	Assessing Genotypic and Environmental Effects on Endophyte Communities of Fraxinus (Ash) Using Culture Dependent and Independent DNA Sequencing. Journal of Fungi (Basel, Switzerland), 2021, 7, 565. ———————————————————————————————————	1.5	7

#	Article	IF	CITATIONS
1110	A call to arms for cell–cell interactions between bacteria in the plant microbiome. Trends in Plant Science, 2021, 26, 1126-1132.	4.3	13
1111	Deciphering Trifolium pratense L. holobiont reveals a microbiome resilient to future climate changes. MicrobiologyOpen, 2021, 10, e1217.	1.2	6
1112	Features of Bacterial Microbiota in the Wild Habitat of Pulsatilla tongkangensis, the Endangered "Long-Sepal Donggang Pasque-Flower Plant,―Endemic to Karst Topography of Korea. Frontiers in Microbiology, 2021, 12, 656105.	1.5	7
1113	The rice histone methylation regulates hub species of the root microbiota. Journal of Genetics and Genomics, 2021, 48, 836-843.	1.7	9
1114	Plant-Microbe Interactions - Insights and Views for Applications in Sustainable Agriculture. Applied Science and Engineering Progress, 2021, , .	0.5	1
1115	Manipulating exudate composition from root apices shapes the microbiome throughout the root system. Plant Physiology, 2021, 187, 2279-2295.	2.3	44
1116	OMICs, Epigenetics, and Genome Editing Techniques for Food and Nutritional Security. Plants, 2021, 10, 1423.	1.6	15
1117	Variations of root-associated bacterial cooccurrence relationships in paddy soils under chlorantraniliprole (CAP) stress. Science of the Total Environment, 2021, 779, 146247.	3.9	6
1118	Microbe-dependent heterosis in maize. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	42
1119	From Roots to Leaves: The Capacity of <i>Micromonospora</i> to Colonize Different Legume Tissues. Phytobiomes Journal, 2022, 6, 35-44.	1.4	7
1120	Drought stress and plant ecotype drive microbiome recruitment in switchgrass rhizosheath. Journal of Integrative Plant Biology, 2021, 63, 1753-1774.	4.1	28
1121	Overview of Approaches to Improve Rhizoremediation of Petroleum Hydrocarbon-Contaminated Soils. Applied Microbiology, 2021, 1, 329-351.	0.7	25
1122	Importance of microbial communities at the root-soil interface for extracellular polymeric substances and soil aggregation in semiarid grasslands. Soil Biology and Biochemistry, 2021, 159, 108301.	4.2	18
1123	Spatial analysis of the root system coupled to microbial community inoculation shed light on rhizosphere bacterial community assembly. Biology and Fertility of Soils, 2021, 57, 973-989.	2.3	12
1124	The Phragmites Root-Inhabiting Microbiome: A Critical Review on Its Composition and Environmental Application. Engineering, 2022, 9, 42-50.	3.2	14
1125	Endophytic bacteria associated with the enhanced cadmium resistance in NHX1- overexpressing tobacco plants. Environmental and Experimental Botany, 2021, 188, 104524.	2.0	4
1126	Conservation Strip Tillage Leads to Persistent Alterations in the Rhizosphere Microbiota of Brassica napus Crops. Frontiers in Soil Science, 2021, 1, .	0.8	0
1127	Response of Soil Microbial Community to Vegetation Reconstruction Modes in Mining Areas of the Loess Plateau, China. Frontiers in Microbiology, 2021, 12, 714967.	1.5	10

#	Article	IF	CITATIONS
1128	Contrasting effects of soil microbial interactions on growth–defence relationships between early― and midâ€successional plant communities. New Phytologist, 2022, 233, 1345-1357.	3.5	22
1129	Plant developmental stage drives the differentiation in ecological role of the maize microbiome. Microbiome, 2021, 9, 171.	4.9	164
1130	Poor Competitiveness of <i>Bradyrhizobium</i> in Pigeon Pea Root Colonization in Indian Soils. MBio, 2021, 12, e0042321.	1.8	7
1131	Rhizosphere microbiome assembly involves seed-borne bacteria in compensatory phosphate solubilization. Soil Biology and Biochemistry, 2021, 159, 108273.	4.2	37
1132	Effects of sulfamethoxazole on nitrogen removal and molecular ecological network in integrated vertical-flow constructed wetland. Ecotoxicology and Environmental Safety, 2021, 219, 112292.	2.9	16
1133	Effects of ectomycorrhizal fungus bolete identity on the community assemblages of endofungal bacteria. Environmental Microbiology Reports, 2021, 13, 852-861.	1.0	4
1134	Responses of Root Endophytes to Phosphorus Availability in Peach Rootstocks With Contrasting Phosphorus-Use Efficiencies. Frontiers in Plant Science, 2021, 12, 719436.	1.7	0
1135	Integrating perspectives in actinomycete research: an ActinoBase review of 2020–21. Microbiology (United Kingdom), 2021, 167, .	0.7	4
1136	Role of microbial diversity to influence the growth and environmental remediation capacity of bamboo: A review. Industrial Crops and Products, 2021, 167, 113567.	2.5	64
1137	Crop development has more influence on shaping rhizobacteria of wheat than tillage practice and crop rotation pattern in an arid agroecosystem. Applied Soil Ecology, 2021, 165, 104016.	2.1	19
1138	A fungal powdery mildew pathogen induces extensive local and marginal systemic changes in the <scp><i>Arabidopsis thaliana</i></scp> microbiota. Environmental Microbiology, 2021, 23, 6292-6308.	1.8	12
1139	Diversity of the Bacterial Microbiome Associated With the Endosphere and Rhizosphere of Different Cassava (Manihot esculenta Crantz) Genotypes. Frontiers in Microbiology, 2021, 12, 729022.	1.5	7
1140	Persistence of plant-mediated microbial soil legacy effects in soil and inside roots. Nature Communications, 2021, 12, 5686.	5.8	96
1141	The drivers of vine-plant root microbiota endosphere composition include both abiotic and plant-specific factors. Oeno One, 2021, 55, 299-315.	0.7	4
1142	Differential perturbations of gut microbial profiles and coâ€occurrence networks among phases of methamphetamineâ€induced conditioned place preference. Journal of Neuroscience Research, 2021, 99, 2860-2873.	1.3	9
1143	Bacterial Composition Associated With Giant Colonies of the Harmful Algal Species Phaeocystis globosa. Frontiers in Microbiology, 2021, 12, 737484.	1.5	8
1144	Plants use rhizosphere metabolites to regulate soil microbial diversity. Land Degradation and Development, 2021, 32, 5267-5280.	1.8	30
1146	Destruction of the soil microbial ecological environment caused by the over-utilization of the rice-crayfish co-cropping pattern. Science of the Total Environment, 2021, 788, 147794.	3.9	15

#	Article	IF	CITATIONS
1147	Root bacteriome of a pioneer grass Miscanthus condensatus along restored vegetation on recent Miyake-jima volcanic deposits. Rhizosphere, 2021, 19, 100422.	1.4	2
1148	Microbial Diversity in the Phyllosphere and Rhizosphere of an Apple Orchard Managed under Prolonged "Natural Farming―Practices. Microorganisms, 2021, 9, 2056.	1.6	1
1149	Characterization of nirS- and nirK-containing communities and potential denitrification activity in paddy soil from eastern China. Agriculture, Ecosystems and Environment, 2021, 319, 107561.	2.5	33
1150	Root control of fungal communities and soil carbon stocks in a temperate forest. Soil Biology and Biochemistry, 2021, 161, 108390.	4.2	14
1151	Restriction of soil bacteria promoting high yield of super hybrid rice in the Huaihe Valley in central China by conventional ploughing intensity. Soil and Tillage Research, 2021, 214, 105169.	2.6	3
1152	Tracking antibiotic resistance genes (ARGs) during earthworm conversion of cow dung in northern China. Ecotoxicology and Environmental Safety, 2021, 222, 112538.	2.9	22
1153	The enhanced mechanisms of Hansschlegelia zhihuaiae S113 degrading bensulfuron-methyl in maize rhizosphere by three organic acids in root exudates. Ecotoxicology and Environmental Safety, 2021, 223, 112622.	2.9	11
1154	Integrated analysis reveals an association between the rhizosphere microbiome and root rot of arecanut palm. Pedosphere, 2021, 31, 725-735.	2.1	7
1155	Manganese oxides in Phragmites rhizosphere accelerates ammonia oxidation in constructed wetlands. Water Research, 2021, 205, 117688.	5.3	32
1156	Stable and efficient sulfamethoxazole and phosphorus removal by an electrolysis-integrated bio-rack constructed wetland system. Chemical Engineering Journal, 2021, 425, 130582.	6.6	13
1157	Plant-microbe interactions for the sustainable agriculture and food security. Plant Gene, 2021, 28, 100325.	1.4	29
1158	Plant genotype and seasonality drive fine changes in olive root microbiota. Current Plant Biology, 2021, 28, 100219.	2.3	13
1159	Rhizosphere bacterial and fungal spatial distribution and network pattern of Astragalus mongholicus in representative planting sites differ the bulk soil. Applied Soil Ecology, 2021, 168, 104114.	2.1	20
1160	Multiple driving factors contribute to the variations of typical antibiotic resistance genes in different parts of soil-lettuce system. Ecotoxicology and Environmental Safety, 2021, 225, 112815.	2.9	14
1161	Pyrosequencing and phenotypic microarray to decipher bacterial community variation in Sorghum bicolor (L.) Moench rhizosphere. Current Research in Microbial Sciences, 2021, 2, 100025.	1.4	8
1162	A field study reveals links between hyperaccumulating Sedum plants-associated bacterial communities and Cd/Zn uptake and translocation. Science of the Total Environment, 2022, 805, 150400.	3.9	22
1163	Squash root microbiome transplants and metagenomic inspection for in situ arid adaptations. Science of the Total Environment, 2022, 805, 150136.	3.9	12
1164	The plant microbiota: composition, functions, and engineering. Current Opinion in Biotechnology, 2022, 73, 135-142.	3.3	52

#	Article	IF	CITATIONS
1165	Lignocellulose mulch increases the economic benefit of Chinese chestnut by suppressing weed and ameliorating soil properties. Scientia Horticulturae, 2022, 291, 110576.	1.7	9
1166	Microbiota associated with the rhizosphere of Paeonia lactiflora Pall. (ornamental cultivar). Applied Soil Ecology, 2022, 169, 104214.	2.1	9
1167	Characterization of bacterial communities isolated from municipal waste compost and screening of their plant-interactive phenotypes. Science of the Total Environment, 2022, 806, 150592.	3.9	4
1168	Induced secretion system mutation alters rhizosphere bacterial composition in Sorghum bicolor (L.) Moench. Planta, 2021, 253, 33.	1.6	5
1169	Inoculation of <i>Mimosa Pudica</i> with <i>Paraburkholderia phymatum</i> Results in Changes to the Rhizoplane Microbial Community Structure. Microbes and Environments, 2021, 36, n/a.	0.7	5
1170	Plant microbe interaction for changing endophytic colonization to improve plant productivity. , 2021, , 137-147.		5
1171	Full-Length 16S rRNA and <i>ITS</i> Gene Sequencing Revealed Rich Microbial Flora in Roots of <i>Cycas</i> spp. in China. Evolutionary Bioinformatics, 2021, 17, 117693432198971.	0.6	9
1172	Application of N2-fixing Paenibacillus triticisoli BJ-18 changes the compositions and functions of the bacterial, diazotrophic, and fungal microbiomes in the rhizosphere and root/shoot endosphere of wheat under field conditions. Biology and Fertility of Soils, 2021, 57, 347-362.	2.3	28
1173	High-throughput cultivation and identification of bacteria from the plant root microbiota. Nature Protocols, 2021, 16, 988-1012.	5.5	91
1174	Molecular Tools to Explore Rhizosphere Microbiome. , 2021, , 37-57.		5
1176	Are endophytes essential partners for plants and what are the prospects for metal phytoremediation?. Plant and Soil, 2021, 460, 1-30.	1.8	18
1177	Unraveling Mechanisms and Impact of Microbial Recruitment on Oilseed Rape (Brassica napus L.) and the Rhizosphere Mediated by Plant Growth-Promoting Rhizobacteria. Microorganisms, 2021, 9, 161.	1.6	28
1178	Dynamics of the Apple Fruit Microbiome after Harvest and Implications for Fruit Quality. Microorganisms, 2021, 9, 272.	1.6	22
1179	Rhizosphere: A Home for Human Pathogens. , 2019, , 113-127.		1
1180	Precipitation Partitioning—Hydrologic Highways Between Microbial Communities of the Plant Microbiome?. , 2020, , 229-252.		9
1181	Soil Microbes-Medicinal Plants Interactions: Ecological Diversity and Future Prospect. , 2020, , 263-286.		8
1182	Diversity, Plant Growth Promoting Attributes, and Agricultural Applications of Rhizospheric Microbes. Sustainable Development and Biodiversity, 2020, , 1-52.	1.4	33
1183	Microbial Consortium as Biofertilizers for Crops Growing Under the Extreme Habitats. Sustainable Development and Biodiversity, 2020, , 381-424.	1.4	12

#	Article	IF	CITATIONS
1184	Bacterial Inoculants: How Can These Microbes Sustain Soil Health and Crop Productivity?. Soil Biology, 2020, , 337-372.	0.6	5
1185	Role of Rhizomicrobiome in Maintaining Soil Fertility and Crop Production. Soil Biology, 2020, , 373-401.	0.6	2
1186	Global Microbiome for Agroecology, Industry, and Human Well-Being: Opportunities and Challenges in Climate Change. SpringerBriefs in Ecology, 2015, , 125-152.	0.2	2
1187	Setaria Root–Microbe Interactions. Plant Genetics and Genomics: Crops and Models, 2017, , 239-250.	0.3	4
1188	Perspectives of Plant Growth Promoting Rhizobacteria in Growth Enhancement and Sustainable Production of Tomato. , 2017, , 125-149.		17
1189	The Flavobacterium Genus in the Plant Holobiont: Ecological, Physiological, and Applicative Insights. , 2016, , 189-207.		37
1190	Rhizosphere as Hotspot for Plant-Soil-Microbe Interaction. , 2020, , 17-43.		26
1191	Microbe-Mediated Tolerance in Plants Against Biotic and Abiotic Stresses. , 2019, , 173-217.		1
1192	Rhizospheric Microbiome Engineering as a Sustainable Tool in Agriculture: Approaches and Challenges. , 2019, , 257-272.		6
1193	Rissuntherized Secondary Metabolites for Plant Crowth Promotion 2020 217.250		0
			3
1194	Bacterial Endophytes: Diversity, Functional Importance, and Potential for Manipulation. Rhizosphere Biology, 2021, , 1-49.	0.4	3 9
1194 1195	Bacterial Endophytes: Diversity, Functional Importance, and Potential for Manipulation. Rhizosphere Biology, 2021, , 1-49. Rhizosphere Microbiome and Soil-Borne Diseases. Rhizosphere Biology, 2021, , 155-168.	0.4	3 9 4
1194 1195 1196	Bacterial Endophytes: Diversity, Functional Importance, and Potential for Manipulation. Rhizosphere Biology, 2021, , 1-49. Rhizosphere Microbiome and Soil-Borne Diseases. Rhizosphere Biology, 2021, , 155-168. The Rhizosphere Microbiome and Its Role in Plant Growth in Stressed Conditions. Microorganisms for Sustainability, 2020, , 503-529.	0.4 0.4 0.4	3 9 4 3
1194 1195 1196 1197	Bacterial Endophytes: Diversity, Functional Importance, and Potential for Manipulation. Rhizosphere Biology, 2021, , 1-49. Rhizosphere Microbiome and Soil-Borne Diseases. Rhizosphere Biology, 2021, , 155-168. The Rhizosphere Microbiome and Its Role in Plant Growth in Stressed Conditions. Microorganisms for Sustainability, 2020, , 503-529. In vitro and in vivo analyses of plant-growth-promoting potential of bacteria naturally associated with spruce trees growing on nutrient-poor soils. Applied Soil Ecology, 2020, 149, 103538.	0.4 0.4 0.4 2.1	3 9 4 3 36
1194 1195 1196 1197 1198	Bacterial Endophytes: Diversity, Functional Importance, and Potential for Manipulation. Rhizosphere Biology, 2021, , 1-49. Rhizosphere Microbiome and Soil-Borne Diseases. Rhizosphere Biology, 2021, , 155-168. The Rhizosphere Microbiome and Its Role in Plant Growth in Stressed Conditions. Microorganisms for Sustainability, 2020, , 503-529. In vitro and in vivo analyses of plant-growth-promoting potential of bacteria naturally associated with spruce trees growing on nutrient-poor soils. Applied Soil Ecology, 2020, 149, 103538. Differential response of rhizoplane, rhizosphere and water wetland bacterial communities to short-term phosphorus loading in lab scale mesocosms. Applied Soil Ecology, 2020, 154, 103598.	0.4 0.4 0.4 2.1 2.1	3 9 4 3 36 11
1194 1195 1196 1197 1198	Bacterial Endophytes: Diversity, Functional Importance, and Potential for Manipulation. Rhizosphere Biology, 2021, , 1-49. Rhizosphere Microbiome and Soil-Borne Diseases. Rhizosphere Biology, 2021, , 155-168. The Rhizosphere Microbiome and Its Role in Plant Growth in Stressed Conditions. Microorganisms for Sustainability, 2020, , 503-529. In vitro and in vivo analyses of plant-growth-promoting potential of bacteria naturally associated with spruce trees growing on nutrient-poor soils. Applied Soil Ecology, 2020, 149, 103538. Differential response of rhizoplane, rhizosphere and water wetland bacterial communities to short-term phosphorus loading in lab scale mesocosms. Applied Soil Ecology, 2020, 154, 103598. The Soil-Borne Identity and Microbiome-Assisted Agriculture: Looking Back to the Future. Molecular Plant, 2020, 13, 1394-1401.	0.4 0.4 0.4 2.1 2.1 3.9	3 9 4 3 36 11 80
1194 1195 1196 1197 1198 1199 1200	Bacterial Endophytes: Diversity, Functional Importance, and Potential for Manipulation. Rhizosphere Biology, 2021, , 1-49. Rhizosphere Microbiome and Soil-Borne Diseases. Rhizosphere Biology, 2021, , 155-168. The Rhizosphere Microbiome and Its Role in Plant Growth in Stressed Conditions. Microorganisms for Sustainability, 2020, , 503-529. In vitro and in vivo analyses of plant-growth-promoting potential of bacteria naturally associated with spruce trees growing on nutrient-poor solls. Applied Soil Ecology, 2020, 149, 103538. Differential response of rhizoplane, rhizosphere and water wetland bacterial communities to short-term phosphorus loading in lab scale mesocosms. Applied Soil Ecology, 2020, 154, 103598. The Soil-Borne Identity and Microbiome-Assisted Agriculture: Looking Back to the Future. Molecular Plant, 2020, 13, 1394-1401. Going back to the roots: the microbial ecology of the rhizosphere. , 0, .	0.4 0.4 0.4 2.1 2.1 3.9	3 9 4 3 36 11 80 1

#	Article	IF	CITATIONS
1202	Temporal and spatial interactions modulate the soybean microbiome. FEMS Microbiology Ecology, 2021, 97, .	1.3	17
1203	Advances in actinomycete research: an ActinoBase review of 2019. Microbiology (United Kingdom), 2020, 166, 683-694.	0.7	20
1227	The plant beneficial rhizobacterium <i>Achromobacter</i> sp. 5B1 influences root development through auxin signaling and redistribution. Plant Journal, 2020, 103, 1639-1654.	2.8	42
1228	The microbiome as a biosensor: functional profiles elucidate hidden stress in hosts. Microbiome, 2020, 8, 71.	4.9	24
1229	Nitrate Supply-Dependent Shifts in Communities of Root-Associated Bacteria in <i>Arabidopsis</i> . Microbes and Environments, 2017, 32, 314-323.	0.7	9
1230	The influence of host genetics on the microbiome. F1000Research, 2020, 9, 84.	0.8	32
1231	Recent advances in the role of plant metabolites in shaping the root microbiome. F1000Research, 2020, 9, 151.	0.8	59
1232	A developmental biologist's journey to rediscover the Zen of plant physiology. F1000Research, 0, 4, 264.	0.8	2
1233	Microbial Hub Taxa Link Host and Abiotic Factors to Plant Microbiome Variation. PLoS Biology, 2016, 14, e1002352.	2.6	1,065
1234	Genome-wide identification of bacterial plant colonization genes. PLoS Biology, 2017, 15, e2002860.	2.6	173
1234 1235	Genome-wide identification of bacterial plant colonization genes. PLoS Biology, 2017, 15, e2002860. Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biology, 2018, 16, e2003862.	2.6 2.6	173 340
1234 1235 1236	Genome-wide identification of bacterial plant colonization genes. PLoS Biology, 2017, 15, e2002860. Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biology, 2018, 16, e2003862. Design of synthetic bacterial communities for predictable plant phenotypes. PLoS Biology, 2018, 16, e2003962.	2.6 2.6 2.6	173 340 182
1234 1235 1236 1237	Genome-wide identification of bacterial plant colonization genes. PLoS Biology, 2017, 15, e2002860. Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biology, 2018, 16, e2003862. Design of synthetic bacterial communities for predictable plant phenotypes. PLoS Biology, 2018, 16, e2003962. A Drought Resistance-Promoting Microbiome Is Selected by Root System under Desert Farming. PLoS ONE, 2012, 7, e48479.	2.6 2.6 2.6 1.1	173 340 182 400
1234 1235 1236 1237 1238	Genome-wide identification of bacterial plant colonization genes. PLoS Biology, 2017, 15, e2002860. Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biology, 2018, 16, e2003862. Design of synthetic bacterial communities for predictable plant phenotypes. PLoS Biology, 2018, 16, e2003962. A Drought Resistance-Promoting Microbiome Is Selected by Root System under Desert Farming. PLoS ONE, 2012, 7, e48479. Activation of the Jasmonic Acid Plant Defence Pathway Alters the Composition of Rhizosphere Bacterial Communities. PLoS ONE, 2013, 8, e56457.	2.6 2.6 2.6 1.1	173 340 182 400 163
1234 1235 1236 1237 1238 1239	Genome-wide identification of bacterial plant colonization genes. PLoS Biology, 2017, 15, e2002860.Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biology, 2018, 16, e2003862.Design of synthetic bacterial communities for predictable plant phenotypes. PLoS Biology, 2018, 16, e2003962.A Drought Resistance-Promoting Microbiome Is Selected by Root System under Desert Farming. PLoS ONE, 2012, 7, e48479.Activation of the Jasmonic Acid Plant Defence Pathway Alters the Composition of Rhizosphere Bacterial Communities. PLoS ONE, 2013, 8, e56457.Growth Conditions Determine the DNF2 Requirement for Symbiosis. PLoS ONE, 2014, 9, e91866.	2.6 2.6 2.6 1.1 1.1	 173 340 182 400 163 34
1234 1235 1236 1237 1238 1239 1240	Genome-wide identification of bacterial plant colonization genes. PLoS Biology, 2017, 15, e2002860. Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biology, 2018, 16, e2003862. Design of synthetic bacterial communities for predictable plant phenotypes. PLoS Biology, 2018, 16, e2003962. A Drought Resistance-Promoting Microbiome Is Selected by Root System under Desert Farming. PLoS ONE, 2012, 7, e48479. Activation of the Jasmonic Acid Plant Defence Pathway Alters the Composition of Rhizosphere Bacterial Communities. PLoS ONE, 2013, 8, e56457. Growth Conditions Determine the DNF2 Requirement for Symbiosis. PLoS ONE, 2014, 9, e91866. Influence of Soil Type, Cultivar and Verticillium dahliae on the Structure of the Root and Rhizosphere Soil Fungal Microbiome of Strawberry. PLoS ONE, 2014, 9, e111455.	2.6 2.6 1.1 1.1 1.1 1.1	 173 340 182 400 163 34 41
1234 1235 1236 1237 1238 1239 1240	Genome-wide identification of bacterial plant colonization genes. PLoS Biology, 2017, 15, e2002860.Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biology, 2018, 16, e2003862.Design of synthetic bacterial communities for predictable plant phenotypes. PLoS Biology, 2018, 16, e2003962.A Drought Resistance-Promoting Microbiome Is Selected by Root System under Desert Farming. PLoS ONE, 2012, 7, e48479.Activation of the Jasmonic Acid Plant Defence Pathway Alters the Composition of Rhizosphere Bacterial Communities. PLoS ONE, 2013, 8, e56457.Growth Conditions Determine the DNF2 Requirement for Symbiosis. PLoS ONE, 2014, 9, e91866.Influence of Soil Type, Cultivar and Verticilium dahliae on the Structure of the Root and Rhizosphere Soil Fungal Microbiome of Strawberry. PLoS ONE, 2014, 9, e111455.The Metagenome of Utricularia gibba's Traps: Into the Microbial Input to a Carnivorous Plant. PLoS ONE, 2016, 11, e0148979.	2.6 2.6 1.1 1.1 1.1 1.1 1.1	 173 340 182 400 163 34 41 35

#	Article	IF	Citations
1243	Effects of Elevated Tropospheric Ozone Concentration on the Bacterial Community in the Phyllosphere and Rhizoplane of Rice. PLoS ONE, 2016, 11, e0163178.	1.1	33
1244	Effects of an EPSPS-transgenic soybean line ZUTS31 on root-associated bacterial communities during field growth. PLoS ONE, 2018, 13, e0192008.	1.1	47
1245	Specialized core bacteria associate with plants adapted to adverse environment with high calcium contents. PLoS ONE, 2018, 13, e0194080.	1.1	7
1246	Diversity and structural differences of bacterial microbial communities in rhizocompartments of desert leguminous plants. PLoS ONE, 2020, 15, e0241057.	1.1	10
1247	Endophytic microorganisms in fundamental research and agriculture. Ecological Genetics, 2019, 17, 19-32.	0.1	25
1248	Extraction and 16S rRNA Sequence Analysis of Microbiomes Associated with Rice Roots. Bio-protocol, 2018, 8, e2884.	0.2	25
1249	The microbiome of medicinal plants: diversity and importance for plant growth, quality and health. Frontiers in Microbiology, 2013, 4, 400.	1.5	224
1250	Diversity and Structure of the Endophytic Bacterial Communities Associated With Three Terrestrial Orchid Species as Revealed by 16S rRNA Gene Metabarcoding. Frontiers in Microbiology, 2020, 11, 604964.	1.5	24
1251	Buffet hypothesis for microbial nutrition at the rhizosphere. Frontiers in Plant Science, 2013, 4, 188.	1.7	28
1252	Secondary metabolites of <i>Bacillus subtilis</i> impact the assembly of soil-derived semisynthetic bacterial communities. Beilstein Journal of Organic Chemistry, 2020, 16, 2983-2998.	1.3	18
1253	Comparative Study of the Colonization of Chromolaena and Tobacco Plants by Bacteria safensis CS4 using Different Methods of Inoculation. Pakistan Journal of Biological Sciences, 2019, 22, 309-317.	0.2	4
1254	Taxonomy and systematics of plant probiotic bacteria in the genomic era. AIMS Microbiology, 2017, 3, 383-412.	1.0	29
1255	Salicylic Acid as a Safe Plant Protector and Growth Regulator. Plant Pathology Journal, 2020, 36, 1-10.	0.7	224
1256	Comparison of Microbial Communities Associated with Halophyte (<i>Salsola stocksii</i>) and Non-Halophyte (<i>Triticum aestivum</i>) Using Culture-Independent Approaches. Polish Journal of Microbiology, 2017, 66, 353-364.	0.6	41
1257	Mycosphere Essay 18: Biotechnological advances of beneficial fungi for plants. Mycosphere, 2017, 8, 445-455.	1.9	4
1258	Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management. ELife, 2017, 6, .	2.8	81
1259	Global landscape of phenazine biosynthesis and biodegradation reveals species-specific colonization patterns in agricultural soils and crop microbiomes. ELife, 2020, 9, .	2.8	44
1260	Ecophylogeny of the endospheric root fungal microbiome of co-occurring <i>Agrostis stolonifera</i> . PeerJ, 2017, 5, e3454.	0.9	59

#	Article	IF	CITATIONS
1261	Variation in the leaf and root microbiome of sugar maple (<i>Acer saccharum</i>) at an elevational range limit. PeerJ, 2018, 6, e5293.	0.9	55
1262	Temporal shifts in endophyte bacterial community composition of sessile oak (<i>Quercus petraea</i>) are linked to foliar nitrogen, stomatal length, and herbivory. PeerJ, 2018, 6, e5769.	0.9	8
1263	Wild plant species growing closely connected in a subalpine meadow host distinct root-associated bacterial communities. PeerJ, 2015, 3, e804.	0.9	65
1264	Niche differentiation in the rhizosphere and endosphere fungal microbiome of wild <i>Paris polyphylla</i> Sm PeerJ, 2020, 8, e8510.	0.9	21
1265	Rhizosphere bacterial and fungal communities during the growth of <i>Angelica sinensis</i> seedlings cultivated in an Alpine uncultivated meadow soil. PeerJ, 2020, 8, e8541.	0.9	13
1266	Characteristics of the soil microbial community in the forestland of <i>Camellia oleifera</i> . PeerJ, 2020, 8, e9117.	0.9	15
1267	Impact of Climate Change on Localized Plant–Microbe Signalling and Technology Advancement in Microbial Quorum Sensing. Soil Biology, 2021, , 695-715.	0.6	1
1268	Plant Growth Promoting Endophytic Bacteria for management of stresses in cereal crop productions. Journal of Natural Resource Conservation and Management, 2021, 2, 32.	0.3	0
1269	From seeds to postharvest: the impact of the plant microbiome on health: a review. Acta Horticulturae, 2021, , 189-194.	0.1	0
1270	Vertical stratification of microbial communities in woody plants. Phytobiomes Journal, 0, , .	1.4	6
1271	Capacity of soil bacteria to reach the phyllosphere and convergence of floral communities despite soil microbiota variation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	38
1272	Seed-Transmitted Bacteria and Fungi Dominate Juvenile Plant Microbiomes. Frontiers in Microbiology, 2021, 12, 737616.	1.5	59
1273	Application of Deep Learning in Plant–Microbiota Association Analysis. Frontiers in Genetics, 2021, 12, 697090.	1.1	17
1274	Development of fungal-mediated soil suppressiveness against Fusarium wilt disease via plant residue manipulation. Microbiome, 2021, 9, 200.	4.9	38
1275	A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. New Phytologist, 2021, 232, 973-1122.	3.5	216
1276	Does biological rhythm transmit from plants to rhizosphere microbes?. Environmental Microbiology, 2021, 23, 6895-6906.	1.8	8
1277	Rules of Plant Species Ranges: Applications for Conservation Strategies. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	15
1278	Compartment Niche Shapes the Assembly and Network of Cannabis sativa-Associated Microbiome. Frontiers in Microbiology, 2021, 12, 714993.	1.5	26

#	ARTICLE	IF	CITATIONS
1279	Potentilla Fruticosa Population in Alpine Meadow Elevation Gradient. Frontiers in Soil Science, 2021, 1, .	0.8	1
1280	Coordination of root auxin with the fungus <i>Piriformospora indica</i> and bacterium <i>Bacillus cereus</i> enhances rice rhizosheath formation under soil drying. ISME Journal, 2022, 16, 801-811.	4.4	22
1281	Differential Assembly and Shifts of the Rhizosphere Bacterial Community by a Dual Transgenic Glyphosate-Tolerant Soybean Line with and without Glyphosate Application. Horticulturae, 2021, 7, 374.	1.2	4
1282	Crop host signatures reflected by co-association patterns of keystone Bacteria in the rhizosphere microbiota. Environmental Microbiomes, 2021, 16, 18.	2.2	21
1283	Plasticity, exudation and microbiome-association of the root system of Pellitory-of-the-wall plants grown in environments impaired in iron availability. Plant Physiology and Biochemistry, 2021, 168, 27-42.	2.8	3
1284	Shaping of soil microbial communities by plants does not translate into specific legacy effects on organic carbon mineralization. Soil Biology and Biochemistry, 2021, 163, 108449.	4.2	12
1285	Potential advantage of rhizosheath microbiome, in contrast to rhizosphere microbiome, to improve drought tolerance in crops. Rhizosphere, 2021, 20, 100439.	1.4	14
1286	Diversity and Antimicrobial Activity of Actinomycetes Isolated from Rhizosphere of Rice (Oryza sativa) Tj ETQq1 1	0,784314 0.1	l rgBT /Overl
1287	The Promise of the Plantâ \in Ms Second Genome. Journal of Investigative Genomics, 2015, 2, .	0.2	1
1288	Plant Growth Promoting Bacteria – Early Investigations, Present state and Future prospects. Vegetos, 2017, 30, 211.	0.8	1
1289	Rhizoremediation in Cold Climates. , 2017, , 661-685.		0
1292	Chapter 14. Soil Microbial Community and Their Population Dynamics: Altered Agricultural Practices. , 2017, , 383-416.		0
1301	Response to comments on "Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management― ELife, 2018, 7, .	2.8	2
1302	Rhizosphere Bacterial Composition of the Sugar Beet Using SDS-PAGE Methodology. Brazilian Archives of Biology and Technology, 2017, 60, .	0.5	2
1308	Removal of Hydrocarbons and Other Related Chemicals via the Rhizosphere of Plants. , 2019, , 157-169.		0
1309	Microbial Interventions in Soil and Plant Health for Improving Crop Efficiency. , 2019, , 17-47.		4
1310	Dynamics of Plant Microbiome and Its Effect on the Plant Traits. , 2019, , 273-304.		2
1325	ABUNDANCE AND COMMUNITY STRUCTURE OF AMMONIA OXIDIZING ARCHAEA AND BACTERIA IN RESPONSE TO PEANUT GROWTH UNDER CONTROLLED CONDITION IN SHANDONG, CHINA. Acta Scientiarum Polonorum, Hortorum Cultus, 2019, 18, 119-127.	0.3	0

		15	0
#	ARTICLE	IF	CITATIONS
1326	bacterial species with plant-growth-promoting, biotic and abiotic stress tolerance properties. Journal of Science, 2020, 10, 21.	0.4	0
1327	Microbiomes and Endophytes. , 2020, , 39-62.		3
1328	Actinobacteria: Diversity, Plant Interactions and Biotechnology Applications. Sustainable Development and Biodiversity, 2020, , 199-244.	1.4	4
1337	Rhizosphere Legacy: Plant Root Interactions with the Soil and Its Biome. Rhizosphere Biology, 2021, , 129-153.	0.4	3
1338	Inoculation Effects in the Rhizosphere: Diversity and Function. Rhizosphere Biology, 2021, , 339-356.	0.4	2
1339	Root Microbiome Structure and Microbial Succession in the Rhizosphere. Rhizosphere Biology, 2021, , 109-128.	0.4	8
1340	Impact of bacterial volatiles on phytopathogenic fungi: an <i>in vitro</i> study on microbial competition and interaction. Journal of Experimental Botany, 2022, 73, 596-614.	2.4	8
1341	Promoting soil microbial-mediated suppressiveness against Fusarium wilt disease by the enrichment of specific fungal taxa via crop rotation. Biology and Fertility of Soils, 2021, 57, 1137-1153.	2.3	11
1344	Omics and phytoremediation. , 2022, , 179-194.		1
1345	Microbiomes across root compartments are shaped by inoculation with a fungal biological control agent. Applied Soil Ecology, 2022, 170, 104230.	2.1	4
1346	Fungal communities are more sensitive to nitrogen fertilization than bacteria in different spatial structures of silage maize under short-term nitrogen fertilization. Applied Soil Ecology, 2022, 170, 104275.	2.1	15
1347	Apple scion cultivars regulate the rhizosphere microbiota of scion/rootstock combinations. Applied Soil Ecology, 2022, 170, 104305.	2.1	5
1349	Recent Advances in Plant-Microbe Interaction. , 2020, , 23-49.		2
1350	Sulfatase Assay to Determine Influence of Plants on Microbial Activity in Soil. Bio-protocol, 2020, 10, e3490.	0.2	1
1351	Endophytic Phytobiomes as Defense Elicitors: Current Insights and Future Prospects. , 2020, , 299-334.		0
1352	Dissecting Structure and Function of Plant Rhizomicrobiome: A Genomic Approach. Microorganisms for Sustainability, 2020, , 73-103.	0.4	0
1353	Rhizospheric Microbial Community: Ecology, Methods, and Functions. Microorganisms for Sustainability, 2020, , 127-148.	0.4	4
1355	Structure and Function of Rhizobiome. , 2020, , 241-261.		4

#	Article	IF	CITATIONS
1356	Applications of Advanced Omics Technology for Harnessing the High Altitude Agriculture Production. Rhizosphere Biology, 2020, , 447-463.	0.4	1
1358	Soil Microbes and Plant Health. Sustainability in Plant and Crop Protection, 2020, , 111-135.	0.2	4
1359	Impact of a <i>G2-EPSPS</i> & <i>GAT</i> Dual Transgenic Glyphosate-Resistant Soybean Line on the Soil Microbial Community under Field Conditions Affected by Glyphosate Application. Microbes and Environments, 2020, 35, n/a.	0.7	8
1361	Surveillance of Root-associated Microbiome of Oxalogenic Colocasia esculenta (Linn) Plant Reveals Distinct Bacterial Species Diversity. Journal of Pure and Applied Microbiology, 2020, 14, 547-557.	0.3	0
1363	Rainfalls sprinkle cloud bacterial diversity while scavenging biomass. FEMS Microbiology Ecology, 2021, 97, .	1.3	9
1364	Intercropping Systems Modify Desert Plant-Associated Microbial Communities and Weaken Host Effects in a Hyper-Arid Desert. Frontiers in Microbiology, 2021, 12, 754453.	1.5	4
1368	Hydrological and soil physiochemical variables determine the rhizospheric microbiota in subtropical lakeshore areas. PeerJ, 2020, 8, e10078.	0.9	5
1370	Rhizospheric bacterial community structure of <i>Triticum</i> and <i>Aegilops</i> revealed by pyrosequencing analysis of the 16S rRNA gene: dominance of the A genome over the B and D genomes. Genes and Genetic Systems, 2020, 95, 249-268.	0.2	4
1371	Mitigation Strategies for Abiotic Stress Tolerance in Plants Through Stress-Tolerant Plant Growth-Promoting Microbes. Environmental and Microbial Biotechnology, 2021, , 325-351.	0.4	0
1375	La milpa como modelo para el estudio de la microbiodiversidad e interacciones planta-bacteria. TIP Revista Especializada En Ciencias QuÃmico-Biológicas, 0, 23, .	0.3	3
1376	The Hologenome Concept: Human, Animal and Plant Microbiota. , 2013, , .		15
1378	Identifying the Specific Root Microbiome of the Hyperaccumulator Growing in Non-metalliferous Soils. Frontiers in Microbiology, 2021, 12, 639997.	1.5	Ο
1380	Bacterial signaling molecules of acyl-homoserine lactone type: effect on plant growth and stress resistance. Fiziologia Rastenij I Genetika, 2021, 53, 371-386.	0.1	1
1381	Application of CRISPR–Cas9 in plant–plant growth-promoting rhizobacteria interactions for next Green Revolution. 3 Biotech, 2021, 11, 492.	1.1	3
1382	Decreased spatial variation and deterministic processes of bacterial community assembly in the rhizosphere of <i>Phragmites australis</i> across the Middle–Lower Yangtze plain. Molecular Ecology, 2022, 31, 1180-1195.	2.0	21
1383	Comparative fungal diversity and dynamics in plant compartments at different developmental stages under root-zone restricted grapevines. BMC Microbiology, 2021, 21, 317.	1.3	7
1384	Emergent bacterial community properties induce enhanced drought tolerance in Arabidopsis. Npj Biofilms and Microbiomes, 2021, 7, 82.	2.9	45
1385	Applications of the indole-alkaloid gramine modulate the assembly of individual members of the barley rhizosphere microbiota. PeerJ, 2021, 9, e12498.	0.9	12

#	Article	IF	CITATIONS
1386	Comparison of methods for mapping rhizosphere processes in the context of their surrounding root and soil environments. BioTechniques, 2021, 71, 604-614.	0.8	9
1387	FUNGAL AND BACTERIAL RHIZOSPHERE MICROBIOME ASSOCIATED WITH SELECTED MELON AND SNAKE MELON GENOTYPES. Journal of Microbiology, Biotechnology and Food Sciences, 2021, 11, e4004.	0.4	1
1388	Investigation of soil nutrients and associated rhizobacterial communities in different sugarcane genotypes in relation to sugar content. Chemical and Biological Technologies in Agriculture, 2021, 8, .	1.9	11
1389	Coupling Root Diameter With Rooting Depth to Reveal the Heterogeneous Assembly of Root-Associated Bacterial Communities in Soybean. Frontiers in Microbiology, 2021, 12, 783563.	1.5	4
1392	The Overlap of Soil and Vegetable Microbes Driving the Transfer of Antibiotic Resistance Genes from Manure-Amended Soil to Vegetables. SSRN Electronic Journal, 0, , .	0.4	0
1393	Structure and Function of Rhizosphere Soil and Root Endophytic Microbial Communities Associated With Root Rot of Panax notoginseng. Frontiers in Plant Science, 2021, 12, 752683.	1.7	13
1394	Taxonomic Structure of Rhizosphere Bacterial Communities and Its Association With the Accumulation of Alkaloidal Metabolites in Sophora flavescens. Frontiers in Microbiology, 2021, 12, 781316.	1.5	5
1395	Comparative study of microbial structure and functional profile of sunflower rhizosphere grown in two fields. BMC Microbiology, 2021, 21, 337.	1.3	3
1396	Orchid-Associated Bacteria and Their Plant Growth Promotion Capabilities. Reference Series in Phytochemistry, 2022, , 175-200.	0.2	4
1397	Isolation of a Novel Endophytic <i>Bacillus</i> Strain Capable of Transforming Pentachlorophenol and Structure Determination of Pentachlorophenol Phosphate Using Single-Crystal X-ray Diffraction. Journal of Agricultural and Food Chemistry, 2022, 70, 770-776.	2.4	3
1398	The root microbiome: Community assembly and its contributions to plant fitness. Journal of Integrative Plant Biology, 2022, 64, 230-243.	4.1	99
1399	Domestication Impacts the Wheat-Associated Microbiota and the Rhizosphere Colonization by Seed- and Soil-Originated Microbiomes, Across Different Fields. Frontiers in Plant Science, 2021, 12, 806915.	1.7	16
1400	Shared features and reciprocal complementation of the Chlamydomonas and Arabidopsis microbiota. Nature Communications, 2022, 13, 406.	5.8	28
1402	Functional Investigation of Plant Growth Promoting Rhizobacterial Communities in Sugarcane. Frontiers in Microbiology, 2021, 12, 783925.	1.5	1
1403	Taxonomic and Functional Diversity of Rhizosphere Microbiome Recruited From Compost Synergistically Determined by Plant Species and Compost. Frontiers in Microbiology, 2021, 12, 798476.	1.5	6
1404	Whole-Genome Duplication and Host Genotype Affect Rhizosphere Microbial Communities. MSystems, 2022, 7, e0097321.	1.7	6
1405	Fungal Endophytes and Their Role in Agricultural Plant Protection against Pests and Pathogens. Plants, 2022, 11, 384.	1.6	57
1406	Community structure and diversity characteristics of rhizosphere and root endophytic bacterial community in different Acacia species. PLoS ONE, 2022, 17, e0262909.	1.1	8
#	Article	IF	CITATIONS
------	---	-----------------	----------------------------
1407	Significance of the Diversification of Wheat Species for the Assembly and Functioning of the Root-Associated Microbiome. Frontiers in Microbiology, 2021, 12, 782135.	1.5	7
1408	Endophytic Colletotrichum Species from Aquatic Plants in Southwest China. Journal of Fungi (Basel,) Tj ETQq1 1	0.784314 1.5	rg <mark>BT</mark> /Overla
1409	Rice root Fe plaque enhances oxidation of microbially available organic carbon via Fe(III) reduction-coupled microbial respiration. Soil Biology and Biochemistry, 2022, 167, 108568.	4.2	7
1410	Harnessing plant microbiome for mitigating arsenic toxicity in sustainable agriculture. Environmental Pollution, 2022, 300, 118940.	3.7	18
1411	Accumulation of antibiotic resistance genes in pakchoi (Brassica chinensis L) grown in chicken manure-fertilized soil amended with fresh and aged biochars. Environmental Science and Pollution Research, 2022, 29, 39410-39420.	2.7	3
1412	Alpine constructed wetlands: A metagenomic analysis reveals microbial complementary structure. Science of the Total Environment, 2022, 822, 153640.	3.9	3
1413	Assessment of spike-AMP and qPCR-AMP in soil microbiota quantitative research. Soil Biology and Biochemistry, 2022, 166, 108570.	4.2	9
1414	Culturable Bacterial Endophytes Associated With Shrubs Growing Along the Draw-Down Zone of Lake Bogoria, Kenya: Assessment of Antifungal Potential Against Fusarium solani and Induction of Bean Root Rot Protection. Frontiers in Plant Science, 2021, 12, 796847.	1.7	5
1415	Gnotobiotic Plant Systems for Reconstitution and Functional Studies of the Root Microbiota. Current Protocols, 2022, 2, e362.	1.3	6
1416	Effects of rare earth elements on bacteria in rhizosphere, root, phyllosphere and leaf of soil–rice ecosystem. Scientific Reports, 2022, 12, 2089.	1.6	9
1417	Large-Scale Crop Production for the Moon and Mars: Current Gaps and Future Perspectives. Frontiers in Astronomy and Space Sciences, 2022, 8, .	1.1	12
1418	How Mercury Drive Rhizosphere Microbiome Assembly of Indian Mustard (Brassica. Juncea L.). SSRN Electronic Journal, 0, , .	0.4	0
1419	Rhizosphere engineering for crop improvement. , 2022, , 417-444.		1
1422	Defining the <i>Sphagnum</i> Core Microbiome across the North American Continent Reveals a Central Role for Diazotrophic Methanotrophs in the Nitrogen and Carbon Cycles of Boreal Peatland Ecosystems. MBio, 2022, 13, .	1.8	18
1423	Response of bacterial community structure to different ecological niches and their functions in Korean pine forests. PeerJ, 2022, 10, e12978.	0.9	3
1424	Effect of water management on microbial diversity and composition in an Italian rice field system. FEMS Microbiology Ecology, 2022, 98, .	1.3	11
1425	Plant-Microbe Interaction in Sustainable Agriculture: The Factors That May Influence the Efficacy of PGPM Application. Sustainability, 2022, 14, 2253.	1.6	23
1426	Long-term sod-based rotation promotes beneficial root microbiomes and increases crop productivity. Biology and Fertility of Soils, 2022, 58, 403-419.	2.3	9

#	Article	IF	CITATIONS
1427	Gradient of microbial communities around seagrass roots was mediated by sediment grain size. Ecosphere, 2022, 13, .	1.0	11
1428	Isolation of rhizosheath and analysis of microbial community structure around roots of Stipa grandis. Scientific Reports, 2022, 12, 2707.	1.6	1
1429	Changes in root microbiome during wheat evolution. BMC Microbiology, 2022, 22, 64.	1.3	12
1430	Assessment of residual chlorine in soil microbial community using metagenomics. Soil Ecology Letters, 2023, 5, 66-78.	2.4	12
1432	Cytobacts: Abundant and Diverse Vertically Seed-Transmitted Cultivation-Recalcitrant Intracellular Bacteria Ubiquitous to Vascular Plants. Frontiers in Microbiology, 2022, 13, 806222.	1.5	1
1433	Microplastics reduce soil microbial network complexity and ecological deterministic selection. Environmental Microbiology, 2022, 24, 2157-2169.	1.8	40
1434	Possible effects of temperature on bacterial communities in the rhizosphere of rice under different climatic regions. Archives of Microbiology, 2022, 204, 212.	1.0	5
1435	High Salt Levels Reduced Dissimilarities in Root-Associated Microbiomes of Two Barley Genotypes. Molecular Plant-Microbe Interactions, 2022, 35, 592-603.	1.4	3
1436	Synthetic Communities of Bacterial Endophytes to Improve the Quality and Yield of Legume Crops. , 0, ,		3
1437	COMMIT: Consideration of metabolite leakage and community composition improves microbial community reconstructions. PLoS Computational Biology, 2022, 18, e1009906.	1.5	2
1437 1438	COMMIT: Consideration of metabolite leakage and community composition improves microbial community reconstructions. PLoS Computational Biology, 2022, 18, e1009906. Comparative Analysis on Rhizosphere Soil and Endophytic Microbial Communities of Two Cultivars of Cyperus esculentus L. Var. Sativus. Journal of Soil Science and Plant Nutrition, 2022, 22, 2156-2168.	1.5 1.7	2
1437 1438 1439	COMMIT: Consideration of metabolite leakage and community composition improves microbial community reconstructions. PLoS Computational Biology, 2022, 18, e1009906. Comparative Analysis on Rhizosphere Soil and Endophytic Microbial Communities of Two Cultivars of Cyperus esculentus L. Var. Sativus. Journal of Soil Science and Plant Nutrition, 2022, 22, 2156-2168. Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review. International Journal of Environmental Research and Public Health, 2022, 19, 3141.	1.5 1.7 1.2	2 4 43
1437 1438 1439 1440	COMMIT: Consideration of metabolite leakage and community composition improves microbial community reconstructions. PLoS Computational Biology, 2022, 18, e1009906. Comparative Analysis on Rhizosphere Soil and Endophytic Microbial Communities of Two Cultivars of Cyperus esculentus L. Var. Sativus. Journal of Soil Science and Plant Nutrition, 2022, 22, 2156-2168. Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review. International Journal of Environmental Research and Public Health, 2022, 19, 3141. Shared in planta population and transcriptomic features of nonpathogenic members of endophytic phyllosphere microbiota. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2114460119.	1.5 1.7 1.2 3.3	2 4 43 17
1437 1438 1439 1440 1441	COMMIT: Consideration of metabolite leakage and community composition improves microbial community reconstructions. PLoS Computational Biology, 2022, 18, e1009906. Comparative Analysis on Rhizosphere Soil and Endophytic Microbial Communities of Two Cultivars of Cyperus esculentus L. Var. Sativus. Journal of Soil Science and Plant Nutrition, 2022, 22, 2156-2168. Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review. International Journal of Environmental Research and Public Health, 2022, 19, 3141. Shared in planta population and transcriptomic features of nonpathogenic members of endophytic phyllosphere microbiota. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2114460119. Auxin-Producing Bacteria from Duckweeds Have Different Colonization Patterns and Effects on Plant Morphology. Plants, 2022, 11, 721.	1.5 1.7 1.2 3.3 1.6	2 4 43 17
1437 1438 1439 1440 1441	COMMIT: Consideration of metabolite leakage and community composition improves microbial community reconstructions. PLoS Computational Biology, 2022, 18, e1009906. Comparative Analysis on Rhizosphere Soil and Endophytic Microbial Communities of Two Cultivars of Cyperus esculentus L. Var. Sativus. Journal of Soil Science and Plant Nutrition, 2022, 22, 2156-2168. Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review. International Journal of Environmental Research and Public Health, 2022, 19, 3141. Shared in planta population and transcriptomic features of nonpathogenic members of endophytic phyllosphere microbiota. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2114460119. Auxin-Producing Bacteria from Duckweeds Have Different Colonization Patterns and Effects on Plant Morphology. Plants, 2022, 11, 721. Microbial Community and Function-Based Synthetic Bioinoculants: A Perspective for Sustainable Agriculture. Frontiers in Microbiology, 2021, 12, 805498.	1.5 1.7 1.2 3.3 1.6 1.5	2 4 43 17 14 12
1437 1438 1439 1440 1441 1442 1443	COMMIT: Consideration of metabolite leakage and community composition improves microbial community reconstructions. PLoS Computational Biology, 2022, 18, e1009906. Comparative Analysis on Rhizosphere Soil and Endophytic Microbial Communities of Two Cultivars of Cyperus esculentus L. Var. Sativus. Journal of Soil Science and Plant Nutrition, 2022, 22, 2156-2168. Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review. International Journal of Environmental Research and Public Health, 2022, 19, 3141. Shared in planta population and transcriptomic features of nonpathogenic members of endophytic phyllosphere microbiota. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2114460119. Auxin-Producing Bacteria from Duckweeds Have Different Colonization Patterns and Effects on Plant Morphology. Plants, 2022, 11, 721. Microbial Community and Function-Based Synthetic Bioinoculants: A Perspective for Sustainable Agriculture. Frontiers in Microbiology, 2021, 12, 805498. Maize Field Study Reveals Covaried Microbiota and Metabolic Changes in Roots over Plant Growth. MBio, 2022, 13, e0258421.	1.5 1.7 1.2 3.3 1.6 1.5	2 4 43 17 14 12
1437 1438 1439 1440 1441 1442 1443 1444	COMMIT: Consideration of metabolite leakage and community composition improves microbial community reconstructions. PLoS Computational Biology, 2022, 18, e1009906. Comparative Analysis on Rhizosphere Soil and Endophytic Microbial Communities of Two Cultivars of Cyperus esculentus L. Var. Sativus. Journal of Soil Science and Plant Nutrition, 2022, 22, 2156-2168. Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review. International Journal of Environmental Research and Public Health, 2022, 19, 3141. Shared in planta population and transcriptomic features of nonpathogenic members of endophytic phyllosphere microbiota. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2114460119. Auxin-Producing Bacteria from Duckweeds Have Different Colonization Patterns and Effects on Plant Morphology. Plants, 2022, 11, 721. Microbial Community and Function-Based Synthetic Bioinoculants: A Perspective for Sustainable Agriculture. Frontiers in Microbiology, 2021, 12, 805498. Maize Field Study Reveals Covaried Microbiota and Metabolic Changes in Roots over Plant Growth. MBio, 2022, 13, e0258421. Improving Bambara Groundnut Production: Insight Into the Role of Omics and Beneficial Bacteria. Frontiers in Plant Science, 2022, 13, 836133.	1.5 1.7 1.2 3.3 1.6 1.5 1.8 1.7	2 4 43 17 14 12 15 11

#	Article	IF	CITATIONS
1446	Distribution and transfer of antibiotic resistance genes in different soil–plant systems. Environmental Science and Pollution Research, 2022, 29, 59159-59172.	2.7	11
1447	Ensuring future food security and resource sustainability: insights into the rhizosphere. IScience, 2022, 25, 104168.	1.9	7
1448	Cropping practices manipulate soil bacterial structure and functions on the Qinghai–Tibet Plateau. Journal of Plant Physiology, 2022, 271, 153666.	1.6	5
1449	Characterization and cadmium detoxification dynamics of endophytic bacteria, isolated from rice plants. Journal of King Saud University - Science, 2022, 34, 101992.	1.6	3
1450	The overlap of soil and vegetable microbes drives the transfer of antibiotic resistance genes from manure-amended soil to vegetables. Science of the Total Environment, 2022, 828, 154463.	3.9	23
1451	Molecular mechanisms of Nâ€acylÂhomoserine lactone signals perception by plants. Cell Biology International, 2022, 46, 523-534.	1.4	11
1452	Fungi as mediators linking organisms and ecosystems. FEMS Microbiology Reviews, 2022, 46, .	3.9	47
1453	How plants recruit their microbiome? New insights into beneficial interactions. Journal of Advanced Research, 2022, 40, 45-58.	4.4	87
1456	Aerobic Denitrification Is Enhanced Using Biocathode of SMFC in Low-Organic Matter Wastewater. Water (Switzerland), 2021, 13, 3512.	1.2	5
1457	The Lack of Knowledge on the Microbiome of Golf Turfgrasses Impedes the Development of Successful Microbial Products. Agronomy, 2022, 12, 71.	1.3	2
1458	Vertical Farming: The Only Way Is Up?. Agronomy, 2022, 12, 2.	1.3	56
1459	Effect ofBacillus velezensis JC-K3 on Endophytic Bacterial and Fungal Diversity in Wheat Under Salt Stress. Frontiers in Microbiology, 2021, 12, 802054.	1.5	14
1460	Emmia lacerata SR5 Promotes Michelia macclurei Growth by Enhancing Nutrient Uptake and Regulating Morphology. Journal of Soil Science and Plant Nutrition, 2022, 22, 985-999.	1.7	1
1461	Bioinoculants—Natural Biological Resources for Sustainable Plant Production. Microorganisms, 2022, 10, 51.	1.6	40
1462	High-Throughput Sequencing Analysis of the Composition and Diversity of the Bacterial Community in Cinnamomum camphora Soil. Microorganisms, 2022, 10, 72.	1.6	6
1463	From model organism to application: Bacteria-induced growth and development of the green seaweed Ulva and the potential of microbe leveraging in algal aquaculture. Seminars in Cell and Developmental Biology, 2023, 134, 69-78.	2.3	29
1465	Bacterial but Not Fungal Rhizosphere Community Composition Differ among Perennial Grass Ecotypes under Abiotic Environmental Stress. Microbiology Spectrum, 2022, 10, e0239121.	1.2	8
1466	The revolution of PDMS microfluidics in cellular biology. Critical Reviews in Biotechnology, 2023, 43, 465-483.	5.1	24

		15	0
#	ARTICLE	IF	CITATIONS
1467	soybean cultivars. Brazilian Journal of Microbiology, 2022, 53, 1355-1370.	0.8	10
1468	Simulated microgravity shapes the endophytic bacterial community by affecting wheat root metabolism. Environmental Microbiology, 2022, 24, 3355-3368.	1.8	4
1469	Functional microbiome strategies for the bioremediation of petroleum-hydrocarbon and heavy metal contaminated soils: A review. Science of the Total Environment, 2022, 833, 155222.	3.9	24
1699	High-Throughput Profiling of Root-Associated Microbial Communities. Methods in Molecular Biology, 2022, 2494, 325-337.	0.4	4
1700	Identifying the Specific Root Microbiome of the Hyperaccumulator Noccaea brachypetala Growing in Non-metalliferous Soils. Frontiers in Microbiology, 2021, 12, 639997.	1.5	7
1701	Biochar Addition Altered Bacterial Community and Improved Photosynthetic Rate of Seagrass: A Mesocosm Study of Seagrass Thalassia hemprichii. Frontiers in Microbiology, 2021, 12, 783334.	1.5	5
1702	The Grapevine Microbiome to the Rescue: Implications for the Biocontrol of Trunk Diseases. Plants, 2022, 11, 840.	1.6	17
1703	Functional genomics tools for studying microbe-mediated stress tolerance in plants. , 2022, , 175-204.		1
1704	Microbe-mediated alleviation of heat stress in plant: Current trends and applications. , 2022, , 129-147.		0
1705	Dynamic Shifts in the Root Microbiota of Cultivated Paphiopedilum armeniacum during Different Stages of Growth. Diversity, 2022, 14, 321.	0.7	2
1706	Metagenomic Analyses of the Soybean Root Mycobiome and Microbiome Reveal Signatures of the Healthy and Diseased Plants Affected by Taproot Decline. Microorganisms, 2022, 10, 856.	1.6	4
1707	Responses of endophytic bacterial communities in rice roots to phosphorus deficiency at the seedling stages. European Journal of Soil Biology, 2022, 110, 103405.	1.4	2
1708	Endophytism: A Multidimensional Approach to Plant–Prokaryotic Microbe Interaction. Frontiers in Microbiology, 2022, 13, .	1.5	9
1709	Glycyrrhiza uralensis Fisch. Root-associated microbiota: the multifaceted hubs associated with environmental factors, growth status and accumulation of secondary metabolites. Environmental Microbiomes, 2022, 17, 23.	2.2	7
1710	Silicon enhances abundances of reducing microbes in rhizoplane and decreases arsenite uptake by rice (Oryza sativa L.). Environmental Pollution, 2022, 306, 119405.	3.7	7
1711	Spatiotemporal Heterogeneity and Intragenus Variability in Rhizobacterial Associations with <i>Brassica rapa</i> Growth. MSystems, 2022, 7, e0006022.	1.7	3
1712	Approaching the domesticated plant holobiont from a community evolution perspective. Microbiology (United Kingdom), 2022, 168, .	0.7	1
1713	Plant growth-promoting rhizobacteria Burkholderia vietnamiensis B418 inhibits root-knot nematode on watermelon by modifying the rhizosphere microbial community. Scientific Reports, 2022, 12, 8381.	1.6	14

		CITATION REP	ORT	
# 1714	ARTICLE Omics technologies for agricultural microbiology research. , 2022, , 343-394.		IF	CITATIONS
1716	Methanotrophy Alleviates Nitrogen Constraint of Carbon Turnover by Rice Root-Associated Microbiomes. Frontiers in Microbiology, 2022, 13, .		1.5	2
1717	Spatial variations of root-associated bacterial communities of alpine plants in the Qinghai-T Plateau. Science of the Total Environment, 2022, 839, 156086.	ibet	3.9	8
1718	<i>In vitro</i> functional characterization predicts the impact of bacterial root endophytes growth. Journal of Experimental Botany, 2022, 73, 5758-5772.	on plant	2.4	3
1719	Enzymatic bioprospecting of endophytic Aspergillus niger isolated from Albizia lebbeck (L.) South African Journal of Botany, 2022, 148, 580-587.	Benth.	1.2	5
1720	Microbial communities along the soil-root continuum are determined by root anatomical be soil properties, and root exudation. Soil Biology and Biochemistry, 2022, 171, 108721.	undaries,	4.2	14
1722	Elevated Ozone Concentration and Nitrogen Addition Increase Poplar Rust Severity by Shift Phyllosphere Microbial Community. Journal of Fungi (Basel, Switzerland), 2022, 8, 523.	ing the	1.5	8
1723	Microbiota manipulation through the secretion of effector proteins is fundamental to the w lifestyles in the fungal kingdom. FEMS Microbiology Reviews, 2022, 46, .	ealth of	3.9	14
1724	New Insights into the Taxonomy of Bacteria in the Genomic Era and a Case Study with Rhize International Journal of Microbiology, 2022, 2022, 1-19.	obia.	0.9	12
1726	The Effect of Syringic Acid and Phenoxy Herbicide 4-chloro-2-methylphenoxyacetic acid (MC Rhizosphere, and Plant Endosphere Microbiome. Frontiers in Plant Science, 2022, 13, .	PA) on Soil,	1.7	2
1727	Antibacterial Activity of Endophytic Bacteria Against Sugar Beet Root Rot Agent by Volatile Compound Production and Induction of Systemic Resistance. Frontiers in Microbiology, 20.	Organic 22, 13, .	1.5	11
1728	Stability of Bacterial Network Enhances Nutrient Content in Apple Trees. Journal of Soil Scie Plant Nutrition, 0, , .	nce and	1.7	1
1731	Microbe-mediated biotic and abiotic stress tolerance in crop plants. , 2022, , 93-116.			1
1732	2000-2019: Twenty Years of Highly Influential Publications in Molecular Plant Immunity. Mo Plant-Microbe Interactions, 2022, 35, 748-754.	lecular	1.4	3
1733	Role of beneficial microbial gene pool in mitigating salt/nutrient stress of plants in saline so through underground phytostimulating signalling molecules. Pedosphere, 2023, 33, 153-17	ils ′1.	2.1	10
1734	Identifying plant genes shaping microbiota composition in the barley rhizosphere. Nature Communications, 2022, 13, .		5.8	44
1735	What will polyethylene film mulching bring to the root-associated microbial community of F ostii?. Applied Microbiology and Biotechnology, 0, , .	Paeonia	1.7	1
1736	Transfer of Nitrogen and Phosphorus From Cattle Manure to Soil and Oats Under Simulative Manure Deposition. Frontiers in Microbiology, 0, 13, .	e Cattle	1.5	2

~	~	
	ISED	ODT
CILAD	NLF	

#	Article	IF	CITATIONS
1737	ldentification of sulfateâ€reducing magnetotactic bacteria via a groupâ€specific <scp>16S rDNA</scp> primer and correlative fluorescence and electron microscopy: Strategy for cultureâ€independent study. Environmental Microbiology, 2022, 24, 5019-5038.	1.8	5
1738	Plant–microbe interactions in the rhizosphere via a circular metabolic economy. Plant Cell, 2022, 34, 3168-3182.	3.1	37
1739	Studies on the Short-Term Effects of the Cease of Pesticides Use on Vineyard Microbiome. , 0, , .		1
1740	Bacterial Communities in the Endophyte and Rhizosphere of White Radish (Raphanus sativus) in Different Compartments and Growth Conditions. Frontiers in Microbiology, 0, 13, .	1.5	3
1741	Fusarium oxysporum Disrupts Microbiome-Metabolome Networks in Arabidopsis thaliana Roots. Microbiology Spectrum, 2022, 10, .	1.2	8
1742	Bacterial community structure and diversity in the rhizospheric soil of Robinia pseudoacacia and Juniperus sabina planted in iron tailings matrix. Environmental Science and Pollution Research, 2022, 29, 83404-83416.	2.7	4
1743	<scp>Rhizosphere</scp> <scp>bacterial communities differ among traditional maize landraces</scp> . Environmental DNA, 2022, 4, 1241-1249.	3.1	5
1744	Microhabitat Governs the Microbiota of the Pinewood Nematode and Its Vector Beetle: Implication for the Prevalence of Pine Wilt Disease. Microbiology Spectrum, 2022, 10, .	1.2	1
1746	Inoculum Concentration and Mineral Fertilization: Effects on the Endophytic Microbiome of Soybean. Frontiers in Microbiology, 0, 13, .	1.5	6
1747	AP1G2 Affects Mitotic Cycles of Female and Male Gametophytes in Arabidopsis. Frontiers in Plant Science, 0, 13, .	1.7	6
1748	Climate drives rhizosphere microbiome variation and divergent selection between geographically distant <i>Arabidopsis</i> populations. New Phytologist, 2022, 236, 608-621.	3.5	9
1750	ActinoBase: tools and protocols for researchers working on Streptomyces and other filamentous actinobacteria. Microbial Genomics, 2022, 8, .	1.0	2
1751	Stimulation of Distinct Rhizosphere Bacteria Drives Phosphorus and Nitrogen Mineralization in Oilseed Rape under Field Conditions. MSystems, 2022, 7, .	1.7	7
1752	Effect of <i>Scenedesmus</i> sp. CHK0059 on Strawberry Microbiota Community. Journal of Microbiology and Biotechnology, 2022, 32, 862-868.	0.9	2
1753	Plant genetic effects on microbial hubs impact host fitness in repeated field trials. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	43
1754	Wholeâ€plant microbiome profiling reveals a novel geminivirus associated with soybean stayâ€green disease. Plant Biotechnology Journal, 2022, 20, 2159-2173.	4.1	12
1756	<i>Arabidopsis</i> plants engineered for high root sugar secretion enhance the diversity of soil microorganisms. Biotechnology Journal, 2022, 17, .	1.8	2
1757	Environmental filtering drives the establishment of the distinctive rhizosphere, bulk, and root nodule bacterial communities of Sophora davidii in hilly and gully regions of the Loess Plateau of China. Frontiers in Microbiology, 0, 13, .	1.5	6

#	Article	IF	CITATIONS
1758	Beneficial and pathogenic plantâ€microbe interactions during flooding stress. Plant, Cell and Environment, 2022, 45, 2875-2897.	2.8	20
1759	Exploring the secrets of hyphosphere of arbuscular mycorrhizal fungi: processes and ecological functions. Plant and Soil, 2022, 481, 1-22.	1.8	35
1760	Comparison of bacterial diversity, root exudates and soil enzymatic activities in the rhizosphere of AVP1-transgenic and nontransgenic wheat (Triticum aestivum L.). Journal of Applied Microbiology, 2022, 133, 3094-3112.	1.4	2
1761	Influence of revegetation on soil microbial community and its assembly process in the open-pit mining area of the Loess Plateau, China. Frontiers in Microbiology, 0, 13, .	1.5	4
1762	Archaeal community structures associated with fine root systems of <i>Cryptomeria japonica</i> (Cupressaceae) in central Japan. Journal of Forest Research, 0, , 1-9.	0.7	0
1764	Combined intensive management of fertilization, tillage, and organic material mulching regulate soil bacterial communities and functional capacities by altering soil potassium and pH in a Moso bamboo forest. Frontiers in Microbiology, 0, 13, .	1.5	5
1765	Effects of three regeneration methods on the growth and bacterial community diversity of Populus × euramericana. PLoS ONE, 2022, 17, e0273306.	1.1	0
1766	Assembly of root-associated N2O-reducing communities of annual crops is governed by selection for <i>nosZ</i> clade I over clade II. FEMS Microbiology Ecology, 2022, 98, .	1.3	3
1767	Green manuring facilitates bacterial community dispersal across different compartments of subsequent tobacco. Journal of Integrative Agriculture, 2023, 22, 1199-1215.	1.7	3
1768	Differed Growth Stage Dynamics of Root-Associated Bacterial and Fungal Community Structure Associated with Halophytic Plant Lycium ruthenicum. Microorganisms, 2022, 10, 1644.	1.6	9
1769	Screening of endophytic bacteria isolated from Beta vulgaris and Beta maritima plants for suppression of postharvest sugar beet soft rot agent, Enterobacter roggenkampii. Physiological and Molecular Plant Pathology, 2022, 121, 101892.	1.3	3
1770	Structural variability and niche differentiation of Paeonia lactiflora's root-associated microbiomes. Applied Soil Ecology, 2022, 180, 104632.	2.1	2
1771	Pseudomonas putida mediates bacterial killing, biofilm invasion and biocontrol with a type IVB secretion system. Nature Microbiology, 2022, 7, 1547-1557.	5.9	23
1772	Ecological niche differences regulate the assembly of bacterial community in endophytic and rhizosphere of Eucalyptus. Forest Ecology and Management, 2022, 524, 120521.	1.4	9
1773	Spread and driving factors of antibiotic resistance genes in soil-plant system in long-term manured greenhouse under lead (Pb) stress. Science of the Total Environment, 2023, 855, 158756.	3.9	2
1774	Chameleon-like microbes promote microecological differentiation of Daqu. Food Microbiology, 2023, 109, 104144.	2.1	13
1775	Soil Microbiome: Characteristics, Impact of Climate Change and Resilience. , 2022, , 285-313.		1
1776	Evaluating the Hologenome Concept by the Analysis of the Root-Endosphere Microbiota of Chimeric Plants. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
1777	The Potential of Plant Growth-Promoting Rhizobacteria (PGPR) as Biological Tools in Enhancing Agricultural Sustainability. Fungal Biology, 2022, , 295-309.	0.3	0
1778	Rhizospheric Microbial Communication. , 2022, , 41-66.		0
1779	Effects of single- and mixed-bacterial inoculation on the colonization and assembly of endophytic communities in plant roots. Frontiers in Plant Science, 0, 13, .	1.7	3
1780	Distribution of Core Root Microbiota of Tibetan Hulless Barley along an Altitudinal and Geographical Gradient in the Tibetan Plateau. Microorganisms, 2022, 10, 1737.	1.6	2
1781	Soil conditions on bacterial wilt disease affect bacterial and fungal assemblage in the rhizosphere. AMB Express, 2022, 12, .	1.4	4
1782	Host Plant Selection Imprints Structure and Assembly of Fungal Community along the Soil-Root Continuum. MSystems, 2022, 7, .	1.7	9
1783	Distribution pattern of endophytic bacteria and fungi in tea plants. Frontiers in Microbiology, 0, 13, .	1.5	8
1785	The response of sugar beet rhizosphere micro-ecological environment to continuous cropping. Frontiers in Microbiology, 0, 13, .	1.5	8
1786	Investigating plantâ \in "microbe interactions within the root. Archives of Microbiology, 2022, 204, .	1.0	5
1787	Individual competence predominates over host nutritional status in Arabidopsis root exudate-mediated bacterial enrichment in a combination of four Burkholderiaceae species. BMC Microbiology, 2022, 22, .	1.3	1
1788	Investigating Population Genetic Diversity and Rhizosphere Microbiota of Central Apennines' Artemisia eriantha. Sustainability, 2022, 14, 11405.	1.6	0
1789	Core Microbiota in the Rhizosphere of Heavy Metal Accumulators and Its Contribution to Plant Performance. Environmental Science & Technology, 2022, 56, 12975-12987.	4.6	23
1791	Dynamic changes in the endophytic bacterial community during maturation of Amorphophallus muelleri seeds. Frontiers in Microbiology, 0, 13, .	1.5	1
1792	Uncovering natural variation in root system architecture and growth dynamics using a robotics-assisted phenomics platform. ELife, 0, 11, .	2.8	9
1793	Community Assembly of Fungi and Bacteria along Soil-Plant Continuum Differs in a Zoige Wetland. Microbiology Spectrum, 2022, 10, .	1.2	1
1794	Changes in Microbial Diversity, Soil Function, and Plant Biomass of Cotton Rhizosphere Soil Under the Influence of Chlorpyrifos. Current Microbiology, 2022, 79, .	1.0	3
1796	The rhizosphere bacterial community contributes to the nutritional competitive advantage of weedy rice over cultivated rice in paddy soil. BMC Microbiology, 2022, 22, .	1.3	5
1797	Shared Core Microbiome and Functionality of Key Taxa Suppressive to Banana Fusarium Wilt. Research, 2022, 2022, .	2.8	3

#	Article	IF	CITATIONS
1798	Influence of planting yellowhorn (<i>Xanthoceras sorbifolium</i> Bunge) on the bacterial and fungal diversity of fly ash. PeerJ, 0, 10, e14015.	0.9	0
1799	Investigating genetic diversity within the most abundant and prevalent non-pathogenic leaf-associated bacteria interacting with Arabidopsis thaliana in natural habitats. Frontiers in Microbiology, 0, 13, .	1.5	4
1800	Microbial volatile organic compounds 2â€heptanol and acetoin control Fusarium crown and root rot of tomato. Journal of Cellular Physiology, 0, , .	2.0	3
1801	Biogeography and ecological functions of rootâ€associated and soil fungi of <i>Pinus sylvestris</i> var. <i>mongolica</i> across different afforestation areas in desertified Northern China. Land Degradation and Development, 2023, 34, 313-326.	1.8	4
1802	Microbiomes in agroecosystem: Diversity, function and assembly mechanisms. Environmental Microbiology Reports, 2022, 14, 833-849.	1.0	21
1803	Genetic Circuit Design in Rhizobacteria. Biodesign Research, 2022, 2022, .	0.8	3
1804	Soil microbial community assembly and stability are associated with potato (Solanum tuberosum L.) fitness under continuous cropping regime. Frontiers in Plant Science, 0, 13, .	1.7	12
1805	The rhizosphere microbiome improves the adaptive capabilities of plants under high soil cadmium conditions. Frontiers in Plant Science, 0, 13, .	1.7	5
1806	Dysbiosis of the rhizosphere microbiome caused by \hat{I}^3 -irradiation alters the composition of root exudates and reduces phosphorus uptake by rice in flooded soils. Plant and Soil, 0, , .	1.8	1
1807	Endophytic bacteria of wheat and the potential to improve microelement composition of grain. Studia Biologica = ĐʿІОЛОГІЧĐІ Đ¡Đ¢Đ£Đ"ІЇ Studia Biologica, 2022, 16, 101-128.	0.1	0
1808	Warhorses in soil bioremediation: Seed biopriming with PGPF secretome to phytostimulate crop health under heavy metal stress. Environmental Research, 2023, 216, 114498.	3.7	5
1809	Root-associated microbiomes are influenced by multiple factors and regulate the growth and quality of Astragalus membranaceus (fisch) Bge. var. mongholicus (Bge.) Hsiao. Rhizosphere, 2022, 24, 100609.	1.4	3
1810	Omics Approaches to Unravel the Features of Rhizospheric Microbiome. Rhizosphere Biology, 2022, , 391-402.	0.4	0
1811	Role of Rhizosphere Microorganisms in Endorsing Overall Plant Growth and Development. Rhizosphere Biology, 2022, , 323-353.	0.4	3
1812	"The Key Influencers―of Rhizosphere Microbial Population Dynamics. Microorganisms for Sustainability, 2022, , 123-132.	0.4	0
1813	Exploration of Plant Growth-Promoting Rhizobacteria (PGPR) for Improving Productivity and Soil Fertility Under Sustainable Agricultural Practices. Rhizosphere Biology, 2022, , 245-269.	0.4	2
1814	Conservation Strategies for Rhizobiome in Sustainable Agriculture. Rhizosphere Biology, 2022, , 37-61.	0.4	0
1816	Ecological niche selection shapes the assembly and diversity of microbial communities in Casuarina equisetifolia L Frontiers in Plant Science, 0, 13, .	1.7	4

#	Article	IF	CITATIONS
1817	Microbiome of Nodules and Roots of Soybean and Common Bean: Searching for Differences Associated with Contrasting Performances in Symbiotic Nitrogen Fixation. International Journal of Molecular Sciences, 2022, 23, 12035.	1.8	10
1818	Screening of Endophytic Bacteria of Leucojum aestivum â€~Gravety Giant' as a Potential Source of Alkaloids and as Antagonist to Some Plant Fungal Pathogens. Microorganisms, 2022, 10, 2089.	1.6	4
1819	Microbial assemblages of Schisandraceae plants and the correlations between endophytic species and the accumulation of secondary metabolites. Plant and Soil, 2023, 483, 85-107.	1.8	4
1820	PANOMICS at the interface of root–soil microbiome and BNI. Trends in Plant Science, 2023, 28, 106-122.	4.3	12
1821	Habitat partitioning of soil microbial communities along an elevation gradient: from plant root to landscape scale. Oikos, 2023, 2023, .	1.2	7
1822	Bama Pig Manure Organic Fertilizer Regulates the Watermelon Rhizosphere Bacterial Community to Inhibit the Occurrence of Fusarium Wilt Under Continuous Cropping Conditions. Current Microbiology, 2022, 79, .	1.0	4
1823	Diversity analysis of leaf endophytic fungi and rhizosphere soil fungi of Korean Epimedium at different growth stages. Environmental Microbiomes, 2022, 17, .	2.2	3
1824	Principal Drivers of Fungal Communities Associated with Needles, Shoots, Roots and Adjacent Soil of Pinus sylvestris. Journal of Fungi (Basel, Switzerland), 2022, 8, 1112.	1.5	3
1825	Effects of Microbial Transfer during Food-Gut-Feces Circulation on the Health of Bombyx mori. Microbiology Spectrum, 2022, 10, .	1.2	7
1826	Application of ecosystem-specific reference databases for increased taxonomic resolution in soil microbial profiling. Frontiers in Microbiology, 0, 13, .	1.5	1
1827	Characterization of diazotrophic root endophytes in Chinese silvergrass (Miscanthus sinensis). Microbiome, 2022, 10, .	4.9	23
1828	Assembly of abundant and rare maize root-associated bacterial communities under film mulch. Applied Soil Ecology, 2023, 182, 104682.	2.1	5
1829	Defining Composition and Function of the Rhizosphere Microbiota of Barley Genotypes Exposed to Growth-Limiting Nitrogen Supplies. MSystems, 2022, 7, .	1.7	12
1830	Soilborne bacterium <i>Klebsiella pneumoniae</i> promotes cluster root formation in white lupin through ethylene mediation. New Phytologist, 2023, 237, 1320-1332.	3.5	4
1831	Australian native Glycine clandestina seed microbiota hosts a more diverse bacterial community than the domesticated soybean Glycine max. Environmental Microbiomes, 2022, 17, .	2.2	3
1832	Six novel Micromonospora species associated with the phyllosphere and roots of leguminous plants: Micromonospora alfalfae sp. nov., Micromonospora cabrerizensis sp. nov., Micromonospora foliorum sp. nov., Micromonospora hortensis sp. nov., Micromonospora salmantinae sp. nov., and Micromonospora trifolii sp. nov International Journal of Systematic and Evolutionary Microbiology,	0.8	2
1833	2022, 72, . Community distribution of rhizosphere and endophytic bacteria of ephemeral plants in desertâ€oasis ecotone and analysis of environmental driving factors. Land Degradation and Development, 0, , .	1.8	0
1834	High throughput method of 16S rRNA gene sequencing library preparation for plant root microbial community profiling. Scientific Reports, 2022, 12, .	1.6	2

#	Article	IF	CITATIONS
1836	Higher-Quality Pumpkin Cultivars Need to Recruit More Abundant Soil Microbes in Rhizospheres. Microorganisms, 2022, 10, 2219.	1.6	1
1837	Composition and diversity of root-inhabiting bacterial microbiota in the perennial sweet sorghum cultivar at the maturing stage. Plant Growth Regulation, 0, , .	1.8	0
1838	Microbiome contributes to phenotypic plasticity in saffron crocus. World Journal of Microbiology and Biotechnology, 2023, 39, .	1.7	3
1839	Root and Rhizosphere Microbiome of Tomato Plants Grown in the Open Field in the South of West Siberia under Mineral Fertilization. Horticulturae, 2022, 8, 1051.	1.2	3
1840	The bacteriome of the halophyte <i>Atriplex nummularia</i> (old man saltbush) in salt-affected soils - an ecological model. FEMS Microbiology Ecology, 2022, 98, .	1.3	2
1841	The core microbiome of Carya illinoinensis (pecan) seedlings of different maternal pecan cultivars from the same orchard. , 0, 1, .		3
1842	Regional variations and plant compartments shape the community structures of the endophytic microbiome and secondary metabolites of Astragalus mongholicus. Industrial Crops and Products, 2023, 192, 116037.	2.5	7
1843	Ecological linkages between biotechnologically relevant autochthonous microorganisms and phenolic compounds in sugar apple fruit (Annona squamosa L.). International Journal of Food Microbiology, 2023, 387, 110057.	2.1	3
1844	Plant-soil feedbacks in Hydrocotyle vulgaris: Genotypic differences and relations to functional traits. Ecological Indicators, 2023, 146, 109766.	2.6	3
1845	Microbial community assembly of the hyperaccumulator plant Sedum plumbizincicola in two contrasting soil types with three levels of cadmium contamination. Science of the Total Environment, 2023, 863, 160917.	3.9	9
1846	Comparative study of the rhizosphere microbiome of Coffea arabica grown in different countries reveals a small set of prevalent and keystone taxa. Rhizosphere, 2023, 25, 100652.	1.4	2
1848	Back to the roots: defining the core microbiome of <i>Sorghum bicolor</i> in agricultural field soils from the centre of origin. FEMS Microbiology Ecology, 2022, 98, .	1.3	7
1849	Mining The Microbiome: A Mini Review on Natural Products Discovery from Soil. IOP Conference Series: Earth and Environmental Science, 2022, 1103, 012014.	0.2	0
1850	Manure and biochar have limited effect on lettuce leaf endophyte resistome. Science of the Total Environment, 2023, 860, 160515.	3.9	3
1851	Microbial communities in tree root-compartment niches under Cd and Zn pollution: Structure, assembly process and co-occurrence relationship. Science of the Total Environment, 2023, 860, 160273.	3.9	5
1852	Investigating Endobacteria that Thrive Within Mucoromycota. Methods in Molecular Biology, 2023, , 293-323.	0.4	2
1853	Confocal Laser Scanning Microscopy Approach to Investigate Plant–Fungal Interactions. Methods in Molecular Biology, 2023, , 325-335.	0.4	0
1854	Drought stress modifies the community structure of root-associated microbes that improve Atractylodes lancea growth and medicinal compound accumulation. Frontiers in Plant Science, 0, 13, .	1.7	9

#	Article	IF	CITATIONS
1855	Root-Zone Restriction Regulates Soil Factors and Bacterial Community Assembly of Grapevine. International Journal of Molecular Sciences, 2022, 23, 15628.	1.8	2
1857	Bio-Organic Fertilizer Promotes Pear Yield by Shaping the Rhizosphere Microbiome Composition and Functions. Microbiology Spectrum, 2022, 10, .	1.2	7
1858	Root endophytic bacterial community composition of <i>Aconitum carmichaelii</i> debx. from three main producing areas in China. Journal of Basic Microbiology, 2023, 63, 454-468.	1.8	1
1859	Assembly of Endophytic Communities of <i>Setaria viridis</i> Plants when Grown in Different Soils and Derived from Different Seeds. Phytobiomes Journal, 2024, 8, 34-45.	1.4	0
1861	Cell-free microbial culture filtrates as candidate biostimulants to enhance plant growth and yield and activate soil- and plant-associated beneficial microbiota. Frontiers in Plant Science, 0, 13, .	1.7	3
1862	Divergent taxonomic responses of below-ground microbial communities to silicate fertilizer and biofertilizer amendments in two rice ecotypes. Frontiers in Agronomy, 0, 4, .	1.5	0
1863	Negative effects of abamectin on soil microbial communities in the short term. Frontiers in Microbiology, 0, 13, .	1.5	4
1864	Effects of different straw returning amounts and fertilizer conditions on bacteria of rice's different part in rare earth mining area. Scientific Reports, 2023, 13, .	1.6	6
1866	Implications of Plant Invasion on the Soil Microbial Diversity and Ecosystem Sustainability: Evidence from a Tropical Biodiversity Hot Spot. , 2023, , 161-182.		0
1868	Isolation of three genera of microorganisms in lahar-laden soils of Sta. Rita, Pampanga, Philippines through the 16s rRNA gene sequence analysis. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2023, 73, 1-12.	0.3	1
1869	Rhizobial migration toward roots mediated by FadL-ExoFQP modulation of extracellular long-chain AHLs. ISME Journal, 2023, 17, 417-431.	4.4	6
1870	Waste Polyurethane Foams as Biomass Carriers in the Treatment Process of Domestic Sewage with Increased Ammonium Nitrogen Content. Materials, 2023, 16, 619.	1.3	0
1871	The Role of the Root Microbiome in the Utilization of Functional Traits for Increasing Plant Productivity. Microorganisms for Sustainability, 2023, , 55-80.	0.4	0
1872	A Review of Basic Bioinformatic Techniques for Microbial Community Analysis in an Anaerobic Digester. Fermentation, 2023, 9, 62.	1.4	3
1873	The Co-Association of Enterobacteriaceae and Pseudomonas with Specific Resistant Cucumber against Fusarium Wilt Disease. Biology, 2023, 12, 143.	1.3	6
1874	Functional Potential of Plant Microbiome for Sustainable Agriculture in Conditions of Abiotic Stresses. Microorganisms for Sustainability, 2023, , 121-136.	0.4	1
1875	Interaction between bacterial endophytes and host plants. Frontiers in Plant Science, 0, 13, .	1.7	12
1876	Soil Properties and Bacterial Communities Associated with the Rhizosphere of the Common Bean after Using Brachiaria brizantha as a Service Crop: A 10-Year Field Experiment. Sustainability, 2023, 15, 488.	1.6	3

#	Article	IF	CITATIONS
1877	Host niche, genotype, and field location shape the diversity and composition of the soybean microbiome. Journal of Integrative Agriculture, 2023, 22, 2412-2425.	1.7	6
1878	Analysis of Arabidopsis non-reference accessions reveals high diversity of metabolic gene clusters and discovers new candidate cluster members. Frontiers in Plant Science, 0, 14, .	1.7	1
1879	Endophytic Bacteria in Ricinus communis L.: Diversity of Bacterial Community, Plantâ~'Growth Promoting Traits of the Isolates and Its Effect on Cu and Cd Speciation in Soil. Agronomy, 2023, 13, 333.	1.3	2
1880	Approaches in stress mitigation of plants. , 2023, , 1-25.		Ο
1881	Apoplast-Localized β-Glucosidase Elevates Isoflavone Accumulation in the Soybean Rhizosphere. Plant and Cell Physiology, 2023, 64, 486-500.	1.5	3
1882	Ecological Processes of Bacterial and Fungal Communities Associated with <i>Typha orientalis</i> Roots in Wetlands Were Distinct during Plant Development. Microbiology Spectrum, 2023, 11, .	1.2	6
1884	Microbe-mediated abiotic stress management for sustainable agriculture. , 2023, , 245-262.		0
1885	Elevated <scp>O₃</scp> concentrations alter the compartmentâ€specific microbial communities inhabiting rustâ€infected poplars. Environmental Microbiology, 2023, 25, 990-1006.	1.8	2
1886	Culture-independent and culture-dependent approaches in symbiont analysis. , 2023, , 743-763.		0
1887	Symbiotic Relationships with Fungi: From Mutualism to Parasitism. , 2023, , 375-413.		1
1888	Adaptation of Rhizosphere Microbial Communities to Continuous Exposure to Multiple Residual Antibiotics in Vegetable Farms. International Journal of Environmental Research and Public Health, 2023, 20, 3137.	1.2	4
1889	Insights into the impacts of autotoxic allelochemicals from rhizosphere of Atractylodes lancea on soil microenvironments. Frontiers in Plant Science, 0, 14, .	1.7	1
1890	Metabolite-Mediated Responses of Phyllosphere Microbiota to Rust Infection in Two <i>Malus</i> Species. Microbiology Spectrum, 2023, 11, .	1.2	4
1891	Cofunctioning of bacterial exometabolites drives root microbiota establishment. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	21
1892	Soil salinity determines the assembly of endophytic bacterial communities in the roots but not leaves of halophytes in a river delta ecosystem. Geoderma, 2023, 433, 116447.	2.3	7
1893	Crosstalk between in situ root exudates and rhizobacteria to promote rice growth by selenium nanomaterials. Science of the Total Environment, 2023, 878, 163175.	3.9	15
1894	Revealing the relative importance among plant species, slope positions, and soil types on rhizosphere microbial communities in northern tropical karst and non-karst seasonal rainforests of China. Frontiers in Microbiology, 0, 14, .	1.5	1
1895	Bacillus amyloliquefaciens FG14 as a potential biocontrol strain against rusty root rot of Panax ginseng, and its impact on the rhizosphere microbial community. Biological Control, 2023, 182, 105221.	1.4	5

#	Article	IF	CITATIONS
1897	Transfer and distribution of antibiotic resistance genes in the soil-peanut system receiving manure for years. Science of the Total Environment, 2023, 869, 161742.	3.9	3
1898	Evaluating the hologenome concept by analyzing the root-endosphere microbiota of chimeric plants. IScience, 2023, 26, 106031.	1.9	2
1899	Antibiotic resistance in soil-plant systems: A review of the source, dissemination, influence factors, and potential exposure risks. Science of the Total Environment, 2023, 869, 161855.	3.9	23
1900	Host genetics regulate the plant microbiome. Current Opinion in Microbiology, 2023, 72, 102268.	2.3	14
1901	Microplastics affect soybean rhizosphere microbial composition and function during vegetative and reproductive stages. Ecotoxicology and Environmental Safety, 2023, 252, 114577.	2.9	10
1902	CHARACTERIZATION OF RHIZOBIA FROM DIFFERENT LEGUMINOUS PLANT RHIZOSPHERE. Towards Excellence, 0, , 393-407.	0.0	0
1903	Host-mediated gene engineering and microbiome-based technology optimization for sustainable agriculture and environment. Functional and Integrative Genomics, 2023, 23, .	1.4	20
1905	Bioremediation of coastal aquaculture effluents spiked with florfenicol using microalgae-based granular sludge – a promising solution for recirculating aquaculture systems. Water Research, 2023, 233, 119733.	5.3	10
1906	Root-Associated Antagonistic Pseudomonas spp. Contribute to Soil Suppressiveness against Banana Fusarium Wilt Disease of Banana. Microbiology Spectrum, 2023, 11, .	1.2	7
1907	Assembly and enrichment of rhizosphere and bulk soil microbiomes in Robinia pseudoacacia plantations during long-term vegetation restoration. Applied Soil Ecology, 2023, 187, 104835.	2.1	3
1908	Diversity and structural analysis of rhizosphere soil microbial communities in wild and cultivated Rhizoma Atractylodis Macrocephalae and their effects on the accumulation of active components. PeerJ, 0, 11, e14841.	0.9	2
1909	Effects of Tea Plant Varieties with High- and Low-Nutrient Efficiency on Nutrients in Degraded Soil. Plants, 2023, 12, 905.	1.6	0
1910	A Bacillaceae consortium positively impacts arbuscular mycorrhizal fungus colonisation, plant phosphate nutrition, and tuber yield in Solanum tuberosum cv. Jazzy. Symbiosis, 2023, 89, 235-250.	1.2	0
1911	The Arabidopsis holobiont: a (re)source of insights to understand the amazing world of plant–microbe interactions. Environmental Microbiomes, 2023, 18, .	2.2	8
1912	Insights into the Methodological, Biotic and Abiotic Factors Influencing the Characterization of Xylem-Inhabiting Microbial Communities of Olive Trees. Plants, 2023, 12, 912.	1.6	5
1913	Comparative investigation on heterotrophic denitrification driven by different biodegradable polymers for nitrate removal in mariculture wastewater: Organic carbon release, denitrification performance, and microbial community. Frontiers in Microbiology, 0, 14, .	1.5	5
1914	Microbiome diversity, composition and assembly in a California citrus orchard. Frontiers in Microbiology, 0, 14, .	1.5	4
1915	Comparison of the diversity and structure of the rhizosphere microbial community between the straight and twisted trunk types of Pinus yunnanensis. Frontiers in Microbiology, 0, 14, .	1.5	2

#	Article	IF	CITATIONS
1916	Seasonal activities of the phyllosphere microbiome of perennial crops. Nature Communications, 2023, 14, .	5.8	13
1917	Getting to the root of tree soil microbiome sampling. Phytobiomes Journal, 0, , .	1.4	0
1918	Plant-Growth Promoting Endophytic Bacteria and Their Role for Maize Acclimatation to Abiotic Stress. , 0, , .		1
1919	Removal of Antibiotic Resistance Genes from Animal Wastewater by Ecological Treatment Technology Based on Plant Absorption. International Journal of Environmental Research and Public Health, 2023, 20, 4357.	1.2	0
1920	Different sensitivities and assembly mechanisms of the root-associated microbial communities of Robinia pseudoacacia to spatial variation at the regional scale. Plant and Soil, 2023, 486, 621-637.	1.8	3
1921	Editorial: Plant microbiome: Ecology, functions, and application trends. Frontiers in Plant Science, 0, 14, .	1.7	0
1922	Changing Rhizosphere Microbial Community and Metabolites with Developmental Stages of Coleus barbatus. Microorganisms, 2023, 11, 705.	1.6	0
1923	Biotic stress-induced changes in root exudation confer plant stress tolerance by altering rhizospheric microbial community. Frontiers in Plant Science, 0, 14, .	1.7	9
1924	Rapeseed Domestication Affects the Diversity of Rhizosphere Microbiota. Microorganisms, 2023, 11, 724.	1.6	1
1925	Spatial profiling of microbial communities by sequential FISH with error-robust encoding. Nature Communications, 2023, 14, .	5.8	12
1926	Organic carbon release, denitrification performance and microbial community of solid-phase denitrification reactors using the blends of agricultural wastes and artificial polymers for the treatment of mariculture wastewater. Ecotoxicology and Environmental Safety, 2023, 255, 114791.	2.9	3
1927	Differences in Soil Microbiota of Continuous Cultivation of Ganoderma leucocontextum. Agronomy, 2023, 13, 888.	1.3	0
1931	Effects of Microbial Communities on Elevational Gradient Adaptation Strategies of Pinus yunnanensis Franch. and Pinus densata Mast. in a Mixed Zone. Forests, 2023, 14, 685.	0.9	2
1932	Testing the stress gradient hypothesis in soil bacterial communities associated with vegetation belts in the Andean Atacama Desert. Environmental Microbiomes, 2023, 18, .	2.2	3
1933	Health Management of Rhizospheric Microbiome. , 2023, , 179-224.		0
1934	Plant-microbe community dynamics in rhizosphere: Reviewing the grassroots ecology towards sustainable agriculture. , 2023, 93, .		0
1935	Diversity and assembly of root-associated microbiomes of rubber trees. Frontiers in Plant Science, 0, 14, .	1.7	1
1936	Lectin Receptor-like Kinase Signaling during Engineered Ectomycorrhiza Colonization. Cells, 2023, 12, 1082.	1.8	2

#	Article	IF	CITATIONS
1937	Seed endophytic bacterial profiling from wheat varieties of contrasting heat sensitivity. Frontiers in Plant Science, 0, 14, .	1.7	6
1938	Integrated Microbiome and Metabolomic Analysis Reveal Responses of Rhizosphere Bacterial Communities and Root exudate Composition to Drought and Genotype in Rice (Oryza sativa L.). Rice, 2023, 16, .	1.7	9
1939	Congeneric temperate orchids recruit similar—yet differentially abundant—endophytic bacterial communities that are uncoupled from soil, but linked to host phenology and population size. American Journal of Botany, 2023, 110, .	0.8	0
1940	Biocontrol of plant pathogens in omics era—with special focus on endophytic bacilli. Critical Reviews in Biotechnology, 0, , 1-19.	5.1	5
1941	The effect of wheat genotype on the microbiome is more evident in roots and varies through time. ISME Communications, 2023, 3, .	1.7	8
1942	Mechanism for combined application of biochar and Bacillus cereus to reduce antibiotic resistance genes in copper contaminated soil and lettuce. Science of the Total Environment, 2023, 884, 163422.	3.9	4
1948	Plant–Endophyte Interactions: A Driving Phenomenon for Boosting Plant Health under Climate Change Conditions. Rhizosphere Biology, 2023, , 233-263.	0.4	1
1959	Endophytic bacterial diversity by 16S rRNA gene sequencing of Pak choi roots under fluazinam, Trichoderma harzianum, and Sophora flavescens inoculation. Functional and Integrative Genomics, 2023, 23, .	1.4	2
1960	Recent molecular and omics approaches to study rhizosphere functioning. , 2023, , 1-13.		1
1988	Nutrition and cultivation strategies of core rhizosphere microorganisms. , 2023, , 209-231.		0
1989	Multiomics analysis of rhizosphere and plant health. , 2023, , 433-444.		0
2008	Unveiling Microbial Chemical Interactions Based on Metabolomics Approaches. Advances in Experimental Medicine and Biology, 2023, , 51-70.	0.8	0
2011	Bioinformatics study to unravel the role of rhizobiome to biologically control the pathogens in vegetables. , 2023, , 267-284.		0
2012	Plant health: Feedback effect of root exudates and rhizobiome interactions. , 2023, , 345-375.		0
2047	Beneficial Role of Microbial Diversity for Sustainable Agriculture. , 2023, , 587-613.		1
2074	Amelioration of biotic stress by using rhizobacteria: Sustainable Crop Production. , 2024, , 311-339.		0
2081	Symbiotic associations between microbes and host plants. , 2024, , 145-179.		0
2082	Plant endophytes: diversity and ecology. , 2024, , 1-23.		0

		CITATION REPORT	
#	Article	IF	Citations
2085	Insights into economically important endophytic and rhizospheric bacteria of true mar Indian Sundarbans using high throughput mapping. , 2024, , 299-325.	igroves of	0
2092	Harnessing Rhizospheric Microbes for Mitigating Petroleum Hydrocarbon Toxicity. , 0,	, .	0
2117	The potential of soil microbiomes in alleviating climate change–associated stresses 2024, , 81-111.	on crop plants. ,	0