Estimating False Discovery Proportion Under Arbitrary

Journal of the American Statistical Association 107, 1019-1035 DOI: 10.1080/01621459.2012.720478

Citation Report

#	Article	IF	CITATIONS
2	Large Covariance Estimation by Thresholding Principal Orthogonal Complements. SSRN Electronic Journal, 2011, , .	0.4	9
3	Imaging genetics $\hat{a} \in $ towards discovery neuroscience. Quantitative Biology, 2013, 1, 227-245.	0.5	18
4	Statistical analysis of big data on pharmacogenomics. Advanced Drug Delivery Reviews, 2013, 65, 987-1000.	13.7	39
5	Identification of significant features in <scp>DNA</scp> microarray data. Wiley Interdisciplinary Reviews: Computational Statistics, 2013, 5, 309-325.	3.9	10
6	Structured variable selection with q-values. Biostatistics, 2013, 14, 695-707.	1.5	8
7	Large Covariance Estimation by Thresholding Principal Orthogonal Complements. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2013, 75, 603-680.	2.2	520
8	Projected Principal Component Analysis in Factor Models. SSRN Electronic Journal, 0, , .	0.4	4
9	Sufficient Forecasting Using Factor Models. SSRN Electronic Journal, 2014, , .	0.4	2
10	Estimation of the Continuous and Discontinuous Leverage Effects. SSRN Electronic Journal, 0, , .	0.4	3
11	svaseq: removing batch effects and other unwanted noise from sequencing data. Nucleic Acids Research, 2014, 42, e161-e161.	14.5	460
12	Challenges of Big Data analysis. National Science Review, 2014, 1, 293-314.	9.5	954
13	The future lies in uncertainty. Science, 2014, 345, 264-265.	12.6	32
14	Statistical Analysis of Next Generation Sequencing Data. , 2014, , .		20
15	Single-index modulated multiple testing. Annals of Statistics, 2014, 42, .	2.6	21
16	A parsimonious statistical method to detect groupwise differentially expressed functional connectivity networks. Human Brain Mapping, 2015, 36, 5196-5206.	3.6	31
17	FDR control in multiple testing under non-normality. Statistica Sinica, 2015, , .	0.3	2
18	Mixture SNPs effect on phenotype in genome-wide association studies. BMC Genomics, 2015, 16, 3.	2.8	24
19	False Discovery Rate Regression: An Application to Neural Synchrony Detection in Primary Visual Cortex. Journal of the American Statistical Association, 2015, 110, 459-471.	3.1	62

#	Article	IF	CITATIONS
20	Testing of high dimensional mean vectors via approximate factor model. Journal of Statistical Planning and Inference, 2015, 167, 216-227.	0.6	6
21	A statistical approach for detecting common features. Journal of Neuroscience Methods, 2015, 247, 1-12.	2.5	Ο
22	New procedures controlling the false discovery proportion via Romano–Wolf's heuristic. Annals of Statistics, 2015, 43, .	2.6	19
23	Multiple test functions and adjusted <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si100.gif" display="inline" overflow="scroll"><mml:mi>p</mml:mi></mml:math> -values for test statistics with discrete distributions. Journal of Statistical Planning and Inference, 2015, 167, 1-13.	0.6	20
24	The Empirical Distribution of a Large Number of Correlated Normal Variables. Journal of the American Statistical Association, 2015, 110, 1217-1228.	3.1	24
25	Tests for Coefficients in Highâ€dimensional Additive Hazard Models. Scandinavian Journal of Statistics, 2015, 42, 649-664.	1.4	8
26	Testing a Single Regression Coefficient in High Dimensional Regression Model. SSRN Electronic Journal, 2016, , .	0.4	0
27	Rare Variants Association Analysis in Large-Scale Sequencing Studies at the Single Locus Level. PLoS Computational Biology, 2016, 12, e1004993.	3.2	11
28	Testing a single regression coefficient in high dimensional linear models. Journal of Econometrics, 2016, 195, 154-168.	6.5	13
29	Cramér-type moderate deviations for Studentized two-sample \$U\$-statistics with applications. Annals of Statistics, 2016, 44, .	2.6	14
30	Innovated scalable efficient estimation in ultra-large Gaussian graphical models. Annals of Statistics, 2016, 44, .	2.6	29
31	Multiple testing under dependence via graphical models. Annals of Applied Statistics, 2016, 10, .	1.1	12
32	Exact and asymptotic tests on a factor model in low and large dimensions with applications. Journal of Multivariate Analysis, 2016, 150, 125-151.	1.0	12
33	Pathway crosstalk effects: shrinkage and disentanglement using a Bayesian hierarchical model. Statistics in Biosciences, 2016, 8, 374-394.	1.2	9
34	SLOPE is adaptive to unknown sparsity and asymptotically minimax. Annals of Statistics, 2016, 44, .	2.6	58
35	Projected principal component analysis in factor models. Annals of Statistics, 2016, 44, 219-254.	2.6	98
36	On empirical distribution function of high-dimensional Gaussian vector components with an application to multiple testing. Bernoulli, 2016, 22, .	1.3	10
37	New multiple testing method under no dependency assumption, with application to multiple comparisons problem. Statistical Papers, 2016, 57, 161-183.	1.2	0

#	Article	IF	CITATIONS
38	Testing covariates in high dimension linear regression with latent factors. Journal of Multivariate Analysis, 2016, 144, 25-37.	1.0	4
39	Detecting weak signals in high dimensions. Journal of Multivariate Analysis, 2016, 147, 234-246.	1.0	1
40	Estimating false discovery proportion in multiple comparison under dependency. Communications in Statistics Part B: Simulation and Computation, 2017, 46, 6697-6704.	1.2	0
41	Estimation of High Dimensional Mean Regression in the Absence of Symmetry and Light Tail Assumptions. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2017, 79, 247-265.	2.2	118
42	Controlling the False Discoveries in LASSO. Biometrics, 2017, 73, 1102-1110.	1.4	16
43	False discovery rate control incorporating phylogenetic tree increases detection power in microbiome-wide multiple testing. Bioinformatics, 2017, 33, 2873-2881.	4.1	66
44	Unbiased False Discovery Rate Estimation for Shotgun Proteomics Based on the Target-Decoy Approach. Journal of Proteome Research, 2017, 16, 393-397.	3.7	56
45	A rate optimal procedure for recovering sparse differences between high-dimensional means under dependence. Annals of Statistics, 2017, 45, .	2.6	5
46	Asymptotics of empirical eigenstructure for high dimensional spiked covariance. Annals of Statistics, 2017, 45, 1342-1374.	2.6	103
47	Sufficient forecasting using factor models. Journal of Econometrics, 2017, 201, 292-306.	6.5	46
47 48		6.5 5.5	46 11
	Sufficient forecasting using factor models. Journal of Econometrics, 2017, 201, 292-306. Large-Scale Global and Simultaneous Inference: Estimation and Testing in Very High Dimensions.		
48	Sufficient forecasting using factor models. Journal of Econometrics, 2017, 201, 292-306. Large-Scale Global and Simultaneous Inference: Estimation and Testing in Very High Dimensions. Annual Review of Economics, 2017, 9, 411-439. Estimation of the False Discovery Proportion with Unknown Dependence. Journal of the Royal	5.5	11
48 49	Sufficient forecasting using factor models. Journal of Econometrics, 2017, 201, 292-306. Large-Scale Global and Simultaneous Inference: Estimation and Testing in Very High Dimensions. Annual Review of Economics, 2017, 9, 411-439. Estimation of the False Discovery Proportion with Unknown Dependence. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2017, 79, 1143-1164. Estimation of the Continuous and Discontinuous Leverage Effects. Journal of the American Statistical	5.5 2.2	11 36
48 49 50	Sufficient forecasting using factor models. Journal of Econometrics, 2017, 201, 292-306. Large-Scale Global and Simultaneous Inference: Estimation and Testing in Very High Dimensions. Annual Review of Economics, 2017, 9, 411-439. Estimation of the False Discovery Proportion with Unknown Dependence. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2017, 79, 1143-1164. Estimation of the Continuous and Discontinuous Leverage Effects. Journal of the American Statistical Association, 2017, 112, 1744-1758.	5.5 2.2 3.1	11 36 43
48 49 50 51	Sufficient forecasting using factor models. Journal of Econometrics, 2017, 201, 292-306. Large-Scale Global and Simultaneous Inference: Estimation and Testing in Very High Dimensions. Annual Review of Economics, 2017, 9, 411-439. Estimation of the False Discovery Proportion with Unknown Dependence. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2017, 79, 1143-1164. Estimation of the Continuous and Discontinuous Leverage Effects. Journal of the American Statistical Association, 2017, 112, 1744-1758. Oracle P-values and variable screening. Electronic Journal of Statistics, 2017, 11, . Integrative Analysis of Gene Networks and Their Application to Lung Adenocarcinoma Studies. Cancer	5.5 2.2 3.1 0.7	11 36 43 3
48 49 50 51 52	Sufficient forecasting using factor models. Journal of Econometrics, 2017, 201, 292-306. Large-Scale Global and Simultaneous Inference: Estimation and Testing in Very High Dimensions. Annual Review of Economics, 2017, 9, 411-439. Estimation of the False Discovery Proportion with Unknown Dependence. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2017, 79, 1143-1164. Estimation of the Continuous and Discontinuous Leverage Effects. Journal of the American Statistical Association, 2017, 112, 1744-1758. Oracle P-values and variable screening. Electronic Journal of Statistics, 2017, 11, . Integrative Analysis of Gene Networks and Their Application to Lung Adenocarcinoma Studies. Cancer Informatics, 2017, 16, 117693511769077. Testing against constant factor loading matrix with large panel high-frequency data. Journal of	5.5 2.2 3.1 0.7 1.9	11 36 43 3

#	Article	IF	CITATIONS
56	Localizing differentially evolving covariance structures via scan statistics. Quarterly of Applied Mathematics, 2018, 77, 357-398.	0.7	1
58	Beyond smartphones and sensors: choosing appropriate statistical methods for the analysis of longitudinal data. Journal of the American Medical Informatics Association: JAMIA, 2018, 25, 1669-1674.	4.4	35
59	Thousands of Alpha Tests. SSRN Electronic Journal, 2018, , .	0.4	12
60	Toward Capturing the Exposome: Exposure Biomarker Variability and Coexposure Patterns in the Shared Environment. Environmental Science & Technology, 2018, 52, 8801-8810.	10.0	40
61	A new perspective on robust \$M\$-estimation: Finite sample theory and applications to dependence-adjusted multiple testing. Annals of Statistics, 2018, 46, 1904-1931.	2.6	40
62	Interpretable High-Dimensional Inference Via Score Projection With an Application in Neuroimaging. Journal of the American Statistical Association, 2019, 114, 820-830.	3.1	2
63	Variable selection procedures from multiple testing. Science China Mathematics, 2019, 62, 771-782.	1.7	0
64	Bayesian Error Analysis for Feature Selection in Biomarker Discovery. IEEE Access, 2019, 7, 127544-127563.	4.2	3
65	Efficient Signal Inclusion With Genomic Applications. Journal of the American Statistical Association, 2019, 114, 1787-1799.	3.1	4
66	Predictor ranking and false discovery proportion control in high-dimensional regression. Journal of Multivariate Analysis, 2019, 171, 163-175.	1.0	3
67	FarmTest: Factor-Adjusted Robust Multiple Testing With Approximate False Discovery Control. Journal of the American Statistical Association, 2019, 114, 1880-1893.	3.1	25
68	Optimal Estimation of Genetic Relatedness in High-Dimensional Linear Models. Journal of the American Statistical Association, 2019, 114, 358-369.	3.1	21
69	A Factor-Adjusted Multiple Testing Procedure With Application to Mutual Fund Selection. Journal of Business and Economic Statistics, 2019, 37, 147-157.	2.9	7
70	RANK: Large-Scale Inference With Graphical Nonlinear Knockoffs. Journal of the American Statistical Association, 2020, 115, 362-379.	3.1	32
71	Cauchy Combination Test: A Powerful Test With Analytic <i>p</i> -Value Calculation Under Arbitrary Dependency Structures. Journal of the American Statistical Association, 2020, 115, 393-402.	3.1	216
72	Testing Alphas in Conditional Time-Varying Factor Models With High-Dimensional Assets. Journal of Business and Economic Statistics, 2020, 38, 214-227.	2.9	16
73	IPAD: Stable Interpretable Forecasting with Knockoffs Inference. Journal of the American Statistical Association, 2020, 115, 1822-1834.	3.1	25
74	Detecting and testing altered brain connectivity networks with k-partite network topology. Computational Statistics and Data Analysis, 2020, 141, 109-122.	1.2	11

#	Article	IF	CITATIONS
75	Homogeneity and Structure Identification in Semiparametric Factor Models. Journal of Business and Economic Statistics, 2022, 40, 408-422.	2.9	8
76	High-dimensional two-sample mean vectors test and support recovery with factor adjustment. Computational Statistics and Data Analysis, 2020, 151, 107004.	1.2	1
77	A Bottom-Up Approach to Testing Hypotheses That Have a Branching Tree Dependence Structure, With Error Rate Control. Journal of the American Statistical Association, 2022, 117, 664-677.	3.1	8
78	Noisy Matrix Completion: Understanding Statistical Guarantees for Convex Relaxation via Nonconvex Optimization. SIAM Journal on Optimization, 2020, 30, 3098-3121.	2.0	44
79	Detection of Local Differences in Spatial Characteristics Between Two Spatiotemporal Random Fields. Journal of the American Statistical Association, 2022, 117, 291-306.	3.1	4
80	False Discovery Variance Reduction in Large Scale Simultaneous Hypothesis Tests. Methodology and Computing in Applied Probability, 2020, 23, 711.	1.2	0
81	Diagonally Dominant Principal Component Analysis. Journal of Computational and Graphical Statistics, 2020, 29, 592-607.	1.7	2
82	A strong law of large numbers related to multiple testing normal means. Statistics and Probability Letters, 2020, 159, 108693.	0.7	1
83	Constructing confidence intervals for selected parameters. Biometrics, 2020, 76, 1098-1108.	1.4	3
84	Bayesian variable selection via a benchmark in normal linear models. Statistical Theory and Related Fields, 2021, 5, 70-81.	0.4	1
85	Thousands of Alpha Tests. Review of Financial Studies, 2021, 34, 3456-3496.	6.8	62
86	Asymptotic theory of dependent Bayesian multiple testing procedures under possible model misspecification. Annals of the Institute of Statistical Mathematics, 2021, 73, 891-920.	0.8	2
87	Smaller <i>p</i> -Values via Indirect Information. Journal of the American Statistical Association, 2022, 117, 1254-1269.	3.1	3
88	Posterior Consistency of Factor Dimensionality in High-Dimensional Sparse Factor Models. Bayesian Analysis, 2021, -1, .	3.0	5
89	Estimating minimum effect with outlier selection. Annals of Statistics, 2021, 49, .	2.6	6
90	Robust High-Dimensional Factor Models with Applications to Statistical Machine Learning. Statistical Science, 2021, 36, 303-327.	2.8	18
91	Variable Selection in High-Dimensional Error-in-Variables Models via Controlling the False Discovery Proportion. Communications in Mathematics and Statistics, 2022, 10, 123-151.	1.5	2
92	The Limits of <i>p</i> â€Hacking: Some Thought Experiments. Journal of Finance, 2021, 76, 2447-2480.	5.1	32

#	Article	IF	CITATIONS
93	Controlling False Discovery Rate Using Gaussian Mirrors. Journal of the American Statistical Association, 2023, 118, 222-241.	3.1	13
94	Bayes estimate of primary threshold in clusterwise functional magnetic resonance imaging inferences. Statistics in Medicine, 2021, 40, 5673-5689.	1.6	3
95	False Discovery Rate Control Under General Dependence By Symmetrized Data Aggregation. Journal of the American Statistical Association, 2023, 118, 607-621.	3.1	17
96	Using multiple outcomes in intervention studies for improved trade-off between power and type I errors: Â the Adjust NVar approach. F1000Research, 0, 10, 991.	1.6	4
97	On simultaneous calibration of two-sample t-tests for high-dimension low-sample-size data. Statistica Sinica, 2021, , .	0.3	0
99	Confounder adjustment in multiple hypothesis testing. Annals of Statistics, 2017, 45, 1863-1894.	2.6	71
100	Estimation of false discovery proportion in multiple testing: From normal to chi-squared test statistics. Electronic Journal of Statistics, 2017, 11, .	0.7	1
101	Post hoc confidence bounds on false positives using reference families. Annals of Statistics, 2020, 48,	2.6	24
102	Robust inference via multiplier bootstrap. Annals of Statistics, 2020, 48, .	2.6	10
103	Non-marginal decisions: A novel Bayesian multiple testing procedure. Electronic Journal of Statistics, 2019, 13, .	0.7	2
104	False discovery rate control via debiased lasso. Electronic Journal of Statistics, 2019, 13, .	0.7	28
105	A comparison of multiple testing adjustment methods with block-correlation positively-dependent tests. PLoS ONE, 2017, 12, e0176124.	2.5	57
106	Statistical Considerations in the Analysis of Rare Variants. , 2014, , 405-422.		0
108	The Limits of Data Mining: A Thought Experiment. SSRN Electronic Journal, 0, , .	0.4	0
109	Variable selection via adaptive false negative control in linear regression. Electronic Journal of Statistics, 2019, 13, .	0.7	2
110	Variability and stability of the false discovery proportion. Electronic Journal of Statistics, 2019, 13, .	0.7	1
111	Large-Scale Simultaneous Testing of Cross-Covariance Matrices with Applications to PheWAS. Statistica Sinica, 2019, 29, 983-1005.	0.3	3
112	Asymptotics for the systematic and idiosyncratic volatility with large dimensional high-frequency data. Random Matrices: Theory and Application, 2020, 09, 2050007.	1.1	0

#	Article	IF	CITATIONS
113	Empirical Bayes analysis of RNA sequencing experiments with auxiliary information. Annals of Applied Statistics, 2019, 13, .	1.1	3
114	Controlling the False Discovery Rate via symmetrized data aggregation based on SLOPE. Journal of Physics: Conference Series, 2020, 1601, 052032.	0.4	0
115	Recent Developments in Factor Models and Applications in Econometric Learning. Annual Review of Financial Economics, 2021, 13, 401-430.	4.7	4
116	A strong law of large numbers for simultaneously testing parameters of Lancaster bivariate distributions. Statistics and Probability Letters, 2020, 167, 108911.	0.7	1
117	Reproducible feature selection in high-dimensional accelerated failure time models. Statistics and Probability Letters, 2022, 181, 109275.	0.7	3
119	Multiple Testing under Dependence via Semiparametric Graphical Models. JMLR Workshop and Conference Proceedings, 2014, 32, 955-963.	1.4	1
120	Threshold Selection in Feature Screening for Error Rate Control. Journal of the American Statistical Association, 2023, 118, 1773-1785.	3.1	11
121	Reproducible learning in large-scale graphical models. Journal of Multivariate Analysis, 2022, 189, 104934.	1.0	3
122	Skilled Mutual Fund Selection: False Discovery Control Under Dependence. Journal of Business and Economic Statistics, 2023, 41, 578-592.	2.9	1
123	False discovery rate control with unknown null distribution: Is it possible to mimic the oracle?. Annals of Statistics, 2022, 50, .	2.6	7
124	Adjusting the Benjamini–Hochberg method for controlling the false discovery rate in knockoff-assisted variable selection. Biometrika, 2022, 109, 1149-1155.	2.4	5
125	Dependent Bayesian multiple hypothesis testing. Handbook of Statistics, 2022, , 67-81.	0.6	0
126	Multiple twoâ€sample testing under arbitrary covariance dependency with an application in imaging mass spectrometry. Biometrical Journal, 0, , .	1.0	2
127	Estimation of high-dimensional sparse cross correlation matrix. Communications for Statistical Applications and Methods, 2022, 29, 655-664.	0.3	0
128	Conditional calibration for false discovery rate control under dependence. Annals of Statistics, 2022, 50, .	2.6	13
130	A One-Sided Refined Symmetrized Data Aggregation Approach to Robust Mutual Fund Selection. Journal of Business and Economic Statistics, 2024, 42, 257-271.	2.9	0
131	Change-point testing for parallel data sets with FDR control. Computational Statistics and Data Analysis, 2023, 182, 107705.	1.2	0
132	Screening-Assisted Dynamic Multiple Testing with False Discovery Rate Control. Journal of Systems Science and Complexity, 2023, 36, 716-754.	2.8	0

#	Article	IF	CITATIONS
133	Estimating the proportion of signal variables under arbitrary covariance dependence. Electronic Journal of Statistics, 2023, 17, .	0.7	1
134	Hypothesis testing for shapes using vectorized persistence diagrams. Journal of the Royal Statistical Society Series C: Applied Statistics, 2023, 72, 628-648.	1.0	2
135	Mixture prior for sparse signals with dependent covariance structure. PLoS ONE, 2023, 18, e0284284.	2.5	0
136	Multiple multiâ€sample testing under arbitrary covariance dependency. Statistics in Medicine, 0, , .	1.6	1
137	CoxKnockoff: Controlled feature selection for the Cox model using knockoffs. Stat, 2023, 12, .	0.4	0
138	False discovery rate approach to dynamic change detection. Journal of Multivariate Analysis, 2023, 198, 105224.	1.0	0
139	A Decorrelating and Debiasing Approach to Simultaneous Inference for High-Dimensional Confounded Models. Journal of the American Statistical Association, 0, , 1-12.	3.1	3
140	A central limit theorem for the Benjamini-Hochberg false discovery proportion under a factor model. Bernoulli, 2024, 30, .	1.3	1
141	Transfer learning with false negative control improves polygenic risk prediction. PLoS Genetics, 2023, 19, e1010597.	3.5	0
142	Weak signal inclusion under dependence and applications in genome-wide association study. Annals of Applied Statistics, 2024, 18, .	1.1	0
143	Modifying the false discovery rate procedure based on the information theory under arbitrary correlation structure and its performance in high-dimensional genomic data. BMC Bioinformatics, 2024, 25, .	2.6	1
144	Covariance Matrix Estimation for High-Throughput Biomedical Data with Interconnected Communities. American Statistician, 0, , 1-20.	1.6	0
145	Asymptotic uncertainty of false discovery proportion. Biometrics, 2024, 80, .	1.4	0