The rhizosphere microbiome and plant health

Trends in Plant Science 17, 478-486

DOI: 10.1016/j.tplants.2012.04.001

Citation Report

#	Article	IF	CITATIONS
1	Phytopathogen Effectors Subverting Host Immunity: Different Foes, Similar Battleground. Cell Host and Microbe, 2012, 12, 484-495.	5.1	422
3	Who's who in the plant root microbiome?. Nature Biotechnology, 2012, 30, 961-962.	9.4	176
4	Hormonal Modulation of Plant Immunity. Annual Review of Cell and Developmental Biology, 2012, 28, 489-521.	4.0	2,396
5	The Impact of Beneficial Plant-Associated Microbes on Plant Phenotypic Plasticity. Journal of Chemical Ecology, 2013, 39, 826-839.	0.9	180
6	Volatile Organic Compound Mediated Interactions at the Plant-Microbe Interface. Journal of Chemical Ecology, 2013, 39, 810-825.	0.9	209
7	Combining Mutualistic Yeast and Pathogenic Virus — A Novel Method for Codling Moth Control. Journal of Chemical Ecology, 2013, 39, 1019-1026.	0.9	25
8	Mycorrhizas and mycorrhizal fungal communities throughout ecosystem development. Plant and Soil, 2013, 367, 11-39.	1.8	152
9	Soil microbial diversity and agro-ecosystem functioning. Plant and Soil, 2013, 363, 1-5.	1.8	93
10	Mycorrhiza-induced resistance: more than the sum of its parts?. Trends in Plant Science, 2013, 18, 539-545.	4.3	396
11	Beneficial microbes in a changing environment: are they always helping plants to deal with insects?. Functional Ecology, 2013, 27, 574-586.	1.7	171
12	Metaproteomics to unravel major microbial players in leaf litter and soil environments: <scp>C</scp> hallenges and perspectives. Proteomics, 2013, 13, 2895-2909.	1.3	51
13	Climate change driven plant–metal–microbe interactions. Environment International, 2013, 53, 74-86.	4.8	188
14	Optimization of Indole Acetic Acid Production by Pseudomonas putida UB1 and its Effect as Plant Growth-Promoting Rhizobacteria on Mustard (Brassica nigra). Agricultural Research, 2013, 2, 215-221.	0.9	82
15	Migrate or evolve: options for plant pathogens under climate change. Global Change Biology, 2013, 19, 1985-2000.	4.2	121
16	Silicon-Mediated Tomato Resistance Against Ralstonia solanacearum is Associated with Modification of Soil Microbial Community Structure and Activity. Biological Trace Element Research, 2013, 152, 275-283.	1.9	52
17	Plant Microbe Symbiosis: Fundamentals and Advances. , 2013, , .		25
18	Plant–Microbe Partnerships: Implications for Growth and Plant Health. , 2013, , 105-117.		0
19	Properties of the halophyte microbiome and their implications for plant salt tolerance. Functional Plant Biology, 2013, 40, 940.	1.1	141

#	ARTICLE	IF	Citations
20	The rhizobacterium Arthrobacter agilis produces dimethylhexadecylamine, a compound that inhibits growth of phytopathogenic fungi in vitro. Protoplasma, 2013, 250, 1251-1262.	1.0	74
21	Culture-Independent Molecular Tools for Soil and Rhizosphere Microbiology. Diversity, 2013, 5, 581-612.	0.7	88
22	Regulation of the immune system by biodiversity from the natural environment: An ecosystem service essential to health. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18360-18367.	3.3	574
23	The root microbiome influences scales from molecules to ecosystems: The unseen majority ¹ . American Journal of Botany, 2013, 100, 1689-1691.	0.8	67
24	Inside the root microbiome: Bacterial root endophytes and plant growth promotion. American Journal of Botany, 2013, 100, 1738-1750.	0.8	500
25	Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology, 2013, 11, 789-799.	13.6	2,669
26	The plant microbiome. Genome Biology, 2013, 14, 209.	3.8	1,028
27	Microbial recognition and evasion of host immunity. Journal of Experimental Botany, 2013, 64, 1237-1248.	2.4	133
28	Costs and benefits of hormoneâ€regulated plant defences. Plant Pathology, 2013, 62, 43-55.	1.2	171
29	Amino acids in the rhizosphere: From plants to microbes. American Journal of Botany, 2013, 100, 1692-1705.	0.8	264
30	Assessment of shifts in microbial community structure and catabolic diversity in response to Rehmannia glutinosa monoculture. Applied Soil Ecology, 2013, 67, 1-9.	2.1	83
31	Structure and Functions of the Bacterial Microbiota of Plants. Annual Review of Plant Biology, 2013, 64, 807-838.	8.6	2,589
32	Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14. Biological Control, 2013, 65, 14-23.	1.4	132
33	Arabinogalactan proteins in root–microbe interactions. Trends in Plant Science, 2013, 18, 440-449.	4.3	144
34	The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 2013, 37, 634-663.	3.9	1,929
35	Structural and functional study in the rhizosphere of <i>Oryza sativa</i> L. plants growing under biotic and abiotic stress. Journal of Applied Microbiology, 2013, 115, 218-235.	1.4	26
36	The root microbiota—a fingerprint in the soil?. Plant and Soil, 2013, 370, 671-686.	1.8	84
37	Sniffing on Microbes: Diverse Roles of Microbial Volatile Organic Compounds in Plant Health. Molecular Plant-Microbe Interactions, 2013, 26, 835-843.	1.4	269

#	Article	IF	CITATIONS
38	The rhizosphere revisited: root microbiomics. Frontiers in Plant Science, 2013, 4, 165.	1.7	372
39	Getting the ecology into interactions between plants and the plant growth-promoting bacterium Pseudomonas fluorescens. Frontiers in Plant Science, 2013, 4, 81.	1.7	121
40	Plant growth in Arabidopsis is assisted by compost soil-derived microbial communities. Frontiers in Plant Science, 2013, 4, 235.	1.7	48
41	Promise for plant pest control: root-associated pseudomonads with insecticidal activities. Frontiers in Plant Science, 2013, 4, 287.	1.7	158
42	Sample Processing and cDNA Preparation for Microbial Metatranscriptomics in Complex Soil Communities. Methods in Enzymology, 2013, 531, 251-267.	0.4	16
43	Normal Operating Range of Bacterial Communities in Soil Used for Potato Cropping. Applied and Environmental Microbiology, 2013, 79, 1160-1170.	1.4	33
44	Application of Natural Blends of Phytochemicals Derived from the Root Exudates of Arabidopsis to the Soil Reveal That Phenolic-related Compounds Predominantly Modulate the Soil Microbiome. Journal of Biological Chemistry, 2013, 288, 4502-4512.	1.6	452
45	Two-way plant mediated interactions between root-associated microbes and insects: from ecology to mechanisms. Frontiers in Plant Science, 2013, 4, 414.	1.7	110
46	Soil pathogen communities associated with native and nonâ€native <i><scp>P</scp>hragmites australis</i> /i> populations in freshwater wetlands. Ecology and Evolution, 2013, 3, 5254-5267.	0.8	41
47	Plant Growthâ€Promoting Bacteria from Solarized Soil with the Ability to Protect Melon Against Root Rot and Vine Decline Caused by ⟨i⟩Monosporascus cannonballus⟨li⟩. Journal of Phytopathology, 2013, 161, 485-496.	0.5	9
48	Exploring the maize rhizosphere microbiome in the field: A glimpse into a highly complex system. Communicative and Integrative Biology, 2013, 6, e25177.	0.6	31
49	Unraveling Root Developmental Programs Initiated by Beneficial <i>Pseudomonas</i> spp. Bacteria Â. Plant Physiology, 2013, 162, 304-318.	2.3	288
50	Next-Generation Bio-Products Sowing the Seeds of Success for Sustainable Agriculture. Agronomy, 2013, 3, 648-656.	1.3	150
51	A Multifactor Analysis of Fungal and Bacterial Community Structure in the Root Microbiome of Mature Populus deltoides Trees. PLoS ONE, 2013, 8, e76382.	1.1	315
52	Induced Systemic Resistance and the Rhizosphere Microbiome. Plant Pathology Journal, 2013, 29, 136-143.	0.7	106
53	Effects of Bacillus amyloliquefaciens FZB42 on Lettuce Growth and Health under Pathogen Pressure and Its Impact on the Rhizosphere Bacterial Community. PLoS ONE, 2013, 8, e68818.	1.1	259
54	Water Regime Influences Bulk Soil and Rhizosphere of Cereus jamacaru Bacterial Communities in the Brazilian Caatinga Biome. PLoS ONE, 2013, 8, e73606.	1.1	90
55	Bespoke microbiome therapy to manage plant diseases. Frontiers in Microbiology, 2013, 4, 355.	1.5	77

#	ARTICLE	IF	CITATIONS
56	Vertical transmission explains the specific Burkholderia pattern in Sphagnum mosses at multi-geographic scale. Frontiers in Microbiology, 2013, 4, 394.	1.5	43
57	Catch the Best: Novel Screening Strategy to Select Stress Protecting Agents for Crop Plants. Agronomy, 2013, 3, 794-815.	1.3	38
58	Microorganism and filamentous fungi drive evolution of plant synapses. Frontiers in Cellular and Infection Microbiology, 2013, 3, 44.	1.8	19
59	Unravelling the Microbiome of Eggs of the Endangered Sea Turtle Eretmochelys imbricata Identifies Bacteria with Activity against the Emerging Pathogen Fusarium falciforme. PLoS ONE, 2014, 9, e95206.	1.1	51
60	Changes in the Bacterial Community of Soybean Rhizospheres during Growth in the Field. PLoS ONE, 2014, 9, e100709.	1.1	243
61	Exserohilum rostratum: Characterization of a Cross-Kingdom Pathogen of Plants and Humans. PLoS ONE, 2014, 9, e108691.	1.1	29
62	Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce. Frontiers in Microbiology, 2014, 5, 144.	1.5	320
63	The impact of the pathogen Rhizoctonia solani and its beneficial counterpart Bacillus amyloliquefaciens on the indigenous lettuce microbiome. Frontiers in Microbiology, 2014, 5, 175.	1.5	141
64	Water Content Differences Have Stronger Effects than Plant Functional Groups on Soil Bacteria in a Steppe Ecosystem. PLoS ONE, 2014, 9, e115798.	1.1	11
65	Isolation and characterization of genetic variability in bacteria with \hat{l}^2 -hemolytic and antifungal activity isolated from the rhizosphere of Medicago truncatula plants. Genetics and Molecular Research, 2014, 13, 4967-4975.	0.3	6
69	Evolution of microbial markets. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1237-1244.	3.3	180
71	Streptosporangium subfuscum sp. nov., isolated from the rhizosphere of marigold (Tagetes erecta L.). Antonie Van Leeuwenhoek, 2014, 106, 1231-1238.	0.7	5
72	Biotic Interactions in the Rhizosphere: A Diverse Cooperative Enterprise for Plant Productivity. Plant Physiology, 2014, 166, 701-719.	2.3	100
73	Host-Microbe Interactions in Microgravity: Assessment and Implications. Life, 2014, 4, 250-266.	1.1	27
74	Unraveling the plant microbiome: looking back and future perspectives. Frontiers in Microbiology, 2014, 5, 148.	1.5	498
75	The rhizosphere microbiota of plant invaders: an overview of recent advances in the microbiomics of invasive plants. Frontiers in Microbiology, 2014, 5, 368.	1.5	145
76	A Synthetic Community Approach Reveals Plant Genotypes Affecting the Phyllosphere Microbiota. PLoS Genetics, 2014, 10, e1004283.	1.5	369
77	Nitrogen cycling in summer active perennial grass systems in South Australia: non-symbiotic nitrogen fixation. Crop and Pasture Science, 2014, 65, 1044.	0.7	54

#	ARTICLE	IF	Citations
78	The potential for give and take in plantââ,¬â€œmicrobiome relationships. Frontiers in Plant Science, 2014, 5, 287.	1.7	106
79	A Vavilovian approach to discovering crop-associated microbes with potential to enhance plant immunity. Frontiers in Plant Science, 2014, 5, 492.	1.7	22
80	Differences between the rhizosphere microbiome of Beta vulgaris ssp. maritimaââ,¬â€ancestor of all beet cropsââ,¬â€and modern sugar beets. Frontiers in Microbiology, 2014, 5, 415.	1.5	124
81	Effects of bacterial inoculants on the indigenous microbiome and secondary metabolites of chamomile plants. Frontiers in Microbiology, 2014, 5, 64.	1.5	123
82	Biological Control of Fungal Disease by Rhizobacteria under Saline Soil Conditions., 2014, , 161-172.		8
83	Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13715-13720.	3.3	457
84	A review on possible elicitor molecules of cyanobacteria: their role in improving plant growth and providing tolerance against biotic or abiotic stress. Journal of Applied Microbiology, 2014, 117, 1221-1244.	1.4	114
86	Amplicon pyrosequencing reveals the soil microbial diversity associated with invasive Japanese barberry (Berberis thunbergiiDC.). Molecular Ecology, 2014, 23, 1318-1332.	2.0	31
87	βâ€Glucosidase <scp>BGLU</scp> 42 is a <scp>MYB</scp> 72â€dependent key regulator of rhizobacteriaâ€induced systemic resistance and modulates iron deficiency responses in <i><scp>A</scp>rabidopsis</i> roots. New Phytologist, 2014, 204, 368-379.	3.5	188
89	Pyrosequencing assessment of rhizosphere fungal communities from a soybean field. Canadian Journal of Microbiology, 2014, 60, 687-690.	0.8	21
90	Impact of fresh root material and mature crop residues of oilseed rape (Brassica napus) on microbial communities associated with subsequent oilseed rape. Biology and Fertility of Soils, 2014, 50, 1267-1279.	2.3	22
91	Agroecological Engineering to Biocontrol Soil Pests for Crop Health. Sustainable Agriculture Reviews, 2014, , 269-297.	0.6	4
92	Sustainable Agriculture Reviews 14. Sustainable Agriculture Reviews, 2014, , .	0.6	6
93	Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk. Frontiers in Plant Science, 2014, 5, 207.	1.7	295
94	Building the crops of tomorrow: advantages of symbiont-based approaches to improving abiotic stress tolerance. Frontiers in Microbiology, 2014, 5, 283.	1.5	196
95	Intense competition between arbuscular mycorrhizal mutualists in an <i>in vitro</i> root microbiome negatively affects total fungal abundance. Molecular Ecology, 2014, 23, 1584-1593.	2.0	117
96	Bacterial Communities in Soil Under Moss and Lichen-Moss Crusts. Geomicrobiology Journal, 2014, 31, 152-160.	1.0	28
97	Plant genetics and interspecific competitive interactions determine ectomycorrhizal fungal community responses to climate change. Molecular Ecology, 2014, 23, 1379-1391.	2.0	58

#	Article	IF	CITATIONS
99	Deciphering mycorrhizal fungi in cultivated Phalaenopsis microbiome with next-generation sequencing of multiple barcodes. Fungal Diversity, 2014, 66, 77-88.	4.7	24
100	De-coupling of root–microbiome associations followed by antagonist inoculation improves rhizosphere soil suppressiveness. Biology and Fertility of Soils, 2014, 50, 217-224.	2.3	66
101	Jasmonates in Plant Growth and Stress Responses. , 2014, , 221-263.		6
102	Rhizosphere microbial communities associated with Rhizoctonia damage at the field and disease patch scale. Applied Soil Ecology, 2014, 78, 37-47.	2.1	42
103	Plant age and genotype affect the bacterial community composition in the tuber rhizosphere of field-grown sweet potato plants. FEMS Microbiology Ecology, 2014, 88, 424-435.	1.3	150
104	Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany, 2014, 92, 267-275.	0.5	547
105	Recent studies on biological control of plant diseases in Japan. Journal of General Plant Pathology, 2014, 80, 287-302.	0.6	18
106	Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecology Letters, 2014, 17, 717-726.	3.0	266
107	Stabilising metal(loid)s in soil with iron and aluminium-based products: Microbial, biochemical and plant growth impact. Journal of Environmental Management, 2014, 139, 146-153.	3.8	60
108	Diffuse symbioses: roles of plant–plant, plant–microbe and microbe–microbe interactions in structuring the soil microbiome. Molecular Ecology, 2014, 23, 1571-1583.	2.0	143
109	Rhizobacterial salicylate production provokes headaches!. Plant and Soil, 2014, 382, 1-16.	1.8	53
110	Anatomy of Root from Eyes of a Microbiologist. Soil Biology, 2014, , 3-22.	0.6	34
111	Root associated iron oxidizing bacteria increase phosphate nutrition and influence root to shoot partitioning of iron in tolerant plant Typha angustifolia. Plant and Soil, 2014, 381, 279-295.	1.8	19
112	Detection of a novel intracellular microbiome hosted in arbuscular mycorrhizal fungi. ISME Journal, 2014, 8, 257-270.	4.4	128
113	Action of jasmonates in plant stress responses and development â€" Applied aspects. Biotechnology Advances, 2014, 32, 31-39.	6.0	260
114	Ethylene: Role in Plants Under Environmental Stress. , 2014, , 189-222.		11
115	Rhizosphere microbiome assemblage is affected by plant development. ISME Journal, 2014, 8, 790-803.	4.4	1,128
116	Management of nitrogen fertilizer application, rather than functional gene abundance, governs nitrous oxide fluxes in hydroponics with rockwool. Plant and Soil, 2014, 374, 715-725.	1.8	23

#	Article	IF	CITATIONS
117	Interaction with ectomycorrhizal fungi and endophytic Methylobacterium affects nutrient uptake and growth of pine seedlings in vitro. Tree Physiology, 2014, 34, 993-1005.	1.4	47
118	Different Effects of Transgenic Maize and Nontransgenic Maize on Nitrogen-Transforming Archaea and Bacteria in Tropical Soils. Applied and Environmental Microbiology, 2014, 80, 6437-6445.	1.4	41
119	Functional Soil Microbiome: Belowground Solutions to an Aboveground Problem Â. Plant Physiology, 2014, 166, 689-700.	2.3	299
120	Potential uptake of Escherichia coli O157:H7 and Listeria monocytogenes from growth substrate into leaves of salad plants and basil grown in soil irrigated with contaminated water. International Journal of Food Microbiology, 2014, 189, 139-145.	2.1	44
121	Niche and host-associated functional signatures of the root surface microbiome. Nature Communications, 2014, 5, 4950.	5.8	305
122	Microbial genome-enabled insights into plant–microorganism interactions. Nature Reviews Genetics, 2014, 15, 797-813.	7.7	187
123	The Importance and Application of Bacterial Diversity in Sustainable Agricultural Crop Production Ecosystems. Sustainable Development and Biodiversity, 2014, , 341-367.	1.4	1
124	There's no place like home? An exploration of the mechanisms behind plant litter–decomposer affinity in terrestrial ecosystems. New Phytologist, 2014, 204, 307-314.	3.5	192
125	Towards the ecological profiling of a pesticide contaminated soil site for remediation and management. Ecological Engineering, 2014, 71, 318-325.	1.6	23
126	Identification of bacteria associated with underground parts of Crocus sativus by 16S rRNA gene targeted metagenomic approach. World Journal of Microbiology and Biotechnology, 2014, 30, 2701-2709.	1.7	18
127	Shaping Bacterial Symbiosis With Legumes by Experimental Evolution. Molecular Plant-Microbe Interactions, 2014, 27, 956-964.	1.4	33
128	Diazotrophic bacteria associated with sisal (Agave sisalana Perrine ex Engelm): potential for plant growth promotion. Plant and Soil, 2014, 385, 37-48.	1.8	15
129	The growth–defense pivot: crisis management in plants mediated by LRR-RK surface receptors. Trends in Biochemical Sciences, 2014, 39, 447-456.	3.7	135
130	Rhizosphere effect and salinity competing to shape microbial communities in <i>Phragmites australis </i> /i>(Cav.) Trin. ex-Steud. FEMS Microbiology Letters, 2014, 359, 193-200.	0.7	41
131	Sinorhizobium meliloti Chemoreceptor McpU Mediates Chemotaxis toward Host Plant Exudates through Direct Proline Sensing. Applied and Environmental Microbiology, 2014, 80, 3404-3415.	1.4	67
132	The Plant Microbiome. Advances in Botanical Research, 2014, , 279-309.	0.5	42
133	Microbial priming of plant and animal immunity: symbionts as developmental signals. Trends in Microbiology, 2014, 22, 607-613.	3.5	100
134	Soil type-dependent effects of a potential biocontrol inoculant on indigenous bacterial communities in the rhizosphere of field-grown lettuce. FEMS Microbiology Ecology, 2014, 90, 718-730.	1.3	52

#	ARTICLE	IF	CITATIONS
135	Bacterial Community Assemblages Associated with the Phyllosphere, Dermosphere, and Rhizosphere of Tree Species of the Atlantic Forest are Host Taxon Dependent. Microbial Ecology, 2014, 68, 567-574.	1.4	92
136	Bacterial community structure and detection of putative plant growth-promoting rhizobacteria associated with plants grown in Chilean agro-ecosystems and undisturbed ecosystems. Biology and Fertility of Soils, 2014, 50, 1141-1153.	2.3	41
137	Bacterial Diversity in the Rhizosphere of Cucumbers Grown in Soils Covering a Wide Range of Cucumber Cropping Histories and Environmental Conditions. Microbial Ecology, 2014, 68, 794-806.	1.4	59
138	Impact of organic crop management on suppression of bacterial seedling diseases in rice. Organic Agriculture, 2014, 4, 187.	1.2	13
139	Plant-Microbe Interactions. , 2014, , 177-204.		2
141	Changes in rhizosphere soil microbial communities in a continuously monocropped cucumber (Cucumis sativus L.) system. European Journal of Soil Biology, 2014, 60, 1-8.	1.4	50
142	Potential Role of Flavobacterial Gliding-Motility and Type IX Secretion System Complex in Root Colonization and Plant Defense. Molecular Plant-Microbe Interactions, 2014, 27, 1005-1013.	1.4	49
143	A Volatile Relationship: Profiling an Inter-Kingdom Dialogue Between two Plant Pathogens, Ralstonia Solanacearum and Aspergillus Flavus. Journal of Chemical Ecology, 2014, 40, 502-513.	0.9	55
144	Induced Systemic Resistance by Beneficial Microbes. Annual Review of Phytopathology, 2014, 52, 347-375.	3.5	2,193
145	Fungal Community Structure in Disease Suppressive Soils Assessed by 28S LSU Gene Sequencing. PLoS ONE, 2014, 9, e93893.	1.1	140
146	Pseudomonas Isolation and Identification: An Introduction to the Challenges of Polyphasic Taxonomy. Journal of Microbiology and Biology Education, 2014, 15, 287-291.	0.5	5
147	Bacterial biocontrol agents. , 2014, , 317-330.		0
148	Studies on the potential role of root exudates in the interaction between musk melon roots and Fusarium oxysporum f. sp. melonis. Journal of Plant Diseases and Protection, 2014, 121, 64-70.	1.6	5
149	Land husbandry: an agro-ecological approach to land use and management Part 2: Consideration of soil conditions. International Soil and Water Conservation Research, 2014, 2, 64-80.	3.0	2
150	<i>Pseudomonas fluorescens</i> PTA-CT2 Triggers Local and Systemic Immune Response Against <i>Botrytis cinerea</i> in Grapevine. Molecular Plant-Microbe Interactions, 2015, 28, 1117-1129.	1.4	94
151	Plant-microbe rhizosphere interactions mediated by Rehmannia glutinosa root exudates under consecutive monoculture. Scientific Reports, 2015, 5, 15871.	1.6	115
152	Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nature Plants, 2015, 1, .	4.7	345
153	Metagenomic insights into communities, functions of endophytes and their associates with infection by root-knot nematode, Meloidogyne incognita, in tomato roots. Scientific Reports, 2015, 5, 17087.	1.6	185

#	Article	IF	CITATIONS
154	High-throughput 3D tracking of bacteria on a standard phase contrast microscope. Nature Communications, 2015, 6, 8776.	5.8	149
156	Presence and persistence of wastewater pathogen Escherichia coli O157:H7 in hydroponic reactors of treatment wetland species. Water Science and Technology, 2015, 72, 135-140.	1.2	4
157	Peatland vascular plant functional types affect methane dynamics by altering microbial community structure. Journal of Ecology, 2015, 103, 925-934.	1.9	90
158	Effects of Preconditioning Through Mycorrhizal Inoculation on the Control of Melon Root Rot and Vine Decline Caused by <i>Monosporascus cannonballus</i>). Journal of Phytopathology, 2015, 163, 898-907.	0.5	12
159	The core microbiome bonds the Alpine bog vegetation to a transkingdom metacommunity. Molecular Ecology, 2015, 24, 4795-4807.	2.0	74
160	Genome-wide survey of two-component signal transduction systems in the plant growth-promoting bacterium Azospirillum. BMC Genomics, 2015, 16, 833.	1.2	13
161	Resilience as a universal criterion of health. Journal of the Science of Food and Agriculture, 2015, 95, 455-465.	1.7	69
162	ãf€ã,ã,°ã®ç"Ÿè,²éŽç¨‹ã«ãŠã⁵ã,‹æ¹åœå¾®ç"Ÿç‰©å¢ã®å‱å‹•åœfå´ç'°å¢f下ã§ã®éºä¼å解枕Kagaku To Seil	ou tรม) 201	5 ,5 3, 576-5
163	Characterization of <i>Pseudomonas chlororaphis </i> from <i>Theobroma cacao </i> L. rhizosphere with antagonistic activity against <i>Phytophthora palmivora </i> (Butler). Journal of Applied Microbiology, 2015, 119, 1112-1126.	1.4	29
164	Discrimination between 2AP producing and nonâ€producing rice rhizobacterial isolates using volatile profiling: a chemometric approach. Journal of Chemometrics, 2015, 29, 648-658.	0.7	4
165	A Critical Review on Plant Growth Promoting Rhizobacteria. Journal of Plant Pathology & Microbiology, 2015, 06, .	0.3	14
166	Diversity and distribution of endophytic bacterial community in the Noni (Morinda citrifolia L.) plant. African Journal of Microbiology Research, 2015, 9, 1649-1657.	0.4	19
167	10 Years Later. Advances in Ecological Research, 2015, 53, 1-53.	1.4	43
168	The Control of Auxin Transport in Parasitic and Symbiotic Root–Microbe Interactions. Plants, 2015, 4, 606-643.	1.6	30
169	Metatranscriptome analysis reveals host-microbiome interactions in traps of carnivorous Genlisea species. Frontiers in Microbiology, 2015, 6, 526.	1.5	23
170	Analyzing the antagonistic potential of the lichen microbiome against pathogens by bridging metagenomic with culture studies. Frontiers in Microbiology, 2015, 6, 620.	1.5	65
171	Genome mining and metabolic profiling of the rhizosphere bacterium Pseudomonas sp. SH-C52 for antimicrobial compounds. Frontiers in Microbiology, 2015, 6, 693.	1.5	91
172	Rhizosphere bacterial communities of dominant steppe plants shift in response to a gradient of simulated nitrogen deposition. Frontiers in Microbiology, 2015, 6, 789.	1.5	20

#	Article	IF	CITATIONS
173	Different bacterial communities in heat and gamma irradiation treated replant disease soils revealed by 16S rRNA gene analysis – contribution to improved aboveground apple plant growth?. Frontiers in Microbiology, 2015, 6, 1224.	1.5	49
174	Volatile Organic Compounds from Native Potato-associated Pseudomonas as Potential Anti-oomycete Agents. Frontiers in Microbiology, 2015, 6, 1295.	1.5	134
175	Endophytic Actinobacteria and the Interaction of Micromonospora and Nitrogen Fixing Plants. Frontiers in Microbiology, 2015, 6, 1341.	1.5	107
176	Biotic Stress Shifted Structure and Abundance of Enterobacteriaceae in the Lettuce Microbiome. PLoS ONE, 2015, 10, e0118068.	1.1	51
177	Environmental Filtering of Microbial Communities in Agricultural Soil Shifts with Crop Growth. PLoS ONE, 2015, 10, e0134345.	1.1	65
178	Characterization of culturable bacterial endophytes and their capacity to promote plant growth from plants grown using organic or conventional practices. Frontiers in Plant Science, 2015, 6, 490.	1.7	135
179	Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering. Frontiers in Plant Science, 2015, 6, 507.	1.7	176
180	Plant genotype, microbial recruitment and nutritional security. Frontiers in Plant Science, 2015, 6, 608.	1.7	52
181	Signaling in the phytomicrobiome: breadth and potential. Frontiers in Plant Science, 2015, 6, 709.	1.7	73
182	Purification, characterization, and heterologous expression of an antifungal protein from the endophytic Bacillus subtilis strain Em7 and its activity against Sclerotinia sclerotiorum. Genetics and Molecular Research, 2015, 14, 15488-15504.	0.3	5
183	Root Microbiome Assemblage is Modulated by Plant Host Factors. Advances in Botanical Research, 2015, 75, 57-79.	0.5	28
184	Soluble and Volatile Metabolites of Plant Growth-Promoting Rhizobacteria (PGPRs). Advances in Botanical Research, 2015, , 241-284.	0.5	37
185	The Implications of Polyploidy for the Evolution of Signalling in Rhizobial Nodulation Symbiosis. Advances in Botanical Research, 2015, 75, 149-190.	0.5	4
186	Effect of fungicides on association of arbuscular mycorrhiza fungus Rhizophagus fasciculatus and		

#	ARTICLE	IF	CITATIONS
191	Plant-Microbe Partnerships for Enhanced Biodegradation of Polychlorinated Biphenyls., 2015,, 95-110.		5
192	Lipochitooligosaccharides Modulate Plant Host Immunity to Enable Endosymbioses. Annual Review of Phytopathology, 2015, 53, 311-334.	3.5	98
193	Linking Jasmonic Acid Signaling, Root Exudates, and Rhizosphere Microbiomes. Molecular Plant-Microbe Interactions, 2015, 28, 1049-1058.	1.4	221
194	Virulence of oomycete pathogens from <i>Phragmites australis</i> A€invaded and noninvaded soils to seedlings of wetland plant species. Ecology and Evolution, 2015, 5, 2127-2139.	0.8	32
195	Rhizobacterial volatiles and photosynthesisâ€related signals coordinate <i><scp>MYB</scp>72</i> expression in Arabidopsis roots during onset of induced systemic resistance and ironâ€deficiency responses. Plant Journal, 2015, 84, 309-322.	2.8	171
196	A Novel and Effective Streptomyces sp. N2 Against Various Phytopathogenic Fungi. Applied Biochemistry and Biotechnology, 2015, 177, 1338-1347.	1.4	19
197	Do soybeans select specific species of <i>Bradyrhizobium </i> during growth?. Communicative and Integrative Biology, 2015, 8, e992734.	0.6	25
198	Impact of cover crop in pre-plant of apple orchards: relationship between crop health, root inhabiting fungi and rhizospheric bacteria. Canadian Journal of Plant Science, 2015, 95, 947-958.	0.3	11
199	PGPR Interaction. Advances in Botanical Research, 2015, , 81-113.	0.5	64
200	Lipopeptides as main ingredients for inhibition of fungal phytopathogens by <scp><i>B</i></scp> <i>acillus subtilis/amyloliquefaciens</i>	2.0	251
201	Engineering the plant rhizosphere. Current Opinion in Biotechnology, 2015, 32, 136-142.	3.3	70
202	Pseudomonas., 2015,,.		7
203	Halotolerant PGPRs Prevent Major Shifts in Indigenous Microbial Community Structure Under Salinity Stress. Microbial Ecology, 2015, 70, 196-208.	1.4	37
204	The Ecology of the Soil Biota and their Function. , 2015, , 273-309.		24
205	The importance of the microbiome of the plant holobiont. New Phytologist, 2015, 206, 1196-1206.	3.5	1,509
206	Induced Disease Resistance. , 2015, , 123-133.		10
207	Root surface as a frontier for plant microbiome research. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2299-2300.	3.3	110
209	Planning for food security in a changing climate. Journal of Experimental Botany, 2015, 66, 3435-3450.	2.4	54

#	ARTICLE	IF	CITATIONS
210	Developing suppressive soil for root diseases of soybean with continuous long-term cropping of soybean in black soil of Northeast China. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2015, 65, 279-285.	0.3	20
211	Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E911-20.	3.3	2,016
212	Different Bacterial Populations Associated with the Roots and Rhizosphere of Rice Incorporate Plant-Derived Carbon. Applied and Environmental Microbiology, 2015, 81, 2244-2253.	1.4	114
213	Yeast diversity and native vigor for flavor phenotypes. Trends in Biotechnology, 2015, 33, 148-154.	4.9	82
214	Analysis of microbial taxonomical groups present in maize stalks suppressive to colonization by toxigenic Fusarium spp.: A strategy for the identification of potential antagonists. Biological Control, 2015, 83, 20-28.	1.4	44
215	Nitrogen fertilizer dose alters fungal communities in sugarcane soil and rhizosphere. Scientific Reports, 2015, 5, 8678.	1.6	155
216	Greater than the sum of their parts: characterizing plant microbiomes at the community-level. Current Opinion in Plant Biology, 2015, 24, 82-86.	3.5	93
217	Pairwise Transcriptomic Analysis of the Interactions Between the Ectomycorrhizal Fungus Laccaria bicolor S238N and Three Beneficial, Neutral and Antagonistic Soil Bacteria. Microbial Ecology, 2015, 69, 146-159.	1.4	30
218	Evidence of novel plantâ€species specific ammonia oxidizing bacterial clades in acidic South African fynbos soils. Journal of Basic Microbiology, 2015, 55, 1040-1047.	1.8	8
219	Agroforestry leads to shifts within the gammaproteobacterial microbiome of banana plants cultivated in Central America. Frontiers in Microbiology, 2015, 6, 91.	1.5	40
220	Microbial Communities in the Rhizosphere Analyzed by Cultivation-Independent DNA-Based Methods., 2015,, 289-298.		4
221	Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra. Frontiers in Microbiology, 2015, 6, 582.	1.5	137
222	Roots Shaping Their Microbiome: Global Hotspots for Microbial Activity. Annual Review of Phytopathology, 2015, 53, 403-424.	3.5	595
223	The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiology and Molecular Biology Reviews, 2015, 79, 293-320.	2.9	1,895
224	Phytosiderophores revisited: 2′-deoxymugineic acid-mediated iron uptake triggers nitrogen assimilation in rice (<i>Oryza sativa</i> L.) seedlings. Plant Signaling and Behavior, 2015, 10, e1031940.	1.2	4
225	Beneficial endophytic microorganisms of Brassica – A review. Biological Control, 2015, 90, 102-112.	1.4	75
226	The nexus between growth and defence signalling: auxin and cytokinin modulate plant immune response pathways. Journal of Experimental Botany, 2015, 66, 4885-4896.	2.4	133
227	A natural rice rhizospheric bacterium abates arsenic accumulation in rice (Oryza sativa L.). Planta, 2015, 242, 1037-1050.	1.6	63

#	Article	IF	CITATIONS
228	The effects of temporal variation in soil carbon inputs on resource allocation in an annual plant. Journal of Plant Ecology, 2015, , rtv033.	1.2	2
229	Exercising influence: distinct biotic interactions shape root microbiomes. Current Opinion in Plant Biology, 2015, 26, 32-36.	3.5	18
230	Genotype-Specific Variation in the Structure of Root Fungal Communities Is Related to Chickpea Plant Productivity. Applied and Environmental Microbiology, 2015, 81, 2368-2377.	1.4	39
231	The â€~prime-ome': towards a holistic approach to priming. Trends in Plant Science, 2015, 20, 443-452.	4.3	287
232	Fungi colonizing wood sticks of Chinese fir incubated in subtropical urban soil growing with Ficus microcarpa trees. International Journal of Environmental Science and Technology, 2015, 12, 3781-3790.	1.8	4
233	Microbial consortium-mediated plant defense against phytopathogens: Readdressing for enhancing efficacy. Soil Biology and Biochemistry, 2015, 87, 25-33.	4.2	214
234	Disease management through biological control agents: An eco-friendly and cost effective approach for sustainable agriculture-A Review. Agricultural Reviews, 2015, 36, 37.	0.1	4
235	Tropical Strains of Ralstonia solanacearum Outcompete Race 3 Biovar 2 Strains at Lowland Tropical Temperatures. Applied and Environmental Microbiology, 2015, 81, 3542-3551.	1.4	35
236	The response of root-associated bacterial community to the grafting of watermelon. Plant and Soil, 2015, 391, 253-264.	1.8	29
237	Housing helpful invaders: the evolutionary and molecular architecture underlying plant root-mutualist microbe interactions. Journal of Experimental Botany, 2015, 66, 2177-2186.	2.4	27
238	Endophytic microbes Bacillus sp. LZR216-regulated root development is dependent on polar auxin transport in Arabidopsis seedlings. Plant Cell Reports, 2015, 34, 1075-1087.	2.8	49
239	Native Bacillus amyloliquefaciens W2 as a potential biocontrol for Fusarium oxysporum R1 causing corm rot of Crocus sativus. European Journal of Plant Pathology, 2015, 143, 123-131.	0.8	34
240	Harnessing Plant-Microbe Interactions for Enhanced Protection Against Phytopathogens. , 2015, , 111-125.		53
241	Plant Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants: The State of the Art. Soil Biology, 2015, , 1-16.	0.6	12
242	Bacterial diversity amplifies nutrientâ€based plant–soil feedbacks. Functional Ecology, 2015, 29, 1341-1349.	1.7	78
243	Composition and activity of endophytic bacterial communities in field-grown maize plants inoculated with Azospirillum brasilense. Annals of Microbiology, 2015, 65, 2187-2200.	1.1	26
244	Rhizosphere microbiome selection by Epichlo \tilde{A} « endophytes of Festuca arundinacea. Plant and Soil, 2015, 396, 229-239.	1.8	25
245	Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 2015, 196, 3-14.	1.7	1,529

#	Article	IF	CITATIONS
246	Phenolic acids in the plow layer soil of strawberry fields and their effects on the occurrence of strawberry anthracnose. European Journal of Plant Pathology, 2015, 143, 581-594.	0.8	29
247	Ethylene: traffic controller on hormonal crossroads to defense. Plant Physiology, 2015, 169, pp.01020.2015.	2.3	149
248	Fungal pathogen uses sex pheromone receptor for chemotropic sensing of host plant signals. Nature, 2015, 527, 521-524.	13.7	164
249	Genomics in a changing arctic: critical questions await the molecular ecologist. Molecular Ecology, 2015, 24, 2301-2309.	2.0	10
250	Microhabitat heterogeneity across leaves and flower organs promotes bacterial diversity. FEMS Microbiology Ecology, 2015, 91, fiv097.	1.3	97
251	Declined soil suppressiveness to Fusarium oxysporum by rhizosphere microflora of cotton in soil sickness. Biology and Fertility of Soils, 2015, 51, 935-946.	2.3	58
252	Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nature Communications, 2015, 6, 8413.	5.8	384
253	Unearthing the genomes of plant-beneficial Pseudomonas model strains WCS358, WCS374 and WCS417. BMC Genomics, 2015, 16, 539.	1.2	184
254	Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biology and Fertility of Soils, 2015, 51, 897-911.	2.3	297
255	Illumina MiSeq investigations on the changes of microbial community in the Fusarium oxysporum f.sp. cubense infected soil during and after reductive soil disinfestation. Microbiological Research, 2015, 181, 33-42.	2.5	143
256	Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5013-20.	3.3	336
257	Effects of silver nanoparticles on soil microorganisms and maize biomass are linked in the rhizosphere. Soil Biology and Biochemistry, 2015, 91, 14-22.	4.2	128
258	Bacteria and Fungi in Green Roof Ecosystems. Ecological Studies, 2015, , 175-191.	0.4	11
259	Bacterial endophytes of sweet potato tuberous roots affected by the plant genotype and growth stage. Applied Soil Ecology, 2015, 96, 273-281.	2.1	54
260	Functional overlap of the Arabidopsis leaf and root microbiota. Nature, 2015, 528, 364-369.	13.7	1,062
261	Filamentous fungi associated with the seagrass Zostera marina Linnaeus, 1753 of Rifovaya Bay (Peter) Tj ETQq1	1 0.78431 0.2	.4 <u>rg</u> BT /Ove
262	The principle of genome complementarity in the enhancement of plant adaptive capacities. Russian Journal of Genetics, 2015, 51, 831-846.	0.2	12
263	Organic Amendments and Soil Suppressiveness in Plant Disease Management. Soil Biology, 2015, , .	0.6	24

#	Article	IF	CITATIONS
264	The Plant Microbiome at Work. Molecular Plant-Microbe Interactions, 2015, 28, 212-217.	1.4	493
265	The Minimal Rhizosphere Microbiome. , 2015, , 411-417.		28
266	Principles of Plant-Microbe Interactions., 2015,,.		89
267	Plant-Soil Biota Interactions. , 2015, , 311-338.		46
268	Use of nursery potting mixes amended with local Trichoderma strains with multiple complementary mechanisms to control soil-borne diseases. Crop Protection, 2015, 67, 269-278.	1.0	42
269	Secondary plant metabolites and root exudates: guiding tools for polychlorinated biphenyl biodegradation. International Journal of Environmental Science and Technology, 2015, 12, 789-802.	1.8	53
270	<scp><i>S</i></scp> <i>phagnum</i> physiology in the context of changing climate: emergent influences of genomics, modelling and host–microbiome interactions on understanding ecosystem function. Plant, Cell and Environment, 2015, 38, 1737-1751.	2.8	60
271	Plant–Microbe Interactions in Phytoremediation. , 2015, , 255-285.		11
272	Challenges and opportunities for quantifying roots and rhizosphere interactions through imaging and image analysis. Plant, Cell and Environment, 2015, 38, 1213-1232.	2.8	117
273	Impact of transgenic cotton expressing cry1Ac and cry2Ab genes on soil rhizosphere bacterial and fungal populations in soils of central Kenya. African Journal of Biotechnology, 2016, 15, 930-939.	0.3	0
274	Networking in the Plant Microbiome. PLoS Biology, 2016, 14, e1002378.	2.6	355
275	Endophytic Microbiota Associated with the Root Tips and Leaves of Baccharis dracunculifolia. Brazilian Archives of Biology and Technology, 2016, 59, .	0.5	7
276	Metagenomic analysis of medicinal Cannabis samples; pathogenic bacteria, toxigenic fungi, and beneficial microbes grow in culture-based yeast and mold tests. F1000Research, 2016, 5, 2471.	0.8	36
278	Temporally Variable Geographical Distance Effects Contribute to the Assembly of Root-Associated Fungal Communities. Frontiers in Microbiology, 2016, 7, 195.	1.5	36
279	Mixed Phenolic Acids Mediated Proliferation of Pathogens Talaromyces helicus and Kosakonia sacchari in Continuously Monocultured Radix pseudostellariae Rhizosphere Soil. Frontiers in Microbiology, 2016, 7, 335.	1.5	66
280	Towards an Enhanced Understanding of Plant–Microbiome Interactions to Improve Phytoremediation: Engineering the Metaorganism. Frontiers in Microbiology, 2016, 7, 341.	1.5	213
281	Rhizosphere Microbiomes of European + Seagrasses Are Selected by the Plant, But Are Not Species Specific. Frontiers in Microbiology, 2016, 7, 440.	1.5	153
282	Chitin Mixed in Potting Soil Alters Lettuce Growth, the Survival of Zoonotic Bacteria on the Leaves and Associated Rhizosphere Microbiology. Frontiers in Microbiology, 2016, 7, 565.	1.5	76

#	Article	IF	CITATIONS
283	Evaluation of Strategies to Separate Root-Associated Microbial Communities: A Crucial Choice in Rhizobiome Research. Frontiers in Microbiology, 2016, 7, 773.	1.5	69
284	Controlling the Microbiome: Microhabitat Adjustments for Successful Biocontrol Strategies in Soil and Human Gut. Frontiers in Microbiology, 2016, 7, 1079.	1.5	37
285	Spatio-Temporal Variation of Core and Satellite Arbuscular Mycorrhizal Fungus Communities in Miscanthus giganteus. Frontiers in Microbiology, 2016, 7, 1278.	1.5	23
286	Aboveground Whitefly Infestation-Mediated Reshaping of the Root Microbiota. Frontiers in Microbiology, 2016, 7, 1314.	1.5	74
287	Unexpectedly High Beta-Diversity of Root-Associated Fungal Communities in the Bolivian Andes. Frontiers in Microbiology, 2016, 7, 1377.	1.5	28
288	Insights into the Regulation of Rhizosphere Bacterial Communities by Application of Bio-organic Fertilizer in Pseudostellaria heterophylla Monoculture Regime. Frontiers in Microbiology, 2016, 7, 1788.	1.5	31
289	Diverse Profiles of Al-1 Type Quorum Sensing Molecules in Cultivable Bacteria from the Mangrove (Kandelia obovata) Rhizosphere Environment. Frontiers in Microbiology, 2016, 7, 1957.	1.5	22
290	Microbiome Selection Could Spur Next-Generation Plant Breeding Strategies. Frontiers in Microbiology, 2016, 7, 1971.	1.5	175
291	Dynamics in the Strawberry Rhizosphere Microbiome in Response to Biochar and Botrytis cinerea Leaf Infection. Frontiers in Microbiology, 2016, 7, 2062.	1.5	59
292	Root Exudation: The Ecological Driver of Hydrocarbon Rhizoremediation. Agronomy, 2016, 6, 19.	1.3	119
293	Metabarcoding of Bacteria Associated with the Acute Oak Decline Syndrome in England. Forests, 2016, 7, 95.	0.9	32
294	Microbiome and Exudates of the Root and Rhizosphere of Brachypodium distachyon, a Model for Wheat. PLoS ONE, 2016, 11, e0164533.	1.1	211
295	Assessing Bacterial Diversity in the Rhizosphere of Thymus zygis Growing in the Sierra Nevada National Park (Spain) through Culture-Dependent and Independent Approaches. PLoS ONE, 2016, 11, e0146558.	1.1	47
296	Distribution of Root-Associated Bacterial Communities Along a Salt-Marsh Primary Succession. Frontiers in Plant Science, 2015, 6, 1188.	1.7	27
297	Two Poplar-Associated Bacterial Isolates Induce Additive Favorable Responses in a Constructed Plant-Microbiome System. Frontiers in Plant Science, 2016, 7, 497.	1.7	113
298	The Root Hair Specific SYP123 Regulates the Localization of Cell Wall Components and Contributes to Rizhobacterial Priming of Induced Systemic Resistance. Frontiers in Plant Science, 2016, 7, 1081.	1.7	17
299	Systemic Responses of Barley to the 3-hydroxy-decanoyl-homoserine Lactone Producing Plant Beneficial Endophyte Acidovorax radicis N35. Frontiers in Plant Science, 2016, 7, 1868.	1.7	81
300	Detection of Invertebrate Suppressive Soils, and Identification of a Possible Biological Control Agent for Meloidogyne Nematodes Using High Resolution Rhizosphere Microbial Community Analysis. Frontiers in Plant Science, 2016, 7, 1946.	1.7	27

#	Article	IF	CITATIONS
301	Infection Mechanisms and Colonization Patterns of Fungi Associated with Soybean., 0,,.		8
302	Systemic enrichment of antifungal traits in the rhizosphere microbiome after pathogen attack. Journal of Ecology, 2016, 104, 1566-1575.	1.9	67
303	The <i>Sphagnum</i> microbiome: new insights from an ancient plant lineage. New Phytologist, 2016, 211, 57-64.	3.5	123
304	Ecosystem Engineers in a Self-organized Soil. Soil Science, 2016, 181, 91-109.	0.9	145
305	Spatial Ecology of the Fungal Genus <i>Xylaria</i> in a Tropical Cloud Forest. Biotropica, 2016, 48, 381-393.	0.8	50
306	Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression. Ecology Letters, 2016, 19, 375-382.	3.0	143
307	The role of locally adapted mycorrhizas and rhizobacteria in plant–soil feedback systems. Functional Ecology, 2016, 30, 1086-1098.	1.7	184
308	Modes of action of the protective strain Fo47 in controlling verticillium wilt of pepper. Plant Pathology, 2016, 65, 997-1007.	1.2	26
309	Orchestration of hydrogen peroxide and nitric oxide in brassinosteroidâ€mediated systemic virus resistance in <i>Nicotiana benthamiana</i>). Plant Journal, 2016, 85, 478-493.	2.8	97
310	Effects of a protein hydrolysate-based biostimulant and two micronutrient based fertilizers on plant growth and epiphytic bacterial population of lettuce. Acta Horticulturae, 2016, , 43-48.	0.1	14
311	Isolation of bacterial endophytes from Actinidia chinensis and preliminary studies on their possible use as antagonists against Pseudomonas syringae pv. actinidiae. Journal of Berry Research, 2016, 6, 395-406.	0.7	17
312	Rhizosphere Interactions: Life Below Ground. , 2016, , 3-23.		6
313	Can Bacillus Species Enhance Nutrient Availability in Agricultural Soils?., 2016,, 367-395.		34
314	Phytostimulation and Biocontrol by the Plant-Associated Bacillus amyloliquefaciens FZB42: An Update. , 2016, , 163-184.		8
315	Microbial Ecology at Rhizosphere: Bioengineering and Future Prospective., 2016,, 63-96.		8
316	Selection of efficient microbial biofertilizers from Moroccan soils. Acta Horticulturae, 2016, , 115-126.	0.1	2
317	<i>Verticillium dahliae</i> Infects, Alters Plant Biomass, and Produces Inoculum on Rotation Crops. Phytopathology, 2016, 106, 602-613.	1.1	31
318	Soil Microbial Metabolomics. , 2016, , 147-198.		7

#	Article	IF	CITATIONS
320	Probiotic Diversity Enhances Rhizosphere Microbiome Function and Plant Disease Suppression. MBio, $2016, 7, \ldots$	1.8	264
321	Insight into structure dynamics of soil microbiota mediated by the richness of replanted Pseudostellaria heterophylla. Scientific Reports, 2016, 6, 26175.	1.6	47
322	Integrated analysis of root microbiomes of soybean and wheat from agricultural fields. Scientific Reports, 2016, 6, 28084.	1.6	198
323	Influence of plant genotype on the cultivable fungiÂassociated to tomato rhizosphere and roots in different soils. Fungal Biology, 2016, 120, 862-872.	1.1	39
324	Plant Growth-Promoting Microbial-Mediated Induced Systemic Resistance in Plants: Induction, Mechanism, and Expression., 2016, , 213-226.		7
325	The occurrence of pathogen suppressive soils in Sweden in relation to soil biota, soil properties, and farming practices. Applied Soil Ecology, 2016, 107, 57-65.	2.1	78
326	Three-way interaction among plants, bacteria, and coleopteran insects. Planta, 2016, 244, 313-332.	1.6	90
327	Acyl Homoserine Lactone-Producing Rhizobacteria Elicit Systemic Resistance in Plants. , 2016, , 135-146.		7
328	Amplicon-based metabarcoding reveals temporal response of soil microbial community to fumigation-derived products. Applied Soil Ecology, 2016, 103, 83-92.	2.1	28
329	Roots under attack: contrasting plant responses to below―and aboveground insect herbivory. New Phytologist, 2016, 210, 413-418.	3.5	109
330	Organic Farming, Soil Health, and Food Quality: Considering Possible Links. Advances in Agronomy, 2016, 137, 319-367.	2.4	95
331	Plants of the fynbos biome harbour host species-specific bacterial communities. FEMS Microbiology Letters, 2016, 363, fnw122.	0.7	16
332	Pseudomonas fluorescensPICF7 displays an endophytic lifestyle in cultivated cereals and enhances yield in barley. FEMS Microbiology Ecology, 2016, 92, fiw092.	1.3	25
333	Soil suppressiveness by organic amendment to Fusarium disease in cucumber: effect on pathogen and host. Phytoparasitica, 2016, 44, 239-249.	0.6	20
334	Effects of biofumigation using Brassica juncea and Raphanus sativus in comparison to disinfection using Basamid on apple plant growth and soil microbial communities at three field sites with replant disease. Plant and Soil, 2016, 406, 389-408.	1.8	45
335	Vermicompost increases defense against root-knot nematode (Meloidogyne incognita) in tomato plants. Applied Soil Ecology, 2016, 105, 177-186.	2.1	69
336	Microbes Drive Evolution of Animals and Plants: the Hologenome Concept. MBio, 2016, 7, e01395.	1.8	358
337	Illumina-based analysis of the rhizosphere microbial communities associated with healthy and wilted Lanzhou lily (Lilium davidii var. unicolor) plants grown in the field. World Journal of Microbiology and Biotechnology, 2016, 32, 95.	1.7	48

#	ARTICLE	IF	CITATIONS
338	The Genetics Underlying Natural Variation in the Biotic Interactions of Arabidopsis thaliana. Current Topics in Developmental Biology, 2016, 119, 111-156.	1.0	39
339	Lipopeptides: Status and Strategies to Control Fungal Infection. , 2016, , 97-121.		4
340	Editorial: Special thematic issue on microbe-assisted crop production. FEMS Microbiology Ecology, 2016, 92, fiw167.	1.3	3
341	Effects of soil physical and chemical parameters, and farm management practices on arbuscular mycorrhizal fungi communities and diversities in coffee plantations in Colombia and Mexico. Agroforestry Systems, 2018, 92, 555.	0.9	13
342	Seed endophytic microbiota in a coastal plant and phytobeneficial properties of the fungus Cladosporium cladosporioides. Fungal Ecology, 2016, 24, 53-60.	0.7	21
343	Wheat, maize and sunflower cropping systems selectively influence bacteria community structure and diversity in their and succeeding crop's rhizosphere. Journal of Integrative Agriculture, 2016, 15, 1892-1902.	1.7	25
344	Advances in the rhizosphere: stretching the interface of life. Plant and Soil, 2016, 407, 1-8.	1.8	78
345	Identification of candidate soil microbes responsible for small-scale heterogeneity in strawberry plant vigour. Journal of Integrative Agriculture, 2016, 15, 2049-2058.	1.7	11
346	Recent Trends in Antifungal Agents and Antifungal Therapy. , 2016, , .		5
347	Root exudate of <i>Solanum tuberosum </i> is enriched in galactose-containing molecules and impacts the growth of <i>Pectobacterium atrosepticum </i> is Annals of Botany, 2016, 118, 797-808.	1.4	40
348	Nitrate Protects Cucumber Plants Against <i>Fusarium oxysporum</i> by Regulating Citrate Exudation. Plant and Cell Physiology, 2016, 57, 2001-2012.	1.5	37
349	Bio-protective microbial agents from rhizosphere eco-systems trigger plant defense responses provide protection against sheath blight disease in rice (Oryza sativa L.). Microbiological Research, 2016, 192, 300-312.	2.5	87
350	Prevalence of bacterial resistance within an eco-agricultural system in Hangzhou, China. Environmental Science and Pollution Research, 2016, 23, 21369-21376.	2.7	11
351	Pathogen invasion indirectly changes the composition of soil microbiome via shifts in root exudation profile. Biology and Fertility of Soils, 2016, 52, 997-1005.	2.3	98
352	The natural occurrence of secondary bacterial symbionts in aphids. Ecological Entomology, 2016, 41, 13-26.	1.1	139
353	High levels of cyclicâ€diâ€∢scp>GMP in plantâ€associated <scp><i>P</i></scp> <i>seudomonas</i> correlate with evasion of plant immunity. Molecular Plant Pathology, 2016, 17, 521-531.	2.0	42
354	Predation and selection for antibiotic resistance in natural environments. Evolutionary Applications, 2016, 9, 427-434.	1.5	23
355	Calling in the Dark: The Role of Volatiles for Communication in the Rhizosphere. Signaling and Communication in Plants, 2016, , 175-210.	0.5	30

#	Article	IF	CITATIONS
357	Bacterial Communities Associated with Different <i>Anthurium andraeanum</i> L. Plant Tissues. Microbes and Environments, 2016, 31, 321-328.	0.7	28
358	Microbiome Networks: A Systems Framework for Identifying Candidate Microbial Assemblages for Disease Management. Phytopathology, 2016, 106, 1083-1096.	1.1	250
359	Bacteria facilitate prey retention by the pitcher plant Darlingtonia californica. Biology Letters, 2016, 12, 20160577.	1.0	4
360	Comparative analysis of bacterial diversity in the rhizosphere of tomato by culture-dependent and -independent approaches. Journal of Microbiology, 2016, 54, 823-831.	1.3	62
361	Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nature Communications, 2016, 7, 12151.	5.8	754
362	Effect of rhizobia symbiosis on lignin levels and forage quality in alfalfa (Medicago sativa L.). Agriculture, Ecosystems and Environment, 2016, 233, 55-59.	2.5	9
363	Enrichment of Root Endophytic Bacteria from Populus deltoides and Single-Cell-Genomics Analysis. Applied and Environmental Microbiology, 2016, 82, 5698-5708.	1.4	53
364	Symbiotic Fungi Control Plant Root Cortex Development through the Novel GRAS Transcription Factor MIG1. Current Biology, 2016, 26, 2770-2778.	1.8	103
365	Arbuscular mycorrhizal symbiosis stimulates key genes of the phenylpropanoid biosynthesis and stilbenoid production in grapevine leaves in response to downy mildew and grey mould infection. Phytochemistry, 2016, 131, 92-99.	1.4	60
366	The Plant Microbiota: Systems-Level Insights and Perspectives. Annual Review of Genetics, 2016, 50, 211-234.	3.2	627
367	An endophytic Streptomyces sp. strain DHV3-2 from diseased root as a potential biocontrol agent against Verticillium dahliae and growth elicitor in tomato (Solanum lycopersicum). Antonie Van Leeuwenhoek, 2016, 109, 1573-1582.	0.7	27
369	Deciphering Chemical Language of Plant Communication. Signaling and Communication in Plants, 2016,	0.5	18
370	Diversity of fungal endophytes in recent and ancient wheat ancestors <i>Triticum dicoccoides</i> Aegilops sharonensisFEMS Microbiology Ecology, 2016, 92, fiw152.	1.3	56
371	Rhizobacterial Community Structures Associated with Native Plants Grown in Chilean Extreme Environments. Microbial Ecology, 2016, 72, 633-646.	1.4	53
372	Specific surface glycan decorations enable antimicrobial peptide resistance in plantâ€beneficial pseudomonads with insectâ€pathogenic properties. Environmental Microbiology, 2016, 18, 4265-4281.	1.8	19
373	Enhancement of trichothecene mycotoxins of Fusarium oxysporum by ferulic acid aggravates oxidative damage in Rehmannia glutinosa Libosch. Scientific Reports, 2016, 6, 33962.	1.6	21
374	Mineral and organic growing media have distinct community structure, stability and functionality in soilless culture systems. Scientific Reports, 2016, 6, 18837.	1.6	72
375	Different responses of rhizosphere and non-rhizosphere soil microbial communities to consecutive Piper nigrum L. monoculture. Scientific Reports, 2016, 6, 35825.	1.6	65

#	Article	IF	CITATIONS
376	Effects of consecutive monoculture of Pseudostellaria heterophylla on soil fungal community as determined by pyrosequencing. Scientific Reports, 2016, 6, 26601.	1.6	62
377	Climate change impacts on the ecology of Fusarium graminearum species complex and susceptibility of wheat to Fusarium head blight: a review. World Mycotoxin Journal, 2016, 9, 685-700.	0.8	86
378	Fungal pathogens and antagonists in root-soil zone in organic and integrated systems of potato production. Journal of Plant Protection Research, 2016, 56, 167-177.	1.0	2
379	Draft Genome Sequence of Endophytic Bacterium <i>Enterobacter asburiae</i> PDA134, Isolated from Date Palm (<i>Phoenix dactylifera</i> L.) Roots. Genome Announcements, 2016, 4, .	0.8	22
380	The effects of host age and spatial location on bacterial community composition in the English Oak tree (<i>Quercus robur</i>). Environmental Microbiology Reports, 2016, 8, 649-658.	1.0	33
381	Biocontrol of Fusarium oxysporum f.sp. phaseoli and Phytophthora capsici with Autochthonous Endophytes in Common Bean and Pepper in Castilla y León (Spain). , 2016, , 221-235.		2
382	The Production and Potential of Biofertilizers to Improve Crop Yields., 2016,, 71-92.		16
383	Beneficial Soil Microbiota as Mediators of the Plant Defensive Phenotype and Aboveground Plant-Herbivore Interactions. Progress in Botany Fortschritte Der Botanik, 2016, , 305-343.	0.1	4
384	Plant, Soil and Microbes., 2016,,.		5
386	Learning Ecological Networks from Next-Generation Sequencing Data. Advances in Ecological Research, 2016, , 1-39.	1.4	68
387	Genomics of Plant, Soil, and Microbe Interaction., 2016,, 303-336.		1
388	Fungal invasion of the rhizosphere microbiome. ISME Journal, 2016, 10, 265-268.	4.4	294
389	An evolutionary ecology perspective to address forest pathology challenges of today and tomorrow. Annals of Forest Science, 2016, 73, 45-67.	0.8	88
390	A perspective on inter-kingdom signaling in plant–beneficial microbe interactions. Plant Molecular Biology, 2016, 90, 537-548.	2.0	97
391	Chemotaxis signaling systems in model beneficial plant–bacteria associations. Plant Molecular Biology, 2016, 90, 549-559.	2.0	207
392	Rhizobium symbiosis contribution to short-term salt stress tolerance in alfalfa (Medicago sativa L.). Plant and Soil, 2016, 402, 247-261.	1.8	55
393	Uncovering Plant Growth-Mediating Allelochemicals Produced by Soil Microorganisms. Weed Science, 2016, 64, 119-128.	0.8	5
394	Evolutionary and Epidemiological Implications of Multiple Infection in Plants. Trends in Plant Science, 2016, 21, 80-90.	4.3	177

#	Article	IF	Citations
395	Challenges and opportunities in harnessing soil disease suppressiveness for sustainable pasture production. Soil Biology and Biochemistry, 2016, 95, 100-111.	4.2	33
396	Microbial-mediated Induced Systemic Resistance in Plants. , 2016, , .		24
397	Host Selection of Microbiota via Differential Adhesion. Cell Host and Microbe, 2016, 19, 550-559.	5.1	149
398	"Physiological quality―of organically grown vegetables. Scientia Horticulturae, 2016, 208, 131-139.	1.7	51
399	The Soil-Borne Supremacy. Trends in Plant Science, 2016, 21, 171-173.	4.3	159
400	Effects of interspecific competition on the growth of macrophytes and nutrient removal in constructed wetlands: A comparative assessment of free water surface and horizontal subsurface flow systems. Bioresource Technology, 2016, 207, 134-141.	4.8	47
401	Shifts of microbial communities of wheat (Triticum aestivum L.) cultivation in a closed artificial ecosystem. Applied Microbiology and Biotechnology, 2016, 100, 4085-4095.	1.7	30
402	Development of root system architecture of Arabidopsis thaliana in response to colonization by Martelella endophytica YC6887 depends on auxin signaling. Plant and Soil, 2016, 405, 81-96.	1.8	17
403	Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria. Plant Molecular Biology, 2016, 90, 623-634.	2.0	140
404	Network modules and hubs in plant-root fungal biomes. Journal of the Royal Society Interface, 2016, 13, 20151097.	1.5	100
405	Vitis vinifera microbiome: from basic research to technological development. BioControl, 2016, 61, 243-256.	0.9	44
406	Microbial community structure and its temporal changes in Rehmannia glutinosa rhizospheric soils monocultured for different years. European Journal of Soil Biology, 2016, 72, 1-5.	1.4	25
407	Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biology, 2016, 90, 575-587.	2.0	523
408	Fertility practices and rhizosphere effects alter ammonia oxidizer community structure and potential nitrification activity in pepper production soils. Applied Soil Ecology, 2016, 99, 70-77.	2.1	33
409	Microbial and Functional Diversity within the Phyllosphere of Espeletia Species in an Andean High-Mountain Ecosystem. Applied and Environmental Microbiology, 2016, 82, 1807-1817.	1.4	55
410	Ecological role of bacterial inoculants and their potential impact on soil microbial diversity. Plant and Soil, 2016, 400, 193-207.	1.8	124
411	The plant microbiome explored: implications for experimental botany. Journal of Experimental Botany, 2016, 67, 995-1002.	2.4	424
412	Description of Vogesella oryzae sp. nov., isolated from the rhizosphere of saline tolerant pokkali rice. Systematic and Applied Microbiology, 2016, 39, 20-24.	1.2	27

#	Article	IF	CITATIONS
413	Suppression Subtractive Hybridization analysis provides new insights into the tomato (Solanum) Tj ETQq0 0 0 rgB Journal of Plant Physiology, 2016, 190, 79-94.	T /Overloo 1.6	ck 10 Tf 50 7 56
414	Glyphosate effects on soil rhizosphere-associated bacterial communities. Science of the Total Environment, 2016, 543, 155-160.	3.9	171
415	Mitigating climate change through managing constructed-microbial communities in agriculture. Agriculture, Ecosystems and Environment, 2016, 216, 304-308.	2.5	56
416	Lessons from rhizosphere and gastrointestinal ecosystems for inventive design of sustainable wastes recycling bioreactors. Biochemical Engineering Journal, 2016, 105, 62-70.	1.8	3
417	Rhizospheric fungi of Panax notoginseng: diversity and antagonism to host phytopathogens. Journal of Ginseng Research, 2016, 40, 127-134.	3.0	101
418	A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment. ISME Journal, 2016, 10, 389-399.	4.4	315
419	Developmental and nutritional regulation of isoflavone secretion from soybean roots. Bioscience, Biotechnology and Biochemistry, 2016, 80, 89-94.	0.6	59
420	Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Molecular Biology, 2016, 90, 635-644.	2.0	504
421	Bacterial diversity in the rhizosphere of two phylogenetically closely related plant species across environmental gradients. Journal of Soils and Sediments, 2017, 17, 122-132.	1.5	13
422	Antibiotic discovery throughout the Small World Initiative: A molecular strategy to identify biosynthetic gene clusters involved in antagonistic activity. MicrobiologyOpen, 2017, 6, e00435.	1.2	52
423	Biocontrol effects of Brevibacillus laterosporus AMCC100017 on potato common scab and its impact on rhizosphere bacterial communities. Biological Control, 2017, 106, 89-98.	1.4	40
424	Efficient phytoremediation of organic contaminants in soils using plant–endophyte partnerships. Science of the Total Environment, 2017, 583, 352-368.	3.9	185
425	Ecoimmunology and microbial ecology: Contributions to avian behavior, physiology, and life history. Hormones and Behavior, 2017, 88, 112-121.	1.0	20
426	Effects of jasmonic acid signalling on the wheat microbiome differ between body sites. Scientific Reports, 2017, 7, 41766.	1.6	105
427	Comparative genomics of <i>Mortierella elongata</i> and its bacterial endosymbiont <i>Mycoavidus cysteinexigens</i> . Environmental Microbiology, 2017, 19, 2964-2983.	1.8	154
429	Impact of endophytic colonization patterns on Zamioculcas zamiifolia stress response and in regulating ROS, tryptophan and IAA levels under airborne formaldehyde and formaldehyde-contaminated soil conditions. Plant Physiology and Biochemistry, 2017, 114, 1-9.	2.8	26
430	Plant cultivars imprint the rhizosphere bacterial community composition and association networks. Soil Biology and Biochemistry, 2017, 109, 145-155.	4.2	191
431	Suppression of Fusarium wilt of cucumber by ammonia gas fumigation via reduction of Fusarium population in the field. Scientific Reports, 2017, 7, 43103.	1.6	42

#	Article	IF	CITATIONS
432	Simplified and representative bacterial community of maize roots. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2450-E2459.	3.3	487
433	Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome, 2017, 5, 25.	4.9	406
434	Seed endosymbiosis: a vital relationship in providing prenatal care to plants. Canadian Journal of Plant Science, $0, \dots$	0.3	18
435	Deciphering composition and function of the root microbiome of a legume plant. Microbiome, 2017, 5, 2.	4.9	152
436	ACC deaminase-containing plant growth-promoting rhizobacteria protect <i>Papaver somniferum</i> from downy mildew. Journal of Applied Microbiology, 2017, 122, 1286-1298.	1.4	40
437	Mining prokaryotes for antimicrobial compounds: from diversity to function. FEMS Microbiology Reviews, 2017, 41, 417-429.	3.9	88
438	Impact of Next-Generation Sequencing Technology in Plant–Microbe Interaction Study. , 2017, , 269-294.		5
439	Coordinated responses of soil communities to elevation in three subarctic vegetation types. Oikos, 2017, 126, 1586-1599.	1.2	32
440	The unseen rhizosphere root–soil–microbe interactions for crop production. Current Opinion in Microbiology, 2017, 37, 8-14.	2.3	250
441	Life in earth – the root microbiome to the rescue?. Current Opinion in Microbiology, 2017, 37, 23-28.	2.3	61
442	Jasmonic acid signalling and the plant holobiont. Current Opinion in Microbiology, 2017, 37, 42-47.	2.3	61
443	Rhizosphere engineering: Enhancing sustainable plant ecosystem productivity. Rhizosphere, 2017, 3, 233-243.	1.4	242
444	Global-Scale Structure of the Eelgrass Microbiome. Applied and Environmental Microbiology, 2017, 83,	1.4	147
445	Managing and manipulating the rhizosphere microbiome for plant health: A systems approach. Rhizosphere, 2017, 3, 230-232.	1.4	105
446	Ecology and Genomic Insights into Plant-Pathogenic and Plant-Nonpathogenic Endophytes. Annual Review of Phytopathology, 2017, 55, 61-83.	3.5	353
447	The state of rhizospheric science in the era of multi-omics: A practical guide to omics technologies. Rhizosphere, 2017, 3, 212-221.	1.4	66
448	Ectomycorrhizal Fungi: A Major Player in Early Succession. , 2017, , 187-229.		7
449	Rhizosphere-driven increase in nitrogen and phosphorus availability under elevated atmospheric CO2 in a mature Eucalyptus woodland. Plant and Soil, 2017, 416, 283-295.	1.8	40

#	ARTICLE	IF	CITATIONS
450	Mycorrhiza - Function, Diversity, State of the Art., 2017, , .		21
451	Plant microbial diversity is suggested as the key to future biocontrol and health trends. FEMS Microbiology Ecology, 2017, 93, .	1.3	376
452	Breeding for mycorrhizal symbiosis: focus on disease resistance. Euphytica, 2017, 213, 1.	0.6	62
453	Effect of benzoic acid on soil microbial communities associated with soilborne peanut diseases. Applied Soil Ecology, 2017, 110, 34-42.	2.1	58
454	Prospects for Biological Soilborne Disease Control: Application of Indigenous Versus Synthetic Microbiomes. Phytopathology, 2017, 107, 256-263.	1.1	147
455	Diversity and Technological Aspects of Microorganisms from Semiarid Environments. , 2017, , 3-19.		3
456	Synthesis and Secretion of Isoflavones by Field-Grown Soybean. Plant and Cell Physiology, 2017, 58, 1594-1600.	1.5	56
457	Effect of Trichoderma harzianum on maize rhizosphere microbiome and biocontrol of Fusarium Stalk rot. Scientific Reports, 2017, 7, 1771.	1.6	140
458	Comparison of rhizosphere properties as affected by different Bt- and non-Bt-cotton (Gossypium) Tj ETQq0 0 0 rş	gBŢ.¦Overl	ock 10 Tf 50 년
459	Trichoderma-enriched organic fertilizer can mitigate microbiome degeneration of monocropped soil to maintain better plant growth. Plant and Soil, 2017, 416, 181-192.	1.8	78
460	Plant Breeding Goes Microbial. Trends in Plant Science, 2017, 22, 555-558.	4.3	120
461	Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature, 2017, 546, 145-147.	13.7	294
462	Can soil microbial diversity influence plant metabolites and life history traits of a rhizophagous insect? A demonstration in oilseed rape. Insect Science, 2017, 24, 1045-1056.	1.5	22
463	Symbiosis-inspired approaches to antibiotic discovery. Natural Product Reports, 2017, 34, 784-814.	5 . 2	111
464	The Nodule Microbiome: N ₂ -Fixing Rhizobia Do Not Live Alone. Phytobiomes Journal, 2017, 1, 70-82.	1.4	215
466	Spatial profiling of maytansine during the germination process of Maytenus senegalensis seeds. FA¬toterapĬA¢, 2017, 119, 51-56.	1.1	10
467	Populus trichocarpa encodes small, effector-like secreted proteins that are highly induced during mutualistic symbiosis. Scientific Reports, 2017, 7, 382.	1.6	36
468	Soil Biodiversity and Ecosystem Functioning. , 2017, , 119-140.		1

#	ARTICLE	IF	CITATIONS
469	Arbuscular Mycorrhizal Fungi as Potential Bioprotectants Against Aerial Phytopathogens and Pests. , 2017, , 195-223.		4
470	Community structure follows simple assembly rules in microbial microcosms. Nature Ecology and Evolution, 2017, 1, 109.	3.4	400
471	Endophytic actinobacteria: Diversity, secondary metabolism and mechanisms to unsilence biosynthetic gene clusters. Critical Reviews in Microbiology, 2017, 43, 546-566.	2.7	87
472	Linking the Belowground Microbial Composition, Diversity and Activity to Soilborne Disease Suppression and Growth Promotion of Tomato Amended with Biochar. Scientific Reports, 2017, 7, 44382.	1.6	167
473	The Rhizopshere and Its Microorganisms. , 2017, , 347-351.		2
474	Response of rhizosphere microbial diversity and soil physico-chemical properties in a rotation of cucumber with <i>Volvariella volvacea</i> . Biocontrol Science and Technology, 2017, 27, 311-323.	0.5	6
475	Bacterial diversity of the rhizosphere and nearby surface soil of rice (Oryza sativa) growing in the Camargue (France). Rhizosphere, 2017, 3, 112-122.	1.4	29
476	Halophilic rhizobacteria from Distichlis spicata promote growth and improve salt tolerance in heterologous plant hosts. Symbiosis, 2017, 73, 179-189.	1.2	39
477	Identifying the plantâ€associated microbiome across aquatic and terrestrial environments: the effects of amplification method on taxa discovery. Molecular Ecology Resources, 2017, 17, 931-942.	2.2	25
478	Genetics and Genomics of Setaria. Plant Genetics and Genomics: Crops and Models, 2017, , .	0.3	18
479	Interaction of chiral herbicides with soil microorganisms, algae and vascular plants. Science of the Total Environment, 2017, 580, 1287-1299.	3.9	60
482	Bioprospecting Soil Metagenomes for Antibiotics. Topics in Biodiversity and Conservation, 2017, , 113-136.	0.3	2
483	Synthetically engineered microbes reveal interesting principles of cooperation. Frontiers of Chemical Science and Engineering, 2017, 11, 3-14.	2.3	8
484	Crop Improvement., 2017,,.		3
485	Root-associated fungal microbiota of nonmycorrhizal <i>Arabis alpina</i> and its contribution to plant phosphorus nutrition. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9403-E9412.	3.3	239
486	Exploring the Plant Microbiome Through Multi-omics Approaches. , 2017, , 233-268.		11
487	Microbial Inoculants: A Novel Approach for Better Plant Microbiome Interactions., 2017,, 269-289.		7
489	Yeasts in Agricultural and Managed Soils. , 2017, , 117-144.		20

#	Article	IF	CITATIONS
490	Comparison of Two Molecular Methods to Assess Soil Microbial Diversity., 2017,, 25-42.		4
491	Properties analysis of transcription factor gene TasMYB36 from Trichoderma asperellum CBS433.97 and its heterogeneous transfomation to improve antifungal ability of Populus. Scientific Reports, 2017, 7, 12801.	1.6	7
492	Endophyte-Promoted Nutrient Acquisition: Phosphorus and Iron., 2017,, 21-42.		30
493	Bacterial-Mediated Selenium Biofortification of Triticum aestivum: Strategy for Improvement in Selenium Phytoremediation and Biofortification. , 2017, , 299-315.		3
494	Plant Microbiome: Composition and Functions in Plant Compartments., 2017,, 7-20.		24
495	Rhizosphere Signaling Cascades: Fundamentals and Determinants. , 2017, , 211-226.		12
496	An Expedition to the Mechanism of Plant–Microbe Interaction by Utilization of Different Molecular Biology Tools. , 2017, , 431-446.		0
497	Rhizocompetence of Applied Bioinoculants. , 2017, , 501-511.		5
498	Urban habitat restoration provides a human health benefit through microbiome rewilding: the Microbiome Rewilding Hypothesis. Restoration Ecology, 2017, 25, 866-872.	1.4	129
499	Metagenomics of Plant Microbiomes. , 2017, , 179-200.		7
501	<i>Rhododendron aureum</i> Georgi formed a special soil microbial community and competed with aboveâ€ground plants on the tundra of the Changbai Mountain, China. Ecology and Evolution, 2017, 7, 7503-7514.	0.8	7
502	Environmental parameters altered by climate change affect the activity of soil microorganisms involved in bioremediation. FEMS Microbiology Letters, 2017, 364, .	0.7	58
503	Induction of Systemic Resistance for Disease Suppression. , 2017, , 335-357.		3
505	Tree roots select specific bacterial communities in the subsurface critical zone. Soil Biology and Biochemistry, 2017, 115, 109-123.	4.2	14
506	Tiny Microbes, Big Yields: enhancing food crop production with biological solutions. Microbial Biotechnology, 2017, 10, 999-1003.	2.0	119
507	Microbial Landscape of the Grapevine Endosphere in the Context of Pierce's Disease. Phytobiomes Journal, 2017, 1, 138-149.	1.4	48
508	Microbial Biofertilizer Interventions in Augmenting Agroforestry. , 2017, , 421-442.		1
509	Assessment of two carrier materials for phosphate solubilizing biofertilizers and their effect on growth of wheat (Triticum aestivum L.). Microbiological Research, 2017, 205, 107-117.	2.5	84

#	Article	IF	Citations
510	Cocultivation of Piriformospora indica and Azotobacter chroococcum for Production of Artemisinin., 2017,, 273-281.		O
511	Genomeâ€wide analysis of bacterial determinants of plant growth promotion and induced systemic resistance by <i>Pseudomonas fluorescens</i> . Environmental Microbiology, 2017, 19, 4638-4656.	1.8	51
512	Bacteria utilizing plantâ€derived carbon in the rhizosphere of <i>Triticum aestivum</i> change in different depths of an arable soil. Environmental Microbiology Reports, 2017, 9, 729-741.	1.0	21
513	Elucidation of complexity and prediction of interactions in microbial communities. Microbial Biotechnology, 2017, 10, 1500-1522.	2.0	117
514	Bio-stimulants: An Approach Towards the Sustainable Vegetable Production., 2017,, 259-277.		6
516	Arbuscular Mycorrhizal Symbiosis and Its Role in Plant Nutrition in Sustainable Agriculture. , 2017, , 129-164.		15
517	The Omics Era and Host Microbiomes. , 2017, , 3-12.		1
518	Metatranscriptomic Studies of the Plant Rhizosphere for Finding Biological Agents. , 2017, , 267-275.		3
519	The uniqueness and biogeochemical cycling of plant root microbial communities in a floating treatment wetland. Ecological Engineering, 2017, 108, 573-580.	1.6	46
520	Plant ecological solutions to global food security. Journal of Ecology, 2017, 105, 859-864.	1.9	22
521	Rhizosphere Sampling Protocols for Microbiome (16S/18S/ITS rRNA) Library Preparation and Enrichment for the Isolation of Drought Tolerance-Promoting Microbes. Methods in Molecular Biology, 2017, 1631, 349-362.	0.4	20
522	Toward a Resilient, Functional Microbiome: Drought Tolerance-Alleviating Microbes for Sustainable Agriculture. Methods in Molecular Biology, 2017, 1631, 69-84.	0.4	26
523	Metabolite profiling of nonâ€sterile rhizosphere soil. Plant Journal, 2017, 92, 147-162.	2.8	141
524	Steering Soil Microbiomes to Suppress Aboveground Insect Pests. Trends in Plant Science, 2017, 22, 770-778.	4.3	193
525	Drought and host selection influence bacterial community dynamics in the grass root microbiome. ISME Journal, 2017, 11, 2691-2704.	4.4	464
526	Environment and geographic distance differ in relative importance for determining fungal community of rhizosphere and bulk soil. Environmental Microbiology, 2017, 19, 3649-3659.	1.8	78
527	Bottom-up effects on herbivore-induced plant defences: a case study based on compositional patterns of rhizosphere microbial communities. Scientific Reports, 2017, 7, 6251.	1.6	15
528	Soil microbial community structure and catabolic activity are significantly degenerated in successive rotations of Chinese fir plantations. Scientific Reports, 2017, 7, 6691.	1.6	28

#	Article	IF	CITATIONS
532	Bioorganic fertilizer maintains a more stable soil microbiome than chemical fertilizer for monocropping. Biology and Fertility of Soils, 2017, 53, 861-872.	2.3	50
533	Early successional patterns of bacterial communities in soil microcosms reveal changes in bacterial community composition and network architecture, depending on the successional condition. Applied Soil Ecology, 2017, 120, 44-54.	2.1	9
534	Plant growthâ€promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and ⟨i>TaCTR1⟨ i> ⟨i>TaDREB2⟨ i> expression. Physiologia Plantarum, 2017, 161, 502-514.	2.6	275
535	Co-cultivation of Piriformospora indica with Azotobacter sp , 2017, , 135-148.		O
537	The Rhizosphere and Plant Nutrition Under Climate Change. , 2017, , 275-308.		17
538	The cyclic lipopeptide orfamide induces systemic resistance in rice to Cochliobolus miyabeanus but not to Magnaporthe oryzae. Plant Cell Reports, 2017, 36, 1731-1746.	2.8	39
539	Mapping the ecological networks of microbial communities. Nature Communications, 2017, 8, 2042.	5.8	125
540	Premier Biocontrol Traits of Pseudomonads: Siderophores, Phenazines or What Else?. Microorganisms for Sustainability, 2017, , 351-390.	0.4	2
541	Potentials of Microbial Inoculants in Soil Productivity: An Outlook on African Legumes. Microorganisms for Sustainability, 2017, , 53-75.	0.4	11
543	Beneficial Microbes for Disease Suppression and Plant Growth Promotion. , 2017, , 395-432.		21
544	Complete Genome Sequences of Seven Strains Composing a Model Bacterial Community of Maize Roots. Genome Announcements, 2017, 5, .	0.8	2
545	The interactive effects of arbuscular mycorrhiza and plant growth-promoting rhizobacteria synergistically enhance host plant defences against pathogens. Scientific Reports, 2017, 7, 16409.	1.6	115
546	An integrative strategy to identify the entire protein coding potential of prokaryotic genomes by proteogenomics. Genome Research, 2017, 27, 2083-2095.	2.4	112
547	Phytomicrobiome: A Reservoir for Sustainable Agriculture. , 2017, , 117-132.		4
548	Rhizosphere Microbiome Metagenomics: Elucidating the Abditive Microflora., 2017, , 11-27.		1
549	Rhizosphere Microbiome and Its Role in Plant Growth Promotion. , 2017, , 29-56.		4
550	Impact of 25 years of inorganic fertilization on diazotrophic abundance and community structure in an acidic soil in southern China. Soil Biology and Biochemistry, 2017, 113, 240-249.	4.2	196
551	Rhizosphere-associated bacterial network structure and spatial distribution differ significantly from bulk soil in wheat crop fields. Soil Biology and Biochemistry, 2017, 113, 275-284.	4.2	210

#	Article	IF	Citations
552	The Variation in the Rhizosphere Microbiome of Cotton with Soil Type, Genotype and Developmental Stage. Scientific Reports, 2017, 7, 3940.	1.6	205
553	Emerging Significance of Rhizospheric Probiotics and Its Impact on Plant Health: Current Perspective Towards Sustainable Agriculture., 2017,, 233-251.		6
554	The Good, the Bad, and the Ugly of Rhizosphere Microbiome. , 2017, , 253-290.		29
555	Plant Growth-Promoting Microbes: Diverse Roles in Agriculture and Environmental Sustainability. , 2017, , 71-111.		28
556	Bacterial periphytic communities related to mercury methylation within aquatic plant roots from a temperate freshwater lake (South-Western France). Environmental Science and Pollution Research, 2017, 24, 19223-19233.	2.7	15
557	Beneficial traits of bacterial endophytes belonging to the core communities of the tomato root microbiome. Agriculture, Ecosystems and Environment, 2017, 247, 149-156.	2.5	81
558	Competition assays and physiological experiments of soil and phyllosphere yeasts identify Candida subhashii as a novel antagonist of filamentous fungi. BMC Microbiology, 2017, 17, 4.	1.3	77
559	Challenges facing the biological control strategies for the management of Fusarium Head Blight of cereals caused by F. graminearum. Biological Control, 2017, 113, 26-38.	1.4	88
560	Phytoavailability of Cr in Silene vulgaris: The role of soil, plant genotype and bacterial rhizobiome. Ecotoxicology and Environmental Safety, 2017, 144, 283-290.	2.9	5
561	Wheat cover crop promoted cucumber seedling growth through regulating soil nutrient resources or soil microbial communities?. Plant and Soil, 2017, 418, 459-475.	1.8	14
562	Successive soybean-monoculture cropping assembles rhizosphere microbial communities for the soil suppression of soybean cyst nematode. FEMS Microbiology Ecology, 2017, 93, fiw222.	1.3	140
563	Protozoa stimulate the plant beneficial activity of rhizospheric pseudomonads. Plant and Soil, 2017, 410, 509-515.	1.8	39
564	The nutrient preference of plants influences their rhizosphere microbiome. Applied Soil Ecology, 2017, 110, 146-150.	2.1	37
565	Diversity in cowpea (Vigna unguiculata (L.) Walp.) local populations from Greece. Genetic Resources and Crop Evolution, 2017, 64, 1529-1551.	0.8	30
566	Global expression analysis of the response to microaerobiosis reveals an important cue for endophytic establishment of Azoarcussp. BH72. Environmental Microbiology, 2017, 19, 198-217.	1.8	15
567	Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease. Soil Biology and Biochemistry, 2017, 104, 39-48.	4.2	241
568	Biocharâ€stimulated plant performance is strongly linked to microbial diversity and metabolic potential in the rhizosphere. New Phytologist, 2017, 213, 1393-1404.	3.5	201
569	Root-Microbe Interactions in Response to Soil Conditions. Progress in Soil Science, 2017, , 137-144.	0.4	3

#	Article	IF	CITATIONS
570	Conversion of grassland to arable decreases microbial diversity and alters community composition. Applied Soil Ecology, 2017, 110, 43-52.	2.1	49
571	Emergence of plant and rhizospheric microbiota as stable interactomes. Protoplasma, 2017, 254, 617-626.	1.0	34
572	Functional traits dominate the diversity-related selection of bacterial communities in the rhizosphere. ISME Journal, 2017, 11, 56-66.	4.4	220
573	Phytoremediation: State-of-the-art and a key role for the plant microbiome in future trends and research prospects. International Journal of Phytoremediation, 2017, 19, 23-38.	1.7	84
574	High-throughput sequencing-based analysis of the composition and diversity of endophytic bacterial community in seeds of "Beijing―hybrid maize planted in China. Plant Growth Regulation, 2017, 81, 317-324.	1.8	37
575	Exploitation of endophytes for sustainable agricultural intensification. Molecular Plant Pathology, 2017, 18, 469-473.	2.0	126
576	Diclofop-methyl affects microbial rhizosphere community and induces systemic acquired resistance in rice. Journal of Environmental Sciences, 2017, 51, 352-360.	3.2	63
577	Environmental Pseudomonads Inhibit Cystic Fibrosis Patient-Derived Pseudomonas aeruginosa. Applied and Environmental Microbiology, 2017, 83, .	1.4	39
578	Root nematode infection enhances leaf defense against whitefly in tomato. Arthropod-Plant Interactions, 2017, 11, 23-33.	0.5	22
579	Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, <i>Helianthus annuus</i> New Phytologist, 2017, 214, 412-423.	3.5	185
580	Disruption of plant–soil–microbial relationships influences plant growth. Journal of Ecology, 2017, 105, 816-827.	1.9	26
581	Illumina sequencing reveals a rhizosphere bacterial community associated with foxtail millet smut disease suppression. Plant and Soil, 2017, 410, 411-421.	1.8	27
582	Variation in Bacterial and Eukaryotic Communities Associated with Natural and Managed Wild Blueberry Habitats. Phytobiomes Journal, 2017, 1, 102-113.	1.4	47
583	Assessment of bacterial communities of black soybean grown in fields. Communicative and Integrative Biology, 2017, 10, e1378290.	0.6	5
584	Overview of the microbial associations of below ground parts of Crocus sativus. Acta Horticulturae, 2017, , 71-78.	0.1	2
585	Harnessing the Plant Microbiome: A Key Towards Sustainable Agriculture. , 2017, , 307-322.		1
586	Bacterial Rhizoremediation of Petroleum Hydrocarbons (PHC)., 2017,, 495-519.		5
587	Belowground Microbial Crosstalk and Rhizosphere Biology. , 2017, , 695-752.		6

#	Article	IF	CITATIONS
588	Relationships between Root Pathogen Resistance, Abundance and Expression of Pseudomonas Antimicrobial Genes, and Soil Properties in Representative Swiss Agricultural Soils. Frontiers in Plant Science, 2017, 8, 427.	1.7	37
589	Insights into the Mechanism of Proliferation on the Special Microbes Mediated by Phenolic Acids in the Radix pseudostellariae Rhizosphere under Continuous Monoculture Regimes. Frontiers in Plant Science, 2017, 8, 659.	1.7	29
590	The Influence of Land Use Intensity on the Plant-Associated Microbiome of Dactylis glomerata L Frontiers in Plant Science, 2017, 8, 930.	1.7	57
591	Dominant Groups of Potentially Active Bacteria Shared by Barley Seeds become Less Abundant in Root Associated Microbiome. Frontiers in Plant Science, 2017, 8, 1005.	1.7	70
592	Root Hair Mutations Displace the Barley Rhizosphere Microbiota. Frontiers in Plant Science, 2017, 8, 1094.	1.7	85
593	Community Profiling of Fusarium in Combination with Other Plant-Associated Fungi in Different Crop Species Using SMRT Sequencing. Frontiers in Plant Science, 2017, 8, 2019.	1.7	46
594	Rhizosphere Microbiome Recruited from a Suppressive Compost Improves Plant Fitness and Increases Protection against Vascular Wilt Pathogens of Tomato. Frontiers in Plant Science, 2017, 8, 2022.	1.7	82
595	Biostimulant Action of Protein Hydrolysates: Unraveling Their Effects on Plant Physiology and Microbiome. Frontiers in Plant Science, 2017, 8, 2202.	1.7	367
596	Transmission of Bacterial Endophytes. Microorganisms, 2017, 5, 70.	1.6	308
597	Soil and Rhizosphere Bacterial Diversity in Maize Agro-Ecosystem. Sustainable Agriculture Research, 2017, 6, 35.	0.2	6
598	Global Change and the Soil Microbiome: A Human-Health Perspective. Frontiers in Ecology and Evolution, 2017, 5 , .	1.1	19
599	Back to the Origin: In Situ Studies Are Needed to Understand Selection during Crop Diversification. Frontiers in Ecology and Evolution, 2017, 5, .	1.1	45
600	Key Impact of an Uncommon Plasmid on Bacillus amyloliquefaciens subsp. plantarum S499 Developmental Traits and Lipopeptide Production. Frontiers in Microbiology, 2017, 8, 17.	1.5	15
601	Antimicrobial Activity of Medicinal Plants Correlates with the Proportion of Antagonistic Endophytes. Frontiers in Microbiology, 2017, 8, 199.	1.5	136
602	Characterization of Batrachochytrium dendrobatidis Inhibiting Bacteria from Amphibian Populations in Costa Rica. Frontiers in Microbiology, 2017, 8, 290.	1.5	42
603	Genome-Guided Insights into the Plant Growth Promotion Capabilities of the Physiologically Versatile Bacillus aryabhattai Strain AB211. Frontiers in Microbiology, 2017, 8, 411.	1.5	98
604	Metagenome-Wide Association Study and Machine Learning Prediction of Bulk Soil Microbiome and Crop Productivity. Frontiers in Microbiology, 2017, 8, 519.	1.5	101
605	Bacterial Root Microbiome of Plants Growing in Oil Sands Reclamation Covers. Frontiers in Microbiology, 2017, 8, 849.	1.5	80

#	Article	IF	Citations
606	Stimulation of Fengycin-Type Antifungal Lipopeptides in Bacillus amyloliquefaciens in the Presence of the Maize Fungal Pathogen Rhizomucor variabilis. Frontiers in Microbiology, 2017, 8, 850.	1.5	66
607	A Small Number of Low-abundance Bacteria Dominate Plant Species-specific Responses during Rhizosphere Colonization. Frontiers in Microbiology, 2017, 8, 975.	1.5	87
608	Effects of Soil Pre-Treatment with Basamid® Granules, Brassica juncea, Raphanus sativus, and Tagetes patula on Bacterial and Fungal Communities at Two Apple Replant Disease Sites. Frontiers in Microbiology, 2017, 8, 1604.	1.5	52
609	Functionality of Root-Associated Bacteria along a Salt Marsh Primary Succession. Frontiers in Microbiology, 2017, 8, 2102.	1.5	18
610	An Integrated Insight into the Relationship between Soil Microbial Community and Tobacco Bacterial Wilt Disease. Frontiers in Microbiology, 2017, 8, 2179.	1.5	108
611	Plant Phylogeny and Life History Shape Rhizosphere Bacterial Microbiome of Summer Annuals in an Agricultural Field. Frontiers in Microbiology, 2017, 8, 2414.	1.5	56
612	Current Insights into the Role of Rhizosphere Bacteria in Disease Suppressive Soils. Frontiers in Microbiology, 2017, 8, 2529.	1.5	218
613	Redox-mediated quorum sensing in plants. PLoS ONE, 2017, 12, e0182655.	1.1	20
614	In roots of Arabidopsis thaliana, the damage-associated molecular pattern AtPep1 is a stronger elicitor of immune signalling than flg22 or the chitin heptamer. PLoS ONE, 2017, 12, e0185808.	1.1	74
615	Endosphere microbiome comparison between symptomatic and asymptomatic roots of Brassica napus infected with Plasmodiophora brassicae. PLoS ONE, 2017, 12, e0185907.	1.1	53
616	Impact of Glyphosate on the Rhizosphere Microbial Communities of An EPSPS-Transgenic Soybean Line ZUTS31 by Metagenome Sequencing. Current Genomics, 2017, 19, 36-49.	0.7	10
617	The Bacterial and Fungal Microbiota of Hyperaccumulator Plants. Advances in Botanical Research, 2017, 83, 43-86.	0.5	42
619	Image-Based Analysis to Dissect Vertical Distribution and Horizontal Asymmetry of Conspecific Root System Interactions in Response to Planting Densities, Nutrients and Root Exudates in Arabidopsis thaliana. Plants, 2017, 6, 46.	1.6	3
620	Interaction between Salmonella and Plants: Potential Hosts and Vectors for Human Infection., 0,,.		3
621	Plant-Microbe Ecology: Interactions of Plants and Symbiotic Microbial Communities. , 0, , .		15
623	Plant-associated bacteria mitigate drought stress in soybean. Environmental Science and Pollution Research, 2018, 25, 13676-13686.	2.7	44
624	Engineering chemical interactions in microbial communities. Chemical Society Reviews, 2018, 47, 1705-1729.	18.7	25
625	Interacting effect of diclofop-methyl on the rice rhizosphere microbiome and denitrification. Pesticide Biochemistry and Physiology, 2018, 146, 90-96.	1.6	34

#	Article	IF	Citations
626	Continuous application of different organic additives can suppress tomato disease by inducing the healthy rhizospheric microbiota through alterations to the bulk soil microflora. Plant and Soil, 2018, 423, 229-240.	1.8	71
627	Arbuscular mycorrhizal fungal communities associated with two dominant species differ in their responses to longâ€ŧerm nitrogen addition in temperate grasslands. Functional Ecology, 2018, 32, 1575-1588.	1.7	39
628	Harnessing plant-bacteria-fungi interactions to improve plant growth and degradation of organic pollutants. Journal of Plant Interactions, 2018, 13, 119-130.	1.0	65
629	Microbe and plant assisted-remediation of organic xenobiotics and its enhancement by genetically modified organisms and recombinant technology: A review. Science of the Total Environment, 2018, 628-629, 1582-1599.	3.9	144
630	Concepts in Cell Biology - History and Evolution. Plant Cell Monographs, 2018, , .	0.4	0
631	Differential effects of two earthworm species on Fusarium wilt of strawberry. Applied Soil Ecology, 2018, 126, 174-181.	2.1	10
632	Future expectations of forest soils: increasing productivity within environmental limits using new knowledge. New Zealand Journal of Agricultural Research, 2018, 61, 389-401.	0.9	8
633	MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5213-E5222.	3.3	608
634	Amendment with biocontrol strains increases Trichoderma numbers in mature kiwifruit (Actinidia) Tj ETQq0 0 0 r Protection, 2018, 51, 54-69.	gBT /Over 0.6	lock 10 Tf 50 1
635	Root derived carbon transport extends the rhizosphere of rice compared to wheat. Soil Biology and Biochemistry, 2018, 122, 211-219.	4.2	14
636		4.2 0.5	14 38
	Biochemistry, 2018, 122, 211-219. Building soil suppressiveness against plant-parasitic nematodes. Biocontrol Science and Technology,		
636	Biochemistry, 2018, 122, 211-219. Building soil suppressiveness against plant-parasitic nematodes. Biocontrol Science and Technology, 2018, 28, 423-445. Genomeâ€based evolutionary history of ⟨i⟩Pseudomonas⟨/i⟩ spp. Environmental Microbiology, 2018, 20,	0.5	38
636	Biochemistry, 2018, 122, 211-219. Building soil suppressiveness against plant-parasitic nematodes. Biocontrol Science and Technology, 2018, 28, 423-445. Genomeâ€based evolutionary history of ⟨i⟩Pseudomonas⟨/i⟩ spp. Environmental Microbiology, 2018, 20, 2142-2159. Root microbiota shift in rice correlates with resident time in the field and developmental stage.	0.5	38 172
636 637 638	Biochemistry, 2018, 122, 211-219. Building soil suppressiveness against plant-parasitic nematodes. Biocontrol Science and Technology, 2018, 28, 423-445. Genomeâ€based evolutionary history of <i>Pseudomonas</i> spp. Environmental Microbiology, 2018, 20, 2142-2159. Root microbiota shift in rice correlates with resident time in the field and developmental stage. Science China Life Sciences, 2018, 61, 613-621. Apportioning bacterial carbon source utilization in soil using ¹⁴ C isotope analysis of FISHâ€targeted bacterial populations sorted by fluorescence activated cell sorting (FACS):	0.5 1.8 2.3	38 172 204
636 637 638	Building soil suppressiveness against plant-parasitic nematodes. Biocontrol Science and Technology, 2018, 28, 423-445. Genomeâ€based evolutionary history of ⟨i⟩Pseudomonas⟨/i⟩ spp. Environmental Microbiology, 2018, 20, 2142-2159. Root microbiota shift in rice correlates with resident time in the field and developmental stage. Science China Life Sciences, 2018, 61, 613-621. Apportioning bacterial carbon source utilization in soil using ⟨sup⟩14⟨/sup⟩C isotope analysis of FISHâ€targeted bacterial populations sorted by fluorescence activated cell sorting (FACS): ⟨sup⟩14⟨/sup⟩Câ€FISHâ€FACS. Environmental Microbiology Reports, 2018, 10, 245-254. Endophytic bacterial diversity decrease in amaranth mutant lines after radiation mutagenesis. Cereal	0.5 1.8 2.3	38 172 204
636 637 638 639	Building soil suppressiveness against plant-parasitic nematodes. Biocontrol Science and Technology, 2018, 28, 423-445. Genomeâ€based evolutionary history of ⟨i⟩Pseudomonas⟨li⟩ spp. Environmental Microbiology, 2018, 20, 2142-2159. Root microbiota shift in rice correlates with resident time in the field and developmental stage. Science China Life Sciences, 2018, 61, 613-621. Apportioning bacterial carbon source utilization in soil using ⟨sup⟩14⟨lsup⟩C isotope analysis of FISHâ€targeted bacterial populations sorted by fluorescence activated cell sorting (FACS): ⟨sup⟩14⟨lsup⟩Câ€FISHâ€FACS. Environmental Microbiology Reports, 2018, 10, 245-254. Endophytic bacterial diversity decrease in amaranth mutant lines after radiation mutagenesis. Cereal Chemistry, 2018, 95, 109-116.	0.5 1.8 2.3	38 172 204 3 5

#	Article	IF	CITATIONS
644	Plant pathogen effector proteins as manipulators of host microbiomes?. Molecular Plant Pathology, 2018, 19, 257-259.	2.0	84
645	Comparative analysis of microbial diversity and bacterial seedling diseaseâ€suppressive activity in organicâ€farmed and standardized commercial conventional soils for rice nursery cultivation. Journal of Phytopathology, 2018, 166, 249-264.	0.5	10
646	Activating biochar by manipulating the bacterial and fungal microbiome through preâ€conditioning. New Phytologist, 2018, 219, 363-377.	3.5	45
647	Plant Growth Promotion and Biocontrol Mediated by Plant-Associated Bacteria. Microorganisms for Sustainability, 2018, , 45-80.	0.4	15
648	Harnessing the Plant Microbiome for Improved Abiotic Stress Tolerance. Microorganisms for Sustainability, 2018, , 21-43.	0.4	35
649	Extreme rainfall affects assembly of the rootâ€associated fungal community. New Phytologist, 2018, 220, 1172-1184.	3.5	60
650	Building Bioeconomy in Agriculture: Harnessing Soil Microbes for Sustaining Ecosystem Services. World Sustainability Series, 2018, , 261-277.	0.3	2
651	Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome, 2018, 6, 14.	4.9	399
652	Shifts in prokaryotic communities under forest and grassland within a tropical mosaic landscape. Applied Soil Ecology, 2018, 125, 156-161.	2.1	2
653	Assembly and ecological function of the root microbiome across angiosperm plant species. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1157-E1165.	3.3	739
654	Growth dynamics, climate sensitivity and water use efficiency in pure vs. mixed pine and beech stands in Trentino (Italy). Forest Ecology and Management, 2018, 409, 707-718.	1.4	27
655	Long-term fertilization changes bacterial diversity and bacterial communities in the maize rhizosphere of Chinese Mollisols. Applied Soil Ecology, 2018, 125, 88-96.	2.1	94
656	Bacterial community structure and functional potential of rhizosphere soils as influenced by nitrogen addition and bacterial wilt disease under continuous sesame cropping. Applied Soil Ecology, 2018, 125, 117-127.	2.1	59
657	The control of Fusarium oxysporum in soil treated with organic material under anaerobic condition is affected by liming and sulfate content. Biology and Fertility of Soils, 2018, 54, 295-307.	2.3	28
658	Arbuscular mycorrhizal fungi persist in dying Euphorbia ingens trees. South African Journal of Botany, 2018, 115, 12-17.	1.2	1
659	Co-occurrence patterns of soybean rhizosphere microbiome at a continental scale. Soil Biology and Biochemistry, 2018, 118, 178-186.	4.2	258
660	Rhizoremediation of petroleum hydrocarbon-contaminated soils: Improvement opportunities and field applications. Environmental and Experimental Botany, 2018, 147, 202-219.	2.0	88
661	Soft rot disease alters soil characteristics and root-associated, culturable microbial community of Amorphophallus konjac. Journal of General Plant Pathology, 2018, 84, 44-57.	0.6	6

#	Article	IF	CITATIONS
662	Volatile compounds from beneficial or pathogenic bacteria differentially regulate root exudation, transcription of iron transporters, and defense signaling pathways in Sorghum bicolor. Plant Molecular Biology, 2018, 96, 291-304.	2.0	56
663	Exploiting rhizosphere microbial cooperation for developing sustainable agriculture strategies. Environmental Science and Pollution Research, 2018, 25, 29953-29970.	2.7	56
664	Exploring fish microbial communities to mitigate emerging diseases in aquaculture. FEMS Microbiology Ecology, 2018, 94, .	1.3	152
665	Sustainable Coastal Zone Management Strategies for Unconsolidated Deltaic Odisha, the Northern Part of East Indian Coast. Coastal Research Library, 2018, , 755-778.	0.2	2
666	Strong associations between plant genotypes and bacterial communities in a natural salt marsh. Ecology and Evolution, 2018, 8, 4721-4730.	0.8	24
667	Microbial modulation of plant ethylene signaling: ecological and evolutionary consequences. Microbiome, 2018, 6, 52.	4.9	121
668	Microbial interactions within the plant holobiont. Microbiome, 2018, 6, 58.	4.9	833
669	Impact of Climate Change on Root–Pathogen Interactions. Soil Biology, 2018, , 409-427.	0.6	8
670	Genotypic variation in Pinus radiata responses to nitrogen source are related to changes in the root microbiome. FEMS Microbiology Ecology, 2018, 94, .	1.3	6
671	Continuous application of inorganic and organic fertilizers over 47 years in paddy soil alters the bacterial community structure and its influence on rice production. Agriculture, Ecosystems and Environment, 2018, 262, 65-75.	2.5	120
672	Tissue age and plant genotype affect the microbiota of apple and pear bark. Microbiological Research, 2018, 211, 57-68.	2.5	44
673	Core microbiomes for sustainable agroecosystems. Nature Plants, 2018, 4, 247-257.	4.7	639
674	Identification of Chemotaxis Compounds in Root Exudates and Their Sensing Chemoreceptors in Plant-Growth-Promoting Rhizobacteria <i>Bacillus amyloliquefaciens</i> SQR9. Molecular Plant-Microbe Interactions, 2018, 31, 995-1005.	1.4	121
675	Tree species with limited geographical ranges show extreme responses to ectomycorrhizas. Global Ecology and Biogeography, 2018, 27, 839-848.	2.7	16
676	Diversity of <i>Bacillus</i> -like bacterial community in the rhizospheric and non-rhizospheric soil of halophytes (<i>Salsola stocksii</i> and <i>Atriplex amnicola</i>), and characterization of osmoregulatory genes in halophilic <i>Bacilli</i> . Canadian Journal of Microbiology, 2018, 64, 567-579.	0.8	25
677	Cyclic di-AMP Acts as an Extracellular Signal That Impacts <i>Bacillus subtilis</i> Biofilm Formation and Plant Attachment. MBio, 2018, 9, .	1.8	69
678	Foodborne pathogens in horticultural production systems: Ecology and mitigation. Scientia Horticulturae, 2018, 236, 192-206.	1.7	40
679	Comparison of crop productivity and soil microbial activity among different fertilization patterns in red upland and paddy soils. Acta Ecologica Sinica, 2018, 38, 262-267.	0.9	8

#	Article	IF	CITATIONS
680	Convergent shifts in host-associated microbial communities across environmentally elicited phenotypes. Nature Communications, 2018, 9, 952.	5.8	61
681	Vanillic acid changed cucumber (Cucumis sativus L.) seedling rhizosphere total bacterial, Pseudomonas and Bacillus spp. communities. Scientific Reports, 2018, 8, 4929.	1.6	31
682	Biocontrol of plant diseases is not an unsafe technology!. Journal of Plant Diseases and Protection, 2018, 125, 121-125.	1.6	31
683	Root Exudates of Stressed Plants Stimulate and Attract <i>Trichoderma</i> Soil Fungi. Molecular Plant-Microbe Interactions, 2018, 31, 982-994.	1.4	147
684	Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME Journal, 2018, 12, 1496-1507.	4.4	603
685	The Cucurbita pepo seed microbiome: genotype-specific composition and implications for breeding. Plant and Soil, 2018, 422, 35-49.	1.8	131
686	CuO and ZnO Nanoparticles Modify Interkingdom Cell Signaling Processes Relevant to Crop Production. Journal of Agricultural and Food Chemistry, 2018, 66, 6513-6524.	2.4	60
687	Epichlo \tilde{A} « exudates promote in vitro and in vivo arbuscular mycorrhizal fungi development and plant growth. Plant and Soil, 2018, 422, 267-281.	1.8	32
688	The seed endosphere of Anadenanthera colubrina is inhabited by a complex microbiota, including Methylobacteriumspp. and Staphylococcus spp. with potential plant-growth promoting activities. Plant and Soil, 2018, 422, 81-99.	1.8	44
689	Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl, 2018, 63, 39-59.	0.9	557
690	Biochar potential in intensive cultivation of <scp><i>Capsicum annuum</i></scp> L. (sweet pepper): crop yield and plant protection. Journal of the Science of Food and Agriculture, 2018, 98, 495-503.	1.7	28
691	The seed microbiome: Origins, interactions, and impacts. Plant and Soil, 2018, 422, 7-34.	1.8	338
692	Bacterial community dynamics in the rhizosphere of a long-lived, leguminous shrub across a 40-year age sequence. Journal of Soils and Sediments, 2018, 18, 76-84.	1.5	35
693	Metabarcoding: A powerful tool to investigate microbial communities and shape future plant protection strategies. Biological Control, 2018, 120, 1-10.	1.4	115
694	Protists are an integral part of the <i>Arabidopsis thaliana</i> microbiome. Environmental Microbiology, 2018, 20, 30-43.	1.8	85
695	Microbial indicators for soil quality. Biology and Fertility of Soils, 2018, 54, 1-10.	2.3	312
696	The plant circadian clock influences rhizosphere community structure and function. ISME Journal, 2018, 12, 400-410.	4.4	106
697	Protein Profiles Underlying the Effect of Plant Growth-Promoting Rhizobacteria on Canola under Osmotic Stress. Journal of Plant Growth Regulation, 2018, 37, 560-574.	2.8	8

#	Article	IF	CITATIONS
698	Root transcriptional dynamics induced by beneficial rhizobacteria and microbial immune elicitors reveal signatures of adaptation to mutualists. Plant Journal, 2018, 93, 166-180.	2.8	191
699	Host Genotype and Nitrogen Form Shape the Root Microbiome of Pinus radiata. Microbial Ecology, 2018, 75, 419-433.	1.4	58
700	Soil microbial communities changed with a continuously monocropped processing tomato system. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2018, 68, 149-160.	0.3	1
701	Biofilms Benefiting Plants Exposed to ZnO and CuO Nanoparticles Studied with a Root-Mimetic Hollow Fiber Membrane. Journal of Agricultural and Food Chemistry, 2018, 66, 6619-6627.	2.4	13
702	Variation in the bacteriome of the tropical liverwort, Marchantia inflexa, between the sexes and across habitats. Symbiosis, 2018, 75, 93-101.	1.2	12
703	Emerging microbial biocontrol strategies for plant pathogens. Plant Science, 2018, 267, 102-111.	1.7	490
704	Bulk soil bacterial community mediated by plant community in Mediterranean ecosystem, Israel. Applied Soil Ecology, 2018, 124, 104-109.	2.1	11
705	Plant–Soil Feedback: Bridging Natural and Agricultural Sciences. Trends in Ecology and Evolution, 2018, 33, 129-142.	4.2	249
706	The genetics underlying natural variation of plant–plant interactions, a beloved but forgotten member of the family of biotic interactions. Plant Journal, 2018, 93, 747-770.	2.8	65
707	Intensify production, transform biomass to energy and novel goods and protect soils in Europe—A vision how to mobilize marginal lands. Science of the Total Environment, 2018, 616-617, 1101-1123.	3.9	93
708	Simultaneous adaptation and maladaptation of tree populations to local rhizosphere microbial communities at different taxonomic scales. New Phytologist, 2018, 217, 1267-1278.	3.5	15
709	Chemical signaling involved in plant–microbe interactions. Chemical Society Reviews, 2018, 47, 1652-1704.	18.7	149
710	Co-Variation of Bacterial and Fungal Communities in Different Sorghum Cultivars and Growth Stages is Soil Dependent. Microbial Ecology, 2018, 76, 205-214.	1.4	46
711	Root type and soil phosphate determine the taxonomic landscape of colonizing fungi and the transcriptome of fieldâ€grown maize roots. New Phytologist, 2018, 217, 1240-1253.	3.5	80
712	Plant community composition but not plant traits determine the outcome of soil legacy effects on plants and insects. Journal of Ecology, 2018, 106, 1217-1229.	1.9	54
713	Banana Fusarium Wilt Disease Incidence Is Influenced by Shifts of Soil Microbial Communities Under Different Monoculture Spans. Microbial Ecology, 2018, 75, 739-750.	1.4	112
714	Olive orchard microbiome: characterisation of bacterial communities in soil-plant compartments and their comparison between sustainable and conventional soil management systems. Plant Ecology and Diversity, 2018, 11, 597-610.	1.0	46
715	Enumeration and Identification of Rhizospheric Microorganisms of Sugarcane Variety CO 421 in Kibos, Kisumu County, Kenya. Journal of Asian Scientific Research, 2018, 8, 113-127.	0.0	1

#	Article	IF	CITATIONS
716	Rhizosphere Microenvironments of Eight Common Deciduous Fruit Trees Were Shaped by Microbes in Northern China. Frontiers in Microbiology, 2018, 9, 3147.	1.5	30
717	Below-ground-above-ground Plant-microbial Interactions: Focusing on Soybean, Rhizobacteria and Mycorrhizal Fungi. Open Microbiology Journal, 2018, 12, 261-279.	0.2	78
718	Omics Approaches, Technologies And Applications. , 2018, , .		6
719	Microbiome. , 2018, , 99-128.		0
720	Next-generation sequencing of root fungal communities in continuous cropping soybean. Chilean Journal of Agricultural Research, 2018, 78, 528-538.	0.4	13
721	Microbial Consortia: Promising Probiotics as Plant Biostimulants for Sustainable Agriculture. Frontiers in Plant Science, 2018, 9, 1801.	1.7	204
722	Effects of Short- and Long-Term Variation in Resource Conditions on Soil Fungal Communities and Plant Responses to Soil Biota. Frontiers in Plant Science, 2018, 9, 1605.	1.7	13
723	Effects of Heavy Metals on Phyllosphere and Rhizosphere Microbial Community of Bothriochloa ischaemum. Applied Sciences (Switzerland), 2018, 8, 1419.	1.3	14
724	Endophytic Pseudomonads and Their Metabolites. Reference Series in Phytochemistry, 2018, , 1-28.	0.2	0
725	Agricultural Microbial Genetic Resources: Application and Preservation at Microbial Resource Centers. Soil Biology, 2018, , 141-173.	0.6	1
726	Strategies to Maintain Natural Biocontrol of Soil-Borne Crop Diseases During Severe Drought and Rainfall Events. Frontiers in Microbiology, 2018, 9, 2279.	1.5	21
727	Ecotoxicity of Metal Nanoparticles on Microorganisms. , 2018, , 77-93.		0
728	Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome, 2018, 6, 231.	4.9	240
729	Differences in the fungal communities nursed by two genetic groups of the alpine cushion plant, <i>Silene acaulis</i> . Ecology and Evolution, 2018, 8, 11568-11581.	0.8	19
730	Enrichment of Verrucomicrobia, Actinobacteria and Burkholderiales drives selection of bacterial community from soil by maize roots in a traditional milpa agroecosystem. PLoS ONE, 2018, 13, e0208852.	1.1	51
731	The Role of Host Genetic Signatures on Root–Microbe Interactions in the Rhizosphere and Endosphere. Frontiers in Plant Science, 2018, 9, 1896.	1.7	45
732	Thiamine deficiency in fishes: causes, consequences, and potential solutions. Reviews in Fish Biology and Fisheries, 2018, 28, 865-886.	2.4	50
733	Land-Use Intensity Rather Than Plant Functional Identity Shapes Bacterial and Fungal Rhizosphere Communities. Frontiers in Microbiology, 2018, 9, 2711.	1.5	62

#	Article	IF	Citations
734	Evaluation of soil enzyme activities and microbial communities in tomato continuous cropping soil treated with jerusalem artichoke residues. Communications in Soil Science and Plant Analysis, 2018, 49, 2727-2740.	0.6	9
735	Gene mutation associated with esl mediates shifts on fungal community composition in rhizosphere soil of rice at grain-filling stage. Scientific Reports, 2018, 8, 17521.	1.6	2
736	Diversity of Plant Endophytic Volatile Organic Compound (VOC) and Their Potential Applications. Reference Series in Phytochemistry, 2018, , 1-27.	0.2	0
737	Linking Aboveground–Belowground Ecology: A Short Historical Perspective. Ecological Studies, 2018, , 1-17.	0.4	8
738	Interactions Involving Rhizobacteria and Foliar-Feeding Insects. Ecological Studies, 2018, , 117-133.	0.4	4
739	Exploration of the Biosynthetic Potential of the <i>Populus</i> Microbiome. MSystems, 2018, 3, .	1.7	34
740	Plant Microbiome and Its Link to Plant Health: Host Species, Organs and Pseudomonas syringae pv. actinidiae Infection Shaping Bacterial Phyllosphere Communities of Kiwifruit Plants. Frontiers in Plant Science, 2018, 9, 1563.	1.7	51
741	Application and Theory of Plant–Soil Feedbacks on Aboveground Herbivores. Ecological Studies, 2018, , 319-343.	0.4	18
742	Receptors and Signaling Pathways for Recognition of Bacteria in Livestock and Crops: Prospects for Beneficial Microbes in Healthy Growth Strategies. Frontiers in Immunology, 2018, 9, 2223.	2.2	31
743	How Can We Define "Optimal Microbiota?― A Comparative Review of Structure and Functions of Microbiota of Animals, Fish, and Plants in Agriculture. Frontiers in Nutrition, 2018, 5, 90.	1.6	61
744	Impacts of Atmospheric CO2 and Soil Nutritional Value on Plant Responses to Rhizosphere Colonization by Soil Bacteria. Frontiers in Plant Science, 2018, 9, 1493.	1.7	21
745	Plant Growth-Promoting Rhizobacteria: Context, Mechanisms of Action, and Roadmap to Commercialization of Biostimulants for Sustainable Agriculture. Frontiers in Plant Science, 2018, 9, 1473.	1.7	1,088
746	Targeted Metabolic Profiling Indicates Apple Rootstock Genotype-Specific Differences in Primary and Secondary Metabolite Production and Validate Quantitative Contribution From Vegetative Growth. Frontiers in Plant Science, 2018, 9, 1336.	1.7	34
747	Rizobacterias promotoras del crecimiento vegetal: una alternativa de biofertilizaci $ ilde{A}^3$ n para la agricultura sustentable. Revista Colombiana De Biotecnolog $ ilde{A}$ a, 2018, 20, 68-83.	0.5	14
748	Specialized Microbial Resource Centers: A Driving Force of the Growing Bioeconomy. Soil Biology, 2018, , 111-139.	0.6	1
749	Microbial Resource Conservation. Soil Biology, 2018, , .	0.6	6
750	RHIZOSPHERE MICROBIOME: AN EMERGING FRONTIER IN CAUSING AND CURING INFECTIOUS DISEASES. Asian Journal of Pharmaceutical and Clinical Research, 2018, 11, 65.	0.3	2
751	Changes in the Fungal Microbiome of Maize During Hermetic Storage in the United States and Kenya. Frontiers in Microbiology, 2018, 9, 2336.	1.5	19

#	Article	IF	CITATIONS
752	Carry-over effects of soil inoculation on plant growth and health under sequential exposure to soil-borne diseases. Plant and Soil, 2018, 433, 257-270.	1.8	11
753	Soil-borne disease suppression and plant growth promotion by biochar soil amendments and possible mode of action. Acta Horticulturae, 2018, , 69-76.	0.1	5
754	An automated framework for NMR chemical shift calculations of small organic molecules. Journal of Cheminformatics, 2018, 10, 52.	2.8	37
755	Deciphering the bacterial composition in the rhizosphere of Baphicacanthus cusia (NeeS) Bremek. Scientific Reports, 2018, 8, 15831.	1.6	15
756	Withinâ€species tradeâ€offs in plantâ€stimulated soil enzyme activity and growth, flowering, and seed size. Ecology and Evolution, 2018, 8, 11717-11724.	0.8	5
757	The response of dominant and rare taxa for fungal diversity within different root environments to the cultivation of Bt and conventional cotton varieties. Microbiome, 2018, 6, 184.	4.9	29
758	G3 PhyloChip Analysis Confirms the Promise of Plant-Based Culture Media for Unlocking the Composition and Diversity of the Maize Root Microbiome and for Recovering Unculturable Candidate Divisions/Phyla. Microbes and Environments, 2018, 33, 317-325.	0.7	21
7 59	RiCRN1, a Crinkler Effector From the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis, Functions in Arbuscule Development. Frontiers in Microbiology, 2018, 9, 2068.	1.5	74
760	Cucumber (Cucumis sativus L.) Seedling Rhizosphere Trichoderma and Fusarium spp. Communities Altered by Vanillic Acid. Frontiers in Microbiology, 2018, 9, 2195.	1.5	36
761	Microbial communities associated with barley growing in an oil sands reclamation area in Alberta, Canada. Canadian Journal of Microbiology, 2018, 64, 1004-1019.	0.8	3
762	Modulation of Tomato Response to Rhizoctonia solani by Trichoderma harzianum and Its Secondary Metabolite Harzianic Acid. Frontiers in Microbiology, 2018, 9, 1966.	1.5	126
763	Microflora that harbor the NRPS gene are responsible for Fusarium wilt disease-suppressive soil. Applied Soil Ecology, 2018, 132, 83-90.	2.1	21
764	Current Perspectives of Endophytic Fungi in Sustainable Development. , 2018, , 553-584.		3
765	Intensified Pulse Rotations Buildup Pea Rhizosphere Pathogens in Cereal and Pulse Based Cropping Systems. Frontiers in Microbiology, 2018, 9, 1909.	1.5	31
766	Root exudates drive the soil-borne legacy of aboveground pathogen infection. Microbiome, 2018, 6, 156.	4.9	354
767	Quantification of the Composition Dynamics of a Maize Root-associated Simplified Bacterial Community and Evaluation of Its Biological Control Effect. Bio-protocol, 2018, 8, .	0.2	10
768	Response of the rhizosphere microbial community to fine root and soil parameters following Robinia pseudoacacia L. afforestation. Applied Soil Ecology, 2018, 132, 11-19.	2.1	36
769	Effects of <i>Rhizobium</i> Species Living with the Dark Septate Endophytic Fungus <i>Veronaeopsis simplex</i> on Organic Substrate Utilization by the Host. Microbes and Environments, 2018, 33, 102-106.	0.7	13

#	Article	IF	CITATIONS
770	Infection with Micromonospora strain SB3 promotes in vitro growth of Lolium multiflorum plantlets. Plant Cell, Tissue and Organ Culture, 2018, 134, 445-455.	1.2	6
771	Fungi isolated from insects in strawberry crops act as potential biological control agents of Duponchelia fovealis (Lepidoptera: Crambidae). Applied Entomology and Zoology, 2018, 53, 323-331.	0.6	22
772	Cultivar-specific response of bacterial community to cadmium contamination in the rhizosphere of rice (Oryza sativa L.). Environmental Pollution, 2018, 241, 63-73.	3.7	67
773	Uncovering the drivers of hostâ€associated microbiota with joint species distribution modelling. Molecular Ecology, 2018, 27, 2714-2724.	2.0	36
774	Organic Amendments, Beneficial Microbes, and Soil Microbiota: Toward a Unified Framework for Disease Suppression. Annual Review of Phytopathology, 2018, 56, 1-20.	3.5	215
775	Using Mycorrhiza Helper Microorganisms (MHM) to Improve the Mycorrhizal Efficiency on Plant Growth., 2018,, 277-298.		10
776	Crop rotational diversity increases disease suppressive capacity of soil microbiomes. Ecosphere, 2018, 9, e02235.	1.0	134
777	Phylogenetic and trophic determinants of gut microbiota in soil oribatid mites. Soil Biology and Biochemistry, 2018, 123, 155-164.	4.2	16
778	Strategies for Rehabilitation of Mine Waste/Leachate in Thailand. , 2018, , 617-643.		1
779	Rhizosphere microbial communities of canola and wheat at six paired field sites. Applied Soil Ecology, 2018, 130, 185-193.	2.1	19
780	Tackling maize fusariosis: in search of Fusarium graminearum biosuppressors. Archives of Microbiology, 2018, 200, 1239-1255.	1.0	15
781	Designing microbial consortia with defined social interactions. Nature Chemical Biology, 2018, 14, 821-829.	3.9	250
782	Cascading effects of elevated ozone on wheat rhizosphere microbial communities depend on temperature and cultivar sensitivity. Environmental Pollution, 2018, 242, 113-125.	3.7	30
783	Response Surface Modelling through Box-Behnken approach to optimize bacterial quorum sensing inhibitory action of Tribulus terrestris root extract. Rhizosphere, 2018, 6, 134-140.	1.4	7
784	Plant Microbiome Innovation: M-trophs. Industrial Biotechnology, 2018, 14, 129-133.	0.5	6
785	Species-Associated Differences in the Below-Ground Microbiomes of Wild and Domesticated Setaria. Frontiers in Plant Science, 2018, 9, 1183.	1.7	31
786	Environmental factors shaping the diversity of bacterial communities that promote rice production. BMC Microbiology, 2018, 18, 51.	1.3	50
787	Rhizosphere Microbiome Modulators: Contributions of Nitrogen Fixing Bacteria towards Sustainable Agriculture. International Journal of Environmental Research and Public Health, 2018, 15, 574.	1.2	161

#	Article	IF	CITATIONS
788	Microbial Endophytes that Live within the Seeds of Two Tomato Hybrids Cultivated in Argentina. Agronomy, 2018, 8, 136.	1.3	26
789	Activation of the salicylic acid signalling pathway in wheat had no significant short-term impact on the diversity of root-associated microbiomes. Pedobiologia, 2018, 70, 6-11.	0.5	10
790	Drought Stress and Root-Associated Bacterial Communities. Frontiers in Plant Science, 2017, 8, 2223.	1.7	417
791	Metagenomic and Metatranscriptomic Analyses of Diverse Watermelon Cultivars Reveal the Role of Fruit Associated Microbiome in Carbohydrate Metabolism and Ripening of Mature Fruits. Frontiers in Plant Science, 2018, 9, 4.	1.7	43
792	Application of Sodium Silicate Enhances Cucumber Resistance to Fusarium Wilt and Alters Soil Microbial Communities. Frontiers in Plant Science, 2018, 9, 624.	1.7	30
793	Recent Developments on Nanotechnology in Agriculture: Plant Mineral Nutrition, Health, and Interactions with Soil Microflora. Journal of Agricultural and Food Chemistry, 2018, 66, 8647-8661.	2.4	146
794	Unraveling the characteristics of the microbial community and potential pathogens in the rhizosphere soil of Rehmannia glutinosa with root rot disease. Applied Soil Ecology, 2018, 130, 271-279.	2.1	21
795	Rhizosphere biodiversity as a premise for application in bio-economy. Agriculture, Ecosystems and Environment, 2018, 265, 524-534.	2.5	32
796	Structural inflexibility of the rhizosphere microbiome in mangrove plant Kandelia obovata under elevated CO2. Marine Environmental Research, 2018, 140, 422-432.	1.1	17
797	Distinct large-scale biogeographic patterns of fungal communities in bulk soil and soybean rhizosphere in China. Science of the Total Environment, 2018, 644, 791-800.	3.9	103
798	Structural development and assembly patterns of the root-associated microbiomes during phytoremediation. Science of the Total Environment, 2018, 644, 1591-1601.	3.9	60
799	Paenibacillus helianthi sp. nov., a nitrogen fixing species isolated from the rhizosphere of Helianthus annuus L Antonie Van Leeuwenhoek, 2018, 111, 2463-2471.	0.7	16
800	Microbial Diversity in Compost is Critical in Suppressing Plant Fungal Pathogen Survival and Enhancing Cucumber Seedling Growth. Compost Science and Utilization, 2018, 26, 189-200.	1.2	7
801	Rhizosphere Competence and Biocontrol Effect of Pseudomonas sp. RU47 Independent from Plant Species and Soil Type at the Field Scale. Frontiers in Microbiology, 2018, 9, 97.	1.5	53
802	Mining Halophytes for Plant Growth-Promoting Halotolerant Bacteria to Enhance the Salinity Tolerance of Non-halophytic Crops. Frontiers in Microbiology, 2018, 9, 148.	1.5	304
803	Mycobiome of Cysts of the Soybean Cyst Nematode Under Long Term Crop Rotation. Frontiers in Microbiology, 2018, 9, 386.	1.5	45
804	Metatranscriptomics and Amplicon Sequencing Reveal Mutualisms in Seagrass Microbiomes. Frontiers in Microbiology, 2018, 9, 388.	1.5	113
805	Continuously Monocropped Jerusalem Artichoke Changed Soil Bacterial Community Composition and Ammonia-Oxidizing and Denitrifying Bacteria Abundances. Frontiers in Microbiology, 2018, 9, 705.	1.5	44

#	Article	IF	CITATIONS
806	Variations of Bacterial Community Diversity Within the Rhizosphere of Three Phylogenetically Related Perennial Shrub Plant Species Across Environmental Gradients. Frontiers in Microbiology, 2018, 9, 709.	1.5	39
807	The Invasive Brazilian Pepper Tree (Schinus terebinthifolius) Is Colonized by a Root Microbiome Enriched With Alphaproteobacteria and Unclassified Spartobacteria. Frontiers in Microbiology, 2018, 9, 876.	1.5	18
808	Potential of Finger Millet Indigenous Rhizobacterium Pseudomonas sp. MSSRFD41 in Blast Disease Management—Growth Promotion and Compatibility With the Resident Rhizomicrobiome. Frontiers in Microbiology, 2018, 9, 1029.	1.5	42
809	Inorganic Nitrogen Application Affects Both Taxonomical and Predicted Functional Structure of Wheat Rhizosphere Bacterial Communities. Frontiers in Microbiology, 2018, 9, 1074.	1.5	125
810	Divergent Responses of the Diazotrophic Microbiome to Elevated CO2 in Two Rice Cultivars. Frontiers in Microbiology, 2018, 9, 1139.	1.5	19
811	Canola Root–Associated Microbiomes in the Canadian Prairies. Frontiers in Microbiology, 2018, 9, 1188.	1.5	85
812	Bacillales Members from the Olive Rhizosphere Are Effective Biological Control Agents against the Defoliating Pathotype of Verticillium dahliae. Agriculture (Switzerland), 2018, 8, 90.	1.4	39
813	Micro-Food Web Structure Shapes Rhizosphere Microbial Communities and Growth in Oak. Diversity, 2018, 10, 15.	0.7	6
814	Identification of Major Rhizobacterial Taxa Affected by a Glyphosate-Tolerant Soybean Line via Shotgun Metagenomic Approach. Genes, 2018, 9, 214.	1.0	9
815	Rhizosphere Fungal Community Dynamics Associated with <i>Rehmannia glutinosa</i> Replant Disease in a Consecutive Monoculture Regime. Phytopathology, 2018, 108, 1493-1500.	1.1	29
816	Rhizobacterium Arthrobacter agilis UMCV2 increases organ-specific expression of FRO genes in conjunction with genes associated with the systemic resistance pathways of Medicago truncatula. Acta Physiologiae Plantarum, 2018, 40, 1.	1.0	7
817	Barcoded Pyrosequencing Reveals a Shift in the Bacterial Community in the Rhizosphere and Rhizoplane of Rehmannia glutinosa under Consecutive Monoculture. International Journal of Molecular Sciences, 2018, 19, 850.	1.8	47
818	From Concept to Commerce: Developing a Successful Fungal Endophyte Inoculant for Agricultural Crops. Journal of Fungi (Basel, Switzerland), 2018, 4, 24.	1.5	62
819	A Sustainable Agricultural Future Relies on the Transition to Organic Agroecological Pest Management. Sustainability, 2018, 10, 2023.	1.6	57
820	Network hubs in root-associated fungal metacommunities. Microbiome, 2018, 6, 116.	4.9	112
821	Harnessing Soil Rhizobacteria for Improving Drought Resilience in Legumes. , 2018, , 235-275.		25
822	Microbial communities in the rhizosphere and the root of lettuce as affected by Salmonella-contaminated irrigation water. FEMS Microbiology Ecology, 2018, 94, .	1.3	13
823	Vascular plant colonisation of four castles in southern Italy: Effects of substrate bioreceptivity, local environment factors and current management. International Biodeterioration and Biodegradation, 2018, 133, 26-33.	1.9	21

#	Article	IF	Citations
824	Local root status: a neglected bio-factor that regulates the home-field advantage of leaf litter decomposition. Plant and Soil, 2018, 431, 175-189.	1.8	14
825	Revegetation of the riparian zone of the Three Gorges Dam Reservoir leads to increased soil bacterial diversity. Environmental Science and Pollution Research, 2018, 25, 23748-23763.	2.7	13
826	Microbial diversity and biogeography in Arctic soils. Environmental Microbiology Reports, 2018, 10, 611-625.	1.0	84
827	The Populus holobiont: dissecting the effects of plant niches and genotype on the microbiome. Microbiome, 2018, 6, 31.	4.9	340
828	A microorganisms' journey between plant generations. Microbiome, 2018, 6, 79.	4.9	75
829	The rhizosphere microbiome: Significance in rhizoremediation of polyaromatic hydrocarbon contaminated soil. Journal of Environmental Management, 2018, 217, 858-870.	3.8	86
830	Microbial small molecules – weapons of plant subversion. Natural Product Reports, 2018, 35, 410-433.	5.2	105
831	What Is the Role of <i>Archaea</i> in Plants? New Insights from the Vegetation of Alpine Bogs. MSphere, 2018, 3, .	1.3	78
832	Diversity and composition of bacterial endophytes among plant parts of Panax notoginseng. Chinese Medicine, 2018, 13, 41.	1.6	53
833	Comparative Metagenomic Analysis of Rhizosphere Microbial Community Composition and Functional Potentials under Rehmannia glutinosa Consecutive Monoculture. International Journal of Molecular Sciences, 2018, 19, 2394.	1.8	37
834	Traits-Based Integration of Multi-Species Inoculants Facilitates Shifts of Indigenous Soil Bacterial Community. Frontiers in Microbiology, 2018, 9, 1692.	1.5	29
835	Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nature Communications, 2018, 9, 3429.	5.8	184
836	Impact of domestication on the evolution of rhizomicrobiome of rice in response to the presence of Magnaporthe oryzae. Plant Physiology and Biochemistry, 2018, 132, 156-165.	2.8	23
837	A Comparative Review on Microbiota Manipulation: Lessons From Fish, Plants, Livestock, and Human Research. Frontiers in Nutrition, 2018, 5, 80.	1.6	95
838	Challenges and Approaches in Microbiome Research: From Fundamental to Applied. Frontiers in Plant Science, 2018, 9, 1205.	1.7	127
839	Species-specific plant–soil feedbacks alter herbivore-induced gene expression and defense chemistry in Plantago lanceolata. Oecologia, 2018, 188, 801-811.	0.9	36
840	Spirillospora tritici sp. nov., a Novel Actinomycete Isolated from Rhizosphere Soil of Triticum aestivum L Current Microbiology, 2018, 75, 1477-1483.	1.0	1
841	Impact of soil salinity on the microbial structure of halophyte rhizosphere microbiome. World Journal of Microbiology and Biotechnology, 2018, 34, 136.	1.7	57

#	Article	IF	Citations
842	Soil Microbial Communities Reflect both Inherent Soil Properties and Management Practices in Wisconsin Potato Fields. American Journal of Potato Research, 2018, 95, 696-708.	0.5	21
843	Deciphering the Rhizosphere and Geocaulosphere Microbiomes of Potato Following Inoculation with the Biocontrol Agent <i>Pseudomonas fluorescens</i> Strain LBUM223. Phytobiomes Journal, 2018, 2, 92-99.	1.4	27
844	Microbiota from †next-generation green compost†improves suppressiveness of composted Municipal-Solid-Waste to soil-borne plant pathogens. Biological Control, 2018, 124, 1-17.	1.4	39
845	Temporal shifts of fungal communities in the rhizosphere and on tubers in potato fields. Fungal Biology, 2018, 122, 928-934.	1.1	33
846	Inhibition of biofilm formation by Cd2+ on Bacillus subtilis 1JN2 depressed its biocontrol efficiency against Ralstonia wilt on tomato. Microbiological Research, 2018, 215, 1-6.	2.5	11
847	Seeds <i>vs</i> fungi: an enzymatic battle in the soil seedbank. Seed Science Research, 2018, 28, 197-214.	0.8	26
848	Potentially toxic elements to maize in agricultural soilsâ€"microbial approach of rhizospheric and bulk soils and phytoaccumulation. Environmental Science and Pollution Research, 2018, 25, 23954-23972.	2.7	3
849	Plant growth-promoting rhizobacteria associated with avocado display antagonistic activity against Phytophthora cinnamomi through volatile emissions. PLoS ONE, 2018, 13, e0194665.	1.1	83
850	Different Height Forms of Spartina alterniflora Might Select Their Own Rhizospheric Bacterial Communities in Southern Coast of China. Microbial Ecology, 2019, 77, 124-135.	1.4	17
851	Microbial biofilm inoculants benefit growth and yield of chrysanthemum varieties under protected cultivation through enhanced nutrient availability. Plant Biosystems, 2019, 153, 306-316.	0.8	26
852	Rhizosphere., 2019, , .		2
853	Isolation and characterization of phosphate solubilizing bacteria from rhizosphere soils of the Yeyahu Wetland in Beijing, China. Environmental Science and Pollution Research, 2019, 26, 33976-33987.	2.7	38
854	Linking ecology and plant pathology to unravel the importance of soil-borne fungal pathogens in species-rich grasslands. European Journal of Plant Pathology, 2019, 154, 141-156.	0.8	42
855	Biotic and abiotic plant–soil feedback depends on nitrogenâ€acquisition strategy and shifts during longâ€term ecosystem development. Journal of Ecology, 2019, 107, 142-153.	1.9	41
856	Microbiome-driven identification of microbial indicators for postharvest diseases of sugar beets. Microbiome, 2019, 7, 112.	4.9	68
857	Plant-Microbiome Interactions in Agroecosystem: An Application. , 2019, , 251-291.		3
858	Bacteria-Inducing Legume Nodules Involved in the Improvement of Plant Growth, Health and Nutrition., 2019,, 79-104.		4
859	Environmental pollution effects on plant microbiota: the case study of poplar bacterial-fungal response to silver nanoparticles. Applied Microbiology and Biotechnology, 2019, 103, 8215-8227.	1.7	21

#	Article	IF	CITATIONS
860	Emerging Insights on Rhizobacterial Functions. , 2019, , 171-189.		0
861	An Ecological Loop: Host Microbiomes across Multitrophic Interactions. Trends in Ecology and Evolution, 2019, 34, 1118-1130.	4.2	88
862	Perceptions of Microbe–Microbe and Plant–Microbiome Interfaces: The Metagenomic Maneuver. , 2019, , 483-505.		0
863	Metagenomic Approach in Relation to Microbe–Microbe and Plant–Microbiome Interactions. , 2019, , 507-534.		4
864	Microbes: An Important Resource for Sustainable Agriculture. , 2019, , 53-77.		2
865	Affirmative Plant-Microbe Interfaces Toward Agroecosystem Sustainability. , 2019, , 145-170.		3
866	Plant Nutrient Management Through Inoculation of Zinc-Solubilizing Bacteria for Sustainable Agriculture. Soil Biology, 2019, , 173-201.	0.6	10
867	Deciphering rhizosphere microbiome assembly of wild and modern common bean (Phaseolus vulgaris) in native and agricultural soils from Colombia. Microbiome, 2019, 7, 114.	4.9	140
868	Industrial Applications of Pseudomonas fluorescens: A Patent Survey., 2019,, 383-402.		1
869	Applications of the Soil, Plant and Rumen Microbiomes in Pastoral Agriculture. Frontiers in Nutrition, 2019, 6, 107.	1.6	30
870	Soil–Microbes–Plants: Interactions and Ecological Diversity. , 2019, , 145-176.		5
871	Mechanism and performance of trace metal removal by continuous-flow constructed wetlands coupled with a micro-electric field. Water Research, 2019, 164, 114937.	5.3	26
872	Impact of microwave disinfestation treatments on the bacterial communities of noâ€ŧill agricultural soils. European Journal of Soil Science, 2020, 71, 1006-1017.	1.8	15
873	Metagenomics as a Tool to Explore New Insights from Plant-Microbe Interface. , 2019, , 271-289.		4
874	Anthosphere Microbiome and Their Associated Interactions at the Aromatic Interface., 2019, , 309-324.		8
875	Engineered Root Bacteria Release Plant-Available Phosphate from Phytate. Applied and Environmental Microbiology, 2019, 85, .	1.4	41
876	Molecular techniques and their limitations shape our view of the holobiont. Zoology, 2019, 137, 125695.	0.6	5
877	Plant specialized metabolites modulate root microbiomes. Science China Life Sciences, 2019, 62, 1111-1113.	2.3	6

#	Article	IF	CITATIONS
878	The Interactions of Rhizodeposits with Plant Growth-Promoting Rhizobacteria in the Rhizosphere: A Review. Agriculture (Switzerland), 2019, 9, 142.	1.4	165
879	Transcriptome and Metabolome Reprogramming in Tomato Plants by Trichoderma harzianum strain T22 Primes and Enhances Defense Responses Against Aphids. Frontiers in Physiology, 2019, 10, 745.	1.3	116
880	The Plant Microbiome: Diversity, Dynamics, and Role in Food Safety., 2019, , 229-257.		5
881	Rhizobacteria-Mediated Activation of the Fe Deficiency Response in Arabidopsis Roots: Impact on Fe Status and Signaling. Frontiers in Plant Science, 2019, 10, 909.	1.7	28
882	Drought-Stress Tolerance in Wheat Seedlings Conferred by Phenazine-Producing Rhizobacteria. Frontiers in Microbiology, 2019, 10, 1590.	1.5	39
883	Type III Secretion System of Beneficial Rhizobacteria Pseudomonas simiae WCS417 and Pseudomonas defensor WCS374. Frontiers in Microbiology, 2019, 10, 1631.	1.5	36
884	Revealing Cues for Fungal Interplay in the Plant–Air Interface in Vineyards. Frontiers in Plant Science, 2019, 10, 922.	1.7	36
885	Enrichments/Derichments of Root-Associated Bacteria Related to Plant Growth and Nutrition Caused by the Growth of an EPSPS-Transgenic Maize Line in the Field. Frontiers in Microbiology, 2019, 10, 1335.	1.5	18
886	More Than the Sum of Its Parts: Microbiome Biodiversity as a Driver of Plant Growth and Soil Health. Annual Review of Ecology, Evolution, and Systematics, 2019, 50, 145-168.	3.8	219
887	Intellectual Property Issues in Microbiology. , 2019, , .		8
888	Properties of bacterial community in the rhizosphere soils of Achyranthes bidentata tolerant to consecutive monoculture. Plant Growth Regulation, 2019, 89, 167-178.	1.8	17
889	Exploring the Potential of Overexpressed OsCIPK2 Rice as a Nitrogen Utilization Efficient Crop and Analysis of Its Associated Rhizo-Compartmental Microbial Communities. International Journal of Molecular Sciences, 2019, 20, 3636.	1.8	15
890	Beneficial microbes going underground of root immunity. Plant, Cell and Environment, 2019, 42, 2860-2870.	2.8	133
891	Deciphering Microbiome Related to Rusty Roots of Panax ginseng and Evaluation of Antagonists Against Pathogenic Ilyonectria. Frontiers in Microbiology, 2019, 10, 1350.	1.5	34
892	A preliminary examination of bacterial, archaeal, and fungal communities inhabiting different rhizocompartments of tomato plants under real-world environments. Scientific Reports, 2019, 9, 9300.	1.6	91
893	Metagenomic Analysis of the Bacterial and Fungal Community Associated to the Rhizosphere of Tabebuia chrysantha and T. billbergii. Current Microbiology, 2019, 76, 1073-1080.	1.0	9
894	Stable water and fertilizer supply by negative pressure irrigation improve tomato production and soil bacterial communities. SN Applied Sciences, 2019, 1, 1.	1.5	9
895	Plants exhibit significant effects on the rhizospheric microbiome across contrasting soils in tropical and subtropical China. FEMS Microbiology Ecology, 2019, 95, .	1.3	4

#	Article	IF	CITATIONS
897	NB-LRRs Not Responding Consecutively to Fusarium oxysporum Proliferation Caused Replant Disease Formation of Rehmannia glutinosa. International Journal of Molecular Sciences, 2019, 20, 3203.	1.8	6
898	Organic Soils Control Beetle Survival While Competitors Limit Aphid Population Growth. Environmental Entomology, 2019, 48, 1323-1330.	0.7	14
899	Bacteria, Fungi and Archaea Domains in Rhizospheric Soil and Their Effects in Enhancing Agricultural Productivity. International Journal of Environmental Research and Public Health, 2019, 16, 3873.	1.2	71
900	Rhizosphere bacterial community in watermelon-wheat intercropping was more stable than in watermelon monoculture system under Fusarium oxysporum f. sp. niveum invasion. Plant and Soil, 2019, 445, 369-381.	1.8	21
901	Western diet impairs energy homeostasis in the CNS, drives astrogliosis, and limits recovery of function after experimental spinal cord injury. IBRO Reports, 2019, 6, S505.	0.3	0
902	Appraising Endophyte–Plant Symbiosis for Improved Growth, Nodulation, Nitrogen Fixation and Abiotic Stress Tolerance: An Experimental Investigation with Chickpea (Cicer arietinum L.). Agronomy, 2019, 9, 621.	1.3	34
903	Phytohormones (Auxin, Gibberellin) and ACC Deaminase In Vitro Synthesized by the Mycoparasitic Trichoderma DEMTkZ3A0 Strain and Changes in the Level of Auxin and Plant Resistance Markers in Wheat Seedlings Inoculated with this Strain Conidia. International Journal of Molecular Sciences, 2019, 20, 4923.	1.8	78
904	Bacterial communities of soil and earthworm casts of native Palouse Prairie remnants and no-till wheat cropping systems. Soil Biology and Biochemistry, 2019, 139, 107625.	4.2	21
905	Selection of an Endophytic Streptomyces sp. Strain DEF09 From Wheat Roots as a Biocontrol Agent Against Fusarium graminearum. Frontiers in Microbiology, 2019, 10, 2356.	1.5	38
906	Use of omic approaches for characterizing microbiota from suppressive compost to control soil-borne plant pathogens. Archives of Phytopathology and Plant Protection, 2019, 52, 757-775.	0.6	5
907	Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Microbiome, 2019, 7, 136.	4.9	270
908	Rhizosphere-Associated Pseudomonas Suppress Local Root Immune Responses by Gluconic Acid-Mediated Lowering of Environmental pH. Current Biology, 2019, 29, 3913-3920.e4.	1.8	112
909	Austin Sarat (ed.), <i>Human Rights and Legal Judgments: The American Story</i> . Human Rights Law Review, 2019, 19, 193-198.	0.3	1
910	Impacts of Maize Domestication and Breeding on Rhizosphere Microbial Community Recruitment from a Nutrient Depleted Agricultural Soil. Scientific Reports, 2019, 9, 15611.	1.6	91
912	Application of Microbial Products for Enhancing the Nutritional Quality of Agricultural Produce. , 2019, , 331-345.		0
914	Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science, 2019, 366, 606-612.	6.0	621
915	Strengthening Grapevine Resistance by Pseudomonas fluorescens PTA-CT2 Relies on Distinct Defense Pathways in Susceptible and Partially Resistant Genotypes to Downy Mildew and Gray Mold Diseases. Frontiers in Plant Science, 2019, 10, 1112.	1.7	43
916	Effects of rhizoma peanut cultivars (<i>Arachis glabrata</i> Benth.) on the soil bacterial diversity and predicted function in nitrogen fixation. Ecology and Evolution, 2019, 9, 12676-12687.	0.8	21

#	ARTICLE	IF	CITATIONS
917	Next generation microbiome applications for crop production â€" limitations and the need of knowledge-based solutions. Current Opinion in Microbiology, 2019, 49, 59-65.	2.3	59
918	Draft genome sequence of Bacillus paralicheniformis TRQ65, a biological control agent and plant growth-promoting bacterium isolated from wheat (Triticum turgidum subsp. durum) rhizosphere in the Yaqui Valley, Mexico. 3 Biotech, 2019, 9, 436.	1.1	32
919	Microbial secondary metabolites and plant–microbe communications in the rhizosphere. , 2019, , 93-111.		5
920	Elucidation of the Genome of Bradyrhizobium sp. Strain USDA 3456, a Historic Agricultural Diazotroph from Cowpea (Vigna unguiculata). Microbiology Resource Announcements, 2019, 8, .	0.3	1
921	Tracing the evolutionary routes of plant–microbiota interactions. Current Opinion in Microbiology, 2019, 49, 34-40.	2.3	60
922	Soil sterilization leads to re-colonization of a healthier rhizosphere microbiome. Rhizosphere, 2019, 12, 100176.	1.4	37
923	Microbiome Response to Hot Water Treatment and Potential Synergy With Biological Control on Stored Apples. Frontiers in Microbiology, 2019, 10, 2502.	1.5	50
925	Microenvironmental Interplay Predominated by Beneficial <i>Aspergillus</i> Abates Fungal Pathogen Incidence in Paddy Environment. Environmental Science & Environmental Scienc	4.6	24
926	Prevalence of Soil-borne Diseases in <i>Kalanchoe blossfeldiana</i> Reveals a Complex of Pathogenic and Opportunistic Fungi. Plant Disease, 2019, 103, 2634-2644.	0.7	4
927	Monocropping decouples plant–bacteria interaction and strengthens phytopathogenic fungi colonization in the rhizosphere of a perennial plant species. Plant and Soil, 2019, 445, 549-564.	1.8	11
928	Effects of Continuous Cropping of Sweet Potato on the Fungal Community Structure in Rhizospheric Soil. Frontiers in Microbiology, 2019, 10, 2269.	1.5	103
929	Effect of Re-acidification on Buffalo Grass Rhizosphere and Bulk Microbial Communities During Phytostabilization of Metalliferous Mine Tailings. Frontiers in Microbiology, 2019, 10, 1209.	1.5	24
930	Biocontrol and plant growth promoting potential of phylogenetically new Streptomyces sp. MR14 of rhizospheric origin. AMB Express, 2019, 9, 125.	1.4	50
931	Enhancing identification accuracy for powdery mildews using previously underexploited DNA loci. Mycologia, 2019, 111, 798-812.	0.8	29
932	Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly. BMC Microbiology, 2019, 19, 201.	1.3	194
933	Conservation of Endophyte Bacterial Community Structure Across Two Panicum Grass Species. Frontiers in Microbiology, 2019, 10, 2181.	1.5	19
934	Culturing Simpler and Bacterial Wilt Suppressive Microbial Communities from Tomato Rhizosphere. Plant Pathology Journal, 2019, 35, 362-371.	0.7	20
935	Antagonistic activity and mechanism of an isolated Streptomyces corchorusii stain AUH-1 against phytopathogenic fungi. World Journal of Microbiology and Biotechnology, 2019, 35, 145.	1.7	32

#	Article	IF	CITATIONS
936	Differential dynamics of microbial community networks help identify microorganisms interacting with residue-borne pathogens: the case of Zymoseptoria tritici in wheat. Microbiome, 2019, 7, 125.	4.9	41
937	Rhizosphere-enriched microbes as a pool to design synthetic communities for reproducible beneficial outputs. FEMS Microbiology Ecology, 2019, 95, .	1.3	50
938	Effect of continuous sorghum cropping on the rhizosphere microbial community and the role of Bacillus amyloliquefaciens in altering the microbial composition. Plant Growth Regulation, 2019, 89, 299-308.	1.8	28
939	Microbial Interaction Network Inference in Microfluidic Droplets. Cell Systems, 2019, 9, 229-242.e4.	2.9	91
940	Changes in fungal community and diversity in strawberry rhizosphere soil after 12 years in the greenhouse. Journal of Integrative Agriculture, 2019, 18, 677-687.	1.7	52
942	Temporal Dynamics of the Sap Microbiome of Grapevine Under High Pierce's Disease Pressure. Frontiers in Plant Science, 2019, 10, 1246.	1.7	48
943	Deciphering the Symbiotic Plant Microbiome: Translating the Most Recent Discoveries on Rhizobia for the Improvement of Agricultural Practices in Metal-Contaminated and High Saline Lands. Agronomy, 2019, 9, 529.	1.3	32
944	Plant Identity Shaped Rhizospheric Microbial Communities More Strongly Than Bacterial Bioaugmentation in Petroleum Hydrocarbon-Polluted Sediments. Frontiers in Microbiology, 2019, 10, 2144.	1.5	28
945	Impact of continuous Panax notoginseng plantation on soil microbial and biochemical properties. Scientific Reports, 2019, 9, 13205.	1.6	35
946	Mediterranean Native Leguminous Plants: A Reservoir of Endophytic Bacteria with Potential to Enhance Chickpea Growth under Stress Conditions. Microorganisms, 2019, 7, 392.	1.6	20
947	Culturable mycobiome of soya bean cyst nematode (Heterodera glycines) cysts from a long-term soya bean-corn rotation system is dominated by Fusarium. Fungal Ecology, 2019, 42, 100857.	0.7	19
948	Initial soil microbiome composition and functioning predetermine future plant health. Science Advances, 2019, 5, eaaw0759.	4.7	314
949	Predictive Breeding for Maize: Making Use of Molecular Phenotypes, Machine Learning, and Physiological Crop Models. Crop Science, 2019, .	0.8	3
950	Dynamics of the rice rhizosphere microbial community under continuous and intermittent flooding treatment. Journal of Environmental Management, 2019, 249, 109326.	3.8	18
951	Resistance Breeding of Common Bean Shapes the Physiology of the Rhizosphere Microbiome. Frontiers in Microbiology, 2019, 10, 2252.	1.5	41
952	Effects of biodiversity in agricultural landscapes on the protective microbiome of insects $\hat{a} \in \mathbb{C}$ a review. Entomologia Experimentalis Et Applicata, 2019, 167, 2-13.	0.7	17
953	Plant geographic origin and phylogeny as potential drivers of community structure in rootâ€inhabiting fungi. Journal of Ecology, 2019, 107, 1720-1736.	1.9	27
954	Spatio-temporal microbial community dynamics within soil aggregates. Soil Biology and Biochemistry, 2019, 132, 58-68.	4.2	98

#	Article	IF	CITATIONS
955	Enset in Ethiopia: a poorly characterized but resilient starch staple. Annals of Botany, 2019, 123, 747-766.	1.4	119
956	Non-Targeted Metabolomics Reveals Sorghum Rhizosphere-Associated Exudates are Influenced by the Belowground Interaction of Substrate and Sorghum Genotype. International Journal of Molecular Sciences, 2019, 20, 431.	1.8	43
957	Plant Root Exudates Are Involved in Bacillus cereus AR156 Mediated Biocontrol Against Ralstonia solanacearum. Frontiers in Microbiology, 2019, 10, 98.	1.5	56
958	Potentials of termite mound soil bacteria in ecosystem engineering for sustainable agriculture. Annals of Microbiology, 2019, 69, 211-219.	1.1	33
959	Characterization of rhizosphere and endophytic bacteria from roots of maize (Zea mays L.) plant irrigated with wastewater with biotechnological potential in agriculture. Biotechnology Reports (Amsterdam, Netherlands), 2019, 21, e00305.	2.1	53
960	Microbiome engineering: enhancing climate resilience in corals. Frontiers in Ecology and the Environment, 2019, 17, 100-108.	1.9	58
961	Bacterial communities associated to Chilean altiplanic native plants from the Andean grasslands soils. Scientific Reports, 2019, 9, 1042.	1.6	32
962	Streptomyces pactum Act12 controls tomato yellow leaf curl virus disease and alters rhizosphere microbial communities. Biology and Fertility of Soils, 2019, 55, 149-169.	2.3	25
963	Antifungal potential of Lauraceae rhizobacteria from a tropical montane cloud forest against Fusarium spp Brazilian Journal of Microbiology, 2019, 50, 583-592.	0.8	14
964	Phosphate solubilizers as antagonists for bacterial leaf blight with improved rice growth in phosphorus deficit soil. Biological Control, 2019, 136, 103997.	1.4	35
965	Diversity, distribution and multiâ€functional attributes of bacterial communities associated with the rhizosphere and endosphere of timothy (<i>Phleum pratense</i> L.). Journal of Applied Microbiology, 2019, 127, 794-811.	1.4	10
966	Technologies for the Selection, Culture and Metabolic Profiling of Unique Rhizosphere Microorganisms for Natural Product Discovery. Molecules, 2019, 24, 1955.	1.7	14
967	Systems Biology of Plant-Microbiome Interactions. Molecular Plant, 2019, 12, 804-821.	3.9	299
968	Effects of maize rotation on the physicochemical properties and microbial communities of American ginseng cultivated soil. Scientific Reports, 2019, 9, 8615.	1.6	33
969	Microbial Nanobionics. Nanotechnology in the Life Sciences, 2019, , .	0.4	7
970	Sensing Soil Microbes and Interactions: How Can Nanomaterials Help?. Nanotechnology in the Life Sciences, 2019, , 213-236.	0.4	8
971	Endophytic Pseudomonads and Their Metabolites. Reference Series in Phytochemistry, 2019, , 33-59.	0.2	3
972	Biochar and earthworms working in tandem: Research opportunities for soil bioremediation. Science of the Total Environment, 2019, 688, 574-583.	3.9	47

#	Article	IF	CITATIONS
973	Microbial Communities Accompanying Cultivated and Wild Boswellia sacra Trees. , 2019, , 123-132.		6
974	Comparison of replica leaf surface materials for phyllosphere microbiology. PLoS ONE, 2019, 14, e0218102.	1.1	17
975	The Fungal and Bacterial Rhizosphere Microbiome Associated With Grapevine Rootstock Genotypes in Mature and Young Vineyards. Frontiers in Microbiology, 2019, 10, 1142.	1.5	123
976	Occurrence of diverse Bradyrhizobium spp. in roots and rhizospheres of two commercial Brazilian sugarcane cultivars. Brazilian Journal of Microbiology, 2019, 50, 759-767.	0.8	13
977	Microbial amendments alter protist communities within the soil microbiome. Soil Biology and Biochemistry, 2019, 135, 379-382.	4.2	32
978	A water stress-adapted inoculum affects rhizosphere fungi, but not bacteria nor wheat. FEMS Microbiology Ecology, 2019, 95, .	1.3	12
979	Biofertilizers regulate the soil microbial community and enhance Panax ginseng yields. Chinese Medicine, 2019, 14, 20.	1.6	54
980	Plant-derived coumarins shape the composition of an <i>Arabidopsis</i> synthetic root microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12558-12565.	3.3	313
981	Role of Vertical Transmission of Shoot Endophytes in Root-Associated Microbiome Assembly and Heavy Metal Hyperaccumulation in <i>Sedum alfredii</i> . Environmental Science & Encountry (1975), 53, 6954-6963.	4.6	88
982	Role and exploitation of underground chemical signaling in plants. Pest Management Science, 2019, 75, 2455-2463.	1.7	37
983	Massively parallel screening of synthetic microbial communities. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12804-12809.	3.3	182
984	The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PLoS ONE, 2019, 14, e0217018.	1.1	188
985	3-Benzyl-Hexahydro-Pyrrolo[1,2-a]Pyrazine-1,4-Dione Extracted From Exiguobacterium indicum Showed Anti-biofilm Activity Against Pseudomonas aeruginosa by Attenuating Quorum Sensing. Frontiers in Microbiology, 2019, 10, 1269.	1.5	28
986	Soil biota composition and the performance of a noxious weed across its invaded range. Ecography, 2019, 42, 1671-1681.	2.1	6
987	Diversity of Plant Endophytic Volatile Organic Compound (VOC) and Their Potential Applications. Reference Series in Phytochemistry, 2019, , 307-333.	0.2	6
988	A genomic island in a plant beneficial rhizobacterium encodes novel antimicrobial fatty acids and a selfâ€protection shield to enhance its competition. Environmental Microbiology, 2019, 21, 3455-3471.	1.8	21
989	Biology of Genus Boswellia. , 2019, , .		10
990	A specialized metabolic network selectively modulates <i>Arabidopsis</i> root microbiota. Science, 2019, 364, .	6.0	470

#	Article	IF	CITATIONS
991	Differential responses of soil bacterial community and functional diversity to reductive soil disinfestation and chemical soil disinfestation. Geoderma, 2019, 348, 124-134.	2.3	48
992	Rhizosphere microbiomes diverge among Populus trichocarpa plant-host genotypes and chemotypes, but it depends on soil origin. Microbiome, 2019, 7, 76.	4.9	109
993	Inheritance of seed and rhizosphere microbial communities through plant–soil feedback and soil memory. Environmental Microbiology Reports, 2019, 11, 479-486.	1.0	50
994	Soil amendments with ethylene precursor alleviate negative impacts of salinity on soil microbial properties and productivity. Scientific Reports, 2019, 9, 6892.	1.6	32
995	Microbiota Associated with Sclerotia of Soilborne Fungal Pathogens – A Novel Source of Biocontrol Agents Producing Bioactive Volatiles. Phytobiomes Journal, 2019, 3, 125-136.	1.4	41
996	Roles of microbes in supporting sustainable rice production using the system of rice intensification. Applied Microbiology and Biotechnology, 2019, 103, 5131-5142.	1.7	23
997	Rhizocompartments and environmental factors affect microbial composition and variation in native plants. Journal of Microbiology, 2019, 57, 550-561.	1.3	8
998	The Age of Coumarins in Plant–Microbe Interactions. Plant and Cell Physiology, 2019, 60, 1405-1419.	1.5	241
999	Recently duplicated sesterterpene (C25) gene clusters in Arabidopsis thaliana modulate root microbiota. Science China Life Sciences, 2019, 62, 947-958.	2.3	52
1000	Assessment of the Potential of Indole-3-Acetic Acid Producing Bacteria to manage Chemical Fertilizers Application. International Journal of Environmental Research, 2019, 13, 603-611.	1.1	11
1001	Pakchoi Antioxidant Improvement and Differential Rhizobacterial Community Composition under Organic Fertilization. Sustainability, 2019, 11, 2424.	1.6	4
1002	Regional and Microenvironmental Scale Characterization of the Zostera muelleri Seagrass Microbiome. Frontiers in Microbiology, 2019, 10, 1011.	1.5	53
1003	Long-term N fertilization altered 13C-labeled fungal community composition but not diversity in wheat rhizosphere of Chinese black soil. Soil Biology and Biochemistry, 2019, 135, 117-126.	4.2	21
1004	Plant species identity and soil characteristics determine rhizosphere soil bacteria community composition in European temperate forests. FEMS Microbiology Ecology, 2019, 95, .	1.3	19
1005	Assessment of the structural and functional diversities of plant microbiota: Achievements and challenges – A review. Journal of Advanced Research, 2019, 19, 3-13.	4.4	25
1006	NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nature Biotechnology, 2019, 37, 676-684.	9.4	641
1007	Reshaping the rhizosphere microbiome by bio-organic amendment to enhance crop yield in a maize-cabbage rotation system. Applied Soil Ecology, 2019, 142, 136-146.	2.1	76
1008	Plant-Microbe Interactions in Ecosystems Functioning and Sustainability. , 2019, , 255-266.		3

#	Article	IF	CITATIONS
1009	Migration of soil microbes may promote tree seedling tolerance to drying conditions. Ecology, 2019, 100, e02729.	1.5	21
1010	Metabolites of Plant Growth-Promoting Rhizobacteria for the Management of Soilborne Pathogenic Fungi in Crops., 2019,, 293-315.		8
1011	Effect of monospecific and mixed Mediterranean tree plantations on soil microbial community and biochemical functioning. Applied Soil Ecology, 2019, 140, 78-88.	2.1	34
1012	Soil microbiome analysis in an ESCA diseased vineyard. Soil Biology and Biochemistry, 2019, 135, 60-70.	4.2	20
1013	Linking soil's volatilome to microbes and plant roots highlights the importance of microbes as emitters of belowground volatile signals. Environmental Microbiology, 2019, 21, 3313-3327.	1.8	17
1014	Microbiome of Rhizospheric Soil and Vermicompost and Their Applications in Soil Fertility, Pest and Pathogen Management for Sustainable Agriculture. , 2019, , 189-210.		6
1015	Restoration of Long-Term Monoculture Degraded Tea Orchard by Green and Goat Manures Applications System. Sustainability, 2019, 11, 1011.	1.6	16
1016	Plant terpenes that mediate belowâ€ground interactions: prospects for bioengineering terpenoids for plant protection. Pest Management Science, 2019, 75, 2368-2377.	1.7	52
1017	Rhizospheric Fungi: Diversity and Potential Biotechnological Applications. Fungal Biology, 2019, , 63-84.	0.3	6
1018	Variation in soil fungal community structure during successive rotations of Casuarina equisetifolia plantations as determined by high-throughput sequencing analysis. Plant Growth Regulation, 2019, 87, 445-453.	1.8	12
1019	Disease Incidence in Sugar Beet Fields Is Correlated with Microbial Diversity and Distinct Biological Markers. Phytobiomes Journal, 2019, 3, 22-30.	1.4	47
1020	Effect of atmospheric CO2 on plant defense against leaf and root pathogens of Arabidopsis. European Journal of Plant Pathology, 2019, 154, 31-42.	0.8	31
1021	Potential role of weather, soil and plant microbial communities in rapid decline of apple trees. PLoS ONE, 2019, 14, e0213293.	1.1	28
1022	Factors Influencing Leaf- and Root-Associated Communities of Bacteria and Fungi Across 33 Plant Orders in a Grassland. Frontiers in Microbiology, 2019, 10, 241.	1.5	51
1023	Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils. Microbiome, 2019, 7, 33.	4.9	278
1024	Exploring the Sensitivity of Subtropical Stand Aboveground Productivity to Local and Regional Climate Signals in South China. Forests, 2019, 10, 71.	0.9	2
1025	Rhizosphere microbial biomass is affected by soil type, organic and water inputs in a bell pepper system. Applied Soil Ecology, 2019, 138, 80-87.	2.1	34
1026	Temporal dynamics of bacterial and fungal communities during the infection of Brassica rapa roots by the protist Plasmodiophora brassicae. PLoS ONE, 2019, 14, e0204195.	1.1	45

#	Article	IF	CITATIONS
1027	Highly connected taxa located in the microbial network are prevalent in the rhizosphere soil of healthy plant. Biology and Fertility of Soils, 2019, 55, 299-312.	2.3	57
1028	The soybean rhizosphere: Metabolites, microbes, and beyond—A review. Journal of Advanced Research, 2019, 19, 67-73.	4.4	119
1029	Treatment With Wheat Root Exudates and Soil Microorganisms From Wheat/Watermelon Companion Cropping Can Induce Watermelon Disease Resistance Against <i>Fusarium oxysporum </i> f. sp. <i>niveum </i> Plant Disease, 2019, 103, 1693-1702.	0.7	26
1030	An ectomycorrhizal symbiosis differently affects host susceptibility toÂtwo congeneric fungal pathogens. Fungal Ecology, 2019, 39, 250-256.	0.7	25
1031	Exploitation of Rhizosphere Microbiome Services. Rhizosphere Biology, 2019, , 105-132.	0.4	9
1032	Weapons hidden underneath: bio-control agents and their potentials to activate plant induced systemic resistance in controlling crop Fusarium diseases. Journal of Plant Diseases and Protection, 2019, 126, 177-190.	1.6	29
1033	Foliar Application of Vegetal-Derived Bioactive Compounds Stimulates the Growth of Beneficial Bacteria and Enhances Microbiome Biodiversity in Lettuce. Frontiers in Plant Science, 2019, 10, 60.	1.7	80
1034	Disentangling carbon flow across microbial kingdoms in the rhizosphere of maize. Soil Biology and Biochemistry, 2019, 134, 122-130.	4.2	38
1035	Rhizobacterial Community Assembly Patterns Vary Between Crop Species. Frontiers in Microbiology, 2019, 10, 581.	1.5	42
1036	Characterization of rhizosphere bacterial community and berry quality of Hutai No.8 (<i>Vitis) Tj ETQq1 1 0.7843 Agriculture, 2019, 99, 4532-4539.</i>	314 rgBT /0 1.7	Overlock 10 10
1037	Manipulating Wild and Tamed Phytobiomes: Challenges and Opportunities. Phytobiomes Journal, 2019, 3, 3-21.	1.4	38
1038	Effects of host phylogeny, habitat and spatial proximity on host specificity and diversity of pathogenic and mycorrhizal fungi in a subtropical forest. New Phytologist, 2019, 223, 462-474.	3.5	51
1039	Soil Fertility Management for Sustainable Development. , 2019, , .		16
1040	Antibiotic Resistomes in Plant Microbiomes. Trends in Plant Science, 2019, 24, 530-541.	4.3	233
1041	New frontiers in agriculture productivity: Optimised microbial inoculants and in situ microbiome engineering. Biotechnology Advances, 2019, 37, 107371.	6.0	189
1042	Soil microbiome: a key player for conservation of soil health under changing climate. Biodiversity and Conservation, 2019, 28, 2405-2429.	1.2	183
1043	Efficacy of biofungicides against root rot and damping-off of microgreens caused by Pythium spp Crop Protection, 2019, 121, 96-102.	1.0	15
1044	Variable Influences of Water Availability and Rhizobacteria on the Growth of Schizachyrium scoparium (Little Bluestem) at Different Ages. Frontiers in Microbiology, 2019, 10, 860.	1.5	8

#	Article	IF	CITATIONS
1045	Maize synthesized benzoxazinoids affect the host associated microbiome. Microbiome, 2019, 7, 59.	4.9	185
1046	Chronicle of a Soil Bacterium: Paenibacillus polymyxa E681 as a Tiny Guardian of Plant and Human Health. Frontiers in Microbiology, 2019, 10, 467.	1.5	71
1047	Relating Urban Biodiversity to Human Health With the †Holobiont†Concept. Frontiers in Microbiology, 2019, 10, 550.	1. 5	64
1048	Phytobiome metabolism: beneficial soil microbes steer crop plants' secondary metabolism. Pest Management Science, 2019, 75, 2378-2384.	1.7	34
1049	Inbreeding depression: it's not just for population biologists. American Journal of Botany, 2019, 106, 331-333.	0.8	6
1051	Assessment of functional and structural changes of soil fungal and oomycete communities in holm oak declined dehesas through metabarcoding analysis. Scientific Reports, 2019, 9, 5315.	1.6	62
1052	Consortia of anti-nematode fungi and bacteria in the rhizosphere of soybean plants attacked by root-knot nematodes. Royal Society Open Science, 2019, 6, 181693.	1.1	30
1053	Nematode communities differ in Hopi landrace maize and commercial maize. Applied Soil Ecology, 2019, 138, 181-188.	2.1	1
1054	Metabolic regulation of the maize rhizobiome by benzoxazinoids. ISME Journal, 2019, 13, 1647-1658.	4.4	210
1055	Enrichment of phosphate solubilizing bacteria during late developmental stages of eggplant (<i>Solanum melongena</i> L). FEMS Microbiology Ecology, 2019, 95, .	1.3	27
1056	Molecular host mimicry and manipulation in bacterial symbionts. FEMS Microbiology Letters, 2019, 366, .	0.7	27
1057	Induced Systemic Resistance (ISR) and Fe Deficiency Responses in Dicot Plants. Frontiers in Plant Science, 2019, 10, 287.	1.7	176
1058	Arbuscular mycorrhizal fungi induce the expression of specific retrotransposons in roots of sunflower (Helianthus annuus L.). PLoS ONE, 2019, 14, e0212371.	1.1	17
1059	Sphingomonas pokkalii sp. nov., a novel plant associated rhizobacterium isolated from a saline tolerant pokkali rice and its draft genome analysis. Systematic and Applied Microbiology, 2019, 42, 334-342.	1.2	38
1060	A plant perspective on nitrogen cycling in the rhizosphere. Functional Ecology, 2019, 33, 540-552.	1.7	292
1061	Chinese white truffles shape the ectomycorrhizal microbial communities of Corylus avellana. Annals of Microbiology, 2019, 69, 553-565.	1.1	12
1062	Effects of fungicide applications on root-infecting microorganisms and overwintering survival of perennial stevia. Crop Protection, 2019, 120, 13-20.	1.0	4
1063	Spectroscopy and SEM imaging reveal endosymbiont-dependent components changes in germinating kernel through direct and indirect coleorhiza-fungus interactions under stress. Scientific Reports, 2019, 9, 1665.	1.6	10

#	Article	IF	CITATIONS
1064	Untangling the bacterial community composition and structure in selected Kuwait desert soils. Applied Soil Ecology, 2019, 138, 1-9.	2.1	19
1065	Sowing the seeds for interdisciplinary plant research and development in the Tropical Andes. Plants People Planet, 2019, 1, 102-106.	1.6	2
1066	Effects of rhizosphere and long-term fertilisation practices on the activity and community structure of ammonia oxidisers under double-cropping rice field. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2019, 69, 356-368.	0.3	3
1067	Soil microbes alter plant fitness under competition and drought. Journal of Evolutionary Biology, 2019, 32, 438-450.	0.8	52
1068	Domesticated tomatoes are more vulnerable to negative plant–soil feedbacks than their wild relatives. Journal of Ecology, 2019, 107, 1753-1766.	1.9	30
1069	Soil Bacterial Community and Soil Enzyme Activity Depending on the Cultivation of Triticum aestivum, Brassica napus, and Pisum sativum ssp. arvense. Diversity, 2019, 11, 246.	0.7	20
1070	Nitrogen Fixing and Phosphate Mineralizing Bacterial Communities in Sweet Potato Rhizosphere Show a Genotype-Dependent Distribution. Diversity, 2019, 11, 231.	0.7	7
1071	Rhizosphere microbiome and plant probiotics. , 2019, , 273-281.		3
1072	Arbuscular Mycorrhizal Fungi in the Rhizosphere of Saplings Used in the Restoration of the Rupestrian Grassland. Ecological Restoration, 2019, 37, 152-162.	0.5	6
1073	An integrative influence of saline water irrigation and fertilization on the structure of soil bacterial communities. Journal of Agricultural Science, 2019, 157, 693-700.	0.6	5
1074	Effects of microalgal biomass as biofertilizer on the growth of cucumber and microbial communities in the cucumber rhizosphere. Turkish Journal of Botany, 0, , .	0.5	4
1075	Nutrient depletion and pesticide use. , 2019, , 75-110.		0
1076	Abiotic and biotic drivers of endosymbiont community assembly in Jatropha curcas. Ecosphere, 2019, 10, e02941.	1.0	3
1077	Plant-Microbiome Interaction and the Effects of Biotic and Abiotic Components in Agroecosystem. , 2019, , 517-546.		6
1078	The ecological and evolutionary trajectory of oak powdery mildew in Europe., 2019,, 429-457.		10
1079	Crying out for help with root exudates: adaptive mechanisms by which stressed plants assemble health-promoting soil microbiomes. Current Opinion in Microbiology, 2019, 49, 73-82.	2.3	231
1080	Contribution of bacterial-fungal balance to plant and animal health. Current Opinion in Microbiology, 2019, 49, 66-72.	2.3	45
1081	Time-course relationship between environmental factors and microbial diversity in tobacco soil. Scientific Reports, 2019, 9, 19969.	1.6	27

#	Article	IF	CITATIONS
1082	ABC transporter genes ABC-C6 and ABC-G33 alter plant-microbe-parasite interactions in the rhizosphere. Scientific Reports, 2019, 9, 19899.	1.6	20
1083	Annual replication is essential in evaluating the response of the soil microbiome to the genetic modification of maize in different biogeographical regions. PLoS ONE, 2019, 14, e0222737.	1.1	8
1084	Agricultural Management Affects Root-Associated Microbiome Recruitment Over Maize Development. Phytobiomes Journal, 2019, 3, 260-272.	1.4	28
1085	Interaction between arbuscular mycorrhizal fungi andÂBacillusÂspp. in soil enhancing growth of crop plants. Fungal Biology and Biotechnology, 2019, 6, 23.	2.5	98
1087	Silicon application and related changes in soil bacterial community dynamics reduced ginseng black spot incidence in Panax ginseng in a short-term study. BMC Microbiology, 2019, 19, 263.	1.3	17
1088	The effects of organic and inorganic phosphorus amendments on the biochemical attributes and active microbial population of agriculture podzols following silage corn cultivation in boreal climate. Scientific Reports, 2019, 9, 17297.	1.6	42
1089	Cultivar-Dependent Variation of the Cotton Rhizosphere and Endosphere Microbiome Under Field Conditions. Frontiers in Plant Science, 2019, 10, 1659.	1.7	49
1090	Soil Microarthropods and Soil Health: Intersection of Decomposition and Pest Suppression in Agroecosystems. Insects, 2019, 10, 414.	1.0	35
1091	First Insights into the Microbiome of a Mangrove Tree Reveal Significant Differences in Taxonomic and Functional Composition among Plant and Soil Compartments. Microorganisms, 2019, 7, 585.	1.6	18
1092	Microbial Genomics in Sustainable Agroecosystems. , 2019, , .		5
1093	Oxalic Acid From Sesbania rostrata Seed Exudates Mediates the Chemotactic Response of Azorhizobium caulinodans ORS571 Using Multiple Strategies. Frontiers in Microbiology, 2019, 10, 2727.	1.5	15
1094	Rhizoplane Bacteria and Plant Species Co-determine Phosphorus-Mediated Microbial Legacy Effect. Frontiers in Microbiology, 2019, 10, 2856.	1.5	17
1095	Biochar Suppresses Bacterial Wilt of Tomato by Improving Soil Chemical Properties and Shifting Soil Microbial Community. Microorganisms, 2019, 7, 676.	1.6	32
1096	Transgenerational role of seed mycobiome $\hat{a}\in$ " an endosymbiotic fungal composition as a prerequisite to stress resilience and adaptive phenotypes in Triticum. Scientific Reports, 2019, 9, 18483.	1.6	27
1097	Soil Microbial Communities on Roughs, Fairways, and Putting Greens of Coolâ€Season Golf Courses. Crop Science, 2019, 59, 1753-1767.	0.8	10
1098	Vulnerability of Soil Microbiome to Monocropping of Medicinal and Aromatic Plants and Its Restoration Through Intercropping and Organic Amendments. Frontiers in Microbiology, 2019, 10, 2604.	1.5	27
1099	Rhizosphere Bacterial Community Characteristics over Different Years of Sugarcane Ratooning in Consecutive Monoculture. BioMed Research International, 2019, 2019, 1-10.	0.9	22
1100	Does in vitro selection of biocontrol agents guarantee success in planta? A study case of wheat protection against Fusarium seedling blight by soil bacteria. PLoS ONE, 2019, 14, e0225655.	1.1	50

#	Article	IF	Citations
1101	Land Management and Microbial Seed Load Effect on Rhizosphere and Endosphere Bacterial Community Assembly in Wheat. Frontiers in Microbiology, 2019, 10, 2625.	1.5	18
1102	Phage combination therapies for bacterial wilt disease in tomato. Nature Biotechnology, 2019, 37, 1513-1520.	9.4	164
1103	A Plant Growth-Promoting Microbial Soil Amendment Dynamically Alters the Strawberry Root Bacterial Microbiome. Scientific Reports, 2019, 9, 17677.	1.6	50
1104	Distinct rhizosphere effect on active and total bacterial communities in paddy soils. Science of the Total Environment, 2019, 649, 422-430.	3.9	62
1105	Seed mucilage interacts with soil microbial community and physiochemical processes to affect seedling emergence on desert sand dunes. Plant, Cell and Environment, 2019, 42, 591-605.	2.8	18
1106	Exploiting Microbial Enzymes for Augmenting Crop Production. , 2019, , 503-519.		16
1107	Impact of Introduction of Arbuscular Mycorrhizal Fungi on the Root Microbial Community in Agricultural Fields. Microbes and Environments, 2019, 34, 23-32.	0.7	35
1108	The effect of rhizosphere microbes outweighs host plant genetics in reducing insect herbivory. Molecular Ecology, 2019, 28, 1801-1811.	2.0	55
1109	Plant health: feedback effect of root exudates-rhizobiome interactions. Applied Microbiology and Biotechnology, 2019, 103, 1155-1166.	1.7	250
1110	Host Specificity and Spatial Distribution Preference of Three Pseudomonas Isolates. Frontiers in Microbiology, 2018, 9, 3263.	1.5	17
1111	Decoding systems biology of plant stress for sustainable agriculture development and optimized food production. Progress in Biophysics and Molecular Biology, 2019, 145, 19-39.	1.4	15
1112	Deciphering differences in the chemical and microbial characteristics of healthy and Fusarium wilt-infected watermelon rhizosphere soils. Applied Microbiology and Biotechnology, 2019, 103, 1497-1509.	1.7	34
1113	Improving the Growth of Rapeseed (Brassica chinensis L.) and the Composition of Rhizosphere Bacterial Communities through Negative Pressure Irrigation. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	9
1114	Fertilisation practice changes rhizosphere microbial community structure in the agroecosystem. Annals of Applied Biology, 2019, 174, 123-132.	1.3	16
1115	Biodegradation of the Allelopathic Chemical Pterostilbene by a Sphingobium sp. Strain from the Peanut Rhizosphere. Applied and Environmental Microbiology, 2019, 85, .	1.4	13
1116	Re-evaluation of biosafety questions on genetically modified biocontrol bacteria. European Journal of Plant Pathology, 2019, 154, 43-51.	0.8	10
1117	Effect of inoculation with nitrogen-fixing bacterium Pseudomonas stutzeri A1501 on maize plant growth and the microbiome indigenous to the rhizosphere. Systematic and Applied Microbiology, 2019, 42, 248-260.	1,2	91
1118	Rootstocks Shape the Rhizobiome: Rhizosphere and Endosphere Bacterial Communities in the Grafted Tomato System. Applied and Environmental Microbiology, 2019, 85, .	1.4	77

#	Article	IF	CITATIONS
1119	Recognition of dominant attractants by key chemoreceptors mediates recruitment of plant growthâ€promoting rhizobacteria. Environmental Microbiology, 2019, 21, 402-415.	1.8	50
1120	Protists: Puppet Masters of the Rhizosphere Microbiome. Trends in Plant Science, 2019, 24, 165-176.	4.3	215
1121	Biochar amendment improves crop production in problem soils: A review. Journal of Environmental Management, 2019, 232, 8-21.	3.8	377
1122	Facilitation promotes invasions in plantâ€associated microbial communities. Ecology Letters, 2019, 22, 149-158.	3.0	100
1123	Bioprospecting cold-adapted plant growth promoting microorganisms from mountain environments. Applied Microbiology and Biotechnology, 2019, 103, 643-657.	1.7	40
1124	Rhizobia protect their legume hosts against soil-borne microbial antagonists in a host-genotype-dependent manner. Rhizosphere, 2019, 9, 47-55.	1.4	24
1125	A nurse plant benefits from facilitative interactions through mycorrhizae. Plant Biology, 2019, 21, 670-676.	1.8	7
1126	Analysis of the community composition and bacterial diversity of the rhizosphere microbiome across different plant taxa. MicrobiologyOpen, 2019, 8, e00762.	1.2	41
1127	A plant growthâ€promoting bacterium alters the microbial community of continuous cropping poplar trees' rhizosphere. Journal of Applied Microbiology, 2019, 126, 1209-1220.	1.4	31
1128	Diazotroph abundance and community structure are reshaped by straw return and mineral fertilizer in rice-rice-green manure rotation. Applied Soil Ecology, 2019, 136, 11-20.	2.1	53
1129	Soil constraints for arbuscular mycorrhizal fungi spore community in degraded sites of rupestrian grassland: Implications for restoration. European Journal of Soil Biology, 2019, 90, 51-57.	1.4	16
1130	Occurrence, fate, and transport of potentially toxic metals (PTMs) in an alkaline rhizosphere soil-plant (Maize, Zea mays L.) system: the role of Bacillus subtilis. Environmental Science and Pollution Research, 2019, 26, 5564-5576.	2.7	6
1131	Genotype and rhizobium inoculation modulate the assembly of soybean rhizobacterial communities. Plant, Cell and Environment, 2019, 42, 2028-2044.	2.8	76
1132	Rhizosphere responses to environmental conditions in Radix pseudostellariae under continuous monoculture regimes. Agriculture, Ecosystems and Environment, 2019, 270-271, 19-31.	2.5	47
1133	Legacy of land use history determines reprogramming of plant physiology by soil microbiome. ISME Journal, 2019, 13, 738-751.	4.4	166
1134	The ability of plants to produce strigolactones affects rhizosphere community composition of fungi but not bacteria. Rhizosphere, 2019, 9, 18-26.	1.4	59
1135	Impact of long-term agricultural management practices on soil prokaryotic communities. Soil Biology and Biochemistry, 2019, 129, 17-28.	4.2	109
1136	Ecological interactions shape the adaptive value of plant defence: Herbivore attack versus competition for light. Functional Ecology, 2019, 33, 129-138.	1.7	28

#	Article	IF	CITATIONS
1137	The impact of microbes in the orchestration of plants' resistance to biotic stress: a disease management approach. Applied Microbiology and Biotechnology, 2019, 103, 9-25.	1.7	111
1138	Control of Fusarium wilt of lisianthus by reassembling the microbial community in infested soil through reductive soil disinfestation. Microbiological Research, 2019, 220, 1-11.	2.5	34
1139	Plant compartment and genetic variation drive microbiome composition in switchgrass roots. Environmental Microbiology Reports, 2019, 11, 185-195.	1.0	65
1140	Trichoderma-Inoculation and Mowing Synergistically Altered Soil Available Nutrients, Rhizosphere Chemical Compounds and Soil Microbial Community, Potentially Driving Alfalfa Growth. Frontiers in Microbiology, 2018, 9, 3241.	1.5	32
1141	Plant-assisted selection: a promising alternative for in vivo identification of wheat (Triticum) Tj ETQq0 0 0 rgBT /Ov	verlock 10 1.8	Tf 50 582 1
1142	Larger plants promote a greater diversity of symbiotic nitrogenâ€fixing soil bacteria associated with an Australian endemic legume. Journal of Ecology, 2019, 107, 977-991.	1.9	38
1143	Stable states in soil chemistry persist in eucalypt woodland restorations. Applied Vegetation Science, 2019, 22, 105-114.	0.9	7
1144	Effects of vegetation and slope aspect on soil nitrogen mineralization during the growing season in sloping lands of the Loess Plateau. Catena, 2019, 172, 753-763.	2.2	32
1145	<i>Streptomyces lydicus</i> A01 affects soil microbial diversity, improving growth and resilience in tomato. Journal of Integrative Plant Biology, 2019, 61, 182-196.	4.1	7
1146	Assembly processes of trophic guilds in the root mycobiome of temperate forests. Molecular Ecology, 2019, 28, 348-364.	2.0	46
1147	Soil Characteristics Overwhelm Cultivar Effects on the Structure and Assembly of Root-Associated Microbiomes of Modern Maize. Pedosphere, 2019, 29, 360-373.	2.1	37
1148	Microbial biopesticides for invertebrate pests and their markets in the United States. Journal of Invertebrate Pathology, 2019, 165, 13-21.	1.5	148
1149	Insights to plant–microbe interactions provide opportunities to improve resistance breeding against root diseases in grain legumes. Plant, Cell and Environment, 2019, 42, 20-40.	2.8	96
1150	Effects of Spartina alterniflora invasion on Kandelia candel rhizospheric bacterial community as determined by high-throughput sequencing analysis. Journal of Soils and Sediments, 2019, 19, 332-344.	1.5	19
1151	Cover crop species affect mycorrhizae-mediated nutrient uptake and pest resistance in maize. Renewable Agriculture and Food Systems, 2020, 35, 467-474.	0.8	32
1152	Amphibian Host and Skin Microbiota Response to a Common Agricultural Antimicrobial and Internal Parasite. Microbial Ecology, 2020, 79, 175-191.	1.4	15
1153	Conclusion and Future Perspectives. SpringerBriefs in Environmental Science, 2020, , 71-75.	0.3	0
1154	Unravelling the Soil Microbiome. SpringerBriefs in Environmental Science, 2020, , .	0.3	9

#	Article	IF	CITATIONS
1155	Contrasting Water Quality Treatments Result in Structural and Functional Changes to Wetland Plant-Associated Microbial Communities in Lab-Scale Mesocosms. Microbial Ecology, 2020, 79, 50-63.	1.4	10
1156	The plant microbiome: A missing link for the understanding of community dynamics and multifunctionality in forest ecosystems. Applied Soil Ecology, 2020, 145, 103345.	2.1	22
1157	Interactive Effects of Microbes and Nitrogen on <i>Panicum virgatum</i> Root Functional Traits and Patterns of Phenotypic Selection. International Journal of Plant Sciences, 2020, 181, 20-32.	0.6	10
1158	Phyllosphere Colonization by a Soil <i>Streptomyces</i> sp. Promotes Plant Defense Responses Against Fungal Infection. Molecular Plant-Microbe Interactions, 2020, 33, 223-234.	1.4	29
1159	Halotropism requires phospholipase Dî¶1â€mediated modulation of cellular polarity of auxin transport carriers. Plant, Cell and Environment, 2020, 43, 143-158.	2.8	40
1160	Comparison of soil bacterial diversity and community composition between clear-cut logging and control sites in a temperate deciduous broad-leaved forest in Mt. Sambong, South Korea. Journal of Forestry Research, 2020, 31, 2367-2375.	1.7	4
1161	Modification of Rhizosphere Bacterial Community Structure and Functional Potentials to Control <i>Pseudostellaria heterophylla</i> Replant Disease. Plant Disease, 2020, 104, 25-34.	0.7	20
1162	Bacterial rhizosphere community profile at different growth stages of Umorok (Capsicum chinense) and its response to the root exudates. International Microbiology, 2020, 23, 241-251.	1.1	10
1163	Nutrient Dynamics for Sustainable Crop Production. , 2020, , .		21
1164	Beneficial effect of Bacillus sp. P12 on soil biological activities and pathogen control in common bean. Biological Control, 2020, 141, 104131.	1.4	21
1165	The Rice Microbiome: A Model Platform for Crop Holobiome. Phytobiomes Journal, 2020, 4, 5-18.	1.4	57
1166	Whole-genome resequencing identifies quantitative trait loci associated with mycorrhizal colonization of soybean. Theoretical and Applied Genetics, 2020, 133, 409-417.	1.8	19
1167	Linking rhizosphere soil biochemical and microbial community characteristics across different land use systems in mountainous region in Northeast India. Meta Gene, 2020, 23, 100625.	0.3	12
1168	Rhizosphere bacteria assembly derived from fumigation and organic amendment triggers the direct and indirect suppression of tomato bacterial wilt disease. Applied Soil Ecology, 2020, 147, 103364.	2.1	34
1169	Long-term forest succession improves plant diversity and soil quality but not significantly increase soil microbial diversity: Evidence from the Loess Plateau. Ecological Engineering, 2020, 142, 105631.	1.6	52
1170	Plant traits shape soil legacy effects on individual plant–insect interactions. Oikos, 2020, 129, 261-273.	1.2	25
1171	Evaluation of potassium application on tomato performance and rhizosphere bacterial communities under negative pressure irrigation of greenhouse-grown. Journal of Plant Nutrition, 2020, 43, 317-326.	0.9	11
1172	Immobilization of metribuzin degrading bacterial consortium MB3R on biochar enhances bioremediation of potato vegetated soil and restores bacterial community structure. Journal of Hazardous Materials, 2020, 390, 121493.	6.5	50

#	Article	IF	CITATIONS
1173	Locally Adapted <i>Mimulus</i> Ecotypes Differentially Impact Rhizosphere Bacterial and Archaeal Communities in an Environment-Dependent Manner. Phytobiomes Journal, 2020, 4, 53-63.	1.4	6
1174	Interactions between putatively endophytic bacteria and tall fescue (Festuca arundinacea): plant growth promotion and colonization in host and non-host cultivars. Plant and Soil, 2020, 451, 207-220.	1.8	5
1175	Abundance, diversity and plantâ€specific adaptations of plantâ€ssociated lactic acid bacteria. Environmental Microbiology Reports, 2020, 12, 16-29.	1.0	63
1176	Sediment microbiomes associated with the rhizosphere of emergent macrophytes in a shallow, subtropical lake. Limnology and Oceanography, 2020, 65, S38.	1.6	46
1177	Screening for antagonistic bacteria against Fusarium oxysporum and their influence on the consecutive monoculture problem of Rehmannia glutinosa. Journal of Plant Pathology, 2020, 102, 489-497.	0.6	1
1178	Biochar mediates microbial communities and their metabolic characteristics under continuous monoculture. Chemosphere, 2020, 246, 125835.	4.2	24
1179	Responses of bacterial communities in wheat rhizospheres in different soils to di-n-butyl and di(2-ethylhexyl)phthalate contamination. Geoderma, 2020, 362, 114126.	2.3	27
1180	Soil biodiversity and biogeochemical function in managed ecosystems. Soil Research, 2020, 58, 1.	0.6	28
1181	Assessment of Local and Systemic Changes in Plant Gene Expression and Aphid Responses during Potato Interactions with Arbuscular Mycorrhizal Fungi and Potato Aphids. Plants, 2020, 9, 82.	1.6	8
1182	Diazinon degradation by bacterial endophytes in rice plant (Oryzia sativa L.): A possible reason for reducing the efficiency of diazinon in the control of the rice stem–borer. Chemosphere, 2020, 246, 125759.	4.2	22
1183	Root microbiota assembly and adaptive differentiation among European Arabidopsis populations. Nature Ecology and Evolution, 2020, 4, 122-131.	3.4	157
1184	Tolerance of Impatiens balsamina L., and Crotalaria retusa L. to grow on soil contaminated by used lubricating oil: A comparative study. Ecotoxicology and Environmental Safety, 2020, 188, 109911.	2.9	6
1185	Characteristics of microbial eukaryotic community recovery in eutrophic water by using ecological floating beds. Science of the Total Environment, 2020, 711, 134551.	3.9	24
1186	Tillage practices with different soil disturbance shape the rhizosphere bacterial community throughout crop growth. Soil and Tillage Research, 2020, 197, 104501.	2.6	46
1187	Steering root microbiomes of a commercial horticultural crop with plant-soil feedbacks. Applied Soil Ecology, 2020, 150, 103468.	2.1	26
1188	Shifts in Microbial Biomass C/N/P Stoichiometry and Bacterial Community Composition in Subtropical Estuarine Tidal Marshes Along a Gradient of Freshwater–Oligohaline Water. Ecosystems, 2020, 23, 1265-1280.	1.6	3
1189	Fungal community structure in relation to manure rate in red soil in southern China. Applied Soil Ecology, 2020, 147, 103442.	2.1	19
1190	Microbial resistance promotes plant production in a four-decade nutrient fertilization experiment. Soil Biology and Biochemistry, 2020, 141, 107679.	4.2	59

#	Article	IF	CITATIONS
1191	Endophytic bacteria Arthrobacter agilis UMCV2 and Bacillus methylotrophicus M4-96 stimulate achene germination, in vitro growth, and greenhouse yield of strawberry (Fragaria × ananassa). Scientia Horticulturae, 2020, 261, 109005.	1.7	21
1192	Endophytic bacterial communities of oilseed rape associate with genotype-specific resistance against Verticillium longisporum. FEMS Microbiology Ecology, 2020, 96, .	1.3	8
1193	The circadian clock coordinates plant development through specificity at the tissue and cellular level. Current Opinion in Plant Biology, 2020, 53, 65-72.	3.5	21
1194	Endophytic Microbiota Comparison of Dendrobium huoshanense Root and Stem in Different Growth Years. Planta Medica, 2020, 86, 967-975.	0.7	20
1195	Structure and ecological function of the soil microbiome affecting plant–soil feedbacks in the presence of a soilâ€borne pathogen. Environmental Microbiology, 2020, 22, 660-676.	1.8	36
1196	Taxonomy, life cycle and endophytism of coprophilous fungi from an underground desert rodent. Fungal Ecology, 2020, 43, 100872.	0.7	7
1197	Microbial regulation of natural antibiotic resistance: Understanding the protist-bacteria interactions for evolution of soil resistome. Science of the Total Environment, 2020, 705, 135882.	3.9	63
1198	The role of rhizodeposits in shaping rhizomicrobiome. Environmental Microbiology Reports, 2020, 12, 160-172.	1.0	56
1199	Foliar herbivory by caterpillars and aphids differentially affects phytohormonal signalling in roots and plant defence to a root herbivore. Plant, Cell and Environment, 2020, 43, 775-786.	2.8	31
1200	Rhizosphere modelling reveals spatiotemporal distribution of daidzein shaping soybean rhizosphere bacterial community. Plant, Cell and Environment, 2020, 43, 1036-1046.	2.8	63
1201	Tomato Genotype Modulates Selection and Responses to Root Microbiota. Phytobiomes Journal, 2020, 4, 314-326.	1.4	17
1202	Successional Change of the Fungal Microbiome Pine Seedling Roots Inoculated With Tricholoma matsutake. Frontiers in Microbiology, 2020, 11, 574146.	1.5	10
1203	Towards Healthy Planet Dietsâ€"A Transdisciplinary Approach to Food Sustainability Challenges. Challenges, 2020, 11, 21.	0.9	6
1204	Root-Secreted Coumarins and the Microbiota Interact to Improve Iron Nutrition in Arabidopsis. Cell Host and Microbe, 2020, 28, 825-837.e6.	5.1	199
1205	Phylogenetically conserved host traits and local abiotic conditions jointly drive the geography of parasite intensity. Functional Ecology, 2020, 34, 2477-2487.	1.7	4
1206	The invisible life inside plants: Deciphering the riddles of endophytic bacterial diversity. Biotechnology Advances, 2020, 44, 107614.	6.0	79
1207	A preliminary examination of the bacterial, archaeal, and fungal rhizosphere microbiome in healthy and <i>Phellinus noxius</i> i>â€infected trees. MicrobiologyOpen, 2020, 9, e1115.	1,2	6
1208	Breeding selection imposed a differential selective pressure on the wheat root-associated microbiome. FEMS Microbiology Ecology, 2020, 96, .	1.3	24

#	Article	IF	CITATIONS
1209	Novel Xanthomonas Species From the Perennial Ryegrass Seed Microbiome – Assessing the Bioprotection Activity of Non-pathogenic Relatives of Pathogens. Frontiers in Microbiology, 2020, 11, 1991.	1.5	18
1210	Determining the prevalence, identity and possible origin of bacterial pathogens in soil. Environmental Microbiology, 2020, 22, 5327-5340.	1.8	9
1211	Soil origin and plant genotype structure distinct microbiome compartments in the model legume Medicago truncatula. Microbiome, 2020, 8, 139.	4.9	101
1212	Filamentous Phytophthora Pathogens Deploy Effectors to Interfere With Bacterial Growth and Motility. Frontiers in Microbiology, 2020, 11, 581511.	1.5	7
1213	Chitin and Chitosan Fragments Responsible for Plant Elicitor and Growth Stimulator. Journal of Agricultural and Food Chemistry, 2020, 68, 12203-12211.	2.4	74
1214	Plant pathological condition is associated with fungal community succession triggered by root exudates in the plant-soil system. Soil Biology and Biochemistry, 2020, 151, 108046.	4.2	33
1215	Interkingdom signaling in plant-rhizomicrobiome interactions for sustainable agriculture. Microbiological Research, 2020, 241, 126589.	2.5	64
1216	Metagenomic characterization of microbial communities on plasticized fabric materials exposed to harsh tropical environments. International Biodeterioration and Biodegradation, 2020, 154, 105061.	1.9	17
1217	Global patterns and determinants of bacterial communities associated with ectomycorrhizal root tips of Alnus species. Soil Biology and Biochemistry, 2020, 148, 107923.	4.2	5
1218	Regulation of Cell Type-Specific Immunity Networks in Arabidopsis Roots. Plant Cell, 2020, 32, 2742-2762.	3.1	59
1219	Life in mine tailings: microbial population structure across the bulk soil, rhizosphere, and roots of boreal species colonizing mine tailings in northwestern Québec. Annals of Microbiology, 2020, 70, .	1,1	19
1220	Antagonistic activity of bacterial rhizosphere from rootstocks of tomato and eggplant against Ralstonia solanacearum. Acta Horticulturae, 2020, , 321-326.	0.1	0
1221	Composted Sewage Sludge Influences the Microbiome and Persistence of Human Pathogens in Soil. Microorganisms, 2020, 8, 1020.	1.6	17
1222	Understanding Phytomicrobiome: A Potential Reservoir for Better Crop Management. Sustainability, 2020, 12, 5446.	1.6	40
1223	Fungal volatiles influence plant defence against aboveâ€ground and belowâ€ground herbivory. Functional Ecology, 2020, 34, 2259-2269.	1.7	6
1224	Predicting disease occurrence with high accuracy based on soil macroecological patterns of Fusarium wilt. ISME Journal, 2020, 14, 2936-2950.	4.4	157
1225	Global Role of Crop Genomics in the Face of Climate Change. Frontiers in Plant Science, 2020, 11, 922.	1.7	45
1226	Effects of Enterobacter cloacae HG-1 on the Nitrogen-Fixing Community Structure of Wheat Rhizosphere Soil and on Salt Tolerance. Frontiers in Plant Science, 2020, 11, 1094.	1.7	30

#	Article	IF	CITATIONS
1227	Mitigation of Abiotic Stress in Legume-Nodulating Rhizobia for Sustainable Crop Production. Agricultural Research, 2020, 9, 444-459.	0.9	26
1228	Plant Microbiomes: Understanding the Aboveground Benefits. , 2020, , 51-80.		2
1229	Wheat Microbiome: Present Status and Future Perspective. , 2020, , 191-223.		12
1230	Structural variability and niche differentiation of the rhizosphere and endosphere fungal microbiome of Casuarina equisetifolia at different ages. Brazilian Journal of Microbiology, 2020, 51, 1873-1884.	0.8	7
1231	Tiny microbes, big yields: Microorganisms for enhancing food crop production for sustainable development., 2020, , 1-15.		58
1232	Crop rotation alleviates replant failure in Panax notoginseng (Burkill) F.H. Chen by changing the composition but not the structure of the microbial community. Plant, Soil and Environment, 2020, 66, 493-499.	1.0	4
1233	Broadening the GMO risk assessment in the EU for genome editing technologies in agriculture. Environmental Sciences Europe, 2020, 32, .	2.6	43
1234	Characterising the effect of crop species and fertilisation treatment on root fungal communities. Scientific Reports, 2020, 10, 18741.	1.6	6
1235	Recent Achievements and New Research Opportunities for Optimizing Macronutrient Availability, Acquisition, and Distribution for Perennial Fruit Crops. Agronomy, 2020, 10, 1738.	1.3	19
1236	Metagenomic Insights into Rhizospheric Microbiome Profiling in Lentil Cultivars Unveils Differential Microbial Nitrogen and Phosphorus Metabolism under Rice-Fallow Ecology. International Journal of Molecular Sciences, 2020, 21, 8895.	1.8	14
1237	Microbial Inoculation for Productivity Improvements and Potential Biological Control in Sugar Beet Crops. Frontiers in Plant Science, 2020, 11, 604898.	1.7	5
1238	Insights into the Fungal Community and Functional Roles of Pepper Rhizosphere Soil under Plastic Shed Cultivation. Diversity, 2020, 12, 432.	0.7	2
1239	The Evanescent GacS Signal. Microorganisms, 2020, 8, 1746.	1.6	21
1240	Quorum Sensing Inhibition Attenuates the Virulence of the Plant Pathogen <i>Ralstonia solanacearum</i> Species Complex. ACS Chemical Biology, 2020, 15, 3050-3059.	1.6	19
1241	Evaluating the Microbiome of Hemp. Phytobiomes Journal, 2020, 4, 351-363.	1.4	12
1243	Beyond Plant Microbiome Composition: Exploiting Microbial Functions and Plant Traits via Integrated Approaches. Frontiers in Bioengineering and Biotechnology, 2020, 8, 896.	2.0	44
1244	Soil microbiota influences clubroot disease by modulating <i>Plasmodiophora brassicae</i> and <i>Brassica napus</i> transcriptomes. Microbial Biotechnology, 2020, 13, 1648-1672.	2.0	22
1245	Chemical communication between Trichoderma and plants. , 2020, , 109-139.		2

#	Article	IF	CITATIONS
1246	Danger-Associated Peptide Regulates Root Immune Responses and Root Growth by Affecting ROS Formation in Arabidopsis. International Journal of Molecular Sciences, 2020, 21, 4590.	1.8	24
1247	Maltose and Totally Impermeable Film Enhanced Suppression of Anaerobic Soil Disinfestation on Soilborne Pathogens and Increased Strawberry Yield. Sustainability, 2020, 12, 5456.	1.6	3
1248	Phenolic Acids Released in Maize Rhizosphere During Maize-Soybean Intercropping Inhibit Phytophthora Blight of Soybean. Frontiers in Plant Science, 2020, 11, 886.	1.7	36
1249	Role of Microorganisms in the Remediation of Wastewater in Floating Treatment Wetlands: A Review. Sustainability, 2020, 12, 5559.	1.6	75
1250	Control of Fusarium wilt by wheat straw is associated with microbial network changes in watermelon rhizosphere. Scientific Reports, 2020, 10, 12736.	1.6	23
1251	Rhizosphere Spatiotemporal Organization–A Key to Rhizosphere Functions. Frontiers in Agronomy, 2020, 2, .	1.5	54
1252	Advances in Plant Microbiome and Sustainable Agriculture. Microorganisms for Sustainability, 2020, ,	0.4	10
1253	Chemotactic Host-Finding Strategies of Plant Endoparasites and Endophytes. Frontiers in Plant Science, 2020, 11, 1167.	1.7	16
1254	Phylogenetic signal of host plants in the bacterial and fungal root microbiomes of cultivated angiosperms. Plant Journal, 2020, 104, 522-531.	2.8	19
1255	Harnessing the Microbiomes of Suppressive Composts for Plant Protection: From Metagenomes to Beneficial Microorganisms and Reliable Diagnostics. Frontiers in Microbiology, 2020, 11, 1810.	1.5	34
1256	Exploration of microbial stimulants for induction of systemic resistance in plant disease management. Annals of Applied Biology, 2020, 177, 282-293.	1.3	18
1257	The endosphere bacteriome of diseased and healthy tomato plants. Archives of Microbiology, 2020, 202, 2629-2642.	1.0	10
1258	Mycorrhiza induced resistance (MIR): a defence developed through synergistic engagement of phytohormones, metabolites and rhizosphere. Functional Plant Biology, 2020, 47, 880.	1.1	23
1259	Trichoderma species show biocontrol potential against Ceratocystis wilt in mango plants. European Journal of Plant Pathology, 2020, 158, 781-788.	0.8	2
1260	Herbicidal Ionic Liquids: A Promising Future for Old Herbicides? Review on Synthesis, Toxicity, Biodegradation, and Efficacy Studies. Journal of Agricultural and Food Chemistry, 2020, 68, 10456-10488.	2.4	44
1261	More than words: the chemistry behind the interactions in the plant holobiont. Environmental Microbiology, 2020, 22, 4532-4544.	1.8	33
1262	Composition and function of rhizosphere microbiome of Panax notoginseng with discrepant yields. Chinese Medicine, 2020, 15, 85.	1.6	18
1263	Characterization of bacterial community structure in the rhizosphere of Triticum aestivum L Genomics, 2020, 112, 4760-4768.	1.3	15

#	Article	IF	CITATIONS
1264	Salt Marsh Elevation Drives Root Microbial Composition of the Native Invasive Grass Elytrigia atherica. Microorganisms, 2020, 8, 1619.	1.6	7
1266	Microbiome manipulation by a soil-borne fungal plant pathogen using effector proteins. Nature Plants, 2020, 6, 1365-1374.	4.7	118
1267	Testing the Two-Step Model of Plant Root Microbiome Acquisition Under Multiple Plant Species and Soil Sources. Frontiers in Microbiology, 2020, 11, 542742.	1.5	20
1268	Definition of Core Bacterial Taxa in Different Root Compartments of Dactylis glomerata, Grown in Soil under Different Levels of Land Use Intensity. Diversity, 2020, 12, 392.	0.7	7
1269	Understanding the Impact of Cultivar, Seed Origin, and Substrate on Bacterial Diversity of the Sugar Beet Rhizosphere and Suppression of Soil-Borne Pathogens. Frontiers in Plant Science, 2020, 11, 560869.	1.7	27
1270	Variation of rhizosphere bacterial community diversity in the desert ephemeral plant Ferula sinkiangensis across environmental gradients. Scientific Reports, 2020, 10, 18442.	1.6	3
1271	The concept and future prospects of soil health. Nature Reviews Earth & Environment, 2020, 1, 544-553.	12.2	486
1272	Growth of Arabidopsis thaliana in rhizobox culture system evaluated through the lens of root microbiome. Plant and Soil, 2020, 455, 467-487.	1.8	2
1273	Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression. Microbiome, 2020, 8, 137.	4.9	181
1274	Augmenting the Sustainability of Vegetable Cropping Systems by Configuring Rootstock-Dependent Rhizomicrobiomes that Support Plant Protection. Agronomy, 2020, 10, 1185.	1.3	9
1275	Effects of Lentil Genotype on the Colonization of Beneficial Trichoderma Species and Biocontrol of Aphanomyces Root Rot. Microorganisms, 2020, 8, 1290.	1.6	17
1276	Effect of anti-fungal compound phytosphingosine in wheat root exudates on the rhizosphere soil microbial community of watermelon. Plant and Soil, 2020, 456, 223-240.	1.8	32
1277	Evaluation of plant growth promotion properties and induction of antioxidative defense mechanism by tea rhizobacteria of Darjeeling, India. Scientific Reports, 2020, 10, 15536.	1.6	88
1278	Secretion dynamics of soyasaponins in soybean roots and effects to modify the bacterial composition. Plant Direct, 2020, 4, e00259.	0.8	35
1279	The Multi-Millennial Olive Agroecosystem of Salento (Apulia, Italy) Threatened by Xylella Fastidiosa Subsp. Pauca: A Working Possibility of Restoration. Sustainability, 2020, 12, 6700.	1.6	13
1280	Root Fungal Endophytes and Microbial Extracellular Enzyme Activities Show Patterned Responses in Tall Fescues under Drought Conditions. Agronomy, 2020, 10, 1076.	1.3	9
1281	Elevational is the main factor controlling the soil microbial community structure in alpine tundra of the Changbai Mountain. Scientific Reports, 2020, 10, 12442.	1.6	43
1282	Fungal-Associated Molecules Induce Key Genes Involved in the Biosynthesis of the Antifungal Secondary Metabolites Nunamycin and Nunapeptin in the Biocontrol Strain Pseudomonas fluorescens In5. Applied and Environmental Microbiology, 2020, 86, .	1.4	12

#	Article	IF	CITATIONS
1283	High Aluminum Drives Different Rhizobacterial Communities Between Aluminum-Tolerant and Aluminum-Sensitive Wild Soybean. Frontiers in Microbiology, 2020, 11, 1996.	1.5	22
1285	Alteration of Bacterial Wilt Resistance in Tomato Plant by Microbiota Transplant. Frontiers in Plant Science, 2020, 11, 1186.	1.7	36
1286	Exogenous application of plant hormones in the field alters aboveground plant–insect responses and belowground nutrient availability, but does not lead to differences in plant–soil feedbacks. Arthropod-Plant Interactions, 2020, 14, 559-570.	0.5	2
1287	Assessing the Plant Growth Promoting and Arsenic Tolerance Potential of Bradyrhizobium japonicum CB1809. Environmental Management, 2020, 66, 930-939.	1.2	8
1288	Mitigation of Salinity Stress in Wheat Seedlings Due to the Application of Phytohormone-Rich Culture Filtrate Extract of Methylotrophic Actinobacterium Nocardioides sp. NIMMe6. Frontiers in Microbiology, 2020, 11, 2091.	1.5	29
1289	Draft Genome Sequences of Six Strains Isolated from the Rhizosphere of Wheat Grown in Cadmium-Contaminated Soil. Microbiology Resource Announcements, 2020, 9, .	0.3	0
1290	Dynamic Changes in the Microbiome of Rice During Shoot and Root Growth Derived From Seeds. Frontiers in Microbiology, 2020, 11, 559728.	1.5	29
1291	Nanoparticle treatment of maize analyzed through the metatranscriptome: compromised nitrogen cycling, possible phytopathogen selection, and plant hormesis. Microbiome, 2020, 8, 127.	4.9	26
1292	Antibiotic Resistance in Soil. Handbook of Environmental Chemistry, 2020, , 267-293.	0.2	5
1293	Integrative Biological Control. Progress in Biological Control, 2020, , .	0.5	6
1294	Mechanistic Insights of the Interaction of Plant Growth-Promoting Rhizobacteria (PGPR) With Plant Roots Toward Enhancing Plant Productivity by Alleviating Salinity Stress. Frontiers in Microbiology, 2020, 11, 1952.	1.5	127
1295	Soil Application of a Formulated Biocontrol Rhizobacterium, Pseudomonas chlororaphis PCL1606, Induces Soil Suppressiveness by Impacting Specific Microbial Communities. Frontiers in Microbiology, 2020, 11, 1874.	1.5	17
1296	Antibiotic Resistance in the Environment. Handbook of Environmental Chemistry, 2020, , .	0.2	5
1297	Role of environmental factors in shaping the soil microbiome. Environmental Science and Pollution Research, 2020, 27, 41225-41247.	2.7	68
1298	Ginsenosides in root exudates of Panax notoginseng drive the change of soil microbiota through carbon source different utilization. Plant and Soil, 2020, 455, 139-153.	1.8	30
1299	Exploring the key microbial changes in the rhizosphere that affect the occurrence of tobacco root-knot nematodes. AMB Express, 2020, 10, 72.	1.4	19
1300	Two Food Waste By-Products Selectively Stimulate Beneficial Resident Citrus Host-Associated Microbes in a Zero-Runoff Indoor Plant Production System. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	6
1301	Microbe to Microbiome: A Paradigm Shift in the Application of Microorganisms for Sustainable Agriculture. Frontiers in Microbiology, 2020, 11, 622926.	1.5	88

#	Article	IF	CITATIONS
1302	Effects of potassium application on soil ecological resistance to Verticillium wilt of cotton (<i>Gossypium hirsutum</i> L.). Archives of Agronomy and Soil Science, 2022, 68, 488-502.	1.3	5
1303	Beneficial biofilms for land rehabilitation and fertilization. FEMS Microbiology Letters, 2020, 367, .	0.7	16
1304	Plant Health and Rhizosphere Microbiome: Effects of the Bionematicide Aphanocladium album in Tomato Plants Infested by Meloidogyne javanica. Microorganisms, 2020, 8, 1922.	1.6	18
1305	Bioeffectors as Biotechnological Tools to Boost Plant Innate Immunity: Signal Transduction Pathways Involved. Plants, 2020, 9, 1731.	1.6	7
1306	Effect of transgenic cotton continuous cropping on soil bacterial community. Annals of Microbiology, 2020, 70, .	1.1	8
1307	Inoculation With the Plant-Growth-Promoting Rhizobacterium Pseudomonas fluorescens LBUM677 Impacts the Rhizosphere Microbiome of Three Oilseed Crops. Frontiers in Microbiology, 2020, 11, 569366.	1.5	23
1308	Plant-associated fungal biofilmsâ€"knowns and unknowns. FEMS Microbiology Ecology, 2020, 96, .	1.3	15
1309	Linking Tree Health, Rhizosphere Physicochemical Properties, and Microbiome in Acute Oak Decline. Forests, 2020, 11, 1153.	0.9	12
1310	Soybean Nodule-Associated Non-Rhizobial Bacteria Inhibit Plant Pathogens and Induce Growth Promotion in Tomato. Plants, 2020, 9, 1494.	1.6	15
1311	The Role of Secretion Systems, Effectors, and Secondary Metabolites of Beneficial Rhizobacteria in Interactions With Plants and Microbes. Frontiers in Plant Science, 2020, 11, 589416.	1.7	51
1312	Plant Pellets: A Compatible Vegan Feedstock for Preparation of Plant-Based Culture Media and Production of Value-Added Biomass of Rhizobia. Sustainability, 2020, 12, 8389.	1.6	1
1313	Organic acids and root exudates of <i>Brachypodium distachyon</i> effects on chemotaxis and biofilm formation of endophytic bacteria. Canadian Journal of Microbiology, 2020, 66, 562-575.	0.8	23
1314	Microbial assemblages associated with the rhizosphere and endosphere of an herbage, <i>Leymus chinensis</i> . Microbial Biotechnology, 2020, 13, 1390-1402.	2.0	30
1315	Soil bacterial taxonomic diversity is critical to maintaining the plant productivity. Environment International, 2020, 140, 105766.	4.8	114
1316	Impact of long-term chemical fertilizer and organic amendment to Fusarium root rot of soybean. Oil Crop Science, 2020, 5, 48-53.	0.9	3
1317	The effect of microbial inoculant origin on the rhizosphere bacterial community composition and plant growth-promotion. Plant and Soil, 2020, 452, 105-117.	1.8	44
1318	Development of a defined compost system for the study of plant-microbe interactions. Scientific Reports, 2020, 10, 7521.	1.6	11
1319	Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Nature Microbiology, 2020, 5, 1002-1010.	5.9	260

#	Article	IF	CITATIONS
1320	Survival of <i>Curtobacterium flaccumfaciens</i> pv. <i>flaccumfaciens</i> in weeds. Plant Pathology, 2020, 69, 1357-1367.	1.2	16
1321	Dynamics Relationship of Phyllosphere and Rhizosphere Bacterial Communities During the Development of Bothriochloa ischaemum in Copper Tailings. Frontiers in Microbiology, 2020, 11, 869.	1.5	5
1322	Microbiome: Insect Herbivory Drives Plant Phyllosphere Dysbiosis. Current Biology, 2020, 30, R412-R414.	1.8	12
1323	Soil Chemical and Microbiological Properties Are Changed by Long-Term Chemical Fertilizers That Limit Ecosystem Functioning. Microorganisms, 2020, 8, 694.	1.6	79
1324	Comparative Analysis of Fungal Diversity in Rhizospheric Soil from Wild and Reintroduced Magnolia sinica Estimated via High-Throughput Sequencing. Plants, 2020, 9, 600.	1.6	10
1325	Azolla filiculoides L. as a source of metal-tolerantÂmicroorganisms. PLoS ONE, 2020, 15, e0232699.	1.1	24
1326	Long-term fertilization rather than plant species shapes rhizosphere and bulk soil prokaryotic communities in agroecosystems. Applied Soil Ecology, 2020, 154, 103641.	2.1	69
1327	Organic management promotes natural pest control through altered plant resistance to insects. Nature Plants, 2020, 6, 483-491.	4.7	79
1328	Biological Control Agents and Their Importance for the Plant Health. , 2020, , 13-36.		8
1329	Inhibition of Fungal Growth and Induction of a Novel Volatilome in Response to Chromobacterium vaccinii Volatile Organic Compounds. Frontiers in Microbiology, 2020, 11, 1035.	1.5	47
1330	Persistent organic fertilization reinforces soil-borne disease suppressiveness of rhizosphere bacterial community. Plant and Soil, 2020, 452, 313-328.	1.8	30
1331	Exploring plant rhizobacteria synergy to mitigate abiotic stress: a new dimension toward sustainable agriculture., 2020,, 861-882.		1
1332	Impact of Various Grass Species on Soil Bacteriobiome. Diversity, 2020, 12, 212.	0.7	10
1333	A practical assessment of nano-phosphate on soybean (Glycine max) growth and microbiome establishment. Scientific Reports, 2020, 10, 9151.	1.6	18
1334	Community structure and diversity of the microbiomes of two microhabitats at the root–soil interface: implications of meta-analysis of the root-zone soil and root endosphere microbial communities in Xiong'an New Area. Canadian Journal of Microbiology, 2020, 66, 605-622.	0.8	10
1335	Soil Health and Sustainable Agriculture. Sustainability, 2020, 12, 4859.	1.6	181
1336	Structural Variability and Co-Occurrence Pattern Differentiation in Rhizosphere Microbiomes of the Native Invasive Plant Echinochloa caudate in Momoge National Nature Reserve, China. Wetlands, 2020, 40, 587-597.	0.7	4
1337	Crop management system and carrot genotype affect endophyte composition and Alternaria dauci suppression. PLoS ONE, 2020, 15, e0233783.	1.1	19

#	Article	IF	CITATIONS
1338	High-Throughput Sequencing Reveals the Diversity and Community Structure in Rhizosphere Soils of Three Endangered Plants in Western Ordos, China. Current Microbiology, 2020, 77, 2713-2723.	1.0	11
1339	Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy. Science of the Total Environment, 2020, 738, 139840.	3.9	188
1340	Host genotype explains rhizospheric microbial community composition: the case of wild cotton metapopulations (Gossypium hirsutum L.) in Mexico. FEMS Microbiology Ecology, 2020, 96, .	1.3	7
1341	Nano-enabled improvements of growth and nutritional quality in food plants driven by rhizosphere processes. Environment International, 2020, 142, 105831.	4.8	106
1342	Change of rhizospheric bacterial community of the ancient wild tea along elevational gradients in Ailao mountain, China. Scientific Reports, 2020, 10, 9203.	1.6	19
1343	Defining and Managing for Healthy Vineyard Soils, Intersections With the Concept of Terroir. Frontiers in Environmental Science, 2020, 8, .	1.5	33
1344	Microbiome approaches provide the key to biologically control postharvest pathogens and storability of fruits and vegetables. FEMS Microbiology Ecology, 2020, 96, .	1.3	54
1345	Facing Climate Change: Application of Microbial Biostimulants to Mitigate Stress in Horticultural Crops. Agronomy, 2020, 10, 794.	1.3	77
1346	Heterogeneity of the rice microbial community of the Chinese centuriesâ€old Honghe Hani rice terraces system. Environmental Microbiology, 2020, 22, 3429-3445.	1.8	8
1347	Metabolite profiling of rhizosphere soil of different allelopathic potential rice accessions. BMC Plant Biology, 2020, 20, 265.	1.6	13
1348	Soil Sickness in Aged Tea Plantation Is Associated With a Shift in Microbial Communities as a Result of Plant Polyphenol Accumulation in the Tea Gardens. Frontiers in Plant Science, 2020, 11, 601.	1.7	54
1349	Phytomicrobiome Coordination Signals Hold Potential for Climate Change-Resilient Agriculture. Frontiers in Plant Science, 2020, 11, 634.	1.7	36
1351	Is the Application of Plant Probiotic Bacterial Consortia Always Beneficial for Plants? Exploring Synergies between Rhizobial and Non-Rhizobial Bacteria and Their Effects on Agro-Economically Valuable Crops. Life, 2020, 10, 24.	1.1	33
1352	Microbial inoculation in rice regulates antioxidative reactions and defense related genes to mitigate drought stress. Scientific Reports, 2020, 10, 4818.	1.6	73
1353	Omics applications: towards a sustainable protection of tomato. Applied Microbiology and Biotechnology, 2020, 104, 4185-4195.	1.7	7
1354	Agriculturally important microbial biofilms: Biodiversity, ecological significances, and biotechnological applications., 2020,, 221-265.		25
1355	Metabolome Analysis Identified Okaramines in the Soybean Rhizosphere as a Legacy of Hairy Vetch. Frontiers in Genetics, 2020, 11, 114.	1.1	13
1356	Plant Microbiomes for Sustainable Agriculture. Sustainable Development and Biodiversity, 2020, , .	1.4	134

#	ARTICLE	IF	CITATIONS
1357	Potential Interactions between Invasive Fusarium circinatum and Other Pine Pathogens in Europe. Forests, 2020, 11, 7.	0.9	26
1358	Genomic insights of plant endophyte interaction: prospective and impact on plant fitness. , 2020, , 227-249.		5
1359	Factors that shape the host microbiome. , 2020, , 55-77.		5
1360	Adapting to environmental change. , 2020, , 154-181.		2
1361	Tailoring plant-associated microbial inoculants in agriculture: a roadmap for successful application. Journal of Experimental Botany, 2020, 71, 3878-3901.	2.4	118
1362	Controversies over human health and ecological impacts of glyphosate: Is it to be banned in modern agriculture?. Environmental Pollution, 2020, 263, 114372.	3.7	116
1363	Tissue age, orchard location and disease management influence the composition of fungal and bacterial communities present on the bark of apple trees. Environmental Microbiology, 2020, 22, 2080-2093.	1.8	17
1364	Cannabis Microbiome and the Role of Endophytes in Modulating the Production of Secondary Metabolites: An Overview. Microorganisms, 2020, 8, 355.	1.6	63
1365	Spatial Variation in Soil Fungal Communities across Paddy Fields in Subtropical China. MSystems, 2020, 5, .	1.7	56
1366	Predictive breeding for maize: Making use of molecular phenotypes, machine learning, and physiological crop models. Crop Science, 2020, 60, 622-638.	0.8	32
1367	Community context for mechanisms of disease dilution: insights from linking epidemiology and plant–soil feedback theory. Annals of the New York Academy of Sciences, 2020, 1469, 65-85.	1.8	16
1368	Taxonomic Characterization and Secondary Metabolite Analysis of NEAU-wh3-1: An Embleya Strain with Antitumor and Antibacterial Activity. Microorganisms, 2020, 8, 441.	1.6	3
1369	Plant Microbe Symbiosis., 2020,,.		13
1370	Do soilâ€borne fungal pathogens mediate plant diversity–productivity relationships? Evidence and future opportunities. Journal of Ecology, 2020, 108, 1810-1821.	1.9	49
1371	The Complexity of the Holobiont in the Red Sea Coral Euphyllia paradivisa under Heat Stress. Microorganisms, 2020, 8, 372.	1.6	6
1372	Rhizosphere and Endophytic Bacteria Associated to Ocimum basilicum L. with Decaclorobiphenyl Removal Potential. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	8
1373	Microbial biofilms: Functional annotation and potential applications in agriculture and allied sectors., 2020,, 283-301.		22
1374	Fungal diversity and community composition of wheat rhizosphere and non-rhizosphere soils from three different agricultural production regions of South Africa. Applied Soil Ecology, 2020, 151, 103543.	2.1	32

#	Article	IF	CITATIONS
1375	Rhizosphere protists are key determinants of plant health. Microbiome, 2020, 8, 27.	4.9	156
1376	Getting ready with the priming: Innovative weapons against biotic and abiotic crop enemies in a global changing scenario., 2020,, 35-56.		11
1377	Impact of Soil Microbial Amendments on Tomato Rhizosphere Microbiome and Plant Growth in Field Soil. Microbial Ecology, 2020, 80, 398-409.	1.4	35
1378	The Biocontrol Agent and Insect Pathogen Photorhabdus luminescens Interacts with Plant Roots. Applied and Environmental Microbiology, 2020, 86, .	1.4	18
1379	Stage-dependent concomitant microbial fortification improves soil nutrient status, plant growth, antioxidative defense system and gene expression in rice. Microbiological Research, 2020, 239, 126538.	2.5	26
1380	Linking Short-Chain N-Acyl Homoserine Lactone-Mediated Quorum Sensing and Replant Disease: A Case Study of Rehmannia glutinosa. Frontiers in Plant Science, 2020, 11, 787.	1.7	12
1381	Atractylodes lancea volatiles induce physiological responses in neighboring peanut plant during intercropping. Plant and Soil, 2020, 453, 409-422.	1.8	10
1382	Expansion of shrubs could result in local loss of soil bacterial richness in Western Greenland. FEMS Microbiology Ecology, 2020, 96, .	1.3	5
1383	Plant Hosts Modify Belowground Microbial Community Response to Extreme Drought. MSystems, 2020, 5, .	1.7	36
1384	The Effect of Plant Geographical Location and Developmental Stage on Root-Associated Microbiomes of Gymnadenia conopsea. Frontiers in Microbiology, 2020, 11, 1257.	1.5	30
1385	Pathogenic and Non-Pathogenic Fungal Communities in Wheat Grain as Influenced by Recycled Phosphorus Fertilizers: A Case Study. Agriculture (Switzerland), 2020, 10, 239.	1.4	8
1386	The Presence of Plant-Associated Bacteria Alters Responses to N-acyl Homoserine Lactone Quorum Sensing Signals that Modulate Nodulation in Medicago Truncatula. Plants, 2020, 9, 777.	1.6	10
1387	Co-cultivation of Beta vulgaris limits the pre-harvest colonization of foodborne pathogen (Salmonella spp.) on tomato. International Journal of Food Microbiology, 2020, 332, 108768.	2.1	4
1388	Deciphering the relative importance of soil and plant traits on the development of rhizosphere microbial communities. Soil Biology and Biochemistry, 2020, 148, 107909.	4.2	56
1389	Siderophore-Mediated Interactions Determine the Disease Suppressiveness of Microbial Consortia. MSystems, 2020, 5, .	1.7	37
1390	Fast computation of genome-metagenome interaction effects. Algorithms for Molecular Biology, 2020, 15, 13.	0.3	2
1391	The Rhizosphere Microbiome of Mikania micrantha Provides Insight Into Adaptation and Invasion. Frontiers in Microbiology, 2020, 11, 1462.	1.5	21
1392	Chemical structure predicts the effect of plantâ€derived lowâ€molecular weight compounds on soil microbiome structure and pathogen suppression. Functional Ecology, 2020, 34, 2158-2169.	1.7	34

#	Article	IF	CITATIONS
1393	Abundance of kinless hubs within soil microbial networks are associated with high functional potential in agricultural ecosystems. Environment International, 2020, 142, 105869.	4.8	158
1394	Short-Term Effects of Eco-Friendly Fertilizers on a Soil Bacterial Community in the Topsoil and Rhizosphere of an Irrigated Agroecosystem. Sustainability, 2020, 12, 4803.	1.6	1
1395	Responses of microbial communities and metabolic activities in the rhizosphere during phytoremediation of Cd-contaminated soil. Ecotoxicology and Environmental Safety, 2020, 202, 110958.	2.9	44
1396	Aphid-induced tobacco resistance against Ralstonia solanacearum is associated with changes in the salicylic acid level and rhizospheric microbial community. European Journal of Plant Pathology, 2020, 157, 465-483.	0.8	6
1397	Grasslands and Shrublands of the Mediterranean Region. , 2020, , 638-655.		7
1398	Flavobacterium pokkalii sp. nov., a novel plant growth promoting native rhizobacteria isolated from pokkali rice grown in coastal saline affected agricultural regions of southern India, Kerala. Microbiological Research, 2020, 240, 126533.	2.5	14
1399	Modulation of Plant Defense System in Response to Microbial Interactions. Frontiers in Microbiology, 2020, 11, 1298.	1.5	131
1400	Understanding the evolution of interspecies interactions in microbial communities. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190256.	1.8	68
1401	Plant microbiome–an account of the factors that shape community composition and diversity. Current Plant Biology, 2020, 23, 100161.	2.3	213
1402	A Gnotobiotic System for Studying Microbiome Assembly in the Phyllosphere and in Vegetable Fermentation. Journal of Visualized Experiments, 2020, , .	0.2	0
1403	Enantioselective effects of imazethapyr on Arabidopsis thaliana root exudates and rhizosphere microbes. Science of the Total Environment, 2020, 716, 137121.	3.9	37
1404	Core microbiomes: Characterization and identification. , 2020, , 43-84.		0
1405	Molecular mechanism of plant-microbe interactions. , 2020, , 85-136.		1
1406	Metabolomics and microbial biocontrol agents. , 2020, , 181-229.		3
1407	Rhizosphere Microbiome of Arid Land Medicinal Plants and Extra Cellular Enzymes Contribute to Their Abundance. Microorganisms, 2020, 8, 213.	1.6	37
1408	Rhizobium Inoculation Drives the Shifting of Rhizosphere Fungal Community in a Host Genotype Dependent Manner. Frontiers in Microbiology, 2019, 10, 3135.	1.5	23
1409	Analysis of bacterial and fungal communities in continuous-cropping ramie (Boehmeria nivea L. Gaud) fields in different areas in China. Scientific Reports, 2020, 10, 3264.	1.6	22
1410	Bacterial Community Structure of Pinus Thunbergii Naturally Infected by the Nematode Bursaphelenchus Xylophilus. Microorganisms, 2020, 8, 307.	1.6	19

#	Article	IF	CITATIONS
1411	Endophytic Bacterial Microbiome Diversity in Early Developmental Stage Plant Tissues of Wheat Varieties. Plants, 2020, 9, 266.	1.6	22
1412	Microbial niches in raw ingredients determine microbial community assembly during kimchi fermentation. Food Chemistry, 2020, 318, 126481.	4.2	66
1413	Structure, Function, Diversity, and Composition of Fungal Communities in Rhizospheric Soil of Coptis chinensis Franch under a Successive Cropping System. Plants, 2020, 9, 244.	1.6	34
1414	Impact of plant genotype and plant habitat in shaping bacterial pathobiome: a comparative study in olive tree. Scientific Reports, 2020, 10, 3475.	1.6	23
1415	Sustainable Agriculture Reviews 41. Sustainable Agriculture Reviews, 2020, , .	0.6	7
1416	Microbial community analysis using high-throughput sequencing technology: a beginner's guide for microbiologists. Journal of Microbiology, 2020, 58, 176-192.	1.3	42
1417	Variations in the concentrations of macro- and trace elements in two grasses and in the rhizosphere soil during a day. Environmental Pollution, 2020, 262, 114265.	3.7	4
1418	Insect pollination: an ecological process involved in the assembly of the seed microbiota. Scientific Reports, 2020, 10, 3575.	1.6	34
1419	Understanding the reestablishment of micro-ecosystem on the soil microbial community after Merapi Volcano eruption through 16S metagenomic analysis. IOP Conference Series: Earth and Environmental Science, 2020, 439, 012007.	0.2	0
1420	Rhizospheric soil fungal community patterns of <i>Duchesnea indica</i> in response to altitude gradient in Yunnan, southwest China. Canadian Journal of Microbiology, 2020, 66, 359-367.	0.8	8
1421	The biocontrol agent Streptomyces pactum increases Pseudomonas koreensis populations in the rhizosphere by enhancing chemotaxis and biofilm formation. Soil Biology and Biochemistry, 2020, 144, 107755.	4.2	39
1422	Interaction of Engineered Nanomaterials with Soil Microbiome and Plants: Their Impact on Plant and Soil Health. Sustainable Agriculture Reviews, 2020, , 181-199.	0.6	15
1423	Similar drivers but different effects lead to distinct ecological patterns of soil bacterial and archaeal communities. Soil Biology and Biochemistry, 2020, 144, 107759.	4.2	83
1424	Structure, Diversity, and Composition of Bacterial Communities in Rhizospheric Soil of Coptis chinensis Franch under Continuously Cropped Fields. Diversity, 2020, 12, 57.	0.7	18
1425	Resident and phytometer plants host comparable rhizosphere fungal communities in managed grassland ecosystems. Scientific Reports, 2020, 10, 919.	1.6	16
1426	Priming maize seeds with cyanobacteria enhances seed vigour and plant growth in elite maize inbreds. 3 Biotech, 2020, 10, 154.	1.1	20
1427	Differences in elemental composition of tailings, soils, and plant tissues following five decades of native plant colonization on a gold mine site in Northwestern Québec. Chemosphere, 2020, 250, 126243.	4.2	13
1428	Myxobacterial Response to Methyljasmonate Exposure Indicates Contribution to Plant Recruitment of Micropredators. Frontiers in Microbiology, 2020, 11, 34.	1.5	10

#	Article	IF	Citations
1429	Community Structures and Antifungal Activity of Root-Associated Endophytic Actinobacteria in Healthy and Diseased Cucumber Plants and Streptomyces sp. HAAG3-15 as a Promising Biocontrol Agent. Microorganisms, 2020, 8, 236.	1.6	31
1431	Deploying root microbiome of halophytes to improve salinity tolerance of crops. Plant Biotechnology Reports, 2020, 14, 143-150.	0.9	9
1432	Woody Plant Declines. What's Wrong with the Microbiome?. Trends in Plant Science, 2020, 25, 381-394.	4.3	48
1433	Microbial ecology in sustainable fruit growing: Genetic, functional, and metabolic responses. , 2020, , 317-324.		0
1434	Diversity and space–time dynamics of the bacterial communities in cotton (<i>Gossypium) Tj ETQq0 0 0 rgBT</i>	/Overlock	10 ₁ Tf 50 582
1435	Interaction variability shapes succession of synthetic microbial ecosystems. Nature Communications, 2020, 11, 309.	5.8	33
1436	Legacy effects of 8-year nitrogen inputs on bacterial assemblage in wheat rhizosphere. Biology and Fertility of Soils, 2020, 56, 583-596.	2.3	35
1437	Jasmonic Acid, Not Salicyclic Acid Restricts Endophytic Root Colonization of Rice. Frontiers in Plant Science, 2019, 10, 1758.	1.7	40
1438	Revealing the Variation and Stability of Bacterial Communities in Tomato Rhizosphere Microbiota. Microorganisms, 2020, 8, 170.	1.6	57
1439	Modulation of the Root Microbiome by Plant Molecules: The Basis for Targeted Disease Suppression and Plant Growth Promotion. Frontiers in Plant Science, 2019, 10, 1741.	1.7	354
1440	Trade-off between potential phytopathogenic and non-phytopathogenic fungi in the peanut monoculture cultivation system. Applied Soil Ecology, 2020, 148, 103508.	2.1	11
1441	Arbuscular mycorrhizal fungi biofertilizer improves American ginseng (Panax quinquefolius L.) growth under the continuous cropping regime. Geoderma, 2020, 363, 114155.	2.3	65
1442	Diversity and plant growth-promoting functions of diazotrophic/N-scavenging bacteria isolated from the soils and rhizospheres of two species of Solanum. PLoS ONE, 2020, 15, e0227422.	1.1	39
1443	Root endophytic fungi impact host plant biomass and respond to plant composition at varying spatio-temporal scales. Fungal Ecology, 2020, 44, 100907.	0.7	12
1444	Increase in phenolic compounds of <i>Coriandrum sativum</i> L. after the application of a <i>Bacillus halotolerans</i> biofertilizer. Journal of the Science of Food and Agriculture, 2020, 100, 2742-2749.	1.7	34
1445	Disease-suppressive compost enhances natural soil suppressiveness against soil-borne plant pathogens: A critical review. Rhizosphere, 2020, 13, 100192.	1.4	98
1446	Microbial Community Changes in the Rhizosphere Soil of Healthy and Rusty <i>Panax ginseng </i> and Discovery of Pivotal Fungal Genera Associated with Rusty Roots. BioMed Research International, 2020, 2020, 1-13.	0.9	41
1447	Bacillus velezensis BM21, a potential and efficient biocontrol agent in control of corn stalk rot caused by Fusarium graminearum. Egyptian Journal of Biological Pest Control, 2020, 30, .	0.8	41

#	Article	IF	CITATIONS
1448	Effects of Soil Microbes on Functional Traits of Loblolly Pine (Pinus taeda) Seedling Families From Contrasting Climates. Frontiers in Plant Science, 2019, 10, 1643.	1.7	7
1449	Soil microbial mechanisms promoting ultrahigh rice yield. Soil Biology and Biochemistry, 2020, 143, 107741.	4.2	38
1450	Mercury alters the rhizobacterial community in Brazilian wetlands and it can be bioremediated by the plant-bacteria association. Environmental Science and Pollution Research, 2020, 27, 13550-13564.	2.7	23
1451	Long-term continuously monocropped peanut significantly disturbed the balance of soil fungal communities. Journal of Microbiology, 2020, 58, 563-573.	1.3	13
1452	The Microbiomes of Seven Lichen Genera Reveal Host Specificity, a Reduced Core Community and Potential as Source of Antimicrobials. Frontiers in Microbiology, 2020, 11, 398.	1.5	36
1453	Plant microbiome analysis after MetarhiziumÂamendment reveals increases in abundance of plant growth-promoting organismsÂand maintenance of disease-suppressive soil. PLoS ONE, 2020, 15, e0231150.	1.1	42
1454	Antibiotics and Antimicrobial Resistance Genes. Emerging Contaminants and Associated Treatment Technologies, 2020, , .	0.4	7
1455	Endophytic Bacteria Associated with Medicinal Plant Vernonia anthelmintica: Diversity and Characterization. Current Microbiology, 2020, 77, 1457-1465.	1.0	26
1456	Effects of Cd-resistant bacteria and calcium carbonate + sepiolite on Cd availability in contaminated paddy soil and on Cd accumulation in brown rice grains. Ecotoxicology and Environmental Safety, 2020, 195, 110492.	2.9	12
1457	Revealing structure and assembly for rhizophyte-endophyte diazotrophic community in mangrove ecosystem after introduced Sonneratia apetala and Laguncularia racemosa. Science of the Total Environment, 2020, 721, 137807.	3.9	35
1458	Responses of soil bacterial community and Cd phytoextraction to a Sedum alfredii-oilseed rape (Brassica napus L. and Brassica juncea L.) intercropping system. Science of the Total Environment, 2020, 723, 138152.	3.9	61
1459	Rhizosphere Microbiome Assembly and Its Impact on Plant Growth. Journal of Agricultural and Food Chemistry, 2020, 68, 5024-5038.	2.4	238
1460	A plant genetic network for preventing dysbiosis in the phyllosphere. Nature, 2020, 580, 653-657.	13.7	304
1461	Soil Metagenomics: Concepts and Applications. , 0, , .		7
1462	Arbuscular Mycorrhizal Fungal Assemblages Significantly Shifted upon Bacterial Inoculation in Non-Contaminated and Petroleum-Contaminated Environments. Microorganisms, 2020, 8, 602.	1.6	19
1463	Microbial community overlap between the phyllosphere and rhizosphere of three plants from Yongxing Island, South China Sea. MicrobiologyOpen, 2020, 9, e1048.	1.2	18
1464	Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean. ISME Journal, 2020, 14, 1915-1928.	4.4	154
1465	Evaluation of the biocontrol potential of Bacillus sp. WB against Fusarium oxysporum f. sp. niveum. Biological Control, 2020, 147, 104288.	1.4	32

#	Article	IF	CITATIONS
1466	Microbiome-Mediated Stress Resistance in Plants. Trends in Plant Science, 2020, 25, 733-743.	4.3	347
1467	Phylogenetic farming: Can evolutionary history predict crop rotation via the soil microbiome?. Evolutionary Applications, 2020, 13, 1984-1999.	1.5	17
1468	Forest Tree Associated Bacterial Diffusible and Volatile Organic Compounds against Various Phytopathogenic Fungi. Microorganisms, 2020, 8, 590.	1.6	36
1469	Comparison of the Rhizosphere Soil Microbial Community Structure and Diversity Between Powdery Mildew-Infected and Noninfected Strawberry Plants in a Greenhouse by High-Throughput Sequencing Technology. Current Microbiology, 2020, 77, 1724-1736.	1.0	18
1470	Overview and challenges in the implementation of plant beneficial microbes. , 2020, , 1-18.		3
1471	Knock, knock-let the bacteria in: enzymatic potential of plant associated bacteria., 2020,, 169-178.		6
1472	Effects of mineral-solubilizing microbial strains on the mechanical responses of roots and root-reinforced soil in external-soil spray seeding substrate. Science of the Total Environment, 2020, 723, 138079.	3.9	15
1473	Discovering the bacteriome of Vitis vinifera cv. Pinot Noir in a conventionally managed vineyard. Scientific Reports, 2020, 10, 6453.	1.6	12
1474	The Composition of the Fungal and Oomycete Microbiome of <i>Rhododendron</i> Roots Under Varying Growth Conditions, Nurseries, and Cultivars. Phytobiomes Journal, 2020, 4, 156-164.	1.4	13
1475	Harnessing rhizosphere microbiomes for drought-resilient crop production. Science, 2020, 368, 270-274.	6.0	442
1476	Long-Term Phytoremediation of Coastal Saline Soil Reveals Plant Species-Specific Patterns of Microbial Community Recruitment. MSystems, 2020, 5, .	1.7	49
1477	High abundance of Ralstonia solanacearum changed tomato rhizosphere microbiome and metabolome. BMC Plant Biology, 2020, 20, 166.	1.6	40
1478	A predatory myxobacterium controls cucumber Fusarium wilt by regulating the soil microbial community. Microbiome, 2020, 8, 49.	4.9	87
1479	Rhizobacteria and its biofilm for sustainable agriculture: A concise review. , 2020, , 165-175.		12
1480	Rhizosphere microbial diversity and community dynamics during potato cultivation. European Journal of Soil Biology, 2020, 98, 103176.	1.4	60
1481	Effects of burning and mowing on the soil microbiome of restored tallgrass prairie. European Journal of Soil Science, 2021, 72, 385-399.	1.8	3
1482	Dramatic changes in bacterial co-occurrence patterns and keystone taxa responses to cropping systems in Mollisols of Northeast China. Archives of Agronomy and Soil Science, 2021, 67, 426-434.	1.3	5
1483	Inhibitory effects of non-volatiles lipopeptides and volatiles ketones metabolites secreted by Bacillus velezensis C16 against Alternaria solani. Biological Control, 2021, 152, 104421.	1.4	27

#	Article	IF	CITATIONS
1485	The Ecology and Evolution of Amoeba-Bacterium Interactions. Applied and Environmental Microbiology, 2021, 87, .	1.4	42
1486	Plant–Microbe Association for Mutual Benefits for Plant Growth and Soil Health. Environmental and Microbial Biotechnology, 2021, , 95-121.	0.4	15
1487	Phytophthora Species Associated with Roots of Native and Non-native Trees in Natural and Managed Forests. Microbial Ecology, 2021, 81, 122-133.	1.4	13
1488	Synthetic community with six <i>Pseudomonas</i> strains screened from garlic rhizosphere microbiome promotes plant growth. Microbial Biotechnology, 2021, 14, 488-502.	2.0	66
1489	Targeted plant hologenome editing for plant trait enhancement. New Phytologist, 2021, 229, 1067-1077.	3.5	25
1490	Comparing root concentration factors of antibiotics for lettuce (Lactuca sativa) measured in rhizosphere and bulk soils. Chemosphere, 2021, 262, 127677.	4.2	12
1491	Coumarin Communication Along the Microbiome–Root–Shoot Axis. Trends in Plant Science, 2021, 26, 169-183.	4.3	107
1492	Systemic propagation of immunity in plants. New Phytologist, 2021, 229, 1234-1250.	3 . 5	193
1493	Infochemicals in terrestrial plants and seaweed holobionts: current and future trends. New Phytologist, 2021, 229, 1852-1860.	3.5	19
1494	Fight hard or die trying: when plants face pathogens under heat stress. New Phytologist, 2021, 229, 712-734.	3 . 5	94
1495	Temporal and spatial dynamics in the apple flower microbiome in the presence of the phytopathogen <i>Erwinia amylovora</i> . ISME Journal, 2021, 15, 318-329.	4.4	49
1496	The soil biotic community protects Rhododendron spp. across multiple clades from the oomycete Phytophthora cinnamomi at a cost to plant growth. Oecologia, 2021, 195, 1-12.	0.9	5
1497	Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiological Research, 2021, 242, 126626.	2.5	170
1498	Competitive exclusion amongst endophytes determines shoot blight severity on pine. Functional Ecology, 2021, 35, 239-254.	1.7	27
1499	Endophytic fungal community succession in reproductive organs of two olive tree cultivars with contrasting anthracnose susceptibilities. Fungal Ecology, 2021, 49, 101003.	0.7	6
1500	Molecular Aspects of Plant Growth Promotion and Protection by (i) Bacillus subtilis (i). Molecular Plant-Microbe Interactions, 2021, 34, 15-25.	1.4	134
1501	Changes in rhizosphere microbial diversity and composition due to NaCl addition to the soil modify the outcome of maize-weed interactions. Applied Soil Ecology, 2021, 159, 103818.	2.1	2
1502	Microbial networks inferred from environmental DNA data for biomonitoring ecosystem change: Strengths and pitfalls. Molecular Ecology Resources, 2021, 21, 762-780.	2.2	17

#	Article	IF	CITATIONS
1503	Innovations in Land, Water and Energy for Vietnam's Sustainable Development. UNIPA Springer Series, 2021, , .	0.1	2
1504	Exploring the communities of bacteria, fungi and ammonia oxidizers in rhizosphere of Fusarium-diseased greenhouse cucumber. Applied Soil Ecology, 2021, 161, 103832.	2.1	14
1505	Rhizosphere soil microbiomes: As driver of agriculture commodity and industrial application. , 2021, , 183-195.		3
1506	Metagenomic assessment of the global diversity and distribution of bacteria and fungi. Environmental Microbiology, 2021, 23, 316-326.	1.8	42
1507	Taxonomic and Functional Shifts in the Sprout Spent Irrigation Water Microbiome in Response to <i>Salmonella</i> Contamination of Alfalfa Seeds. Applied and Environmental Microbiology, 2021, 87, .	1.4	4
1508	Metabolic potential and community structure of bacteria in an organic tea plantation. Applied Soil Ecology, 2021, 157, 103762.	2.1	27
1509	Abiotic Influences on the Early Evolution of Life. Encyclopedia of the UN Sustainable Development Goals, 2021, , 1-12.	0.0	0
1510	Development of indigenous microbial consortium for biocontrol management. , 2021, , 91-104.		6
1511	Secondary metabolites from bacteria and viruses. , 2021, , 19-40.		7
1512	First report on the microbial communities of the wild and planted raspberry rhizosphere – A statement on the taxa, processes and a new indicator of functional diversity. Ecological Indicators, 2021, 121, 107117.	2.6	10
1513	Maize endophytic microbial-communities revealed by removing PCR and 16S rRNA sequencing and their synthetic applications to suppress maize banded leaf and sheath blight. Microbiological Research, 2021, 242, 126639.	2.5	17
1514	Effects of growthâ€promoting rhizobacteria on maize growth and rhizosphere microbial community under conservation tillage in Northeast China. Microbial Biotechnology, 2021, 14, 535-550.	2.0	46
1515	Microbial diversity and community structure changes in the rhizosphere soils of <i>Atractylodes lancea</i> from different planting years. Plant Signaling and Behavior, 2021, 16, 1854507.	1.2	14
1516	Differential effects of the rhizobacterium Pseudomonas simiae on above―and belowground chewing insect herbivores. Journal of Applied Entomology, 2021, 145, 250-260.	0.8	7
1517	Hormones as goâ€betweens in plant microbiome assembly. Plant Journal, 2021, 105, 518-541.	2.8	115
1518	Application of pharmaceutical waste sludge compost alters the antibiotic resistome in soil under the Chinese cabbage system. Journal of Cleaner Production, 2021, 291, 125229.	4.6	17
1519	Resident rhizosphere microbiome's ecological dynamics and conservation: Towards achieving the envisioned Sustainable Development Goals, a review. International Soil and Water Conservation Research, 2021, 9, 127-142.	3.0	21
1520	Phyllosphere microbiome: modern prospectus and application. , 2021, , 345-366.		4

#	Article	IF	CITATIONS
1521	The salt-tolerant phenazine-1-carboxamide-producing bacterium Pseudomonas aeruginosa NF011 isolated from wheat rhizosphere soil in dry farmland with antagonism against Fusarium graminearum. Microbiological Research, 2021, 245, 126673.	2.5	17
1522	Evaluation of bioformulation of Enterobacter sp. UPMSSB7 and mycorrhizae with silicon for white root rot disease suppression and growth promotion of rubber seedlings inoculated with Rigidoporus microporus. Biological Control, 2021, 152, 104467.	1.4	3
1523	Microbiomeâ€wide association studies reveal correlations between the structure and metabolism of the rhizosphere microbiome and disease resistance in cassava. Plant Biotechnology Journal, 2021, 19, 689-701.	4.1	24
1524	Combination of Siderophore-Producing Bacteria and Piriformospora indica Provides an Efficient Approach to Improve Cadmium Tolerance in Alfalfa. Microbial Ecology, 2021, 81, 717-730.	1.4	39
1525	Functions of mineral-solubilizing microbes and a water retaining agent for the remediation of abandoned mine sites. Science of the Total Environment, 2021, 761, 143215.	3.9	18
1526	Bidirectional plantâ€mediated interactions between rhizobacteria and shootâ€feeding herbivorous insects: a community ecology perspective. Ecological Entomology, 2021, 46, 1-10.	1.1	19
1527	Root exudates drive soilâ€microbeâ€nutrient feedbacks in response to plant growth. Plant, Cell and Environment, 2021, 44, 613-628.	2.8	150
1528	Denaturing gradient gel electrophoresis and multi-SIR profiles of soil microbial communities from a karst doline at Aggtelek National Park, Hungary. Folia Microbiologica, 2021, 66, 107-114.	1.1	3
1529	Isoflavone malonyl-CoA acyltransferase GmMaT2 is involved in nodulation of soybean by modifying synthesis and secretion of isoflavones. Journal of Experimental Botany, 2021, 72, 1349-1369.	2.4	25
1530	The rhizosphere microbiome: functions, dynamics, and role in plant protection. Tropical Plant Pathology, 2021, 46, 13-25.	0.8	34
1532	Cyanobacterium-primed Chrysanthemum nursery improves performance of the plant and soil quality. Biology and Fertility of Soils, 2021, 57, 89-105.	2.3	8
1533	Plant defense priming in the field: a review. , 2021, , 87-124.		9
1534	Metatranscriptomics in Microbiome Study: A Comprehensive Approach., 2021, , 1-36.		3
1535	Soil Microbes and Food Security Nexus: Imperativeness of Microbial Biotechnology. , 2021, , 545-561.		0
1536	Biofertilizers: Mechanisms and application. , 2021, , 151-166.		14
1537	Differentially expressed genes in resistant and susceptible <i>Pistacia vera</i> L. Cultivars in response to <i>Pseudomonas fluorescens</i> and <i>Phytophthora parsiana</i> Biocontrol Science and Technology, 2021, 31, 451-467.	0.5	2
1538	Endosphere Microbiome and Metabolic Differences Between the Spots and Green Parts of Tricyrtis macropoda Leaves. Frontiers in Microbiology, 2020, 11, 599829.	1.5	3
1539	Microbe-Plant-Insect Interactions: A Comparative Dissection of Interactome., 2021,, 365-398.		1

#	Article	IF	CITATIONS
1543	Soil microbial influences on "One Health―, 2021, , 681-700.		0
1544	Metagenomics of Plant Rhizosphere and Endophytic Association: Concepts and Applications. Rhizosphere Biology, 2021, , 275-291.	0.4	0
1545	Impacts of Invasive Australian Acacias on Soil Bacterial Community Composition, Microbial Enzymatic Activities, and Nutrient Availability in Fynbos Soils. Microbial Ecology, 2021, 82, 704-721.	1.4	19
1546	The Apple Microbiome: Structure, Function, and Manipulation for Improved Plant Health. Compendium of Plant Genomes, 2021, , 341-382.	0.3	8
1547	Methods for studying the forest tree microbiome. , 2021, , 35-58.		1
1548	Identification of microbial signatures linked to oilseed rape yield decline at the landscape scale. Microbiome, 2021, 9, 19.	4.9	31
1549	Insights into the early stages of plant–endophytic bacteria interaction. World Journal of Microbiology and Biotechnology, 2021, 37, 13.	1.7	45
1550	Further In Vitro Assessment and Mid-Term Evaluation of Control Strategy of Xylella fastidiosa subsp. pauca in Olive Groves of Salento (Apulia, Italy). Pathogens, 2021, 10, 85.	1.2	19
1551	Microbial consortia: approaches in crop production and yield enhancement., 2021,, 293-303.		2
1552	A Novel Putative Microtubule-Associated Protein Is Involved in Arbuscule Development during Arbuscular Mycorrhiza Formation. Plant and Cell Physiology, 2021, 62, 306-320.	1.5	9
1553	Biotization and in vitro plant cell cultures: plant endophyte strategy in response to heavy metals knowledge in assisted phytoremediation., 2021,, 27-36.		5
1554	Plant endophytic microorganisms enhancing crop productivity and yield. , 2021, , 45-53.		2
1556	Advances in nano-based delivery systems of micronutrients for a greener agriculture., 2021, , 111-143.		3
1557	N Fertilization Dependent Bacterial and Archaeal Changes in Paddy Soil. Environmental Science and Engineering, 2021, , 63-86.	0.1	0
1558	Application of Phyllosphere Microbiota as Biofertilizers., 2021,, 311-327.		4
1559	Introduction to Microbiota and Biofertilizers. , 2021, , 195-232.		1
1560	Soil microbiome to maximize the benefits to crop plantsâ€"a special reference to rhizosphere microbiome. , 2021, , 125-140.		0
1561	Transcriptomics Analyses and the Relationship Between Plant and Plant Growth-Promoting Rhizobacteria (PGPR). Rhizosphere Biology, 2021, , 89-111.	0.4	7

#	Article	IF	CITATIONS
1562	Rhizoengineering: A Strategy to Enhance Soil and Crop Productivity. Rhizosphere Biology, 2021, , 235-262.	0.4	1
1563	Importance of PGPRs in the Rhizosphere. , 2021, , 141-161.		1
1564	Dissimilarity analysis of microbial communities in the rhizosphere and tissues of diseased and healthy cherry trees (Cerasus pseudocerasus). Canadian Journal of Plant Pathology, 2021, 43, 612-621.	0.8	5
1565	Phylogenetic diversity of 200+ isolates of the ectomycorrhizal fungus Cenococcum geophilum associated with Populus trichocarpa soils in the Pacific Northwest, USA and comparison to globally distributed representatives. PLoS ONE, 2021, 16, e0231367.	1.1	7
1567	Higher Sensitivity of Soil Microbial Network Than Community Structure under Acid Rain. Microorganisms, 2021, 9, 118.	1.6	14
1568	Genomics and functional traits required for the successful use of biofertilizers., 2021,, 45-56.		0
1569	Rhizosphere Fingerprints: Novel Biomolecules Via Meta-Omics Technology. Rhizosphere Biology, 2021, , 171-188.	0.4	1
1570	Plant-Mediated Above- Belowground Interactions: A Phytobiome Story. , 2021, , 205-231.		5
1571	Composition of Microbiomes. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, , 15-55.	0.2	0
1572	Phosphobacteria as key actors to overcome phosphorus deficiency in plants. Annals of Applied Biology, 2021, 178, 256-267.	1.3	22
1573	Dimethylhexadecylamine, a bacterial volatile compound, regulates achene germination, in vitro growth, and defense priming in Fragaria × ananassa. Acta Physiologiae Plantarum, 2021, 43, 1.	1.0	4
1575	Fe-Chelating Compounds Producing Fungal Communities and Their Applications. Fungal Biology, 2021, , 135-157.	0.3	2
1576	Relevance of Metatranscriptomics in Symbiotic Associations Between Plants and Rhizosphere Microorganisms., 2021,, 59-90.		2
1577	Significance of Cyanobacteria in Soil-Plant System and for Ecological Resilience. , 2021, , 481-491.		0
1578	Rhizosphere, Rhizosphere Biology, and Rhizospheric Engineering., 2021,, 577-624.		13
1579	Diversity and Spatiotemporal Dynamics of Fungal Communities in the Rhizosphere Soil of Cotton in the Arid Region of Northwest China. Microbial Ecology, 2021, 82, 87-99.	1.4	5
1580	Plant Growth-Promoting Soil Microbiomes: Beneficial Attributes and Potential Applications. Sustainable Development and Biodiversity, 2021, , 1-30.	1.4	2
1581	Microbiomes of Hypersaline Soils and Their Role in Mitigation of Salt Stress. Sustainable Development and Biodiversity, 2021, , 243-266.	1.4	0

#	Article	IF	Citations
1582	Manoeuvring Soil Microbiome and Their Interactions: A Resilient Technology for Conserving Soil and Plant Health., 2021,, 405-433.		1
1583	PGPR-Assisted Bioremediation and Plant Growth: A Sustainable Approach for Crop Production Using Polluted Soils., 2021,, 403-420.		5
1584	Isolation and characterization of culturable actinobacteria associated with Polytrichum strictum (Galindez Island, the maritime Antarctic). Ukrainian Antarctic Journal, 2021, , 82-97.	0.1	2
1585	Dose-response analysis of diesel fuel phytotoxicity on selected plant species. Chemosphere, 2021, 263, 128382.	4.2	29
1586	Urban Greenspace, Transportation, and Health., 2021,, 327-334.		1
1587	Composition and co-occurrence network of the rhizosphere bacterial community of two emergent macrophytes and implications for phytoremediation. Marine and Freshwater Research, 2021, , .	0.7	3
1588	A Systematic Review of Plants With Antibacterial Activities: A Taxonomic and Phylogenetic Perspective. Frontiers in Pharmacology, 2020, 11, 586548.	1.6	107
1589	Structural variability and differentiation of niches in the rhizosphere and endosphere bacterial microbiome of moso bamboo (Phyllostachys edulis). Scientific Reports, 2021, 11, 1574.	1.6	18
1590	Prominence of Antioxidant Potential of Plants and Its Induction by Interaction with Microorganisms. , 2021, , 551-564.		1
1591	Biological control of soilborne plant pathogens and nematodes. , 2021, , 633-654.		7
1592	Rhizosphere Dynamics: An OMICS Perspective. Rhizosphere Biology, 2021, , 73-88.	0.4	2
1593	COMPARATIVE ANALYSIS ON INFUENCE OF COWDUNG AND NEEM LEAF COMPOST AMENDMENT IN SOIL ON RHIZOSPHERIC MICROORGANISMS OF TOMATO PLANT. Plant Archives, 2021, 21, 2109-2111.	0.1	0
1595	Emerging insights on the potential role of plant-associated microorganisms in sustainable agriculture. , 2021, , 3-28.		0
1596	Microbiome response under heavy metal stress. , 2021, , 39-56.		2
1598	Defining the wheat microbiome: Towards microbiome-facilitated crop production. Computational and Structural Biotechnology Journal, 2021, 19, 1200-1213.	1.9	44
1599	Bioactive diterpenoids impact the composition of the root-associated microbiome in maize (Zea mays). Scientific Reports, 2021, 11, 333.	1.6	36
1601	The microbial role in the control of phytopathogensâ€"an alternative to agrochemicals. , 2021, , 159-177.		0
1602	Cyanobacteria as Biofertilizer and Their Effect Under Biotic Stress. , 2021, , 485-504.		2

#	Article	IF	CITATIONS
1603	Rhizosphere Virology and Plant Health. Rhizosphere Biology, 2021, , 189-211.	0.4	О
1604	The Omics Strategies for Abiotic Stress Responses and Microbe-Mediated Mitigation in Plants. Sustainable Development and Biodiversity, 2021, , 315-377.	1.4	3
1605	Mycorrhiza: Plant Growth-Promoting and Biocontrol Agent Ability Under the Abiotic Stress Conditions. Sustainable Development and Biodiversity, 2021, , 503-527.	1.4	0
1606	Impact of Long-Term Organic and Mineral Fertilization on Rhizosphere Metabolites, Root–Microbial Interactions and Plant Health of Lettuce. Frontiers in Microbiology, 2020, 11, 597745.	1.5	17
1608	Rhizosphere Microbiome Cooperations: Strategies for Sustainable Crop Production. Current Microbiology, 2021, 78, 1069-1085.	1.0	40
1609	Drought alters plantâ€soil feedback effects on biomass allocation but not on plant performance. Plant and Soil, 2021, 462, 285-296.	1.8	15
1610	Mucilaginibacter mali sp. nov., isolated from rhizosphere soil of apple orchard. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	0.8	7
1611	Effect of organic and conventional farming on soil bacterial diversity of pecan tree (<i>Carya) Tj ETQq1 1 0.7843 2021, 72, 556-569.</i>	14 rgBT /0 1.0	Overlock 10 3
1612	Intercropping With Aromatic Plants Increased the Soil Organic Matter Content and Changed the Microbial Community in a Pear Orchard. Frontiers in Microbiology, 2021, 12, 616932.	1.5	22
1613	Tillage shapes the soil and rhizosphere microbiome of barleyâ€"but not its susceptibility towards <i>Blumeria graminis</i> f. sp. <i>hordei</i> FEMS Microbiology Ecology, 2021, 97, .	1.3	23
1614	Tomato roots secrete tomatine to modulate the bacterial assemblage of the rhizosphere. Plant Physiology, 2021, 186, 270-284.	2.3	45
1615	Fertilizer quantity and type alter mycorrhizaeâ€conferred growth and resistance to herbivores. Journal of Applied Ecology, 2021, 58, 931-940.	1.9	10
1616	Assembly of rhizosphere microbial communities in Artemisia annua: recruitment of plant growthâ€promoting microorganisms and interâ€kingdom interactions between bacteria and fungi. Plant and Soil, 2022, 470, 127-139.	1.8	32
1617	The role of parental care in the establishment of the offspring digestive tract microbiome in Nicrophorus defodiens. Animal Behaviour, 2021, 172, 35-44.	0.8	1
1618	Distinct bacterial community compositions in the Populus rhizosphere under three types of organic matter input across different soil types. Plant and Soil, 2022, 470, 51-63.	1.8	7
1620	Microscale analysis of soil characteristics and microbiomes reveals potential impacts on plants and fruit: vineyard as a model case study. Plant and Soil, 2021, 462, 525-541.	1.8	6
1621	Diazotroph Paenibacillus triticisoli BJ-18 Drives the Variation in Bacterial, Diazotrophic and Fungal Communities in the Rhizosphere and Root/Shoot Endosphere of Maize. International Journal of Molecular Sciences, 2021, 22, 1460.	1.8	19
1622	Identification of microbial life in sustainable and disease suppressive growing media: the role of beneficial microorganisms. Acta Horticulturae, 2021, , 115-124.	0.1	0

#	Article	IF	CITATIONS
1623	Response of the microbial community to phosphate-solubilizing bacterial inoculants on Ulmus chenmoui Cheng in Eastern China. PLoS ONE, 2021, 16, e0247309.	1.1	16
1624	Impacts of replanting American ginseng on fungal assembly and abundance in response to disease outbreaks. Archives of Microbiology, 2021, 203, 2157-2170.	1.0	22
1625	Effects of Tilletia foetida on Microbial Communities in the Rhizosphere Soil of Wheat Seeds Coated with Different Concentrations of Jianzhuang. Microbial Ecology, 2021, 82, 736-745.	1.4	9
1626	Interactive Effects of Scion and Rootstock Genotypes on the Root Microbiome of Grapevines (Vitis spp.) Tj ETQq1	1 0.7843 1.3	14 rgBT /O\ 20
1628	Distinct rhizomicrobiota assemblages and plant performance in lettuce grown in soils with different agricultural management histories. FEMS Microbiology Ecology, 2021, 97, .	1.3	7
1629	The rhizosphere microbiome plays a role in the resistance to soil-borne pathogens and nutrient uptake of strawberry cultivars under field conditions. Scientific Reports, 2021, 11, 3188.	1.6	106
1630	Microbial Community Dynamics of Soybean (Glycine max) Is Affected by Cropping Sequence. Frontiers in Microbiology, 2021, 12, 632280.	1.5	11
1631	Comparison of wild rice (Oryza longistaminata) tissues identifies rhizome-specific bacterial and archaeal endophytic microbiomes communities and network structures. PLoS ONE, 2021, 16, e0246687.	1.1	8
1632	Grazing Affects Bacterial and Fungal Diversities and Communities in the Rhizosphere and Endosphere Compartments of Leymus chinensis through Regulating Nutrient and Ion Distribution. Microorganisms, 2021, 9, 476.	1.6	15
1633	Microplastics in soil-plant system: effects of nano/microplastics on plant photosynthesis, rhizosphere microbes and soil properties in soil with different residues. Plant and Soil, 2021, 462, 561-576.	1.8	94
1634	Endophytic Bacteria From the Roots of the Medicinal Plant Alkanna tinctoria Tausch (Boraginaceae): Exploration of Plant Growth Promoting Properties and Potential Role in the Production of Plant Secondary Metabolites. Frontiers in Microbiology, 2021, 12, 633488.	1.5	48
1636	Biocontrol of potato common scab by Brevibacillus laterosporus BL12 is related to the reduction of pathogen and changes in soil bacterial community. Biological Control, 2021, 153, 104496.	1.4	18
1637	Deciphering bacterial mechanisms of root colonization. Environmental Microbiology Reports, 2021, 13, 428-444.	1.0	75
1638	Survival of Xanthomonas campestris pv. campestris in the phyllosphere and rhizosphere of crops. Plant and Soil, 2021, 462, 389-403.	1.8	2
1639	Emerging strategies for precision microbiome management in diverse agroecosystems. Nature Plants, 2021, 7, 256-267.	4.7	137
1640	Spatially Restricted Immune Responses Are Required for Maintaining Root Meristematic Activity upon Detection of Bacteria. Current Biology, 2021, 31, 1012-1028.e7.	1.8	46
1641	Protists as main indicators and determinants of plant performance. Microbiome, 2021, 9, 64.	4.9	71
1642	Rhizobacteria Associated with a Native Solanaceae Promote Plant Growth and Decrease the Effects of Fusariumoxysporum in Tomato. Agronomy, 2021, 11, 579.	1.3	9

#	Article	IF	CITATIONS
1643	Relationship between Plant Roots, Rhizosphere Microorganisms, and Nitrogen and Its Special Focus on Rice. Agriculture (Switzerland), 2021, 11, 234.	1.4	60
1644	Diversity of soil-borne fungal species associated to root rot and vine decline of melon in Sardinia (Italy). Journal of Plant Pathology, 2021, 103, 421-432.	0.6	3
1645	Proteomic analysis reveals how pairing of a Mycorrhizal fungus with plant <scp>growthâ€promoting</scp> bacteria modulates growth and defense in wheat. Plant, Cell and Environment, 2021, 44, 1946-1960.	2.8	26
1646	Plant-Associated Microorganisms as a Potent Bio-Factory of Active Molecules against Multiresistant Pathogens. , 0, , .		1
1647	Streptomyces typhae sp. nov., a novel endophytic actinomycete with antifungal activity isolated the root of cattail (Typha angustifolia L.). Antonie Van Leeuwenhoek, 2021, 114, 823-833.	0.7	8
1648	Evaluating domestication and ploidy effects on the assembly of the wheat bacterial microbiome. PLoS ONE, 2021, 16, e0248030.	1.1	28
1649	Sucrose triggers a novel signaling cascade promoting <i>Bacillus subtilis</i> rhizosphere colonization. ISME Journal, 2021, 15, 2723-2737.	4.4	63
1650	Response of Pine Rhizosphere Microbiota to Foliar Treatment with Resistance-Inducing Bacteria against Pine Wilt Disease. Microorganisms, 2021, 9, 688.	1.6	9
1651	Bacterial diversity patterns of desert dunes in the northeastern Qinghai-Tibet Plateau, China. Archives of Microbiology, 2021, 203, 2809-2823.	1.0	7
1652	Disease-Suppressive Soilsâ€"Beyond Food Production: a Critical Review. Journal of Soil Science and Plant Nutrition, 2021, 21, 1437-1465.	1.7	64
1653	Soil Metagenomics Reveals Effects of Continuous Sugarcane Cropping on the Structure and Functional Pathway of Rhizospheric Microbial Community. Frontiers in Microbiology, 2021, 12, 627569.	1.5	80
1654	Understanding Plant Social Networking System: Avoiding Deleterious Microbiota but Calling Beneficials. International Journal of Molecular Sciences, 2021, 22, 3319.	1.8	16
1655	A Degeneration Gradient of Poplar Trees Contributes to the Taxonomic, Functional, and Resistome Diversity of Bacterial Communities in Rhizosphere Soils. International Journal of Molecular Sciences, 2021, 22, 3438.	1.8	10
1656	Characterization of the microbial communities in wheat tissues and rhizosphere soil caused by dwarf bunt of wheat. Scientific Reports, 2021, 11, 5773.	1.6	16
1657	Mass spectrometry analysis revealed the production of siderophore from Klebsiella oxytoca strain STA01 isolated from sago palm field in Tulehu, Maluku, Indonesia. IOP Conference Series: Earth and Environmental Science, 2021, 712, 012011.	0.2	0
1658	The Relationship Between Microbiomes and Selective Regimes in the Sponge Genus Ircinia. Frontiers in Microbiology, 2021, 12, 607289.	1.5	6
1659	A guide to minimize contamination issues in microbiome restoration studies. Restoration Ecology, 2021, 29, e13358.	1.4	6
1660	The Himalayan Onion (Allium wallichii Kunth) Harbors Unique Spatially Organized Bacterial Communities. Microbial Ecology, 2021, 82, 909-918.	1.4	8

#	Article	IF	CITATIONS
1661	Effects of transgenic oilseed rape harboring the Cry1Ac gene on microbial communities in the rhizosphere soil. European Journal of Soil Biology, 2021, 103, 103277.	1.4	4
1663	Bacterial communities as indicators of soil health under a continuous cropping system. Land Degradation and Development, 2021, 32, 2393-2408.	1.8	13
1664	Modelâ€based biclustering for overdispersed count data with application in microbial ecology. Methods in Ecology and Evolution, 2021, 12, 1050-1061.	2,2	2
1665	Transient Surface Hydration Impacts Biogeography and Intercellular Interactions of Nonmotile Bacteria. Applied and Environmental Microbiology, 2021, 87, .	1.4	0
1666	Biochar for Circular Horticulture: Feedstock Related Effects in Soilless Cultivation. Agronomy, 2021, 11, 629.	1.3	18
1667	Single and combined abiotic stressors affect maize rhizosphere bacterial microbiota. Rhizosphere, 2021, 17, 100318.	1.4	25
1668	Inorganic Chemical Fertilizer Application to Wheat Reduces the Abundance of Putative Plant Growth-Promoting Rhizobacteria. Frontiers in Microbiology, 2021, 12, 642587.	1.5	23
1671	Rootstocks Shape Their Microbiome—Bacterial Communities in the Rhizosphere of Different Grapevine Rootstocks. Microorganisms, 2021, 9, 822.	1.6	18
1672	The Impact of Pine Wood Nematode Infection on the Host Fungal Community. Microorganisms, 2021, 9, 896.	1.6	11
1673	Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. Nature Plants, 2021, 7, 481-499.	4.7	247
1674	Efficacy of Application of Biostimulants Based on Non-pathogenic Microorganisms when Growing Okra in Arkansas. Journal of Biomedical Research & Environmental Sciences, 2021, 2, 218-222.	0.1	0
1675	Rhizosphere community selection reveals bacteria associated with reduced root disease. Microbiome, 2021, 9, 86.	4.9	118
1676	Soil Microsite Outweighs Cultivar Genotype Contribution to Brassica Rhizobacterial Community Structure. Frontiers in Microbiology, 2021, 12, 645784.	1.5	1
1678	Pollinators mediate floral microbial diversity and microbial network under agrochemical disturbance. Molecular Ecology, 2021, 30, 2235-2247.	2.0	23
1679	Understanding the Shift in the Microbiome of Composts That Are Optimized for a Better Fit-for-Purpose in Growing Media. Frontiers in Microbiology, 2021, 12, 643679.	1.5	16
1680	Hyperlocal Variation in Soil Iron and the Rhizosphere Bacterial Community Determines Dollar Spot Development in Amenity Turfgrass. Applied and Environmental Microbiology, 2021, 87, .	1.4	3
1681	Prevalence of antibiotic resistance genes and bacterial pathogens along the soil–mangrove root continuum. Journal of Hazardous Materials, 2021, 408, 124985.	6.5	27
1682	Comparative Analysis of the Apple Root Transcriptome as Affected by Rootstock Genotype and Brassicaceae Seed Meal Soil Amendment: Implications for Plant Health. Microorganisms, 2021, 9, 763.	1.6	2

#	ARTICLE	IF	Citations
1684	Different pioneer plant species have similar rhizosphere microbial communities. Plant and Soil, 2021, 464, 165-181.	1.8	17
1685	Foliar Aphid Herbivory Alters the Tomato Rhizosphere Microbiome, but Initial Soil Community Determines the Legacy Effects. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	13
1686	Cover Cropping Impacts Soil Microbial Communities and Functions in Mango Orchards. Agriculture (Switzerland), 2021, 11, 343.	1.4	8
1687	The influence of maize genotype on the rhizosphere eukaryotic community. FEMS Microbiology Ecology, 2021, 97, .	1.3	8
1688	Benefits to Plant Health and Productivity From Enhancing Plant Microbial Symbionts. Frontiers in Plant Science, 2020, 11, 610065.	1.7	83
1689	Community dynamics in rhizosphere microorganisms at different development stages of wheat growing in confined isolation environments. Applied Microbiology and Biotechnology, 2021, 105, 3843-3857.	1.7	10
1690	Effects of continuous cropping of sweet potatoes on the bacterial community structure in rhizospheric soil. BMC Microbiology, 2021, 21, 102.	1.3	31
1691	Microbiome-Assisted Breeding to Understand Cultivar-Dependent Assembly in Cucurbita pepo. Frontiers in Plant Science, 2021, 12, 642027.	1.7	24
1692	Salt-induced recruitment of specific root-associated bacterial consortium capable of enhancing plant adaptability to salt stress. ISME Journal, 2021, 15, 2865-2882.	4.4	104
1693	Succession of the Resident Soil Microbial Community in Response to Periodic Inoculations. Applied and Environmental Microbiology, 2021, 87, .	1.4	30
1694	Pathogen infection influences a distinct microbial community composition in sorghum RILs. Plant and Soil, 2021, 463, 555-572.	1.8	18
1695	Active Microbiome Structure and Functional Analyses of Freshwater Benthic Biofilm Samples Influenced by RNA Extraction Methods. Frontiers in Microbiology, 2021, 12, 588025.	1.5	2
1696	Microbiome for sustainable agriculture: a review with special reference to the corn production system. Archives of Microbiology, 2021, 203, 2771-2793.	1.0	13
1697	Metagenomics Assessment of Soil Fertilization on the Chemotaxis and Disease Suppressive Genes Abundance in the Maize Rhizosphere. Genes, 2021, 12, 535.	1.0	8
1698	Elevated Atmospheric CO2 and Nitrogen Fertilization Affect the Abundance and Community Structure of Rice Root-Associated Nitrogen-Fixing Bacteria. Frontiers in Microbiology, 2021, 12, 628108.	1.5	9
1699	Composition of Rhizosphere Microbial Communities Associated With Healthy and Verticillium Wilt Diseased Cotton Plants. Frontiers in Microbiology, 2021, 12, 618169.	1.5	31
1700	Bacterial Communities Associated with Poa annua Roots in Central European (Poland) and Antarctic Settings (King George Island). Microorganisms, 2021, 9, 811.	1.6	10
1702	Priming Effects of Cover Cropping on Bacterial Community in a Tea Plantation. Sustainability, 2021, 13, 4345.	1.6	14

#	Article	IF	CITATIONS
1703	Combining potential oomycete and bacterial biocontrol agents as a tool to fight tomato Rhizoctonia root rot. Biological Control, 2021, 155, 104521.	1.4	11
1704	Transcriptome sequencing analysis of maize roots reveals the effects of substrate and root hair formation in a spatial context. Plant and Soil, 2022, 478, 211-228.	1.8	9
1705	Pectin Induced Colony Expansion of Soil-Derived Flavobacterium Strains. Frontiers in Microbiology, 2021, 12, 651891.	1.5	14
1706	Fungal-Bacterial Cooccurrence Patterns Differ between Arbuscular Mycorrhizal Fungi and Nonmycorrhizal Fungi across Soil Niches. MBio, 2021, 12, .	1.8	31
1707	Enabling sustainable agriculture through understanding and enhancement of microbiomes. New Phytologist, 2021, 230, 2129-2147.	3.5	121
1708	Indirect plant defenses: volatile organic compounds and extrafloral nectar. Arthropod-Plant Interactions, 2021, 15, 467.	0.5	12
1709	A Seed Mucilage-Degrading Fungus From the Rhizosphere Strengthens the Plant-Soil-Microbe Continuum and Potentially Regulates Root Nutrients of a Cold Desert Shrub. Molecular Plant-Microbe Interactions, 2021, 34, 538-546.	1.4	1
1711	Different Responses of Soil Bacterial and Fungal Communities to 3 Years of Biochar Amendment in an Alkaline Soybean Soil. Frontiers in Microbiology, 2021, 12, 630418.	1.5	19
1712	The Composition of Root-Associated Bacteria and Fungi of Astragalus mongholicus and Their Relationship With the Bioactive Ingredients. Frontiers in Microbiology, 2021, 12, 642730.	1.5	11
1713	Resuscitation of the microbial seed bank alters plantâ€soil interactions. Molecular Ecology, 2021, 30, 2905-2914.	2.0	6
1714	FERONIA restricts Pseudomonas in the rhizosphere microbiome via regulation of reactive oxygen species. Nature Plants, 2021, 7, 644-654.	4.7	102
1715	Seed biostimulant Bacillus sp. MGW9 improves the salt tolerance of maize during seed germination. AMB Express, 2021, 11, 74.	1.4	17
1716	Effects of plant cultivars on the structure of bacterial and fungal communities associated with ginseng. Plant and Soil, 2021, 465, 143-156.	1.8	19
1717	Endophyte roles in nutrient acquisition, root system architecture development and oxidative stress tolerance. Journal of Applied Microbiology, 2021, 131, 2161-2177.	1.4	88
1718	Trees and Insects Have Microbiomes: Consequences for Forest Health and Management. Current Forestry Reports, 2021, 7, 81-96.	3.4	5
1719	Maintaining Symbiotic Homeostasis: How Do Plants Engage With Beneficial Microorganisms While at the Same Time Restricting Pathogens?. Molecular Plant-Microbe Interactions, 2021, 34, 462-469.	1.4	52
1720	Metabolic Profiling of Rhizobacteria Serratia plymuthica and Bacillus subtilis Revealed Intra- and Interspecific Differences and Elicitation of Plipastatins and Short Peptides Due to Co-cultivation. Frontiers in Microbiology, 2021, 12, 685224.	1.5	5
1721	Rhizosphere Microbiomes in a Historical Maize-Soybean Rotation System Respond to Host Species and Nitrogen Fertilization at the Genus and Subgenus Levels. Applied and Environmental Microbiology, 2021, 87, e0313220.	1.4	17

#	Article	IF	CITATIONS
1722	Microbiological Study in Petrol-Spiked Soil. Molecules, 2021, 26, 2664.	1.7	10
1723	Plant Breeding and Microbiome., 0,,.		4
1724	Rhizosphere Colonization Determinants by Plant Growth-Promoting Rhizobacteria (PGPR). Biology, 2021, 10, 475.	1.3	128
1725	Cable bacteria at oxygenâ€releasing roots of aquatic plants: a widespread and diverse plant–microbe association. New Phytologist, 2021, 232, 2138-2151.	3.5	32
1726	Changes in Archaeal Community and Activity by the Invasion of Spartina anglica Along Soil Depth Profiles of a Coastal Wetland. Microbial Ecology, 2022, 83, 436-446.	1.4	4
1727	Effects of Seed-Coating Preparations of Living Streptomyces globisporus on Plant Growth Promotion and Disease Control against Verticillium Wilt in Cotton. Sustainability, 2021, 13, 6001.	1.6	4
1728	Progress towards Sustainable Control of Xylella fastidiosa subsp. pauca in Olive Groves of Salento (Apulia, Italy). Pathogens, 2021, 10, 668.	1,2	20
1729	Effect of plant biostimulants on root and plant health and the rhizosphere microbiome of citrus trees in huanglongbing-endemic conditions. Trees - Structure and Function, 2021, 35, 1525-1539.	0.9	16
1730	Plant Genetics as a Tool for Manipulating Crop Microbiomes: Opportunities and Challenges. Frontiers in Bioengineering and Biotechnology, 2021, 9, 567548.	2.0	16
1731	Dynamics of Bacterial Community Structure in the Rhizosphere and Root Nodule of Soybean: Impacts of Growth Stages and Varieties. International Journal of Molecular Sciences, 2021, 22, 5577.	1.8	14
1732	Insights into the taxonomic and functional characterization of agricultural crop core rhizobiomes and their potential microbial drivers. Scientific Reports, 2021, 11, 10068.	1.6	15
1733	Contrasting Patterns of the Resident and Active Rhizosphere Bacterial Communities of Phragmites Australis. Microbial Ecology, 2022, 83, 314-327.	1.4	3
1734	Impact of cropping systems on the functional diversity of rhizosphere microbial communities associated with maize plant: a shotgun approach. Archives of Microbiology, 2021, 203, 3605-3613.	1.0	4
1735	The Citrus Microbiome: From Structure and Function to Microbiome Engineering and Beyond. Phytobiomes Journal, 2021, 5, 249-262.	1.4	16
1736	Sorghum rhizosphere effects reduced soil bacterial diversity by recruiting specific bacterial species under low nitrogen stress. Science of the Total Environment, 2021, 770, 144742.	3.9	29
1737	Improvement of alfalfa resistance against Cd stress through rhizobia and arbuscular mycorrhiza fungi co-inoculation in Cd-contaminated soil. Environmental Pollution, 2021, 277, 116758.	3.7	78
1738	Mixing of biochar, vinegar and mushroom residues regulates soil microbial community and increases cucumber yield under continuous cropping regime. Applied Soil Ecology, 2021, 161, 103883.	2.1	27
1739	Soil microorganisms decrease barley biomass uniformly across contrasting nitrogen availability. European Journal of Soil Biology, 2021, 104, 103311.	1.4	4

#	Article	IF	CITATIONS
1740	Impact of Olive Saplings and Organic Amendments on Soil Microbial Communities and Effects of Mineral Fertilization. Frontiers in Microbiology, 2021, 12, 653027.	1.5	9
1741	Monitoring a beneficial bacterium (Bacillus amyloliquefaciens) in the rhizosphere with arugula herbivory. Rhizosphere, 2021, 18, 100347.	1.4	5
1742	A constructed wetland system for bio-polishing palm oil mill effluent and its future research opportunities. Journal of Water Process Engineering, 2021, 41, 102043.	2.6	16
1743	Physiological and metagenomic strategies uncover the rhizosphere bacterial microbiome succession underlying three common environmental stresses in cassava. Journal of Hazardous Materials, 2021, 411, 125143.	6.5	16
1745	Outbreaks of Root Rot Disease in Different Aged American Ginseng Plants Are Associated With Field Microbial Dynamics. Frontiers in Microbiology, 2021, 12, 676880.	1.5	19
1746	Structure of Bacterial Communities Associated with Some Aquatic Plants. IOP Conference Series: Earth and Environmental Science, 2021, 790, 012030.	0.2	2
1747	Sweet Sorghum Genotypes Tolerant and Sensitive to Nitrogen Stress Select Distinct Root Endosphere and Rhizosphere Bacterial Communities. Microorganisms, 2021, 9, 1329.	1.6	10
1748	Editorial: Beneficial Microbiota Interacting With the Plant Immune System. Frontiers in Plant Science, 2021, 12, 698902.	1.7	3
1749	Plant Age Influences Microbiome Communities More Than Plant Compartment in Greenhouse-Grown Creeping Bentgrass. Phytobiomes Journal, 2021, 5, 373-381.	1.4	7
1750	Plant microbiome structure and benefits for sustainable agriculture. Current Plant Biology, 2021, 26, 100198.	2.3	83
1751	Effect of co-application of Trichoderma spp. with organic composts on plant growth enhancement, soil enzymes and fungal community in soil. Archives of Microbiology, 2021, 203, 4281-4291.	1.0	21
1752	Post-translational regulation of autophagy is involved in intra-microbiome suppression of fungal pathogens. Microbiome, 2021, 9, 131.	4.9	36
1753	Interplay between Coumarin Accumulation, Iron Deficiency and Plant Resistance to Dickeya spp International Journal of Molecular Sciences, 2021, 22, 6449.	1.8	10
1754	Antifungal Peptides from a <i>Burkholderia</i> Strain Suppress Basal Stem Rot Disease of Oil Palm. Phytopathology, 2022, 112, 238-248.	1.1	2
1755	Nitric oxide signalling in roots is required for MYB72-dependent systemic resistance induced by <i>Trichoderma</i> volatile compounds in Arabidopsis. Journal of Experimental Botany, 2022, 73, 584-595.	2.4	21
1756	Plant Growth-Promoting Bacteria as Bioinoculants: Attributes and Challenges for Sustainable Crop Improvement. Agronomy, 2021, 11, 1167.	1.3	67
1758	The Rhizobacterium Pseudomonas alcaligenes AVO110 Induces the Expression of Biofilm-Related Genes in Response to Rosellinia necatrix Exudates. Microorganisms, 2021, 9, 1388.	1.6	4
1760	Microbial assembly and association network in watermelon rhizosphere after soil fumigation for Fusarium wilt control. Agriculture, Ecosystems and Environment, 2021, 312, 107336.	2.5	40

#	Article	IF	CITATIONS
1761	Patterns of yeast diversity distribution and its drivers in rhizosphere soil of Hami melon orchards in different regions of Xinjiang. BMC Microbiology, 2021, 21, 170.	1.3	8
1762	Insights into the mechanism of the effects of rhizosphere microorganisms on the quality of authentic Angelica sinensis under different soil microenvironments. BMC Plant Biology, 2021, 21, 285.	1.6	12
1763	Structure and variation of root-associated bacterial communities of Cyperus rotundus L. in the contaminated soils around Pb/Zn mine sites. Environmental Science and Pollution Research, 2021, 28, 58523-58535.	2.7	13
1764	Genomics as a potential tool to unravel the rhizosphere microbiome interactions on plant health. Journal of Microbiological Methods, 2021, 185, 106215.	0.7	16
1765	Revealing Microbiome Structure and Assembly Process in Three Rhizocompartments of Achyranthes bidentata Under Continuous Monoculture Regimes. Frontiers in Microbiology, 2021, 12, 677654.	1.5	4
1766	Life on the Rocks: First Insights Into the Microbiota of the Threatened Aquatic Rheophyte Hanseniella heterophylla. Frontiers in Plant Science, 2021, 12, 634960.	1.7	3
1767	Root-associated (rhizosphere and endosphere) microbiomes of the Miscanthus sinensis and their response to the heavy metal contamination. Journal of Environmental Sciences, 2021, 104, 387-398.	3.2	53
1769	The response of soil microbial communities to the infection of kauri (<i>Agathis australis</i>) seedlings with <i>Phytophthora agathidicida</i>). Forest Pathology, 2021, 51, e12708.	0.5	0
1770	â€~Cryâ€forâ€help' in contaminated soil: a dialogue among plants and soil microbiome to survive in hostile conditions. Environmental Microbiology, 2021, 23, 5690-5703.	1.8	27
1771	Rapid evolution of bacterial mutualism in the plant rhizosphere. Nature Communications, 2021, 12, 3829.	5.8	51
1772	Shifts in the structure of rhizosphere bacterial communities of avocado after Fusarium dieback. Rhizosphere, 2021, 18, 100333.	1.4	11
1773	Barks from avocado trees of different geographic locations have consistent microbial communities. Archives of Microbiology, 2021, 203, 4593-4607.	1.0	6
1775	Influent salinity affects substrate selection in surface flow constructed wetlands. Environmental Science and Pollution Research, 2021, 28, 62235-62245.	2.7	2
1777	Changes in the diversity and predicted functional composition of the bulk and rhizosphere soil bacterial microbiomes of tomato and common bean after inorganic N-fertilization. Rhizosphere, 2021, 18, 100362.	1.4	16
1778	From Microbial Dynamics to Functionality in the Rhizosphere: A Systematic Review of the Opportunities With Synthetic Microbial Communities. Frontiers in Plant Science, 2021, 12, 650609.	1.7	30
1779	Cyanobacterium-amended mixes as priming options for stimulating growth and improving nutrient availability in nursery-grown Chrysanthemum rooted stem cuttings. Acta Physiologiae Plantarum, 2021, 43, 1.	1.0	2
1780	Transcriptomics differentiate two novel bioactive strains of Paenibacillus sp. isolated from the perennial ryegrass seed microbiome. Scientific Reports, 2021, 11, 15545.	1.6	6
1781	Potential impacts of soil microbiota manipulation on secondary metabolites production in cannabis. Journal of Cannabis Research, 2021, 3, 25.	1.5	14

#	Article	IF	CITATIONS
1782	Sustainable futures over the next decade are rooted in soil science. European Journal of Soil Science, 2022, 73, .	1.8	19
1783	Bacterial community assembly and antibiotic resistance genes in the lettuce-soil system upon antibiotic exposure. Science of the Total Environment, 2021, 778, 146255.	3.9	30
1784	Soil and plant health in relation to dynamic sustainment of Eh and pH homeostasis: A review. Plant and Soil, 2021, 466, 391-447.	1.8	22
1785	Time outweighs the effect of host developmental stage on microbial community composition. FEMS Microbiology Ecology, 2021, 97, .	1.3	13
1786	Microbiota Management for Effective Disease Suppression: A Systematic Comparison between Soil and Mammals Gut. Sustainability, 2021, 13, 7608.	1.6	5
1787	Aboveground vegetation and soil physicochemical properties jointly drive the shift of soil microbial community during subalpine secondary succession in southwest China. Catena, 2021, 202, 105251.	2.2	54
1788	Effects of truffle inoculation on a nursery culture substrate environment and seedling ofÂCarya illinoinensis. Fungal Biology, 2021, 125, 576-584.	1.1	1
1789	Microbial consortium inoculant increases pasture grasses yield in lowâ€phosphorus soil by influencing root morphology, rhizosphere carboxylate exudation and mycorrhizal colonisation. Journal of the Science of Food and Agriculture, 2022, 102, 540-549.	1.7	9
1790	Responses of cucumber (<i>Cucumis sativus</i> L) rhizosphere microbial community to some agronomic management practices. FEMS Microbiology Ecology, 2021, 97, .	1.3	4
1792	Effects of Continuous Cropping of Codonopsis tangshen on Rhizospheric Soil Bacterial Community as Determined by Pyrosequencing. Diversity, 2021, 13, 317.	0.7	5
1793	Two Distinct Soil Disinfestations Differently Modify the Bacterial Communities in a Tomato Field. Agronomy, 2021, 11, 1375.	1.3	4
1794	Plant Growth-Promoting Rhizobacteria HN6 Induced the Change and Reorganization of Fusarium Microflora in the Rhizosphere of Banana Seedlings to Construct a Healthy Banana Microflora. Frontiers in Microbiology, 2021, 12, 685408.	1.5	7
1795	Negative impacts of excessive nitrogen fertilization on the abundance and diversity of diazotrophs in black soil under maize monocropping. Geoderma, 2021, 393, 114999.	2.3	28
1796	Vegetable associated Bacillus spp. suppress the pea (Pisum sativum L.) root rot caused by Fusarium solani. Biological Control, 2021, 158, 104610.	1.4	18
1797	Deciphering Trifolium pratense L. holobiont reveals a microbiome resilient to future climate changes. MicrobiologyOpen, 2021, 10, e1217.	1.2	6
1798	Microbiome Fingerprint as Biomarker for Geographical Origin and Heredity in Crocus sativus: A Feasibility Study. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	17
1799	Function is a better predictor of plant rhizosphere community membership than <scp>16S</scp> phylogeny. Environmental Microbiology, 2021, 23, 6089-6103.	1.8	3
1800	Plant-Microbe Interactions - Insights and Views for Applications in Sustainable Agriculture. Applied Science and Engineering Progress, 2021, , .	0.5	1

#	ARTICLE	IF	CITATIONS
1801	OMICs, Epigenetics, and Genome Editing Techniques for Food and Nutritional Security. Plants, 2021, 10, 1423.	1.6	15
1802	Isolation and Characterization of Pseudomonas chlororaphis Strain ST9; Rhizomicrobiota and in Planta Studies. Plants, 2021, 10, 1466.	1.6	7
1803	Bacterial Community Composition in the Rhizosphere Soil of Three Camellia chrysantha Cultivars Under Different Growing Conditions in China. Journal of Soil Science and Plant Nutrition, 2021, 21, 2689-2701.	1.7	3
1804	Relationship between endophytic microbial diversity and grain quality in wheat exposed to multi-generational CO2 elevation. Science of the Total Environment, 2021, 776, 146029.	3.9	11
1805	Microbe-dependent heterosis in maize. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	42
1807	Biocontrol agent, biofumigation, and grafting with resistant rootstock suppress soil-borne disease and improve yield of tomato in West Virginia. Crop Protection, 2021, 145, 105630.	1.0	18
1808	Endophytic <i>Bacillus</i> spp. from <i>Zingiber zerumbet</i> rhizome, rhizosphere and axenic cultures: characterisation and identification of isolates with plant growth promoting activities and antagonism to soft-rot causative <i>Pythium myriotylum</i> . Archives of Phytopathology and Plant Protection, 2021, 54, 2007-2022.	0.6	3
1809	Drought stress and plant ecotype drive microbiome recruitment in switchgrass rhizosheath. Journal of Integrative Plant Biology, 2021, 63, 1753-1774.	4.1	28
1810	Overview of Approaches to Improve Rhizoremediation of Petroleum Hydrocarbon-Contaminated Soils. Applied Microbiology, 2021, 1, 329-351.	0.7	25
1811	Effects of nitrogen addition on rhizospheric soil microbial communities of poplar plantations at different ages. Forest Ecology and Management, 2021, 494, 119328.	1.4	28
1812	Bacillus cabrialesii BH5 Protects Tomato Plants Against Botrytis cinerea by Production of Specific Antifungal Compounds. Frontiers in Microbiology, 2021, 12, 707609.	1.5	12
1813	Inoculation With Ectomycorrhizal Fungi and Dark Septate Endophytes Contributes to the Resistance of Pinus spp. to Pine Wilt Disease. Frontiers in Microbiology, 2021, 12, 687304.	1.5	13
1814	Effects of Microbial Consortia, Applied as Fertilizer Coating, on Soil and Rhizosphere Microbial Communities and Potato Yield. Frontiers in Agronomy, 2021, 3, .	1.5	8
1815	Electrochemically Active Biofilms as an Indicator of Soil Health. Journal of the Electrochemical Society, 2021, 168, 087511.	1.3	2
1816	Herbivory shapes the rhizosphere bacterial microbiota in potato plants. Environmental Microbiology Reports, 2021, 13, 805-811.	1.0	16
1818	Community structure and associated networks of endophytic bacteria in pea roots throughout plant life cycle. Plant and Soil, 2021, 468, 225-238.	1.8	7
1819	Impact of biocontrol microbes on soil microbial diversity in ginger (<i>Zingiber) Tj ETQq0 0 0 rgBT /Overlock 10 Tf</i>	f 50 102 T	d (officinale<
1820	Rhizospheric Engineering by Plant-Mediated Indirect Selection of Microbiome for Agricultural Sustainability. Critical Reviews in Plant Sciences, 2021, 40, 379-397.	2.7	15

#	Article	IF	CITATIONS
1821	The Phragmites Root-Inhabiting Microbiome: A Critical Review on Its Composition and Environmental Application. Engineering, 2022, 9, 42-50.	3.2	14
1823	Paraburkholderia sp. GD17 improves rice seedling tolerance to salinity. Plant and Soil, 2021, 467, 373-389.	1.8	4
1824	Plant Growth-Promoting Microbe Mediated Uptake of Essential Nutrients (Fe, P, K) for Crop Stress Management: Microbe–Soil–Plant Continuum. Frontiers in Agronomy, 2021, 3, .	1.5	14
1825	Mechanisms in plant–microbiome interactions: lessons from model systems. Current Opinion in Plant Biology, 2021, 62, 102003.	3.5	20
1826	Nitrogen and water addition regulate fungal community and microbial co-occurrence network complexity in the rhizosphere of Alhagi sparsifolia seedlings. Applied Soil Ecology, 2021, 164, 103940.	2.1	24
1827	Effects of Abiotic Stress on Soil Microbiome. International Journal of Molecular Sciences, 2021, 22, 9036.	1.8	84
1828	Phosphorus availability increases pathobiome abundance and invasion of rhizosphere microbial networks by <i>Ralstonia</i> . Environmental Microbiology, 2021, 23, 5992-6003.	1.8	28
1829	Effects of Silicon and Silicon-Based Nanoparticles on Rhizosphere Microbiome, Plant Stress and Growth. Biology, 2021, 10, 791.	1.3	92
1830	Network structure of resource use and niche overlap within the endophytic microbiome. ISME Journal, 2022, 16, 435-446.	4.4	28
1831	Contrasting effects of soil microbial interactions on growth–defence relationships between early― and midâ€successional plant communities. New Phytologist, 2022, 233, 1345-1357.	3.5	22
1832	The diversity and antibacterial activity of culturable actinobacteria isolated from the rhizosphere soil of Deschampsia antarctica (Galindez Island, Maritime Antarctic). Polar Biology, 2021, 44, 1859-1868.	0.5	5
1833	Mesosulfuron-methyl influenced biodegradability potential and N transformation of soil. Journal of Hazardous Materials, 2021, 416, 125770.	6.5	19
1834	Bog ecosystems as a playground for plant–microbe coevolution: bryophytes and vascular plants harbour functionally adapted bacteria. Microbiome, 2021, 9, 170.	4.9	28
1835	Application of vermicompost and biochar suppresses Fusarium root rot of replanted American ginseng. Applied Microbiology and Biotechnology, 2021, 105, 6977-6991.	1.7	12
1836	Rhizosphere Microbes Influence Host Circadian Clock Function. Phytobiomes Journal, 2021, 5, 368-372.	1.4	6
1837	The effect of plant domestication on host control of the microbiota. Communications Biology, 2021, 4, 936.	2.0	31
1839	Streptomyces Application Triggers Reassembly and Optimization of the Rhizosphere Microbiome of Cucumber. Diversity, 2021, 13, 413.	0.7	1
1840	Theory of microbial coexistence in promoting soil–plant ecosystem health. Biology and Fertility of Soils, 2021, 57, 897-911.	2.3	21

#	Article	IF	CITATIONS
1841	No tillage and residue mulching method on bacterial community diversity regulation in a black soil region of Northeastern China. PLoS ONE, 2021, 16, e0256970.	1.1	17
1842	Effect of Forage Plant Mixture and Biostimulants Application on the Yield, Changes of Botanical Composition, and Microbiological Soil Activity. Agronomy, 2021, 11, 1786.	1.3	10
1843	Pseudomonas Inoculation Stimulates Endophytic Azospira Population and Induces Systemic Resistance to Bacterial Wilt. Frontiers in Plant Science, 2021, 12, .	1.7	11
1844	Does fresh farmyard manure introduce surviving microbes into soil or activate soil-borne microbiota?. Journal of Environmental Management, 2021, 294, 113018.	3.8	60
1845	Profiles of <i>Bacillus</i> spp. Isolated from the Rhizosphere of Suaeda glauca and Their Potential to Promote Plant Growth and Suppress Fungal Phytopathogens. Journal of Microbiology and Biotechnology, 2021, 31, 1231-1240.	0.9	12
1846	BiG-MAP: an Automated Pipeline To Profile Metabolic Gene Cluster Abundance and Expression in Microbiomes. MSystems, 2021, 6, e0093721.	1.7	16
1847	Foliar application of fertilizers and biostimulant has a strong impact on the olive (Olea europaea) rhizosphere microbial community profile and the abundance of arbuscular mycorrhizal fungi. Rhizosphere, 2021, 19, 100402.	1.4	13
1848	Response of Sediment Microbial Communities to the Rural Wastewater in the Pond-Ditch Circulation System. Frontiers in Environmental Science, 2021, 9, .	1.5	1
1849	Sugarcane-Legume Intercropping Can Enrich the Soil Microbiome and Plant Growth. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	12
1850	Plant growth–promoting bacteria improve maize growth through reshaping the rhizobacterial community in low-nitrogen and low-phosphorus soil. Biology and Fertility of Soils, 2021, 57, 1075-1088.	2.3	29
1851	Developing climateâ€resilient crops: improving plant tolerance to stress combination. Plant Journal, 2022, 109, 373-389.	2.8	198
1852	Soil composition and plant genotype determine benzoxazinoidâ€mediated plant–soil feedbacks in cereals. Plant, Cell and Environment, 2021, 44, 3732-3744.	2.8	8
1853	Comparison of the Bulk and Rhizosphere Soil Prokaryotic Communities Between Wild and Reintroduced Manglietiastrum sinicum Plants, a Threatened Species with Extremely Small Populations. Current Microbiology, 2021, 78, 3877-3890.	1.0	1
1854	Effect of Natural Polysaccharide Matrix-Based Selenium Nanocomposites on Phytophthora cactorum and Rhizospheric Microorganisms. Nanomaterials, 2021, 11, 2274.	1.9	13
1855	Shoot and root insect herbivory change the plant rhizosphere microbiome and affects cabbage–insect interactions through plant–soil feedback. New Phytologist, 2021, 232, 2475-2490.	3.5	23
1856	Crop development has more influence on shaping rhizobacteria of wheat than tillage practice and crop rotation pattern in an arid agroecosystem. Applied Soil Ecology, 2021, 165, 104016.	2.1	19
1857	Comparative Metagenomics of the Active Layer and Permafrost from Low-Carbon Soil in the Canadian High Arctic. Environmental Science & Environmental Sc	4.6	10
1858	Rhizosphere-Associated Microbiomes of Rice (Oryza sativa L.) Under the Effect of Increased Nitrogen Fertilization. Frontiers in Microbiology, 2021, 12, 730506.	1.5	16

#	Article	IF	CITATIONS
1859	Factors associated with suppression of Fusarium basal rot of onion in New Zealand soils: literature review and greenhouse experiments. New Zealand Journal of Crop and Horticultural Science, 2023, 51, 137-155.	0.7	2
1860	Diversity and Taxonomic Distribution of Endophytic Bacterial Community in the Rice Plant and Its Prospective. International Journal of Molecular Sciences, 2021, 22, 10165.	1.8	30
1861	Rhizosphere Microbial Communities Are Significantly Affected by Optimized Phosphorus Management in a Slope Farming System. Frontiers in Microbiology, 2021, 12, 739844.	1.5	13
1862	Can bacterial type <scp>III</scp> effectors mediate pathogen–plant–microbiota ternary interactions?. Plant, Cell and Environment, 2022, 45, 5-11.	2.8	4
1863	Adaptive defence and sensing responses of host plant roots to fungal pathogen attack revealed by transcriptome and metabolome analyses. Plant, Cell and Environment, 2021, 44, 3756-3774.	2.8	10
1864	Diversity of the Bacterial Microbiome Associated With the Endosphere and Rhizosphere of Different Cassava (Manihot esculenta Crantz) Genotypes. Frontiers in Microbiology, 2021, 12, 729022.	1.5	7
1865	Persistence of plant-mediated microbial soil legacy effects in soil and inside roots. Nature Communications, 2021, 12, 5686.	5.8	96
1866	Combining the Seed Endophytic Bacteria and the Back to the Future Approaches for Plant Holonbiont Breeding. Frontiers in Agronomy, 2021, 3, .	1.5	4
1867	Multifunctional Therapeutic Potential of Phytocomplexes and Natural Extracts for Antimicrobial Properties. Antibiotics, 2021, 10, 1076.	1.5	36
1868	Responses of soil bacterial and fungal communities to the long-term monoculture of grapevine. Applied Microbiology and Biotechnology, 2021, 105, 7035-7050.	1.7	35
1869	Agricultural Management Affects the Active Rhizosphere Bacterial Community Composition and Nitrification. MSystems, 2021, 6, e0065121.	1.7	15
1870	Soil microbiome, organic matter content and microbial abundance in forest and forest-derived land cover in Cat Tien National Park (Vietnam). Applied Soil Ecology, 2021, 165, 103957.	2.1	9
1871	A multimodal metabolomics approach using imaging mass spectrometry and liquid chromatography-tandem mass spectrometry for spatially characterizing monoterpene indole alkaloids secreted from roots. Plant Biotechnology, 2021, 38, 305-310.	0.5	7
1872	Root exudates impact plant performance under abiotic stress. Trends in Plant Science, 2022, 27, 80-91.	4.3	152
1873	Strategies and Structure Feature of the Aboveground and Belowground Microbial Community Respond to Drought in Wild Rice (Oryza longistaminata). Rice, 2021, 14, 79.	1.7	17
1874	Engineering Multigenerational Host-Modulated Microbiota against Soilborne Pathogens in Response to Global Climate Change. Biology, 2021, 10, 865.	1.3	9
1875	Rhizosphere microbiome manipulation for sustainable crop production. Current Plant Biology, 2021, 27, 100210.	2.3	71
1877	Is —— the rhizosphere a source of applicable multi-beneficial microorganisms for plant enhancement?. Saudi Journal of Biological Sciences, 2022, 29, 1246-1259.	1.8	28

#	Article	IF	CITATIONS
1878	Plant growth promoting endophyte Burkholderia contaminans NZ antagonizes phytopathogen Macrophomina phaseolina through melanin synthesis and pyrrolnitrin inhibition. PLoS ONE, 2021, 16, e0257863.	1.1	18
1879	Factors influencing suppressiveness of soils to powdery scab of potato. Australasian Plant Pathology, 2021, 50, 715-728.	0.5	3
1880	Interactions Between Bacillus Spp., Pseudomonas Spp. and Cannabis sativa Promote Plant Growth. Frontiers in Microbiology, 2021, 12, 715758.	1.5	27
1881	A Critical Review on Communication Mechanism within Plant-Endophytic Fungi Interactions to Cope with Biotic and Abiotic Stresses. Journal of Fungi (Basel, Switzerland), 2021, 7, 719.	1.5	85
1882	Invasive Grass Dominance over Native Forbs Is Linked to Shifts in the Bacterial Rhizosphere Microbiome. Microbial Ecology, 2022, 84, 496-508.	1.4	6
1883	Belowground responses of bacterial communities to foliar SA application over four plant generations. Plant and Soil, 2022, 470, 65-79.	1.8	2
1884	Pathogen Biocontrol Using Plant Growth-Promoting Bacteria (PGPR): Role of Bacterial Diversity. Microorganisms, 2021, 9, 1988.	1.6	75
1885	Soil microbial community responses to the application of a combined amendment in a historical zinc smelting area. Environmental Science and Pollution Research, 2022, 29, 13056-13070.	2.7	4
1886	Homogeneous selection shapes rare biosphere in rhizosphere of medicinal plant. Ecological Indicators, 2021, 129, 107981.	2.6	14
1887	Restriction of soil bacteria promoting high yield of super hybrid rice in the Huaihe Valley in central China by conventional ploughing intensity. Soil and Tillage Research, 2021, 214, 105169.	2.6	3
1888	Reduced interactivity during microbial community degradation leads to the extinction of Tricholomas matsutake. Land Degradation and Development, 0, , .	1.8	3
1889	Soil applied Ca, Mg and B altered phyllosphere and rhizosphere bacterial microbiome and reduced Huanglongbing incidence in Gannan Navel Orange. Science of the Total Environment, 2021, 791, 148046.	3.9	17
1890	Exogenous application of plant defense hormones alters the effects of live soils on plant performance. Basic and Applied Ecology, 2021, 56, 144-155.	1.2	6
1891	Rhizobium alamii improves water stress tolerance in a non-legume. Science of the Total Environment, 2021, 797, 148895.	3.9	17
1892	Adding alfalfa to an annual crop rotation shifts the composition and functional responses of tomato rhizosphere microbial communities. Applied Soil Ecology, 2021, 167, 104102.	2.1	18
1893	Enrichment of microbial taxa after the onset of wheat yellow mosaic disease. Agriculture, Ecosystems and Environment, 2021, 322, 107651.	2.5	26
1894	Effect of value-added organic co-products from four industrial chains on functioning of plant disease suppressive soil and their potentiality to enhance soil quality: A review from the perspective of a circular economy. Applied Soil Ecology, 2021, 168, 104221.	2.1	12
1895	Linking root phenomics, nutrient acquisition and utilisation in amaranthus with thermochemical organic fertilizer from biowaste. Rhizosphere, 2021, 20, 100426.	1.4	3

#	Article	IF	CITATIONS
1896	Rhizosphere bacterial and fungal spatial distribution and network pattern of Astragalus mongholicus in representative planting sites differ the bulk soil. Applied Soil Ecology, 2021, 168, 104114.	2.1	20
1897	Phytobial remediation by bacteria and fungi. , 2022, , 285-344.		3
1898	Loss in soil microbial diversity constrains microbiome selection and alters the abundance of N-cycling guilds in barley rhizosphere. Applied Soil Ecology, 2022, 169, 104224.	2.1	16
1899	Induced secretion system mutation alters rhizosphere bacterial composition in Sorghum bicolor (L.) Moench. Planta, 2021, 253, 33.	1.6	5
1900	Beneficial Plant-Associated Microorganisms From Semiarid Regions and Seasonally Dry Environments: A Review. Frontiers in Microbiology, 2020, 11, 553223.	1.5	22
1901	Phytobiomes and bioremediation. , 2021, , 301-316.		0
1902	Inoculation of <i>Mimosa Pudica</i> with <i>Paraburkholderia phymatum</i> Results in Changes to the Rhizoplane Microbial Community Structure. Microbes and Environments, 2021, 36, n/a.	0.7	5
1903	Design, synthesis, and biological evaluation of strigolactone derivatives for crop enhancement applications., 2021,, 571-582.		2
1904	DNA-Metabarcoding of Belowground Fungal Communities in Bare-Root Forest Nurseries: Focus on Different Tree Species. Microorganisms, 2021, 9, 150.	1.6	16
1906	nifH Gene Sequencing Reveals the Effects of Successive Monoculture on the Soil Diazotrophic Microbial Community in Casuarina equisetifolia Plantations. Frontiers in Plant Science, 2020, 11, 578812.	1.7	8
1907	Environmental parameters and microbial community profiles as indication towards microbial activities and diversity in aquaponic system compartments. BMC Microbiology, 2021, 21, 12.	1.3	13
1908	Application of N2-fixing Paenibacillus triticisoli BJ-18 changes the compositions and functions of the bacterial, diazotrophic, and fungal microbiomes in the rhizosphere and root/shoot endosphere of wheat under field conditions. Biology and Fertility of Soils, 2021, 57, 347-362.	2.3	28
1909	High-throughput cultivation and identification of bacteria from the plant root microbiota. Nature Protocols, 2021, 16, 988-1012.	5.5	91
1910	Molecular Tools to Explore Rhizosphere Microbiome. , 2021, , 37-57.		5
1911	Functional Diversity in Rhizosphere Microbial Community: Concept to Applications., 2021,, 343-365.		0
1912	Global Scenario of Soil Microbiome Research: Current Trends and Future Prospects. Sustainable Development and Biodiversity, 2021, , 573-603.	1.4	1
1913	Comparison and interpretation of characteristics of Rhizosphere microbiomes of three blueberry varieties. BMC Microbiology, 2021, 21, 30.	1.3	12
1914	Plant-specific microbiome for environmental stress management: Issues and challenges., 2021,, 69-89.		2

#	ARTICLE	IF	CITATIONS
1915	The influence of mycorrhizal fungi on rhizosphere bacterial communities in forests., 2021, , 257-275.		1
1916	Phytophthora Root Rot Modifies the Composition of the Avocado Rhizosphere Microbiome and Increases the Abundance of Opportunistic Fungal Pathogens. Frontiers in Microbiology, 2020, 11, 574110.	1.5	40
1917	Phytomicrobiome Community: An Agrarian Perspective Towards Resilient Agriculture., 2021,, 493-534.		8
1919	Rhizosphere Manipulations for Sustainable Plant Growth Promotion. , 2021, , 61-77.		1
1920	Exogenous Inoculation of Microorganisms Effect on Root Exudates and Rhizosphere Microorganism of Tobaccos. Advances in Microbiology, 2021, 11, 510-528.	0.3	5
1921	Differences in Soil Microbial Community Composition Between Suppressive and Root Rot-Conducive in Tobacco Fields. Current Microbiology, 2021, 78, 624-633.	1.0	20
1922	Role of Jasmonates in Beneficial Microbe–Root Interactions. Methods in Molecular Biology, 2020, 2085, 43-67.	0.4	9
1923	Bacterial Mixtures, the Future Generation of Inoculants for Sustainable Crop Production. Sustainable Development and Biodiversity, 2019, , 11-44.	1.4	7
1924	Plant Microbial Ecology as a Potential Option for Stress Management in Plants. , 2020, , 331-360.		5
1925	Antimicrobial/Antibiotic Resistance Genes Due to Manure and Agricultural Waste Applications. Emerging Contaminants and Associated Treatment Technologies, 2020, , 139-161.	0.4	5
1926	Bacterial Inoculants: How Can These Microbes Sustain Soil Health and Crop Productivity?. Soil Biology, 2020, , 337-372.	0.6	5
1927	Role of Rhizomicrobiome in Maintaining Soil Fertility and Crop Production. Soil Biology, 2020, , 373-401.	0.6	2
1928	How Microbiome Approaches Can Assist Industrial Development of Biological Control Products. Progress in Biological Control, 2020, , 201-215.	0.5	5
1929	Global Microbiome for Agroecology, Industry, and Human Well-Being: Opportunities and Challenges in Climate Change. SpringerBriefs in Ecology, 2015, , 125-152.	0.2	2
1930	Suppressiveness in Different Soils for Rhizoctonia solani. Soil Biology, 2015, , 175-184.	0.6	2
1931	The Importance of Phytohormones and Microbes in Biofertilizers. Sustainable Development and Biodiversity, 2015, , 105-158.	1.4	41
1932	Setaria Root–Microbe Interactions. Plant Genetics and Genomics: Crops and Models, 2017, , 239-250.	0.3	4
1933	Arbuscular Mycorrhizae, Beneficial Microorganisms for Sustainable Agriculture. Encyclopedia of the UN Sustainable Development Goals, 2020, , 1-14.	0.0	6

#	Article	IF	CITATIONS
1934	Green Space and Health., 2019, , 409-423.		25
1935	Streptomyces for Sustainability. , 2016, , 251-276.		7
1936	Quorum Sensing Molecules of Rhizobacteria: A Trigger for Developing Systemic Resistance in Plants. Microorganisms for Sustainability, 2019, , 117-138.	0.4	7
1937	Amelioration of Biotic Stress by Application of Rhizobacteria for Agriculture Sustainability. Microorganisms for Sustainability, 2019, , 111-168.	0.4	5
1938	Rhizosphere as Hotspot for Plant-Soil-Microbe Interaction. , 2020, , 17-43.		26
1939	Soil: Microbial Cell Factory for Assortment with Beneficial Role in Agriculture. , 2019, , 63-92.		2
1940	Microbe-Mediated Tolerance in Plants Against Biotic and Abiotic Stresses. , 2019, , 173-217.		1
1941	Enhanced Phosphorus Fertilizer Use Efficiency with Microorganisms. , 2020, , 215-245.		30
1942	Advancements in Microbial Genome Sequencing and Microbial Community Characterization. , 2019, , 87-113.		1
1943	Rhizosphere Engineering and Agricultural Productivity. , 2019, , 71-154.		4
1944	Use of Biostimulants to Improve Salinity Tolerance in Agronomic Crops. , 2020, , 423-441.		4
1945	Phytostimulation and Biocontrol byÂthe Plant-Associated Bacillus amyloliquefaciens FZB42: An Update. Environmental and Microbial Biotechnology, 2020, , 1-20.	0.4	6
1946	Role of Microbes for Attaining Enhanced Food Crop Production. Environmental and Microbial Biotechnology, 2020, , 55-78.	0.4	9
1947	Role of the Potent Microbial Based Bioagents and Their Emerging Strategies for the Ecofriendly Management of Agricultural Phytopathogens. , 2020, , 45-66.		8
1948	Mechanisms of Plant Growth Promotion and Functional Annotation in Mitigation of Abiotic Stress. Microorganisms for Sustainability, 2020, , 105-150.	0.4	1
1949	Rhizospheric Microbiome: Biodiversity, Current Advancement and Potential Biotechnological Applications. Microorganisms for Sustainability, 2020, , 39-60.	0.4	1
1950	Microbial–Faunal Interactions in the Rhizosphere. Rhizosphere Biology, 2021, , 237-253.	0.4	4
1951	Inter-Organismal Signaling in the Rhizosphere. Rhizosphere Biology, 2021, , 255-293.	0.4	12

#	Article	IF	CITATIONS
1953	Rhizosphere Microbiome and Soil-Borne Diseases. Rhizosphere Biology, 2021, , 155-168.	0.4	4
1954	Bioinformatics Resources for Microbial Research in Biological Systems. , 2019, , 45-60.		1
1955	Study on the relationship between bacterial wilt and rhizospheric microbial diversity of flue-cured tobacco cultivars. European Journal of Plant Pathology, 2021, 160, 265-276.	0.8	26
1956	Plant–microbe interactions in plants and stress tolerance. , 2020, , 355-396.		14
1957	Differential response of rhizoplane, rhizosphere and water wetland bacterial communities to short-term phosphorus loading in lab scale mesocosms. Applied Soil Ecology, 2020, 154, 103598.	2.1	11
1958	Halotolerant plant growth–promoting bacteria: Prospects for alleviating salinity stress in plants. Environmental and Experimental Botany, 2020, 178, 104124.	2.0	176
1959	Sclerotia of a phytopathogenic fungus restrict microbial diversity and improve soil health by suppressing other pathogens and enriching beneficial microorganisms. Journal of Environmental Management, 2020, 259, 109857.	3.8	16
1960	Plant growth-promoting traits of yeasts isolated from Spanish vineyards: benefits for seedling development. Microbiological Research, 2020, 237, 126480.	2.5	48
1961	The Soil-Borne Identity and Microbiome-Assisted Agriculture: Looking Back to the Future. Molecular Plant, 2020, 13, 1394-1401.	3.9	80
1962	Microbiomes of Soils, Plants and Animals. , 2020, , .		27
1963	<i>Fusarium</i> wilt: a threat to banana cultivation and its management CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-24.	0.6	13
1964	Service crops improve a degraded monoculture system by changing common bean rhizospheric soil microbiota and reducing soil-borne fungal diseases. FEMS Microbiology Ecology, 2021, 97, .	1.3	4
1965	Organ-specific expression and epigenetic traits of genes encoding digestive enzymes in the lance-leaf sundew (Drosera adelae). Journal of Experimental Botany, 2021, 72, 1946-1961.	2.4	6
1966	Validation of a PNA Clamping Method for Reducing Host DNA Amplification and Increasing Eukaryotic Diversity in Rhizosphere Microbiome Studies. Phytobiomes Journal, 2020, 4, 291-302.	1.4	14
1967	Lechevalieria rhizosphaerae sp. nov., a novel actinomycete isolated from rhizosphere soil of wheat (Triticum aestivum L.) and emended description of the genus Lechevalieria. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 4655-4659.	0.8	13
1968	Streptomyces tritici sp. nov., a novel actinomycete isolated from rhizosphere soil of wheat (Triticum) Tj ETQq $1\ 1$	0.784314 0.8	rgBT /Overlo
1969	Glycomyces dulcitolivorans sp. nov., isolated from rhizosphere soil of wheat (Triticum aestivum L.). International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 3034-3039.	0.8	9
1970	Streptomyces inhibens sp. nov., a novel actinomycete isolated from rhizosphere soil of wheat (Triticum aestivum L.). International Journal of Systematic and Evolutionary Microbiology, 2019, 69, 688-695.	0.8	64

#	Article	IF	Citations
1971	Microbispora fusca sp. nov., a novel actinomycete isolated from the ear of wheat (Triticum aestivum) Tj ETQq0 0	O rggT /O	verlock 10 Tf
1972	Massilia arenosa sp. nov., isolated from the soil of a cultivated maize field. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 3912-3920.	0.8	16
1973	Narrative of a versatile and adept species Pseudomonas putida. Journal of Medical Microbiology, 2020, 69, 324-338.	0.7	27
2006	Association between algal productivity and phycosphere composition in an outdoor <i>Chlorella sorokiniana</i> reactor based on multiple longitudinal analyses. Microbial Biotechnology, 2020, 13, 1546-1561.	2.0	17
2007	Study on the Diversity of Fungal and Bacterial Communities in Continuous Cropping Fields of Chinese Chives (Allium tuberosum). BioMed Research International, 2020, 2020, 1-14.	0.9	15
2008	Transcriptomic profiling of <i>Brassica napus</i> responses to <i>Pseudomonas aeruginosa</i> Innate Immunity, 2021, 27, 143-157.	1.1	6
2009	Root ethylene mediates rhizosphere microbial community reconstruction when chemically detecting cyanide produced by neighbouring plants. Microbiome, 2020, 8, 4.	4.9	102
2010	Linking belowground microbial network changes to different tolerance level towards Verticillium wilt of olive. Microbiome, 2020, 8, 11.	4.9	78
2011	Soil microbiota manipulation and its role in suppressing soil-borne plant pathogens in organic farming systems under the light of microbiome-assisted strategies. Chemical and Biological Technologies in Agriculture, 2020, 7, .	1.9	66
2012	Comparative study on the diversity of endophytic actinobacteria communities from Ficus deltoidea using metagenomic and culture-dependent approaches. Biodiversitas, 2018, 19, 1514-1520.	0.2	7
2013	Host Biology in Light of the Microbiome: Ten Principles of Holobionts and Hologenomes. PLoS Biology, 2015, 13, e1002226.	2.6	868
2014	Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biology, 2018, 16, e2003862.	2.6	340
2015	Root Exudation of Phytochemicals in Arabidopsis Follows Specific Patterns That Are Developmentally Programmed and Correlate with Soil Microbial Functions. PLoS ONE, 2013, 8, e55731.	1.1	484
2016	Growth Conditions Determine the DNF2 Requirement for Symbiosis. PLoS ONE, 2014, 9, e91866.	1.1	34
2017	The Nitrogen-Fixation Island Insertion Site Is Conserved in Diazotrophic Pseudomonas stutzeri and Pseudomonas sp. Isolated from Distal and Close Geographical Regions. PLoS ONE, 2014, 9, e105837.	1.1	14
2018	Effect of Elevated Atmospheric CO2 and Temperature on the Disease Severity of Rocket Plants Caused by Fusarium Wilt under Phytotron Conditions. PLoS ONE, 2015, 10, e0140769.	1.1	30
2019	Rice Seed Priming with Picomolar Rutin Enhances Rhizospheric Bacillus subtilis CIM Colonization and Plant Growth. PLoS ONE, 2016, 11, e0146013.	1.1	46
2020	Arthrobacter pokkalii sp nov, a Novel Plant Associated Actinobacterium with Plant Beneficial Properties, Isolated from Saline Tolerant Pokkali Rice, Kerala, India. PLoS ONE, 2016, 11, e0150322.	1.1	42

#	Article	IF	Citations
2021	Variable Nitrogen Fixation in Wild Populus. PLoS ONE, 2016, 11, e0155979.	1.1	72
2022	Rhizospheric microbial communities associated with wild and cultivated frankincense producing Boswellia sacra tree. PLoS ONE, 2017, 12, e0186939.	1.1	13
2023	Effects of an EPSPS-transgenic soybean line ZUTS31 on root-associated bacterial communities during field growth. PLoS ONE, 2018, 13, e0192008.	1.1	47
2024	Composition and diversity of rhizosphere fungal community in Coptis chinensis Franch. continuous cropping fields. PLoS ONE, 2018, 13, e0193811.	1.1	44
2025	Diversity and structural differences of bacterial microbial communities in rhizocompartments of desert leguminous plants. PLoS ONE, 2020, 15, e0241057.	1.1	10
2026	The role of microbial amyloid in neurodegeneration. PLoS Pathogens, 2017, 13, e1006654.	2.1	270
2027	Potency of Commercial Symbiotic Bio-Fertilizer Consortium for Mitigating the Olive Quick Decline Syndrome (OQDS). Journal of Agronomy Research, 2019, 2, 1-21.	0.5	8
2029	Innovations of phosphorus sustainability: implications for the whole chain. Frontiers of Agricultural Science and Engineering, 2019, 6, 321.	0.9	14
2030	Manipulation of phytobiome: a new concept to control the plant disease and improve the productivity. Journal of Bacteriology & Mycology Open Access, 2018, 6, 322-324.	0.2	4
2031	MICROBIAL ACTIVITY AND COMMUNITY DIVERSITY IN TOBACCO RHIZOSPHERIC SOIL AFFECTED BY DIFFERENT PRE-CROPS. Applied Ecology and Environmental Research, 2017, 15, 15-30.	0.2	3
2032	The Amphibian Skin Microbiome and Its Protective Role Against Chytridiomycosis. Herpetologica, 2020, 76, 167.	0.2	60
2033	Screening and Identification of Harmful and Beneficial Microorganisms Associated with Replanting Disease in Rhizosphere Soil of Pseudostellariae heterophylla. International Journal of Agriculture and Biology, 2015, 17, 458-466.	0.2	16
2034	Analysis of the Bacterial and Fungal Community Profiles in Bulk Soil and Rhizospheres of Three Mungbean [<i>Vigna radiata</i> (L.) R. Wilczek] Genotypes through PCR-DGGE. International Letters of Natural Sciences, 0, 77, 1-26.	1.0	3
2035	Sodium-resistant plant growth-promoting rhizobacteria isolated from a halophyte, Salsola grandis, in saline-alkaline soils of Turkey. Eurasian Journal of Soil Science, 2017, 6, 216-216.	0.2	7
2036	GROWTH AND OIL YIELD PARAMETERS OF THE Capsicum annuum VAR aviculare ASSOCIATED TO THE BENEFICIAL BACTERIUM Bacillus amyloliquefaciens AND Azospirillum halopraeferens UNDER FIELD CONDITIONS. Biotecnia, 2018, 20, 59-64.	0.1	3
2037	Screening of Native Rhizobia and Pseudomonas Strains for Plant Growth Promoting Activities. International Journal of Current Microbiology and Applied Sciences, 2017, 6, 616-625.	0.0	14
2038	Potentiality of Native Pseudomonas spp. in Promoting Sugarcane Seedling Growth and Red Rot (Colletotrichum falcatum went) Management. International Journal of Current Microbiology and Applied Sciences, 2018, 7, 2855-2863.	0.0	3
2039	Bioinoculation of Mustard (Brassica juncea L.) with Beneficial Rhizobacteria: A Sustainable Alternative to Improve Crop Growth. International Journal of Current Microbiology and Applied Sciences, 2018, 7, 1375-1386.	0.0	5

#	ARTICLE	IF	Citations
2040	Establishment and Functionality of Diverse Endophytic Bacteria from Different Hosts in Chickpea and Wheat Microbiome. International Journal of Current Microbiology and Applied Sciences, 2019, 8, 2273-2286.	0.0	2
2041	The Rhizosphere Microbiome And Its Beneficial Effects On Plants – Current Knowledge And Perspectives. Postepy Mikrobiologii, 2019, 58, 59-69.	0.1	9
2042	Plant-Beneficial <i>Pseudomonas</i> Spp. Suppress Local Root Immune Responses by Gluconic Acid-Mediated Lowering of Environmental pH. SSRN Electronic Journal, 0, , .	0.4	5
2043	Metabolic Modeling of Microbial Community Interactions for Health, Environmental and Biotechnological Applications. Current Genomics, 2018, 19, 712-722.	0.7	28
2044	Metabolic Diversity of Rhizospheric Pseudomonas species of Bt Cotton Plant. Journal of Pure and Applied Microbiology, 2018, 12, 1929-1937.	0.3	3
2045	The microbiome of medicinal plants: diversity and importance for plant growth, quality and health. Frontiers in Microbiology, 2013, 4, 400.	1.5	224
2046	Pathogen Infection and Host-Resistance Interactively Affect Root-Associated Fungal Communities in Watermelon. Frontiers in Microbiology, 2020, 11, 605622.	1.5	12
2047	Biocontrol Traits Correlate With Resistance to Predation by Protists in Soil Pseudomonads. Frontiers in Microbiology, 2020, 11, 614194.	1.5	24
2048	Buffet hypothesis for microbial nutrition at the rhizosphere. Frontiers in Plant Science, 2013, 4, 188.	1.7	28
2049	Shifts in the Active Rhizobiome Paralleling Low Meloidogyne chitwoodi Densities in Fields Under Prolonged Organic Soil Management. Frontiers in Plant Science, 2019, 10, 1697.	1.7	24
2050	Soil Microbiome Manipulation Gives New Insights in Plant Disease-Suppressive Soils from the Perspective of a Circular Economy: A Critical Review. Sustainability, 2021, 13, 10.	1.6	7
2051	Plant allelopathy types and their application in agriculture. Chinese Journal of Eco-Agriculture, 2013, 21, 1173-1183.	0.1	8
2052	Managing for soil health can suppress pests. California Agriculture, 2016, 70, 137-141.	0.5	11
2053	Secondary metabolites of <i>Bacillus subtilis</i> impact the assembly of soil-derived semisynthetic bacterial communities. Beilstein Journal of Organic Chemistry, 2020, 16, 2983-2998.	1.3	18
2054	Exposure to synthetic hydraulic fracturing waste influences the mucosal bacterial community structure of the brook trout (Salvelinus fontinalis) epidermis. AIMS Microbiology, 2018, 4, 413-427.	1.0	15
2055	Differential Impacts on Bacterial Composition and Abundance in Rhizosphere Compartments between Al-Tolerant and Al-Sensitive Soybean Genotypes in Acidic Soil. Journal of Microbiology and Biotechnology, 2020, 30, 1169-1179.	0.9	5
2056	Effects of Tobacco Pathogens and Their Antagonistic Bacteria on Tobacco Root Exudates. Open Journal of Applied Sciences, 2018, 08, 518-531.	0.2	5
2057	Comparison of Microbial Community Structure in Kiwifruit Pollens. Plant Pathology Journal, 2018, 34, 143-149.	0.7	14

#	ARTICLE	IF	CITATIONS
2058	The rhizosphere microbiome and biological control of weeds: A review. Spanish Journal of Agricultural Research, 2020, 17, e10R01.	0.3	10
2059	Soil Metagenomics: Prospects and Challenges. , 0, , .		4
2060	Characterization and comparison of the bacterial communities of rhizosphere and bulk soils from cadmium-polluted wheat fields. Peerl, 2020, 8, e10302.	0.9	13
2061	The herbaceous landlord: integrating the effects of symbiont consortia within a single host. PeerJ, 2015, 3, e1379.	0.9	24
2062	Phylogenetic factorization of compositional data yields lineage-level associations in microbiome datasets. PeerJ, 2017, 5, e2969.	0.9	105
2063	COREMIC: a web-tool to search for a niche associated CORE MICrobiome. PeerJ, 2018, 6, e4395.	0.9	23
2064	Variation in the leaf and root microbiome of sugar maple (<i>Acer saccharum</i>) at an elevational range limit. PeerJ, 2018, 6, e5293.	0.9	55
2065	Effects of <i>Trichoderma </i> seedling treatment with System of Rice Intensification management and with conventional management of transplanted rice. Peerl, 2019, 7, e5877.	0.9	33
2066	Mycorrhization of <i>Quercus acutissima</i> with Chinese black truffle significantly altered the host physiology and root-associated microbiomes. PeerJ, 2019, 7, e6421.	0.9	18
2067	Seasonal dynamics of microbial diversity in the rhizosphere of <i>Ulmus pumila</i> L. var. <i>sabulosa</i> in a steppe desert area of Northern China. PeerJ, 2019, 7, e7526.	0.9	15
2068	Microbial community structure analysis in Acer palmatumbark and isolation of novel bacteria IAD-21 of the candidate division FBP. Peerl, 2019, 7, e7876.	0.9	10
2069	Rhizosphere bacterial and fungal communities during the growth of <i>Angelica sinensis</i> seedlings cultivated in an Alpine uncultivated meadow soil. PeerJ, 2020, 8, e8541.	0.9	13
2070	Bacterial core community in soybean rhizosphere. Korean Journal of Microbiology, 2015, 51, 347-354.	0.2	9
2071	Antifungal activity of Streptomyces costaricanus HR391 against some plant-pathogenic fungi. Korean Journal of Microbiology, 2016, 52, 437-443.	0.2	4
2072	Rhizosphere microbiome: Functional compensatory assembly for plant fitness. Computational and Structural Biotechnology Journal, 2021, 19, 5487-5493.	1.9	29
2073	Diversity and Composition of Microbial Communities in an Eelgrass (<i>Zostera marina</i>) Bed in Tokyo Bay, Japan. Microbes and Environments, 2021, 36, n/a.	0.7	7
2074	Impact of Climate Change on Localized Plant–Microbe Signalling and Technology Advancement in Microbial Quorum Sensing. Soil Biology, 2021, , 695-715.	0.6	1
2075	Phytoremediation of Polycyclic Aromatic Hydrocarbons-Contaminated Soils. Soil Biology, 2021, , 419-445.	0.6	5

#	Article	IF	CITATIONS
2076	Plant Growth Promoting Endophytic Bacteria for management of stresses in cereal crop productions. Journal of Natural Resource Conservation and Management, 2021, 2, 32.	0.3	0
2077	From seeds to postharvest: the impact of the plant microbiome on health: a review. Acta Horticulturae, 2021, , 189-194.	0.1	0
2078	Untangling the Pea Root Rot Complex Reveals Microbial Markers for Plant Health. Frontiers in Plant Science, 2021, 12, 737820.	1.7	9
2079	Investigating Chemical and Biological Control Applications for Pythium Root Rot Prevention and Impacts on Creeping Bentgrass Putting Green Rhizosphere Bacterial Communities. Plant Disease, 2022, 106, 641-647.	0.7	2
2080	Drought Stress Triggers Shifts in the Root Microbial Community and Alters Functional Categories in the Microbial Gene Pool. Frontiers in Microbiology, 2021, 12, 744897.	1.5	26
2081	High-throughput molecular technologies for unraveling the mystery of soil microbial community: challenges and future prospects. Heliyon, 2021, 7, e08142.	1.4	24
2082	Seed-Transmitted Bacteria and Fungi Dominate Juvenile Plant Microbiomes. Frontiers in Microbiology, 2021, 12, 737616.	1.5	59
2083	Biocontrol of Soil-Borne Pathogens of Solanum lycopersicum L. and DaucusÂcarota L. by Plant Growth-Promoting Actinomycetes: In Vitro and In Planta Antagonistic Activity. Pathogens, 2021, 10, 1305.	1.2	19
2084	Drought Sensitivity of Sugarcane Cultivars Shapes Rhizosphere Bacterial Community Patterns in Response to Water Stress. Frontiers in Microbiology, 2021, 12, 732989.	1.5	8
2085	Bioprospecting of the novel isolate Microbacterium proteolyticum LA2(R) from the rhizosphere of Rauwolfia serpentina. Saudi Journal of Biological Sciences, 2022, 29, 1858-1868.	1.8	6
2086	Shifts in Bacterial Community Associated with Green Manure Soybean Intercropping and Edaphic Properties in a Tea Plantation. Sustainability, 2021, 13, 11478.	1.6	4
2087	Rhizosphere microbial diversity in rhizosphere of Pinellia ternata intercropped with maize. 3 Biotech, 2021, 11, 469.	1.1	3
2088	Differentiation of endospheric microbiota in ancient and modern wheat cultivar roots. Plant-Environment Interactions, 2021, 2, 235-248.	0.7	11
2089	Taxonomical and functional bacterial community selection in the rhizosphere of the rice genotypes with different nitrogen use efficiencies. Plant and Soil, 2022, 470, 111-125.	1.8	5
2090	Biogeographic distribution patterns and assembly processes of <i>nirSâ€</i> type and <i>nirK</i> å€ŧype denitrifiers across the black soil zone in Northeast China. Soil Science Society of America Journal, 2022, 86, 1383-1396.	1.2	6
2092	Indirect reduction of <i>Ralstonia solanacearum</i> via pathogen helper inhibition. ISME Journal, 2022, 16, 868-875.	4.4	32
2093	Root Exudates Alters Nutrient Transport in Soil. Water Resources Research, 2021, 57, e2021WR029976.	1.7	7
2094	Response of Sugarcane Rhizosphere Bacterial Community to Drought Stress. Frontiers in Microbiology, 2021, 12, 716196.	1.5	13

#	Article	IF	CITATIONS
2095	Introduction of probiotic bacterial consortia promotes plant growth via impacts on the resident rhizosphere microbiome. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211396.	1.2	29
2096	The soilâ€borne ultimatum, microbial biotechnology and sustainable agriculture. Microbial Biotechnology, 2022, 15, 84-87.	2.0	7
2097	Potential advantage of rhizosheath microbiome, in contrast to rhizosphere microbiome, to improve drought tolerance in crops. Rhizosphere, 2021, 20, 100439.	1.4	14
2098	Microbial community structure in rhizosphere soil rather than that in bulk soil characterizes aggregate-associated organic carbon under long-term forest conversion in subtropical region. Rhizosphere, 2021, 20, 100438.	1.4	10
2099	Assembly and co-occurrence patterns of rare and abundant bacterial sub-communities in rice rhizosphere soil under short-term nitrogen deep placement. Journal of Integrative Agriculture, 2021, 20, 3299-3311.	1.7	6
2100	Plant-Microbe Interactions., 2013, , 1-24.		0
2101	Diversity and Antimicrobial Activity of Actinomycetes Isolated from Rhizosphere of Rice (Oryza sativa) Tj ETQq0	0 o rgBT /0	Overlock 10 T
2102	Bactérias e fungos benéficos na endosfera das plantas. Revista Agrogeoambiental, 2015, 7, .	0.0	0
2103	Screening of Antagonistic Bacteria having Antifungal Activity against Various Phytopathogens. Korean Journal of Mycology, 2014, 42, 333-340.	0.3	2
2104	Mass Spectrometry-Based Proteomics to Study Protein Complexes in Legume-Rhizobium Symbiosis. MOJ Proteomics & Bioinformatics, 2014, 1, .	0.1	1
2105	Application of Microbiology in Conservation Agriculture. , 2015, , 525-557.		2
2106	The Impact of Suppressive Soils on Plant Pathogens and Agricultural Productivity. Soil Biology, 2015, , 3-23.	0.6	2
2107	Impact of Microbiological Fertilizer Baikal EM-1 on Onion Growth in Greenhouse Conditions. Environment Technology Resources Proceedings of the International Scientific and Practical Conference, 0, 2, 103.	0.0	0
2108	The Promise of the Plant's Second Genome. Journal of Investigative Genomics, 2015, 2, .	0.2	1
2110	ORGANIC ALFALFA PRODUCTION USING DIFFERENT EM.1 COMPOSTS. Turkish Journal of Field Crops, 2016, 21, 137.	0.2	1
2111	In planta Screening of Rhizobacterial Community for Promoting Maize (Zea mays cv. BISI 2) Growth in Dryland Agriculture. Research Journal of Microbiology, 2016, 11, 70-79.	0.2	0
2114	Isolation and Characterization of Bacillus Species Having Antifungal Activity Against Pathogens of Ginseng Damping Off. Nong'yag Gwahag Hoeji, 2016, 20, 380-387.	0.1	3
2120	Agroecological Engineering in Rhizosphere Biocontrol Plants and Formation of Soil Health. MikrobiolohichnyÄ-Zhurnal, 2017, 79, 88-109.	0.2	3

#	Article	IF	CITATIONS
2122	Assessment of Culturable Microbial Diversity Associated with Arnebia euchroma: A Critically Endangered Plant Growing in Trans-Himalayas of Himachal Pradesh, India. International Journal of Current Microbiology and Applied Sciences, 2017, 6, 2953-2968.	0.0	2
2123	In-vitro Screening of B. cepacia; C. freundii and S. marcescens for Antagonistic Efficacy. Journal of Pure and Applied Microbiology, 2017, 11, 1523-1534.	0.3	1
2127	Origins of the Cellular Biosphere. Plant Cell Monographs, 2018, , 271-290.	0.4	2
2129	Phytobeneficial Traits and Ecophysiological Stress Tolerance of Rhizobia. ABC Research Alert, 2018, 6, .	0.1	0
2134	Actividad inhibitoria de bacterias aisladas de la riz \tilde{A}^3 sfera de \tilde{A}_i rboles frutales, en contra de Phymatotrichopsis omn \tilde{A} vora in vitro. Acta Universitaria, 2018, 28, 66-71.	0.2	1
2135	2,4-Diacetylphloroglucinol: A Novel Biotech Bioactive Compound for Agriculture. , 2019, , 419-452.		5
2137	Characterization of the antifungal activity of three rhizobacterial strains against Rhizoctonia solani. Spanish Journal of Agricultural Research, 2019, 16, e1011.	0.3	2
2138	Interaction of Rhizobacteria with Soil Microorganisms: An Agro-Beneficiary Aspect. Microorganisms for Sustainability, 2019, , 241-259.	0.4	1
2139	Influence of Endophytic Bacteria on Growth Promotion and Protection against Diseases in Associated Plants., 2019,, 263-287.		6
2140	Functional Metagenomics for Rhizospheric Soil in Agricultural Systems. , 2019, , 149-160.		1
2141	Microbial Interventions in Soil and Plant Health for Improving Crop Efficiency., 2019,, 17-47.		4
2142	Dynamics of Plant Microbiome and Its Effect on the Plant Traits. , 2019, , 273-304.		2
2143	Microbiome: Effect on Plant System, Current Application and Future Aspect., 2019, , 119-134.		0
2144	Role of Plant-Microbe Interaction in Phytoremediation. , 2019, , 83-118.		5
2152	Arabidopsis thaliana Bitkisi ile Pseudomonas putida Bakterisi Arasındaki Etkileşimin in vitro Koşullarda Belirlenmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 2019, 8, 459-465.	0.1	0
2153	Construction of LC-MS maps of root exudates in cotton (Gossypium hirsutum L.) seedlings. Abasyn Journal of Life Sciences, 2019, , .	0.2	0
2155	Revealing the Draft Genome Sequence of <i>Bradyrhizobium</i> sp. Strain USDA 3458, an Effective Symbiotic Diazotroph Isolated from Cowpea (<i>Vigna unguiculata</i>) Genotype IT82E-16. Microbiology Resource Announcements, 2019, 8, .	0.3	1
2158	Agromyces tardus sp. nov., an actinobacterium isolated from the rhizosphere soil of wheat (Triticum) Tj ETQq $1\ 1$	0.784314	rgBT /Ovetlo

#	Article	IF	CITATIONS
2159	High-throughput sequence analysis reveals variation in the relative abundance of components of the bacterial and fungal microbiota in the rhizosphere of <i>Ginkgo biloba </i> . PeerJ, 2019, 7, e8051.	0.9	2
2162	Rhizosphere Bacteriobiome of the Husk Tomato Grown in the Open Field in West Siberia. Agriculture, 2019, 65, 147-154.	0.2	0
2163	Cyanobacteria that Promote Plant Growth and Metabolites. Commagene Journal of Biology, 0, , .	0.1	0
2164	Actinobacteria: Diversity, Plant Interactions and Biotechnology Applications. Sustainable Development and Biodiversity, 2020, , 199-244.	1.4	4
2168	Isolation and Characterization of Mesophilic Bacteria from Rhizosphere of Plant Rice (Oryza sativa) from Lodhran, Pakistan. Biosciences, Biotechnology Research Asia, 2020, 17, 73-78.	0.2	0
2172	MICRORGANISMOS E SEUS PRODUTOS DE FERMENTA $ ilde{A}$ ‡ $ ilde{A}$ fO INTERFEREM NA QUALIDADE DE SEMENTES E PL $ ilde{A}$,NTULAS DE MILHO?. Nativa, 2020, 8, 490-497.	0.2	1
2174	Inoculation Effects in the Rhizosphere: Diversity and Function. Rhizosphere Biology, 2021, , 339-356.	0.4	2
2176	Diversity and structural characteristics of soil microbial communities in different habitats of wild <i>Lilium regale</i> Wilson in Wenchuan area. Bioengineered, 2021, 12, 10457-10469.	1.4	4
2177	Interaction of Inherited Microbiota from Cover Crops with Cash Crops. Agronomy, 2021, 11, 2199.	1.3	4
2179	Storage of soil microbiome for application in sustainable agriculture: prospects and challenges. Environmental Science and Pollution Research, 2021, , 1.	2.7	6
2180	Rhizosphere Microbiome: The Emerging Barrier in Plant-Pathogen Interactions. Frontiers in Microbiology, 2021, 12, 772420.	1.5	36
2181	The Effect of Rhizophagus irregularis, Bacillus subtilis and Water Regime on the Plant–Microbial Soil System: The Case of Lactuca sativa. Agronomy, 2021, 11, 2183.	1.3	4
2183	Metagenomic Analysis of Rhizosphere Bacteria in Desert Plant <i>Calotropis procera</i> Geomicrobiology Journal, 2021, 38, 375-383.	1.0	7
2184	Beneficial Root Microbiota: Transmogrifiers of Secondary Metabolism in Plants. , 2021, , 343-365.		1
2185	Soil Management and Conservation: An Approach to Mitigate and Ameliorate Soil Contamination. , 0, , .		0
2187	Assessment of the Impact of No-Till and Conventional Tillage Technologies on the Microbiome of Southern Agrochernozems. Eurasian Soil Science, 2020, 53, 1782-1793.	0.5	12
2188	Rhizospheric microbiome: Bio-based emerging strategies for sustainable agriculture development and future perspectives. Microbiological Research, 2022, 254, 126901.	2.5	43
2189	Microbial consortia for augmentation of plant growth–revisiting the promising approach towards sustainable agriculture. , 2022, , 231-256.		4

#	Article	IF	CITATIONS
2190	Role of microorganism as new generation plant bio-stimulants: An assessment. , 2022, , 1-16.		1
2191	Differential response of mycorrhizal fungi linked with two dominant plant species of temperate grassland under varying levels of N-addition. Applied Soil Ecology, 2022, 170, 104272.	2.1	15
2192	Microbiomes across root compartments are shaped by inoculation with a fungal biological control agent. Applied Soil Ecology, 2022, 170, 104230.	2.1	4
2193	Bacterial inoculants improved the growth and nitrogen use efficiency of Pyrus betulifolia under nitrogen-limited conditions by affecting the native soil bacterial communities. Applied Soil Ecology, 2022, 170, 104285.	2.1	11
2194	Simulated root exudates stimulate the abundance of Saccharimonadales to improve the alkaline phosphatase activity in maize rhizosphere. Applied Soil Ecology, 2022, 170, 104274.	2.1	49
2195	Microbe-Mediated Biotic Stress Signaling and Resistance Mechanisms in Plants. , 2020, , 297-334.		2
2197	Recent Advances in Plant-Microbe Interaction. , 2020, , 23-49.		2
2198	Endophytic Phytobiomes as Defense Elicitors: Current Insights and Future Prospects. , 2020, , 299-334.		0
2199	Trichoderma as Biostimulant: Factors Responsible for Plant Growth Promotion. Soil Biology, 2020, , 287-309.	0.6	1
2200	Dissecting Structure and Function of Plant Rhizomicrobiome: A Genomic Approach. Microorganisms for Sustainability, 2020, , 73-103.	0.4	0
2201	The Rhizosphere Microbiome: Microbial Communities and Plant Health., 2020, , 175-190.		1
2202	Biochemical Dynamics of Plant-Microbe Interactions. , 2020, , 267-292.		0
2203	Rhizospheric Microbial Community: Ecology, Methods, and Functions. Microorganisms for Sustainability, 2020, , 127-148.	0.4	4
2205	Plant-Microbe Interactions under Adverse Environment. , 2020, , 717-751.		1
2207	Structure and Function of Rhizobiome. , 2020, , 241-261.		4
2208	Host-Parasite Interaction during Development of Major Seed-Borne Bacterial Diseases. , 2020, , 245-264.		0
2209	Stress Signalling in the Phytomicrobiome: Breadth and Potential. Environmental and Microbial Biotechnology, 2020, , 245-268.	0.4	8
2210	Microbial Bioagents in Agriculture: Current Status and Prospects. , 2020, , 331-368.		7

#	Article	IF	CITATIONS
2211	Plant-Microbe-Metal Interactions: A Biochemical and Molecular Analysis for Phytoremediation. , 2020, , 71-92.		0
2214	Isolation, Identification and Characterisation of Endophytic Bacteria in Biophytum sensitivum (L.) DC. Journal of Pure and Applied Microbiology, 2020, 14, 647-655.	0.3	1
2215	Soil Biodiversity and Root Pathogens in Agroecosystems. , 0, , .		0
2216	Clover Species Specific Influence on Microbial Abundance and Associated Enzyme Activities in Rhizosphere and Non-Rhizosphere Soils. Agronomy, 2021, 11, 2214.	1.3	6
2217	Naturally occurring fire coral clones demonstrate a genetic and environmental basis of microbiome composition. Nature Communications, 2021, 12, 6402.	5.8	28
2218	Soil Health and Nutrient Density: Beyond Organic vs. Conventional Farming. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	26
2219	The Interplay between the Host Microbiome and Pathogenic Viral Infections. MBio, 2021, 12, e0249621.	1.8	11
2220	Metaproteomics reveals insights into microbial structure, interactions, and dynamic regulation in defined communities as they respond to environmental disturbance. BMC Microbiology, 2021, 21, 308.	1.3	11
2221	Lipopolysaccharide O-antigen molecular and supramolecular modifications of plant root microbiota are pivotal for host recognition. Carbohydrate Polymers, 2022, 277, 118839.	5.1	9
2222	Inter-Kingdom Networks of Canola Microbiome Reveal Bradyrhizobium as Keystone Species and Underline the Importance of Bulk Soil in Microbial Studies to Enhance Canola Production. Microbial Ecology, 2022, 84, 1166-1181.	1.4	6
2223	Wheat yellow mosaic enhances bacterial deterministic processes in a plant-soil system. Science of the Total Environment, 2022, 812, 151430.	3.9	24
2224	Rhizosphere Microbiomes of Potato Cultivated under Bacillus subtilis Treatment Influence the Quality of Potato Tubers. International Journal of Molecular Sciences, 2021, 22, 12065.	1.8	10
2225	In Vitro Study of Biocontrol Potential of Rhizospheric Pseudomonas aeruginosa against Pathogenic Fungi of Saffron (Crocus sativus L.). Pathogens, 2021, 10, 1423.	1.2	10
2226	Abundance and Diversity of Microbiota. , 2013, , 23-40.		1
2227	Vegetation drives the structure of active microbial communities on an acidogenic mine tailings deposit. PeerJ, 2020, 8, e10109.	0.9	16
2231	<i>Tuber melanosporum</i> shapes <i>nir</i> S-type denitrifying and ammonia-oxidizing bacterial communities in <i>Carya illinoinensis</i> ectomycorrhizosphere soils. PeerJ, 2020, 8, e9457.	0.9	3
2232	Variation inÂtheÂcomposition of theÂmicrobial community in the rhizosphere of potato plantsÂdepending onÂcroppingÂseason,Âcultivar type, andÂplantÂdevelopmentÂstage. International Journal of Agriculture Environment and Food Sciences, 0, , 319-333.	0.2	2
2235	Soil-Borne Legacies of Disease in Arabidopsis thaliana. Methods in Molecular Biology, 2021, 2232, 209-218.	0.4	3

#	Article	IF	CITATIONS
2237	Arbuscular Mycorrhizae: Beneficial Microorganisms for Sustainable Agriculture. Encyclopedia of the UN Sustainable Development Goals, 2021, , 57-70.	0.0	0
2238	Mitigation Strategies for Abiotic Stress Tolerance in Plants Through Stress-Tolerant Plant Growth-Promoting Microbes. Environmental and Microbial Biotechnology, 2021, , 325-351.	0.4	O
2239	Metagenomics in Deciphering Microbial Communities Associated with Medicinal Plants. Environmental and Microbial Biotechnology, 2021, , 51-78.	0.4	2
2240	Deciphering and Harnessing Plant Microbiomes: Detangling the Patterns and Process—A Clean, Green Road to Sustainable Agriculture. Environmental and Microbial Biotechnology, 2021, , 123-159.	0.4	1
2241	Rhizosphere Microbiomes and Their Potential Role in Increasing Soil Fertility and Crop Productivity. Environmental and Microbial Biotechnology, 2021, , 183-201.	0.4	1
2242	The presence of a foreign microbial community promotes plant growth and reduces filtering of root fungi in the arctic-alpine plant <i>Silene acaulis</i>). Plant Ecology and Diversity, 2020, 13, 377-390.	1.0	2
2251	La milpa como modelo para el estudio de la microbiodiversidad e interacciones planta-bacteria. TIP Revista Especializada En Ciencias QuÃmico-Biológicas, 0, 23, .	0.3	3
2253	Silica nanomaterials and earthworms synergistically regulate maize root metabolite profiles <i>via</i>) promoting soil Si bioavailability. Environmental Science: Nano, 2021, 8, 3865-3878.	2.2	2
2254	Plant disease management through microbiome modulation. , 2022, , 117-136.		0
2255	Selected rhizosphere bacteria are associated with endangered species - Scutellaria tsinyunensis via comparative microbiome analysis. Microbiological Research, 2022, 258, 126917.	2.5	6
2256	Modulation of the Tomato Rhizosphere Microbiome via Changes in Root Exudation Mediated by the Ethylene Receptor NR. Microorganisms, 2021, 9, 2456.	1.6	12
2257	Soil bacterial community as impacted by addition of rice straw and biochar. Scientific Reports, 2021, 11, 22185.	1.6	28
2258	Host identity and neighborhood trees affect belowground microbial communities in a tropical rainforest. Tropical Ecology, 2022, 63, 216-228.	0.6	3
2259	Emergent bacterial community properties induce enhanced drought tolerance in Arabidopsis. Npj Biofilms and Microbiomes, 2021, 7, 82.	2.9	45
2260	The Threat of Pests and Pathogens and the Potential for Biological Control in Forest Ecosystems. Forests, 2021, 12, 1579.	0.9	35
2261	Baseline Data of the Fungal Phytobiome of Three Sorghum (Sorghum bicolor) Cultivars in South Africa using Targeted Environmental Sequencing. Journal of Fungi (Basel, Switzerland), 2021, 7, 978.	1.5	4
2262	Enrichment of <i>Burkholderia</i> in the Rhizosphere by Autotoxic Ginsenosides to Alleviate Negative Plant-Soil Feedback. Microbiology Spectrum, 2021, 9, e0140021.	1,2	24
2263	Enrichment of beneficial rhizosphere microbes in Chinese wheat yellow mosaic virus-resistant cultivars. Applied Microbiology and Biotechnology, 2021, 105, 9371-9383.	1.7	16

#	Article	IF	CITATIONS
2264	Multivariate statistical monitoring system for microbial population dynamics. Physical Biology, 2022, 19, 016003.	0.8	0
2265	Plant neighbours can make or break the disease transmission chain of a fungal root pathogen. New Phytologist, 2022, 233, 1303-1316.	3.5	11
2266	Metal crossroads in plants: modulation of nutrient acquisition and root development by essential trace metals. Journal of Experimental Botany, 2022, 73, 1751-1765.	2.4	15
2267	FUNGAL AND BACTERIAL RHIZOSPHERE MICROBIOME ASSOCIATED WITH SELECTED MELON AND SNAKE MELON GENOTYPES. Journal of Microbiology, Biotechnology and Food Sciences, 2021, 11, e4004.	0.4	1
2268	Tryptophan metabolism and bacterial commensals prevent fungal dysbiosis in <i>Arabidopsis</i> roots. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	38
2269	Coupling Root Diameter With Rooting Depth to Reveal the Heterogeneous Assembly of Root-Associated Bacterial Communities in Soybean. Frontiers in Microbiology, 2021, 12, 783563.	1.5	4
2270	Medicago root nodule microbiomes: insights into a complex ecosystem with potential candidates for plant growth promotion. Plant and Soil, 0 , 1 .	1.8	4
2271	Wheat Genotype-Specific Recruitment of Rhizosphere Bacterial Microbiota Under Controlled Environments. Frontiers in Plant Science, 2021, 12, 718264.	1.7	7
2272	An ancient antimicrobial protein co-opted by a fungal plant pathogen for in planta mycobiome manipulation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	45
2274	Serendipita indica Mediated Drought and Heavy Metal Stress Tolerance in Plants. , 2021, , 181-194.		0
2276	Soil Dissolved Organic Matters Mediate Specific Bacterial Taxa to Improve Nitrification Rates after Wheat Planting. SSRN Electronic Journal, 0, , .	0.4	0
2277	Role of Rhizosphere and Endophytic Microbes in Alleviation of Biotic and Abiotic Stress in Plants. , 2021, , 195-235.		2
2279	Impact of Plant Exudates on Soil Microbiomes. , 2021, , 265-284.		0
2280	Cover Crop Species Composition Alters the Soil Bacterial Community in a Continuous Pepper Cropping System. Frontiers in Microbiology, 2021, 12, 789034.	1.5	6
2281	Soil Disinfestation: From Soil Treatment to Soil and Plant Health. Plant Disease, 2022, 106, 1541-1554.	0.7	7
2282	Epichloë Endophyte-Promoted Seed Pathogen Increases Host Grass Resistance Against Insect Herbivory. Frontiers in Microbiology, 2021, 12, 786619.	1.5	13
2283	Nanobiochar-rhizosphere interactions: Implications for the remediation of heavy-metal contaminated soils. Environmental Pollution, 2022, 299, 118810.	3.7	38
2284	Hydrogen cyanide production by soil bacteria: Biological control of pests and promotion of plant growth in sustainable agriculture. Pedosphere, 2022, 32, 15-38.	2.1	58

#	Article	IF	CITATIONS
2285	Difficult-to-culture bacteria in the rhizosphere: The underexplored signature microbial groups. Pedosphere, 2022, 32, 75-89.	2.1	12
2286	Role and significance of biofilm-forming microbes in phytoremediation -A review. Environmental Technology and Innovation, 2022, 25, 102182.	3.0	17
2287	Rhizosphere microbiomes can regulate plant drought tolerance. Pedosphere, 2022, 32, 61-74.	2.1	30
2288	Partial substitution of chemical fertilizer with organic fertilizer over seven years increases yields and restores soil bacterial community diversity in wheat–rice rotation. European Journal of Agronomy, 2022, 133, 126445.	1.9	38
2289	Host plant rhizo-microbiome interactions: Seasonal variation and microbial community structure analysis associated with Barleria prionitis. Ecological Genetics and Genomics, 2022, 22, 100109.	0.3	1
2290	Evaluation of the anti-oomycete bioactivity of rhizosphere soil-borne isolates and the biocontrol of soybean root rot caused by Phytophthora sojae. Biological Control, 2022, 166, 104818.	1.4	12
2291	Assembly of root-associated bacterial community in cadmium contaminated soil following five-year consecutive application of soil amendments: Evidences for improved soil health. Journal of Hazardous Materials, 2022, 426, 128095.	6.5	37
2292	Biochar for intensification of plant-related industries to meet productivity, sustainability and economic goals: A review. Resources, Conservation and Recycling, 2022, 179, 106109.	5.3	27
2295	On-field microbial community influences postharvest root rot in sugar beets. Acta Horticulturae, 2021, , 309-316.	0.1	0
2296	Microbial Communities and Functions in the Rhizosphere of Disease-Resistant and Susceptible Camellia spp Frontiers in Microbiology, 2021, 12, 732905.	1.5	6
2297	Taxonomic Structure of Rhizosphere Bacterial Communities and Its Association With the Accumulation of Alkaloidal Metabolites in Sophora flavescens. Frontiers in Microbiology, 2021, 12, 781316.	1.5	5
2298	Characterization of Rhizosphere and Endophytic Microbial Communities Associated with Stipa purpurea and Their Correlation with Soil Environmental Factors. Plants, 2022, 11, 363.	1.6	10
2299	Fungal diversity associated with the mycorrhizosphere soil of Brachycorythis conica subsp. transvaalensis, a critically endangered and endemic terrestrial orchid from South Africa. South African Journal of Botany, 2022, , .	1.2	3
2300	Assessment of a New Copper-Based Formulation to Control Esca Disease in Field and Study of Its Impact on the Vine Microbiome, Vine Physiology and Enological Parameters of the Juice. Journal of Fungi (Basel, Switzerland), 2022, 8, 151.	1.5	7
2302	Differences in gene expression and endophytic bacterial diversity in <i>Atractylodes macrocephala</i> Koidz. rhizomes from different growth years. Canadian Journal of Microbiology, 2022, 68, 353-366.	0.8	2
2303	Diversity and structure of the microbial community in rhizosphere soil of <i>Fritillaria ussuriensis</i>	0.9	18
2304	Identification of Volatile Organic Compounds Emitted by Two Beneficial Endophytic Pseudomonas Strains from Olive Roots. Plants, 2022, 11, 318.	1.6	13
2305	Rhizosphere impacts bacterial community structure in the tea (Camellia sinensis (L.) O . Kuntze .) estates of Darjeeling, India. Environmental Microbiology, 2021, , .	1.8	3

#	Article	IF	CITATIONS
2306	The root microbiome: Community assembly and its contributions to plant fitness. Journal of Integrative Plant Biology, 2022, 64, 230-243.	4.1	99
2307	Harnessing phytomicrobiome signals for phytopathogenic stress management. Journal of Biosciences, 2022, 47, 1.	0.5	2
2308	Pesticide-free agriculture as a new paradigm for research. Agronomy for Sustainable Development, 2022, 42, 1.	2.2	119
2309	Role of beneficial soil microbes in alleviating climatic stresses in plants. , 2022, , 29-68.		3
2310	Whole-Genome Duplication and Host Genotype Affect Rhizosphere Microbial Communities. MSystems, 2022, 7, e0097321.	1.7	6
2311	The life of soils: Integrating the who and how of multifunctionality. Soil Biology and Biochemistry, 2022, 166, 108561.	4.2	57
2312	Global diversity and distribution of mushroomâ€inhabiting bacteria. Environmental Microbiology Reports, 2022, 14, 254-264.	1.0	13
2313	Moving towards the ecological intensification of tree plantations. Trends in Plant Science, 2022, 27, 637-645.	4.3	8
2314	Stimulatory effects of defective and effective 3-indoleacetic acid-producing bacterial strains on rice in an advanced stage of its vegetative cycle. Brazilian Journal of Microbiology, 2022, 53, 281.	0.8	1
2315	A field indicator for rhizosphere effect monitoring in arable soils. Plant and Soil, 0, , 1.	1.8	1
2316	Applications of Microbes in Soil Health Maintenance for Agricultural Applications. Environmental and Microbial Biotechnology, 2022, , 365-399.	0.4	2
2317	Evaluation of maize/peanut intercropping effects on microbial assembly, root exudates and peanut nitrogen uptake. Plant Physiology and Biochemistry, 2022, 171, 75-83.	2.8	20
2318	Microbiome-wide association studies between phyllosphere microbiota and ionome highlight the beneficial symbiosis of Lactococcus lactis in alleviating aluminium in cassava. Plant Physiology and Biochemistry, 2022, 171, 66-74.	2.8	5
2319	Aquatic Macrophytes Are Associated With Variation in Biogeochemistry and Bacterial Assemblages of Mountain Lakes. Frontiers in Microbiology, 2021, 12, 777084.	1.5	6
2320	Longâ€term nitrogen enrichment mediates the effects of nitrogen supply and coâ€inoculation on a viral pathogen. Ecology and Evolution, 2022, 12, e8450.	0.8	1
2321	Elucidating Drought-Tolerance Mechanisms in Plant Roots through ¹ H NMR Metabolomics in Parallel with MALDI-MS, and NanoSIMS Imaging Techniques. Environmental Science & Emp; Technology, 2022, 56, 2021-2032.	4.6	10
2322	Community structure and diversity characteristics of rhizosphere and root endophytic bacterial community in different Acacia species. PLoS ONE, 2022, 17, e0262909.	1.1	8
2323	Mechanisms of growth-promotion and Se-enrichment in <i>Brassica chinensis</i> L. by selenium nanomaterials: beneficial rhizosphere microorganisms, nutrient availability, and photosynthesis. Environmental Science: Nano, 2022, 9, 302-312.	2.2	18

#	Article	IF	CITATIONS
2324	Rhizosphere bacteria induce programmed cell death defence genes and signalling in chilli pepper. Journal of Applied Microbiology, 2022, 132, 3111-3124.	1.4	2
2325	Variation in Bacterial Community Structure in Rhizosphere and Bulk Soils of Different Halophytes in the Yellow River Delta. Frontiers in Ecology and Evolution, 2022, 9, .	1.1	13
2326	Glucose addition promotes C fixation and bacteria diversity in C-poor soils, improves root morphology, and enhances key N metabolism in apple roots. PLoS ONE, 2022, 17, e0262691.	1.1	3
2327	Interference of Climate Change on Plant-Microbe Interaction: Present and Future Prospects. Frontiers in Agronomy, 2022, 3, .	1.5	15
2328	Rare genera differentiate urban green space soil bacterial communities in three cities across the world. Access Microbiology, 2022, 4, 000320.	0.2	2
2329	The soil microbiome increases plant survival and modifies interactions with root endosymbionts in the field. Ecology and Evolution, 2022, 12, e8283.	0.8	6
2330	Developing design criteria for active green wall bioremediation performance: Growth media selection shapes plant physiology, water and air flow patterns. Energy and Buildings, 2022, 260, 111913.	3.1	2
2331	Regulative effect of imazethapyr on Arabidopsis thaliana growth and rhizosphere microbial community through multiple generations of culture. Plant and Soil, 2022, 473, 625-637.	1.8	12
2332	Molecular Characterization of Gram Negative Isolated from Walnut (Juglans regia L.) Rhizospheric Soil. Black Sea Journal of Engineering and Science, 0, , .	0.3	0
2333	Tree decline and mortality following pathogen invasion alters the diversity, composition and network structure of the soil microbiome. Soil Biology and Biochemistry, 2022, 166, 108560.	4.2	16
2334	Disentangling the impact of contrasting agricultural management practices on soil microbial communities – Importance of rare bacterial community members. Soil Biology and Biochemistry, 2022, 166, 108573.	4.2	27
2335	Soil pore architecture and rhizosphere legacy define N2O production in root detritusphere. Soil Biology and Biochemistry, 2022, 166, 108565.	4.2	16
2336	The response of a freshwater biofilm model to a sub-inhibitory concentration of erythromycin: A metatranscriptomic study. Journal of Environmental Chemical Engineering, 2022, 10, 107248.	3.3	2
2337	Emerging frontiers in microbe-mediated pesticide remediation: Unveiling role of omics and In silico approaches in engineered environment. Environmental Pollution, 2022, 299, 118851.	3.7	30
2338	The effect of phosphate mining activities on rhizosphere bacterial communities of surrounding vegetables and crops. Science of the Total Environment, 2022, 821, 153479.	3.9	30
2339	Mode of action of different microbial products in plant growth promotion. , 2022, , 85-120.		2
2340	Metabolites and peptides of endophytic origin in plant growth promotion and defense reactions in Solanaceous crop tomato., 2022,, 89-110.		0
2342	Microbial diversity and bioprospecting potential of Phragmites rhizosphere microbiome through genomic approaches., 2022,, 503-528.		0

#	ARTICLE	IF	CITATIONS
2343	A comparative study of bacterial diversity based on effects of three different shade shed types in the rhizosphere of <i>Panax quiquefolium</i> L PeerJ, 2022, 10, e12807.	0.9	2
2344	A Meta-Analysis Approach to Defining the Culturable Core of Plant Endophytic Bacterial Communities. Applied and Environmental Microbiology, 2022, 88, aem0253721.	1.4	24
2345	Deciphering Bacterial Community of the Fallow and Paddy Soil Focusing on Possible Biocontrol Agents. Agronomy, 2022, 12, 431.	1.3	6
2346	Bacterial Diversity of Root Nodule and Rhizosphere Soil Samples of Green Soybean (Edamame) in Japan. Microbiology Resource Announcements, 2022, 11, e0111421.	0.3	0
2347	Soil health, soil genetic horizons and biodiversity [#] . Journal of Plant Nutrition and Soil Science, 2022, 185, 24-34.	1.1	16
2348	Acidic amelioration of soil amendments improves soil health by impacting rhizosphere microbial assemblies. Soil Biology and Biochemistry, 2022, 167, 108599.	4.2	26
2349	Differential linkages between soil respiration components and microbial community structures under long-term forest conversion. Journal of Soils and Sediments, 2022, 22, 1252-1262.	1.5	0
2350	Delivery of Beneficial Microbes via Seed Coating for Medicinal and Aromatic Plant Production: A Critical Review. Journal of Plant Growth Regulation, 2023, 42, 575-597.	2.8	8
2351	Beneficial Microbes and Molecules for Mitigation of Soil Salinity in Brassica Species: A Review. Soil Systems, 2022, 6, 18.	1.0	8
2352	Rhizosphere bacteriome structure and functions. Nature Communications, 2022, 13, 836.	5.8	280
2353	Identification of Bacterial Populations and Functional Mechanisms Potentially Involved in Biochar-Facilitated Antagonism of the Soilborne Pathogen <i>Fusarium oxysporum</i> Journal, 2022, 6, 139-150.	1.4	5
2354	High concentrations of antagonistic bacterial strains from diseased sanqi ginseng rhizosphere suppressed Fusarium root rot. European Journal of Plant Pathology, 2022, 163, 143-153.	0.8	4
2356	Isolation and Screening of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase producing PGPR from Paeonia lactiflora rhizosphere and enhancement of plant growth. Scientia Horticulturae, 2022, 297, 110956.	1.7	16
2357	Metagenomics for rhizosphere engineering. , 2022, , 395-416.		2
2358	Soil under stress: The importance of soil life and how it is influenced by (micro)plastic pollution. Computational and Structural Biotechnology Journal, 2022, 20, 1554-1566.	1.9	30
2359	RUSSELL REVIEW Are plant roots only "in―soil or are they "of―it? Roots, soil formation and function. European Journal of Soil Science, 2022, 73, .	1.8	19
2360	True Environment Factors Contribute More on Composition While Resources Contribute More on Interaction Properties of Soil Microbial Community. SSRN Electronic Journal, 0, , .	0.4	0
2361	Effects of Meloidogyne incognita on the fungal community in tobacco rhizosphere. Revista Brasileira De Ciencia Do Solo, 2022, 46, .	0.5	3

#	Article	IF	CITATIONS
2362	Bacterial inoculants for rhizosphere engineering: Applications, current aspects, and challenges., 2022, , 129-150.		2
2363	Composition and Function of Gut Microbiota in Bovidae. SSRN Electronic Journal, 0, , .	0.4	0
2364	Contrasting Management Techniques and Soil Types Affect Network Connections between Soil Properties and the Tulip Microbiome. SSRN Electronic Journal, 0, , .	0.4	0
2365	Exploiting genetic diversity to improve environmental sustainability of Mediterranean vineyards., 2022,, 25-44.		0
2366	Indigenous nitrogen fixing microbes engineer rhizosphere and enhance nutrient availability and plant growth., 2022,, 19-43.		1
2367	Biofortification of major crop plants with iron and zinc - achievements and future directions. Plant and Soil, 2022, 474, 57-76.	1.8	37
2368	Spatial distribution and community structure of microbiota associated with cowpea aphid (Aphis) Tj ETQq0 0 0 r	gBT /Over	lock 10 Tf 50
2369	Changes in the phyllosphere and rhizosphere microbial communities of soybean in the presence of pathogens. FEMS Microbiology Ecology, 2022, 98, .	1.3	10
2370	Interactions Between Phenolic Acids and Microorganisms in Rhizospheric Soil From Continuous Cropping of Panax notoginseng. Frontiers in Microbiology, 2022, 13, 791603.	1.5	30
2371	Organic and Inorganic Amendments Shape Bacterial Indicator Communities That Can, In Turn, Promote Rice Yield. Microorganisms, 2022, 10, 482.	1.6	7
2372	Taxonomic and functional diversity of <i>Dendrobium officinale</i> microbiome in Danxia habitat. Journal of Applied Microbiology, 2022, 132, 3758-3770.	1.4	4
2373	Bermudagrass Cultivars with Different Tolerance to Nematode Damage Are Characterized by Distinct Fungal but Similar Bacterial and Archaeal Microbiomes. Microorganisms, 2022, 10, 457.	1.6	2
2374	Long-term effect of epigenetic modification in plant–microbe interactions: modification of DNA methylation induced by plant growth-promoting bacteria mediates promotion process. Microbiome, 2022, 10, 36.	4.9	36
2375	Plant Growth Stage Drives the Temporal and Spatial Dynamics of the Bacterial Microbiome in the Rhizosphere of Vigna subterranea. Frontiers in Microbiology, 2022, 13, 825377.	1.5	20
2376	At the roots of chocolate: understanding and optimizing the cacao root-associated microbiome for ecosystem services. A review. Agronomy for Sustainable Development, 2022, 42, 1.	2.2	6
2377	Crop residue return improved soil nitrogen availability by increasing amino acid and mineralization under appropriate N fertilization. Land Degradation and Development, 2022, 33, 2197-2207.	1.8	4
2378	A fruitful decade of bacterial ACC deaminase biotechnology: a pragmatic approach towards abiotic stress relief in plants. Theoretical and Experimental Plant Physiology, 2022, 34, 109-129.	1.1	13
2379	Gradient of microbial communities around seagrass roots was mediated by sediment grain size. Ecosphere, 2022, 13, .	1.0	11

#	Article	IF	CITATIONS
2380	Composition and characteristics of soil microbial communities in cotton fields with different incidences of Verticillium wilt. Plant Signaling and Behavior, 2022, 17, 2034271.	1.2	6
2381	Soil pH Filters the Association Patterns of Aluminum-Tolerant Microorganisms in Rice Paddies. MSystems, 2022, 7, e0102221.	1.7	7
2382	Commensal Pseudomonas strains facilitate protective response against pathogens in the host plant. Nature Ecology and Evolution, 2022, 6, 383-396.	3.4	44
2383	Microbial Diversity Associated with Photosynthetic Organisms. Diversity, 2022, 14, 140.	0.7	0
2384	Isolation of rhizosheath and analysis of microbial community structure around roots of Stipa grandis. Scientific Reports, 2022, 12, 2707.	1.6	1
2385	Impacts of continuous and rotational cropping practices on soil chemical properties and microbial communities during peanut cultivation. Scientific Reports, 2022, 12, 2758.	1.6	19
2386	Epichloë Endophyte Infection Changes the Root Endosphere Microbial Community Composition of Leymus Chinensis Under Both Potted and Field Growth Conditions. Microbial Ecology, 2023, 85, 604-616.	1.4	4
2387	Comparison of genetically modified insect-resistant maize and non-transgenic maize revealed changes in soil metabolomes but not in rhizosphere bacterial community. GM Crops and Food, 2022, 13, 1-14.	2.0	13
2388	High-Throughput Sequencing-Based Analysis of Rhizosphere and Diazotrophic Bacterial Diversity Among Wild Progenitor and Closely Related Species of Sugarcane (Saccharum spp. Inter-Specific) Tj ETQq0 0 0 r	gB I.† Overl	ods: 10 Tf 50
2389	The use of the nodule bacteria as a remedy for expanding adaptive possibilities of soybean under drought conditions. Fiziologia Rastenij I Genetika, 2022, 54, .	0.1	0
2391	Phytochemical effects of <i>Apium graveolens</i> on the abundances of functional genes associated with PAH degradation in soil. Bioremediation Journal, 2023, 27, 281-289.	1.0	0
2392	Deep-Rooted Plant Species Recruit Distinct Bacterial Communities in the Subsoil. Phytobiomes Journal, 2022, 6, 236-246.	1.4	0
2393	Genetically related genotypes of cowpea present similar bacterial community in the rhizosphere. Scientific Reports, 2022, 12, 3472.	1.6	5
2394	Uncovering New Insights and Misconceptions on the Effectiveness of Phosphate Solubilizing Rhizobacteria in Plants: A Meta-Analysis. Frontiers in Plant Science, 2022, 13, 858804.	1.7	18
2395	The secret life of plantâ€beneficial rhizosphere bacteria: insects as alternative hosts. Environmental Microbiology, 2022, 24, 3273-3289.	1.8	19
2396	Microbiome Variation Across Populations of Desert Halophyte Zygophyllum qatarensis. Frontiers in Plant Science, 2022, 13, 841217.	1.7	3
2398	Phosphorus and Zinc Are Strongly Associated with Belowground Fungal Communities in Wheat Field under Long-Term Fertilization. Microbiology Spectrum, 2022, 10, e0011022.	1.2	10
2399	Chimeric plants favor asynchrony of conditionally rare bacterial species facilitating functional complementarity in rhizosphere. Biology and Fertility of Soils, 2022, 58, 459-470.	2.3	5

#	Article	IF	CITATIONS
2400	Cooperation between arbuscular mycorrhizal fungi and plant growth-promoting bacteria and their effects on plant growth and soil quality. PeerJ, 2022, 10, e13080.	0.9	13
2401	Abundance, Diversity, and Function of Soil Microorganisms in Temperate Alley-Cropping Agroforestry Systems: A Review. Microorganisms, 2022, 10, 616.	1.6	21
2402	Phosphorus Shapes Soil Microbial Community Composition and Network Properties During Grassland Expansion Into Shrubs in Tibetan Dry Valleys. Frontiers in Plant Science, 2022, 13, 848691.	1.7	6
2403	Mineral and Organic Fertilizers Distinctly Affect Fungal Communities in the Crop Rhizosphere. Journal of Fungi (Basel, Switzerland), 2022, 8, 251.	1.5	30
2404	Bacterial Communities in the Rhizosphere at Different Growth Stages of Maize Cultivated in Soil Under Conventional and Conservation Agricultural Practices. Microbiology Spectrum, 2022, 10, e0183421.	1,2	10
2405	Pathogen-Mediated Assembly of Plant-Beneficial Bacteria to Alleviate Fusarium Wilt in Pseudostellaria heterophylla. Frontiers in Microbiology, 2022, 13, 842372.	1.5	3
2406	Organic fertilization regimes suppress fungal plant pathogens through modulating the resident bacterial and protistan communities., 2022, 1, 43-53.		3
2407	Diversity and functions of quorum sensing bacteria in the root environment of the Suaeda glauca and Phragmites australis coastal wetlands. Environmental Science and Pollution Research, 2022, 29, 54619-54631.	2.7	3
2408	Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review. International Journal of Environmental Research and Public Health, 2022, 19, 3141.	1.2	43
2409	Insect frass and exuviae to promote plant growth and health. Trends in Plant Science, 2022, 27, 646-654.	4.3	47
2410	Dominant plant species and soil properties drive differential responses of fungal communities and functions in the soils and roots during secondary forest succession in the subalpine region. Rhizosphere, 2022, 21, 100483.	1.4	13
2411	<i>Xanthobacter autotrophicus</i> an Endophytic Beneficial Bacterium for Wheat and Other Plants: A Short Review., 0, , .		1
2412	The Bacillus cereus Strain EC9 Primes the Plant Immune System for Superior Biocontrol of Fusarium oxysporum. Plants, 2022, 11, 687.	1.6	15
2413	Maize Field Study Reveals Covaried Microbiota and Metabolic Changes in Roots over Plant Growth. MBio, 2022, 13, e0258421.	1.8	15
2414	Iron-Carbon Nanofibers Coated with Acylated Homoserine Lactone Enhance Plant Growth and Suppress Fusarium Wilt Disease in <i>Cicer arietinum</i> by Modulating Soil Microbiome. ACS Agricultural Science and Technology, 2022, 2, 311-322.	1.0	7
2415	A global microbiome survey of vineyard soils highlights the microbial dimension of viticultural terroirs. Communications Biology, 2022, 5, 241.	2.0	35
2416	Improving Bambara Groundnut Production: Insight Into the Role of Omics and Beneficial Bacteria. Frontiers in Plant Science, 2022, 13, 836133.	1.7	11
2417	Differentiate Responses of Soil Microbial Community and Enzyme Activities to Nitrogen and Phosphorus Addition Rates in an Alpine Meadow. Frontiers in Plant Science, 2022, 13, 829381.	1.7	6

#	Article	IF	CITATIONS
2418	Effects of Biochar on the Growth, Ginsenoside Content, and Soil Microbial Community Composition of Panax quinquefolium L. Journal of Soil Science and Plant Nutrition, 2022, 22, 2670-2686.	1.7	3
2419	The Impact of Microbes in Plant Immunity and Priming Induced Inheritance: A Sustainable Approach for Crop protection. Plant Stress, 2022, 4, 100072.	2.7	25
2420	Root-rhizosphere-soil interactions in biopores. Plant and Soil, 2022, 475, 253-277.	1.8	16
2421	Comparative effects of two humic substances on microbial dysbiosis in the rhizosphere soil of cucumber (<i>Cucumis sativus</i> L.). Land Degradation and Development, 0, , .	1.8	1
2422	Ensuring future food security and resource sustainability: insights into the rhizosphere. IScience, 2022, 25, 104168.	1.9	7
2423	Soil causes gut microbiota to flourish and total serum <scp>IgE</scp> levels to decrease in mice. Environmental Microbiology, 2022, 24, 3898-3911.	1.8	2
2424	Frass derived from black soldier fly larvae treatment of biodegradable wastes. A critical review and future perspectives. Waste Management, 2022, 142, 65-76.	3.7	55
2425	<i>In Silico</i> Collision Cross Section Calculations to Aid Metabolite Annotation. Journal of the American Society for Mass Spectrometry, 2022, 33, 750-759.	1.2	11
2426	Soil Origin and Plant Genotype Modulate Switchgrass Aboveground Productivity and Root Microbiome Assembly. MBio, 2022, 13, e0007922.	1.8	9
2427	A practical guide for restoration ecologists to manage microbial contamination risks before laboratory processes during microbiota restoration studies. Restoration Ecology, 2023, 31, .	1.4	3
2428	Mechanistic insights of plant-microbe interaction towards drought and salinity stress in plants for enhancing the agriculture productivity. Plant Stress, 2022, 4, 100073.	2.7	32
2429	Rhizospheric plant-microbe synergistic interactions achieve efficient arsenic phytoextraction by Pteris vittata. Journal of Hazardous Materials, 2022, 434, 128870.	6.5	24
2430	The Type VI Secretion Systems in Plant-Beneficial Bacteria Modulate Prokaryotic and Eukaryotic Interactions in the Rhizosphere. Frontiers in Microbiology, 2022, 13, 843092.	1.5	14
2431	Microbial community from species rich meadow supports plant specialists during meadow restoration. Functional Ecology, 2022, 36, 1573-1584.	1.7	5
2432	Cropping practices manipulate soil bacterial structure and functions on the Qinghai–Tibet Plateau. Journal of Plant Physiology, 2022, 271, 153666.	1.6	5
2433	Soil inoculation of lodgepole pine seedlings alters rootâ€associated fungal communities but does not improve seedling performance in beetleâ€killed pine stands. Restoration Ecology, 2023, 31, .	1.4	4
2434	Primary carbon sources and self-induced metabolic landscapes shape community structure in soil bacterial hotspots. Soil Biology and Biochemistry, 2022, 168, 108620.	4.2	5
2435	A new insight into spacing patterns of soil bacterial microbiome induced by root rot of Carya cathayensis. Applied Soil Ecology, 2022, 174, 104416.	2.1	6

#	Article	IF	CITATIONS
2436	Effects of vegetation cover and season on soil nitrifiers in an African savanna: Evidence of archaeal nitrifier inhibition by grasses. Geoderma, 2022, 416, 115775.	2.3	5
2437	Enrichment in biodiversity and maturation of the soil food web under conservation agriculture is associated with suppression of rice-parasitic nematodes. Agriculture, Ecosystems and Environment, 2022, 331, 107913.	2.5	13
2438	Halophytes increase rhizosphere microbial diversity, network complexity and function in inland saline ecosystem. Science of the Total Environment, 2022, 831, 154944.	3.9	28
2439	pH and salinity are the dominant limiting factors for the application of mariculture sludge to paddy soil. Applied Soil Ecology, 2022, 175, 104463.	2.1	4
2440	Impact of Hydraulic Loading Rate on the Removal Performance and Filter-Bed Clogging of Horizontal-Subsurface-Flow Macrophyte-Assisted Vermifilter Treating Dairy Wastewater. Journal of Hazardous, Toxic, and Radioactive Waste, 2022, 26, .	1.2	7
2441	Synthetic physical contact-remodeled rhizosphere microbiome for enhanced phytoremediation. Journal of Hazardous Materials, 2022, 433, 128828.	6.5	8
2442	Path dependencies in US agriculture: Regional factors of diversification. Agriculture, Ecosystems and Environment, 2022, 333, 107957.	2.5	8
2443	Exploring biofertilizer potential of plant growth-promoting rhizobacteria Bacillus clausii strain B8 (MT305787) on Brassica napus and Medicago sativa. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2021, 49, 12484.	0.5	2
2444	Morphological and physiological-biochemical variability of spore-forming bacteria isolated from the agrocoenosis of winter wheat. Regulatory Mechanisms in Biosystems, 2021, 12, 588-593.	0.5	3
2445	Dynamic changes in rhizosphere fungi in different developmental stages of wheat in a confined and isolated environment. Applied Microbiology and Biotechnology, 2022, 106, 441-453.	1.7	9
2446	Microbial Diversity Characteristics of Areca Palm Rhizosphere Soil at Different Growth Stages. Plants, 2021, 10, 2706.	1.6	3
2448	The Lysâ€motif receptor <scp><i>LYK4</i></scp> mediates <i>Enterobacter</i> sp. <scp>SA187</scp> triggered salt tolerance in <i>Arabidopsis thaliana</i> . Environmental Microbiology, 2022, 24, 223-239.	1.8	4
2449	Impact of Harvest on Switchgrass Leaf Microbial Communities. Genes, 2022, 13, 22.	1.0	0
2450	Engineered Nanomaterials in Soil: Their Impact on Soil Microbiome and Plant Health. Plants, 2022, 11, 109.	1.6	35
2451	Characteristics of rootâ€associated bacterial community and nitrogen biochemical properties of two ⟨i⟩Japonica⟨/i⟩ rice cultivars with different yields. Food and Energy Security, 2022, 11, .	2.0	0
2452	Characteristics of the Fungal Communities and Co-occurrence Networks in Hazelnut Tree Root Endospheres and Rhizosphere Soil. Frontiers in Plant Science, 2021, 12, 749871.	1.7	6
2453	Microbiome and Plant Nutritional Value: Current Knowledge and Management., 2022, , 197-206.		0
2454	Ecological adaptation and phylogenetic analysis of microsymbionts nodulating Polhillia, Wiborgia and Wiborgiella species in the Cape fynbos, South Africa. Scientific Reports, 2021, 11, 23614.	1.6	1

#	Article	IF	CITATIONS
2455	The brown root rot fungus <i>Phellinus noxius</i> affects microbial communities in different rootâ€associated niches of <i>Ficus</i> trees. Environmental Microbiology, 2022, 24, 276-297.	1.8	7
2456	Vertical Farming: The Only Way Is Up?. Agronomy, 2022, 12, 2.	1.3	56
2457	Soil Bacterial Community Shifts Are Driven by Soil Nutrient Availability along a Teak Plantation Chronosequence in Tropical Forests in China. Biology, 2021, 10, 1329.	1.3	16
2458	Commensal <i>Pseudomonas</i> protect <i>Arabidopsis thaliana</i> from a coexisting pathogen via multiple lineage-dependent mechanisms. ISME Journal, 2022, 16, 1235-1244.	4.4	13
2459	Bacterial diversity and physiological activity of lettuce (Lactuca sativa) rhizosphere under bio-organic greenhouse management strategies. International Journal of Environmental Science and Technology, $0,1.$	1.8	3
2460	Plant iron nutrition: the long road from soil to seeds. Journal of Experimental Botany, 2022, 73, 1809-1824.	2.4	18
2461	Characteristics of Microbial Community and Function With the Succession of Mangroves. Frontiers in Microbiology, 2021, 12, 764974.	1.5	13
2462	Comparative Metagenomic and Metabolomic Profiling of Rhizospheres of Panax notoginseng Grown under Forest and Field Conditions. Agronomy, 2021, 11, 2488.	1.3	14
2463	The microbiota of the grapevine holobiont: A key component of plant health. Journal of Advanced Research, 2022, 40, 1-15.	4.4	49
2464	A Glucuronic Acid-Producing Endophyte Pseudomonas sp. MCS15 Reduces Cadmium Uptake in Rice by Inhibition of Ethylene Biosynthesis. Frontiers in Plant Science, 2022, 13, 876545.	1.7	3
2465	Crossâ€inoculation of rhizobiome from a congeneric ruderal plant imparts drought tolerance in maize (⟨i⟩Zea mays⟨ i⟩) through changes in root morphology and proteome. Plant Journal, 2022, 111, 54-71.	2.8	3
2466	Community Assembly and Stability in the Root Microbiota During Early Plant Development. Frontiers in Microbiology, 2022, 13, 826521.	1.5	7
2467	Changes in the Density and Composition of Rhizosphere Pathogenic Fusarium and Beneficial Trichoderma Contributing to Reduced Root Rot of Intercropped Soybean. Pathogens, 2022, 11, 478.	1,2	14
2468	Grape Cultivar Features Differentiate the Grape Rhizosphere Microbiota. Plants, 2022, 11, 1111.	1.6	10
2766	Trophic interactions between predatory protists and pathogen-suppressive bacteria impact plant health. ISME Journal, 2022, 16, 1932-1943.	4.4	57
2768	Plant Disease Management Through Microbiome Modulation. , 2022, , 113-150.		2
2770	Signalling of Rhizosphere Microbiomes: Benign and Malign Borders. Microorganisms for Sustainability, 2022, , 237-260.	0.4	1
2771	The Diatom Microbiome: New Perspectives for Diatom-Bacteria Symbioses., 2022,, 679-712.		4

#	Article	IF	CITATIONS
2772	Insights into the microbiome assembly during different growth stages and storage of strawberry plants. Environmental Microbiomes, 2022, 17, 21.	2.2	18
2773	Action mechanisms, biodiversity, and omics approaches in biocontrol and plant growth-promoting < i > Pseudomonas < / i > : an updated review. Biocontrol Science and Technology, 2022, 32, 527-550.	0.5	9
2774	Seed pathway for pest dissemination: The ISTA Reference Pest List, a bibliographic resource in nonâ€vegetable crops. EPPO Bulletin, 2022, 52, 434-445.	0.6	7
2775	Interactions between the soil bacterial community assembly and gene regulation in saltâ€sensitive and saltâ€tolerant sweet sorghum cultivars. Land Degradation and Development, 2022, 33, 2985-2997.	1.8	5
2776	Rhizosphere Signaling: Insights into Plant–Rhizomicrobiome Interactions for Sustainable Agronomy. Microorganisms, 2022, 10, 899.	1.6	31
2777	Genetic Modification of Plant Hormones Induced by Parasitic Nematodes, Virus, Viroid, Bacteria, and Phytoplasma in Plant Growing. , 0, , .		1
2778	Deterministic Process Dominated Belowground Community Assembly When Suffering Tomato Bacterial Wilt Disease. Agronomy, 2022, 12, 1024.	1.3	6
2779	Efektivitas Level Dosis Fungi Mikoriza Arbuskula (FMA) Pada Hasil Produksi Tanaman Jagung (Zea mays) Tj ETQq1	1 _{0.2} 78431	l4 rgBT /O∨
2780	Insight into soil nitrogen and phosphorus availability and agricultural sustainability by plant growth-promoting rhizobacteria. Environmental Science and Pollution Research, 2022, 29, 45089-45106.	2.7	29
2781	Effect of a veterinary antibiotic on the growth of regularly consumed Lebanese plants. Spanish Journal of Agricultural Research, 2022, 20, e0303.	0.3	O
2782	Diversity and antimicrobial potential of the culturable rhizobacteria from medicinal plant Baccharis trimera Less D.C Brazilian Journal of Microbiology, 2022, , 1.	0.8	0
2783	Healthy Soils for Productivity and Sustainable Development in Agriculture. IOP Conference Series: Earth and Environmental Science, 2022, 1018, 012038.	0.2	2
2784	Arbuscular mycorrhizal fungi and production of secondary metabolites in medicinal plants. Mycorrhiza, 2022, 32, 221-256.	1.3	46
2785	Saltwater intrusion induces shifts in soil microbial diversity and carbon use efficiency in a coastal grassland ecosystem. Soil Biology and Biochemistry, 2022, 170, 108700.	4.2	10
2786	Characterization of Rhizosphere Microbial Communities for Disease Incidence and Optimized Concentration of Difenoconazole Fungicide for Controlling of Wheat Dwarf Bunt. Frontiers in Microbiology, 2022, 13, .	1.5	3
2787	Investigation of soil microbiota reveals variable dominant species at different land areas in China. Biotechnology and Biotechnological Equipment, 2022, 36, 245-255.	0.5	4
2788	Crop performance is predicted by soil microbial diversity across phylogenetic scales. Ecosphere, 2022, 13, .	1.0	7
2789	Green Synthesis of Phosphorous-Containing Hydroxyapatite Nanoparticles (nHAP) as a Novel Nano-Fertilizer: Preliminary Assessment on Pomegranate (Punica granatum L.). Nanomaterials, 2022, 12, 1527.	1.9	28

#	Article	IF	CITATIONS
2790	Holm oak decline is determined by shifts in fine root phenotypic plasticity in response to belowground stress. New Phytologist, 2022, 235, 2237-2251.	3.5	13
2791	Plant Health Status Affects the Functional Diversity of the Rhizosphere Microbiome Associated With Solanum lycopersicum. Frontiers in Sustainable Food Systems, 2022, 6, .	1.8	7
2792	Molecular Identification and Characterization of Plant Growth Promoting Rhizobacteria and their Effect on Seed Germination and Vigour Index of Barley (Hordeum vulgare L.). Journal of Pure and Applied Microbiology, 0, , .	0.3	1
2793	Glycyrrhiza uralensis Fisch. Root-associated microbiota: the multifaceted hubs associated with environmental factors, growth status and accumulation of secondary metabolites. Environmental Microbiomes, 2022, 17, 23.	2.2	7
2794	New methods for new questions about rhizosphere/plant root interactions. Plant and Soil, 2022, 476, 699-712.	1.8	9
2795	Acetaminophen Levels Found in Recycled Wastewater Alter Soil Microbial Community Structure and Functional Diversity. Microbial Ecology, 2023, 85, 1448-1462.	1.4	2
2796	Combined Phenanthrene and Copper Pollution Imposed a Selective Pressure on the Rice Root-Associated Microbiome. Frontiers in Microbiology, 2022, 13, .	1.5	3
2797	Plant growthâ€promoting rhizobacterium <i>Pseudomonas</i> sp. CM11 specifically induces lateral roots. New Phytologist, 2022, 235, 1575-1588.	3.5	14
2798	Determinants of endophytic and pathogenic lifestyle in root colonizing fungi. Current Opinion in Plant Biology, 2022, 67, 102226.	3.5	23
2799	Consortia-based microbial inoculants for sustaining agricultural activities. Applied Soil Ecology, 2022, 176, 104503.	2.1	23
2800	Silicon enhances abundances of reducing microbes in rhizoplane and decreases arsenite uptake by rice (Oryza sativa L.). Environmental Pollution, 2022, 306, 119405.	3.7	7
2801	Experimental evolution of Bacillus subtilis on Arabidopsis thaliana roots reveals fast adaptation and improved root colonization. IScience, 2022, 25, 104406.	1.9	20
2802	The Effects of Catch Crops on Properties of Continuous Cropping Soil and Growth of Vegetables in Greenhouse. Agronomy, 2022, 12, 1179.	1.3	2
2803	Bioâ€organic soil amendment promotes the suppression of <i>Ralstonia solanacearum</i> by inducing changes in the functionality and composition of rhizosphere bacterial communities. New Phytologist, 2022, 235, 1558-1574.	3.5	57
2804	Arbuscular mycorrhizal fungi have a greater role than root hairs of maize for priming the rhizosphere microbial community and enhancing rhizosphere organic P mineralization. Soil Biology and Biochemistry, 2022, 171, 108713.	4.2	18
2805	Spatiotemporal Heterogeneity and Intragenus Variability in Rhizobacterial Associations with <i>Brassica rapa</i>	1.7	3
2806	Effects of saline-alkali stress on bacterial and fungal community diversity in Leymus chinensis rhizosphere soil. Environmental Science and Pollution Research, 2022, , .	2.7	7
2807	Primer Choice and Xylem-Microbiome-Extraction Method Are Important Determinants in Assessing Xylem Bacterial Community in Olive Trees. Plants, 2022, 11, 1320.	1.6	4

#	ARTICLE	IF	CITATIONS
2808	Plant growth-promoting rhizobacteria Burkholderia vietnamiensis B418 inhibits root-knot nematode on watermelon by modifying the rhizosphere microbial community. Scientific Reports, 2022, 12, 8381.	1.6	14
2809	Plant Hormonomics: A Key Tool for Deep Physiological Phenotyping to Improve Crop Productivity. Plant and Cell Physiology, 2023, 63, 1826-1839.	1.5	16
2810	Streptomyces barringtoniae sp. nov., isolated from rhizosphere of plant with antioxidative potential. International Journal of Systematic and Evolutionary Microbiology, 2022, 72, .	0.8	5
2811	Rootstock–scion combination contributes to shape diversity and composition of microbial communities associated with grapevine root system. Environmental Microbiology, 2022, 24, 3791-3808.	1.8	12
2812	<i>Brassicaceae</i> host plants mask the feedback from the previous year's soil history on bacterial communities, except when they experience drought. Environmental Microbiology, 2022, 24, 3529-3548.	1.8	5
2813	Bacterial Diversity and Community Structure of the Jujube Rhizosphere in Southern Xinjiang Uygur Autonomous Region, China. Microbial Physiology, 2022, 32, 135-145.	1.1	1
2814	Microbes: A sustainable tool for healthy and climate smart agriculture. , 2022, , 197-213.		1
2815	Microbiome stimulants and their applications in crop plants. , 2022, , 177-195.		0
2816	Arbuscular Mycorrhizal Fungi and Microbes Interaction in Rice Mycorrhizosphere. Agronomy, 2022, 12, 1277.	1.3	10
2817	Rhizosphere microbiome response to host genetic variability: a trade-off between bacterial and fungal community assembly. FEMS Microbiology Ecology, 2022, 98, .	1.3	9
2818	Differences in Microbial Communities Stimulated by Malic Acid Have the Potential to Improve Nutrient Absorption and Fruit Quality of Grapes. Frontiers in Microbiology, 2022, 13, .	1.5	3
2819	Harnessing agricultural microbiomes for human pathogen control. ISME Communications, 2022, 2, .	1.7	8
2820	Molecular characterization of endophytic and ectophytic plant growth promoting bacteria isolated from tomato plants (Solanum lycopersicum L.) grown in different soil types. Journal of Genetic Engineering and Biotechnology, 2022, 20, 79.	1.5	3
2821	Enhanced anti-herbivore defense of tomato plants against Spodoptera litura by their rhizosphere bacteria. BMC Plant Biology, 2022, 22, .	1.6	6
2822	Plant roots send metabolic signals to microbes in response to long-term overgrazing. Science of the Total Environment, 2022, 842, 156241.	3.9	9
2824	Microbial communities along the soil-root continuum are determined by root anatomical boundaries, soil properties, and root exudation. Soil Biology and Biochemistry, 2022, 171, 108721.	4.2	14
2826	Archaeal communities perform an important role in maintaining microbial stability under long term continuous cropping systems. Science of the Total Environment, 2022, 838, 156413.	3.9	5
2827	Cultivation of Two Barnyard Varieties Improves Physicochemical Properties of Saline-Alkali Land through Mediating Rhizospheric Microbiome and Metabolome. Agronomy, 2022, 12, 1322.	1.3	4

#	Article	IF	CITATIONS
2828	Mapping phyllosphere microbiota interactions in planta to establish genotype–phenotype relationships. Nature Microbiology, 2022, 7, 856-867.	5.9	30
2830	Microbiota manipulation through the secretion of effector proteins is fundamental to the wealth of lifestyles in the fungal kingdom. FEMS Microbiology Reviews, 2022, 46, .	3.9	14
2831	The Chinese medicinal plants rhizosphere: Metabolites, microorganisms, and interaction. Rhizosphere, 2022, 22, 100540.	1.4	13
2832	Rhizosphere microbiome of forest trees is connected to their resistance to soil-borne pathogens. Plant and Soil, 2022, 479, 143-158.	1.8	7
2833	Barley Rhizosphere Microbiome Transplantation – A Strategy to Decrease Susceptibility of Barley Grown in Soils With Low Microbial Diversity to Powdery Mildew. Frontiers in Microbiology, 2022, 13, .	1.5	8
2835	Diversity Shifts in the Root Microbiome of Cucumber Under Different Plant Cultivation Substrates. Frontiers in Microbiology, 2022, 13, .	1.5	3
2836	Response of Soil Microbial Community Structure Mediated by Sulfur-Induced Resistance Against Kiwifruit Bacterial Canker. Frontiers in Microbiology, 2022, 13, .	1.5	3
2837	Effect of Bacterial Wilt on Fungal Community Composition in Rhizosphere Soil of Tobaccos in Tropical Yunnan. Plant Pathology Journal, 2022, 38, 203-211.	0.7	8
2838	Friend or foe: Hybrid proline-rich proteins determine how plants respond to beneficial and pathogenic microbes. Plant Physiology, 2022, 190, 860-881.	2.3	10
2839	Microbial diversity composition of apple tree roots and resistance of apple Valsa canker with different grafting rootstock types. BMC Microbiology, 2022, 22, .	1.3	6
2840	Shift and homogenization of gut microbiome during invasion in marine fishes. Animal Microbiome, 2022, 4, .	1.5	5
2841	Stability of Bacterial Network Enhances Nutrient Content in Apple Trees. Journal of Soil Science and Plant Nutrition, 0, , .	1.7	1
2842	Phosphate mining activities affect crop rhizosphere fungal communities. Science of the Total Environment, 2022, 838, 156196.	3.9	9
2843	Dynamics of soil N cycling and its response to vegetation presence in an eroding watershed of the Chinese Loess Plateau. Agriculture, Ecosystems and Environment, 2022, 336, 108020.	2.5	6
2846	Implications on Engineering Rhizosphere Microbiomes for the Suppression of Soil-Borne Diseases by Compost in a Long-Term Organic <i>Greenhouse Experiment</i> . ACS Symposium Series, 0, , 55-63.	0.5	0
2848	Quorum Sensing in the Rhizosphere. Rhizosphere Biology, 2022, , 99-134.	0.4	1
2850	Microbial systems, current trends, and future prospective: a systemic analysis., 2022,, 81-94.		0
2851	Conversion of rainforest to rubber plantations impacts rhizosphere soil mycobiome and alters soil biological activity. Land Degradation and Development, 0, , .	1.8	0

#	ARTICLE	IF	CITATIONS
2852	Specialist root herbivore modulates plant transcriptome and downregulates defensive secondary metabolites in a brassicaceous plant. New Phytologist, 2022, 235, 2378-2392.	3.5	2
2853	Ability of Virgibacillus marismortui and Salinococcus roseus for plant growth promotion by evaluating their effect on physiological and morphological parameters in vitro and in soilless system. , 0, , .		O
2854	2000-2019: Twenty Years of Highly Influential Publications in Molecular Plant Immunity. Molecular Plant-Microbe Interactions, 2022, 35, 748-754.	1.4	3
2855	The impact of root exudates, volatile organic compounds, and common mycorrhizal networks on root system architecture in root-root interactions. Journal of Plant Interactions, 2022, 17, 685-694.	1.0	7
2856	From Soil Amendments to Controlling Autophagy: Supporting Plant Metabolism under Conditions of Water Shortage and Salinity. Plants, 2022, 11, 1654.	1.6	1
2857	Prospecting microbial biofilms as climate smart strategies for improving plant and soil health: A review. Pedosphere, 2023, 33, 129-152.	2.1	8
2858	Rootstock rescues watermelon from Fusarium wilt disease by shaping protective root-associated microbiomes and metabolites in continuous cropping soils. Plant and Soil, 2022, 479, 423-442.	1.8	10
2859	Plant Beneficial Bacteria as Bioprotectants against Wheat and Barley Diseases. Journal of Fungi (Basel,) Tj ETQq1 I	0.78431	4_rgBT /Ove
2860	Plant growth-promoting of olive and walnut actinobacteria: isolation, screening PGP traits, antifungal activities, identification, and hydroponic production of wheat. Archives of Agronomy and Soil Science, 2023, 69, 1343-1358.	1.3	9
2861	The Deterioration of Agronomical Traits of the Continuous Cropping of Stevia Is Associated With the Dynamics of Soil Bacterial Community. Frontiers in Microbiology, 0, 13, .	1.5	2
2862	Cytogenetic and molecular characterization of almond trees treated with plant biostimulants or boron-based fertilizers. Plant Growth Regulation, 0 , , .	1.8	1
2864	Specific Plant Mycorrhizal Responses Are Linked to Mycorrhizal Fungal Species Interactions. Frontiers in Plant Science, 0, 13, .	1.7	8
2865	Water Deficit History Selects Plant Beneficial Soil Bacteria Differently Under Conventional and Organic Farming. Frontiers in Microbiology, 0, 13, .	1.5	6
2866	The emerging frontier of plant immunity's core hubs. FEBS Journal, 2023, 290, 3311-3335.	2.2	7
2867	Conventional vs. Organic Agriculture–Which One Promotes Better Yields and Microbial Resilience in Rapidly Changing Climates?. Frontiers in Microbiology, 0, 13, .	1.5	9
2869	Cyperus rotundus L. drives arable soil infertile by changing the structure of soil bacteria in the rhizosphere, using a maize field as an example. Environmental Science and Pollution Research, 2022, 29, 79579-79593.	2.7	3
2870	Silicon Fertilizer and Microbial Agents Changed the Bacterial Community in the Consecutive Replant Soil of Lilies. Agronomy, 2022, 12, 1530.	1.3	5
2871	Plant–microbe interactions in the rhizosphere via a circular metabolic economy. Plant Cell, 2022, 34, 3168-3182.	3.1	37

#	Article	IF	CITATIONS
2872	Antifungal Activity of Volatile Organic Compounds from Bacillus velezensis CE 100 against Colletotrichum gloeosporioides. Horticulturae, 2022, 8, 557.	1.2	25
2873	The Role of Pyoluteorin from Pseudomonas protegens Pf-5 in Suppressing the Growth and Pathogenicity of Pantoea ananatis on Maize. International Journal of Molecular Sciences, 2022, 23, 6431.	1.8	14
2874	From the bacterial citrus microbiome to the selection of potentially host-beneficial microbes. New Biotechnology, 2022, 70, 116-128.	2.4	7
2875	Wheat cover crop alters soil microbial community and increases cucumber yield under different potassium regimes. European Journal of Agronomy, 2022, 139, 126567.	1.9	7
2876	Response of rhizosphere microbiomes to climate change. , 2022, , 259-274.		0
2877	Pinpointing the Distinctive Impacts of Ten Cover Crop Species on the Resident and Active Fractions of the Soil Microbiome. SSRN Electronic Journal, 0, , .	0.4	0
2878	Rhizosphere and Endosphere Bacterial Communities Survey by Metagenomics Approach. Methods in Molecular Biology, 2022, , 181-197.	0.4	2
2879	Interaction of the rhizosphere microbiome and crops under climate change. , 2022, , 235-258.		O
2880	Effects of Microbial Signaling in Plant Growth and Development. Environmental and Microbial Biotechnology, 2022, , 329-348.	0.4	3
2881	Comparative Genomics of Three Aspergillus Strains Reveals Insights into Endophytic Lifestyle and Endophyte-Induced Plant Growth Promotion. Journal of Fungi (Basel, Switzerland), 2022, 8, 690.	1.5	6
2882	Conserved secreted effectors contribute to endophytic growth and multihost plant compatibility in a vascular wilt fungus. Plant Cell, 2022, 34, 3214-3232.	3.1	20
2883	Organic mulch can suppress litchi downy blight through modification of soil microbial community structure and functional potentials. BMC Microbiology, 2022, 22, .	1.3	13
2884	A highly conserved core bacterial microbiota with nitrogen-fixation capacity inhabits the xylem sap in maize plants. Nature Communications, $2022, 13, \ldots$	5.8	44
2885	Compatibility of mycorrhizaâ€induced resistance with viral and bacterial entomopathogens in the control of <i>Spodoptera exigua</i> in tomato. Pest Management Science, 0, , .	1.7	0
2886	The influence of biostimulants on the qualitative composition of carrots. IOP Conference Series: Earth and Environmental Science, 2022, 1045, 012087.	0.2	1
2887	Genotype-Specific Recruitment of Rhizosphere Bacteria From Sandy Loam Soil for Growth Promotion of Cucumis sativus var. hardwickii. Frontiers in Microbiology, 0, 13, .	1.5	5
2888	Flooding-induced rhizosphere Clostridium assemblage prevents root-to-shoot cadmium translocation in rice by promoting the formation of root apoplastic barriers. Journal of Hazardous Materials, 2022, 439, 129619.	6.5	3
2889	Pseudomonas spp. Enriched in Endophytic Community of Healthy Cotton Plants Inhibit Cotton Verticillium Wilt. Frontiers in Microbiology, 0, 13, .	1.5	8

#	Article	IF	Citations
2890	Impaired microbial <i>N</i> à€acyl homoserine lactone signalling increases plant resistance to aphids across variable abiotic and biotic environments. Plant, Cell and Environment, 2022, 45, 3052-3069.	2.8	4
2891	Microbiome Heritability and Its Role in Adaptation of Hosts to Novel Resources. Frontiers in Microbiology, 0, 13, .	1.5	3
2892	Effects of Chemical Fertilization and Microbial Inoculum on Bacillus subtilis Colonization in Soybean and Maize Plants. Frontiers in Microbiology, $0,13,.$	1.5	4
2893	Contrasting Responses of Rhizosphere Fungi of <i>Scutellaria tsinyunensis</i> , an Endangered Plant in Southwestern China. Microbiology Spectrum, 2022, 10, .	1.2	3
2894	Characterization of the belowground microbial community and co-occurrence networks of tobacco plants infected with bacterial wilt disease. World Journal of Microbiology and Biotechnology, 2022, 38, .	1.7	7
2895	Controlled natural selection of soil microbiome through plant-soil feedback confers resistance to a foliar pathogen. Plant and Soil, 2023, 485, 181-195.	1.8	4
2896	Influence of Sugarcane Variety on Rhizosphere Microbiota Under Irrigated and Water-Limiting Conditions. Current Microbiology, 2022, 79, .	1.0	5
2897	Wheat Rhizosphere Microbiota Respond to Changes in Plant Genotype, Chemical Inputs, and Plant Phenotypic Plasticity. Frontiers in Ecology and Evolution, 0, 10, .	1.1	7
2898	Seed properties and bacterial communities are associated with feeding preferences of a seed-eating beetle. Plant and Soil, 2022, 480, 329-348.	1.8	1
2899	Reduced chemodiversity suppresses rhizosphere microbiome functioning in the mono-cropped agroecosystems. Microbiome, 2022, 10, .	4.9	26
2900	Trichoderma-amended biofertilizer stimulates soil resident Aspergillus population for joint plant growth promotion. Npj Biofilms and Microbiomes, 2022, 8, .	2.9	14
2901	Microbiome Research as an Effective Driver of Success Stories in Agrifood Systems – A Selection of Case Studies. Frontiers in Microbiology, 0, 13, .	1.5	10
2904	Chronic Drought Differentially Alters the Belowground Microbiome of Drought-Tolerant and Drought-Susceptible Genotypes of <i>Populus trichocarpa</i> . Phytobiomes Journal, 2022, 6, 317-330.	1.4	5
2905	The effects of soil properties, cropping systems and geographic location on soil prokaryotic communities in four maize production regions across China. Journal of Integrative Agriculture, 2022, 21, 2145-2157.	1.7	1
2906	Breeding toward improved ecological plant–microbiome interactions. Trends in Plant Science, 2022, 27, 1134-1143.	4.3	43
2907	Local domestication of soybean leads to strong root selection and diverse filtration of root-associated bacterial communities. Plant and Soil, 2022, 480, 439-455.	1.8	5
2908	Controlled-Release Diammonium Phosphate Alleviates Apple Replant Disease: An Integrated Analysis of Soil Properties, Plant Growth, and the Soil Microbiome. Journal of Agricultural and Food Chemistry, 2022, 70, 8942-8954.	2.4	3
2909	The rhizosphere microbial complex in plant health: A review of interaction dynamics. Journal of Integrative Agriculture, 2022, 21, 2168-2182.	1.7	11

#	Article	IF	Citations
2910	Long-term compost amendment modulates wheat genotype differences in belowground carbon allocation, microbial rhizosphere recruitment and nitrogen acquisition. Soil Biology and Biochemistry, 2022, 172, 108768.	4.2	10
2911	Mulching practices manipulate the microbial community diversity and network of root‑associated compartments in the Loess Plateau. Soil and Tillage Research, 2022, 223, 105476.	2.6	14
2912	Optimizing the bacterial community structure and function in rhizosphere soil of sesame continuous cropping by the appropriate nitrate ammonium ratio. Rhizosphere, 2022, 23, 100550.	1.4	11
2913	Grass-legume mixtures enhance forage production via the bacterial community. Agriculture, Ecosystems and Environment, 2022, 338, 108087.	2.5	21
2914	Mixed planting reduces the shaping ability of legume cover crop on soil microbial community structure. Applied Soil Ecology, 2022, 178, 104581.	2.1	4
2915	Structure and specialization of mycorrhizal networks in phylogenetically diverse tropical communities. Environmental Microbiomes, 2022, 17, .	2.2	15
2916	Small changes in rhizosphere microbiome composition predict disease outcomes earlier than pathogen density variations. ISME Journal, 2022, 16, 2448-2456.	4.4	56
2917	Okra Growth, Yield and Rhizosphere Microbiome Responses to the Encapsulated Bioinoculant Application under Reduced Fertilization Regime. Biology, 2022, 11, 1107.	1.3	0
2918	Benzoxazinoids in wheat allelopathy – From discovery to application for sustainable weed management. Environmental and Experimental Botany, 2022, 202, 104997.	2.0	13
2919	Autotoxin affects the rhizosphere microbial community structure by influencing the secretory characteristics of grapevine roots. Frontiers in Microbiology, $0,13,.$	1.5	3
2920	Applications of environmental DNA (eDNA) in agricultural systems: Current uses, limitations and future prospects. Science of the Total Environment, 2022, 847, 157556.	3.9	18
2923	Phosphorus-solubilizing bacteria isolated from the rhizosphere of wild potato Solanum bulbocastanum enhance growth of modern potato varieties. Bulletin of the National Research Centre, 2022, 46, .	0.7	7
2924	Plant Pathology and Plant Pathogens. , 2022, , 11-19.		22
2925	Soil properties drive the bacterial community to cadmium contamination in the rhizosphere of two contrasting wheat (Triticum aestivum L.) genotypes. Journal of Environmental Sciences, 2023, 128, 117-128.	3.2	6
2926	Impact of the Cultivation System and Plant Cultivar on Arbuscular Mycorrhizal Fungi of Spelt (Triticum aestivum ssp. Spelta L.) in a Short-Term Monoculture. Pathogens, 2022, 11, 844.	1.2	2
2927	Microbial Metabolites Beneficial to Plant Hosts Across Ecosystems. Microbial Ecology, 2023, 86, 25-48.	1.4	5
2928	Environmental filtering drives the establishment of the distinctive rhizosphere, bulk, and root nodule bacterial communities of Sophora davidii in hilly and gully regions of the Loess Plateau of China. Frontiers in Microbiology, $0,13,\ldots$	1.5	6
2929	Microbe-assisted crop improvement: a sustainable weapon to restore holobiont functionality and resilience. Horticulture Research, 2022, 9, .	2.9	11

#	Article	IF	CITATIONS
2930	Biological Fungicides – Botanicals and Biocontrol Agents – and Basic Substances. , 2022, , 85-106.		0
2931	Secretion of poly- \hat{l}^3 -glutamic acid by Bacillus atrophaeus NX-12 enhanced its root colonization and biocontrol activity. Frontiers in Microbiology, 0, 13, .	1.5	3
2932	Influence of planting methods and organic amendments on rice yield and bacterial communities in the rhizosphere soil. Frontiers in Microbiology, 0, 13 , .	1.5	7
2933	The Effect of <i>Septoria glycines </i> and Fungicide Application on the Soybean Phyllosphere Mycobiome. Phytobiomes Journal, 2023, 7, 220-232.	1.4	4
2934	The bacterial and fungal microbiomes of ectomycorrhizal roots from stone oaks and Yunnan pines in the subtropical forests of the Ailao Mountains of Yunnan. Frontiers in Microbiology, 0, 13, .	1.5	4
2935	Artificial Soils Reveal Individual Factor Controls on Microbial Processes. MSystems, 2022, 7, .	1.7	7
2936	Nodulation and nitrogen fixation in <scp><i>Medicago truncatula</i></scp> strongly alters the abundance of its root microbiota and subtly affects its structure. Environmental Microbiology, 2022, 24, 5524-5533.	1.8	5
2937	Overexpression of the rice gene Lsi1 (low silicon gene 1) enhances plant-microbe interactions that result in improved chilling tolerance. Plant Growth Regulation, 2022, 98, 525-538.	1.8	2
2938	High bacterial diversity and siderophore-producing bacteria collectively suppress Fusarium oxysporum in maize/faba bean intercropping. Frontiers in Microbiology, 0, 13 , .	1.5	6
2940	The unseen effect of pesticides: The impact on phytobiota structure and functions. Frontiers in Agronomy, 0, 4, .	1.5	6
2941	Characterization of an Endophytic Antagonistic Bacterial Strain Bacillus halotolerans LBG-1-13 with Multiple Plant Growth-Promoting Traits, Stress Tolerance, and Its Effects on Lily Growth. BioMed Research International, 2022, 2022, 1-12.	0.9	7
2943	Soil microbiomes and one health. Nature Reviews Microbiology, 2023, 21, 6-20.	13.6	163
2944	Flavonoids affect the endophytic bacterial community in Ginkgo biloba leaves with increasing altitude. Frontiers in Plant Science, 0, 13 , .	1.7	8
2945	Archaeal community structures associated with fine root systems of <i>Cryptomeria japonica</i> (Cupressaceae) in central Japan. Journal of Forest Research, 0, , 1-9.	0.7	0
2946	Root-secreted bitter triterpene modulates the rhizosphere microbiota to improve plant fitness. Nature Plants, 2022, 8, 887-896.	4.7	53
2947	Impacts of Drought Stress and Mycorrhizal Inoculation on the Performance of Two Spring Wheat Cultivars. Plants, 2022, 11, 2187.	1.6	5
2948	Suppression of $\langle i \rangle$ Phytophthora $\langle i \rangle$ on $\langle i \rangle$ Chamaecyparis $\langle i \rangle$ in sustainable horticultural substrates depends on fertilization and is linked to the rhizobiome. Phytobiomes Journal, 0, , .	1.4	1
2949	Microbial Profiling of Potato-Associated Rhizosphere Bacteria under Bacteriophage Therapy. Antibiotics, 2022, 11, 1117.	1.5	4

#	Article	IF	CITATIONS
2950	A Comparison of Rhizospheric and Endophytic Bacteria in Early and Late-Maturing Pumpkin Varieties. Microorganisms, 2022, 10, 1667.	1.6	3
2951	Is Endophytic Colonization of Host Plants a Method of Alleviating Drought Stress? Conceptualizing the Hidden World of Endophytes. International Journal of Molecular Sciences, 2022, 23, 9194.	1.8	12
2952	Unique Insights into How Plants and Soil Microbiomes Interact Are at Our Fingertips. MSystems, 2022, 7, .	1.7	2
2953	Different genotypes regulate the microbial community structure in the soybean rhizosphere. Journal of Integrative Agriculture, 2023, 22, 585-597.	1.7	4
2954	Alfalfa modified the effects of degraded black soil cultivated land on the soil microbial community. Frontiers in Plant Science, $0,13,.$	1.7	5
2957	The interactions and hierarchical effects of longâ€term agricultural stressors on soil bacterial communities. Environmental Microbiology Reports, 2022, 14, 711-718.	1.0	2
2958	Green manuring facilitates bacterial community dispersal across different compartments of subsequent tobacco. Journal of Integrative Agriculture, 2023, 22, 1199-1215.	1.7	3
2959	Rhizospheric microorganisms: The gateway to a sustainable plant health. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	17
2960	Altering microbial community for improving soil properties and agricultural sustainability during a 10-year maize-green manure intercropping in Northwest China. Journal of Environmental Management, 2022, 321, 115859.	3.8	29
2961	Inoculation with carbofuran-degrading rhizobacteria promotes maize growth through production of IAA and regulation of the release of plant-specialized metabolites. Chemosphere, 2022, 307, 136027.	4.2	5
2962	Structural variability and niche differentiation of Paeonia lactiflora's root-associated microbiomes. Applied Soil Ecology, 2022, 180, 104632.	2.1	2
2963	The Impact of Non-Nodulating Diazotrophic Bacteria in Agriculture: Understanding the Molecular Mechanisms That Benefit Crops. International Journal of Molecular Sciences, 2022, 23, 11301.	1.8	5
2964	Charting the landscape of the environmental exposome. , 2022, 1, .		12
2965	Pseudomonas putida mediates bacterial killing, biofilm invasion and biocontrol with a type IVB secretion system. Nature Microbiology, 2022, 7, 1547-1557.	5. 9	23
2966	Tillage intensity and plant rhizosphere selection shape bacterial-archaeal assemblage diversity and nitrogen cycling genes. Soil and Tillage Research, 2023, 225, 105525.	2.6	4
2967	New-Age Genomic Measures for Uncovering Plant-Microbiome Interactions: Tools, Pipelines and Guidance Map for Genomic Data Mining., 2022, , 207-232.		0
2968	Rhizobacteriome: Plant Growth-Promoting Traits and Its Functional Mechanism in Plant Growth, Development, and Defenses., 2022,, 315-344.		2
2969	Complex Responses of Soil Bacterial and its Metabolites to Bio-Organic Fertilizer in Soil-Dendrocalamus Farinosus Scenarios. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
2970	Rhizospheric Soil–Plant-Microbial Interactions for Abiotic Stress Mitigation and Enhancing Crop Performance. Environmental Science and Engineering, 2022, , 593-614.	0.1	1
2971	11- Acute oak decline disease. Plant Pathology Science, 2022, 11, 122-132.	0.2	0
2972	Characteristics of microbial community in the rhizosphere soil of continuous potato cropping in arid regions of the Loess Plateau. Acta Agronomica Sinica(China), 2022, 48, 682-694.	0.1	1
2973	Experimental increases in pH and P availability exert long-term impacts on decomposition in forests. Applied Soil Ecology, 2023, 181, 104654.	2.1	2
2974	Trichoderma enriched compost, BCAs and potassium phosphite control Fusarium wilt of lettuce without affecting soil microbiome at genus level. Applied Soil Ecology, 2023, 182, 104678.	2.1	15
2975	Factors associated with soils suppressive to black scurf of potato caused by Rhizoctonia solani. New Zealand Plant Protection, 0, 75, 31-49.	0.3	2
2976	Vegetation drives the response of the active fraction of the rhizosphere microbial communities to soil warming in Antarctic vascular plants. FEMS Microbiology Ecology, 0, , .	1.3	2
2977	Emerging Trends in Allelopathy: A Genetic Perspective for Sustainable Agriculture. Agronomy, 2022, 12, 2043.	1.3	15
2978	Soil Organic Nitrogen Indirectly Enhances Pepper-Residue-Mediated Soil Disease Suppression through Manipulation of Soil Microbiome. Agronomy, 2022, 12, 2077.	1.3	2
2979	Soil conditions on bacterial wilt disease affect bacterial and fungal assemblage in the rhizosphere. AMB Express, 2022, 12, .	1.4	4
2980	Host Plant Selection Imprints Structure and Assembly of Fungal Community along the Soil-Root Continuum. MSystems, 2022, 7, .	1.7	9
2981	Bacteria as Biological Control Agents of Plant Diseases. Microorganisms, 2022, 10, 1759.	1.6	76
2984	Biostimulant-induced Improvement of Soil Health and Water-use Efficiency in Plants., 2022,, 72-84.		0
2985	Fellfields of the Kerguelen Islands harbour specific soil microbiomes and rhizomicrobiomes of an endemic plant facing necrosis. Frontiers in Soil Science, 0, 2, .	0.8	0
2986	Sequential interspecies interactions affect production of antimicrobial secondary metabolites in <i>Pseudomonas protegens</i> DTU9.1. ISME Journal, 2022, 16, 2680-2690.	4.4	8
2988	Root-Related Genes in Crops and Their Application under Drought Stress Resistance—A Review. International Journal of Molecular Sciences, 2022, 23, 11477.	1.8	3
2990	New opportunities in plant microbiome engineering for increasing agricultural sustainability under stressful conditions. Frontiers in Plant Science, $0, 13, \ldots$	1.7	56
2991	Differential assembly of root-associated bacterial and fungal communities of a dual transgenic insect-resistant maize line at different host niches and different growth stages. Frontiers in Microbiology, 0, 13, .	1.5	2

#	Article	IF	CITATIONS
2992	Abscisic acid-polyacrylamide (ABA-PAM) treatment enhances forage grass growth and soil microbial diversity under drought stress. Frontiers in Plant Science, $0,13,.$	1.7	4
2993	Seed coating with fungicide causes a beneficial shift in rootâ€associated microbiomes of mature soybean. Soil Science Society of America Journal, 2023, 87, 43-62.	1.2	2
2994	Short-Term Effects of Bio-Organic Fertilizer on Soil Fertility and Bacterial Community Composition in Tea Plantation Soils. Agronomy, 2022, 12, 2168.	1.3	6
2996	Elucidating the microbiome of the sustainable peat replacers composts and nature management residues. Frontiers in Microbiology, 0, 13 , .	1.5	5
2997	Sugarcane Rhizosphere Bacteria Community Migration Correlates with Growth Stages and Soil Nutrient. International Journal of Molecular Sciences, 2022, 23, 10303.	1.8	1
2998	Soil Autotrophic Bacterial Community Structure and Carbon Utilization Are Regulated by Soil Disturbance—The Case of a 19-Year Field Study. Agriculture (Switzerland), 2022, 12, 1415.	1.4	3
2999	Interaction networks reveal highly antagonistic endophytic bacteria in native maize seeds from traditional <scp><i>milpa</i></scp> agroecosystems. Environmental Microbiology, 2022, 24, 5583-5595.	1.8	5
3000	Plant microbiota dysbiosis and the Anna Karenina Principle. Trends in Plant Science, 2023, 28, 18-30.	4.3	33
3001	The Effect of Rotational Cropping of Industrial Hemp (Cannabis sativa L.) on Rhizosphere Soil Microbial Communities. Agronomy, 2022, 12, 2293.	1.3	1
3002	Semi-Arid-Habitat-Adapted Plant-Growth-Promoting Rhizobacteria Allows Efficient Wheat Growth Promotion. Agronomy, 2022, 12, 2221.	1.3	5
3003	Impact of irrigation water deficit on two tomato genotypes grown under open field conditions: From the root-associated microbiota to the stress responses. Italian Journal of Agronomy, 2022, 17, .	0.4	4
3004	Identification and analysis of proline-rich proteins and hybrid proline-rich proteins super family genes from Sorghum bicolor and their expression patterns to abiotic stress and zinc stimuli. Frontiers in Plant Science, 0, 13, .	1.7	3
3005	Community Assembly of Fungi and Bacteria along Soil-Plant Continuum Differs in a Zoige Wetland. Microbiology Spectrum, 2022, 10, .	1.2	1
3006	Changes in Microbial Diversity, Soil Function, and Plant Biomass of Cotton Rhizosphere Soil Under the Influence of Chlorpyrifos. Current Microbiology, 2022, 79, .	1.0	3
3007	A Wild Rice Rhizobacterium Burkholderia cepacia BRDJ Enhances Nitrogen Use Efficiency in Rice. International Journal of Molecular Sciences, 2022, 23, 10769.	1.8	2
3008	Soil microbiomes drive aboveground plant–pathogen–insect interactions. Oikos, 2022, 2022, .	1.2	4
3009	The rhizosphere bacterial community contributes to the nutritional competitive advantage of weedy rice over cultivated rice in paddy soil. BMC Microbiology, 2022, 22, .	1.3	5
3010	Shared Core Microbiome and Functionality of Key Taxa Suppressive to Banana Fusarium Wilt. Research, 2022, 2022, .	2.8	3

#	Article	IF	Citations
3011	Sugars and Jasmonic Acid Concentration in Root Exudates Affect Maize Rhizosphere Bacterial Communities. Applied and Environmental Microbiology, 2022, 88, .	1.4	14
3012	Investigating genetic diversity within the most abundant and prevalent non-pathogenic leaf-associated bacteria interacting with Arabidopsis thaliana in natural habitats. Frontiers in Microbiology, 0, 13 , .	1.5	4
3013	Priming effects on seed germination and seedling vigour in two perennial grasses targeted for degraded arid ecosystem restoration. Folia Geobotanica, 0 , , .	0.4	0
3014	Stochastic Inoculum, Biotic Filtering and Species-Specific Seed Transmission Shape the Rare Microbiome of Plants. Life, 2022, 12, 1372.	1.1	6
3015	Plant rhizosphere defense system respond differently to emerging polyfluoroalkyl substances F-53B and PFOS stress. Journal of Hazardous Materials, 2023, 443, 130119.	6.5	1
3017	Effects of genotype and ecological environment on the community structure and function of symbiotic bacteria in rhizosphere of ginseng. BMC Microbiology, 2022, 22, .	1.3	3
3018	Dynamic gill and mucus microbiomes during a gill disease episode in farmed Atlantic salmon. Scientific Reports, 2022, 12, .	1.6	3
3019	Warhorses in soil bioremediation: Seed biopriming with PGPF secretome to phytostimulate crop health under heavy metal stress. Environmental Research, 2023, 216, 114498.	3.7	5
3020	Cast into the Stones of International Law. , 2022, , 28-63.		1
3021	Long-term continuous mono-cropping of Macadamia integrifolia greatly affects soil physicochemical properties, rhizospheric bacterial diversity, and metabolite contents. Frontiers in Microbiology, 0, 13, .	1.5	3
3022	Analysis of the Bacterial and Fungal Community Profiles in Bulk Soil and Rhizospheres of Three Mungbean [<i>Vigna radiata</i> (L.) R. Wilczek] Genotypes through PCR-DGGE. International Letters of Natural Sciences, 0, 77, 1-26.	1.0	0
3023	Uncultivable Soil Microbes Contributing to Sustainable Agriculture. Microorganisms for Sustainability, 2022, , 267-281.	0.4	0
3024	Linking microbial body size to community co-occurrences and stability at multiple geographical scales in agricultural soils. Advances in Ecological Research, 2022, , 1-26.	1.4	1
3025	Understanding the Microbiome Interactions Across the Cropping System. Rhizosphere Biology, 2022, , 301-321.	0.4	1
3026	Rhizosphere Microbiome: Significance in Sustainable Crop Protection. Microorganisms for Sustainability, 2022, , 283-309.	0.4	1
3027	"The Key Influencers―of Rhizosphere Microbial Population Dynamics. Microorganisms for Sustainability, 2022, , 123-132.	0.4	0
3028	Microbiome to the Rescue: Nitrogen Cycling and Fixation in Non-legumes. Microorganisms for Sustainability, 2022, , 195-214.	0.4	1
3029	The Potential of Rhizobacteria for Plant Growth and Stress Adaptation. Rhizosphere Biology, 2022, , 205-224.	0.4	O

#	ARTICLE	IF	Citations
3030	Exploring the Rhizosphere Microbiome for Sustainable Agriculture Production. Rhizosphere Biology, 2022, , 63-87.	0.4	0
3031	Conservation Strategies for Rhizobiome in Sustainable Agriculture. Rhizosphere Biology, 2022, , 37-61.	0.4	0
3032	Effect of Short-Term Phosphorus Supply on Rhizosphere Microbial Community of Tea Plants. Agronomy, 2022, 12, 2405.	1.3	0
3033	Biorefining waste into nanobiotechnologies can revolutionize sustainable agriculture. Trends in Biotechnology, 2022, 40, 1503-1518.	4.9	17
3034	Causes and consequences of differences in soil and seed microbiomes for two alpine plants. Oecologia, 0, , .	0.9	0
3035	Functional Interpretation of Cross-Talking Pathways with Emphasis on Amino Acid Metabolism in Rhizosphere Microbiome of the Wild Plant Moringa oleifera. Agriculture (Switzerland), 2022, 12, 1814.	1.4	3
3036	Effect of Aerated Irrigation on the Growth and Rhizosphere Soil Fungal Community Structure of Greenhouse Grape Seedlings. Sustainability, 2022, 14, 12719.	1.6	1
3037	Nematodes and their bacterial prey improve phosphorus acquisition by wheat. New Phytologist, 2023, 237, 974-986.	3.5	9
3039	Contrasting effect of irrigation practices on the cotton rhizosphere microbiota and soil functionality in fields. Frontiers in Plant Science, 0, 13, .	1.7	0
3040	Influence of Rosaceous Species and Driving Factors on Differentiation of Rhizospheric Bacteria in a Deciduous Broad-Leaved Forest. Current Microbiology, 2022, 79, .	1.0	1
3041	Crop diversification in Idaho's Magic Valley: the present and the imaginary. Agronomy for Sustainable Development, 2022, 42, .	2.2	4
3042	Mycorrhizal inoculation effects on growth and the mycobiome of poplar on two phytomanaged sites after 7-year-short rotation coppicing. Frontiers in Plant Science, 0, 13, .	1.7	1
3043	PANOMICS at the interface of root–soil microbiome and BNI. Trends in Plant Science, 2023, 28, 106-122.	4.3	12
3044	Molecular mechanisms of plant growth promotion for methylotrophic Bacillus aryabhattai LAD. Frontiers in Microbiology, $0,13,.$	1.5	3
3046	Partitioning the Effects of Soil Legacy and Pathogen Exposure Determining Soil Suppressiveness via Induced Systemic Resistance. Plants, 2022, 11, 2816.	1.6	1
3049	Maize-soybean relay strip intercropping reshapes the rhizosphere bacterial community and recruits beneficial bacteria to suppress Fusarium root rot of soybean. Frontiers in Microbiology, 0, 13, .	1.5	10
3051	Short-Term Vegetation Restoration Enhances the Complexity of Soil Fungal Network and Decreased the Complexity of Bacterial Network. Journal of Fungi (Basel, Switzerland), 2022, 8, 1122.	1.5	6
3052	Rhizosphere-Associated Microbiome Profile of Agricultural Reclaimed Lands in Egypt. Agronomy, 2022, 12, 2543.	1.3	2

#	ARTICLE	IF	CITATIONS
3053	Effects of Plant-Growth-Promoting Rhizobacteria (PGPR) and Cyanobacteria on Botanical Characteristics of Tomato (Solanum lycopersicon L.) Plants. Plants, 2022, 11, 2732.	1.6	11
3054	High carbon resource diversity enhances the certainty of successful plant pathogen and disease control. New Phytologist, 2023, 237, 1333-1346.	3 . 5	8
3056	Bioprospecting Soil Bacteria from Arid Zones to Increase Plant Tolerance to Drought: Growth and Biochemical Status of Maize Inoculated with Plant Growth-Promoting Bacteria Isolated from Sal Island, Cape Verde. Plants, 2022, 11, 2912.	1.6	5
3057	Absolute microbiome profiling highlights the links among microbial stability, soil health, and crop productivity under long-term sod-based rotation. Biology and Fertility of Soils, 2022, 58, 883-901.	2.3	7
3058	Massively parallel single-cell genomics of microbiomes in rice paddies. Frontiers in Microbiology, 0, 13, .	1.5	4
3060	Linking rhizospheric microbial and fine root C:N:P stoichiometry under long-term forest conversion. Rhizosphere, 2022, 24, 100612.	1.4	0
3061	Halotolerant rhizobacteria mitigate the effects of salinity stress on maize growth by secreting exopolysaccharides. Environmental and Experimental Botany, 2022, 204, 105098.	2.0	14
3062	Responses of soil microbial community structure, potential ecological functions, and soil physicochemical properties to different cultivation patterns in cucumber. Geoderma, 2023, 429, 116237.	2.3	9
3063	Biointeractions of plants–microbes–engineered nanomaterials. , 2023, , 201-231.		0
3064	Individual-Based Modeling of Spatial Dynamics of Chemotactic Microbial Populations. ACS Synthetic Biology, 2022, 11, 3714-3723.	1.9	3
3065	Sugarcane cultivation practices modulate rhizosphere microbial community composition and structure. Scientific Reports, 2022, 12, .	1.6	0
3066	Cellobiose elicits immunity in lettuce conferring resistance to <i>Botrytis cinerea</i> Experimental Botany, 2023, 74, 1022-1038.	2.4	4
3067	Editorial: Microbial communities and functions contribute to plant performance under various stresses. Frontiers in Microbiology, 0, 13, .	1.5	1
3068	Isolation and identification of plant growthâ€promoting rhizobacteria from tall fescue rhizosphere and their functions under salt stress. Physiologia Plantarum, 2022, 174, .	2.6	9
3070	Higher-Quality Pumpkin Cultivars Need to Recruit More Abundant Soil Microbes in Rhizospheres. Microorganisms, 2022, 10, 2219.	1.6	1
3071	A New Highly Oxygenated Polyketide Derivative from $<$ i>Trichoderma $<$ li>sp. and Its Antifungal Activity. Chemistry and Biodiversity, 2022, 19, .	1.0	3
3072	Ectomycorrhizal (dipterocarp) and arbuscular mycorrhizal (nonâ€dipterocarp) tree hosts and their relative distribution in a tropical forest predict soil bacterial communities. Journal of Ecology, 2023, 111, 251-262.	1.9	1
3074	Plant specialized metabolites in the rhizosphere of tomatoes: secretion and effects on microorganisms. Bioscience, Biotechnology and Biochemistry, 2022, 87, 13-20.	0.6	13

#	Article	IF	CITATIONS
3075	Health Parameters of Potato Tubers under the Influence of Soil Applied Bio-Preparations and Bio-Stimulants. Applied Sciences (Switzerland), 2022, 12, 11593.	1.3	4
3076	Earthworms Drive the Effect of La ₂ O ₃ Nanoparticles on Radish Taproot Metabolite Profiles and Rhizosphere Microbial Communities. Environmental Science & Emp; Technology, 2022, 56, 17385-17395.	4.6	9
3077	The rhizosphere microbiome and host plant glucosinolates exhibit feedback cycles in <i>Brassica rapa</i> . Molecular Ecology, 2023, 32, 741-751.	2.0	6
3078	Variation in Community Structure of the Root-Associated Fungi of Cinnamomum camphora Forest. Journal of Fungi (Basel, Switzerland), 2022, 8, 1210.	1.5	2
3079	The core microbiome of Carya illinoinensis (pecan) seedlings of different maternal pecan cultivars from the same orchard. , 0, 1, .		3
3080	Plant microbial fuel cells as an innovative, versatile agro-technology for green energy generation combined with wastewater treatment and food production. Biomass and Bioenergy, 2022, 167, 106629.	2.9	17
3081	Hidden Inside Plants: Potential of Endophytic Microorganisms as Next-generation Biopesticides. , 2022, , 182-201.		0
3082	The involvement of organic acids in soil fertility, plant health and environment sustainability. Archives of Microbiology, 2022, 204, .	1.0	16
3083	Rhizosphere bacterial and fungal communities of healthy and wilted pepper (Capsicum annuum L.) in an organic farming system. Ciencia Rural, 2023, 53, .	0.3	2
3084	Predatory protists play predominant roles in suppressing soil-borne fungal pathogens under organic fertilization regimes. Science of the Total Environment, 2023, 863, 160986.	3.9	12
3085	In grapevine decline, microbiomes are affected differently in symptomatic and asymptomatic soils. Applied Soil Ecology, 2023, 183, 104767.	2.1	5
3086	The structure and assembly of rhizobacterial communities are influenced by poplar genotype. Frontiers in Microbiology, $0,13,.$	1.5	0
3087	Rhizosphere soil microbial communities under foxtail millet continuous and rotational cropping systems and their feedback effects on foxtail millet downy mildew suppression. Plant Growth Regulation, 2023, 99, 161-175.	1.8	4
3089	Heterosis in root microbiota inhibits growth of soilâ€borne fungal pathogens in hybrid rice. Journal of Integrative Plant Biology, 2023, 65, 1059-1076.	4.1	1
3091	Soil legacy effects of plants and drought on aboveground insects in native and rangeâ€expanding plant communities. Ecology Letters, 2023, 26, 37-52.	3.0	4
3092	Improving Wheat Salt Tolerance for Saline Agriculture. Journal of Agricultural and Food Chemistry, 2022, 70, 14989-15006.	2.4	4
3093	Intercropping with Achyranthes bidentata alleviates Rehmannia glutinosa consecutive monoculture problem by reestablishing rhizosphere microenvironment. Frontiers in Plant Science, 0, 13, .	1.7	2
3094	Microbial communities in tree root-compartment niches under Cd and Zn pollution: Structure, assembly process and co-occurrence relationship. Science of the Total Environment, 2023, 860, 160273.	3.9	5

#	Article	IF	CITATIONS
3095	Honeybees affect floral microbiome composition in a central food source for wild pollinators in boreal ecosystems. Oecologia, 2023, 201, 59-72.	0.9	5
3096	Differential modulation of the bacterial endophytic microbiota of Festuca arundinaceae (tall fescue) cultivars by the plant-growth promoting strain Streptomyces albidoflavus UYFA156. Plant and Soil, 2023, 485, 317-332.	1.8	3
3097	Rice Rhizosphere Metagenome in Association with Application of Biochar under Continuous Exposure to Elevated Carbon Dioxide. ACS Agricultural Science and Technology, 2023, 3, 90-100.	1.0	1
3098	Root-Zone Restriction Regulates Soil Factors and Bacterial Community Assembly of Grapevine. International Journal of Molecular Sciences, 2022, 23, 15628.	1.8	2
3099	A shift from inorganic to organic nitrogen-dominance shapes soil microbiome composition and co-occurrence networks. Frontiers in Microbiology, 0, 13, .	1.5	0
3100	The composition and function of the soil microbial community and its driving factors before and after cultivation of Panax ginseng in farmland of different ages. Ecological Indicators, 2022, 145, 109748.	2.6	13
3101	Plant phosphate status influences root biotic interactions. Journal of Experimental Botany, 2023, 74, 2829-2844.	2.4	4
3102	Nodule-associated diazotrophic community succession is driven by developmental phases combined with microhabitat of Sophora davidii. Frontiers in Microbiology, 0, 13, .	1.5	1
3103	Foliar herbivory affects the rhizosphere microbial assembly processes and association networks. Rhizosphere, 2022, , 100649.	1.4	0
3104	Bio-Organic Fertilizer Promotes Pear Yield by Shaping the Rhizosphere Microbiome Composition and Functions. Microbiology Spectrum, 2022, 10, .	1.2	7
3105	Resprouting ability differs among plant functional groups along a soil acidification gradient in a meadow: A rhizosphere perspective. Journal of Ecology, 2023, 111, 631-644.	1.9	5
3106	Impact of Water Table on Methane Emission Dynamics in Terrestrial Wetlands and Implications on Strategies for Wetland Management and Restoration. Wetlands, 2022, 42, .	0.7	0
3107	Microbiome analysis and biocontrol bacteria isolation from rhizosphere soils associated with different sugarcane root rot severity. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	4
3108	Metabolomics of plant root exudates: From sample preparation to data analysis. Frontiers in Plant Science, $0,13,\ldots$	1.7	12
3109	Efficacy of Pythium oligandrum on improvement of lucerne yield, root development and disease score under field conditions. Frontiers in Plant Science, 0, 13, .	1.7	1
3110	Tare Soil Alters the Composition of the Developing Potato Rhizosphere Microbiome. Phytobiomes Journal, 2023, 7, 91-99.	1.4	2
3111	Sustained Inhibition of Maize Seedâ€Borne <i>Fusarium</i> Using a <i>Bacillus</i> â€Dominated Rhizospheric Stable Core Microbiota with Unique Cooperative Patterns. Advanced Science, 2023, 10, .	5.6	10
3112	Complete Genome Sequence of <i>Bacillus subtilis</i> CNBG-PGPR-1 for Studying the Promotion of Plant Growth. Molecular Plant-Microbe Interactions, 2022, 35, 1115-1119.	1.4	2

#	Article	IF	CITATIONS
3113	Evaluating the Effect on Cultivation of Replacing Soil with Typical Soilless Growing Media: A Microbial Perspective. Agronomy, 2023, 13, 6.	1.3	0
3114	Multi-genome metabolic modeling predicts functional inter-dependencies in the Arabidopsis root microbiome. Microbiome, 2022, 10 , .	4.9	12
3115	Conditionality of soil microbial mediation of Solidago plant phenotype: indicator taxa within complex microbiomes influence some, but not all Solidago traits. Plant and Soil, 0, , .	1.8	2
3117	Strigolactones in Plants and Their Interaction with the Ecological Microbiome in Response to Abiotic Stress. Plants, 2022, 11, 3499.	1.6	11
3118	Characterizing Variation in the Bacterial and Fungal Tare Soil Microbiome of Seed Potato. Phytobiomes Journal, 2023, 7, 78-90.	1.4	2
3119	Phosphorus availability drives mycorrhiza induced resistance in tomato. Frontiers in Plant Science, 0, 13, .	1.7	4
3120	Combined organic-inorganic fertilization builds higher stability of soil and root microbial networks than exclusive mineral or organic fertilization. Soil Ecology Letters, 2023, 5, .	2.4	7
3121	Characterization of phosphate solubilizing <i>Pseudomonas stutzeri</i> for nodulation in chickpea. Journal of Plant Nutrition, 2023, 46, 3018-3030.	0.9	1
3122	Seed priming using Moringa oleifera leaf decoction increases BPT 5204 rice yield. Israel Journal of Plant Sciences, 2022, 70, 65-75.	0.3	0
3123	The Beneficial Plant Microbial Association for Sustainable Agriculture. Microorganisms for Sustainability, 2023, , 137-210.	0.4	4
3124	Divergent Effects of Fertilizer Regimes on Taxonomic and Functional Compositions of Rhizosphere Bacteria and Fungi in Phoebe bournei Young Plantations Are Associated with Root Exudates. Forests, 2023, 14, 126.	0.9	2
3125	Plant Exudates and Microbial Interaction—A Change in Dynamics. Climate Change Management, 2023, , 83-95.	0.6	1
3126	Rhizosphere Microbial Community Shows a Greater Response Than Soil Properties to Tea (Camellia) Tj ETQq0 0 0) rgBT /Ove	erlock 10 Tf 5
3127	Overviewing Drought and Heat Stress Ameliorationâ€"From Plant Responses to Microbe-Mediated Mitigation. Sustainability, 2023, 15, 1671.	1.6	11
3128	Co-occurring epiphytic orchids have specialized mycorrhizal fungal niches that are also linked to ontogeny. Mycorrhiza, 2023, 33, 87-105.	1.3	1
3129	Implications of Plant Invasion on the Soil Microbial Diversity and Ecosystem Sustainability: Evidence from a Tropical Biodiversity Hot Spot., 2023,, 161-182.		0
3130	Application of microbial organic fertilizers promotes the utilization of nutrients and restoration of microbial community structure and function in rhizosphere soils after dazomet fumigation. Frontiers in Microbiology, 0, 13, .	1.5	8
3132	Soil Salinity and Climate Change: Microbiome-Based Strategies for Mitigation of Salt Stress to Sustainable Agriculture. Climate Change Management, 2023, , 191-243.	0.6	4

#	Article	IF	Citations
3133	Bacillus benefits the competitive growth of Ambrosia artemisiifolia by increasing available nutrient levels. Frontiers in Plant Science, $0,13,\ldots$	1.7	2
3135	The Role of the Root Microbiome in the Utilization of Functional Traits for Increasing Plant Productivity. Microorganisms for Sustainability, 2023, , 55-80.	0.4	0
3136	Unearthing the Modern Trends and Concepts of Rhizosphere Microbiome in Relation to Plant Productivity. Microorganisms for Sustainability, 2023, , 19-54.	0.4	0
3137	Microbial coexistence in the rhizosphere and the promotion of plant stress resistance: A review. Environmental Research, 2023, 222, 115298.	3.7	17
3138	Soil bacterial communities are influenced by soil chemical characteristics and dispersal limitation in commercial strawberry production systems. Plant-Environment Interactions, 0, , .	0.7	0
3139	Interaction between bacterial endophytes and host plants. Frontiers in Plant Science, 0, 13, .	1.7	12
3140	Optical Sensing Technologies to Elucidate the Interplay between Plant and Microbes. Micromachines, 2023, 14, 195.	1.4	5
3141	Unraveling the Impact of Chilean Native Cultures of Enterococcus sp. Strain BB3 and Lactobacillus sp. Strain BB6 on the Physiology of Tomato Plants (Solanum lycopersicum L.). Journal of Soil Science and Plant Nutrition, 0, , .	1.7	1
3142	Influence of phytochemical and soil characteristics on composition of culturable endophyte from Zingiber zerumbet (L) Smith rhizome. Ecological Genetics and Genomics, 2023, 26, 100158.	0.3	1
3143	Microbiome rescue: directing resilience of environmental microbial communities. Current Opinion in Microbiology, 2023, 72, 102263.	2.3	11
3144	Yield gap of rice genotypes under N and P deficiencies: Evidence from differential recruitment of bacterial keystone taxa in the rhizosphere. Applied Soil Ecology, 2023, 184, 104791.	2.1	1
3145	Adverse impacts of Roundup on soil bacteria, soil chemistry and mycorrhizal fungi during restoration of a Colorado grassland. Applied Soil Ecology, 2023, 185, 104778.	2.1	4
3146	Community Structures and Dynamic Changes of Rhizosphere Microorganisms of <i>Rhododendron agastum</i> at Different Ages. Journal of Biobased Materials and Bioenergy, 2022, 16, 729-736.	0.1	0
3147	Soil Properties and Bacterial Communities Associated with the Rhizosphere of the Common Bean after Using Brachiaria brizantha as a Service Crop: A 10-Year Field Experiment. Sustainability, 2023, 15, 488.	1.6	3
3148	Soil variation among natural habitats alters glucosinolate content in a wild perennial mustard. Journal of Experimental Botany, 2023, 74, 1723-1740.	2.4	1
3149	Coumarin biosynthesis genes are required after foliar pathogen infection for the creation of a microbial soil-borne legacy that primes plants for SA-dependent defenses. Scientific Reports, 2022, 12, .	1.6	10
3150	Host niche, genotype, and field location shape the diversity and composition of the soybean microbiome. Journal of Integrative Agriculture, 2023, 22, 2412-2425.	1.7	6
3151	Inflection of the root microbiome by plants: Plant growth promotion and disease management. , 2023, , 151-173.		O

#	Article	IF	CITATIONS
3152	Plant-microbe interactions in wheat to deal with abiotic stress., 2023,, 375-391.		1
3154	Microbial perspectives for the agricultural soil health management in mountain forests under climatic stress., 2023,, 59-90.		O
3155	Microbial cross talk: Below and above ground. , 2023, , 213-226.		0
3156	Ecological Processes of Bacterial and Fungal Communities Associated with <i>Typha orientalis</i> Roots in Wetlands Were Distinct during Plant Development. Microbiology Spectrum, 2023, 11, .	1.2	6
3157	Phosphorus availability and planting patterns regulate soil microbial effects on plant performance in a semiarid steppe. Annals of Botany, 2023, 131, 1081-1095.	1.4	1
3158	Evaluation of the Biocontrol Efficiency of Bacillus subtilis Wettable Powder on Pepper Root Rot Caused by Fusarium solani. Pathogens, 2023, 12, 225.	1.2	3
3159	Plant growth promoting Rhizobacteria and their biofilms in promoting sustainable agriculture and soil health., 2023,, 629-647.		1
3160	Green synthesized nanonutrients for sustainable crop growth. , 2023, , 275-288.		1
3161	Plant–Microbe Interactions under the Action of Heavy Metals and under the Conditions of Flooding. Diversity, 2023, 15, 175.	0.7	3
3162	Intercropping and nitrogen enhance eucalyptus productivity through the positive interaction between soil fertility factors and bacterial communities along with the maintenance of soil enzyme activities. Land Degradation and Development, 2023, 34, 2403-2417.	1.8	4
3163	A Nitrate-Transforming Bacterial Community Dominates in the Miscanthus Rhizosphere on Nitrogen-Deficient Volcanic Deposits of Miyake-jima. Microorganisms, 2023, 11, 260.	1.6	3
3164	Duckweeds for Phytoremediation of Polluted Water. Plants, 2023, 12, 589.	1.6	17
3165	Exploring the Potentiality of Native Actinobacteria to Combat the Chilli Fruit Rot Pathogens under Post-Harvest Pathosystem. Life, 2023, 13, 426.	1.1	3
3166	Do full mechanized management strategies destroy soil health and fertility in sugarcane fields?. Catena, 2023, 224, 107000.	2.2	3
3167	An Overall Insight Into the Attributes, Interactions, and Future Applications of "Microbial Consortium―for Plant Growth Promotion with Contemporary Approaches. Microorganisms for Sustainability, 2023, , 3-22.	0.4	1
3168	Obstacles in continuous cropping: Mechanisms and control measures. Advances in Agronomy, 2023, , 205-256.	2.4	12
3169	Rhizosphere Mycobiome: Roles, Diversity, and Dynamics. , 2023, , 47-61.		0
3170	The Bacterial-Fungal Consortia: Farmer's Needs, Legal and Scientific Opportunities, and Constraints. Microorganisms for Sustainability, 2023, , 109-125.	0.4	0

#	Article	IF	CITATIONS
3171	A soil fungus confers plant resistance against a phytophagous insect by disrupting the symbiotic role of its gut microbiota. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	15
3172	Insights into plant beneficial microorganism-triggered induced systemic resistance. Plant Stress, 2023, 7, 100140.	2.7	17
3174	A green and novel strategy based on CO2 -responsive surfactant-functionalized multi- walled carbon nanotubes with microwave- ultrasound assistant to improve extraction and enrichment of phytochemicals from plant waste. Industrial Crops and Products, 2023, 194, 116294.	2.5	3
3175	Role of Mineral Nitrogen Nutrition in Fungal Plant Diseases of Cereal Crops. Critical Reviews in Plant Sciences, 2023, 42, 93-123.	2.7	3
3176	Tuber indicum and T. lijiangense colonization differentially regulates plant physiological responses and mycorrhizosphere bacterial community of Castanopsis rockii seedlings. Frontiers in Plant Science, 0, 14, .	1.7	1
3178	Influences of rock fragment content and vegetation on soil microbial communities. Catena, 2023, 225, 107018.	2.2	2
3179	Multi-factor correlation analysis of the effect of root-promoting practices on tobacco rhizosphere microecology in growth stages. Microbiological Research, 2023, 270, 127349.	2.5	1
3180	Effects of time-space conversion on microflora structure, secondary metabolites composition and antioxidant capacity of Codonopsis pilosula root. Plant Physiology and Biochemistry, 2023, 198, 107659.	2.8	3
3181	Towards a better and more complete understanding of microbial nitrogen transformation processes in the rhizosphere of subsurface flow constructed wetlands: Effect of plant root activities. Chemical Engineering Journal, 2023, 463, 142455.	6.6	6
3182	Effects of slow- and controlled-release nitrogen fertilizers on bacterial and fungal community composition in a double-cropping rice system. Soil and Tillage Research, 2023, 230, 105714.	2.6	7
3183	Microbes-mediated sulphur cycling in soil: Impact on soil fertility, crop production and environmental sustainability. Microbiological Research, 2023, 271, 127340.	2.5	24
3184	Soil substrate source drives the microbes involved in the degradation of gelatin used as a biostimulant. Applied Soil Ecology, 2023, 189, 104906.	2.1	8
3185	Seasonal variations in the composition and diversity of rhizosphere soil microbiome of bamboo plants as infected by soil-borne pathogen and screening of associated antagonistic strains. Industrial Crops and Products, 2023, 197, 116641.	2.5	4
3186	Revealing the relative importance among plant species, slope positions, and soil types on rhizosphere microbial communities in northern tropical karst and non-karst seasonal rainforests of China. Frontiers in Microbiology, 0, 14, .	1.5	1
3187	Plant-microbiome crosstalk and disease development. Current Opinion in Plant Biology, 2023, 72, 102351.	3.5	10
3189	Soil Microbes and Biofertilizers. Geography of the Physical Environment, 2022, , 117-144.	0.2	2
3190	Turfgrass-dependent mycotrophic change enhances soil deterioration in dry, cold and high-alkali environments. Journal of Applied Microbiology, 2023, 134, .	1.4	0
3191	Retention of post-harvest residues enhances soil fungal biodiversity in Eucalyptus plantations. Forest Ecology and Management, 2023, 532, 120806.	1.4	2

#	Article	IF	CITATIONS
3192	Understory ferns promote the restoration of soil microbial diversity and function in previously degraded lands. Science of the Total Environment, 2023, 870, 161934.	3.9	3
3193	Do Fungicides Affect Alkaloid Production in Catharanthus roseus (L.) G. Don. Seedlings?. Molecules, 2023, 28, 1405.	1.7	0
3194	Rhizobiome Signature and Its Alteration Due to Watering in the Wild Plant Moringa oleifera. Sustainability, 2023, 15, 2745.	1.6	0
3195	Plant Microbiome: An Ocean of Possibilities for Improving Disease Resistance in Plants. Microorganisms, 2023, 11, 392.	1.6	13
3196	The effect of tomato cultivar on Pythium root rot and efficacy of biopesticides. PhytoFrontiers, 0, , .	0.8	0
3197	Additive fungal interactions drive biocontrol of Fusarium wilt disease. New Phytologist, 2023, 238, 1198-1214.	3.5	12
3199	Diversity and abundance of bacterial and fungal communities in rhizospheric soil from smallholder banana producing agroecosystems in Kenya., 0, 2, .		4
3200	Host-mediated gene engineering and microbiome-based technology optimization for sustainable agriculture and environment. Functional and Integrative Genomics, 2023, 23, .	1.4	20
3201	When biodiversity preservation meets biotechnology: The challenge of developing synthetic microbiota for resilient sustainable crop production. , 2023, 2, 5-15.		2
3202	Probiotic Bacteria, Anaerobic Soil Disinfestation and Mustard Cover Crop Biofumigation Suppress Soilborne Disease and Increase Yield of Strawberry in a Perennial Organic Production System. Plant Disease, 0, , .	0.7	1
3203	The effects and interrelationships of intercropping on Cotton Verticillium wilt and soil microbial communities. BMC Microbiology, 2023, 23, .	1.3	6
3204	Amino Acid Availability Determines Plant Immune Homeostasis in the Rhizosphere Microbiome. MBio, 2023, 14, .	1.8	3
3205	Integrating nanotechnology with plant microbiome for next-generation crop health. Plant Physiology and Biochemistry, 2023, 196, 703-711.	2.8	12
3206	Root-Associated Antagonistic Pseudomonas spp. Contribute to Soil Suppressiveness against Banana Fusarium Wilt Disease of Banana. Microbiology Spectrum, 2023, 11, .	1.2	7
3207	The relationship between shifts in the rhizosphere microbial community and root rot disease in a continuous cropping American ginseng system. Frontiers in Microbiology, 0, 14, .	1.5	5
3208	Bacillaene, sharp objects consist in the arsenal of antibiotics produced by <i>Bacillus</i> . Journal of Cellular Physiology, 0, , .	2.0	10
3209	Bio-organic fertilizers improve Dendrocalamus farinosus growth by remolding the soil microbiome and metabolome. Frontiers in Microbiology, 0, 14 , .	1.5	2
3210	Microbiomes of Antarctic pearlwort (Colobanthus quitensis) of the maritime Antarctic: distinct diversity and core microbes in rhizosphere and endosphere compartments of the plant. Ukrainian Antarctic Journal, 2022, 20, .	0.1	0

#	Article	IF	CITATIONS
3211	Rhizobacterial compositions and their relationships with soil properties and medicinal bioactive ingredients in Cinnamomum migao. Frontiers in Microbiology, 0, 14, .	1.5	3
3212	Diversity and structural analysis of rhizosphere soil microbial communities in wild and cultivated Rhizoma Atractylodis Macrocephalae and their effects on the accumulation of active components. PeerJ, 0, 11, e14841.	0.9	2
3213	The Arabidopsis holobiont: a (re)source of insights to understand the amazing world of plant–microbe interactions. Environmental Microbiomes, 2023, 18, .	2.2	8
3214	Selection of rhizosphere communities of diverse rotation crops reveals unique core microbiome associated with reduced banana <i>Fusarium</i> wilt disease. New Phytologist, 2023, 238, 2194-2209.	3.5	18
3215	Insights into the Methodological, Biotic and Abiotic Factors Influencing the Characterization of Xylem-Inhabiting Microbial Communities of Olive Trees. Plants, 2023, 12, 912.	1.6	5
3216	Awaking the dormant virome in the rhizosphere. Molecular Ecology, 2023, 32, 2985-2999.	2.0	1
3217	Orchestration of the Plant Microbiome for Enhanced Agriculture. Sustainable Agriculture Reviews, 2023, , 23-46.	0.6	0
3218	Multi-Omics Analysis Reveals the Resistance Mechanism and the Pathogens Causing Root Rot of $\langle i \rangle$ Coptis chinensis $\langle i \rangle$. Microbiology Spectrum, 2023, 11, .	1.2	3
3219	Passion fruit plants alter the soil microbial community with continuous cropping and improve plant disease resistance by recruiting beneficial microorganisms. PLoS ONE, 2023, 18, e0281854.	1.1	2
3220	Bacillus amyloliquefaciens-Inoculated GABA-Rich Rice Upregulate Neuropeptide Y to Relieve Psychological Stress through Mediations of GABAB Receptor and Vagus Nerves. Biology Bulletin, 2023, 50, 186-193.	0.1	2
3221	The spatial patterns of diversity and their relationships with environments in rhizosphere microorganisms and host plants differ along elevational gradients. Frontiers in Microbiology, 0, 14, .	1.5	2
3222	Interactions between Culturable Bacteria Are Predicted by Individual Species' Growth. MSystems, 2023, 8, .	1.7	6
3223	Comparison of the diversity and structure of the rhizosphere microbial community between the straight and twisted trunk types of Pinus yunnanensis. Frontiers in Microbiology, 0, 14, .	1.5	2
3224	Sour Orange Microbiome Is Affected by Infections of Plenodomus tracheiphilus Causal Agent of Citrus Mal Secco Disease. Agronomy, 2023, 13, 654.	1.3	2
3225	Manipulation of plant metabolism by pathogen effectors: more than just food. FEMS Microbiology Reviews, 2023, 47, .	3.9	8
3226	Getting to the root of tree soil microbiome sampling. Phytobiomes Journal, 0, , .	1.4	0
3227	Root exudate concentrations of indole-3-acetic acid (IAA) and abscisic acid (ABA) affect maize rhizobacterial communities at specific developmental stages. FEMS Microbiology Ecology, 2023, 99, .	1.3	7
3229	Competitive interactions between culturable bacteria are highly non-additive. ELife, 0, 12, .	2.8	6

#	ARTICLE	IF	Citations
3230	Effects of Coumarin on Rhizosphere Microbiome and Metabolome of Lolium multiflorum. Plants, 2023, 12, 1096.	1.6	3
3231	Role of Cytochrome P450 Enzyme in Plant Microorganisms' Communication: A Focus on Grapevine. International Journal of Molecular Sciences, 2023, 24, 4695.	1.8	8
3232	Plant Growth-Promoting Microbes: Key Players in Organic Agriculture., 2023, , 139-160.		0
3233	Diversity and function of soybean rhizosphere microbiome under nature farming. Frontiers in Microbiology, 0, 14 , .	1.5	4
3234	Multifeature analysis of ageâ€related microbiome structures reveals defense mechanisms of <i>Populus tomentosa</i> trees. New Phytologist, 2023, 238, 1636-1650.	3.5	5
3235	Astragalus-cultivated soil was a suitable bed soil for nurturing Angelica sinensis seedlings from the rhizosphere microbiome perspective. Scientific Reports, $2023,13,\ldots$	1.6	1
3236	CNN_FunBar: Advanced Learning Technique for Fungi ITS Region Classification. Genes, 2023, 14, 634.	1.0	2
3239	The effect of propagation substrate on Pythium root rot severity and the efficacy of biopesticides. Plant Health Progress, 0, , .	0.8	0
3240	Soil Protists Can Actively Redistribute Beneficial Bacteria along Medicago truncatula Roots. Applied and Environmental Microbiology, 2023, 89, .	1.4	4
3241	Chasing the mechanisms of ecologically adaptive salinity tolerance. Plant Communications, 2023, 4, 100571.	3. 6	2
3242	A Plant Biostimulant from Ascophyllum nodosum Potentiates Plant Growth Promotion and Stress Protection Activity of Pseudomonas protegens CHAO. Plants, 2023, 12, 1208.	1.6	6
3243	Positive response of host root-associated bacterial community and soil nutrients to inhibitory parasitism of dodder. Plant and Soil, 0, , .	1.8	1
3244	Earthworm-Driven Changes in Soil Chemico-Physical Properties, Soil Bacterial Microbiota, Tree/Tea Litter Decomposition, and Plant Growth in a Mesocosm Experiment with Two Plant Species. Plants, 2023, 12, 1216.	1.6	3
3245	Age-Related Rhizosphere Analysis of Coffea arabica Plants. Current Microbiology, 2023, 80, .	1.0	0
3246	Penoxsulamâ€resistant barnyardgrassâ€mediated rhizosphere microbial communities affect the growth of rice. Pest Management Science, 2023, 79, 2664-2674.	1.7	2
3247	Emerging Pathways for Engineering the Rhizosphere Microbiome for Optimal Plant Health. Journal of Agricultural and Food Chemistry, 2023, 71, 4441-4449.	2.4	19
3248	Biotic stress-induced changes in root exudation confer plant stress tolerance by altering rhizospheric microbial community. Frontiers in Plant Science, 0, 14, .	1.7	9
3249	Similarities and differences in the rhizosphere biota among different ephemeral desert plants in Gurbant \tilde{A}_{14} ngg \tilde{A}_{14} Desert. Environmental Sciences Europe, 2023, 35, .	11.0	4

#	Article	IF	CITATIONS
3250	Rapeseed Domestication Affects the Diversity of Rhizosphere Microbiota. Microorganisms, 2023, 11, 724.	1.6	1
3251	Crop microbiome responses to pathogen colonisation regulate the host plant defence. Plant and Soil, 0, , .	1.8	1
3252	Sugarcane straw returning is an approaching technique for the improvement of rhizosphere soil functionality, microbial community, and yield of different sugarcane cultivars. Frontiers in Microbiology, 0, 14, .	1.5	2
3253	Rhizosphere microbial community assembly and association networks strongly differ based on vegetation type at a local environment scale. Frontiers in Microbiology, 0, 14, .	1.5	5
3255	Impact of phosphorus deficiency on the interaction between the biofertilizer strain Serratia sp. S119 with peanut (Arachis hypogaeae L.) and maize (Zea mays L.) plants. Plant and Soil, 2023, 487, 639-653.	1.8	2
3257	Diseased-induced multifaceted variations in community assembly and functions of plant-associated microbiomes. Frontiers in Microbiology, 0, 14 , .	1.5	3
3258	One hundred importantÂquestions for plant science – reflecting on a decade of plant research. New Phytologist, 2023, 238, 464-469.	3.5	2
3259	New insights into the effects of antibiotics and copper on microbial community diversity and carbon source utilization. Environmental Geochemistry and Health, 2023, 45, 4779-4793.	1.8	2
3260	Effect of Microbial Consortium Vs. Perfected Chemical Fertilizers for Sustainable Crop Growth. Microorganisms for Sustainability, 2023, , 319-337.	0.4	1
3261	Fragmentation disrupts microbial effects on native plant community productivity. Journal of Ecology, 2023, 111, 1292-1307.	1.9	1
3262	A Synthetic Microbial Community of Plant Core Microbiome Can Be a Potential Biocontrol Tool. Journal of Agricultural and Food Chemistry, 2023, 71, 5030-5041.	2.4	9
3263	Bacterial communities in the phyllosphere are distinct from those in root and soil, and sensitive to plant species changes in subtropical tree plantations. FEMS Microbiology Ecology, 2023, 99, .	1.3	2
3264	Potassium fulvic acid alleviates salt stress of citrus by regulating rhizosphere microbial community, osmotic substances and enzyme activities. Frontiers in Plant Science, 0, 14, .	1.7	2
3265	The Hydroponic Rockwool Root Microbiome: Under Control or Underutilised?. Microorganisms, 2023, 11, 835.	1.6	3
3266	Stimulation of PGP Bacteria on the Development of Seeds, Plants and Cuttings of the Obligate Halophyte Arthrocaulon (Arthrocnemum) macrostachyum (Moric.) Piirainen & Emp; G. Kadereit. Plants, 2023, 12, 1436.	1.6	1
3272	<i>Xanthomonas</i> infection and ozone stress distinctly influence the microbial community structure and interactions in the pepper phyllosphere. ISME Communications, 2023, 3, .	1.7	4
3273	Cross-Talk between Iron Deficiency Response and Defense Establishment in Plants. International Journal of Molecular Sciences, 2023, 24, 6236.	1.8	2
3274	Testing the stress gradient hypothesis in soil bacterial communities associated with vegetation belts in the Andean Atacama Desert. Environmental Microbiomes, 2023, 18 , .	2.2	3

#	Article	IF	CITATIONS
3275	Rhizosphere Microbiome: Interactions with Plant and Influence in Triggering Plant Disease Resistance. , 2023, , 329-369.		0
3276	Health Management of Rhizospheric Microbiome. , 2023, , 179-224.		0
3277	The influence of beneficial microorganisms on the quality indicators and antioxidant properties of potatoes. IOP Conference Series: Earth and Environmental Science, 2023, 1154, 012010.	0.2	0
3278	Trends in Harnessing Plant Endophytic Microbiome for Heavy Metal Mitigation in Plants: A Perspective. Plants, 2023, 12, 1515.	1.6	5
3279	Deciphering the rhizosphere bacteriome associated with biological control of tobacco black shank disease. Frontiers in Plant Science, 0, 14 , .	1.7	2
3280	Biological control of Fusarium crown rot of wheat with Chaetomium globosum 12XP1-2-3 and its effects on rhizosphere microorganisms. Frontiers in Microbiology, 0, 14, .	1.5	2
3281	The Bacterial Volatile Organic Compound N,N-Dimethylhexadecylamine Induces Long-Lasting Developmental and Immune Responses throughout The Life Cycle of Arabidopsis thaliana. Plants, 2023, 12, 1540.	1.6	0
3282	The microbiome of cereal plants: The current state of knowledge and the potential for future applications. Environmental Microbiomes, 2023, 18, .	2.2	7
3283	Potential of Medicago sativa and Perilla frutescens for overcoming the soil sickness caused by ginseng cultivation. Frontiers in Microbiology, 0, 14, .	1.5	0
3284	Nutritional and microbiological effects of vermicompost tea in hydroponic cultivation of maple peas (<i>Pisum sativum</i> var. <i>arvense</i> L.). Food Science and Nutrition, 2023, 11, 3184-3202.	1.5	2
3285	Drivers of rhizosphere microbial differences in desert genus <i>Haloxylon</i> . Land Degradation and Development, 0, , .	1.8	0
3286	Plant pathogen resistance is mediated by recruitment of specific rhizosphere fungi. ISME Journal, 2023, 17, 931-942.	4.4	5
3288	Smart breeding driven by advances in sequencing technology. , 2023, 1, 43-56.		4
3289	Variation in Sphingomonas traits across habitats and phylogenetic clades. Frontiers in Microbiology, 0, 14, .	1.5	0
3290	Understanding the sugar beet holobiont for sustainable agriculture. Frontiers in Microbiology, 0, 14 ,	1.5	5
3291	The Genetic Architecture of Adaptation to Leaf and Root Bacterial Microbiota in <i>Arabidopsis thaliana</i> . Molecular Biology and Evolution, 2023, 40, .	3.5	8
3292	Harnessing Root Associated Traits and Rhizosphere Efficiency for Crop Improvement., 2023,, 257-290.		1
3293	Plant–soil feedback regulates the trade-off between phosphorus acquisition pathways in <i>Pinus elliottii</i> i>. Tree Physiology, 2023, 43, 1092-1103.	1.4	O

#	Article	IF	Citations
3294	The effect of wheat genotype on the microbiome is more evident in roots and varies through time. ISME Communications, 2023 , 3 , .	1.7	8
3295	Potential use of Bacillus spp. as an effective biostimulant against abiotic stresses in cropsâ€"A review. Current Research in Biotechnology, 2023, 5, 100128.	1.9	22
3296	Differences in soil physicochemical properties and rhizosphere microbial communities of flue-cured tobacco at different transplantation stages and locations. Frontiers in Microbiology, 0, 14, .	1.5	1
3297	Aromatic Plants and Their Associated Arbuscular Mycorrhizal Fungi Outcompete Tuber melanosporum in Compatibility Assays with Truffle-Oaks. Biology, 2023, 12, 628.	1.3	2
3298	Biochemical process associated with plants and beneficial microbes. , 2023, , 73-85.		0
3300	Relevance of the antioxidative mechanism during plant-microbe interaction. , 2023, , 123-140.		0
3301	Understanding plant-plant growth-promoting rhizobacteria (PGPR) interactions for inducing plant defense., 2023,, 201-226.		2
3302	Chemical talk within plant holobiont: A fascinating conversation. , 2023, , 165-203.		0
3325	Unraveling the role of nanoparticles and rhizosphere microbiome for crop production under stress condition., 2023,, 161-181.		1
3331	Yeast–plant interactions for phytoremediation of contaminated soils. , 2023, , 543-565.		0
3334	Live-Cell Visualization of Early Stages of Root Colonization by the Vascular Wilt Pathogen Fusarium oxysporum. Methods in Molecular Biology, 2023, , 73-82.	0.4	0
3335	Plant Response to Silicon Nanoparticles: Growth Performance and Defense Mechanisms. , 2023, , 191-207.		1
3337	Endophytic bacterial diversity by 16S rRNA gene sequencing of Pak choi roots under fluazinam, Trichoderma harzianum, and Sophora flavescens inoculation. Functional and Integrative Genomics, 2023, 23, .	1.4	2
3340	Recent molecular and omics approaches to study rhizosphere functioning. , 2023, , 1-13.		1
3351	Plants antioxidant potential and its induction by microbial interaction. AIP Conference Proceedings, 2023, , .	0.3	0
3360	Role of metal oxide nanoparticles in the plant/rhizo microbiome. , 2023, , 203-218.		0
3366	Beneficial Microbial Consortia and Their Role in Sustainable Agriculture Under Climate Change Conditions. Rhizosphere Biology, 2023, , 41-73.	0.4	1
3367	An Overview of the Multifaceted Role of Plant Growth-Promoting Microorganisms and Endophytes in Sustainable Agriculture: Developments and Prospects. Rhizosphere Biology, 2023, , 179-208.	0.4	0

#	ARTICLE	IF	CITATIONS
3381	Bacillus Species as Potential Plant Growth Promoting Rhizobacteria for Drought Stress Resilience. Russian Journal of Plant Physiology, 2023, 70, .	0.5	4
3400	BioCities as Promotors of Health and Well-being. Future City, 2023, , 131-165.	0.2	0
3403	Exploiting Bacterial Genera as Biocontrol Agents: Mechanisms, Interactions and Applications in Sustainable Agriculture. Journal of Plant Biology, 2023, 66, 485-498.	0.9	4
3433	Biostimulants signaling under Cd, Al, As, Zn, and Fe toxicity. , 2023, , 449-467.		0
3437	Exploring Endophytes for In Vitro Synthesis of Bioactive Compounds in Medicinal and Aromatic Plants. Food Bioactive Ingredients, 2023, , 99-118.	0.3	0
3438	Nutrition and cultivation strategies of core rhizosphere microorganisms., 2023,, 209-231.		0
3442	Nanomaterial transport and transformation in soil–plant systems: role of rhizosphere chemistry. , 2023, , 355-375.		1
3448	Soil Physical Productivity and Plant Growth. , 2023, , 1-32.		0
3458	Effect of Nano-Formulated Agrochemicals on Rhizospheric Communities in Millets. Rhizosphere Biology, 2023, , 293-330.	0.4	0
3478	Amelioration of biotic stress by using rhizobacteria for sustainable crop produce., 2023,, 19-42.		0
3486	Rhizospheric microbiome: organization and bioinformatics studies., 2023,, 127-141.		0
3488	Plant health: Feedback effect of root exudates and rhizobiome interactions., 2023,, 345-375.		0
3497	Editorial: Rhizosphere interactions: root exudates and the rhizosphere microbiome. Frontiers in Plant Science, 0, 14, .	1.7	1
3498	Impact of Rhizosphere Ecology on Nitrogen Fixation in Millets. Rhizosphere Biology, 2023, , 213-223.	0.4	0
3507	Editorial: Relationships between plant disease and microbiomes. Frontiers in Plant Science, 0, 14, .	1.7	0
3508	Editorial: Drivers of host-microbiome interactions in the rhizosphere. Frontiers in Plant Science, 0, 14, .	1.7	0
3517	Bacterial secondary metabolites: recent advances and agricultural applications. , 2024, , 399-414.		0
3520	Nanomaterials in plant management: functions, mechanisms and prospects. Environmental Science: Nano, 0, , .	2.2	O

#	ARTICLE	IF	CITATIONS
3548	Poplar as a woody model for the phytomanagement of trace element contaminated soils. Advances in Botanical Research, 2024, , 63-103.	0.5	2
3567	Rhizoremediation: A Plant–Microbe-Based Probiotic Science. , 2023, , 287-303.		0
3576	Genetic and Microbial Insights into Drought Stress Alleviation in Tomato (Solanum lycopersicum L.). , 0, , .		0
3626	Plant–Pathogen Interactions and Global Food Security. , 2023, , 11-52.		0
3627	Plant–soil biota interactions. , 2024, , 303-328.		0
3628	Interaction between plants and endophytes: evolutionary significance and its role in plants development., 2024,, 295-312.		0
3631	Diversity of various symbiotic associations between microbes and host plants. , 2024, , 367-394.		0
3634	Amelioration of biotic stress by using rhizobacteria: Sustainable Crop Production. , 2024, , 311-339.		0
3656	Exploring plant microbiome: a holistic approach to sustainable agriculture., 2024,, 61-77.		0
3657	Symbiotic associations between microbes and host plants. , 2024, , 145-179.		0
3659	Phytomicrobiome in modulating plant growth and stress resilience: an insight into the functions and emerging perspectives in agriculture. , 2024, , 31-59.		0
3660	The study from gene to ecosystems for soil microbial diversity in benefit to plant. , 2024, , 261-279.		0
3666	The rhizosphere microbiome: A key modulator of plant health and their role in secondary metabolites production., 2024,, 327-349.		0
3675	Microbiome-mediated remediation of heavy metals. , 2024, , 257-312.		0
3684	Unraveling the Coevolutionary Arms Race: Insights into the Dynamic Interplay of Plants, Insects and Associated Organisms., 2024, , 13-36.		0
3695	The expediency of fungi as biocontrol agents for the enhancement of food security. , 2024, , 1-28.		0
3696	Plant growth-promoting microorganisms from native plants: an untapped resource of biocontrol and biofertilizer agents., 2024,, 29-66.		0
3700	Rural and Urban Development: Pathways to Environmental Conservation and Sustainability. Earth and Environmental Sciences Library, 2024, , 307-333.	0.3	O

#	Article	IF	CITATIONS
3703	Role of Phenolics in Plant–Microbe Interaction: A Review. , 2024, , 1-33.		О
3721	Plant–microbe interactions for enhanced plant tolerance to stress. , 2024, , 1-24.		0
3727	Diversity of Microbes Inside Plants and Their Reaction to Biotic and Abiotic Stress., 2024, , 207-239.		0
3729	Nano-biotechnology and Its Applications in Maintaining Soil Health. Microorganisms for Sustainability, 2024, , 323-342.	0.4	0
3730	Soil Microbiome as a Key Factor in Soil Health. Microorganisms for Sustainability, 2024, , 1-20.	0.4	0
3734	Understanding the changes and roles of rhizosphere microbial communities under plant stress. , 2024, , 389-405.		0