Prediction of understory vegetation cover with airborn pine forest

Remote Sensing of Environment 124, 730-741 DOI: 10.1016/j.rse.2012.06.024

Citation Report

#	Article	IF	CITATIONS
1	Uptake and barriers to the use of geospatial technologies in forest management. New Zealand Journal of Forestry Science, 2013, 43, 16.	0.8	11
2	Single strata canopy cover estimation using airborne laser scanning data. , 2013, , .		0
3	Forest Measurements and Forestry-Related Data. , 2013, , 191-220.		0
4	LiDAR Remote Sensing of Forest Structure and GPS Telemetry Data Provide Insights on Winter Habitat Selection of European Roe Deer. Forests, 2014, 5, 1374-1390.	2.1	53
5	Quantifying Ladder Fuels: A New Approach Using LiDAR. Forests, 2014, 5, 1432-1453.	2.1	38
6	Quantifying understorey vegetation in the US Lake States: a proposed framework to inform regional forest carbon stocks. Forestry, 2014, 87, 629-638.	2.3	10
7	Improving broad scale forage mapping and habitat selection analyses with airborne laser scanning: the case of moose. Ecosphere, 2014, 5, art144.	2.2	20
8	Modelling bird richness and bird species presence in a boreal forest reserve using airborne laser-scanning and aerial images. Bird Study, 2014, 61, 204-219.	1.0	17
9	Living and dying in a multiâ€predator landscape of fear: roe deer are squeezed by contrasting pattern of predation risk imposed by lynx and humans. Oikos, 2014, 123, 641-651.	2.7	154
10	Fine-spatial scale predictions of understory species using climate- and LiDAR-derived terrain and canopy metrics. Journal of Applied Remote Sensing, 2014, 8, 083572.	1.3	23
11	Estimating individual tree mid- and understory rank-size distributions from airborne laser scanning in semi-arid forests. Forest Ecology and Management, 2014, 330, 271-282.	3.2	8
12	Augmenting Site Index Estimation with Airborne Laser Scanning Data. Forest Science, 2015, 61, 861-873.	1.0	22
13	Towards Automated Characterization of Canopy Layering in Mixed Temperate Forests Using Airborne Laser Scanning. Forests, 2015, 6, 4146-4167.	2.1	17
14	Assessing Metrics for Estimating Fire Induced Change in the Forest Understorey Structure Using Terrestrial Laser Scanning. Remote Sensing, 2015, 7, 8180-8201.	4.0	20
15	A Review of LIDAR Radiometric Processing: From Ad Hoc Intensity Correction to Rigorous Radiometric Calibration. Sensors, 2015, 15, 28099-28128.	3.8	241
16	LiDAR: An important tool for next-generation phenotyping technology of high potential for plant phenomics?. Computers and Electronics in Agriculture, 2015, 119, 61-73.	7.7	145
17	Detecting understory plant invasion in urban forests using LiDAR. International Journal of Applied Earth Observation and Geoinformation, 2015, 38, 267-279.	2.8	41
18	Individual snag detection using neighborhood attribute filtered airborne lidar data. Remote Sensing of Environment, 2015, 163, 165-179.	11.0	55

#	Article	IF	CITATIONS
19	Canopy Density Model: A New ALS-Derived Product to Generate Multilayer Crown Cover Maps. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 6776-6790.	6.3	14
20	Forest canopy-structure characterization: A data-driven approach. Forest Ecology and Management, 2015, 358, 48-61.	3.2	42
21	Estimating Ladder Fuels: A New Approach Combining Field Photography with LiDAR. Remote Sensing, 2016, 8, 766.	4.0	27
22	Invasive Shrub Mapping in an Urban Environment from Hyperspectral and LiDAR-Derived Attributes. Frontiers in Plant Science, 2016, 07, 1528.	3.6	30
23	Using high-resolution LiDAR data to quantify the three-dimensional structure of vegetation in urban green space. Urban Ecosystems, 2016, 19, 1749-1765.	2.4	29
24	Deriving comprehensive forest structure information from mobile laser scanning observations using automated point cloud classification. Environmental Modelling and Software, 2016, 82, 142-151.	4.5	35
25	The potential for LiDAR technology to map fire fuel hazard over large areas of Australian forest. Journal of Environmental Management, 2016, 181, 663-673.	7.8	51
26	Estimation of regeneration coverage in a temperate forest by 3D segmentation using airborne laser scanning data. International Journal of Applied Earth Observation and Geoinformation, 2016, 52, 252-262.	2.8	26
27	Airborne laser scanning for modelling understory shrub abundance and productivity. Forest Ecology and Management, 2016, 377, 46-54.	3.2	17
28	Characterizing the Response of Piñon-Juniper Woodlands to Mechanical Restoration Using High-Resolution Satellite Imagery. Rangeland Ecology and Management, 2016, 69, 215-223.	2.3	7
29	Analysis of a lidar voxel-derived vertical profile at the plot and individual tree scales for the estimation of forest canopy layer characteristics. International Journal of Remote Sensing, 2016, 37, 2653-2681.	2.9	12
30	Unsupervised classification of airborne laser scanning data to locate potential wildlife habitats for forest management planning. Forestry, 2016, 89, 350-363.	2.3	13
31	Comparing Generalized Linear Models and random forest to model vascular plant species richness using LiDAR data in a natural forest in central Chile. Remote Sensing of Environment, 2016, 173, 200-210.	11.0	122
32	Estimating over- and understorey canopy density of temperate mixed stands by airborne LiDAR data. Forestry, 2016, 89, 69-81.	2.3	52
33	Assessing 3D point clouds from aerial photographs for species-specific forest inventories. Scandinavian Journal of Forest Research, 2017, 32, 68-79.	1.4	65
34	Detection of diversity and stand parameters in Mediterranean forests using leaf-off discrete return LiDAR data. Remote Sensing of Environment, 2017, 192, 126-138.	11.0	17
35	Multi-temporal LiDAR and Landsat quantification of fire-induced changes to forest structure. Remote Sensing of Environment, 2017, 191, 419-432.	11.0	82
36	Estimating Stem Diameter Distributions in a Management Context for a Tolerant Hardwood Forest Using ALS Height and Intensity Data. Canadian Journal of Remote Sensing, 2017, 43, 79-94.	2.4	22

#	Article	IF	CITATIONS
37	Measurement of fine-spatial-resolution 3D vegetation structure with airborne waveform lidar: Calibration and validation with voxelised terrestrial lidar. Remote Sensing of Environment, 2017, 188, 37-50.	11.0	82
38	Enhancing of accuracy assessment for forest above-ground biomass estimates obtained from remote sensing via hypothesis testing and overfitting evaluation. Ecological Modelling, 2017, 366, 15-26.	2.5	38
39	Mapping the height and spatial cover of features beneath the forest canopy at small-scales using airborne scanning discrete return Lidar. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 133, 186-200.	11.1	19
40	Monitoring vegetation cover in Chongqing between 2001 and 2010 using remote sensing data. Environmental Monitoring and Assessment, 2017, 189, 493.	2.7	24
41	Vertical stratification of forest canopy for segmentation of understory trees within small-footprint airborne LiDAR point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130, 385-392.	11.1	76
42	Multi-model estimation of understorey shrub, herb and moss cover in temperate forest stands by laser scanner data. Forestry, 2017, , .	2.3	3
43	Combining Airborne Laser Scanning and Aerial Imagery Enhances Echo Classification for Invasive Conifer Detection. Remote Sensing, 2017, 9, 156.	4.0	14
44	Look Down to See What's Up: A Systematic Overview of Treefall Dynamics in Forests. Forests, 2017, 8, 123.	2.1	12
45	Estimating aboveground live understory vegetation carbon in the United States. Environmental Research Letters, 2017, 12, 125010.	5.2	17
46	Classifying airborne LiDAR point clouds via deep features learned by a multi-scale convolutional neural network. International Journal of Geographical Information Science, 2018, 32, 960-979.	4.8	99
47	Shrub detection using disparate airborne laser scanning acquisitions over varied forest cover types. International Journal of Remote Sensing, 2018, 39, 1220-1242.	2.9	6
48	Forest Background. , 2018, , 78-103.		4
49	Characterizing understory vegetation in Mediterranean forests using full-waveform airborne laser scanning data. Remote Sensing of Environment, 2018, 217, 400-413.	11.0	41
50	Estimating forest canopy cover dynamics in Valles Caldera National Preserve, New Mexico, using LiDAR and Landsat data. Applied Geography, 2018, 99, 120-132.	3.7	6
51	Spatial patterns of tree and shrub biomass in a deciduous forest using leaf-off and leaf-on lidar. Canadian Journal of Forest Research, 2018, 48, 1020-1033.	1.7	15
52	Quantifying understory vegetation density using small-footprint airborne lidar. Remote Sensing of Environment, 2018, 215, 330-342.	11.0	80
53	Local-scale Habitat Components Driving Bird Abundance in Eastern Deciduous Forests. American Midland Naturalist, 2018, 180, 52.	0.4	9
54	Estimation of Total Biomass in Aleppo Pine Forest Stands Applying Parametric and Nonparametric Methods to Low-Density Airborne Laser Scanning Data. Forests, 2018, 9, 158.	2.1	28

#	Article	IF	CITATIONS
55	Evaluating observed versus predicted forest biomass: R-squared, index of agreement or maximal information coefficient?. European Journal of Remote Sensing, 2019, 52, 345-358.	3.5	19
56	Testing the Ability of Airborne LiDAR to Measure Forage Resources for Wild Ungulates in Conifer Forests. Journal of Forestry, 2019, 117, 492-503.	1.0	7
57	Tree Height Estimation of Forest Plantation in Mountainous Terrain from Bare-Earth Points Using a DoG-Coupled Radial Basis Function Neural Network. Remote Sensing, 2019, 11, 1271.	4.0	22
58	A Single-Tree Processing Framework Using Terrestrial Laser Scanning Data for Detecting Forest Regeneration. Remote Sensing, 2019, 11, 60.	4.0	5
59	Using generalized additive models for interpolating microclimate in dry-site ponderosa pine forests. Agricultural and Forest Meteorology, 2019, 279, 107668.	4.8	5
60	A Technique for Implementing Group Selection Treatments with Multiple Objectives Using an Airborne Lidar-Derived Stem Map in a Heuristic Environment. Forest Science, 2019, 65, 211-222.	1.0	12
61	Airborne LiDAR Point Cloud Filtering by a Multilevel Adaptive Filter Based on Morphological Reconstruction and Thin Plate Spline Interpolation. Electronics (Switzerland), 2019, 8, 1153.	3.1	16
62	Modelling vegetation understory cover using LiDAR metrics. PLoS ONE, 2019, 14, e0220096.	2.5	24
63	Detection of coarse woody debris using airborne light detection and ranging (LiDAR). Forest Ecology and Management, 2019, 433, 678-689.	3.2	23
64	A comparison of machine and deep-learning algorithms applied to multisource data for a subtropical forest area classification. International Journal of Remote Sensing, 2020, 41, 1943-1969.	2.9	15
65	Canopy biochemical characteristics. , 2020, , 349-403.		0
66	Estimation of the Restored Forest Spatial Structure in Semi-Arid Mine Dumps Using Worldview-2 Imagery. Forests, 2020, 11, 695.	2.1	2
67	The Best of Both Worlds? Integrating Sentinel-2 Images and airborne LiDAR to Characterize Forest Regeneration. Remote Sensing, 2020, 12, 2440.	4.0	4
68	Compatibility of Aerial and Terrestrial LiDAR for Quantifying Forest Structural Diversity. Remote Sensing, 2020, 12, 1407.	4.0	41
69	A comparative assessment of the vertical distribution of forest components using full-waveform airborne, discrete airborne and discrete terrestrial laser scanning data. Forest Ecology and Management, 2020, 473, 118268.	3.2	27
70	Difference in Regeneration Conditions in Pinus ponderosa Dominated Forests in Northern California, USA, over an 83 Year Period. Forests, 2020, 11, 581.	2.1	1
71	Quantifying Understory and Overstory Vegetation Cover Using UAV-Based RGB Imagery in Forest Plantation. Remote Sensing, 2020, 12, 298.	4.0	31
72	Improved Detection of Inundation below the Forest Canopy using Normalized LiDAR Intensity Data. Remote Sensing, 2020, 12, 707.	4.0	16

#	Article	IF	CITATIONS
73	Mapping of understory infested boxwood trees using high resolution imagery. Remote Sensing Applications: Society and Environment, 2020, 18, 100289.	1.5	1
74	Mapping tall shrub biomass in Alaska at landscape scale using structure-from-motion photogrammetry and lidar. Remote Sensing of Environment, 2020, 245, 111841.	11.0	32
75	Detection of sub-canopy forest structure using airborne LiDAR. Remote Sensing of Environment, 2020, 244, 111770.	11.0	55
76	How Can Remote Sensing Help Monitor Tropical Moist Forest Degradation?—A Systematic Review. Remote Sensing, 2020, 12, 1087.	4.0	37
77	Thinning- and tree-growth-caused changes in canopy cover and stand height and their estimation using low-density bitemporal airborne lidar measurements – a case study in hemi-boreal forests. European Journal of Remote Sensing, 2020, 53, 113-123.	3.5	7
78	Monitoring the understory in eucalyptus plantations using airborne laser scanning. Scientia Agricola, 2021, 78, .	1.2	3
79	Airborne LiDAR and Photogrammetric Point Cloud Fusion for Extraction of Urban Tree Metrics According to Street Network Segmentation. IEEE Access, 2021, 9, 97834-97842.	4.2	7
80	Forest fire fuel through the lens of remote sensing: Review of approaches, challenges and future directions in the remote sensing of biotic determinants of fire behaviour. Remote Sensing of Environment, 2021, 255, 112282.	11.0	68
81	Determination of Structural Characteristics of Old-Growth Forest in Ukraine Using Spaceborne LiDAR. Remote Sensing, 2021, 13, 1233.	4.0	10
82	Hybrid inversion of radiative transfer models based on high spatial resolution satellite reflectance data improves fractional vegetation cover retrieval in heterogeneous ecological systems after fire. Remote Sensing of Environment, 2021, 255, 112304.	11.0	26
83	Elevational gradients strongly mediate habitat selection patterns in a nocturnal predator. Ecosphere, 2021, 12, e03500.	2.2	11
84	Mapping multi-layered mangroves from multispectral, hyperspectral, and LiDAR data. Remote Sensing of Environment, 2021, 258, 112403.	11.0	49
85	Detection and Quantification of Coarse Woody Debris in Natural Forest Stands Using Airborne LiDAR. Forest Science, 2021, 67, 550-563.	1.0	9
86	A Method for Quantifying Understory Leaf Area Index in a Temperate Forest through Combining Small Footprint Full-Waveform and Point Cloud LiDAR Data. Remote Sensing, 2021, 13, 3036.	4.0	8
87	Mapping Forest Vertical Structure in Sogwang-ri Forest from Full-Waveform Lidar Point Clouds Using Deep Neural Network. Remote Sensing, 2021, 13, 3736.	4.0	6
88	Characterizing subcanopy structure of Mediterranean forests by terrestrial laser scanning data. Remote Sensing Applications: Society and Environment, 2021, 24, 100620.	1.5	6
89	Forest measurements and forestry related data. , 2022, , 199-229.		1
90	Indications of positive feedbacks to flammability through fuel structure after high-severity fire in temperate eucalypt forests. International Journal of Wildland Fire, 2021, 30, 664-679.	2.4	3

#	Article	IF	CITATIONS
91	Full-Waveform Airborne Laser Scanning Systems and Their Possibilities in Forest Applications. Managing Forest Ecosystems, 2014, , 43-61.	0.9	4
92	The potential of using Unmanned Aerial Vehicles (UAVs) for precision pest control of possums (Trichosurus vulpecula). Rethinking Ecology, 0, 2, 27-39.	0.0	18
93	Generating Tree-Lists by Fusing Individual Tree Detection and Nearest Neighbor Imputation Using Airborne LiDAR Data. Open Journal of Forestry, 2018, 08, 500-531.	0.3	1
94	A review of the role of active remote sensing and data fusion for characterizing forest in wildlife habitat models. Revista De Teledeteccion, 2016, , 1.	0.6	21
95	Enhanced detection of 3D individual trees in forested areas using airborne full-waveform LiDAR data by combining normalized cuts with spatial density clustering. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, II-5/W2, 349-354.	0.0	22
96	Estimation de la Biomasse Aérienne à partir de données lidar aéroporté. Revue Francaise De Photogrammetrie Et De Teledetection, 2014, , 59-68.	0.2	0
99	Enhancing wall-to-wall forest structure mapping through detailed co-registration of airborne and terrestrial laser scanning data in Mediterranean forests. Ecological Informatics, 2022, 67, 101497.	5.2	5
100	Towards low vegetation identification: A new method for tree crown segmentation from LiDAR data based on a symmetrical structure detection algorithm (SSD). Remote Sensing of Environment, 2022, 270, 112857.	11.0	26
102	Using topographic attributes to predict the density of vegetation layers in a wet eucalypt forest. Australian Forestry, 2022, 85, 25-37.	0.9	1
103	What Is the Most Suitable Height Range of ALS Point Cloud and LiDAR Metric for Understorey Analysis? A Study Case in a Mixed Deciduous Forest, Pokupsko Basin, Croatia. Remote Sensing, 2022, 14, 2095.	4.0	0
104	Multi-Layer Modeling of Dense Vegetation from Aerial LiDAR Scans. , 2022, , .		1
105	Predicting Vegetation Stratum Occupancy from Airborne LiDAR Data with Deep Learning. International Journal of Applied Earth Observation and Geoinformation, 2022, 112, 102863.	1.9	2
106	Quantifying Understory Vegetation Cover of Pinus massoniana Forest in Hilly Region of South China by Combined Near-Ground Active and Passive Remote Sensing. Drones, 2022, 6, 240.	4.9	2
107	imageseg: An R package for deep learningâ€based image segmentation. Methods in Ecology and Evolution, 0, , .	5.2	1
108	Quantifying understory vegetation density using multi-temporal Sentinel-2 and GEDI LiDAR data. GIScience and Remote Sensing, 2022, 59, 2068-2083.	5.9	5
109	Mapping Understory Vegetation Density in Mediterranean Forests: Insights from Airborne and Terrestrial Laser Scanning Integration. Sensors, 2023, 23, 511.	3.8	6
110	Automatic Detection of Individual Trees in Forests Based on Airborne LiDAR Data with a Tree Region-Based Convolutional Neural Network (RCNN). Remote Sensing, 2023, 15, 1024.	4.0	2
111	Spatial patterns of vigor by stand density across species groups and its drivers in a pre-harvest ponderosa pine-dominated landscape in northern California. Forest Ecology and Management, 2023, 534, 120867.	3.2	1

#	Article	IF	CITATIONS
112	Review of ground and aerial methods for vegetation cover fraction (fCover) and related quantities estimation: definitions, advances, challenges, and future perspectives. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 199, 133-156.	11.1	17
113	Distinguishing forest types in restored tropical landscapes with UAV-borne LIDAR. Remote Sensing of Environment, 2023, 290, 113533.	11.0	3
114	Forest Structural Attribute Extraction. , 2023, , 215-266.		0
115	Assessment of Active LiDAR Data and Passive Optical Imagery for Double-Layered Mangrove Leaf Area Index Estimation: A Case Study in Mai Po, Hong Kong. Remote Sensing, 2023, 15, 2551.	4.0	3
116	Airborne Lidar Data Artifacts: What we know thus far. IEEE Geoscience and Remote Sensing Magazine, 2023, , 2-26.	9.6	0
117	Improvement and application of UNet network for avoiding the effect of urban dense high-rise buildings and other feature shadows on water body extraction. International Journal of Remote Sensing, 2023, 44, 3861-3891.	2.9	0
118	Quantifying surface fuels for fire modelling in temperate forests using airborne lidar and Sentinel-2: potential and limitations. Remote Sensing of Environment, 2023, 295, 113711.	11.0	4
119	Combining multi-temporal airborne LiDAR and Sentinel-2 multispectral data for assessment of disturbances and recovery of mangrove forests. Estuarine, Coastal and Shelf Science, 2023, 291, 108444.	2.1	1
120	Seeing the Disturbed Forest for the Trees: Remote Sensing Is Underutilized to Quantify Critical Zone Response to Unprecedented Disturbance. Earth's Future, 2023, 11, .	6.3	1
121	Remote sensing for monitoring rangeland condition: Current status and development of methods. Environmental and Sustainability Indicators, 2023, 19, 100285.	3.3	1
122	Assessment of understory vegetation in a plantation forest of the southeastern United States using terrestrial laser scanning. Ecological Informatics, 2023, 77, 102254.	5.2	0
123	Terrestrial and Airborne Lidar to Quantify Shrub Cover for Canada Lynx (Lynx canadensis) Habitat Using Machine Learning. Remote Sensing, 2023, 15, 4434.	4.0	0
124	Thinning Combined with Prescribed Burn Created Spatially Heterogeneous Overstory Structures in Contemporary Dry Forests: A Comparison Using LiDAR (2016) and Field Inventory (1934) Data. Forests, 2023, 14, 2096.	2.1	0
125	Assessing biodiversity using forest structure indicators based on airborne laser scanning data. Forest Ecology and Management, 2023, 546, 121376.	3.2	1