Characterization of organic, metal and trace element PM freeway-based emission rates in Los Angeles, CA

Science of the Total Environment 435-436, 159-166

DOI: 10.1016/j.scitotenv.2012.06.106

Citation Report

#	Article	IF	CITATIONS
1	Chemical composition of size-resolved particulate matter at near-freeway and urban background sites in the greater Beirut area. Atmospheric Environment, 2013, 80, 96-106.	4.1	34
2	Seasonal and spatial variation of trace elements and metals in quasi-ultrafine (PM0.25) particles in the Los Angeles metropolitan area and characterization of their sources. Environmental Pollution, 2013, 181, 14-23.	7.5	62
3	Source apportionment and organic compound characterization of ambient ultrafine particulate matter (PM) in the Los Angeles Basin. Atmospheric Environment, 2013, 79, 529-539.	4.1	63
4	Seasonal and spatial variation in dithiothreitol (DTT) activity of quasi-ultrafine particles in the Los Angeles Basin and its association with chemical species. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2014, 49, 441-451.	1.7	85
5	Elemental Characterization of PM _{2.5} and PM ₁₀ Emitted from Light Duty Vehicles in the Washburn Tunnel of Houston, Texas: Release of Rhodium, Palladium, And Platinum. Environmental Science & Technology, 2014, 48, 54-62.	10.0	83
6	Source identification and potential ecological risk assessment of heavy metals in PM2.5 from Changsha. Science of the Total Environment, 2014, 493, 109-115.	8.0	117
7	Chemical characterization and source apportionment of indoor and outdoor fine particulate matter (PM2.5) in retirement communities of the Los Angeles Basin. Science of the Total Environment, 2014, 490, 528-537.	8.0	62
8	Influence of the Automotive Brake Wear Debris on the Environment - A Review of Recent Research. SAE International Journal of Materials and Manufacturing, 0, 9, 133-146.	0.3	22
9	Particulate matter, gaseous and particulate polycyclic aromatic hydrocarbons (PAHs) in an urban traffic tunnel of China: Emission from on-road vehicles and gas-particle partitioning. Chemosphere, 2015, 134, 52-59.	8.2	115
10	Characteristics of hopanoid hydrocarbons in ambient PM10 and motor vehicle emissions and coal ash in Taiyuan, China. Environmental Geochemistry and Health, 2015, 37, 813-829.	3.4	9
11	Impact of primary and secondary organic sources on the oxidative potential of quasi-ultrafine particles (PM0.25) at three contrasting locations in the Los Angeles Basin. Atmospheric Environment, 2015, 120, 286-296.	4.1	54
12	Real-world automotive particulate matter and PAH emission factors and profile concentrations: Results from an urban tunnel experiment in Naples, Italy. Atmospheric Environment, 2016, 141, 379-387.	4.1	35
13	Multifractal property and long-range cross-correlation behavior of particulate matters at urban traffic intersection in Shanghai. Stochastic Environmental Research and Risk Assessment, 2016, 30, 1515-1525.	4.0	22
14	Chemical composition of PM 2.5 from two tunnels with different vehicular fleet characteristics. Science of the Total Environment, 2016, 550, 123-132.	8.0	76
15	Atmospheric removal of PM 2.5 by man-made Three Northern Regions Shelter Forest in Northern China estimated using satellite retrieved PM 2.5 concentration. Science of the Total Environment, 2017, 593-594, 713-721.	8.0	40
16	Elements and inorganic ions as source tracers in recent Greenland snow. Atmospheric Environment, 2017, 164, 205-215.	4.1	25
17	Spatio-temporal variations in PM leaf deposition: A meta-analysis. Environmental Pollution, 2017, 231, 207-218.	7.5	98
18	Chemical characterization and toxicity assessment of fine particulate matters emitted from the combustion of petrol and diesel fuels. Science of the Total Environment, 2017, 605-606, 172-179.	8.0	73

#	Article	IF	CITATIONS
19	Chemical composition and redox activity of PM0.25 near Los Angeles International Airport and comparisons to an urban traffic site. Science of the Total Environment, 2018, 610-611, 1336-1346.	8.0	26
20	Impact of particulate matter (PM) emissions from ships, locomotives, and freeways in the communities near the ports of Los Angeles (POLA) and Long Beach (POLB) on the air quality in the Los Angeles county. Atmospheric Environment, 2018, 195, 159-169.	4.1	26
21	Occurrence and bioaccumulation of chemical contaminants in lettuce grown in peri-urban horticulture. Science of the Total Environment, 2018, 637-638, 1166-1174.	8.0	35
22	Source-specific lung cancer risk assessment of ambient PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in central Tehran. Environment International, 2018, 120, 321-332.	10.0	128
23	Characteristics and Sources of Heavy Metals in PM2.5 during a Typical Haze Episode in Rural and Urban Areas in Taiyuan, China. Atmosphere, 2018, 9, 2.	2.3	40
24	Sources and Health Risks of Heavy Metals in PM2.5 in a Campus in a Typical Suburb Area of Taiyuan, North China. Atmosphere, 2018, 9, 46.	2.3	27
25	Using the modified i-Tree Eco model to quantify air pollution removal by urban vegetation. Science of the Total Environment, 2019, 688, 673-683.	8.0	59
26	Exposure to inhalable aerosols and their chemical characteristics from different potential factors in urban office environments. Environmental Science and Pollution Research, 2019, 26, 21750-21759.	5.3	4
27	Trace element characterization of fine particulate matter and assessment of associated health risk in mining area, transportation routes and institutional area of Dhanbad, India. Environmental Geochemistry and Health, 2019, 41, 2731-2747.	3.4	23
28	Effects of urban green space morphological pattern on variation of PM2.5 concentration in the neighborhoods of five Chinese megacities. Building and Environment, 2019, 158, 1-15.	6.9	59
29	Identification and quantification of particulate tracers of exhaust and non-exhaust vehicle emissions. Atmospheric Chemistry and Physics, 2019, 19, 5187-5207.	4.9	93
30	Estimating contributions of vehicular emissions to PM2.5 in a roadside environment: A multiple approach study. Science of the Total Environment, 2019, 672, 776-788.	8.0	27
31	Characteristics and Source Apportionment of Metallic Elements in PM2.5 at Urban and Suburban Sites in Beijing: Implication of Emission Reduction. Atmosphere, 2019, 10, 105.	2.3	10
32	Inhalation bioaccessibility of PAHs in PM2.5: Implications for risk assessment and toxicity prediction. Science of the Total Environment, 2019, 650, 56-64.	8.0	58
33	Spatiotemporal patterns of recent PM2.5 concentrations over typical urban agglomerations in China. Science of the Total Environment, 2019, 655, 13-26.	8.0	112
34	Impact of emissions from the Ports of Los Angeles and Long Beach on the oxidative potential of ambient PM0.25 measured across the Los Angeles County. Science of the Total Environment, 2019, 651, 638-647.	8.0	24
35	Pollution Assessment Based on Element Concentration of Tree Leaves and Topsoil in Ayutthaya Province, Thailand. International Journal of Environmental Research and Public Health, 2020, 17, 5165.	2.6	7
36	Estimating light-duty vehicles' contributions to ambient PM2.5 and PM10 at a near-highway urban elementary school via elemental characterization emphasizing rhodium, palladium, and platinum. Science of the Total Environment, 2020, 747, 141268	8.0	20

CITATION REPORT

~			<u> </u>	
	ΙΤΔΤΙ	ON	ISEDU	IDT
\sim			NLFU	

#	Article	IF	CITATIONS
37	Effect of Emerging Contaminants on Crops and Mechanism of Toxicity. Sustainable Agriculture Reviews, 2020, , 217-241.	1.1	4
38	PM2.5-Bound Polycyclic Aromatic Hydrocarbons: Sources and Health Risk during Non-Heating and Heating Periods (Tangshan, China). International Journal of Environmental Research and Public Health, 2020, 17, 483.	2.6	37
39	Temporal variation characteristics and source apportionment of metal elements in PM2.5 in urban Beijing during 2018–2019. Environmental Pollution, 2021, 268, 115856.	7.5	52
40	Data Mining for Source Apportionment of Trace Elements in Water and Solid Matrix. , 0, , .		2
41	Inhalation bioaccessibility, health risk assessment, and source appointment of ambient PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Caofeidian, China. Environmental Science and Pollution Research, 2021, 28, 47574-47587.	5.3	15
42	Health risk assessment and countermeasure analysis of the elderly population exposed to PM2.5 microenvironment. Work, 2021, , 1-11.	1.1	0
43	Assessment of air quality in car cabin in and around Paris from on-board measurements and comparison with 2007 data. Journal of Aerosol Science, 2021, 158, 105822.	3.8	11
44	Polycyclic Aromatic Hydrocarbons in the Particles Emitted from the Diesel and Gasoline Engines. Polish Journal of Environmental Studies, 2017, 26, 801-807.	1.2	8
45	A statistic comparison of multi-element analysis of low atmospheric fine particles (PM2.5) using different spectroscopy techniques. Journal of Environmental Sciences, 2022, 114, 194-203.	6.1	4
46	Usefulness of Tree Species as Urban Health Indicators. Plants, 2021, 10, 2797.	3.5	6
47	Bibliometric analysis of global research on polycyclic aromatic hydrocarbons and health risk between 2002 and 2021. Environmental Science and Pollution Research, 2022, 29, 84034-84048.	5.3	2
48	Aerosol Oxidative Potential in the Greater Los Angeles Area: Source Apportionment and Associations with Socioeconomic Position. Environmental Science & amp; Technology, 2022, 56, 17795-17804.	10.0	11
49	Source–specific probabilistic risk evaluation of potentially toxic metal(loid)s in fine dust of college campuses based on positive matrix factorization and Monte Carlo simulation. Journal of Environmental Management, 2023, 347, 119056.	7.8	1