Sustainable management of coffee industry by-product

Resources, Conservation and Recycling

66, 45-58

DOI: 10.1016/j.resconrec.2012.06.005

Citation Report

#	Article	IF	CITATIONS
1	Evaluation of Spent Coffee Obtained from the Most Common Coffeemakers as a Source of Hydrophilic Bioactive Compounds. Journal of Agricultural and Food Chemistry, 2012, 60, 12565-12573.	2.4	120
2	STATISTICAL OPTIMIZATION OF BIOPROCESS PARAMETERS FOR ENHANCED GALLIC ACID PRODUCTION FROM COFFEE PULP TANNINS BY <i>Penicillium verrucosum</i> Preparative Biochemistry and Biotechnology, 2013, 43, 350-363.	1.0	15
3	Post-combustion CO2 capture adsorbents from spent coffee grounds. Energy Procedia, 2013, 37, 134-141.	1.8	36
4	Sequential co-production of biodiesel and bioethanol with spent coffee grounds. Bioresource Technology, 2013, 136, 475-480.	4.8	163
6	Supercritical Fluid Extraction. , 2014, , .		10
7	Enhanced biogas production from coffee pulp through deligninocellulosic photocatalytic pretreatment. Energy Science and Engineering, 2014, 2, 177-187.	1.9	38
8	Reusing coffee waste in manufacture of ceramics for construction. Advances in Applied Ceramics, 2014, 113, 159-166.	0.6	40
9	Coffee husk mulch on soil erosion and runoff: experiences under rainfall simulation experiment. Solid Earth, 2014, 5, 851-862.	1.2	64
10	Chemical characterization and antioxidant properties of a new coffee blend with cocoa, coffee silverskin and green coffee minimally processed. Food Research International, 2014, 61, 39-47.	2.9	35
11	Review on utilization and composition of coffee silverskin. Food Research International, 2014, 61, 16-22.	2.9	98
12	Improvement of vegetables elemental quality by espresso coffee residues. Food Chemistry, 2014, 148, 294-299.	4.2	42
13	How can science help to create new value in coffee?. Food Research International, 2014, 63, 477-482.	2.9	17
14	Utilization of oil extracted from spent coffee grounds for sustainable production of polyhydroxyalkanoates. Applied Microbiology and Biotechnology, 2014, 98, 5883-5890.	1.7	163
15	Isolation of green coffee chlorogenic acids using activated carbon. Journal of Food Composition and Analysis, 2014, 33, 55-58.	1.9	45
16	Coffee husk composting: An investigation of the process using molecular and non-molecular tools. Waste Management, 2014, 34, 642-652.	3.7	84
17	Supercritical fluid extraction of spent coffee grounds: Measurement of extraction curves, oil characterization and economic analysis. Journal of Supercritical Fluids, 2014, 86, 150-159.	1.6	98
18	Enzymes as useful tools for environmental purposes. Chemosphere, 2014, 107, 145-162.	4.2	211
19	Coffee Silverskin: Characterization, Possible Uses, and Safety Aspects. Journal of Agricultural and Food Chemistry, 2014, 62, 10836-10844.	2.4	94

ATION RED

#	Article	IF	CITATIONS
20	Preparation and characterization of bio-safe activated charcoal derived from coffee waste residue and its application for removal of lead and copper ions. RSC Advances, 2014, 4, 38839.	1.7	45
21	Isolation, selection and evaluation of yeasts for use in fermentation of coffee beans by the wet process. International Journal of Food Microbiology, 2014, 188, 60-66.	2.1	124
22	Soluble and Bound Hydroxycinnamates in Coffee Pulp (<i>Coffea arabica</i>) from Seven Cultivars at Three Ripening Stages. Journal of Agricultural and Food Chemistry, 2014, 62, 7869-7876.	2.4	30
23	Utilization of coffee by-products obtained from semi-washed process for production of value-added compounds. Bioresource Technology, 2014, 166, 142-150.	4.8	86
24	Production of polyhydroxyalkanoates using hydrolysate of spent coffee grounds. Process Biochemistry, 2014, 49, 1409-1414.	1.8	119
25	A new alternative use for coffee pulp from semi-dry process to β-glucosidase production by Bacillus subtilis. Letters in Applied Microbiology, 2015, 61, 588-595.	1.0	20
26	Enhanced extraction of phenolic compounds from coffee industry's residues through solid state fermentation by Penicillium purpurogenum. Food Science and Technology, 2015, 35, 704-711.	0.8	22
27	New Trends in Cosmetics: By-Products of Plant Origin and Their Potential Use as Cosmetic Active Ingredients. Cosmetics, 2015, 2, 82-92.	1.5	113
28	Utilização de ResÃduos de Borra de Café e Serragem na Moldagem de Briquetes e Avaliação de Propriedades. Revista Materia, 2015, 20, 550-560.	0.1	7
29	The influence of extraction parameters on spent coffee grounds as a renewable tannin resource. Journal of Cleaner Production, 2015, 101, 222-228.	4.6	37
30	Cyclically pressurized extraction of solutes from ground coffee: Kinetic experiments and modeling. Separation and Purification Technology, 2015, 141, 256-262.	3.9	7
31	A comprehensive review on utilization of wastewater from coffee processing. Environmental Science and Pollution Research, 2015, 22, 6461-6472.	2.7	81
32	Biotechnological conversion of spent coffee grounds into polyhydroxyalkanoates and carotenoids. New Biotechnology, 2015, 32, 569-574.	2.4	111
33	Green coffee based CO2 adsorbent with high performance in postcombustion conditions. Fuel, 2015, 140, 633-648.	3.4	37
34	Conducting starter culture-controlled fermentations of coffee beans during on-farm wet processing: Growth, metabolic analyses and sensorial effects. Food Research International, 2015, 75, 348-356.	2.9	108
35	Spent coffee grounds: A review on current research and future prospects. Trends in Food Science and Technology, 2015, 45, 24-36.	7.8	416
36	Green composites based on polypropylene matrix and hydrophobized spend coffee ground (SCG) powder. Composites Part B: Engineering, 2015, 78, 256-265.	5.9	134
37	Bio-based polyurethane foams toward applications beyond thermal insulation. Materials & Design, 2015, 76, 77-85.	5.1	120

# 38	ARTICLE Analysis of the lignocellulosic components of biomass residues for biorefinery opportunities. Talanta, 2015, 144, 696-703.	lF 2.9	CITATIONS
39	Agricultural and agro-industrial residues-to-energy: Techno-economic and environmental assessment in Brazil. Biomass and Bioenergy, 2015, 81, 521-533.	2.9	88
40	Renewable resource-based green composites of surface-treated spent coffee grounds and polylactide: Characterisation and biodegradability. Polymer Degradation and Stability, 2015, 121, 51-59.	2.7	90
41	Coffee extract residue for production of ethanol and activated carbons. Journal of Cleaner Production, 2015, 91, 64-70.	4.6	58
42	An Overview of the Potential Uses for Coffee Husks. , 2015, , 283-291.		54
43	The Coffee Plant and Beans. , 2015, , 5-10.		18
44	Revalorization of spent coffee residues by a direct agronomic approach. Food Research International, 2015, 73, 190-196.	2.9	52
45	Thermal degradation behavior of coffee residue in comparison with biomasses and its product yields from gasification. Journal of the Energy Institute, 2015, 88, 323-331.	2.7	11
46	Spent coffee grounds as a renewable source for ecopolyols production. Journal of Chemical Technology and Biotechnology, 2015, 90, 1480-1488.	1.6	38
47	Electroanalytical Performance of a Carbon Paste Electrode Modified by Coffee Husks for the Quantification of Acetaminophen in Quality Control of Commercialized Pharmaceutical Tablets. International Journal of Electrochemistry, 2016, 2016, 1-10.	2.4	23
48	An Investigation into Spent Coffee Waste as a Renewable Source of Bioactive Compounds and Industrially Important Sugars. Bioengineering, 2016, 3, 33.	1.6	57
49	Potential of lactic acid bacteria to improve the fermentation and quality of coffee during onâ€farm processing. International Journal of Food Science and Technology, 2016, 51, 1689-1695.	1.3	66
50	Fermentative utilization of coffee mucilage using Bacillus coagulans and investigation of down-stream processing of fermentation broth for optically pure l(+)-lactic acid production. Bioresource Technology, 2016, 211, 398-405.	4.8	84
51	The anti-biofilm potential of commonly discarded agro-industrial residues against opportunistic pathogens. Industrial Crops and Products, 2016, 87, 150-160.	2.5	21
52	In-situ transesterification of wet spent coffee grounds for sustainable biodiesel production. Bioresource Technology, 2016, 221, 55-60.	4.8	113
53	Fabrication of granular activated carbons derived from spent coffee grounds by entrapment in calcium alginate beads for adsorption of acid orange 7 and methylene blue. Bioresource Technology, 2016, 219, 185-195.	4.8	179
54	Hydrolytic enzyme activities in shiitake mushroom (Lentinula edodes) strains cultivated on coffee pulp. Revista Argentina De Microbiologia, 2016, 48, 191-195.	0.4	15
55	Microencapsulation of natural antioxidants for food application – The specific case of coffee antioxidants – A review. Trends in Food Science and Technology, 2016, 58, 21-39.	7.8	165

ARTICLE

56 Comparison of antioxidant, antimicrobial activities and chemical profiles of three coffee (Coffea) Tj ETQq0 0 0 rgBT (Qverlock 10 Tf 50 7

57	Growth, ethanol production, and inulinase activity on various inulin substrates by mutant <i>Kluyveromyces marxianus</i> strains NRRL Y-50798 and NRRL Y-50799. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 927-939.	1.4	20
58	Fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans at laboratory and pilot scales. Bioresource Technology, 2016, 218, 167-173.	4.8	112
59	Kinetics of Ultrasound-Assisted Polyphenol Extraction from Spent Filter Coffee Using Aqueous Glycerol. Chemical Engineering Communications, 2016, 203, 407-413.	1.5	36
60	Application of Coffee Silverskin in cosmetic formulations: physical/antioxidant stability studies and cytotoxicity effects. Drug Development and Industrial Pharmacy, 2016, 42, 99-106.	0.9	33
61	Neuro-fuzzy model based on digital images for the monitoring of coffee bean color during roasting in a spouted bed. Expert Systems With Applications, 2016, 54, 162-169.	4.4	23
62	Characterization of the Cultivation Region of Ethiopian Coffee by Elemental Analysis. Analytical Letters, 2016, 49, 2474-2489.	1.0	28
64	Valorization of soy waste through SSF for the production of compost enriched with Bacillus thuringiensis with biopesticide properties. Journal of Environmental Management, 2016, 169, 126-131.	3.8	32
66	Current state of research on cocoa and coffee fermentations. Current Opinion in Food Science, 2016, 7, 50-57.	4.1	65
67	Simultaneous Determination of Alkaloids in Green Coffee Beans from Ethiopia: Chemometric Evaluation of Geographical Origin. Food Analytical Methods, 2016, 9, 1627-1637.	1.3	40
68	Selective electrochemical determination of caffeine at a gold-chitosan nanocomposite sensor: May little change on nanocomposites synthesis affect selectivity?. Journal of Electroanalytical Chemistry, 2017, 788, 99-106.	1.9	46
69	Microwaveâ€Assisted Valorization of Biowastes to Levulinic Acid. ChemistrySelect, 2017, 2, 1375-1380.	0.7	27
70	Towards a competitive solid state fermentation: Cellulases production from coffee husk by sequential batch operation and role of microbial diversity. Science of the Total Environment, 2017, 589, 56-65.	3.9	59
71	Modulation of the interface between polyester and spent coffee grounds in polysaccharide membranes: Preparation, cell proliferation, antioxidant activity and tyrosinase activity. Materials Science and Engineering C, 2017, 78, 530-538.	3.8	11
72	Development of polylactic acid nanocomposite films reinforced with cellulose nanocrystals derived from coffee silverskin. Carbohydrate Polymers, 2017, 169, 495-503.	5.1	166
73	Environmental characterisation of coffee chaff, a new recycled material for building applications. Construction and Building Materials, 2017, 147, 185-193.	3.2	41
74	Kinetics of extraction and in situ transesterification of oils from spent coffee grounds. Journal of Environmental Chemical Engineering, 2017, 5, 2611-2616.	3.3	41
75	Valorisation of Biowastes for the Production of Green Materials Using Chemical Methods. Topics in Current Chemistry, 2017, 375, 46.	3.0	44

#	Article	IF	CITATIONS
76	A review: Modified agricultural by-products for the development and fortification of food products and nutraceuticals. Trends in Food Science and Technology, 2017, 59, 148-160.	7.8	88
77	Bioactives of coffee cherry pulp and its utilisation for production of Cascara beverage. Food Chemistry, 2017, 221, 969-975.	4.2	115
78	Anaerobic Digestion of Liquid Fraction Coffee Grounds at Laboratory Scale: Evaluation of the Biogas Yield. Energy Procedia, 2017, 105, 1096-1101.	1.8	18
79	Fast pyrolysis of coffee ground in a tiltedâ €s lide reactor and characteristics of biocrude oil. Environmental Progress and Sustainable Energy, 2017, 36, 655-661.	1.3	15
80	Valorization of Mexican biomasses through pyrolysis, combustion and gasification processes. Renewable and Sustainable Energy Reviews, 2017, 71, 509-522.	8.2	57
81	A novel strategy for producing compost with enhanced biopesticide properties through solid-state fermentation of biowaste and inoculation with Bacillus thuringiensis. Waste Management, 2017, 70, 53-58.	3.7	37
82	Development of functional composts using spent coffee grounds, poultry manure and biochar through microbial bioaugmentation. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2017, 52, 802-811.	0.7	14
83	Utilization of agroindustrial waste for biosurfactant production by native bacteria from chiapas. Open Agriculture, 2017, 2, 341-349.	0.7	19
84	Hydrothermal carbonization of coffee husk: Optimization of experimental parameters and adsorption of methylene blue dye. Journal of Environmental Chemical Engineering, 2017, 5, 4841-4849.	3.3	79
85	Multi-frequency multimode modulated technology as a clean, fast, and sustainable process to recover antioxidants from a coffee by-product. Journal of Cleaner Production, 2017, 168, 14-21.	4.6	26
86	Spent coffee grounds as heat source for coffee roasting plants: Experimental validation and case study. Applied Thermal Engineering, 2017, 126, 730-736.	3.0	37
88	Anaerobic digestion of coffee grounds soluble fraction at laboratory scale: Evaluation of the biomethane potential. Applied Energy, 2017, 207, 166-175.	5.1	40
89	Use of spent coffee grounds as food ingredient in bakery products. Food Chemistry, 2017, 216, 114-122.	4.2	158
90	Valueâ€Adding Practices in Food Supply Chain: Evidence from Indian Food Industry. Agribusiness, 2017, 33, 116-130.	1.9	30
91	Removal of phenols and methane production with coffee processing wastewater supplemented with phosphorous. International Journal of Environmental Science and Technology, 2017, 14, 61-74.	1.8	7
92	Using cow dung and spent coffee grounds to enhance the two-stage co-composting of green waste. Bioresource Technology, 2017, 245, 152-161.	4.8	58
93	The potential of pyrolysing exhausted coffee residue for the production of biochar. , 2017, , 299-322.		7
94	The biorefinery concept for the industrial valorization of coffee processing by-products. , 2017, , 63-92.		20

ARTICLE IF CITATIONS State of the art in coffee processing by-products., 2017, , 1-26. 42 95 Biotechnological applications of coffee processing by-products., 2017,, 221-244. 97 Applications of recovered bioactive compounds in cosmetics and other products., 2017, , 195-220. 1 Vermicompost derived from spent coffee grounds: assessing the potential for enzymatic 98 bioremediation., 2017,, 369-398. Potential of Streptomyces sp. and Trichoderma sp. as compost microbiota for coffee husk. African 99 0.4 1 Journal of Microbiology Research, 2017, 11, 560-567. Characterization of coffee (Coffea arabica) husk lignin and degradation products obtained after oxygen and alkali addition. Bioresource Technology, 2018, 257, 172-180. 4.8 Influence of solvent selection and extraction temperature on yield and composition of lipids 101 2.5102 extracted from spent coffee grounds. Industrial Crops and Products, 2018, 119, 49-56. Spent coffee ground as a new bulking agent for accelerated biodrying of dewatered sludge. Water 5.3 Research, 2018, 138, 250-263. Extraction of lipids from spent coffee grounds with non-polar renewable solvents as alternative. 103 2.5 47 Industrial Crop's and Products, 2018, 119, 152-161. Spent coffee enhanced biomethane potential via an integrated hydrothermal carbonization-anaerobic 104 4.8 digestion process. Bioresource Technology, 2018, 256, 102-109. Thermochemical decomposition of coffee ground residues by TG-MS: A kinetic study. Journal of 105 2.6 53 Analytical and Applied Pyrolysis, 2018, 130, 358-367. Biotechnological conversion of spent coffee grounds into lactic acid. Letters in Applied 1.0 Microbiology, 2018, 66, 306-312 Pulsed Electric Field Assisted Extraction of Bioactive Compounds from Cocoa Bean Shell and Coffee 107 2.6 103 Silverskin. Food and Bioprocess Technology, 2018, 11, 818-835. Coffee silverskin as fat replacer in cake formulations and its effect on physical, chemical and sensory 2.5 attributes of cakes. LWT - Food Science and Technology, 2018, 90, 519-525. Determination of functional properties of cocoa waste from concentrated cocoa drink. Journal of 109 1.6 4 Food Measurement and Characterization, 2018, 12, 2094-2102. Technoeconomic and environmental assessment of a process for biodiesel production from spent coffee grounds (SCGs). Resources, Conservation and Recycling, 2018, 134, 156-164. Sustainable Use of Coffee Husks For Reinforcing Polyethylene Composites. Journal of Polymers and 111 2.4 49 the Environment, 2018, 26, 48-58. Optimization of torrefaction conditions of coffee industry residues using desirability function approach. Waste Management, 2018, 73, 523-534.

#	Article	IF	CITATIONS
113	The broad spectrum of possibilities for spent coffee grounds valorisation. Journal of Material Cycles and Waste Management, 2018, 20, 695-701.	1.6	48
114	Performance of active nickel loaded lignite char catalyst on conversion of coffee residue into rich-synthesis gas by gasification. Journal of the Energy Institute, 2018, 91, 222-232.	2.7	3
115	Direct Dilute Acid Hydrolysis of Spent Coffee Grounds: A New Approach in Sugar and Lipid Recovery. Waste and Biomass Valorization, 2018, 9, 235-246.	1.8	32
116	Valorisation of textile waste by fungal solid state fermentation: An example of circular waste-based biorefinery. Resources, Conservation and Recycling, 2018, 129, 27-35.	5.3	91
117	Valorization of spent coffee grounds – A new approach. Separation and Purification Technology, 2018, 192, 271-277.	3.9	36
118	Impact of spent coffee grounds as organic amendment on soil fertility and lettuce growth in two Mediterranean agricultural soils. Archives of Agronomy and Soil Science, 2018, 64, 790-804.	1.3	60
119	Caffeine degradation by methanogenesis: Efficiency in anaerobic membrane bioreactor and analysis of kinetic behavior. Chemical Engineering Journal, 2018, 334, 444-452.	6.6	50
120	Customizing the spent coffee for Trichoderma reesei cellulase immobilization by modification with activating agents. International Journal of Biological Macromolecules, 2018, 107, 1856-1863.	3.6	8
121	Chemical composition and value-adding applications of coffee industry by-products: A review. Resources, Conservation and Recycling, 2018, 128, 110-117.	5.3	236
122	Bio-refinery approach for spent coffee grounds valorization. Bioresource Technology, 2018, 247, 1077-1084.	4.8	153
123	Characteristics of food processing wastes and their use in sustainable alcohol production. Renewable and Sustainable Energy Reviews, 2018, 81, 510-523.	8.2	79
124	Assessment of the effluent quality of wet coffee processing wastewater and its influence on downstream water quality. Ecohydrology and Hydrobiology, 2018, 18, 201-211.	1.0	37
125	Properties of natural rubber filled with untreated and treated spent coffee grounds. Journal of Applied Polymer Science, 2018, 135, 46060.	1.3	23
126	Production of (3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer from coffee waste oil using engineered Ralstonia eutropha. Bioprocess and Biosystems Engineering, 2018, 41, 229-235.	1.7	90
127	A spent coffee grounds based biorefinery for the production of biofuels, biopolymers, antioxidants and biocomposites. Waste Management, 2018, 72, 240-254.	3.7	183
128	Spent Coffee Grounds Alkaline Pre-treatment as Biorefinery Option to Enhance their Anaerobic Digestion Yield. Waste and Biomass Valorization, 2018, 9, 2565-2570.	1.8	36
129	Quality of clonal plantlets of Coffea canephora Pierre ex A. Froehner produced using coffee husk in the substrate. African Journal of Agricultural Research Vol Pp, 2018, 13, 2826-2835.	0.2	2
130	Experimental Study on the Mechanical Properties of Biomass Briquettes from Different Agricultural Residues Combination. MATEC Web of Conferences, 2018, 225, 04026.	0.1	8

_			_		
C	TAT	ION.	Dr	DO	DT
	пап		ILL	РU	INC I

#	Article	IF	CITATIONS
131	Analysis of coffee quality along the coffee value chain in Jimma zone, Ethiopia. African Journal of Agricultural Research Vol Pp, 2018, 13, 1468-1475.	0.2	5
132	Efecto del Añejamiento del Café (Coffea arabica L. var. Castillo) sobre la Composición de Fenoles Totales, Flavonoides, Ãcido Clorogénico y la Actividad Antioxidante. Informacion Tecnologica (discontinued), 2018, 29, 187-196.	0.1	1
133	Solid coffee waste as alternative to produce carotenoids with antioxidant and antimicrobial activities. Waste Management, 2018, 82, 93-99.	3.7	73
134	Coffee processing industrial wastewater treatment using batch electrochemical coagulation with stainless steel and Fe electrodes and their combinations, and recovery and reuse of sludge. Water Science and Technology, 2018, 78, 279-289.	1.2	16
135	Smartphone-based monitoring system of a coffee roaster machine, applied to small industry. , 2018, , .		0
136	Combustion characteristics of spent coffee ground mixed with crude glycerol briquette fuel. Combustion Science and Technology, 2018, 190, 2030-2043.	1.2	17
137	Decolorization of remazol brilliant blue R with laccase from Lentinus crinitus grown in agro-industrial by-products. Anais Da Academia Brasileira De Ciencias, 2018, 90, 3463-3473.	0.3	20
138	Effect of Solid Biological Waste Compost on the Metabolite Profile of Brassica rapa ssp. chinensis. Frontiers in Plant Science, 2018, 9, 305.	1.7	13
139	Optimization and Scale-Up of Coffee Mucilage Fermentation for Ethanol Production. Energies, 2018, 11, 786.	1.6	34
140	Valorization of spent coffee ground with wheat or miscanthus straw: Yield improvement by the combined conversion to mushrooms and biomethane. Energy for Sustainable Development, 2018, 45, 171-179.	2.0	6
141	Ethanol production from coffee mucilage fermentation by S. cerevisiae immobilized in calcium-alginate beads. Bioresource Technology Reports, 2018, 3, 200-204.	1.5	29
142	Chemical composition and antioxidant capacity of coffee pulp. Ciencia E Agrotecnologia, 2018, 42, 307-313.	1.5	33
143	Converting environmental risks to benefits by using spent coffee grounds (SCG) as a valuable resource. Environmental Science and Pollution Research, 2018, 25, 35776-35790.	2.7	56
144	Valorizing coffee pulp by-products as anti-inflammatory ingredient of food supplements acting on IL-8 release. Food Research International, 2018, 112, 129-135.	2.9	31
145	Development of Sustainable Novel Foods and Beverages Based on Coffee By-Products for Chronic Diseases. , 2019, , 307-315.		7
146	Conventional Methods for the Removal of Industrial Pollutants, Their Merits and Demerits. , 2019, , 1-31.		16
147	Exploring the impacts of postharvest processing on the aroma formation of coffee beans – A review. Food Chemistry, 2019, 272, 441-452.	4.2	165
148	System dynamics modeling of waste management, greenhouse gas emissions, and environmental costs from convenience stores. Journal of Cleaner Production, 2019, 239, 118006.	4.6	19

#	Article	IF	CITATIONS
149	The Possibility of Using Spent Coffee Grounds to Improve Wastewater Treatment Due to Respiration Activity of Microorganisms. Applied Sciences (Switzerland), 2019, 9, 3155.	1.3	25
150	Extraction, identification and quantification of polyphenols from spent coffee grounds by chromatographic methods and chemometric analyses. Waste Management, 2019, 96, 15-24.	3.7	71
152	Coffee starter microbiome and in-silico approach to improve Arabica coffee. LWT - Food Science and Technology, 2019, 114, 108382.	2.5	11
153	Total phenolic content and primary antioxidant capacity of aqueous extracts of coffee husk: chemical evaluation and beverage development. Food Science and Technology, 2019, 39, 348-353.	0.8	18
154	Coffee mucilage impact on young coffee seedlings and soil microorganisms. Journal of Plant Nutrition and Soil Science, 2019, 182, 782-790.	1.1	1
155	Enzymatic Bioremediation: Current Status, Challenges of Obtaining Process, and Applications. Microorganisms for Sustainability, 2019, , 79-101.	0.4	27
156	Conceptualization of a spent coffee grounds biorefinery: A review of existing valorisation approaches. Food and Bioproducts Processing, 2019, 118, 149-166.	1.8	59
157	Comparison of three Mexican biomasses valorization through combustion and gasification: Environmental and economic analysis. Energy, 2019, 189, 116095.	4.5	19
158	Isolation, Identification, and Characterization of Pectinolytic Yeasts for Starter Culture in Coffee Fermentation. Microorganisms, 2019, 7, 401.	1.6	48
159	Spent Coffee Grounds in the Production of Lightweight Clay Ceramic Aggregates in View of Urban and Agricultural Sustainable Development. Materials, 2019, 12, 3581.	1.3	30
160	Prospect of Fe non-heme on coffee flour made from solid coffee waste: Mini review. IOP Conference Series: Earth and Environmental Science, 2019, 293, 012035.	0.2	4
161	A Homogenization Approach for the Roasting of an Array of Coffee Beans. SIAM Journal on Applied Mathematics, 2019, 79, 1550-1580.	0.8	3
162	Spent Coffee Grounds-Templated Magnetic Nanocatalysts for Mild Oxidations. ACS Sustainable Chemistry and Engineering, 2019, 7, 17030-17038.	3.2	13
163	Application of a screening design to recover phytochemicals from spent coffee grounds. Food and Bioproducts Processing, 2019, 118, 50-57.	1.8	14
164	Solidâ€Wasteâ€Derived Carbon Dioxide apturing Materials. ChemSusChem, 2019, 12, 2055-2082.	3.6	43
165	Promoting Circular Economy Through Sustainable Agriculture in Hidalgo: Recycling of Agro-Industrial Waste for Production of High Nutritional Native Mushrooms. Climate Change Management, 2019, , 455-469.	0.6	4
166	Valorization of Residues From Beverage Production. , 2019, , 451-494.		7
167	Hydrogen Production from Coffee Mucilage in Dark Fermentation with Organic Wastes. Energies, 2019, 12, 71.	1.6	15

<u> </u>			-		
(†17	ΓΑΤΙ	ION	I K	FP	ORT

#	Article	IF	CITATIONS
168	Secado de Pulpa de Café: Condiciones de Proceso, Modelación Matemática y Efecto sobre Propiedades FisicoquÃmicas. Informacion Tecnologica (discontinued), 2019, 30, 189-200.	0.1	12
169	Simultaneous pretreatment and hydrolysis of hardwood biomass species catalyzed by combination of modified activated carbon and ionic liquid in biphasic system. Bioresource Technology, 2019, 289, 121675.	4.8	29
170	Bioaccesibility, Metabolism, and Excretion of Lipids Composing Spent Coffee Grounds. Nutrients, 2019, 11, 1411.	1.7	16
171	Valorization of spent coffee grounds into biofuels and value-added products: Pathway towards integrated bio-refinery. Fuel, 2019, 254, 115640.	3.4	100
172	High resolution liquid chromatography tandem mass spectrometry for the separation and identification of peptides in coffee silverskin protein hydrolysates. Microchemical Journal, 2019, 149, 103951.	2.3	10
173	Effect of alkaline pre-treatment on the anaerobic biodegradability of coffee husk. Revista Facultad De IngenierÃa, 2019, , 36-41.	0.5	3
174	Composting and co-composting of coffee husk and pulp with source-separated municipal solid waste: a breakthrough in valorization of coffee waste. International Journal of Recycling of Organic Waste in Agriculture, 2019, 8, 263-277.	2.0	30
175	Mexican biomasses valorization through pyrolysis process: Environmental and costs analysis. Waste Management, 2019, 95, 171-181.	3.7	15
176	Recovering Cucurbita pepo cv. â€~Lungo Fiorentino' Wastes: UHPLC-HRMS/MS Metabolic Profile, the Basis for Establishing Their Nutra- and Cosmeceutical Valorisation. Molecules, 2019, 24, 1479.	1.7	15
177	Formulation of Green Particulate Composites from PLA and PBS Matrix and Wastes Deriving from the Coffee Production. Journal of Polymers and the Environment, 2019, 27, 1488-1496.	2.4	37
178	Biotechnological approaches for cocoa waste management: A review. Waste Management, 2019, 90, 72-83.	3.7	123
179	Valorization of Agro-Industrial Waste into Bioactive Compounds: Techno-Economic Considerations. , 2019, , 235-252.		13
180	Comparative assessment of methylene blue biosorption using coffee husks and corn cobs: towards the elaboration of a lignocellulosic-based amperometric sensor. SN Applied Sciences, 2019, 1, 1.	1.5	11
181	Use of coffee silverskin to improve the functional properties of cookies. Journal of Food Science and Technology, 2019, 56, 2979-2988.	1.4	25
182	The Role of Microbes in Coffee Fermentation and Their Impact on Coffee Quality. Journal of Food Quality, 2019, 2019, 1-6.	1.4	111
183	A chemical equilibrium model for biomass gasification. Application to Costa Rican coffee pulp transformation unit. Biomass and Bioenergy, 2019, 123, 89-103.	2.9	17
184	The impact of sustainability in coffee production on consumers' willingness to pay–new evidence from the field of ethical consumption. Journal of Management Control, 2019, 30, 65-93.	0.8	21
185	New Alcoholic Fermented Beverages—Potentials and Challenges. , 2019, , 577-603.		16

	Сіт	TATION REPORT	
# 186	ARTICLE Ecofuel conversion technology of inedible lipid feedstocks to renewable fuel. , 2019, , 237-276.	IF	CITATIONS
187	Solid-state fermentation as a sustainable method for coffee pulp treatment and production of an extract rich in chlorogenic acids. Food and Bioproducts Processing, 2019, 115, 175-184.	1.8	41
188	Bacterial community structure of two Mediterranean agricultural soils amended with spent coffee grounds. Applied Soil Ecology, 2019, 137, 12-20.	2.1	13
189	Plant food by-products as feed: Characteristics, possibilities, environmental benefits, and negative sides. Food Reviews International, 2019, 35, 363-389.	4.3	16
190	Production and characterization of coffee-pine wood residue briquettes as an alternative fuel for local firing systems in Brazil. Biomass and Bioenergy, 2019, 123, 70-77.	2.9	52
191	Bio-sourced porous cellulose microfibrils from coffee pulp for wastewater treatment. Cellulose, 2019, 26, 3873-3889.	2.4	36
192	Ion Exchange Modeling of the Competitive Adsorption of Cu(II) and Pb(II) Using Chemically Modified Solid Waste Coffee. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	13
193	Waste Coffee Ground Biochar: A Material for Humidity Sensors. Sensors, 2019, 19, 801.	2.1	49
194	Prioritize the key parameters of Vietnamese coffee industries for sustainability. International Journal of Productivity and Performance Management, 2019, 69, 1153-1176.	2.2	12
195	Food industry processing by-products in foods. , 2019, , 239-281.		7
196	Numerical determination of the correct solvents to extract a phytochemical from coffee pulp using Hansen solubility parameters, risk assessment, sustainability evaluation, and economic analysis. DYNA (Colombia), 2019, 86, 138-147.	0.2	3
197	The Role of ICT in Supporting Spent Coffee Grounds Collection and Valorization: A Quantitative Assessment. Sustainability, 2019, 11, 6572.	1.6	5
198	Sustainable management of coffee fruit waste biomass in ecological farming systems at West Lampung, Indonesia. IOP Conference Series: Earth and Environmental Science, 2019, 345, 012007.	0.2	1
199	Material flow analysis for energy potential in coffee production. IOP Conference Series: Earth and Environmental Science, 2019, 399, 012011.	0.2	0
200	Power Generation with Biomass from Coffee: A Literature Review, Current Trend and Scope for Future Research. MATEC Web of Conferences, 2019, 293, 05002.	0.1	1
201	Influence of Various Processing Parameters on the Microbial Community Dynamics, Metabolomic Profiles, and Cup Quality During Wet Coffee Processing. Frontiers in Microbiology, 2019, 10, 2621.	1.5	48
203	Physical, chemical and sensory characteristics of fiber-enriched cakes prepared with coffee silverskin as wheat flour substitution. Journal of Food Measurement and Characterization, 2019, 13, 755-763.	1.6	31
204	Characterization of residual biomasses from the coffee production chain and assessment the potential for energy purposes. Biomass and Bioenergy, 2019, 120, 68-76.	2.9	60

#	Article	IF	CITATIONS
205	Advances in renewable plant-derived protein source: The structure, physicochemical properties affected by ultrasonication. Ultrasonics Sonochemistry, 2019, 53, 83-98.	3.8	101
206	TOC and COD removal from instant coffee and coffee products production wastewater by chemical coagulation assisted electrooxidation. Journal of Water Process Engineering, 2019, 28, 28-35.	2.6	37
207	Isothermal combustion characteristics of anthracite and spent coffee grounds briquettes. Journal of Thermal Analysis and Calorimetry, 2019, 136, 1447-1456.	2.0	7
208	Food waste valorization advocating Circular Bioeconomy - A critical review of potentialities and perspectives of spent coffee grounds biorefinery. Journal of Cleaner Production, 2019, 211, 1553-1566.	4.6	122
209	Coffee Supplements. , 2019, , 177-185.		0
210	Investigation into role of CO2 in two-stage pyrolysis of spent coffee grounds. Bioresource Technology, 2019, 272, 48-53.	4.8	23
211	Availability and Suitability of Agroindustrial Residues as Feedstock for Cellulose-Based Materials: Brazil Case Study. Waste and Biomass Valorization, 2019, 10, 2863-2878.	1.8	22
212	Taguchi method to improve the production of sugar-rich hydrolysate from non-delipidated spent coffee grounds, and subsequent recovery of lipids and bioactive compounds. Biofuels, 2019, 10, 193-205.	1.4	9
213	Enhancement of Sewage Sludge Bioconversion to Methane by the Addition of Exhausted Coffee Biowaste Liquid Fraction. Waste and Biomass Valorization, 2020, 11, 1125-1130.	1.8	3
214	Composting and Anaerobic Digestion as Biotechnological Alternatives for the Valorization of Used Coffee Ground in University Campus. World Sustainability Series, 2020, , 789-802.	0.3	1
215	Optimisation and characterisation of hydrochar production from spent coffee grounds by hydrothermal carbonisation. Renewable Energy, 2020, 147, 1380-1391.	4.3	100
216	Ultrasonic assisted oil extraction and biodiesel synthesis of Spent Coffee Ground. Fuel, 2020, 261, 116121.	3.4	52
217	Energetic use of biogas from the anaerobic digestion of coffee wastewater in southern Minas Gerais, Brazil. Renewable Energy, 2020, 146, 2084-2094.	4.3	23
218	Sustainable Management and Valorization of Spent Coffee Grounds Through the Optimization of Thin Layer Hot Air-Drying Process. Waste and Biomass Valorization, 2020, 11, 5015-5026.	1.8	16
219	Anaerobic Co-digestion of Pig Manure and Spent Coffee Grounds for Enhanced Biogas Production. Waste and Biomass Valorization, 2020, 11, 4613-4620.	1.8	21
220	The potential of coffee stems gasification to provide bioenergy for coffee farms: a case study in the Colombian coffee sector. Biomass Conversion and Biorefinery, 2020, 10, 1137-1152.	2.9	14
221	Circular Economy - A challenge and an opportunity for Process Systems Engineering. Computers and Chemical Engineering, 2020, 133, 106629.	2.0	77
222	Green coffee nanoparticles: optimisation, <i>inÂvitro</i> bioactivity and bio-release property. Journal of Microencapsulation, 2020, 37, 52-64.	1.2	19

#	ARTICLE	IF	CITATIONS
223	Annual biomass variation of agriculture crops and forestry residues, and seasonality of crop residues for energy production in Mexico. Food and Bioproducts Processing, 2020, 119, 1-19.	1.8	42
224	Phytoremediation of real coffee industry effluent through a continuous two-stage constructed wetland system. Environmental Technology and Innovation, 2020, 17, 100502.	3.0	34
225	Ionic liquids: A milestone on the pathway to greener recycling of cellulose from biomass. Resources, Conservation and Recycling, 2020, 155, 104678.	5.3	52
226	The effect of organic farming on total phenols, total flavonoids, brown compounds and antioxidant activity of spent coffee grounds from Mexico. Biological Agriculture and Horticulture, 2020, 36, 107-118.	0.5	6
228	Black Soldier Fly (Hermetia illucens) reared on roasted coffee by-product and Schizochytrium sp. as a sustainable terrestrial ingredient for aquafeeds production. Aquaculture, 2020, 518, 734659.	1.7	60
229	Microbial strategies for bio-transforming food waste into resources. Bioresource Technology, 2020, 299, 122580.	4.8	248
230	Integrating spent coffee grounds and silver skin as biofuels using torrefaction. Renewable Energy, 2020, 148, 275-283.	4.3	18
231	Management options for coffee processing wastewater. A review. Journal of Material Cycles and Waste Management, 2020, 22, 454-469.	1.6	17
232	Short-term impact of spent coffee grounds over soil organic matter composition and stability in two contrasted Mediterranean agricultural soils. Journal of Soils and Sediments, 2020, 20, 1182-1198.	1.5	18
233	High-pressure fractionation of spent coffee grounds oil using green solvents. Journal of Supercritical Fluids, 2020, 157, 104689.	1.6	15
234	Growth and metal uptake of spinach with application of co-compost of cat manure and spent coffee ground. Heliyon, 2020, 6, e05086.	1.4	7
235	Fermentation of coffee pulp using indigenous lactic acid bacteria with simultaneous aeration to produce cascara with a high antioxidant activity. Heliyon, 2020, 6, e04462.	1.4	19
236	Environmental trade-offs associated with bioenergy from agri-residues in sub-tropical regions: A case study of the Colombian coffee sector. Biomass and Bioenergy, 2020, 140, 105581.	2.9	8
237	Embracing nutritional qualities, biological activities and technological properties of coffee byproducts in functional food formulation. Trends in Food Science and Technology, 2020, 104, 235-261.	7.8	53
238	Coffee By-Products: Nowadays and Perspectives. , 2020, , .		6
239	Subcritical water and supercritical carbon dioxide: efficient and selective eco-compatible solvents for coffee and coffee by-products valorization. Green Chemistry, 2020, 22, 8544-8571.	4.6	34
240	Prebiotic oligosaccharide enriched green coffee spent cookies and their nutritional, physicochemical and sensory properties. LWT - Food Science and Technology, 2020, 134, 109924.	2.5	14
241	Evaluation of the Use of a Coffee Industry By-Product in a Cereal-Based Extruded Food Product. Foods, 2020, 9, 1008.	1.9	24

#	Article	IF	CITATIONS
242	Effects of Caffeine on Egg Quality and Performance of Laying Hens. Frontiers in Veterinary Science, 2020, 7, 545359.	0.9	1
243	Fruit Spirit Production from Coffee Cherries—Process Analysis and Sensory Evaluation. Beverages, 2020, 6, 57.	1.3	10
244	Coffee silverskin and starch-rich potato washing slurries as raw materials for elastic, antioxidant, and UV-protective biobased films. Food Research International, 2020, 138, 109733.	2.9	18
246	Nutritional and functional properties of spent coffee groundâ€cheese whey powder. Journal of Food Process Engineering, 2022, 45, e13524.	1.5	3
247	Biorefining of Waste Coffee Grounds: Turning an Environmental Problem into an Opportunity. IOP Conference Series: Earth and Environmental Science, 2020, 505, 012026.	0.2	2
248	Feasibility of Vermicomposting of Spent Coffee Grounds and Silverskin from Coffee Industries: A Laboratory Study. Agronomy, 2020, 10, 1125.	1.3	16
249	Applications of Compounds from Coffee Processing By-Products. Biomolecules, 2020, 10, 1219.	1.8	57
250	Performability evaluation of transport modes for cloud-based inbound logistics: a study based on coffee industry. International Journal of Manufacturing Technology and Management, 2020, 34, 126.	0.1	1
251	Application of Thermal Methods to Analyze the Properties of Coffee Silverskin and Oil Extracted from the Studied Roasting By-Product. Applied Sciences (Switzerland), 2020, 10, 8790.	1.3	9
252	Torrefaction of Coffee Husk Flour for the Development of Injection-Molded Green Composite Pieces of Polylactide with High Sustainability. Applied Sciences (Switzerland), 2020, 10, 6468.	1.3	22
253	In search of the optimal inoculum to substrate ratio during anaerobic co-digestion of spent coffee grounds and cow manure. Waste Management and Research, 2020, 38, 1278-1283.	2.2	15
254	Production and characterization of a new distillate obtained from fermentation of wet processing coffee by-products. Journal of Food Science and Technology, 2020, 57, 4481-4491.	1.4	13
255	Production of antioxidants and other value-added compounds from coffee silverskin via pyrolysis under a biorefinery approach. Waste Management, 2020, 109, 19-27.	3.7	42
256	Biologically active components in byâ€products of food processing. Food Science and Nutrition, 2020, 8, 3004-3022.	1.5	24
257	Assessment of Healthy and Harmful Maillard Reaction Products in a Novel Coffee Cascara Beverage: Melanoidins and Acrylamide. Foods, 2020, 9, 620.	1.9	37
258	Improving the hydrogen production from coffee waste through hydrothermal pretreatment, co-digestion and microbial consortium bioaugmentation. Biomass and Bioenergy, 2020, 137, 105551.	2.9	19
259	Roasted coffee wastes as a substrate for <i>Escherichia coli</i> to grow and produce hydrogen. FEMS Microbiology Letters, 2020, 367, .	0.7	11
260	A Review of Coffee By-Products Including Leaf, Flower, Cherry, Husk, Silver Skin, and Spent Grounds as Novel Foods within the European Union. Foods, 2020, 9, 665.	1.9	128

ARTICLE IF CITATIONS # Valorization of Mushroom By-Products as a Source of Value-Added Compounds and Potential 261 1.7 48 Applications. Molecules, 2020, 25, 2672. Utilization of Spent Coffee Grounds as Media for Stone Pine (Pinus pinea) Seedlings. Journal of Soil 1.7 Science and Plant Nutrition, 2020, 20, 2014-2024. 263 Revalorization of Coffee Waste., 0, , . 9 Characterization of coffee parchment and innovative steam explosion treatment to obtain microfibrillated cellulose as potential composite reinforcement. Journal of Materials Research and Technology, 2020, 9, 9412-9421. 264 Drying Applications during Value-Added Sustainable Processing for Selected Mass-Produced Food 265 1.3 11 Coproducts. Processes, 2020, 8, 307. Alcoholic fermentation as a potential tool for coffee pulp detoxification and reuse: Analysis of phenolic composition and caffeine content by HPLC-DAD-MS/MS. Food Chemistry, 2020, 319, 126600. 4.2 Identification and Quantification of Bioactive Molecules Inhibiting Pro-inflammatory Cytokine 267 Production in Spent Coffee Grounds Using Metabolomics Analyses. Frontiers in Pharmacology, 2020, 1.6 16 11, 229. Primary Metabolism Is Distinctly Modulated by Plant Resistance Inducers in Coffea arabica Leaves 1.7 Infected by Hemileia vastatrix. Frontiers in Plant Science, 2020, 11, 309. Structural characterization of cellulose nanofibers isolated from spent coffee grounds and their 269 2.4 40 composite films with poly(vinyl alcohol): a new non-wood source. Cellulose, 2020, 27, 5017-5028. Chemical composition, structural and functional properties of soluble dietary fiber obtained from 270 54 coffee peel using different extraction methods. Food Research International, 2020, 136, 109497. Effect of <i>Thymus</i> <i>vulgaris</i> postâ€extraction waste and spent coffee grounds on the quality 271 0.9 8 of cultivated <i>Pleurotus eryngii</i>. Journal of Food Processing and Preservation, 2020, 44, e14648. PIXE analysis of green and roasted coffee beans and filter coffee powder for the inter-comparison study of major, minor and trace elements. AIP Conference Proceedings, 2020, , . Process optimisation of methylene blue sequestration onto physical and chemical treated coffee husk 273 1.5 13 based adsorbent. SN Applied Sciences, 2020, 2, 1. Enzymatic potential for the valorization of agro-industrial by-products. Biotechnology Letters, 2020, 274 1.1 42, 1799-1827. A statistical approach to study the valorization process of spent coffee ground. Biomass Conversion 275 2.9 3 and Biorefinery, 2022, 12, 2463-2475. Added-value molecules recovery and biofuels production from spent coffee grounds. Renewable and Sustainable Energy Reviews, 2020, 131, 110007. A review on valorization of spent coffee grounds (SCG) towards biopolymers and biocatalysts 277 4.8 54 production. Bioresource Technology, 2020, 314, 123800. Removal of ochratoxin A from liquid media using novel low-cost biosorbents. Environmental Science 278 and Pollution Research, 2020, 27, 34484-34494.

#	Article	IF	CITATIONS
279	Low energy spent coffee grounds briquetting with organic binders for biomass fuel manufacturing. Fuel, 2020, 278, 118310.	3.4	37
280	β-Mannanase Production Using Coffee Industry Waste for Application in Soluble Coffee Processing. Biomolecules, 2020, 10, 227.	1.8	25
281	Valorization of agro-industry residues in the building and environmental sector: A review. Waste Management and Research, 2020, 38, 487-513.	2.2	48
282	Phytotoxicity and chelating capacity of spent coffee grounds: Two contrasting faces in its use as soil organic amendment. Science of the Total Environment, 2020, 717, 137247.	3.9	31
283	Fuel properties of biochar from torrefaction of ground coffee residue: effect of process temperature, time, and sweeping gas. Biomass Conversion and Biorefinery, 2020, 10, 743-753.	2.9	33
284	Butyric acid production from spent coffee grounds by engineered Clostridium tyrobutyricum overexpressing galactose catabolism genes. Bioresource Technology, 2020, 304, 122977.	4.8	26
285	Chemical composition and health properties of coffee and coffee by-products. Advances in Food and Nutrition Research, 2020, 91, 65-96.	1.5	68
286	Biorefinery of spent coffee grounds waste: Viable pathway towards circular bioeconomy. Bioresource Technology, 2020, 302, 122821.	4.8	71
287	Modeling Dark Fermentation of Coffee Mucilage Wastes for Hydrogen Production: Artificial Neural Network Model vs. Fuzzy Logic Model. Energies, 2020, 13, 1663.	1.6	11
288	Resource Recovery from Waste Coffee Grounds Using Ultrasonic-Assisted Technology for Bioenergy Production. Energies, 2020, 13, 1770.	1.6	22
289	An Insight into the Reactivity of the Electrogenerated Radical Cation of Caffeine. Electrochem, 2020, 1, 44-55.	1.7	4
291	Adsorption isotherms and kinetic modeling of methylene blue dye onto a carbonaceous hydrochar adsorbent derived from coffee husk waste. Science of the Total Environment, 2020, 725, 138325.	3.9	191
292	From Coffee to Biodiesel—Deep Eutectic Solvents for Feedstock and Biodiesel Purification. Separations, 2020, 7, 22.	1.1	19
293	The use of spent coffee grounds in growing media for the production of Brassica seedlings in nurseries. Environmental Science and Pollution Research, 2021, 28, 24279-24290.	2.7	16
294	Influence of particle size on the physico-mechanical and energy properties of briquettes produced with coffee husks. Environmental Science and Pollution Research, 2021, 28, 8215-8223.	2.7	15
295	Efficient biobutanol production by acetone-butanol-ethanol fermentation from spent coffee grounds with microwave assisted dilute sulfuric acid pretreatment. Bioresource Technology, 2021, 320, 124348.	4.8	28
296	Structural characterization of native and oxidized procyanidins (condensed tannins) from coffee pulp (Coffea arabica) using phloroglucinolysis and thioglycolysis-HPLC-ESI-MS. Food Chemistry, 2021, 340, 127830.	4.2	26
297	Anabolism of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus necator DSM 545 from spent coffee grounds oil. New Biotechnology, 2021, 60, 12-19.	2.4	11

#	Article	IF	CITATIONS
298	Strength characteristics of spent coffee grounds and oyster shells cemented with GGBS-based alkaline-activated materials. Construction and Building Materials, 2021, 267, 120986.	3.2	9
300	Foaming agents from spent coffee grounds: A mechanistic understanding of the modes of foaming and the role of coffee oil as antifoam. Food Hydrocolloids, 2021, 112, 106354.	5.6	5
301	Magnetic spent coffee ground as an efficient and green catalyst for aerobic oxidation of alcohols and tandem oxidative Groebke–Blackburn–Bienaymé reaction. Journal of the Iranian Chemical Society, 2021, 18, 1199-1209.	1.2	10
302	The implementation of the Circular Economy: Barriers and enablers in the coffee value chain. Journal of Cleaner Production, 2021, 281, 125033.	4.6	59
303	Extruded coffee parchment shows enhanced antioxidant, hypoglycaemic, and hypolipidemic properties by releasing phenolic compounds from the fibre matrix. Food and Function, 2021, 12, 1097-1110.	2.1	26
304	Fermentation of spent coffee grounds by Bacillus clausii induces release of potentially bioactive peptides. LWT - Food Science and Technology, 2021, 138, 110685.	2.5	26
305	Enzymatic Technology Application on Coffee Co-products: A Review. Waste and Biomass Valorization, 2021, 12, 3521-3540.	1.8	24
306	Food waste biorefinery: A case study for spent coffee grounds (SCGs) into bioactive compounds across the European Union. , 2021, , 459-473.		3
307	Coffee and Yeasts: From Flavor to Biotechnology. Fermentation, 2021, 7, 9.	1.4	25
308	Solid Fuel Characteristics of Pellets Comprising Spent Coffee Grounds and Wood Powder. Energies, 2021, 14, 371.	1.6	11
309	Contribution of the Environmental Biotechnology to the Sustainability of the Coffee Processing Industry in Developing Countries. Environmental and Microbial Biotechnology, 2021, , 565-589.	0.4	0
310	Integrated Design of Biorefineries Based on Spent Coffee Grounds. Industrial & Engineering Chemistry Research, 2021, 60, 494-506.	1.8	9
311	Recycling of spent coffee grounds for useful extracts and green composites. RSC Advances, 2021, 11, 2682-2692.	1.7	36
312	Cosmetics—food waste recovery. , 2021, , 503-528.		7
313	Methods of Synthesis of Magnetic Adsorbents. Environmental Chemistry for A Sustainable World, 2021, , 25-58.	0.3	1
314	Microbial Degradation in the Biogas Production of Value-Added Compounds. Environmental and Microbial Biotechnology, 2021, , 47-90.	0.4	1
315	Gasification of spent coffee grounds in a semi-fluidized bed reactor using steam and CO2 gasification medium. Journal of the Taiwan Institute of Chemical Engineers, 2021, 119, 115-127.	2.7	16
316	The Effect of Heat Removal during Thermophilic Phase on Energetic Aspects of Biowaste Composting Process. Energies, 2021, 14, 1183.	1.6	8

#	Article	IF	CITATIONS
317	Spent Coffee Grounds and Coffee Silverskin as Potential Materials for Packaging: A Review. Journal of Polymers and the Environment, 2021, 29, 2372-2384.	2.4	26
318	Potential applications of by-products from the coffee industry in polymer technology – Current state and perspectives. Waste Management, 2021, 121, 296-330.	3.7	42
319	Utilization of Coffee By-Products as Profitable Foods - A Mini Review. IOP Conference Series: Earth and Environmental Science, 2021, 672, 012077.	0.2	9
320	Recycling of spent coffee grounds in construction materials: A review. Journal of Cleaner Production, 2021, 289, 125837.	4.6	71
321	Evaluation of thermochemical routes for the valorization of solid coffee residues to produce biofuels: A Brazilian case. Renewable and Sustainable Energy Reviews, 2021, 137, 110585.	8.2	44
322	Isolation and characterization of cellulose nanocrystals from coffee grounds for tissue engineering. Materials Letters, 2021, 287, 129311.	1.3	12
323	Life cycle assessment of a circular, urban mushroom farm. Journal of Cleaner Production, 2021, 288, 125668.	4.6	42
324	Chemical Characteristics of Cascara, Coffee Cherry Tea, Made of Various Coffee Pulp Treatments. IOP Conference Series: Earth and Environmental Science, 2021, 709, 012030.	0.2	4
325	Coffee By-Products and Their Suitability for Developing Active Food Packaging Materials. Foods, 2021, 10, 683.	1.9	35
326	The wastes of coffee bean processing for utilization in food: a review. Journal of Food Science and Technology, 2022, 59, 429-444.	1.4	41
327	Effect of thermal and acid pre-treatment on increasing organic loading rate of anaerobic digestion of coffee pulp for biogas production. Biomass Conversion and Biorefinery, 0, , 1.	2.9	11
328	Spent ground coffee $\hat{a} \in$ " awaking the sustainability prospects. Environmental and Toxicology Management, 2021, 1, 1-6.	0.3	9
329	Performance column adsorption of methylene blue using composite spent coffe ground-copper ferrites (SCG/CuFe ₂ O ₄). Journal of Physics: Conference Series, 2021, 1876, 012010.	0.3	0
330	Enhancing Coffee Supply Chain towards Sustainable Growth with Big Data and Modern Agricultural Technologies. Sustainability, 2021, 13, 4593.	1.6	27
331	Coffee Cherry Pulp by-Product as a Potential Fiber Source for Bread Production: A Fundamental and Empirical Rheological Approach. Foods, 2021, 10, 742.	1.9	6
332	Valorisation of Coffee Roasting By-Products: Recovery of Silverskin Fat By Supercritical CO2 Extraction. Waste and Biomass Valorization, 2021, 12, 6021-6033.	1.8	8
333	Converting coffee silverskin to value-added products by a slow pyrolysis-based biorefinery process. Fuel Processing Technology, 2021, 214, 106708.	3.7	24
334	Effect of Increasing Supplementation Levels of Coffee Pulp on Milk Yield and Food Intake in Dual-Purpose Cows: An Alternative Feed Byproduct for Smallholder Dairy Systems of Tropical Climate Regions. Agriculture (Switzerland), 2021, 11, 416.	1.4	4

#	Article	IF	CITATIONS
335	Response surface methodology applied to spent coffee residue pyrolysis: effect of temperature and heating rate on product yield and product characterization. Biomass Conversion and Biorefinery, 2023, 13, 3555-3568.	2.9	3
336	Antioxidant and Anti-Inflammatory Profiles of Spent Coffee Ground Extracts for the Treatment of Neurodegeneration. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-19.	1.9	16
337	Eco-dyeing with biocolorant from spent coffee ground on low molecular weight chitosan crosslinked cotton. Sustainable Chemistry and Pharmacy, 2021, 20, 100389.	1.6	18
338	Improved TGA-MS measurements for evolved gas analysis (EGA) during pyrolysis process of various biomass feedstocks. Syngas energy balance determination. Thermochimica Acta, 2021, 699, 178912.	1.2	22
339	Coffee by-products in topical formulations: A review. Trends in Food Science and Technology, 2021, 111, 280-291.	7.8	51
340	Potential for Farmers' Cooperatives to Convert Coffee Husks into Biochar and Promote the Bioeconomy in the North Ecuadorian Amazon. Applied Sciences (Switzerland), 2021, 11, 4747.	1.3	6
341	Anaerobic digestion of hydrothermal liquefaction wastewater from spent coffee grounds. Biomass and Bioenergy, 2021, 148, 106030.	2.9	14
342	Effect of Processed Beverage By-Product-Based Diets on Biological Parameters, Conversion Efficiency and Body Composition of Hermetia illucens (L) (Diptera: Stratiomyidae). Insects, 2021, 12, 475.	1.0	11
343	Graphene Quantum Dots from Carbonized Coffee Bean Wastes for Biomedical Applications. Nanomaterials, 2021, 11, 1423.	1.9	27
344	Technical Report on the notification of cherry pulp from Coffea arabica L. and Coffea canephora Pierre ex A. Froehner as a traditional food from a third country following Article 14 of Regulation (EU) 2015/2283. EFSA Supporting Publications, 2021, 18, 6657E.	0.3	8
345	Beyond HRMâ $€$ ™s Performance Management: Towards Strategic Workforce Resilience. , 0, , .		0
346	Aroma-Active Compounds in Robusta Coffee Pulp Puree—Evaluation of Physicochemical and Sensory Properties. Molecules, 2021, 26, 3925.	1.7	9
347	Caffeinating the biofuels market: Effect of the processing conditions during the production of biofuels and high-value chemicals by hydrothermal treatment of residual coffee pulp. Journal of Cleaner Production, 2021, 302, 127008.	4.6	9
348	Effect of in vitro digestion on bioactive compounds, antioxidant and antimicrobial activities of coffee (Coffea arabica L.) pulp aqueous extract. Food Chemistry, 2021, 348, 129094.	4.2	27
349	Vulnerability of coffee (Coffea spp.) genetic resources in the United States. Genetic Resources and Crop Evolution, 2021, 68, 2691-2710.	0.8	7
350	Characterization of Coffee Silver Skin as Potential Food-Safe Ingredient. Foods, 2021, 10, 1367.	1.9	30
351	Circular economy of bio compost from coffee waste to support sustainable development goals in alleviating poverty in communities around the Sidoarjo coffee industry. IOP Conference Series: Earth and Environmental Science, 2021, 802, 012016.	0.2	0
352	Monomers, Materials and Energy from Coffee By-Products: A Review. Sustainability, 2021, 13, 6921.	1.6	20

#	Article	IF	CITATIONS
353	New sustainable perspectives for "Coffee Wastewater―and other by-products: A critical review. Future Foods, 2021, 4, 100058.	2.4	23
354	Characterization of the Aroma Profile and Main Key Odorants of Espresso Coffee. Molecules, 2021, 26, 3856.	1.7	37
355	Coffee Silver Skin: Chemical Characterization with Special Consideration of Dietary Fiber and Heat-Induced Contaminants. Foods, 2021, 10, 1705.	1.9	24
356	Pore volume upgrade of biochar from spent coffee grounds by sodium bicarbonate during torrefaction. Chemosphere, 2021, 275, 129999.	4.2	21
357	Bored Coffee Beans for Production of Hyaluronic Acid by Streptococcus zooepidemicus. Fermentation, 2021, 7, 121.	1.4	5
358	Conceptually integrating a multi-product strategy for the valorization of kitchen waste towards a more sustainable management. Journal of Cleaner Production, 2021, 306, 127292.	4.6	12
359	A comprehensive analysis of operations and mass flows in postharvest processing of washed coffee. Resources, Conservation and Recycling, 2021, 170, 105554.	5.3	11
360	Coffee Wastes as Sustainable Flame Retardants for Polymer Materials. Coatings, 2021, 11, 1021.	1.2	19
361	In Vitro Bioaccessibility and Antioxidant Activity of Polyphenolic Compounds from Spent Coffee Grounds-Enriched Cookies. Foods, 2021, 10, 1837.	1.9	24
362	Spent marigold flower meal as an alternate feed for goats. Tropical Animal Health and Production, 2021, 53, 430.	0.5	2
363	Coffee biowaste valorization within circular economy: an evaluation method of spent coffee grounds potentials for mortar production. International Journal of Life Cycle Assessment, 2021, 26, 1805-1815.	2.2	27
364	Glutathione fermentation by Millerozyma farinosa using spent coffee grounds extract and seawater. Bioresource Technology Reports, 2021, 15, 100777.	1.5	4
365	Anti-counterfeiting application of fluorescent carbon dots derived from wasted coffee grounds. Optik, 2021, 241, 166449.	1.4	19
366	Technical Report on the notification of dried cherry pulp from Coffea arabica L. and Coffea canephora Pierre ex A. Froehner as a traditional food from a third country pursuant to Article 14 of Regulation (EU) 2015/2283. EFSA Supporting Publications, 2021, 18, 6808E.	0.3	4
367	Green additive to upgrade biochar from spent coffee grounds by torrefaction for pollution mitigation. Environmental Pollution, 2021, 285, 117244.	3.7	13
368	The effect of head group of surfactant on the adsorption of methyl red onto modified coffee residues. Journal of Molecular Structure, 2022, 1249, 131527.	1.8	15
369	Effective Synergistic Effect of Treatment and Modification on Spent Coffee Grounds for Sustainable Biobased Composites. Waste and Biomass Valorization, 2022, 13, 1339-1348.	1.8	4
370	Study on the feasibility of using agricultural waste in the production of concrete blocks. Journal of Building Engineering, 2021, 42, 102491.	1.6	9

#	Article	IF	Citations
371	A systems engineering framework for the optimization of food supply chains under circular economy considerations. Science of the Total Environment, 2021, 794, 148726.	3.9	33
372	Conventional and pressurized ethanolic extraction of oil from spent coffee grounds: Kinetics study and evaluation of lipid and defatted solid fractions. Journal of Supercritical Fluids, 2021, 177, 105332.	1.6	8
373	Evaluation of the aluminum migration from metallic seals to coffee beverage after using a high-pressure coffee pod machine. Journal of Food Composition and Analysis, 2021, 104, 104131.	1.9	2
374	Bioprocesses for the recovery of bioenergy and value-added products from wastewater: A review. Journal of Environmental Management, 2021, 300, 113831.	3.8	21
375	Conversion of spent coffee grounds into vermicompost. Bioresource Technology, 2021, 341, 125925.	4.8	13
376	Synthesis and Initial Evaluation of Solid Acid Catalyst Derived from Spent Coffee Grounds for the Esterification of Oleic Acid and Methanol. Waste and Biomass Valorization, 2021, 12, 4387-4397.	1.8	7
377	The Effect of Atmosphere Media on Temperature and Mass of Torrefacted Coffee Beans. Lecture Notes in Mechanical Engineering, 2021, , 151-160.	0.3	3
378	Valorization of coffee wastes for effective recovery of value-added bio-based products: an aim to enhance the sustainability and productivity of the coffee industry. , 2021, , 199-218.		0
379	Circular Economy Systems Engineering: A case study on the Coffee Supply Chain. Computer Aided Chemical Engineering, 2021, 50, 1541-1546.	0.3	3
381	Initial Results of Using Biochar Derived from Spent Coffee Grounds to Remove Pollutants from Livestock Wastewater in Vietnam. Lecture Notes in Civil Engineering, 2021, , 305-325.	0.3	2
383	Spent coffee ground as renewable energy source: Evaluation of the drying processes. Journal of Environmental Management, 2020, 275, 111204.	3.8	24
384	Physicochemical and structural characterization of biochar derived from the pyrolysis of biosolids, cattle manure and spent coffee grounds. Journal of the Energy Institute, 2020, 93, 2063-2073.	2.7	66
385	Intake, digestibility and feeding behaviour of grazing dairy cows supplemented with common bean (Phaseolus vulgaris L.) residue. Animal Production Science, 2020, 60, 1607.	0.6	4
386	Chemical Nature of Spent Coffee Grounds and Husks. Australian Journal of Chemistry, 2020, 73, 1284.	0.5	5
387	Coffee Pulp Waste as a Functional Ingredient: Effect on Salty Cookies Quality. Journal of Food and Nutrition Research (Newark, Del), 2019, 7, 632-638.	0.1	21
388	Comparison of Metal Content of Coffee Samples Grown in Different Countries by Inductively Coupled Plasma Optical Emission Spectroscopy. Celal Bayar Universitesi Fen Bilimleri Dergisi, 2019, 15, 35-43.	0.1	3
389	Sustainability Analysis for Gayo Coffee Supply Chain. International Journal on Advanced Science, Engineering and Information Technology, 2013, 3, 122.	0.2	10
390	Coffee crop science metric: A review. Coffee Science, 0, 15, 1-11.	0.5	5

#	Article	IF	CITATIONS
391	DIETARY FIBER AND ANTIOXIDANT ACTIVITY OF GLUTEN-FREE COOKIES WITH COFFEE CHERRY FLOUR ADDITION. Coffee Science, 2019, 14, 493.	0.5	21
392	Nutritional Quality, Potential Health Promoting Properties and Sensory Perception of an Improved Gluten-Free Bread Formulation Containing Inulin, Rice Protein and Bioactive Compounds Extracted from Coffee Byproducts. Polish Journal of Food and Nutrition Sciences, 2019, 69, 157-166.	0.6	35
393	Critical Evaluation of Coffee Pulp as an Innovative Antioxidant Dietary Fiber Ingredient: Nutritional Value, Functional Properties, and Acute and Sub-Chronic Toxicity. Proceedings (mdpi), 2021, 70, 65.	0.2	10
394	Formulation of Nutraceutical Biscuits Based on Dried Spent Coffee Grounds. International Journal of Pharmacology, 2018, 14, 584-594.	0.1	16
395	Influence of Spent Coffee Ground as Fiber Source on Chemical, Rheological and Sensory Properties of Sponge Cake. Pakistan Journal of Biological Sciences, 2019, 22, 273-282.	0.2	8
396	Impact of Effluents from Wet Coffee Processing Plants on the Walleme River of Southern Ethiopia. Research Journal of Environmental Toxicology, 2017, 11, 90-96.	1.0	8
397	Sustainable Management of Coffee and Cocoa Agro-Waste. Advances in Environmental Engineering and Green Technologies Book Series, 2019, , 141-164.	0.3	2
398	Characteristics of direct transesterification using ultrasound on oil extracted from spent coffee grounds. Environmental Engineering Research, 2020, 25, 470-478.	1.5	4
399	The Solid Wastes of Coffee Production and of Olive Oil Extraction: Management Perspectives in Rural Areas. , 0, , .		5
400	Evaluation of coffee pulp as substrate for polygalacturonase production in solid state fermentation. Emirates Journal of Food and Agriculture, 0, , 117.	1.0	12
401	Food Processing Industries, Food Waste Classification and Handling, Target Compounds. , 2021, , 17-78.		1
402	Composting of solid waste from the coffee milling process using trench composting and a bioreactor with the help of efficient microorganisms in the Libre University, Socorro headquarters. IngenierÃa Solidaria, 2021, 17, 1-28.	0.1	1
403	Biocascading: Platform Molecules, Value Added Chemicals, and Bioactives. , 2021, , 169-229.		1
404	Superhydrophilic three-dimensional porous spent coffee ground reduced palladium nanoparticles for efficient catalytic reduction. Journal of Colloid and Interface Science, 2022, 608, 1414-1421.	5.0	12
405	A biorefinery approach towards valorization of spent coffee ground: Extraction of the oil by supercritical carbon dioxide and utilizing the defatted spent in formulating functional cookies. Future Foods, 2021, 4, 100090.	2.4	16
406	Extraction and Chemical Characterization of Functional Phenols and Proteins from Coffee (Coffea) Tj ETQq1 1 C).784314 r 1.8	gBT /Overloc
407	Value-Added Metabolites from Agricultural Waste and Application of Green Extraction Techniques. Sustainability, 2021, 13, 11432.	1.6	30
408	Polyethylene-coffee husk eco-composites for production of value-added consumer products. Sustainable Environment Research, 2021, 31, .	2.1	7

#	Article	IF	CITATIONS
409	Coffee Pulp, a By-Product of Coffee Production, Modulates Gut Microbiota and Improves Metabolic Syndrome in High-Carbohydrate, High-Fat Diet-Fed Rats. Pathogens, 2021, 10, 1369.	1.2	16
410	Spent coffee grounds based circular bioeconomy: Technoeconomic and commercialization aspects. Renewable and Sustainable Energy Reviews, 2021, 152, 111721.	8.2	17
413	POTENCIAL DE GERAÇÃO DE ELETRICIDADE COM CODIGESTÃO DE RESÃÐUOS AGROPECUÃRIOS NA REGIÃO DA ZONA DA MATA, MINAS GERAIS, BRASIL. Revista Gestão & Sustentabilidade Ambiental, 0, 4, 302.	О _{0.1}	2
414	Roasting Effects on Nutritional and Antinutritional Compounds in Coffee. , 2016, , 47-76.		0
415	14: Potential Application of Bioactive Compounds from Agroindustrial Waste in the Cosmetic Industry. , 2017, , 357-382.		0
416	Potansiyel Fonksiyonel Bileşen: Kahve Çekirdeği Zarı. Akademik Gıda, 0, , 66-66.	0.5	0
417	Essential oil of Coffee arabica L. husks: a brilliant source of antimicrobial and antioxidant agents. Biomedical Research (Aligarh, India), 2018, 29, .	0.1	6
418	Anti-quorum and biofilm formation inhibition by coffee husk oil (Coffee arabica L.). Biomedical Research (Aligarh, India), 2018, 29, .	0.1	1
419	Glucose Production from Spent Coffee Grounds by Acid Pretreatment and Enzymatic Hydrolysis. KSBB Journal, 2018, 33, 247-252.	0.1	0
420	Optimization of the infeed formula for spent coffee ground extract encapsulation using the response surface methodology. Journal on Processing and Energy in Agriculture, 2019, 23, 108-112.	0.3	0
421	Impact of eight dimensions on the business of specialty coffee shop. Pressacademia, 2019, 6, 79-87.	0.2	3
422	Possibilities of Applying the Gasification Process in Coffee Grounds Treatment. Springer Proceedings in Energy, 2020, , 703-713.	0.2	0
423	Supply Chain Performance Measurement Model of Passion Fruit Agro-Industry for Sustainable Micro, Small, and Medium Enterprises with System Dynamics in North Sumatra Province. International Journal on Advanced Science, Engineering and Information Technology, 2019, 9, 1885-1891.	0.2	0
424	Biorefinery Concept Applied to Phytochemical Extraction and Bio-Syngas Production using Agro-Industrial Waste Biomass: A Review. Ingenieria E Investigacion, 2020, 40, .	0.2	0
425	Efecto del tiempo de fermentación sobre la calidad nutricional del ensilaje de pulpa de Coffea arabica L Ciencia Tecnologia Agropecuaria, 2020, 21, 1-11.	0.3	2
426	Pós ricos em fibras oriundos de subprodutos de resÃduos de frutos tropicais: um levantamento bibliográfico sobre seus compostos bioativos. Research, Society and Development, 2020, 9, e80996803.	0.0	0
427	Evaluation of antioxidant, organic acid, and volatile compounds in coffee pulp wine fermented with native yeasts isolated from coffee cherries. Food Science and Technology International, 2022, 28, 716-727.	1.1	3
428	Coffee as a Naturally Beneficial and Sustainable Ingredient in Personal Care Products: A Systematic Scoping Review of the Evidence. Frontiers in Sustainability, 2021, 2, .	1.3	5

#	Article	IF	CITATIONS
429	Agricultural crop waste materials – A potential reservoir of molecules. Environmental Research, 2022, 206, 112284.	3.7	9
430	Spent coffee grounds as a source of smart biochelates to increase Fe and Zn levels in lettuces. Journal of Cleaner Production, 2021, 328, 129548.	4.6	14
431	Review Manajemen Rantai Pasok Produk Pertanian Berkelanjutan: Konseptual, Isu Terkini, dan Penelitian Mendatang. Jurnal Ilmu Pertanian Indonesia, 2021, 26, 78-91.	0.1	0
432	The Importance of Natural Products in Cosmetics. Advanced Structured Materials, 2021, , 643-685.	0.3	8
433	Sensory evaluation and mixture design assessment of coffee-flavored liquor obtained from spent coffee grounds. Food Quality and Preference, 2022, 96, 104427.	2.3	8
434	Quantification of Chlorogenic Acid and Vanillin from Coffee Peel Extract and its Effect on α-Amylase Activity, Immunoregulation, Mitochondrial Oxidative Stress, and Tumor Suppressor Gene Expression Levels in H2O2-Induced Human Mesenchymal Stem Cells. Frontiers in Pharmacology, 2021, 12, 760242.	1.6	6
435	Coffee berry and green bean chemistry $\hat{a} \in$ Opportunities for improving cup quality and crop circularity. Food Research International, 2022, 151, 110825.	2.9	27
436	Changes in Bioactive Compounds of Coffee Pulp through Fermentation-Based Biotransformation Using Lactobacillus plantarum TISTR 543 and Its Antioxidant Activities. Fermentation, 2021, 7, 292.	1.4	16
437	Optimization of Ultrasound-Assisted Extraction of Spent Coffee Grounds Oil Using Response Surface Methodology. Processes, 2021, 9, 2085.	1.3	7
438	Reducing sugar production from spent coffee grounds using microbubble-assisted synthesis of silica acid catalyst. Catalysis Today, 2022, 388-389, 3-11.	2.2	7
439	Multiparameter-analysis of CO2/Steam-enhanced gasification and pyrolysis for syngas and biochar production from low-cost feedstock. Energy Conversion and Management: X, 2021, 12, 100138.	0.9	9
440	Valorization of lignocellulosic wastes for extracellular enzyme production by novel Basidiomycetes: screening, hydrolysis, and bioethanol production. Biomass Conversion and Biorefinery, 0, , 1.	2.9	4
441	Recent advances in biotransformation, extraction and green production of D-mannose. Current Research in Food Science, 2022, 5, 49-56.	2.7	8
442	Architectural technologies for life environment: Spent coffee ground reuse in lime-based mortars. A preliminary assessment for innovative green thermo-plasters. Construction and Building Materials, 2022, 319, 126079.	3.2	9
443	Evaluation of thermal/acoustic performance to confirm the possibility of coffee waste in building materials in using bio-based microencapsulated PCM. Environmental Pollution, 2022, 294, 118616.	3.7	11
444	An integrated process for conversion of spent coffee grounds into value-added materials. Bioresource Technology, 2022, 346, 126618.	4.8	11
445	Spontaneous Precipitation of Caffeine from Supercritical Extracts of Roasted Coffee Beans. Theoretical Foundations of Chemical Engineering, 2021, 55, 1010-1015.	0.2	1
446	Valorization of spent coffee grounds by 2-methyloxolane as bio-based solvent extraction. Viable pathway towards bioeconomy for lipids and biomaterials. OCL - Oilseeds and Fats, Crops and Lipids, 2022, 29, 7.	0.6	6

#	Article	IF	CITATIONS
447	Analysis of Gayo wine-coffee processing facility development. IOP Conference Series: Earth and Environmental Science, 2022, 951, 012094.	0.2	1
448	Effect of the Post-Harvest Processing on Protein Modification in Green Coffee Beans by Phenolic Compounds. Foods, 2022, 11, 159.	1.9	9
449	Pectin and cellulose extracted from coffee pulps and their potential in formulating biopolymer films. Biomass Conversion and Biorefinery, 0, , 1.	2.9	6
450	Influence of Urea on Organic Bulk Fertilizer of Spent Coffee Grounds and Green Algae Chlorella sp. Biomass. Sustainability, 2022, 14, 1261.	1.6	2
451	Effect of spent coffee grounds extract on astaxanthin production by Xanthophyllomyces dendrorhous. Bioresource Technology Reports, 2022, 17, 100953.	1.5	1
452	Biomass/Biochar carbon materials for CO2 capture and sequestration by cyclic adsorption processes: A review and prospects for future directions. Journal of CO2 Utilization, 2022, 57, 101890.	3.3	82
453	Optimal conditions to produce extracts of compost and vermicompost from oil palm and coffee pulp wastes. Journal of Material Cycles and Waste Management, 0, , .	1.6	4
454	Recent Applications of the Electrocoagulation Process on Agro-Based Industrial Wastewater: A Review. Sustainability, 2022, 14, 1985.	1.6	32
456	Valorization of coffee leaves as a potential agri-food resource: bio-active compounds, applications and future prospective. Planta, 2022, 255, 67.	1.6	7
457	Coffee by-products as the source of antioxidants: a systematic review. F1000Research, 0, 11, 220.	0.8	6
458	Bio-Wastes as Aggregates for Eco-Efficient Boards and Panels: Screening Tests of Physical Properties and Bio-Susceptibility. Infrastructures, 2022, 7, 26.	1.4	9
459	Spent Coffee Grounds Improve the Nutritional Value and Technological Properties of Gluten-free Cookies. Journal of Culinary Science and Technology, 0, , 1-11.	0.6	1
460	Fabrication of Biochar Materials from Biowaste Coffee Grounds and Assessment of Its Adsorbent Efficiency for Remediation of Water-Soluble Pharmaceuticals. Sustainability, 2022, 14, 2931.	1.6	14
461	Smart preparation of microporous carbons from spent coffee grounds. Comprehensive characterization and application in explosives removal from water samples. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, , 128889.	2.3	3
462	Effect of coffee husk compost to increase peanut yield in inceptisol. IOP Conference Series: Earth and Environmental Science, 2022, 1005, 012013.	0.2	0
463	Potential Evolution of the Cooling Market in the EU27+UK: An Outlook until 2030. Sustainability, 2022, 14, 4461.	1.6	2
464	Multi-Objective Statistical Optimization of Pectinolytic Enzymes Production by an Aspergillus sp. on Dehydrated Coffee Residues in Solid-State Fermentation. Fermentation, 2022, 8, 170.	1.4	7
465	Comparative Analysis of Selected Chemical Parameters of Coffea arabica, from Cascara to Silverskin. Foods, 2022, 11, 1082.	1.9	8

#	Article	IF	CITATIONS
466	High-Pressure Technologies for the Recovery of Bioactive Molecules from Agro-Industrial Waste. Applied Sciences (Switzerland), 2022, 12, 3642.	1.3	12
467	Phenolic compounds from coffee by-products: Extraction and application in the food and pharmaceutical industries. Trends in Food Science and Technology, 2022, 123, 172-186.	7.8	52
468	Techno – Economic analysis of activated carbon production from spent coffee grounds: Comparative evaluation of different production routes. Energy Conversion and Management: X, 2022, 14, 100218.	0.9	6
469	Fabrication and characterization of new eco-friendly composites obtained by the complete recycling of exhausted coffee capsules. Composites Science and Technology, 2022, 222, 109358.	3.8	5
470	Effects of pyrolysis temperature and aging treatment on the adsorption of Cd2+ and Zn2+ by coffee grounds biochar. Chemosphere, 2022, 296, 134051.	4.2	30
471	Biomass and organic waste potentials towards implementing circular bioeconomy platforms: A systematic bibliometric analysis. Fuel, 2022, 318, 123585.	3.4	50
472	Acid hydrolysis of spent coffee grounds: effects on possible prebiotic activity of oligosaccharides. Chemical and Biological Technologies in Agriculture, 2021, 8, .	1.9	7
473	Aprovechamiento de los polisacáridos de la pulpa de café residual para la obtención de bioetanol como estrategia hacia la bioeconomÃa. Gestión Y Ambiente, 2021, 24, 100-113.	0.1	1
474	Scientometric Overview of Coffee By-Products and Their Applications. Molecules, 2021, 26, 7605.	1.7	19
475	Circular Economy Business Models for the Tanzanian Coffee Sector: A Teaching Case Study. Sustainability, 2021, 13, 13931.	1.6	8
476	Antioxidation and Tyrosinase Inhibitory Ability of Coffee Pulp Extract by Ethanol. Journal of Chemistry, 2021, 2021, 1-8.	0.9	7
477	Effectiveness of direct application of top dressing with spent coffee grounds for soil improvement and weed control in wheat-soybean double cropping system. Plant Production Science, 0, , 1-9.	0.9	5
478	Integrated biopolymer and bioenergy production from organic wastes: Recent advances and future outlook. , 2022, , 261-283.		1
479	Valorization of spent coffee grounds through pyrolysis as adsorbent for the removal of Vivizole Red 3BS dye from aqueous solution. Water Practice and Technology, 2022, 17, 1019-1034.	1.0	1
480	Preparation of purified spent coffee ground and its reinforcement in natural rubber composite. Arabian Journal of Chemistry, 2022, 15, 103917.	2.3	13
481	A Review of Recent Advances in Spent Coffee Grounds Upcycle Technologies and Practices. Frontiers in Chemical Engineering, 2022, 4, .	1.3	9
493	Comprehensive and Integrated Impact Assessment Framework for Development Policies Evaluation: Definition and Application to Kenyan Coffee Sector. Energies, 2022, 15, 3071.	1.6	1
494	A novel intelligent film with high stability based on chitosan/sodium alginate and coffee peel anthocyanin for monitoring minced beef freshness. International Journal of Food Science and Technology, 2022, 57, 4673-4686.	1.3	4

#	Article	IF	CITATIONS
495	Holistic Exploitation of Spent Coffee Ground: Use as Biosorbent for Olive Mill Wastewaters After Extraction of Its Phenolic Compounds. Water, Air, and Soil Pollution, 2022, 233, .	1.1	5
497	History, Techniques and Technologies of Soil-Less Cultivation. Urban Agriculture, 2022, , 45-86.	0.5	1
498	Proximate Composition, Antioxidant Activity, Mineral and Lipid Profiling of Spent Coffee Grounds Collected in Morocco Reveal a Great Potential of Valorization. Waste and Biomass Valorization, 2022, 13, 4495-4510.	1.8	14
499	A review on enhanced biofuel production from coffee by-products using different enhancement techniques. Materials for Renewable and Sustainable Energy, 2022, 11, 91-103.	1.5	8
500	Recovery of Phenolic Compounds and Antioxidants from Coffee Pulp (Coffea canephora) Waste Using Ultrasound and Microwave-Assisted Extraction. Processes, 2022, 10, 1011.	1.3	4
501	An overview of sustainable approaches for bioenergy production from agro-industrial wastes. Energy Nexus, 2022, 6, 100086.	3.3	26
502	The effect of reactor scale on biochars and pyrolysis liquids from slow pyrolysis of coffee silverskin, grape pomace and olive mill waste, in auger reactors. Waste Management, 2022, 148, 106-116.	3.7	5
503	Production of Coffee Cherry Spirits from Coffea arabica Varieties. Foods, 2022, 11, 1672.	1.9	4
504	Potential of Using Dual-Media Biofilm Reactors as a Real Coffee Industrial Effluent Pre-Treatment. Water (Switzerland), 2022, 14, 2025.	1.2	2
505	Torrefacción de biomasa en un reactor de tornillo a escala de banco: efecto de la temperatura y del tipo de biomasa. Tecno Lógicas, 2022, 25, e2269.	0.1	0
506	Physiological behavior and nutritional status of coffee (<i>Coffea arabica</i> L. var. Castillo) trees in response to biochar application. Journal of Agricultural Science, 0, , 1-47.	0.6	0
507	Coffee pulp as a source for polyphenols extraction using ultrasound, microwave, and green solvents. Environmental Quality Management, 2022, 32, 451-461.	1.0	7
508	Fluidised bed combustion and ash fusibility behaviour of coal and spent coffee grounds blends: CO and NOx emissions, combustion performance and agglomeration tendency. Fuel, 2022, 326, 125008.	3.4	7
509	Microbial Processes for Upcycling Food Wastes Into Sustainable Bioplastics. , 2023, , 51-74.		2
510	Antioxidant and pro-apoptosis activities of coffee husk (Coffea arabica) anthocyanins. , 2021, 28, 1187-1195.		2
511	Thermogravimetric analysis of co-combustion of a bituminous coal and coffee industry by-products. Thermochimica Acta, 2022, 715, 179296.	1.2	13
512	Green Synthesis of Silver Nanoparticles Using Spent Coffee Ground Extracts: Process Modelling and Optimization. Nanomaterials, 2022, 12, 2597.	1.9	3
513	The Effect of Extract Tannins from Spent Coffee Ground on Waste Water Treatment. Journal of Physics: Conference Series, 2022, 2309, 012006.	0.3	0

	Сіт	CITATION REPORT	
#	Article	IF	CITATIONS
514	The second life of coffee can be even more energizing: Circularity of materials for bio-based electrochemical energy storage devices. MRS Energy & Sustainability, 2022, 9, 443-460.	1.3	1
515	Valorization of SCG through Extraction of Phenolic Compounds and Synthesis of New Biosorbent. Sustainability, 2022, 14, 9358.	1.6	4
517	Valorization of Fruit and Vegetable Waste by Anaerobic Digestion: Definition of Co-substrates and Inoculum. Waste and Biomass Valorization, 2023, 14, 407-419.	1.8	3
518	Robusta coffee cherry fermentation: Physicochemical and sensory evaluation of fermented cascara tea. Journal of Food Processing and Preservation, 2022, 46, .	0.9	4
519	Spent Coffee Grounds Characterization and Reuse in Composting and Soil Amendment. , 2022, 1, 2-20).	17
520	Ultrasounds application for nut and coffee wastes valorisation via biomolecules solubilisation and methane production. Waste Management, 2022, 150, 373-382.	3.7	6
521	Coffee Leaf Tea from El Salvador: On-Site Production Considering Influences of Processing on Chemical Composition. Foods, 2022, 11, 2553.	1.9	3
522	Are important phenomena of joint production still being neglected by economic theory? A review of recent literature. Journal of Business Economics, 0, , .	1.3	3
523	Process design and techno-economic assessment of cellulolytic enzymes production from coffee husk through process simulation. Biomass Conversion and Biorefinery, 0, , .	2.9	3
524	Impact of a Pretreatment Step on the Acidogenic Fermentation of Spent Coffee Grounds. Bioengineering, 2022, 9, 362.	1.6	1
525	Conceptualizing network approaches for a successful farm entrepreneurship using ATLAS.ti®. , 2023, 100026.	2,	4
526	Optimization of ultrasound-assisted extraction of bioactive compounds from coffee pulp using propylene glycol as a solvent and their antioxidant activities. Ultrasonics Sonochemistry, 2022, 89, 106127.	3.8	20
527	Valorization of coffee industry wastes: Comprehensive physicochemical characterization of coffee silverskin and multipurpose recycling applications. Journal of Cleaner Production, 2022, 370, 133520.	4.6	15
528	Physicochemical and sensory characteristics of dehydrated coffee pulp in function of drying temperature. Revista Brasileira De Engenharia Agricola E Ambiental, 2022, 26, 894-900.	0.4	0
529	Enzymes in ready-to-drink tea and coffee products. , 2023, , 105-124.		1
530	Activated Carbon Production from Coffee Waste via Slow Pyrolysis Using a Fixed Bed Reactor. Environmental and Climate Technologies, 2022, 26, 720-729.	0.5	2
531	Extraction efficiency of phenolic compounds by bioconversion and their implication on their biological effects. , 2022, , 271-300.		0
532	Impact of export and import on value addition of ready-made garments sector in Bangladesh. Journal of International Studies, 2022, 15, 24-39.	0.7	0

#	Article	IF	CITATIONS
533	Factors That Influence Sustainable Selection and Reselection Intentions Regarding Soluble/Instant Coffee—The Case of Serbian Consumers. Sustainability, 2022, 14, 10701.	1.6	5
534	Combined Pulsed Electric Field and Microwave-Assisted Extraction as a Green Method for the Recovery of Antioxidant Compounds with Electroactive Potential from Coffee Agro-Waste. Plants, 2022, 11, 2362.	1.6	7
535	Factors Affecting Mechanical Properties of Reinforced Bioplastics: A Review. Polymers, 2022, 14, 3737.	2.0	33
536	Use of Unmodified Coffee Husk Biochar and Ashes as Heterogeneous Catalysts in Biodiesel Synthesis. Bioenergy Research, 2023, 16, 1746-1757.	2.2	7
537	Coffee Silverskin: Chemical and Biological Risk Assessment and Health Profile for Its Potential Use in Functional Foods. Foods, 2022, 11, 2834.	1.9	6
538	El procesamiento del grano de café. Del tueste a la infusión. Revista Bionatura, 2022, 7, 1-23.	0.1	Ο
539	Evaluation of Recycled Spent Coffee Material Treated with Animal Glue, Starch, and Red Clay as Acid Materials. Materials, 2022, 15, 6622.	1.3	3
540	Microbiome Applications for Sustainable Food Systems. , 2023, , 243-273.		0
541	Pyrolysis of four waste biomasses and elucidation of reaction kinetics and pyrolytic products. Combustion Theory and Modelling, 2022, 26, 1217-1238.	1.0	2
542	Structure, morphology, thermal, and sorption characteristics of epoxidized natural rubber conjugated spent coffee via <scp>oneâ€pot</scp> synthesis. Journal of Applied Polymer Science, 0, , .	1.3	Ο
543	Energy recovery from brewery spent grains and spent coffee grounds: a circular economy approach to waste valorization. Biofuels, 0, , 1-10.	1.4	4
544	Food industry waste - An opportunity for black soldier fly larvae protein production in Tanzania. Science of the Total Environment, 2023, 858, 159985.	3.9	6
545	Why Should We Be Concerned with the Use of Spent Coffee Grounds as an Organic Amendment of Soils? A Narrative Review. Agronomy, 2022, 12, 2771.	1.3	2
546	Life cycle analysis of innovative building materials based on circular coffee ground supply chain. Transportation Research Procedia, 2022, 67, 100-108.	0.8	4
547	The effect of atmospheric media variations on the characteristics of torrefied coffee beans. Results in Engineering, 2023, 17, 100826.	2.2	0
548	Capacidad antioxidante y contenido de fenoles totales en café y subproductos del café producido y comercializado en Norte de Santander (Colombia). Vitae, 2015, 21, 228-236.	0.2	3
549	Treatment Performance Assessment of Natural and Constructed Wetlands on Wastewater From Kege Wet Coffee Processing Plant in Dale Woreda, Sidama Regional State, Ethiopia. Environmental Health Insights, 2022, 16, 117863022211427.	0.6	4
551	Zero-Waste Management and Sustainable Consumption: A Comprehensive Bibliometric Mapping Analysis. Sustainability, 2022, 14, 16269.	1.6	6

#	Article	IF	CITATIONS
552	Fundamental Study on Combustion Characteristics of Bio-briquette as Alternative Fuels for Domestic Coffee Stove. IOP Conference Series: Earth and Environmental Science, 2022, 1121, 012013.	0.2	0
553	Risk Assessment of Coffee Cherry (Cascara) Fruit Products for Flour Replacement and Other Alternative Food Uses. Molecules, 2022, 27, 8435.	1.7	7
554	Sustainability issues along the coffee chain: From the field to the cup. Comprehensive Reviews in Food Science and Food Safety, 2023, 22, 287-332.	5.9	11
555	Usage of Beta in Risk Analysis of Coffee Retailers: Study of Dutch bros and Starbucks. , 0, 34, 1494-1499.		Ο
556	Facile Preparation of Multifunctional Ag-Fe _x O _y /C Composite from Coffee Husk for Antibacterial and Catalytic Applications. Advances in Science and Technology, 0, , .	0.2	1
557	Valorization of Spent coffee Grounds: A sustainable resource for Bio-based phase change materials for thermal energy storage. Waste Management, 2023, 157, 339-347.	3.7	19
558	Effects of entrepreneurial behaviour on market outlets choice: Evidence from rice producers in Ashanti Region, Ghana. , 2023, 2, 100037.		2
559	Mechanisms Underlying Neurodegenerative Disorders and Potential Neuroprotective Activity of Agrifood By-Products. Antioxidants, 2023, 12, 94.	2.2	7
560	Coffee Industry and Ways of Using By-Products as Bioadsorbents for Removal of Pollutants. Water (Switzerland), 2023, 15, 112.	1.2	2
561	Growth of Coffee Cultivation, Consumption & Production in India – An Overview. International Journal of Case Studies in Business, IT, and Education, 0, , 755-770.	0.0	3
562	Multifunctional Polyurethane Composites with Coffee Grounds and Wood Sawdust. Materials, 2023, 16, 278.	1.3	6
563	Plant Microbiome in Agroecosystems for Sustainable Agriculture and Environments. Microorganisms for Sustainability, 2023, , 423-438.	0.4	0
564	Impact of Integrating Annual and Perennial Legumes under Coffea arabica on Sloping Land. Sustainability, 2023, 15, 2453.	1.6	0
565	Spent Coffee Grounds Applied as a Top-Dressing or Incorporated into the Soil Can Improve Plant Growth While Reducing Slug Herbivory. Agriculture (Switzerland), 2023, 13, 257.	1.4	6
567	Coffee fibres from coffee waste. , 2023, , 287-307.		0
568	Recent patent applications for coffee and coffee byâ€products as active ingredients in cosmetics. International Journal of Cosmetic Science, 2023, 45, 267-287.	1.2	2
569	Risk Assessment of Trigonelline in Coffee and Coffee By-Products. Molecules, 2023, 28, 3460.	1.7	15
570	The coffee-house: Upcycling spent coffee grounds for the production of green geopolymeric architectural energy-saving products. Energy and Buildings, 2023, 286, 112956.	3.1	0

#	Article	IF	CITATIONS
571	Untargeted LC-QTOF-MS/MS-based metabolomics of spent coffee grounds alcoholic beverages fermented with Lachancea thermotolerans and Lactiplantibacillus plantarum. Food Research International, 2023, 167, 112733.	2.9	4
572	Spent coffee grounds and orange peel residues based biorefinery for microbial oil and biodiesel conversion estimation. Renewable Energy, 2023, 209, 382-392.	4.3	6
573	Development of natural deep eutectic solvent (NADES) based on choline chloride as a green solvent to extract phenolic compound from coffee husk waste. Arabian Journal of Chemistry, 2023, 16, 104634.	2.3	14
574	Pyrolysis of tea and coffee wastes: effect of physicochemical properties on kinetic and thermodynamic characteristics. Journal of Thermal Analysis and Calorimetry, 2023, 148, 2501-2515.	2.0	8
575	Production and Partial Purification of Cellulase from Aspergillus sp. VT12 by Solid-State Fermentation Using Coffee Pulp. , 2023, , 467-474.		0
576	Effects of the inclusion of coffee pulp silage in the diet on the performance and profitability of crossbred milk cows in the middle tropics. Tropical Animal Health and Production, 2023, 55, .	0.5	1
577	UHPLC-QTOF/MS Untargeted Lipidomics and Caffeine Carry-Over in Milk of Goats under Spent Coffee Ground Enriched Diet. Applied Sciences (Switzerland), 2023, 13, 2477.	1.3	1
578	Chloride Applied via Fertilizer Affects Plant Nutrition and Coffee Quality. Plants, 2023, 12, 885.	1.6	4
579	The Potential of Spent Coffee Grounds in Functional Food Development. Nutrients, 2023, 15, 994.	1.7	11
580	First report on the occurrence of aflatoxin B1 in coffee marketed in eastern Algeria. International Journal of Environmental Studies, 0, , 1-9.	0.7	0
581	Extraction of Micro, Nanocrystalline Cellulose and Textile Fibers from Coffee Waste. Journal of Testing and Evaluation, 2023, 51, 3042-3056.	0.4	4
583	Use of biobased materials from agro-industrial residues in food packaging. , 2023, , 173-229.		1
584	Twelve-Week Safety and Potential Lipid Control Efficacy of Coffee Cherry Pulp Juice Concentrate in Healthy Volunteers. Nutrients, 2023, 15, 1602.	1.7	0
585	Scale Insects and Natural Enemies Associated with Conilon Coffee (Coffea canephora) in São Paulo State, Brazil. Agriculture (Switzerland), 2023, 13, 829.	1.4	1
586	Developing PMMA/Coffee Husk Green Composites to Meet the Individual Requirements of People with Disabilities: Hip Spacer Case Study. Journal of Functional Biomaterials, 2023, 14, 200.	1.8	4
587	Formulation of Edible Films Based on W/O/W Emulsions Stabilized by Coffee Byproducts. Food and Bioprocess Technology, 2023, 16, 2531-2540.	2.6	1
588	Valorization of cocoa, tea and coffee processing by-products-wastes. Advances in Food and Nutrition Research, 2023, , .	1.5	0
589	Polysaccharide-Based Carriers for Pulmonary Insulin Delivery: The Potential of Coffee as an Unconventional Source. Pharmaceutics, 2023, 15, 1213.	2.0	Ο

#	Article	IF	CITATIONS
590	Value-Added Products from Coffee Waste: A Review. Molecules, 2023, 28, 3562.	1.7	15
591	Waste-to-energy: Biogas potential of waste from coffee production and consumption. Energy, 2023, 276, 127604.	4.5	7
592	Properties of activated carbon from arabica coffee grounds originating from Papua highlands. AIP Conference Proceedings, 2023, , .	0.3	0
594	Spent Coffee Ground Briquettes. Advances in Environmental Engineering and Green Technologies Book Series, 2023, , 244-270.	0.3	1
602	Impact of raw and pre-treated spent coffee grounds on soil properties and plant growth: a mini-review. Clean Technologies and Environmental Policy, 2023, 25, 2831-2843.	2.1	2
618	Biochar in Carbon Sequestration. Materials Horizons, 2023, , 73-105.	0.3	0
629	Potential of coffee waste as nanocomposite and activated carbon for efficiency removal of PFOA and PFOS in water. AIP Conference Proceedings, 2023, , .	0.3	0
632	A comprehensive overview of eco-friendly bio-fertilizers extracted from living organisms. Environmental Science and Pollution Research, 2023, 30, 113119-113137.	2.7	3
641	Extraction of coffee and tea. , 2024, , 247-277.		0
642	Application of Potential Microbial Biotechnology for Sustainable Human Health. , 2023, , 111-158.		0
644	Spent Coffee Grounds—A Coffee By-Product Abundant in Bioactive Compounds with Antioxidant Properties. , 0, , .		0