Physical and chemical characteristics of activated carbo chemically treated date stones and its ability to adsorb

Powder Technology 229, 237-245 DOI: 10.1016/j.powtec.2012.06.043

Citation Report

#	Article	IF	CITATIONS
1	Adsorption of cephalexin onto activated carbons from Albizia lebbeck seed pods by microwave-induced KOH and K2CO3 activations. Chemical Engineering Journal, 2012, 211-212, 200-207.	6.6	138
2	Simultaneous removal of Pb(II) and chemical oxygen demand from aqueous solution using immobilized microorganisms on polyurethane foam carrier. Korean Journal of Chemical Engineering, 2013, 30, 1729-1734.	1.2	8
3	Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation. Bioresource Technology, 2013, 148, 542-549.	4.8	194
4	Preparation and characteristics of medicinal activated carbon powders by CO2 activation of peanut shells. Powder Technology, 2013, 247, 188-196.	2.1	67
5	Production and characterization of activated carbon prepared from safflower seed cake biochar and its ability to absorb reactive dyestuff. Applied Surface Science, 2013, 280, 705-710.	3.1	92
6	Equilibrium and thermodynamic study of cobalt adsorption on activated carbon derived from date seeds. Desalination and Water Treatment, 2014, 52, 4830-4836.	1.0	6
7	Adsorption and cosorption of ciprofloxacin and Ni(II) on activated carbon-mechanism study. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 681-688.	2.7	97
8	Vacuum pyrolysis of agricultural wastes and adsorptive criteria description of biochars governed by the presence of oxides. Journal of Analytical and Applied Pyrolysis, 2014, 107, 123-132.	2.6	16
9	Experimental and modeling study on production of activated carbon from pistachio shells in rotary reactor. Research on Chemical Intermediates, 2014, 40, 509-521.	1.3	7
10	Novel comparison of kinetic models for the adsorption-coupled reduction of Cr(VI) using untreated date pit biomaterial. Ecological Engineering, 2014, 70, 200-205.	1.6	19
11	Physicochemical and adsorptive properties of activated carbons from Arundo donax Linn utilizing different iron salts as activating agents. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 3007-3015.	2.7	53
12	Characterization and high pollutant removal ability of buoyant (C, N)–TiO ₂ /PTFE flakes prepared by high-energy ball-milling. RSC Advances, 2014, 4, 40019.	1.7	17
13	Optimization of preparation conditions of activated carbon from the residue of desilicated rice husk using response surface methodology. Korean Journal of Chemical Engineering, 2014, 31, 1810-1817.	1.2	21
14	Production and characterization of activated carbon from sour cherry stones by zinc chloride. Fuel, 2014, 115, 804-811.	3.4	165
15	Utilization of activated carbon produced from fruit juice industry solid waste for the adsorption of Yellow 18 from aqueous solutions. Bioresource Technology, 2014, 168, 259-266.	4.8	107
16	Production of activated carbon and fungicidal oil from peach stone by two-stage process. Journal of Analytical and Applied Pyrolysis, 2014, 108, 47-55.	2.6	69
17	Adsorptive removal of p-nitrophenol on microporous activated carbon by FeCl ₃ activation: equilibrium and kinetics studies. Desalination and Water Treatment, 2015, 55, 522-531.	1.0	36
18	Removal of BrO3 â^' from drinking water samples using newly developed agricultural waste-based activated carbon and its determination by ultra-performance liquid chromatography-mass spectrometry. Environmental Science and Pollution Research, 2015, 22, 15853-15865.	2.7	48

#	Article	IF	CITATIONS
19	Removal of crystal violet and methylene blue from aqueous solutions by activated carbon prepared from Ferula orientalis. International Journal of Environmental Science and Technology, 2015, 12, 2273-2284.	1.8	51
20	Comparison of Surface and Structural Properties of Carbonaceous Materials Prepared by Chemical Activation of Tomato Paste Waste: The Effects of Activator Type and Impregnation Ratio. Hindawi Journal of Chemistry, 2016, 2016, 1-10.	1.6	12
21	Adsorption technology for the storage of natural gas and biomethane from biogas. International Journal of Energy Research, 2016, 40, 1890-1900.	2.2	11
22	KOH-activated carbon developed from biomass waste: adsorption equilibrium, kinetic and thermodynamic studies for Methylene blue uptake. Desalination and Water Treatment, 2016, 57, 27226-27236.	1.0	64
23	Preparation of activated carbons from date (Phoenix dactylifera L.) palm stones and application for wastewater treatments: Review. Chemical Engineering Research and Design, 2016, 102, 168-182.	2.7	107
24	The role and mechanism of K2CO3 and Fe3O4 in the preparation of magnetic peanut shell based activated carbon. Powder Technology, 2016, 295, 152-160.	2.1	33
25	Potential of Arundo donax L. stems as renewable precursors for activated carbons and utilization for wastewater treatments: Review. Journal of the Taiwan Institute of Chemical Engineers, 2016, 63, 336-343.	2.7	29
26	Removal of metformin hydrochloride by Alternanthera philoxeroides biomass derived porous carbon materials treated with hydrogen peroxide. RSC Advances, 2016, 6, 79275-79284.	1.7	30
27	Synthesis of a mesoporous carbon from peach stones for adsorption of basic dyes from wastewater: kinetics, modeling, and thermodynamic studies. Clean Technologies and Environmental Policy, 2016, 18, 1085-1096.	2.1	10
28	Application of agricultural based activated carbons by microwave and conventional activations for basic dye adsorption: Review. Journal of Environmental Chemical Engineering, 2016, 4, 89-99.	3.3	181
29	Production and characterization of activated carbons from pumpkin seed shell by chemical activation with ZnCl ₂ . Desalination and Water Treatment, 2016, 57, 2446-2454.	1.0	32
30	Adsorption of non-steroidal anti-inflammatory drugs from aqueous solution using activated carbons: Review. Journal of Environmental Management, 2017, 190, 274-282.	3.8	186
31	Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons: Review. Environmental Toxicology and Pharmacology, 2017, 50, 1-10.	2.0	210
32	Application of raw and activated Phragmites australis as potential adsorbents for wastewater treatments. Ecological Engineering, 2017, 102, 262-269.	1.6	16
33	Enhancement of p-nitrophenol adsorption capacity through N2-thermal-based treatment of activated carbons. Applied Surface Science, 2017, 414, 424-434.	3.1	62
34	Experimental design technique on removal of hydrogen sulfide using CaO-eggshells dispersed onto palm kernel shell activated carbon: Experiment, optimization, equilibrium and kinetic studies. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 305-320.	0.4	52
35	Adsorption of ciprofloxacin and norfloxacin from aqueous solution onto granular activated carbon in fixed bed column. Ecotoxicology and Environmental Safety, 2017, 138, 139-145.	2.9	106
36	Optimizing the Preparation of Meso- and Microporous Canola Stalk-Derived Hydrothermal Carbon via Response Surface Methodology for Methylene Blue Removal. Energy & Fuels, 2017, 31, 12327-12338.	2.5	32

#	Article	IF	CITATIONS
37	Activated carbon from tomato stem by chemical activation with FeCl2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 842-849.	2.3	77
38	Influence of Pyrolysis Conditions on Surface Characteristics and Methylene Blue Adsorption of Biochar Derived from Date Seed Biomass. Waste and Biomass Valorization, 2017, 8, 2061-2073.	1.8	68
39	Performance Study of a Low ost Adsorbent—Raw Date Pits—for Removal of Azo Dye in Aqueous Solution. Water Environment Research, 2017, 89, 827-839.	1.3	15
40	Novel and sustainable precursor for high-quality activated carbon preparation by conventional pyrolysis: Optimization of produce conditions and feasibility in adsorption studies. Advanced Powder Technology, 2018, 29, 726-736.	2.0	17
41	Exploring the effect of ultramicropore distribution on gravimetric capacitance of nanoporous carbons. Electrochimica Acta, 2018, 275, 236-247.	2.6	30
42	A kinetics, isotherms, and thermodynamic study of diclofenac adsorption using activated carbon prepared from olive stones. Journal of Dispersion Science and Technology, 2018, 39, 814-825.	1.3	23
43	Adsorption of antipyrine by activated carbons from FeCl3-activation of Tara gum. Chemical Engineering Journal, 2018, 333, 58-65.	6.6	92
44	Modelling on Predicting Pressure Distribution and Capacity of Foil Thrust Bearing. , 2018, , .		1
45	Fabrication of cotton textile waste-based magnetic activated carbon using FeCl ₃ activation by the Box–Behnken design: optimization and characteristics. RSC Advances, 2018, 8, 38081-38090.	1.7	38
46	Removal of lead(II) from aqueous solution using date seed-derived biochar: batch and column studies. Applied Water Science, 2018, 8, 1.	2.8	64
47	Facile preparation of floatable high surface area activated carbon monolith from waste printing paper and coal tar pitch. Cellulose, 2018, 25, 3571-3581.	2.4	4
48	Insights into the pyrolysis behavior and adsorption properties of activated carbon from waste cotton textiles by FeCl3-activation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 582, 123934.	2.3	48
49	Removal of phenol and phosphate from aqueous solutions using activated carbons prepared from oily sludge through physical and chemical activation. Water Science and Technology, 2019, 80, 575-586.	1.2	19
50	Regeneration of wastewater contaminated by cationic dye by nanoporous activated carbon produced from agriculture waste shells. Environmental Science and Pollution Research, 2019, 26, 7718-7729.	2.7	23
51	Lanthanum ion–impregnated granular activated carbon for the removal of phenol from aqueous solution: Equilibrium and kinetic study. International Journal of Chemical Kinetics, 2019, 51, 215-231.	1.0	4
52	Date pits activated carbon for divalent lead ions removal. Journal of Bioscience and Bioengineering, 2019, 128, 88-97.	1.1	101
53	H3PO4-activated carbons produced from açai stones and Brazil nut shells: removal of basic blue 26 dye from aqueous solutions by adsorption. Environmental Science and Pollution Research, 2019, 26, 28533-28547.	2.7	25
54	Characterization the level of a new low-cost adsorbent material prepared from date palm kernel pits via DP-LIBS and ICP-OES spectroscopic techniques. Environmental Science and Pollution Research, 2019, 26, 20753-20768.	2.7	7

#	Article	IF	CITATIONS
55	Clean and new strategy for catalytic conversion of agriculture waste shells to activated carbon via microwave-assisted impregnation: Applied and eco-friendly aspect for decoloration of industrial corn syrup and process identifications. Journal of Environmental Chemical Engineering, 2019, 7, 103161.	3.3	13
56	Sustainable Agriculture Reviews 34. Sustainable Agriculture Reviews, 2019, , .	0.6	5
57	Date Palm Based Activated Carbon for the Efficient Removal of Organic Dyes from Aqueous Environment. Sustainable Agriculture Reviews, 2019, , 247-263.	0.6	12
58	Microwave-assisted for clean and rapid fabrication of highly efficient magnetically separable activated carbon from agriculture shells for low grade industrial corn syrup decoloration: A novel strategy for impregnation of ternary catalytic composite. Food and Bioproducts Processing, 2019, 116, 78-88.	1.8	8
59	An ultrasound-assisted approach to bio-derived nanoporous carbons: disclosing a linear relationship between effective micropores and capacitance. RSC Advances, 2019, 9, 31447-31459.	1.7	18
60	Microporous activated carbon electrode derived from date stone without use of binder for capacitive deionization application. Materials Research Bulletin, 2019, 111, 222-229.	2.7	34
61	Understanding reactions and pore-forming mechanisms between waste cotton woven and FeCl3 during the synthesis of magnetic activated carbon. Chemosphere, 2020, 241, 125120.	4.2	84
62	Characterization of agriculture wastes based activated carbon for removal of hydrogen sulfide from petroleum refinery waste water. Materials Today: Proceedings, 2020, 20, 588-594.	0.9	16
63	Methods for preparation and activation of activated carbon: a review. Environmental Chemistry Letters, 2020, 18, 393-415.	8.3	592
64	Incense stick ash as a novel and sustainable adsorbent for sequestration of Victoria Blue from aqueous phase. Sustainable Chemistry and Pharmacy, 2020, 15, 100199.	1.6	23
65	Fabrication of magnetic activated carbon by carbothermal functionalization of agriculture waste via microwave-assisted technique for cationic dye adsorption. Advanced Powder Technology, 2020, 31, 4301-4309.	2.0	42
66	A Novel Coated of Mg/Fe Layered Double Hydroxide on Date Palm Stones. IOP Conference Series: Earth and Environmental Science, 2020, 464, 012003.	0.2	2
67	Activated carbon preparation from bagasse and banana stem at various impregnation ratio. Journal of Physics: Conference Series, 2020, 1542, 012068.	0.3	6
68	Carbon@CoFe2O4@Ag and hollow CoFe2O4@Ag nanocomposite: green synthesis of a photocatalyst and magnetic adsorbent for antibiotic removal from aqueous solutions. Journal of Materials Science: Materials in Electronics, 2020, 31, 19025-19035.	1.1	7
69	Carbonized Lanthanum-Based Metal-Organic Framework with Parallel Arranged Channels for Azo-Dye Adsorption. Nanomaterials, 2020, 10, 1053.	1.9	7
70	Sustainable activated carbon obtained as a by-product of the sugar and alcohol industry for removal of amoxicillin from aqueous solution. Energy, Ecology and Environment, 2020, 5, 433-443.	1.9	9
71	Catalytic Effect of Activated Carbon in Determining Resorcinol in Water and Hair Color at Graphite Electrode. Waste and Biomass Valorization, 2021, 12, 1107-1118.	1.8	4
72	Analysis of solid sorbents for control and removal processes for elemental mercury from gas streams: a review. International Journal of Coal Science and Technology, 2021, 8, 23-46.	2.7	10

#	Article	IF	CITATIONS
73	Structural and electronic properties of 2D-activated carbon sheet. Carbon Letters, 2021, 31, 483-488.	3.3	2
74	Adsorção do corante básico Verde Malaquita via carvão ativado a partir do caroço de açaÃ . Research, Society and Development, 2021, 10, e49110212871.	0.0	Ο
75	A Promising Solution for Food Waste: Preparing Activated Carbons for Phenol Removal from Water Streams. ACS Omega, 2021, 6, 8870-8883.	1.6	22
76	Adsorption Isotherms, Thermodynamics, and Kinetic Modeling of Methylene Blue onto Novel Carbonaceous Adsorbent Derived from Bitter Orange Peels. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	21
77	Activated carbon and biochar from pineapple waste biomass for the removal of methylene blue. Environmental and Toxicology Management, 2021, 1, 30-36.	0.3	16
78	Effects of Carbonization on the Co-Activation of Sludge and Biomass to Produce Activated Coke. Journal of Energy Resources Technology, Transactions of the ASME, 2021, 143, .	1.4	5
79	The removal of anionic and cationic dyes from an aqueous solution using biomass-based activated carbon. Scientific Reports, 2021, 11, 8623.	1.6	170
80	Synthesis and Application of Granular Activated Carbon from Biomass Waste Materials for Water Treatment: A Review. Journal of Bioresources and Bioproducts, 2021, 6, 292-322.	11.8	365
81	Effects of Activation Conditions on the Properties of Sludge-Based Activated Coke. ACS Omega, 2021, 6, 22020-22032.	1.6	6
82	Rice straw-derived highly mesoporous carbon-zinc oxide nanocomposites as high performance photocatalytic adsorbents for toxic dyes. Journal of Cleaner Production, 2021, 318, 128583.	4.6	27
83	Microporous carbon with highly dispersed nano-lanthanum oxide (La2O3) for enhanced adsorption of methylene blue. Separation and Purification Technology, 2021, 279, 119626.	3.9	18
84	Potentials and challenges of date pits as alternative environmental clean-up ingredients. Biomass Conversion and Biorefinery, 2023, 13, 1429-1456.	2.9	6
85	Kinetics and Isotherms Studies of methylene blue Basic Dye from Aqueous Solution onto Selenicereus grandiflorus Activated Carbon. Asian Journal of Materials Chemistry, 2019, 4, 1-6.	0.2	1
86	Preparation and Characterisation of Activated Carbon From Pumpkin Seed Shell Using H3PO4. Anadolu University Journal of Sciences & Technology, 2016, 17, .	0.2	21
87	An investigation on the pore characteristics of dates stone based microwave activated carbon nanostructures. Diamond and Related Materials, 2021, 120, 108662.	1.8	7
88	Synthesis of Activated Carbons for Heavy Metals Removal. Environmental Chemistry for A Sustainable World, 2021, , 1-31.	0.3	1
89	A review of the synthesis of activated carbon for biodiesel production: Precursor, preparation, and modification. Energy Conversion and Management: X, 2022, 13, 100152.	0.9	22
90	Adsorption of carbon monoxide on novel and Merck activated carbon treated by dielectric barrier discharge. International Journal of Environmental Science and Technology, 0, , .	1.8	1

#	Article	IF	CITATIONS
91	SINTESIS DAN KARAKTERISASI KARBON AKTIF DARI PREKURSOR BATUBARA. Indonesian Physical Review, 2022, 5, 15-22.	0.1	0
92	Response surface modeling and optimization of hexavalent chromium adsorption onto eucalyptus tree bark-derived pristine and chemically-modified biochar. Chemical Engineering Research and Design, 2022, 182, 592-603.	2.7	18
93	Efficient removal of antibiotics from water resources is a public health priority: a critical assessment of the efficacy of some remediation strategies for antibiotics in water. Environmental Science and Pollution Research, 2022, 29, 56948-57020.	2.7	5
94	A Comprehensive Study on Air-Cathode Limitations and Its Mitigation Strategies in Microbial Desalination Cell—A Review. Energies, 2022, 15, 7459.	1.6	1
95	Biosorption of zinc (II) from synthetic wastewater by using Inula Viscosa leaves as a low-cost biosorbent: Experimental and molecular modeling studies. Journal of Environmental Management, 2023, 326, 116742.	3.8	21
96	Sodium borohydride hydrolysis over mesoporous spherical carbon obtained from jasmine flower extract. International Journal of Hydrogen Energy, 2022, , .	3.8	0
97	Processing and characterization of magnetic composites of activated carbon, fly ash, and beach sand as adsorbents for Cr(VI) removal. Case Studies in Chemical and Environmental Engineering, 2023, 7, 100333.	2.9	6
110	Transforming waste resources into efficient activated carbon for energy storage and environmental remediation: a comprehensive review. International Journal of Environmental Science and Technology, 2024, 21, 6167-6206.	1.8	0