Gut microbiota-derived propionate reduces cancer cell

British Journal of Cancer 107, 1337-1344

DOI: 10.1038/bjc.2012.409

Citation Report

#	Article	IF	CITATIONS
1	The therapeutic potential of GPR43: a novel role in modulating metabolic health. Cellular and Molecular Life Sciences, 2013, 70, 4759-4770.	2.4	8
2	Function of the microbiota. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2013, 27, 5-16.	1.0	81
3	The microbiome and cancer. Nature Reviews Cancer, 2013, 13, 800-812.	12.8	1,338
4	Galacto-oligosaccharides Derived from Lactulose Exert a Selective Stimulation on the Growth of Bifidobacterium animalis in the Large Intestine of Growing Rats. Journal of Agricultural and Food Chemistry, 2013, 61, 7560-7567.	2.4	61
5	The gut microbiota and the liver: implications for clinical practice. Expert Review of Gastroenterology and Hepatology, 2013, 7, 723-732.	1.4	17
6	GPR43/FFA2: physiopathological relevance and therapeutic prospects. Trends in Pharmacological Sciences, 2013, 34, 226-232.	4.0	172
8	Caecal fermentation, putrefaction and microbiotas in rats fed milk casein, soy protein or fish meal. Applied Microbiology and Biotechnology, 2014, 98, 2779-2787.	1.7	55
9	Fructans: Prebiotics and immunomodulators. Journal of Functional Foods, 2014, 8, 348-357.	1.6	147
10	AmphoraNet: The webserver implementation of the AMPHORA2 metagenomic workflow suite. Gene, 2014, 533, 538-540.	1.0	98
11	Microbiota-Generated Metabolites Promote Metabolic Benefits via Gut-Brain Neural Circuits. Cell, 2014, 156, 84-96.	13.5	1,615
12	Development and Survival of Th17 Cells within the Intestines: The Influence of Microbiome- and Diet-Derived Signals. Journal of Immunology, 2014, 193, 4769-4777.	0.4	49
13	From microbe to man: the role of microbial short chain fatty acid metabolites in host cell biology. American Journal of Physiology - Cell Physiology, 2014, 307, C979-C985.	2.1	128
14	Free fatty acid receptor 2, a candidate target for type 1 diabetes, induces cell apoptosis through ERK signaling. Journal of Molecular Endocrinology, 2014, 53, 367-380.	1.1	37
15	Bile acid dysregulation, gut dysbiosis, and gastrointestinal cancer. Experimental Biology and Medicine, 2014, 239, 1489-1504.	1.1	82
16	Gut microbiota and obesity: Role in aetiology and potential therapeutic target. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2014, 28, 585-597.	1.0	92
17	Fast food fever: reviewing the impacts of the Western diet on immunity. Nutrition Journal, 2014, 13, 61.	1.5	289
18	Understanding and Modulating Mammalian-Microbial Communication for Improved Human Health. Annual Review of Pharmacology and Toxicology, 2014, 54, 559-580.	4.2	37
20	Microbiota and diabetes: an evolving relationship. Gut, 2014, 63, 1513-1521.	6.1	631

#	Article	IF	Citations
22	Gut microbiota and liver diseases. World Journal of Gastroenterology, 2015, 21, 1691.	1.4	136
23	The potential of resistant starch as a prebiotic. Critical Reviews in Biotechnology, 2016, 36, 1-7.	5.1	113
24	Population Level Divergence from the Mediterranean Diet and the Risk of Cancer and Metabolic Disease., 2015,, 209-223.		1
25	Towards a more comprehensive concept for prebiotics. Nature Reviews Gastroenterology and Hepatology, 2015, 12, 303-310.	8.2	679
26	Cancer and the microbiota. Science, 2015, 348, 80-86.	6.0	942
27	The Gut Microbiota and Nonalcoholic Fatty Liver Disease. Seminars in Liver Disease, 2015, 35, 262-269.	1.8	38
28	Enemy attraction: bacterial agonists for leukocyte chemotaxis receptors. Nature Reviews Microbiology, 2015, 13, 95-104.	13.6	61
29	<i>In Vitro</i> Anticancer Activity of a Nonpolar Fraction from <i>Gynostemma pentaphyllum</i> (Thunb.) Makino. Evidence-based Complementary and Alternative Medicine, 2016, 2016, 1-11.	0.5	11
30	Antibiotics and the Human Gut Microbiome: Dysbioses and Accumulation of Resistances. Frontiers in Microbiology, 2015, 6, 1543.	1.5	613
31	Metabiotics: One Step ahead of Probiotics; an Insight into Mechanisms Involved in Anticancerous Effect in Colorectal Cancer. Frontiers in Microbiology, 2016, 7, 1940.	1.5	101
32	Regulation of Host Chromatin by Bacterial Metabolites. , 2016, , 423-442.		5
33	Early colonization of functional groups of microbes in the infant gut. Environmental Microbiology, 2016, 18, 2246-2258.	1.8	77
34	Gut microbiome and liver diseases. Gut, 2016, 65, 2035-2044.	6.1	443
35	Microbiome and Anticancer Immunosurveillance. Cell, 2016, 165, 276-287.	13.5	366
36	Gut microbiota in renal physiology: focus on short-chain fatty acids and their receptors. Kidney International, 2016, 90, 1191-1198.	2.6	104
37	Bifidobacteria—Insight into clinical outcomes and mechanisms of its probiotic action. Microbiological Research, 2016, 192, 159-171.	2.5	124
38	Polymorphic Variation in FFA Receptors: Functions and Consequences. Handbook of Experimental Pharmacology, 2016, 236, 133-158.	0.9	3
39	Free Fatty Acid Receptors and Cancer: From Nutrition to Pharmacology. Handbook of Experimental Pharmacology, 2016, 236, 233-251.	0.9	29

#	Article	IF	Citations
41	How gut microbes talk to organs: The role of endocrine and nervous routes. Molecular Metabolism, 2016, 5, 743-752.	3.0	237
42	The gut microbiome as a virtual endocrine organ with implications for farm and domestic animal endocrinology. Domestic Animal Endocrinology, 2016, 56, S44-S55.	0.8	42
43	Know your neighbor: Microbiota and host epithelial cells interact locally to control intestinal function and physiology. BioEssays, 2016, 38, 455-464.	1.2	63
44	Functional Redundancy-Induced Stability of Gut Microbiota Subjected to Disturbance. Trends in Microbiology, 2016, 24, 402-413.	3.5	451
45	Understanding cachexia as a cancer metabolism syndrome. Oncogenesis, 2016, 5, e200-e200.	2.1	384
46	Nutrition in cancer patients with cachexia: A role for the gut microbiota?. Clinical Nutrition Experimental, 2016, 6, 74-82.	2.0	16
47	A Critical Look at Prebiotics Within the Dietary Fiber Concept. Annual Review of Food Science and Technology, 2016, 7, 167-190.	5.1	149
48	Synbiotic approach restores intestinal homeostasis and prolongs survival in leukaemic mice with cachexia. ISME Journal, 2016, 10, 1456-1470.	4.4	149
49	Prebiotic administration normalizes lipopolysaccharide (LPS)-induced anxiety and cortical 5-HT2A receptor and IL1- \hat{l}^2 levels in male mice. Brain, Behavior, and Immunity, 2016, 52, 120-131.	2.0	188
50	Complex Pharmacology of Free Fatty Acid Receptors. Chemical Reviews, 2017, 117, 67-110.	23.0	209
51	Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunology, 2017, 18, 2.	0.9	492
52	Neuroblastoma causes alterations of the intestinal microbiome, gut hormones, inflammatory cytokines, and bile acid composition. Pediatric Blood and Cancer, 2017, 64, e26425.	0.8	18
53	The Gut Microbiome and Metabolic Health. Current Nutrition Reports, 2017, 6, 16-23.	2.1	10
54	Gut–liver axis and sterile signals in the development of alcoholic liver disease. Alcohol and Alcoholism, 2017, 52, 414-424.	0.9	56
55	Metabolite-Sensing G Protein–Coupled Receptors—Facilitators of Diet-Related Immune Regulation. Annual Review of Immunology, 2017, 35, 371-402.	9.5	235
56	Phenotyping of gut microbiota: Focus on capillary electrophoresis. Electrophoresis, 2017, 38, 2275-2286.	1.3	9
57	Short chain fatty acids ameliorate immune-mediated uveitis partially by altering migration of lymphocytes from the intestine. Scientific Reports, 2017, 7, 11745.	1.6	111
58	Ffar2 expression regulates leukaemic cell growth in vivo. British Journal of Cancer, 2017, 117, 1336-1340.	2.9	12

#	Article	IF	Citations
59	Orthogonal Comparison of GC–MS and ¹ H NMR Spectroscopy for Short Chain Fatty Acid Quantitation. Analytical Chemistry, 2017, 89, 7900-7906.	3.2	58
60	Exploring the human microbiome from multiple perspectives: factors altering its composition and function. FEMS Microbiology Reviews, 2017, 41, 453-478.	3.9	117
61	Dairy probiotics: Beyond the role of promoting gut and immune health. International Dairy Journal, 2017, 67, 46-60.	1.5	52
62	Significance of Microbiota in Obesity and Metabolic Diseases and the Modulatory Potential by Medicinal Plant and Food Ingredients. Frontiers in Pharmacology, 2017, 8, 387.	1.6	85
63	Gut microbiota–derived short-chain fatty acids and kidney diseases. Drug Design, Development and Therapy, 2017, Volume 11, 3531-3542.	2.0	108
64	Prebiotics: A Novel Approach to Treat Hepatocellular Carcinoma. Canadian Journal of Gastroenterology and Hepatology, 2017, 2017, 1-11.	0.8	11
65	In Vitro Fermentation Patterns of Rice Bran Components by Human Gut Microbiota. Nutrients, 2017, 9, 1237.	1.7	42
66	The ecological community of commensal, symbiotic, and pathogenic gastrointestinal microorganisms & amp;ndash; an appraisal. Clinical and Experimental Gastroenterology, 2017, Volume 10, 91-103.	1.0	38
67	A commensal strain of <i>Staphylococcus epidermidis</i> protects against skin neoplasia. Science Advances, 2018, 4, eaao4502.	4.7	183
68	Lithocholic acid, a bacterial metabolite reduces breast cancer cell proliferation and aggressiveness. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 958-974.	0.5	122
69	The stem cell division theory of cancer. Critical Reviews in Oncology/Hematology, 2018, 123, 95-113.	2.0	53
71	Complementary Methodologies To Investigate Human Gut Microbiota in Host Health, Working towards Integrative Systems Biology. Journal of Bacteriology, 2018, 200, .	1.0	9
73	Polyunsaturated fatty acids, polyphenols, amino acids, prebiotics. Current Opinion in Clinical Nutrition and Metabolic Care, 2018, 21, 458-464.	1.3	6
74	Characterisation of small molecule ligands 4CMTB and 2CTAP as modulators of human FFA2 receptor signalling. Scientific Reports, 2018, 8, 17819.	1.6	6
75	Gut Microbiota's Relationship with Liver Disease and Role in Hepatoprotection by Dietary Natural Products and Probiotics. Nutrients, 2018, 10, 1457.	1.7	83
76	Modulation of gut microbiome in nonalcoholic fatty liver disease: pro-, pre-, syn-, and antibiotics. Journal of Microbiology, 2018, 56, 855-867.	1.3	28
77	Metabolic reprogramming for cancer cells and their microenvironment: Beyond the Warburg Effect. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1870, 51-66.	3.3	241
78	Human gut microbiome: hopes, threats and promises. Gut, 2018, 67, 1716-1725.	6.1	957

#	ARTICLE	IF	Citations
79	The Gut-Brain Axis, the Human Gut Microbiota and Their Integration in the Development of Obesity. Frontiers in Physiology, 2018, 9, 900.	1.3	122
80	The Complex Interplay between Chronic Inflammation, the Microbiome, and Cancer: Understanding Disease Progression and What We Can Do to Prevent It. Cancers, 2018, 10, 83.	1.7	83
81	Targeting gut microbiota in hepatocellular carcinoma: probiotics as a novel therapy. Hepatobiliary Surgery and Nutrition, 2018, 7, 11-20.	0.7	84
82	Role of Short Chain Fatty Acid Receptors in Intestinal Physiology and Pathophysiology. , 2018, 8, 1091-1115.		141
83	Klebsiella oxytoca expands in cancer cachexia and acts as a gut pathobiont contributing to intestinal dysfunction. Scientific Reports, 2018, 8, 12321.	1.6	71
84	A short-chain fatty acid, propionate, enhances the cytotoxic effect of cisplatin by modulating GPR41 signaling pathways in HepG2 cells. Oncotarget, 2018, 9, 31342-31354.	0.8	40
85	Intestinal-Based Diseases and Peripheral Infection Risk Associated with Gut Dysbiosis: Therapeutic use of Pre- and Probiotics and Fecal Microbiota Transplantation., 2018,, 197-288.		0
86	Enteral Nutrition Formulas: Current Evidence and Nutritional Composition. , 2019, , 467-508.		4
87	In Vitro Gastrointestinal Digestion and Colonic Fermentation of High Dietary Fiber and Antioxidant-Rich Mango (Mangifera indica L.) "Ataulfo―Based Fruit Bars. Nutrients, 2019, 11, 1564.	1.7	40
88	Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome. Signal Transduction and Targeted Therapy, 2019, 4, 41.	7.1	150
89	Lithocholic Acid, a Metabolite of the Microbiome, Increases Oxidative Stress in Breast Cancer. Cancers, 2019, 11, 1255.	1.7	70
90	Cancer Biomarkers in Body Fluids. , 2019, , .		5
91	Wood-Derived Dietary Fibers Promote Beneficial Human Gut Microbiota. MSphere, 2019, 4, .	1.3	48
92	Gut flora "the second brain―connects Eastern and Western medicine: intestinal hyper-permeability or Qi deficiency can affect brain, mind, and whole body. Longhua Chinese Medicine, 2019, 2, 6-6.	0.5	1
93	Role of Gut Microbiota in Hepatocarcinogenesis. Microorganisms, 2019, 7, 121.	1.6	85
94	Microbiota and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis (NAFLD/NASH). Annals of Hepatology, 2019, 18, 416-421.	0.6	49
95	Precision Nutrition and the Microbiome, Part I: Current State of the Science. Nutrients, 2019, 11, 923.	1.7	220
96	Oncoprotective Effects of Short-Chain Fatty Acids on Uterine Cervical Neoplasia. Nutrition and Cancer, 2019, 71, 312-319.	0.9	9

#	ARTICLE	IF	CITATIONS
97	Microbiomeâ€"Microbial Metabolomeâ€"Cancer Cell Interactions in Breast Cancerâ€"Familiar, but Unexplored. Cells, 2019, 8, 293.	1.8	123
98	Cadaverine, a metabolite of the microbiome, reduces breast cancer aggressiveness through trace amino acid receptors. Scientific Reports, 2019, 9, 1300.	1.6	111
99	Importance of the Microbiome and the Metabolome in Cancer., 2019, , 365-372.		0
100	Interactions between Host Immunity and Skin-Colonizing Staphylococci: No Two Siblings Are Alike. International Journal of Molecular Sciences, 2019, 20, 718.	1.8	5
101	Simultaneous Assay of Fecal Short-Chain Fatty and Bile Acids and Ratio of Total Bile Acids to Butyrate in Colon Cancer. Chromatography, 2019, 40, 49-57.	0.8	3
102	Exacerbation of Chikungunya Virus Rheumatic Immunopathology by a High Fiber Diet and Butyrate. Frontiers in Immunology, 2019, 10, 2736.	2.2	30
103	Fatty Acids, Gut Bacteria, and Immune Cell Function., 2019,, 151-164.		8
104	Gut microbiota: novel therapeutic target for nonalcoholic fatty liver disease. Expert Review of Gastroenterology and Hepatology, 2019, 13, 193-204.	1.4	82
105	Microbiota in cancer development and treatment. Journal of Cancer Research and Clinical Oncology, 2019, 145, 49-63.	1.2	64
106	South Asian Health: Inflammation, Infection, Exposure, and the Human Microbiome. Journal of Immigrant and Minority Health, 2019, 21, 26-36.	0.8	3
107	Targeting gut microbiota with dietary components on cancer: Effects and potential mechanisms of action. Critical Reviews in Food Science and Nutrition, 2020, 60, 1025-1037.	5.4	73
108	Free Fatty Acid Receptors in Health and Disease. Physiological Reviews, 2020, 100, 171-210.	13.1	502
109	Indoxylsulfate, a Metabolite of the Microbiome, Has Cytostatic Effects in Breast Cancer via Activation of AHR and PXR Receptors and Induction of Oxidative Stress. Cancers, 2020, 12, 2915.	1.7	33
110	The Effects of Prebiotic Supplementation with OMNi-LOGIC® FIBRE on Fecal Microbiome, Fecal Volatile Organic Compounds, and Gut Permeability in Murine Neuroblastoma-Induced Tumor-Associated Cachexia. Nutrients, 2020, 12, 2029.	1.7	17
111	Effects of banana powder (Musa acuminata Colla) on the composition of human fecal microbiota and metabolic output using in vitro fermentation. Journal of Food Science, 2020, 85, 2554-2564.	1.5	6
112	Cachexia, a Systemic Disease beyond Muscle Atrophy. International Journal of Molecular Sciences, 2020, 21, 8592.	1.8	22
113	Propionic acid and not caproic acid, attenuates nonalcoholic steatohepatitis and improves (cerebro) vascular functions in obese Ldlr ^{â^²/â^²} .Leiden mice. FASEB Journal, 2020, 34, 9575-9593.	0.2	29
114	Dietary Short-Term Fiber Interventions in Arthritis Patients Increase Systemic SCFA Levels and Regulate Inflammation. Nutrients, 2020, 12, 3207.	1.7	40

#	ARTICLE	IF	CITATIONS
115	Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek, 2020, 113, 2019-2040.	0.7	473
116	Metabolite Sensing GPCRs: Promising Therapeutic Targets for Cancer Treatment?. Cells, 2020, 9, 2345.	1.8	17
117	Impact of the source of fermentable carbohydrate on SCFA production by human gut microbiota <i>inÂvitro</i> - a systematic scoping review and secondary analysis. Critical Reviews in Food Science and Nutrition, 2021, 61, 3892-3903.	5.4	22
118	Liraglutide modulates gut microbiome and attenuates nonalcoholic fatty liver in db/db mice. Life Sciences, 2020, 261, 118457.	2.0	49
119	Sodium propionate exerts anticancer effect in mice bearing breast cancer cell xenograft by regulating JAK2/STAT3/ROS/p38 MAPK signaling. Acta Pharmacologica Sinica, 2021, 42, 1311-1323.	2.8	20
120	Association of Bacteroides acidifaciens relative abundance with high-fibre diet-associated radiosensitisation. BMC Biology, 2020, 18, 102.	1.7	31
121	Microbiota-Derived Metabolites in Tumor Progression and Metastasis. International Journal of Molecular Sciences, 2020, 21, 5786.	1.8	75
122	Diabetes is associated with increased risk of hepatocellular carcinoma in non-alcoholic steatohepatitis with cirrhosis—implications for surveillance and future pharmacotherapy. Hepatobiliary Surgery and Nutrition, 2020, 9, 230-234.	0.7	2
123	Free Fatty Acid Receptors 2 and 3 as Microbial Metabolite Sensors to Shape Host Health: Pharmacophysiological View. Biomedicines, 2020, 8, 154.	1.4	49
124	Gut Microbial Metabolites and Blood Pressure Regulation: Focus on SCFAs and TMAO. Physiology, 2020, 35, 275-284.	1.6	40
125	The Genus Alistipes: Gut Bacteria With Emerging Implications to Inflammation, Cancer, and Mental Health. Frontiers in Immunology, 2020, 11, 906.	2,2	758
126	The link "Cancer and autoimmune diseases―in the light of microbiota: Evidence of a potential culprit. Immunology Letters, 2020, 222, 12-28.	1.1	14
127	The Microbiome as a Component of the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1225, 137-153.	0.8	67
128	Supplementation with Chlorella vulgaris, Chlorella protothecoides , and Schizochytrium sp. increases propionateâ€producing bacteria in in vitro human gut fermentation. Journal of the Science of Food and Agriculture, 2020, 100, 2938-2945.	1.7	17
129	Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, , .	0.8	1
130	The nuclear receptor FXR inhibits Glucagon-Like Peptide-1 secretion in response to microbiota-derived Short-Chain Fatty Acids. Scientific Reports, 2020, 10, 174.	1.6	45
131	In vitro fermentation of Gracilaria lemaneiformis sulfated polysaccharides and its agaro-oligosaccharides by human fecal inocula and its impact on microbiota. Carbohydrate Polymers, 2020, 234, 115894.	5.1	163
132	Draft Genome Sequences of Bifidobacterium animalis Consecutively Isolated from Healthy Japanese Individuals. Journal of Genomics, 2020, 8, 37-42.	0.6	0

#	Article	IF	CITATIONS
133	SCFA: mechanisms and functional importance in the gut. Proceedings of the Nutrition Society, 2021, 80, 37-49.	0.4	498
134	Dietary pattern, colonic microbiota and immunometabolism interaction: new frontiers for diabetes mellitus and related disorders. Diabetic Medicine, 2021, 38, e14415.	1.2	34
135	Prebiotics in vitro digestion by gut microbes, products' chemistry, and clinical relevance. Applied Microbiology and Biotechnology, 2021, 105, 13-19.	1.7	5
136	Gut Microbiota in Patients with Morbid Obesity Before and After Bariatric Surgery: a Ten-Year Review Study (2009–2019). Obesity Surgery, 2021, 31, 317-326.	1.1	18
137	Sera and lungs metabonomics reveals key metabolites of resveratrol protecting against PAH in rats. Biomedicine and Pharmacotherapy, 2021, 133, 110910.	2.5	4
138	Research Progress of Intestinal Flora and Health. Advances in Clinical Medicine, 2021, 11, 2221-2227.	0.0	2
139	Short-Chain Fatty Acids as Therapeutic Agents in Colon Malignancies. , 2021, , 195-218.		1
140	Immune System Efficiency in Cancer and the Microbiota Influence. Pathobiology, 2021, 88, 170-186.	1.9	14
141	Acetate, a Short-Chain Fatty Acid, Acutely Lowers Heart Rate and Cardiac Contractility Along with Blood Pressure. Journal of Pharmacology and Experimental Therapeutics, 2021, 377, 39-50.	1.3	32
142	Bone and the microbiome. , 2021, , 969-988.		0
143	Multiâ€compartment metabolomics and metagenomics reveal major hepatic and intestinal disturbances in cancer cachectic mice. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 456-475.	2.9	30
144	Characterization of microbiota in acute leukemia patients following successful remission induction chemotherapy without antimicrobial prophylaxis. International Microbiology, 2021, 24, 263-273.	1.1	5
145	Oncolytic Adenoviruses for Cancer Therapy. International Journal of Molecular Sciences, 2021, 22, 2517.	1.8	18
146	Feruloylated Arabinoxylan and Oligosaccharides: Chemistry, Nutritional Functions, and Options for Enzymatic Modification. Annual Review of Food Science and Technology, 2021, 12, 331-354.	5.1	25
147	Acetate Induces Growth Arrest in Colon Cancer Cells Through Modulation of Mitochondrial Function. Frontiers in Nutrition, 2021, 8, 588466.	1.6	16
148	Gut microbiome responses in the metabolism of human dietary components: Implications in health and homeostasis. Critical Reviews in Food Science and Nutrition, 2022, 62, 7615-7631.	5.4	9
150	Diet-Regulating Microbiota and Host Immune System in Liver Disease. International Journal of Molecular Sciences, 2021, 22, 6326.	1.8	9
151	Role of microbiota-derived short-chain fatty acids in cancer development and prevention. Biomedicine and Pharmacotherapy, 2021, 139, 111619.	2.5	140

#	ARTICLE	IF	CITATIONS
152	The Role of Short-Chain Fatty Acids and Bile Acids in Intestinal and Liver Function, Inflammation, and Carcinogenesis. Frontiers in Cell and Developmental Biology, 2021, 9, 703218.	1.8	55
153	Integrative metabolomic characterisation identifies altered portal vein serum metabolome contributing to human hepatocellular carcinoma. Gut, 2022, 71, 1203-1213.	6.1	44
154	Gut microbiota–derived short-chain fatty acids protect against the progression of endometriosis. Life Science Alliance, 2021, 4, e202101224.	1.3	31
155	Immunity boosting nutraceuticals: Current trends and challenges. Journal of Food Biochemistry, 2022, 46, e13902.	1.2	23
157	Dietary Fibers: Structural Aspects and Nutritional Implications. , 2021, , 505-524.		1
158	The effects of neuroblastoma and chemotherapy on metabolism, fecal microbiome, volatile organic compounds, and gut barrier function in a murine model. Pediatric Research, 2019, 85, 546-555.	1.1	6
160	The gut-bone axis: how bacterial metabolites bridge the distance. Journal of Clinical Investigation, 2019, 129, 3018-3028.	3.9	195
161	1H NMR-Based Profiling Reveals Differential Immune-Metabolic Networks during Influenza Virus Infection in Obese Mice. PLoS ONE, 2014, 9, e97238.	1.1	25
162	Non Digestible Oligosaccharides Modulate the Gut Microbiota to Control the Development of Leukemia and Associated Cachexia in Mice. PLoS ONE, 2015, 10, e0131009.	1.1	109
163	Short-chain fatty acid receptors inhibit invasive phenotypes in breast cancer cells. PLoS ONE, 2017, 12, e0186334.	1.1	85
164	Metabolomics of primary cutaneous melanoma and matched adjacent extratumoral microenvironment. PLoS ONE, 2020, 15, e0240849.	1.1	14
165	Impact of Diet and Nutrition on Cancer Hallmarks. Journal of Cancer Prevention & Current Research, 2017, 7, .	0.1	4
166	Healthy effects of prebiotics and their metabolites against intestinal diseases and colorectal cancer. AIMS Microbiology, 2015, 1, 48-71.	1.0	30
167	Overview of Prebiotics: Membership, Physiological Effects and their Health Attributes. , 2018, , 289-348.		3
168	Body Fluid Microbiome as Cancer Biomarkers. , 2019, , 273-291.		0
169	The Role of Nutrition in Integrative Oncology. , 2020, , 407-436.		0
171	Profiling and Characterization of microRNAs Responding to Sodium Butyrate Treatment in Gastric Cancer Cells. Combinatorial Chemistry and High Throughput Screening, 2022, 25, 1875-1888.	0.6	2
172	The Microbiota-Gut-Liver Axis: Implications for the Pathophysiology of Liver Disease. , 2020, , 125-137.		0

#	Article	IF	CITATIONS
173	Gut Microbiome-Mediated Alteration of Immunity, Inflammation, and Metabolism Involved in the Regulation of Non-alcoholic Fatty Liver Disease. Frontiers in Microbiology, 2021, 12, 761836.	1.5	21
174	Gut Microbiota and Cancer Correlates. , 2021, , 1-27.		0
175	Probiotics as Next Generation Strategy for Cancer Therapy. , 2021, , 69-94.		0
176	Fatty acid metabolism and acyl-CoA synthetases in the <i>liver-gut axis</i> . World Journal of Hepatology, 2021, 13, 1512-1533.	0.8	12
177	Gut microbiota and immune system in liver cancer: Promising therapeutic implication from development to treatment. World Journal of Gastrointestinal Oncology, 2021, 13, 1616-1631.	0.8	5
178	Antibiotics in early life and childhood pre-B-ALL. Reasons to analyze a possible new piece in the puzzle. Discover Oncology, 2022, 13, 5.	0.8	0
179	Impact of Co-Delivery of EGCG and Tuna Oil within a Broccoli Matrix on Human Gut Microbiota, Phenolic Metabolites and Short Chain Fatty Acids In Vitro. Molecules, 2022, 27, 656.	1.7	2
180	Modulatory effects of polysaccharides from plants, marine algae and edible mushrooms on gut microbiota and related health benefits: A review. International Journal of Biological Macromolecules, 2022, 204, 169-192.	3.6	45
181	Interplay between Dysbiosis of Gut Microbiome, Lipid Metabolism, and Tumorigenesis: Can Gut Dysbiosis Stand as a Prognostic Marker in Cancer?. Disease Markers, 2022, 2022, 1-15.	0.6	23
182	Signature changes in gut microbiome are associated with increased susceptibility to HIV-1 infection in MSM. Microbiome, 2021, 9, 237.	4.9	33
183	Methylmalonic acid: an age-related metabolite that drives tumour aggressiveness. Nature Metabolism, 2022, 4, 412-413.	5.1	1
184	Mucin modifies microbial composition and improves metabolic functional potential of a synthetic gut microbial ecosystem. Journal of Applied Biological Chemistry, 2022, 65, 63-74.	0.2	0
185	The Gut Microbiome and Hepatocellular Carcinoma: Implications for Early Diagnostic Biomarkers and Novel Therapies. Liver Cancer, 2022, 11, 113-125.	4.2	27
186	Microbiota in relation to cancer. , 2022, , 279-309.		0
187	Targeting the gut and tumor microbiota in cancer. Nature Medicine, 2022, 28, 690-703.	15.2	159
188	Structural features and anticancer mechanisms of pectic polysaccharides: A review. International Journal of Biological Macromolecules, 2022, 209, 825-839.	3.6	17
191	Propionic Acid, Induced in Gut by an Inulin Diet, Suppresses Inflammation and Ameliorates Liver Ischemia and Reperfusion Injury in Mice. Frontiers in Immunology, 2022, 13, 862503.	2.2	14
192	In Silico Genomic and Metabolic Atlas of Limosilactobacillus reuteri DSM 20016: An Insight into Human Health. Microorganisms, 2022, 10, 1341.	1.6	3

#	Article	IF	CITATIONS
193	Natural products derived from medicinal plants and microbes might act as a game-changer in breast cancer: a comprehensive review of preclinical and clinical studies. Critical Reviews in Food Science and Nutrition, 2023, 63, 11880-11924.	5.4	8
194	Surveying the Genetic Design Space for Transcription Factor-Based Metabolite Biosensors: Synthetic Gamma-Aminobutyric Acid and Propionate Biosensors in E. coli Nissle 1917. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	2.0	5
195	Eat more natural dietary fiber and whole grains to minimize liver disease risk. Hepatobiliary Surgery and Nutrition, 2022, 11 , 601 - 604 .	0.7	0
196	Role of the Gut Microbiome in Skeletal Muscle Physiology and Pathophysiology. Current Osteoporosis Reports, 2022, 20, 422-432.	1.5	6
197	Metabolomic and elemental profiling of blood serum in bladder cancer. Journal of Pharmaceutical Analysis, 2022, 12, 889-900.	2.4	17
198	Role of Short-Chain Fatty Acids from Gut Microbiota in Neuroendocrine Pathogenesis Management. , 2022, , 139-151.		2
199	Short-Chain Fatty Acids-A Healthy Bus between Gut Microbiota and Organs beyond the Gut. Advances in Bioscience and Biotechnology (Print), 2022, 13, 362-387.	0.3	1
200	The Effects of Sodium Propionate Supplementation in the Diet with High Soybean Meal on Growth Performance, Intestinal Health, and Immune Resistance to Bacterial Infection in Turbot (Scophthalmus) Tj ETQq1 1	l 1 178431	4argBT /Ove
201	Diagnostic model for predicting hyperuricemia based on alterations of the gut microbiome in individuals with different serum uric acid levels. Frontiers in Endocrinology, $0,13,.$	1.5	6
202	Using proton pump inhibitors increases the risk of hepato-biliary-pancreatic cancer. A systematic review and meta-analysis. Frontiers in Pharmacology, $0,13,.$	1.6	2
203	Altered gut microbiota in hepatocellular carcinoma: Insights into the pathogenic mechanism and preclinical to clinical findings. Apmis, 2022, 130, 719-740.	0.9	6
206	Diet as a modifiable factor in tumorigenesis: Focus on microbiome-derived bile acid metabolites and short-chain fatty acids. Food Chemistry, 2023, 410, 135320.	4.2	3
207	The heightened importance of the microbiome in cancer immunotherapy. Trends in Immunology, 2023, 44, 44-59.	2.9	17
208	Calorie restriction remodels gut microbiota and suppresses tumorigenesis of colorectal cancer in mice. Experimental and Therapeutic Medicine, 2022, 25, .	0.8	2
209	Gut microbiota and calcium balance. Frontiers in Microbiology, 0, 13, .	1.5	5
210	The Influence of Mechanical Bowel Preparation on Volatile Organic Compounds for the Detection of Gastrointestinal Diseaseâ€"A Systematic Review. Sensors, 2023, 23, 1377.	2.1	2
211	The Modulatory Effects of Fatty Acids on Cancer Progression. Biomedicines, 2023, 11, 280.	1.4	2
212	Short-chain fatty acid-releasing nano-prodrugs for attenuating growth and metastasis of melanoma. Acta Biomaterialia, 2023, 159, 226-236.	4.1	4

#	ARTICLE	IF	CITATIONS
213	Targeting the gut–microbiota–brain axis in irritable bowel disease to improve cognitive function– recent knowledge and emerging therapeutic opportunities. Reviews in the Neurosciences, 2023, 34, 763-773.	1.4	2
214	Tumor microenvironment-mediated immune evasion in hepatocellular carcinoma. Frontiers in Immunology, 0, 14 , .	2.2	19
215	Propionate-producing Veillonella parvula regulates the malignant properties of tumor cells of OSCC. , 2023, 40, .		3
216	Seminars in immunology special issue: Nutrition, microbiota and immunity The unexplored microbes in health and disease. Seminars in Immunology, 2023, 66, 101735.	2.7	1
217	Intratumoral microbiota is associated with prognosis in patients with adrenocortical carcinoma. , 2023, 2, .		6
218	Importance of Gut Microbiome-Based Therapeutics in Cancer Treatment. Biological and Medical Physics Series, 2023, , 831-885.	0.3	0
220	Probiotic-based Anticancer Immunity In Hepato-cellular Carcinoma (liver Cancer)., 2023,, 189-210.		0
226	Systemic Onco-Sphere: Host Microbiome and Cancer. , 2023, , 553-577.		0
232	Antimicrobial Agents Induced Microbiome Dysbiosis Its Impact on Immune System and Metabolic Health. , 2023, , 81-95.		0
233	Hepatocellular Carcinoma and Human Gut Microbiome: Association with Disease and Scope for Therapeutic Intervention., 2023,, 127-149.		0