Using network analysis to explore co-occurrence patter

ISME Journal 6, 343-351

DOI: 10.1038/ismej.2011.119

Citation Report

#	Article	IF	CITATIONS
1	Microbial control over carbon cycling in soil. Frontiers in Microbiology, 2012, 3, 348.	1.5	978
2	Fundamentals of Microbial Community Resistance and Resilience. Frontiers in Microbiology, 2012, 3, 417.	1.5	1,131
3	Computational systems biology and in silico modeling of the human microbiome. Briefings in Bioinformatics, 2012, 13, 769-780.	3.2	83
4	From Animalcules to an Ecosystem: Application of Ecological Concepts to the Human Microbiome. Annual Review of Ecology, Evolution, and Systematics, 2012, 43, 137-155.	3.8	68
5	Co-Occurrence Patterns of Plants and Soil Bacteria in the High-Alpine Subnival Zone Track Environmental Harshness. Frontiers in Microbiology, 2012, 3, 347.	1. 5	54
7	Microbial interactions: from networks to models. Nature Reviews Microbiology, 2012, 10, 538-550.	13.6	2,693
8	Predicting bacterial community assemblages using an artificial neural network approach. Nature Methods, 2012, 9, 621-625.	9.0	159
9	Lineage-dependent ecological coherence in bacteria. FEMS Microbiology Ecology, 2012, 81, 574-582.	1.3	28
10	Effects of season and experimental warming on the bacterial community in a temperate mountain forest soil assessed by 16S rRNA gene pyrosequencing. FEMS Microbiology Ecology, 2012, 82, 551-562.	1.3	128
11	Modeling microbial community structure and functional diversity across time and space. FEMS Microbiology Letters, 2012, 332, 91-98.	0.7	38
12	Use of phytoplanktonâ€derived dissolved organic carbon by different types of bacterioplankton. Environmental Microbiology, 2012, 14, 2348-2360.	1.8	214
13	Microbial community responses to anthropogenically induced environmental change: towards a systems approach. Ecology Letters, 2013, 16, 128-139.	3.0	258
14	Ecological Inferences from a deep screening of the <scp>C</scp> omplex <scp>B</scp> acterial <scp>C</scp> onsortia associated with the coral, <i><scp>P</scp>orites astreoides</i> Ecology, 2013, 22, 4349-4362.	2.0	59
15	Disturbance induced decoupling between host genetics and composition of the associated microbiome. BMC Microbiology, 2013, 13, 252.	1.3	119
16	Determining indicator taxa across spatial and seasonal gradients in the Columbia River coastal margin. ISME Journal, 2013, 7, 1899-1911.	4.4	149
17	Pathogen regulation of plant diversity via effective specialization. Trends in Ecology and Evolution, 2013, 28, 705-711.	4.2	80
18	Diversity patterns of uncultured Haptophytes unravelled by pyrosequencing in Naples Bay. Molecular Ecology, 2013, 22, 87-101.	2.0	70
19	Macroecological patterns of marine bacteria on a global scale. Journal of Biogeography, 2013, 40, 800-811.	1.4	53

#	ARTICLE	IF	Citations
20	The soil resistome: The anthropogenic, the native, and the unknown. Soil Biology and Biochemistry, 2013, 63, 18-23.	4.2	153
21	Insights into functional bacterial diversity and its effects on Alpine bog ecosystem functioning. Scientific Reports, 2013, 3, 1955.	1.6	71
22	Fungal networks in yield-invigorating and -debilitating soils induced by prolonged potato monoculture. Soil Biology and Biochemistry, 2013, 65, 186-194.	4.2	197
23	From molecules to dynamic biological communities. Biology and Philosophy, 2013, 28, 241-259.	0.7	12
24	Metagenomics of Hydrocarbon Resource Environments Indicates Aerobic Taxa and Genes to be Unexpectedly Common. Environmental Science & Environmental Sc	4.6	179
25	Exploring the interaction patterns in seasonal marine microbial communities with network analysis. , 2013, , .		2
26	123 of Metagenomics. , 2013, , 1-11.		1
27	Highâ€Throughput Sequencing: A Roadmap Toward Community Ecology. Ecology and Evolution, 2013, 3, 1125-1139.	0.8	36
28	Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction. Trends in Microbiology, 2013, 21, 641-651.	3.5	429
29	Elucidating the microbial resuscitation cascade in biological soil crusts following a simulated rain event. Environmental Microbiology, 2013, 15, 2799-2815.	1.8	93
30	Upper Arctic Ocean water masses harbor distinct communities of heterotrophic flagellates. Biogeosciences, 2013, 10, 4273-4286.	1.3	33
31	Application of Natural Blends of Phytochemicals Derived from the Root Exudates of Arabidopsis to the Soil Reveal That Phenolic-related Compounds Predominantly Modulate the Soil Microbiome. Journal of Biological Chemistry, 2013, 288, 4502-4512.	1.6	452
32	A decade of seasonal dynamics and co-occurrences within freshwater bacterioplankton communities from eutrophic Lake Mendota, WI, USA. ISME Journal, 2013, 7, 680-684.	4.4	156
33	Detecting seasonal marine microbial communities with symmetrical non-negative matrix factorization. , $2013, , .$		0
34	Parallel changes of taxonomic interaction networks in lacustrine bacterial communities induced by a polymetallic perturbation. Evolutionary Applications, 2013, 6, 643-659.	1.5	30
35	Evidence of species recruitment and development of hot desert hypolithic communities. Environmental Microbiology Reports, 2013, 5, 219-224.	1.0	88
36	Diel gene expression profiles of a phosphorus limited mountain lake using metatranscriptomics. Environmental Microbiology, 2013, 15, 1190-1203.	1.8	41
37	Contrasts between the cryoconite and ice-marginal bacterial communities of Svalbard glaciers. Polar Research, 2013, 32, 19468.	1.6	46

#	ARTICLE	IF	Citations
38	The Poultry-Associated Microbiome: Network Analysis and Farm-to-Fork Characterizations. PLoS ONE, 2013, 8, e57190.	1.1	104
40	Functional gene pyrosequencing and network analysis: an approach to examine the response of denitrifying bacteria to increased nitrogen supply in salt marsh sediments. Frontiers in Microbiology, 2013, 4, 342.	1.5	52
41	Microbial Competition in Polar Soils: A Review of an Understudied but Potentially Important Control on Productivity. Biology, 2013, 2, 533-554.	1.3	34
42	Bioinformatic Approaches Reveal Metagenomic Characterization of Soil Microbial Community. PLoS ONE, 2014, 9, e93445.	1.1	56
43	Pros and Cons of Ion-Torrent Next Generation Sequencing versus Terminal Restriction Fragment Length Polymorphism T-RFLP for Studying the Rumen Bacterial Community. PLoS ONE, 2014, 9, e101435.	1.1	63
44	Network topology reveals high connectance levels and few key microbial genera within soils. Frontiers in Environmental Science, 2014, 2, .	1.5	226
45	Bacteria dialog with Santa Rosalia: Are aggregations of cosmopolitan bacteria mainly explained by habitat filtering or by ecological interactions?. BMC Microbiology, 2014, 14, 284.	1.3	27
46	Sulfate reduction and methane oxidation activity below the sulfate-methane transition zone in Alaskan Beaufort Sea continental margin sediments: Implications for deep sulfur cycling. Geochimica Et Cosmochimica Acta, 2014, 144, 217-237.	1.6	104
47	Fluvial network organization imprints on microbial co-occurrence networks. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12799-12804.	3.3	193
48	Biogeography of anaerobic ammonia-oxidizing (anammox) bacteria. Frontiers in Microbiology, 2014, 5, 399.	1.5	160
49	Mining Seasonal Marine Microbial Pattern with Greedy Heuristic Clustering and Symmetrical Nonnegative Matrix Factorization. BioMed Research International, 2014, 2014, 1-9.	0.9	2
50	Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Frontiers in Microbiology, 2014, 5, 219.	1.5	1,109
51	Contrasting assembly processes in a bacterial metacommunity along a desiccation gradient. Frontiers in Microbiology, 2014, 5, 668.	1.5	34
52	Demonstrating microbial co-occurrence pattern analyses within and between ecosystems. Frontiers in Microbiology, 2014, 5, 358.	1.5	302
53	Mining correlation patterns of taxa, pathways and environmental factors with an improved weighted network community detection algorithm. , 2014 , , .		0
54	Spatial distribution patterns of benthic microbial communities along the Pearl Estuary, China. Systematic and Applied Microbiology, 2014, 37, 578-589.	1.2	89
55	Endospores of thermophilic bacteria as tracers of microbial dispersal by ocean currents. ISME Journal, 2014, 8, 1153-1165.	4.4	139
56	Belowground biodiversity and ecosystem functioning. Nature, 2014, 515, 505-511.	13.7	2,371

#	Article	IF	Citations
57	The microbiome of New World vultures. Nature Communications, 2014, 5, 5498.	5.8	264
58	Metagenomic analysis on seasonal microbial variations of activated sludge from a fullâ€scale wastewater treatment plant over 4 years. Environmental Microbiology Reports, 2014, 6, 80-89.	1.0	159
59	The Potential of Metagenomic Approaches for Understanding Soil Microbial Processes. Soil Science Society of America Journal, 2014, 78, 3-10.	1.2	105
60	Linkage between bacterial and fungal rhizosphere communities in hydrocarbon-contaminated soils is related to plant phylogeny. ISME Journal, 2014, 8, 331-343.	4.4	190
61	Interactions in the microbiome: communities of organisms and communities of genes. FEMS Microbiology Reviews, 2014, 38, 90-118.	3.9	174
62	Initial Copper Stress Strengthens the Resistance of Soil Microorganisms to a Subsequent Copper Stress. Microbial Ecology, 2014, 67, 931-941.	1.4	44
63	Taxonomic relatedness shapes bacterial assembly in activated sludge of globally distributed wastewater treatment plants. Environmental Microbiology, 2014, 16, 2421-2432.	1.8	333
64	Diffuse symbioses: roles of plant–plant, plant–microbe and microbe–microbe interactions in structuring the soil microbiome. Molecular Ecology, 2014, 23, 1571-1583.	2.0	143
65	River organic matter shapes microbial communities in the sediment of the Rhône prodelta. ISME Journal, 2014, 8, 2327-2338.	4.4	64
66	Mathematical modeling of primary succession of murine intestinal microbiota. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 439-444.	3.3	183
67	Soil Microbial Community Responses to a Decade of Warming as Revealed by Comparative Metagenomics. Applied and Environmental Microbiology, 2014, 80, 1777-1786.	1.4	131
68	Pyrosequencing analysis of bacterial community and assembly in activated sludge samples from different geographic regions in China. Applied Microbiology and Biotechnology, 2014, 98, 9119-9128.	1.7	55
69	Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles, 2014, 18, 791-809.	0.9	264
70	Modular community structure suggests metabolic plasticity during the transition to polar night in ice-covered Antarctic lakes. ISME Journal, 2014, 8, 778-789.	4.4	181
71	Meta-Analysis and Other Approaches for Synthesizing Structured and Unstructured Data in Plant Pathology. Annual Review of Phytopathology, 2014, 52, 453-476.	3.5	38
72	Back to the future: natural history and the way forward in modern fungal ecology. Fungal Ecology, 2014, 12, 4-9.	0.7	65
73	Shifts in the Microbial Community, Nitrifiers and Denitrifiers in the Biofilm in a Full-scale Rotating Biological Contactor. Environmental Science & E	4.6	99
74	Environmental drivers of soil microbial community distribution at the Koiliaris Critical Zone Observatory. FEMS Microbiology Ecology, 2014, 90, 139-152.	1.3	25

#	ARTICLE	IF	Citations
75	Soil bacterial communities of different natural forest types in Northeast China. Plant and Soil, 2014, 383, 203-216.	1.8	82
76	Spatial heterogeneity and co-occurrence patterns of human mucosal-associated intestinal microbiota. ISME Journal, 2014, 8, 881-893.	4.4	206
77	Dynamics of bacterial community succession in a salt marsh chronosequence: evidences for temporal niche partitioning. ISME Journal, 2014, 8, 1989-2001.	4.4	221
78	Network construction and structure detection with metagenomic count data. BioData Mining, 2015, 8, 40.	2.2	8
79	Correlations of Gut Microbial Community Shift with Hepatic Damage and Growth Inhibition of <i>Carassius auratus /i> Induced by Pentachlorophenol Exposure. Environmental Science & Emp; Technology, 2015, 49, 11894-11902.</i>	4.6	107
80	Subgingival microbiome in patients with healthy and ailing dental implants. Scientific Reports, 2015, 5, 10948.	1.6	101
81	Annual periodicity in planktonic bacterial and archaeal community composition of eutrophic Lake Taihu. Scientific Reports, 2015, 5, 15488.	1.6	74
82	Niche differentiation of bacterial communities at a millimeter scale in Shark Bay microbial mats. Scientific Reports, 2015, 5, 15607.	1.6	137
83	Diversity of key players in the microbial ecosystems of the human body. Scientific Reports, 2015, 5, 15920.	1.6	30
84	Phylogeny-structured carbohydrate metabolism across microbiomes collected from different units in wastewater treatment process. Biotechnology for Biofuels, 2015, 8, 172.	6.2	17
85	Atmospheric N deposition alters connectance, but not functional potential among saprotrophic bacterial communities. Molecular Ecology, 2015, 24, 3170-3180.	2.0	41
86	Levels and limits in artificial selection of communities. Ecology Letters, 2015, 18, 1040-1048.	3.0	53
87	Microbial ecosystems are dominated by specialist taxa. Ecology Letters, 2015, 18, 974-982.	3.0	74
88	Synchronized dynamics of bacterial nicheâ€specific functions during biofilm development in a cold seep brine pool. Environmental Microbiology, 2015, 17, 4089-4104.	1.8	24
89	Characterization of the core microbiota of the drainage and surrounding soil of a Brazilian copper mine. Genetics and Molecular Biology, 2015, 38, 484-489.	0.6	29
90	10 Years Later. Advances in Ecological Research, 2015, 53, 1-53.	1.4	43
91	Toward a global platform for linking soil biodiversity data. Frontiers in Ecology and Evolution, 0, 3, .	1.1	24
92	Microbial responses to changes in flow status in temporary headwater streams: a cross-system comparison. Frontiers in Microbiology, 2015, 6, 522.	1.5	41

#	ARTICLE	IF	CITATIONS
93	Responses of soil microeukaryotic communities to short-term fumigation-incubation revealed by MiSeq amplicon sequencing. Frontiers in Microbiology, 2015, 6, 1149.	1.5	23
94	A network-based approach to disturbance transmission through microbial interactions. Frontiers in Microbiology, 2015, 6, 1182.	1.5	81
95	Cross-biome comparison of microbial association networks. Frontiers in Microbiology, 2015, 6, 1200.	1.5	154
96	Pyrosequencing Characterization of the Microbiota from Atlantic Intertidal Marine Sponges Reveals High Microbial Diversity and the Lack of Co-Occurrence Patterns. PLoS ONE, 2015, 10, e0127455.	1.1	34
97	Bioinformation and $\hat{a} \in \mathbb{M}$ Omic Approaches for Characterization of Environmental Microorganisms. , 2015, , 483-505.		4
98	Soil microbiome responses to the shortâ€term effects of Amazonian deforestation. Molecular Ecology, 2015, 24, 2433-2448.	2.0	171
99	Cross-depth analysis of marine bacterial networks suggests downward propagation of temporal changes. ISME Journal, 2015, 9, 2573-2586.	4.4	105
100	Metagenomics meets time series analysis: unraveling microbial community dynamics. Current Opinion in Microbiology, 2015, 25, 56-66.	2.3	345
101	<i>Studies in Higher Education</i> 1976–2013: a retrospective using citation network analysis. Studies in Higher Education, 2015, 40, 4-21.	2.9	41
102	A computational framework for integrative analysis of large microbial genomics data. , 2015, , .		1
103	Bipartite graphs for metagenomic data analysis and visualization. , 2015, , .		1
104	Environmental drivers of the distribution of nitrogen functional genes at a watershed scale. FEMS Microbiology Ecology, 2015, 91, .	1.3	38
105	Insights into spatially and temporally co-occurring polybrominated diphenyl ethers in sediments of the East China Sea. Chemosphere, 2015, 123, 55-63.	4.2	24
106	Biodegradation of Dichlorodiphenyltrichloroethanes (DDTs) and Hexachlorocyclohexanes (HCHs) with Plant and Nutrients and Their Effects on the Microbial Ecological Kinetics. Microbial Ecology, 2015, 69, 281-292.	1.4	16
107	Marine microbial community dynamics and their ecological interpretation. Nature Reviews Microbiology, 2015, 13, 133-146.	13.6	681
108	High-Throughput Metagenomic Technologies for Complex Microbial Community Analysis: Open and Closed Formats. MBio, 2015, 6, .	1.8	357
109	Different Bacterial Populations Associated with the Roots and Rhizosphere of Rice Incorporate Plant-Derived Carbon. Applied and Environmental Microbiology, 2015, 81, 2244-2253.	1.4	114
110	Resistant Microbial Cooccurrence Patterns Inferred by Network Topology. Applied and Environmental Microbiology, 2015, 81, 2090-2097.	1.4	104

#	Article	IF	CITATIONS
111	Cyanobacteria drive community composition and functionality in rock–soil interface communities. Molecular Ecology, 2015, 24, 812-821.	2.0	63
112	Intraindividual variation in core microbiota in peri-implantitis and periodontitis. Scientific Reports, 2014, 4, 6602.	1.6	139
114	Exploring Actinobacteria assemblages in coastal marine sediments under contrasted Human influences in the West Istria Sea, Croatia. Environmental Science and Pollution Research, 2015, 22, 15215-15229.	2.7	54
115	Fungal Communities Respond to Long-Term CO ₂ Elevation by Community Reassembly. Applied and Environmental Microbiology, 2015, 81, 2445-2454.	1.4	48
116	Complex relationships between species niches and environmental heterogeneity affect species co-occurrence patterns in modelled and real communities. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150927.	1.2	47
117	Roles of Thermophiles and Fungi in Bitumen Degradation in Mostly Cold Oil Sands Outcrops. Applied and Environmental Microbiology, 2015, 81, 6825-6838.	1.4	41
118	Is Planktonic Diversity Well Recorded in Sedimentary DNA? Toward the Reconstruction of Past Protistan Diversity. Microbial Ecology, 2015, 70, 865-875.	1.4	55
119	Aggregate-related changes in network patterns of nematodes and ammonia oxidizers in an acidic soil. Soil Biology and Biochemistry, 2015, 88, 101-109.	4.2	64
120	Multilayer network representation of membrane potential and cytosolic calcium concentration dynamics in beta cells. Chaos, Solitons and Fractals, 2015, 80, 76-82.	2.5	26
121	Hologenome theory supported by cooccurrence networks of species-specific bacterial communities in siphonous algae (<i>Caulerpa</i>). FEMS Microbiology Ecology, 2015, 91, fiv067.	1.3	55
122	Sparse and Compositionally Robust Inference of Microbial Ecological Networks. PLoS Computational Biology, 2015, 11, e1004226.	1.5	1,089
123	Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiology Reviews, 2015, 39, 729-749.	3.9	530
124	Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. ISME Journal, 2015, 9, 2490-2502.	4.4	928
125	A framework for establishing predictive relationships between specific bacterial 16S rRNA sequence abundances and biotransformation rates. Water Research, 2015, 70, 471-484.	5.3	31
126	Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6449-6454.	3.3	588
127	Relationship between phylogenetic and nutritional diversity in Arctic (Kandalaksha Bay) seawater planktonic bacteria. Annals of Microbiology, 2015, 65, 2405-2414.	1.1	9
128	Ecology and exploration of the rare biosphere. Nature Reviews Microbiology, 2015, 13, 217-229.	13.6	926
129	Statistical Tools for Data Analysis. Springer Protocols, 2015, , 41-57.	0.1	0

#	Article	IF	CITATIONS
130	16S rRNA assessment of the influence of shading on early-successional biofilms in experimental streams. FEMS Microbiology Ecology, 2015, 91, fiv129.	1.3	3
131	Athletic equipment microbiota are shaped by interactions with human skin. Microbiome, 2015, 3, 25.	4.9	36
132	The core populations and co-occurrence patterns of prokaryotic communities in household biogas digesters. Biotechnology for Biofuels, 2015, 8, 158.	6.2	113
133	Freshwater Conservation and Biomonitoring of Structure and Function., 2015,, 241-271.		3
134	Microbial Invasions: The Process, Patterns, and Mechanisms. Trends in Microbiology, 2015, 23, 719-729.	3.5	330
135	Application of Metagenomics in Environmental Anaerobic Technology. , 2015, , 73-108.		1
136	The dynamics of the bacterial diversity in the redox transition and anoxic zones of the Cariaco Basin assessed by parallel tag sequencing. FEMS Microbiology Ecology, 2015, 91, fiv088.	1.3	13
137	Diversity and complexity of microbial communities from a chlor-alkali tailings dump. Soil Biology and Biochemistry, 2015, 90, 101-110.	4.2	54
138	Soil particle size fractions harbour distinct microbial communities and differ in potential for microbial mineralisation of organic pollutants. Soil Biology and Biochemistry, 2015, 90, 255-265.	4.2	99
139	Bacterial networks and coâ€occurrence relationships in the lettuce root microbiota. Environmental Microbiology, 2015, 17, 239-252.	1.8	241
140	Dynamics in microbial communities: unraveling mechanisms to identify principles. ISME Journal, 2015, 9, 1488-1495.	4.4	257
141	A comparison of the wet and dry season DNA-based soil invertebrate community characteristics in large patches of the bromeliad Bromelia pinguin in a primary forest in Costa Rica. Applied Soil Ecology, 2015, 87, 99-107.	2.1	19
142	Crop monoculture rather than agriculture reduces the spatial turnover of soil bacterial communities at a regional scale. Environmental Microbiology, 2015, 17, 678-688.	1.8	71
143	Co-occurrence correlations of heavy metals in sediments revealed using network analysis. Chemosphere, 2015, 119, 1305-1313.	4.2	43
144	Protistan diversity in a permanently stratified meromictic lake (Lake <scp>A</scp> latsee, <scp>SW) Tj ETQq0 0 0</scp>) rgBT /Ov	erlock 10 Tf 5
145	Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal wastewater treatment plant. ISME Journal, 2015, 9, 683-695.	4.4	393
146	Network analysis reveals that bacteria and fungi form modules that correlate independently with soil parameters. Environmental Microbiology, 2015, 17, 2677-2689.	1.8	166
147	5. Exploring Diversity of Soil Microorganisms: A Multidimensional Approach. , 2016, , 66-86.		0

#	Article	IF	Citations
148	Microbial Diversity of Ammonia Oxidizing Bacteria through Waste Water Genomics. Applied Microbiology Open Access, 2016, 2, .	0.2	0
149	Networking in the Plant Microbiome. PLoS Biology, 2016, 14, e1002378.	2.6	355
150	Microbial co-occurrence patterns in deep Precambrian bedrock fracture fluids. Biogeosciences, 2016, 13, 3091-3108.	1.3	90
151	Co-occurrence patterns in aquatic bacterial communities across changing permafrost landscapes. Biogeosciences, 2016, 13, 175-190.	1.3	64
152	Long-Term Oil Contamination Alters the Molecular Ecological Networks of Soil Microbial Functional Genes. Frontiers in Microbiology, 2016, 7, 60.	1.5	80
153	Using "Omics―and Integrated Multi-Omics Approaches to Guide Probiotic Selection to Mitigate Chytridiomycosis and Other Emerging Infectious Diseases. Frontiers in Microbiology, 2016, 7, 68.	1.5	135
154	Microbes as Engines of Ecosystem Function: When Does Community Structure Enhance Predictions of Ecosystem Processes?. Frontiers in Microbiology, 2016, 7, 214.	1.5	479
155	Taxonomic Assessment of Rumen Microbiota Using Total RNA and Targeted Amplicon Sequencing Approaches. Frontiers in Microbiology, 2016, 7, 987.	1.5	61
156	Response of Core Microbial Consortia to Chronic Hydrocarbon Contaminations in Coastal Sediment Habitats. Frontiers in Microbiology, 2016, 7, 1637.	1.5	76
157	Anaerobic Biodegradation of Hydrocarbons: Metagenomics and Metabolomics. , 2016, , 1-42.		3
158	Bacterial Communities in the Rhizosphere of Amilaceous Maize (Zea mays L.) as Assessed by Pyrosequencing. Frontiers in Plant Science, 2016, 7, 1016.	1.7	58
159	Multiple Assembly Rules Drive the Co-occurrence of Orthopteran and Plant Species in Grasslands: Combining Network, Functional and Phylogenetic Approaches. Frontiers in Plant Science, 2016, 7, 1224.	1.7	6
160	Spatial scale drives patterns in soil bacterial diversity. Environmental Microbiology, 2016, 18, 2039-2051.	1.8	194
161	The interconnected rhizosphere: High network complexity dominates rhizosphere assemblages. Ecology Letters, 2016, 19, 926-936.	3.0	803
162	Taxon interactions control the distributions of cryoconite bacteria colonizing a High Arctic ice cap. Molecular Ecology, 2016, 25, 3752-3767.	2.0	67
163	Determinants of bacterial communities in <scp>C</scp> anadian agroforestry systems. Environmental Microbiology, 2016, 18, 1805-1816.	1.8	202
164	Microbial succession in response to pollutants in batch-enrichment culture. Scientific Reports, 2016, 6, 21791.	1.6	87
165	Diversity and interactions of microbial functional genes under differing environmental conditions: insights from a membrane bioreactor and an oxidation ditch. Scientific Reports, 2016, 6, 18509.	1.6	16

#	Article	IF	CITATIONS
166	Urban Transit System Microbial Communities Differ by Surface Type and Interaction with Humans and the Environment. MSystems, 2016, 1 , .	1.7	107
167	Population Dynamics of Bulking and Foaming Bacteria in a Full-scale Wastewater Treatment Plant over Five Years. Scientific Reports, 2016, 6, 24180.	1.6	30
168	Describe, understand and predict: why do we need networks in ecology?. Functional Ecology, 2016, 30, 1878-1882.	1.7	86
169	Hydrocarbon degraders establish at the costs of microbial richness, abundance and keystone taxa after crude oil contamination in permafrost environments. Scientific Reports, 2016, 6, 37473.	1.6	58
170	Inferior adaptation of bay sediments in a eutrophic shallow lake to winter season for organic matter decomposition. Environmental Pollution, 2016, 219, 794-803.	3.7	6
171	Bacterial and protist community changes during a phytoplankton bloom. Limnology and Oceanography, 2016, 61, 198-213.	1.6	22
172	Predicting microbial interactions through computational approaches. Methods, 2016, 102, 12-19.	1.9	49
173	High-rate activated sludge communities have a distinctly different structure compared to low-rate sludge communities, and are less sensitive towards environmental and operational variables. Water Research, 2016, 100, 137-145.	5.3	62
174	Insight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysis. Soil Biology and Biochemistry, 2016, 99, 137-149.	4.2	282
175	Environmental factors shaping cultured free-living amoebae and their associated bacterial community within drinking water network. Water Research, 2016, 100, 382-392.	5.3	60
176	Bacterial communities in oil contaminated soils: Biogeography and co-occurrence patterns. Soil Biology and Biochemistry, 2016, 98, 64-73.	4.2	366
177	pH affects bacterial community composition in soils across the Huashan Watershed, China. Canadian Journal of Microbiology, 2016, 62, 726-734.	0.8	6
178	Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biology and Biochemistry, 2016, 97, 188-198.	4.2	617
179	Bacterioplankton niche partitioning in the use of phytoplankton-derived dissolved organic carbon: quantity is more important than quality. ISME Journal, 2016, 10, 2582-2592.	4.4	77
180	Network analysis reveals seasonal variation of co-occurrence correlations between Cyanobacteria and other bacterioplankton. Science of the Total Environment, 2016, 573, 817-825.	3.9	101
181	Understanding soil food web dynamics, how close do we get?. Soil Biology and Biochemistry, 2016, 102, 10-13.	4.2	36
182	Ecology of the forest microbiome: Highlights of temperate and borealÂecosystems. Soil Biology and Biochemistry, 2016, 103, 471-488.	4.2	140
184	Long-term successional dynamics of microbial association networks in anaerobic digestion processes. Water Research, 2016, 104, 1-10.	5.3	177

#	Article	IF	CITATIONS
185	Soil and leaf litter metaproteomicsâ€"a brief guideline from sampling to understanding. FEMS Microbiology Ecology, 2016, 92, fiw180.	1.3	54
186	Microbially Mediated Plant Salt Tolerance and Microbiome-based Solutions for Saline Agriculture. Biotechnology Advances, 2016, 34, 1245-1259.	6.0	315
187	Local Environmental Factors Drive Divergent Grassland Soil Bacterial Communities in the Western Swiss Alps. Applied and Environmental Microbiology, 2016, 82, 6303-6316.	1.4	63
188	Opposing effects of nitrogen and water addition on soil bacterial and fungal communities in the Inner Mongolia steppe: A field experiment. Applied Soil Ecology, 2016, 108, 128-135.	2.1	37
189	Distinct distribution patterns of prokaryotes between sediment and water in the Yellow River estuary. Applied Microbiology and Biotechnology, 2016, 100, 9683-9697.	1.7	61
190	Effects of Fe(<scp>ii</scp>) on microbial communities, nitrogen transformation pathways and iron cycling in the anammox process: kinetics, quantitative molecular mechanism and metagenomic analysis. RSC Advances, 2016, 6, 68005-68016.	1.7	66
191	Microbiome Networks: A Systems Framework for Identifying Candidate Microbial Assemblages for Disease Management. Phytopathology, 2016, 106, 1083-1096.	1.1	250
192	Habitat generalists and specialists in microbial communities across a terrestrial-freshwater gradient. Scientific Reports, 2016, 6, 37719.	1.6	91
193	Perspectives for microbial community composition in anaerobic digestion: from abundance and activity to connectivity. Environmental Microbiology, 2016, 18, 2797-2809.	1.8	99
194	Microbial Community Patterns Associated with Automated Teller Machine Keypads in New York City. MSphere, 2016, 1 , .	1.3	28
195	The shift of microbial communities and their roles in sulfur and iron cycling in a copper ore bioleaching system. Scientific Reports, 2016, 6, 34744.	1.6	18
196	Effects of captivity and artificial breeding on microbiota in feces of the red-crowned crane (Grus) Tj ETQq $1\ 1\ C$	0.784314 rgBT 1.6	/Overlock 1
197	Biotic Interactions Shape the Ecological Distributions of <i>Staphylococcus</i> Species. MBio, 2016, 7, .	1.8	103
198	Dynamic models of the complex microbial metapopulation of lake mendota. Npj Systems Biology and Applications, 2016, 2, 16007.	1.4	43
199	Metagenomics, Metatranscriptomics, and Metabolomics Approaches for Microbiome Analysis. Evolutionary Bioinformatics, 2016, 12s1, EBO.S36436.	0.6	227
200	TACO: Taxonomic prediction of unknown OTUs through OTU coâ€abundance networks. Quantitative Biology, 2016, 4, 149-158.	0.3	4
201	Marine Microbial Systems Ecology: Microbial Networks in the Sea. , 2016, , 335-344.		2
202	Comparison of microbial communities of activated sludge and membrane biofilm in 10 full-scale membrane bioreactors. Water Research, 2016, 101, 214-225.	5.3	106

#	Article	IF	Citations
203	Microbial interactions and community assembly at microscales. Current Opinion in Microbiology, 2016, 31, 227-234.	2.3	308
204	Academy of Management Journal, 1958–2014: a citation analysis. Scientometrics, 2016, 108, 959-975.	1.6	34
205	Learning Ecological Networks from Next-Generation Sequencing Data. Advances in Ecological Research, 2016, , 1-39.	1.4	68
206	Molecular mechanisms underlying the close association between soil <i>Burkholderia</i> and fungi. ISME Journal, 2016, 10, 253-264.	4.4	118
207	Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME Journal, 2016, 10, 1891-1901.	4.4	758
208	Elevated nutrients change bacterial community composition and connectivity: high throughput sequencing of young marine biofilms. Biofouling, 2016, 32, 57-69.	0.8	87
209	Crop rotations alter bacterial and fungal diversity in paddy soils across East Asia. Soil Biology and Biochemistry, 2016, 95, 250-261.	4.2	130
210	Studying Bacterial Multispecies Biofilms: Where to Start?. Trends in Microbiology, 2016, 24, 503-513.	3.5	150
211	Cryoconite. Progress in Physical Geography, 2016, 40, 66-111.	1.4	160
212	Host origin and tissue microhabitat shaping the microbiota of the terrestrial isopod <i>Armadillidium vulgare</i> . FEMS Microbiology Ecology, 2016, 92, fiw063.	1.3	41
213	The impact of tropical forest logging and oil palm agriculture on the soil microbiome. Molecular Ecology, 2016, 25, 2244-2257.	2.0	99
214	Illuminating Anaerobic Microbial Community and Cooccurrence Patterns across a Quality Gradient in Chinese Liquor Fermentation Pit Muds. Applied and Environmental Microbiology, 2016, 82, 2506-2515.	1.4	130
215	Soil bacterial communities associated with natural and commercial <i>Cyclopia</i> Spp FEMS Microbiology Ecology, 2016, 92, fiw016.	1.3	29
216	Woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process for nitrate contaminated water remediation. Water Research, 2016, 89, 171-179.	5.3	119
217	Bromochloromethane, a Methane Analogue, Affects the Microbiota and Metabolic Profiles of the Rat Gastrointestinal Tract. Applied and Environmental Microbiology, 2016, 82, 778-787.	1.4	21
218	Microbial diversity at Mitchell Peninsula, Eastern Antarctica: a potential biodiversity "hotspot― Polar Biology, 2016, 39, 237-249.	0.5	101
219	Ecological network analysis reveals the inter-connection between soil biodiversity and ecosystem function as affected by land use across Europe. Applied Soil Ecology, 2016, 97, 112-124.	2.1	184
220	Insights in the ecology and evolutionary history of the <i>Miscellaneous Crenarchaeotic Group</i> lineage. ISME Journal, 2016, 10, 665-677.	4.4	100

#	ARTICLE	IF	Citations
221	The Diversity and Co-occurrence Patterns of N2-Fixing Communities in a CO2-Enriched Grassland Ecosystem. Microbial Ecology, 2016, 71, 604-615.	1.4	52
222	Pesticides in Ichkeul Lake–Bizerta Lagoon Watershed in Tunisia: use, occurrence, and effects on bacteria and free-living marine nematodes. Environmental Science and Pollution Research, 2016, 23, 36-48.	2.7	24
223	Optimal taxonomic groups for biodiversity assessment: a metaâ€analytic approach. Ecography, 2017, 40, 539-548.	2.1	37
224	Source tracking of prokaryotic communities in fermented grain of Chinese strong-flavor liquor. International Journal of Food Microbiology, 2017, 244, 27-35.	2.1	147
225	The differentiation of soil bacterial communities along a precipitation and temperature gradient in the eastern Inner Mongolia steppe. Catena, 2017, 152, 47-56.	2.2	87
226	Impacts of inorganic and organic fertilization treatments on bacterial and fungal communities in a paddy soil. Applied Soil Ecology, 2017, 112, 42-50.	2.1	208
227	Inference of Environmental Factor-Microbe and Microbe-Microbe Associations from Metagenomic Data Using a Hierarchical Bayesian Statistical Model. Cell Systems, 2017, 4, 129-137.e5.	2.9	37
228	Plant cultivars imprint the rhizosphere bacterial community composition and association networks. Soil Biology and Biochemistry, 2017, 109, 145-155.	4.2	191
229	<i>Syntrophobacteraceae</i> â€affiliated species are major propionateâ€degrading sulfate reducers in paddy soil. Environmental Microbiology, 2017, 19, 1669-1686.	1.8	57
230	Linking Microbial Community, Environmental Variables, and Methanogenesis in Anaerobic Biogas Digesters of Chemically Enhanced Primary Treatment Sludge. Environmental Science & Emp; Technology, 2017, 51, 3982-3992.	4.6	107
231	Soil networks become more connected and take up more carbon as nature restoration progresses. Nature Communications, 2017, 8, 14349.	5.8	555
233	Responses of Bacterial Communities to CuO Nanoparticles in Activated Sludge System. Environmental Science & Environmental Scie	4.6	89
234	Environmental Metabarcoding Reveals Contrasting Belowground and Aboveground Fungal Communities from Poplar at a Hg Phytomanagement Site. Microbial Ecology, 2017, 74, 795-809.	1.4	37
235	Land scale biogeography of arsenic biotransformation genes in estuarine wetland. Environmental Microbiology, 2017, 19, 2468-2482.	1.8	45
237	Disentangling Interactions in the Microbiome: A Network Perspective. Trends in Microbiology, 2017, 25, 217-228.	3.5	559
238	Ecological diversity and co-occurrence patterns of bacterial community through soil profile in response to long-term switchgrass cultivation. Scientific Reports, 2017, 7, 3608.	1.6	50
239	Abundance and Co-Distribution of Widespread Marine Archaeal Lineages in Surface Sediments of Freshwater Water Bodies across the Iberian Peninsula. Microbial Ecology, 2017, 74, 776-787.	1.4	15
240	A tale of two risks: smoking, diabetes and the subgingival microbiome. ISME Journal, 2017, 11, 2075-2089.	4.4	107

#	Article	IF	CITATIONS
241	The response of archaeal species to seasonal variables in a subtropical aerated soil: insight into the low abundant methanogens. Applied Microbiology and Biotechnology, 2017, 101, 6505-6515.	1.7	7
242	Significant Impacts of Increasing Aridity on the Arid Soil Microbiome. MSystems, 2017, 2, .	1.7	141
243	Community-Level Differences in the Microbiome of Healthy Wild Mallards and Those Infected by Influenza A Viruses. MSystems, 2017, 2, .	1.7	41
244	In-depth analysis of core methanogenic communities from high elevation permafrost-affected wetlands. Soil Biology and Biochemistry, 2017, 111, 66-77.	4.2	36
245	Microbial diversity and ecological networks as indicators of environmental quality. Environmental Chemistry Letters, 2017, 15, 265-281.	8.3	169
247	Diel-scale temporal dynamics recorded for bacterial groups in Namib Desert soil. Scientific Reports, 2017, 7, 40189.	1.6	42
248	Distribution of Bathyarchaeota Communities Across Different Terrestrial Settings and Their Potential Ecological Functions. Scientific Reports, 2017, 7, 45028.	1.6	88
249	Effects of diet type, developmental stage, and gut compartment in the gut bacterial communities of two Cerambycidae species (Coleoptera). Journal of Microbiology, 2017, 55, 21-30.	1.3	66
250	Combined use of network inference tools identifies ecologically meaningful bacterial associations in a paddy soil. Soil Biology and Biochemistry, 2017, 105, 227-235.	4.2	72
251	Strong impact of anthropogenic contamination on the coâ€occurrence patterns of a riverine microbial community. Environmental Microbiology, 2017, 19, 4993-5009.	1.8	213
252	Diversity and co-occurrence network of soil fungi are more responsive than those of bacteria to shifts in precipitation seasonality in a subtropical forest. Soil Biology and Biochemistry, 2017, 115, 499-510.	4.2	134
253	Alteration of soil bacterial interaction networks driven by different long-term fertilization management practices in the red soil of South China. Applied Soil Ecology, 2017, 120, 128-134.	2.1	41
254	Soil microbial community dynamics and assembly under long-term land use change. FEMS Microbiology Ecology, 2017, 93, .	1.3	69
255	Biodiversity and species competition regulate the resilience of microbial biofilm community. Molecular Ecology, 2017, 26, 6170-6182.	2.0	299
256	Seasonal rather than spatial variability drives planktonic and benthic bacterial diversity in a microtidal lagoon and the adjacent open sea. Molecular Ecology, 2017, 26, 5961-5973.	2.0	35
257	Assembly of microbial communities in replicate nutrientâ€cycling model ecosystems follows divergent trajectories, leading to alternate stable states. Environmental Microbiology, 2017, 19, 3374-3386.	1.8	39
258	Coupling sugarcane yield to soil nematodes: Implications from different fertilization regimes and growth stages. Agriculture, Ecosystems and Environment, 2017, 247, 157-165.	2.5	6
259	Metabolomics analysis of Danggui Sini decoction on treatment of collagen-induced arthritis in rats. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1061-1062, 282-291.	1.2	51

#	Article	IF	CITATIONS
260	Microbiome analysis and confocal microscopy of used kitchen sponges reveal massive colonization by Acinetobacter, Moraxella and Chryseobacterium species. Scientific Reports, 2017, 7, 5791.	1.6	41
261	Ecological Network Inference From Long-Term Presence-Absence Data. Scientific Reports, 2017, 7, 7154.	1.6	50
262	The cyanobacterium Gloeotrichia echinulata increases the stability and network complexity of phytoplankton communities. Ecosphere, 2017, 8, e01830.	1.0	12
263	Influences of anthropogenic land use on microbial community structure and functional potentials of stream benthic biofilms. Scientific Reports, 2017, 7, 15117.	1.6	45
264	New microbial resource: microbial diversity, function and dynamics in Chinese liquor starter. Scientific Reports, 2017, 7, 14577.	1.6	64
265	Linking fungal–bacterial co-occurrences to soil ecosystem function. Current Opinion in Microbiology, 2017, 37, 135-141.	2.3	117
266	The microbiome as engineering tool: Manufacturing and trading between microorganisms. New Biotechnology, 2017, 39, 206-214.	2.4	17
267	Capping material type affects rhizosphere bacteria community structure in the cover soil in oil sands reclamation. Journal of Soils and Sediments, 2017, 17, 2516-2523.	1.5	10
268	Shifts in rhizosphere fungal community during secondary succession following abandonment from agriculture. ISME Journal, 2017, 11, 2294-2304.	4.4	177
269	Biogeography and ecological diversity patterns of rare and abundant bacteria in oilâ€contaminated soils. Molecular Ecology, 2017, 26, 5305-5317.	2.0	220
270	The drivers underlying biogeographical patterns of bacterial communities in soils under sugarcane cultivation. Applied Soil Ecology, 2017, 110, 12-20.	2.1	32
271	The dynamic changes and interactional networks of prokaryotic community between co-digestion and mono-digestions of corn stalk and pig manure. Bioresource Technology, 2017, 225, 23-33.	4.8	44
272	Exploring the bacterial gut microbiota of supralittoral talitrid amphipods. Research in Microbiology, 2017, 168, 74-84.	1.0	13
273	Fire modifies the phylogenetic structure of soil bacterial coâ€occurrence networks. Environmental Microbiology, 2017, 19, 317-327.	1.8	48
274	Microbial community composition but not diversity changes along succession in arctic sand dunes. Environmental Microbiology, 2017, 19, 698-709.	1.8	32
275	Overview of freshwater microbial eukaryotes diversity: a first analysis of publicly available metabarcoding data. FEMS Microbiology Ecology, 2017, 93, .	1.3	132
276	Microbial diversity in an intensively managed landscape is structured by landscape connectivity. FEMS Microbiology Ecology, 2017, 93, .	1.3	30
277	Microbial Diversity and Community Assembly across Environmental Gradients in Acid Mine Drainage. Minerals (Basel, Switzerland), 2017, 7, 106.	0.8	47

#	Article	IF	CITATIONS
278	Sampling Strategies for Three-Dimensional Spatial Community Structures in IBD Microbiota Research. Frontiers in Cellular and Infection Microbiology, 2017, 7, 51.	1.8	23
279	Seasonal and Interannual Changes in Ciliate and Dinoflagellate Species Assemblages in the Arctic Ocean (Amundsen Gulf, Beaufort Sea, Canada). Frontiers in Marine Science, 2017, 4, .	1.2	35
280	Bacterial Community Structure after Long-term Organic and Inorganic Fertilization Reveals Important Associations between Soil Nutrients and Specific Taxa Involved in Nutrient Transformations. Frontiers in Microbiology, 2017, 8, 187.	1.5	212
281	Watershed Urbanization Linked to Differences in Stream Bacterial Community Composition. Frontiers in Microbiology, 2017, 8, 1452.	1.5	94
282	Fast and Simple Analysis of MiSeq Amplicon Sequencing Data with MetaAmp. Frontiers in Microbiology, 2017, 8, 1461.	1.5	82
283	Conservation of Species- and Trait-Based Modeling Network Interactions in Extremely Acidic Microbial Community Assembly. Frontiers in Microbiology, 2017, 8, 1486.	1.5	10
284	Cyanobacteria and Alphaproteobacteria May Facilitate Cooperative Interactions in Niche Communities. Frontiers in Microbiology, 2017, 8, 2099.	1.5	36
285	An Integrated Insight into the Relationship between Soil Microbial Community and Tobacco Bacterial Wilt Disease. Frontiers in Microbiology, 2017, 8, 2179.	1.5	108
286	Taxonomic and Functional Differences between Microbial Communities in Qinghai Lake and Its Input Streams. Frontiers in Microbiology, 2017, 8, 2319.	1.5	73
287	Balanced Fertilization Decreases Environmental Filtering on Soil Bacterial Community Assemblage in North China. Frontiers in Microbiology, 2017, 8, 2376.	1.5	44
288	Soil Bacterial Community Structure and Co-occurrence Pattern during Vegetation Restoration in Karst Rocky Desertification Area. Frontiers in Microbiology, 2017, 8, 2377.	1.5	158
289	Seasonal Changes in a Maize-Based Polyculture of Central Mexico Reshape the Co-occurrence Networks of Soil Bacterial Communities. Frontiers in Microbiology, 2017, 8, 2478.	1.5	36
290	Taxon abundance, diversity, co-occurrence and network analysis of the ruminal microbiota in response to dietary changes in dairy cows. PLoS ONE, 2017, 12, e0180260.	1.1	84
291	Using null models to infer microbial co-occurrence networks. PLoS ONE, 2017, 12, e0176751.	1.1	67
292	Catalogue of antibiotic resistome and host-tracking in drinking water deciphered by a large scale survey. Microbiome, 2017, 5, 154.	4.9	215
293	Metagenomics of urban sewage identifies an extensively shared antibiotic resistome in China. Microbiome, 2017, 5, 84.	4.9	247
294	Blood as a route of transmission of uterine pathogens from the gut to the uterus in cows. Microbiome, 2017, 5, 109.	4.9	80
295	Investigation of the core microbiome in main soil types from the East European plain. Science of the Total Environment, 2018, 631-632, 1421-1430.	3.9	43

#	Article	IF	CITATIONS
296	Achieving mainstream nitrogen removal through simultaneous partial nitrification, anammox and denitrification process in an integrated fixed film activated sludge reactor. Chemosphere, 2018, 203, 457-466.	4.2	164
297	Diversity, Stability, and Reproducibility in Stochastically Assembled Microbial Ecosystems. Physical Review Letters, 2018, 120, 158102.	2.9	65
298	Bacterial Community Shift and Coexisting/Coexcluding Patterns Revealed by Network Analysis in a Uranium-Contaminated Site after Bioreduction Followed by Reoxidation. Applied and Environmental Microbiology, 2018, 84, .	1.4	37
299	Specific plasmid patterns and high rates of bacterial coâ€occurrence within the coral holobiont. Ecology and Evolution, 2018, 8, 1818-1832.	0.8	27
300	Higher precipitation strengthens the microbial interactions in semiâ€arid grassland soils. Global Ecology and Biogeography, 2018, 27, 570-580.	2.7	151
301	A global atlas of the dominant bacteria found in soil. Science, 2018, 359, 320-325.	6.0	1,386
302	Exploring coral microbiome assemblages in the South China Sea. Scientific Reports, 2018, 8, 2428.	1.6	31
303	Cropping history shapes fungal, oomycete and nematode communities in arable soils and affects cavity spot in carrot. Agriculture, Ecosystems and Environment, 2018, 257, 120-131.	2.5	18
304	Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome, 2018, 6, 14.	4.9	399
305	Phosphate levels influence the utilisation of rice rhizodeposition carbon and the phosphate-solubilising microbial community in a paddy soil. Soil Biology and Biochemistry, 2018, 118, 103-114.	4.2	137
306	Recurrent patterns of microdiversity in a temperate coastal marine environment. ISME Journal, 2018, 12, 237-252.	4.4	135
307	Co-occurrence patterns of soybean rhizosphere microbiome at a continental scale. Soil Biology and Biochemistry, 2018, 118, 178-186.	4.2	258
308	Mitigation of nitrous oxide emissions from acidic soils by ⟨i⟩Bacillus amyloliquefaciens⟨ i⟩, a plant growthâ€promoting bacterium. Global Change Biology, 2018, 24, 2352-2365.	4.2	46
309	Deciphering the core fouling-causing microbiota in a membrane bioreactor: Low abundance but important roles. Chemosphere, 2018, 195, 108-118.	4.2	54
310	Contrasting Network Features between Free-Living and Particle-Attached Bacterial Communities in Taihu Lake. Microbial Ecology, 2018, 76, 303-313.	1.4	46
311	The stage of soil development modulates rhizosphere effect along a High Arctic desert chronosequence. ISME Journal, 2018, 12, 1188-1198.	4.4	74
312	Tick-borne pathogen detection: what's new?. Microbes and Infection, 2018, 20, 441-444.	1.0	20
313	Biogeographic distribution of bacterial, archaeal and methanogenic communities and their associations with methanogenic capacity in Chinese wetlands. Science of the Total Environment, 2018, 622-623, 664-675.	3.9	62

#	Article	IF	CITATIONS
314	Grapevine rootstocks shape underground bacterial microbiome and networking but not potential functionality. Microbiome, 2018, 6, 3.	4.9	194
315	Electron acceptors for anaerobic oxidation of methane drive microbial community structure and diversity in mud volcanoes. Environmental Microbiology, 2018, 20, 2370-2385.	1.8	34
316	Earthworms differentially modify the microbiome of arable soils varying in residue management. Soil Biology and Biochemistry, 2018, 121, 120-129.	4.2	38
317	Short-term dynamics and interactions of marine protist communities during the spring–summer transition. ISME Journal, 2018, 12, 1907-1917.	4.4	84
318	Structural Variation in the Bacterial Community Associated with Airborne Particulate Matter in Beijing, China, during Hazy and Nonhazy Days. Applied and Environmental Microbiology, 2018, 84, .	1.4	64
319	Chemical regulation of body feather microbiota in a wild bird. Molecular Ecology, 2018, 27, 1727-1738.	2.0	25
320	Integrated network analysis reveals the importance of microbial interactions for maize growth. Applied Microbiology and Biotechnology, 2018, 102, 3805-3818.	1.7	94
321	The Role of Low-Molecular-Weight Organic Carbons in Facilitating the Mobilization and Biotransformation of As(V)/Fe(III) from a Realgar Tailing Mine Soil. Geomicrobiology Journal, 2018, 35, 555-563.	1.0	19
322	A Combination of Stable Isotope Probing, Illumina Sequencing, and Co-occurrence Network to Investigate Thermophilic Acetate- and Lactate-Utilizing Bacteria. Microbial Ecology, 2018, 75, 113-122.	1.4	32
323	Strategies for managing rival bacterial communities: Lessons from burying beetles. Journal of Animal Ecology, 2018, 87, 414-427.	1.3	57
324	Soil bacterial community mediates the effect of plant material on methanogenic decomposition of soil organic matter. Soil Biology and Biochemistry, 2018, 116, 99-109.	4.2	37
325	Alterations in soil fungal community composition and network assemblage structure by different long-term fertilization regimes are correlated to the soil ionome. Biology and Fertility of Soils, 2018, 54, 95-106.	2.3	47
326	Comparative responses of diazotrophic abundance and community structure to the chemical composition of paddy soil. Environmental Science and Pollution Research, 2018, 25, 399-412.	2.7	4
327	Survey of ecological environmental conditions and influential factors for public parks in Shanghai. Chemosphere, 2018, 190, 9-16.	4.2	14
328	Microbial indicators for soil quality. Biology and Fertility of Soils, 2018, 54, 1-10.	2.3	312
329	The P/N (Positive-to-Negative Links) Ratio in Complex Networksâ€"A Promising In Silico Biomarker for Detecting Changes Occurring in the Human Microbiome. Microbial Ecology, 2018, 75, 1063-1073.	1.4	20
330	Paddy soil microbial communities driven by environment- and microbe-microbe interactions: A case study of elevation-resolved microbial communities in a rice terrace. Science of the Total Environment, 2018, 612, 884-893.	3.9	70
331	Organic Amendments in a Long-term Field Trialâ€"Consequences for the Bulk Soil Bacterial Community as Revealed by Network Analysis. Microbial Ecology, 2018, 76, 226-239.	1.4	51

#	Article	IF	CITATIONS
332	Organic amendments shift the phosphorus-correlated microbial co-occurrence pattern in the peanut rhizosphere network during long-term fertilization regimes. Applied Soil Ecology, 2018, 124, 229-239.	2.1	48
333	Biochar application influences microbial assemblage complexity and composition due to soil and bioenergy crop type interactions. Soil Biology and Biochemistry, 2018, 117, 97-107.	4.2	75
334	Temporal and Spatial Variations of Microbial Carbon Utilization in Water Bodies from the Dajiuhu Peatland, Central China. Journal of Earth Science (Wuhan, China), 2018, 29, 969-976.	1.1	10
335	Tales from the tomb: the microbial ecology of exposed rock surfaces. Environmental Microbiology, 2018, 20, 958-970.	1.8	63
336	Localized high abundance of Marine Group II archaea in the subtropical Pearl River Estuary: implications for their niche adaptation. Environmental Microbiology, 2018, 20, 734-754.	1.8	53
337	Road MAPs to engineer host microbiomes. Current Opinion in Microbiology, 2018, 43, 46-54.	2.3	60
338	Ecological Patterns Among Bacteria and Microbial Eukaryotes Derived from Network Analyses in a Low-Salinity Lake. Microbial Ecology, 2018, 75, 917-929.	1.4	39
339	Fungal community reveals less dispersal limitation and potentially more connected network than that of bacteria in bamboo forest soils. Molecular Ecology, 2018, 27, 550-563.	2.0	121
340	Contrasting patterns of freshwater microbial metabolic potentials and functional gene interactions between an acidic mining lake and a weakly alkaline lake. Limnology and Oceanography, 2018, 63, S354.	1.6	10
341	Temporal Variation and Co-occurrence Patterns of Bacterial Communities in Eutrophic Lake Taihu, China. Geomicrobiology Journal, 2018, 35, 186-197.	1.0	6
342	Reusable building blocks in biological systems. Journal of the Royal Society Interface, 2018, 15, 20180595.	1.5	6
343	Co-Occurrence Network of High-Frequency Words in the Bioinformatics Literature: Structural Characteristics and Evolution. Applied Sciences (Switzerland), 2018, 8, 1994.	1.3	12
344	Disease outbreak accompanies the dispersive structure of shrimp gut bacterial community with a simple core microbiota. AMB Express, 2018, 8, 120.	1.4	50
345	A Graph-Theoretic Approach for Identifying Bacterial Inter-correlations and Functional Pathways in Microbiome Data. , $2018, \ldots$		2
346	A novel method to accurately calculate statistical significance of local similarity analysis for high-throughput time series. Statistical Applications in Genetics and Molecular Biology, 2018, 17, .	0.2	3
347	Bacterial diversity and community in Qula from the Qinghai–Tibetan Plateau in China. PeerJ, 2018, 6, e6044.	0.9	22
348	Rhizosheath microbial community assembly of sympatric desert speargrasses is independent of the plant host. Microbiome, 2018, 6, 215.	4.9	122
349	A Pilot Study: Changes of Gut Microbiota in Post-surgery Colorectal Cancer Patients. Frontiers in Microbiology, 2018, 9, 2777.	1.5	41

#	Article	IF	CITATIONS
350	Microbiome Interaction Networks and Community Structure From Laboratory-Reared and Field-Collected Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus Mosquito Vectors. Frontiers in Microbiology, 2018, 9, 2160.	1.5	119
351	Community Structure, Dynamics and Interactions of Bacteria, Archaea and Fungi in Subtropical Coastal Wetland Sediments. Scientific Reports, 2018, 8, 14397.	1.6	71
352	Australian dryland soils are acidic and nutrientâ€depleted, and have unique microbial communities compared with other drylands. Journal of Biogeography, 2018, 45, 2803-2814.	1.4	35
353	Plant Nutrient Resource Use Strategies Shape Active Rhizosphere Microbiota Through Root Exudation. Frontiers in Plant Science, 2018, 9, 1662.	1.7	67
354	Supplemental Bacillus subtilis DSM 32315 manipulates intestinal structure and microbial composition in broiler chickens. Scientific Reports, 2018, 8, 15358.	1.6	86
355	The biological role of N-acyl-homoserine lactone-based quorum sensing (QS) in EPS production and microbial community assembly during anaerobic granulation process. Scientific Reports, 2018, 8, 15793.	1.6	45
356	Phosphorus and Nitrogen Drive the Seasonal Dynamics of Bacterial Communities in Pinus Forest Rhizospheric Soil of the Qinling Mountains. Frontiers in Microbiology, 2018, 9, 1930.	1.5	25
357	There's no harm in having too much: A comprehensive toolbox of methods in trophic ecology. Food Webs, 2018, 17, e00100.	0.5	47
358	Soil fungal taxonomic and functional community composition as affected by biochar properties. Soil Biology and Biochemistry, 2018, 126, 159-167.	4.2	57
359	Aquatic Bacterial Communities Associated With Land Use and Environmental Factors in Agricultural Landscapes Using a Metabarcoding Approach. Frontiers in Microbiology, 2018, 9, 2301.	1.5	44
360	Continuousâ€eropping tobacco caused variance of chemical properties and structure of bacterial network in soils. Land Degradation and Development, 2018, 29, 4106-4120.	1.8	85
361	Size-dependent loss of aboveground animals differentially affects grassland ecosystem coupling and functions. Nature Communications, 2018, 9, 3684.	5.8	46
362	Local and Regional Scale Heterogeneity Drive Bacterial Community Diversity and Composition in a Polar Desert. Frontiers in Microbiology, 2018, 9, 1928.	1.5	34
363	Nitrogen cycling players and processes in green roof ecosystems. Applied Soil Ecology, 2018, 132, 114-125.	2.1	17
364	Combining High-Throughput Sequencing of <i>seda</i> DNA and Traditional Paleolimnological Techniques To Infer Historical Trends in Cyanobacterial Communities. Environmental Science & Emp; Technology, 2018, 52, 6842-6853.	4.6	45
365	Keystone taxa as drivers of microbiome structure and functioning. Nature Reviews Microbiology, 2018, 16, 567-576.	13.6	1,516
366	Fertilization shapes a well-organized community of bacterial decomposers for accelerated paddy straw degradation. Scientific Reports, 2018, 8, 7981.	1.6	45
367	Ecological features of feather microbiota in breeding common swifts. Ethology Ecology and Evolution, 2018, 30, 569-581.	0.6	5

#	Article	IF	CITATIONS
368	Deforestation decreases spatial turnover and alters the network interactions in soil bacterial communities. Soil Biology and Biochemistry, 2018, 123, 80-86.	4.2	73
369	A novel integrated non-targeted metabolomic analysis reveals significant metabolite variations between different lettuce (Lactuca sativa. L) varieties. Horticulture Research, 2018, 5, 33.	2.9	65
370	Untargeted metabolic profiling reveals geography as the strongest predictor of metabolic phenotypes of a cosmopolitan weed. Ecology and Evolution, 2018, 8, 6812-6826.	0.8	22
371	Large elevation and small host plant differences in the arbuscular mycorrhizal communities of montane and alpine grasslands on the Tibetan Plateau. Mycorrhiza, 2018, 28, 605-619.	1.3	19
372	Wheat rhizosphere harbors a less complex and more stable microbial co-occurrence pattern than bulk soil. Soil Biology and Biochemistry, 2018, 125, 251-260.	4.2	253
373	Network Analyses Can Advance Above-Belowground Ecology. Trends in Plant Science, 2018, 23, 759-768.	4.3	60
374	Soil bacterial networks are less stable under drought than fungal networks. Nature Communications, 2018, 9, 3033.	5.8	992
375	Tracking network dynamics: A survey using graph distances. Annals of Applied Statistics, 2018, 12, .	0.5	70
376	Microbial Community Structure and Functional Potential Along a Hypersaline Gradient. Frontiers in Microbiology, 2018, 9, 1492.	1.5	41
377	Diversity and Co-occurrence Patterns of Soil Bacterial and Fungal Communities in Seven Intercropping Systems. Frontiers in Microbiology, 2018, 9, 1521.	1.5	132
378	High Throughput Sequencing and Network Analysis Disentangle the Microbial Communities of Ticks and Hosts Within and Between Ecosystems. Frontiers in Cellular and Infection Microbiology, 2018, 8, 236.	1.8	62
379	Genetic correlation network prediction of forest soil microbial functional organization. ISME Journal, 2018, 12, 2492-2505.	4.4	63
380	Ecological Shifts of Supragingival Microbiota in Association with Pregnancy. Frontiers in Cellular and Infection Microbiology, 2018, 8, 24.	1.8	51
381	Synergistic Interactions in Microbial Biofilms Facilitate the Establishment of Opportunistic Pathogenic Fungi in Household Dishwashers. Frontiers in Microbiology, 2018, 9, 21.	1.5	46
382	Belowground Microbiota and the Health of Tree Crops. Frontiers in Microbiology, 2018, 9, 1006.	1.5	118
383	Divergent Responses of the Diazotrophic Microbiome to Elevated CO2 in Two Rice Cultivars. Frontiers in Microbiology, 2018, 9, 1139.	1.5	19
384	Insights into the ecology, evolution, and metabolism of the widespread Woesearchaeotal lineages. Microbiome, 2018, 6, 102.	4.9	181
385	CoreProbe: A Novel Algorithm for Estimating Relative Abundance Based on Metagenomic Reads. Genes, 2018, 9, 313.	1.0	2

#	Article	IF	CITATIONS
386	Network Analysis: A Systems Framework to Address Grand Challenges in Plant Pathology. Annual Review of Phytopathology, 2018, 56, 559-580.	3.5	52
387	Effects of cover crop in an apple orchard on microbial community composition, networks, and potential genes involved with degradation of crop residues in soil. Biology and Fertility of Soils, 2018, 54, 743-759.	2.3	85
388	Coral Bacterial-Core Abundance and Network Complexity as Proxies for Anthropogenic Pollution. Frontiers in Microbiology, 2018, 9, 833.	1.5	70
389	Microbial communities in the rhizosphere and the root of lettuce as affected by Salmonella-contaminated irrigation water. FEMS Microbiology Ecology, 2018, 94, .	1.3	13
390	Disentangling the Drivers of Diversity and Distribution of Fungal Community Composition in Wastewater Treatment Plants Across Spatial Scales. Frontiers in Microbiology, 2018, 9, 1291.	1.5	38
391	Defoliation intensity and elevated precipitation effects on microbiome and interactome depend on site type in northern mixed-grass prairie. Soil Biology and Biochemistry, 2018, 122, 163-172.	4.2	23
392	Effects of climate legacies on above―and belowground community assembly. Global Change Biology, 2018, 24, 4330-4339.	4.2	23
393	The active microbial community more accurately reflects the anaerobic digestion process: 16S rRNA (gene) sequencing as a predictive tool. Microbiome, 2018, 6, 63.	4.9	138
394	Microbial ecological associations in the surface sediments of Bohai Strait. Journal of Oceanology and Limnology, 2018, 36, 795-804.	0.6	4
395	Using network to enhance the insights on correlation and pollution assessment of co-occurring metals in marine sediments, the East China Sea. Environmental Science and Pollution Research, 2018, 25, 11913-11923.	2.7	6
396	Soil bacterial community shifts driven by restoration time and steppe types in the degraded steppe of Inner Mongolia. Catena, 2018, 165, 228-236.	2.2	35
397	Liming does not counteract the influence of long-term fertilization on soil bacterial community structure and its co-occurrence pattern. Soil Biology and Biochemistry, 2018, 123, 45-53.	4.2	63
398	A unifying framework for fast randomization of ecological networks with fixed (node) degrees. MethodsX, 2018, 5, 773-780.	0.7	8
399	Addressing Global Ruminant Agricultural Challenges Through Understanding the Rumen Microbiome: Past, Present, and Future. Frontiers in Microbiology, 2018, 9, 2161.	1.5	255
400	Linking microbial coâ€occurrences to soil ecological processes across a woodlandâ€grassland ecotone. Ecology and Evolution, 2018, 8, 8217-8230.	0.8	38
401	Root and detritus of transgenic Bt crop did not change nematode abundance and community composition but enhanced trophic connections. Science of the Total Environment, 2018, 644, 822-829.	3.9	13
402	Stoichiometric Shifts in Soil C:N:P Promote Bacterial Taxa Dominance, Maintain Biodiversity, and Deconstruct Community Assemblages. Frontiers in Microbiology, 2018, 9, 1401.	1.5	56
403	Understanding the Anthropocene through the lens of landfill microbiomes. Frontiers in Ecology and the Environment, 2018, 16, 354-360.	1.9	7

#	Article	IF	CITATIONS
404	Abundant and rare microbial sub-communities in anammox granules present contrasting assemblage patterns and metabolic functions in response to inorganic carbon stresses. Bioresource Technology, 2018, 265, 299-309.	4.8	20
405	Detection of multi-dimensional co-exclusion patterns in microbial communities. Bioinformatics, 2018, 34, 3695-3701.	1.8	4
406	Co-occurrence Network Reveals the Higher Fragmentation of the Bacterial Community in Kaidu River Than Its Tributaries in Northwestern China. Microbes and Environments, 2018, 33, 127-134.	0.7	22
407	Diversity, specificity, co-occurrence and hub taxa of the bacterial–fungal pollen microbiome. FEMS Microbiology Ecology, 2018, 94, .	1.3	68
408	Vertical and horizontal biogeographic patterns and major factors affecting bacterial communities in the open South China Sea. Scientific Reports, 2018, 8, 8800.	1.6	27
409	Heterogeneity of interactions of microbial communities in regions of Taihu Lake with different nutrient loadings: A network analysis. Scientific Reports, 2018, 8, 8890.	1.6	40
410	From the High Arctic to the Equator: Do Soil Metagenomes Differ According to Our Expectations?. Microbial Ecology, 2019, 77, 168-185.	1.4	8
411	rDNA- and rRNA-derived communities present divergent assemblage patterns and functional traits throughout full-scale landfill leachate treatment process trains. Science of the Total Environment, 2019, 646, 1069-1079.	3.9	23
412	Geographical Patterns of nirS Gene Abundance and nirS-Type Denitrifying Bacterial Community Associated with Activated Sludge from Different Wastewater Treatment Plants. Microbial Ecology, 2019, 77, 304-316.	1.4	109
413	Finding flies in the mushroom soup: Host specificity of fungusâ€associated communities revisited with a novel molecular method. Molecular Ecology, 2019, 28, 190-202.	2.0	18
414	Profiling microbial communities in a watershed undergoing intensive anthropogenic activities. Science of the Total Environment, 2019, 647, 1137-1147.	3.9	52
415	Application of organic fertilizer improves microbial community diversity and alters microbial network structure in tea (Camellia sinensis) plantation soils. Soil and Tillage Research, 2019, 195, 104356.	2.6	117
416	Diversity, Distribution and Co-occurrence Patterns of Bacterial Communities in a Karst Cave System. Frontiers in Microbiology, 2019, 10, 1726.	1.5	80
417	Deciphering rhizosphere microbiome assembly of wild and modern common bean (Phaseolus vulgaris) in native and agricultural soils from Colombia. Microbiome, 2019, 7, 114.	4.9	140
418	Biogeographical patterns in soil bacterial communities across the Arctic region. FEMS Microbiology Ecology, 2019, 95, .	1.3	53
420	Decoupling the Dynamics of Bacterial Taxonomy and Antibiotic Resistance Function in a Subtropical Urban Reservoir as Revealed by High-Frequency Sampling. Frontiers in Microbiology, 2019, 10, 1448.	1.5	27
421	Drivers and ecological consequences of dominance in periurban phytoplankton communities using networks approaches. Water Research, 2019, 163, 114893.	5.3	52
422	Bacterial community succession in paddy soil depending on rice fertilization. Applied Soil Ecology, 2019, 144, 92-97.	2.1	23

#	Article	IF	CITATIONS
423	Effect of inoculum concentration on methanogenesis by direct interspecies electron transfer: Performance and microbial community composition. Bioresource Technology, 2019, 291, 121881.	4.8	25
424	Structural changes of soil organic matter and the linkage to rhizosphere bacterial communities with biochar amendment in manure fertilized soils. Science of the Total Environment, 2019, 692, 333-343.	3.9	36
425	Microbial Community Structures and Important Associations Between Soil Nutrients and the Responses of Specific Taxa to Rice-Frog Cultivation. Frontiers in Microbiology, 2019, 10, 1752.	1.5	31
426	The Seasonal Dynamics and the Influence of Human Activities on Campus Outdoor Microbial Communities. Frontiers in Microbiology, 2019, 10, 1579.	1.5	7
427	Microplastics from mulching film is a distinct habitat for bacteria in farmland soil. Science of the Total Environment, 2019, 688, 470-478.	3.9	313
428	The water depth-dependent co-occurrence patterns of marine bacteria in shallow and dynamic Southern Coast, Korea. Scientific Reports, 2019, 9, 9176.	1.6	33
429	Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nature Communications, 2019, 10, 4841.	5.8	773
430	Microbial assembly, interaction, functioning, activity and diversification: a review derived from community compositional data. Marine Life Science and Technology, 2019, 1, 112-128.	1.8	104
431	Earthworms Coordinate Soil Biota to Improve Multiple Ecosystem Functions. Current Biology, 2019, 29, 3420-3429.e5.	1.8	76
432	Overlooked Role of Putative Non-Hg Methylators in Predicting Methylmercury Production in Paddy Soils. Environmental Science &	4.6	48
433	Characterization of Distinct CyanoHABs-Related Modules in Microbial Recurrent Association Network. Frontiers in Microbiology, 2019, 10, 1637.	1.5	33
434	The 30-year dynamic of the softwood sawtimber stumpage market in Louisiana: insights from quarterly data from 1988 to 2017. Canadian Journal of Forest Research, 2019, 49, 1590-1597.	0.8	2
435	An examination of data from the American Gut Project reveals that the dominance of the genus <i>Bifidobacterium</i> is associated with the diversity and robustness of the gut microbiota. MicrobiologyOpen, 2019, 8, e939.	1.2	27
436	Inhibitory interaction networks among coevolved Streptomyces populations from prairie soils. PLoS ONE, 2019, 14, e0223779.	1.1	6
437	Sedimentary DNA reveals over 150†years of ecosystem change by human activities in Lake Chao, China. Environment International, 2019, 133, 105214.	4.8	25
438	Reconstruction of the Functional Ecosystem in the High Light, Low Temperature Union Glacier Region, Antarctica. Frontiers in Microbiology, 2019, 10, 2408.	1.5	19
439	Collinearity in ecological niche modeling: Confusions and challenges. Ecology and Evolution, 2019, 9, 10365-10376.	0.8	204
440	Incorporating phylogenetic metrics to microbial coâ€occurrence networks based on amplicon sequences to discern community assembly processes. Molecular Ecology Resources, 2019, 19, 1552-1564.	2.2	41

#	Article	IF	CITATIONS
441	Spatial-Temporal Variation of Bacterial Communities in Sediments in Lake Chaohu, a Large, Shallow Eutrophic Lake in China. International Journal of Environmental Research and Public Health, 2019, 16, 3966.	1.2	17
442	Diversity and Co-Occurrence Patterns of Soil Bacterial and Fungal Communities of Chinese Cordyceps Habitats at Shergyla Mountain, Tibet: Implications for the Occurrence. Microorganisms, 2019, 7, 284.	1.6	14
443	Responses of Microbial Communities and Interaction Networks to Different Management Practices in Tea Plantation Soils. Sustainability, 2019, 11, 4428.	1.6	24
444	Anaerobic Biodegradation of Hydrocarbons: Metagenomics and Metabolomics., 2019,, 249-286.		1
445	Ecological arguments to reconsider data requirements regarding the environmental fate of microbial biocontrol agents in the registration procedure in the European Union. BioControl, 2019, 64, 469-487.	0.9	46
446	Evaluation of the effects of four media on human intestinal microbiota culture in vitro. AMB Express, 2019, 9, 69.	1.4	22
447	Selective enrichment of bacterial pathogens by microplastic biofilm. Water Research, 2019, 165, 114979.	5.3	408
448	Characterization of a nifH-Harboring Bacterial Community in the Soil-Limited Gotjawal Forest. Frontiers in Microbiology, 2019, 10, 1858.	1.5	13
449	Reorganization of surviving mammal communities after the end-Pleistocene megafaunal extinction. Science, 2019, 365, 1305-1308.	6.0	33
450	Soil Metagenome of Tropical White Sand Heath Forests in Borneo: What Functional Traits Are Associated with an Extreme Environment Within the Tropical Rainforest?. Pedosphere, 2019, 29, 12-23.	2.1	13
451	Handling the Microbial Complexity Associated to Ticks. , 0, , .		14
452	NIPMI: A Network Method Based on Interaction Part Mutual Information to Detect Characteristic Genes From Integrated Data on Multi-Cancers. IEEE Access, 2019, 7, 135845-135854.	2.6	2
453	Diversity, Co-occurrence and Implications of Fungal Communities in Wastewater Treatment Plants. Scientific Reports, 2019, 9, 14056.	1.6	70
454	A composite taxonomical and functional framework of microbiomes under acid mine drainage bioremediation systems. Journal of Environmental Management, 2019, 251, 109581.	3.8	32
455	Total and active soil fungal community profiles were significantly altered by six years of warming but not by grazing. Soil Biology and Biochemistry, 2019, 139, 107611.	4.2	59
456	Deep Carbon through Deep Time. , 2019, , 620-652.		10
457	Taxonomic relatedness and environmental pressure synergistically drive the primary succession of biofilm microbial communities in reclaimed wastewater distribution systems. Environment International, 2019, 124, 25-37.	4.8	33
458	Seabird and pinniped shape soil bacterial communities of their settlements in Cape Shirreff, Antarctica. PLoS ONE, 2019, 14, e0209887.	1.1	10

#	Article	IF	CITATIONS
459	Differential effects of depot medroxyprogesterone acetate administration on vaginal microbiome in Hispanic White and Black women. Emerging Microbes and Infections, 2019, 8, 197-210.	3.0	23
460	Research on the synergy of urban system operation—Based on the perspective of urban metabolism. Science of the Total Environment, 2019, 662, 446-454.	3.9	22
461	Amazon forest-to-agriculture conversion alters rhizosphere microbiome composition while functions are kept. FEMS Microbiology Ecology, 2019, 95, .	1.3	32
462	Networks and ordination analyses reveal the stream community structures of fish, macroinvertebrate and benthic algae, and their responses to nutrient enrichment. Ecological Indicators, 2019, 101, 501-511.	2.6	23
463	Does conversion from natural forest to plantation affect fungal and bacterial biodiversity, community structure, and co-occurrence networks in the organic horizon and mineral soil?. Forest Ecology and Management, 2019, 446, 238-250.	1.4	75
464	Impacts of Elevated CO2 Levels on the Soil Bacterial Community in a Natural CO2-Enhanced Oil Recovery Area. Diversity, 2019, 11, 77.	0.7	11
465	Comparison of Bacterial Populations in the Ceca of Swine at Two Different Stages and Their Functional Annotations. Genes, 2019, 10, 382.	1.0	13
466	Nutrients Drive the Structures of Bacterial Communities in Sediments and Surface Waters in the River-Lake System of Poyang Lake. Water (Switzerland), 2019, 11, 930.	1.2	27
467	Species interactions and distinct microbial communities in high Arctic permafrost affected cryosols are associated with the CH $<$ sub $>$ 4 $<$ /sub $>$ and CO $<$ sub $>$ 2 $<$ /sub $>$ gas fluxes. Environmental Microbiology, 2019, 21, 3711-3727.	1.8	23
468	Environmental media exert a bottleneck in driving the dynamics of antibiotic resistance genes in modern aquatic environment. Water Research, 2019, 162, 127-138.	5.3	80
469	A multidimensional perspective on microbial interactions. FEMS Microbiology Letters, 2019, 366, .	0.7	58
470	Probing the active fraction of soil microbiomes using BONCAT-FACS. Nature Communications, 2019, 10, 2770.	5.8	93
471	Patterns and assembly processes of planktonic and sedimentary bacterial community differ along a trophic gradient in freshwater lakes. Ecological Indicators, 2019, 106, 105491.	2.6	78
472	Exploring the Hospital Microbiome by High-Resolution 16S rRNA Profiling. International Journal of Molecular Sciences, 2019, 20, 3099.	1.8	37
473	Dominant role of abundant rather than rare bacterial taxa in maintaining agro-soil microbiomes under environmental disturbances. Chemosphere, 2019, 235, 248-259.	4.2	115
474	A few Ascomycota taxa dominate soil fungal communities worldwide. Nature Communications, 2019, 10, 2369.	5.8	341
475	Physiological traits and relative abundance of species as explanatory variables of co-occurrence pattern of cultivable bacteria associated with chia seeds. Canadian Journal of Microbiology, 2019, 65, 668-680.	0.8	0
476	Distribution of potentially pathogenic bacteria in the groundwater of the Jianghan Plain, central China. International Biodeterioration and Biodegradation, 2019, 143, 104711.	1.9	11

#	Article	IF	Citations
477	Bacterial community assemblages in sediments under high anthropogenic pressure at Ichkeul Lake/Bizerte Lagoon hydrological system, Tunisia. Environmental Pollution, 2019, 252, 644-656.	3.7	24
478	How to disentangle microbially functional complexity: an insight from the network analysis of C, N, P and S cycling genes. Science Bulletin, 2019, 64, 1129-1131.	4.3	5
479	An integrated insight into the response of bacterial communities to anthropogenic contaminants in a river: A case study of the Wonderfonteinspruit catchment area, South Africa. PLoS ONE, 2019, 14, e0216758.	1.1	23
480	Leaf and Root Endospheres Harbor Lower Fungal Diversity and Less Complex Fungal Co-occurrence Patterns Than Rhizosphere. Frontiers in Microbiology, 2019, 10, 1015.	1.5	60
481	Spatial and temporal dynamics of bacterioplankton community composition in a subtropical dammed karst river of southwestern China. MicrobiologyOpen, 2019, 8, e00849.	1.2	22
482	Chemotherapy Alters the Phylogenetic Molecular Ecological Networks of Intestinal Microbial Communities. Frontiers in Microbiology, 2019, 10, 1008.	1.5	10
483	Bacterial Community Dynamics in an Oyster Hatchery in Response to Probiotic Treatment. Frontiers in Microbiology, 2019, 10, 1060.	1.5	35
484	Heat-shock treatment applied to inocula for H2 production decreases microbial diversities, interspecific interactions and performance using cellulose as substrate. International Journal of Hydrogen Energy, 2019, 44, 13126-13134.	3.8	22
485	Intra-horizon differentiation of the bacterial community and its co-occurrence network in a typical Plinthic horizon. Science of the Total Environment, 2019, 678, 692-701.	3.9	23
486	Performance and bacterial community of moving bed biofilm reactors with various biocarriers treating primary wastewater effluent with a low organic strength and low C/N ratio. Bioresource Technology, 2019, 287, 121424.	4.8	55
487	More obvious air pollution impacts on variations in bacteria than fungi and their co-occurrences with ammonia-oxidizing microorganisms in PM2.5. Environmental Pollution, 2019, 251, 668-680.	3.7	73
488	The spatial scale dependence of diazotrophic and bacterial community assembly in paddy soil. Global Ecology and Biogeography, 2019, 28, 1093-1105.	2.7	42
489	Assembly mechanisms of soil bacterial communities in subalpine coniferous forests on the Loess Plateau, China. Journal of Microbiology, 2019, 57, 461-469.	1.3	3
490	Extent of the annual Gulf of Mexico hypoxic zone influences microbial community structure. PLoS ONE, 2019, 14, e0209055.	1.1	15
491	Microbial Network and Soil Properties Are Changed in Bacterial Wilt-Susceptible Soil. Applied and Environmental Microbiology, 2019, 85, .	1.4	52
493	Response of Propionate-Degrading Methanogenic Microbial Communities to Inhibitory Conditions. Applied Biochemistry and Biotechnology, 2019, 189, 233-248.	1.4	20
494	Integrating the role of antifungal bacteria into skin symbiotic communities of three Neotropical frog species. ISME Journal, 2019, 13, 1763-1775.	4.4	31
495	Black soldier fly larvae (<i>Hermetia illucens</i>) strengthen the metabolic function of food waste biodegradation by gut microbiome. Microbial Biotechnology, 2019, 12, 528-543.	2.0	127

#	Article	IF	CITATIONS
496	Dominance network analysis provides a new framework for studying the diversity–stability relationship. Ecological Monographs, 2019, 89, e01358.	2.4	30
497	Effects of Afforestation Restoration on Soil Potential N2O Emission and Denitrifying Bacteria After Farmland Abandonment in the Chinese Loess Plateau. Frontiers in Microbiology, 2019, 10, 262.	1.5	11
498	A Multi-Kingdom Study Reveals the Plasticity of the Rumen Microbiota in Response to a Shift From Non-grazing to Grazing Diets in Sheep. Frontiers in Microbiology, 2019, 10, 122.	1.5	52
499	Evaluation of precipitation impacts on benthic macroinvertebrate communities at three different stream types. Ecological Indicators, 2019, 102, 446-456.	2.6	13
500	Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils. Microbiome, 2019, 7, 33.	4.9	278
501	Systems and Methods for Studying Microbial Processes and Communities in Landfills. Advances in Environmental Microbiology, 2019, , 129-150.	0.1	5
502	Linking cropland ecosystem services to microbiome taxonomic composition and functional composition in a sandy loam soil with 28-year organic and inorganic fertilizer regimes. Applied Soil Ecology, 2019, 139, 1-9.	2.1	38
504	Microcosm Approaches to Investigate Multitrophic Interactions between Microbial Communities in the Rhizosphere of Plants. Rhizosphere Biology, 2019, , 255-270.	0.4	13
505	Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME Journal, 2019, 13, 1722-1736.	4.4	716
506	Soil microbial diversity during 30Âyears of grassland restoration on the Loess Plateau, China: Tight linkages with plant diversity. Land Degradation and Development, 2019, 30, 1172-1182.	1.8	94
507	Microbial community composition and network analyses in arid soils of the Patagonian Monte under grazing disturbance reveal an important response of the community to soil particle size. Applied Soil Ecology, 2019, 138, 223-232.	2.1	44
508	Fiddler crab bioturbation determines consistent changes in bacterial communities across contrasting environmental conditions. Scientific Reports, 2019, 9, 3749.	1.6	51
509	Biogeography of Soil Bacterial Networks along a Gradient of Cropping Intensity. Scientific Reports, 2019, 9, 3812.	1.6	53
510	Phosphorus source driving the soil microbial interactions and improving sugarcane development. Scientific Reports, 2019, 9, 4400.	1.6	28
511	Construction of Synthetic Microbiota for Reproducible Flavor Compound Metabolism in Chinese Light-Aroma-Type Liquor Produced by Solid-State Fermentation. Applied and Environmental Microbiology, 2019, 85, .	1.4	107
512	Constructing the Microbial Association Network from Large-Scale Time Series Data Using Granger Causality. Genes, 2019, 10, 216.	1.0	10
513	Consistent bacterial selection by date palm root system across heterogeneous desert oasis agroecosystems. Scientific Reports, 2019, 9, 4033.	1.6	32
514	Colonization and extinction rates estimated from temporal dynamics of ecological communities: The island r package. Methods in Ecology and Evolution, 2019, 10, 1108-1117.	2.2	12

#	Article	IF	CITATIONS
515	A New Method to Correct for Habitat Filtering in Microbial Correlation Networks. Frontiers in Microbiology, 2019, 10, 585.	1.5	20
516	Carbon sources mediate microbial pentachlorophenol dechlorination in soils. Journal of Hazardous Materials, 2019, 373, 716-724.	6.5	31
517	Diurnal Temperature Variation and Plants Drive Latitudinal Patterns in Seasonal Dynamics of Soil Microbial Community. Frontiers in Microbiology, 2019, 10, 674.	1.5	27
518	Meta-network: optimized species-species network analysis for microbial communities. BMC Genomics, 2019, 20, 187.	1.2	16
519	Soil Abiotic Properties and Plant Functional Traits Mediate Associations Between Soil Microbial and Plant Communities During a Secondary Forest Succession on the Loess Plateau. Frontiers in Microbiology, 2019, 10, 895.	1.5	52
520	Structural equation modeling of a winnowed soil microbiome identifies how invasive plants re-structure microbial networks. ISME Journal, 2019, 13, 1988-1996.	4.4	57
522	Bacterial assembly in the bio-cake of membrane bioreactors: Stochastic vs. deterministic processes. Water Research, 2019, 157, 535-545.	5.3	74
523	Core Microbiota in Agricultural Soils and Their Potential Associations with Nutrient Cycling. MSystems, 2019, 4, .	1.7	130
524	Antibiotic resistome profile based on metagenomics in raw surface drinking water source and the influence of environmental factor: A case study in Huaihe River Basin, China. Environmental Pollution, 2019, 248, 438-447.	3.7	59
525	Characterization of iron-metabolizing communities in soils contaminated by acid mine drainage from an abandoned coal mine in Southwest China. Environmental Science and Pollution Research, 2019, 26, 9585-9598.	2.7	27
526	Plant hosts control microbial denitrification activity. FEMS Microbiology Ecology, 2019, 95, .	1.3	30
527	Response of soil bacterial community to bioaugmentation with a plant residue-immobilized bacterial consortium for crude oil removal. Chemosphere, 2019, 222, 831-838.	4.2	7 3
528	Long-Term Organic Farming Manipulated Rhizospheric Microbiome and Bacillus Antagonism Against Pepper Blight (Phytophthora capsici). Frontiers in Microbiology, 2019, 10, 342.	1.5	58
529	Untangling the bacterial community composition and structure in selected Kuwait desert soils. Applied Soil Ecology, 2019, 138, 1-9.	2.1	19
530	Tropical Palm Endophytes Exhibit Low Competitive Structuring When Assessed Using Co-occurrence and Antipathogen Activity Analysis. Frontiers in Forests and Global Change, 2019, 2, .	1.0	6
531	Interrogation of Internal Workings in Microbial Community Assembly: Play a Game through a Behavioral Network?. MSystems, 2019, 4, .	1.7	7
532	Community analysis and co-occurrence patterns in airway microbial communities during health and disease. ERJ Open Research, 2019, 5, 00128-2017.	1.1	31
533	Prokaryotic taxa play keystone roles in the soil microbiome associated with woody perennial plants in the genus <i>Buxus</i> . Ecology and Evolution, 2019, 9, 11102-11111.	0.8	9

#	Article	IF	CITATIONS
534	Using coâ€occurrence network topology in assessing ecological stress in benthic macroinvertebrate communities. Ecology and Evolution, 2019, 9, 12789-12801.	0.8	2
535	Linking Soil Fungal Generality to Tree Richness in Young Subtropical Chinese Forests. Microorganisms, 2019, 7, 547.	1.6	10
536	Soil Property and Plant Diversity Determine Bacterial Turnover and Network Interactions in a Typical Arid Inland River Basin, Northwest China. Frontiers in Microbiology, 2019, 10, 2655.	1.5	13
537	Salinity reduces bacterial diversity, but increases network complexity in Tibetan Plateau lakes. FEMS Microbiology Ecology, 2019, 95, .	1.3	62
538	Niche partitioning of microbial communities in riverine floodplains. Scientific Reports, 2019, 9, 16384.	1.6	7
539	Do Organic Substrates Drive Microbial Community Interactions in Arctic Snow?. Frontiers in Microbiology, 2019, 10, 2492.	1.5	21
540	Prokaryotic Diversity in Mangrove Sediments across Southeastern China Fundamentally Differs from That in Other Biomes. MSystems, 2019, 4, .	1.7	57
541	Metagenomics of Meat and Poultry. , 2019, , 939-962.		0
542	Rhizoplane Bacteria and Plant Species Co-determine Phosphorus-Mediated Microbial Legacy Effect. Frontiers in Microbiology, 2019, 10, 2856.	1.5	17
543	Soil Microbial Networks Shift Across a High-Elevation Successional Gradient. Frontiers in Microbiology, 2019, 10, 2887.	1.5	14
544	Cracks Reinforce the Interactions among Soil Bacterial Communities in the Coal Mining Area of Loess Plateau, China. International Journal of Environmental Research and Public Health, 2019, 16, 4892.	1.2	12
545	Bacterial community structure in a sympagic habitat expanding with global warming: brackish ice brine at 85–90 °N. ISME Journal, 2019, 13, 316-333.	4.4	18
546	Network analysis for coâ€occurrence of pest insects on host crops. Entomological Research, 2019, 49, 35-45.	0.6	4
547	Statistical determination of crucial taxa indicative of pollution gradients in sediments of Lake Taihu, China. Environmental Pollution, 2019, 246, 753-762.	3.7	48
548	Pathogen reservoir hypothesis investigated by analyses of the adenotonsillar and middle ear microbiota. International Journal of Pediatric Otorhinolaryngology, 2019, 118, 103-109.	0.4	30
549	Differential co-occurrence relationships shaping ecotype diversification within <i>Thaumarchaeota </i> populations in the coastal ocean water column. ISME Journal, 2019, 13, 1144-1158.	4.4	80
550	Co-occurrence patterns of the microbial community in polycyclic aromatic hydrocarbon-contaminated riverine sediments. Journal of Hazardous Materials, 2019, 367, 99-108.	6.5	85
551	Variations in Microbial Diversity and Metabolite Profiles of the Tropical Marine Sponge Xestospongia muta with Season and Depth. Microbial Ecology, 2019, 78, 243-256.	1.4	25

#	Article	IF	CITATIONS
552	Effects of elevated ground-level ozone on paddy soil bacterial community and assembly mechanisms across four years. Science of the Total Environment, 2019, 654, 505-513.	3.9	25
553	Response and recovery of microbial communities subjected to oxidative and biological treatments of 1,4-dioxane and co-contaminants. Water Research, 2019, 149, 74-85.	5.3	41
554	Influence of rice cultivars on soil bacterial microbiome under elevated carbon dioxide. Journal of Soils and Sediments, 2019, 19, 2485-2495.	1.5	8
555	Ecological dynamics of the vaginal microbiome in relation to health and disease. American Journal of Obstetrics and Gynecology, 2019, 220, 324-335.	0.7	129
556	Copper Affects Composition and Functioning of Microbial Communities in Marine Biofilms at Environmentally Relevant Concentrations. Frontiers in Microbiology, 2018, 9, 3248.	1.5	30
557	Shifts in diversity and function of the bacterial community during the manufacture of Fu brick tea. Food Microbiology, 2019, 80, 70-76.	2.1	68
558	Geospatial variation in coâ€occurrence networks of nitrifying microbial guilds. Molecular Ecology, 2019, 28, 293-306.	2.0	50
559	Responses of paddy soil bacterial community assembly to different long-term fertilizations in southeast China. Science of the Total Environment, 2019, 656, 625-633.	3.9	73
560	Marine probiotics: increasing coral resistance to bleaching through microbiome manipulation. ISME Journal, 2019, 13, 921-936.	4.4	269
561	Genomic and transcriptomic insights into the ecology and metabolism of benthic archaeal cosmopolitan, Thermoprofundales (MBG-D archaea). ISME Journal, 2019, 13, 885-901.	4.4	92
562	A low proportion of rare bacterial taxa responds to abiotic changes compared with dominant taxa. Environmental Microbiology, 2019, 21, 750-758.	1.8	57
563	Using co-occurrence network to explore the effects of bio-augmentation on the microalgae-based wastewater treatment process. Biochemical Engineering Journal, 2019, 141, 10-18.	1.8	23
564	Summer phyto- and bacterioplankton communities during low and high productivity scenarios in the Western Antarctic Peninsula. Polar Biology, 2019, 42, 159-169.	0.5	23
565	Effect of Different Soil Phosphate Sources on the Active Bacterial Microbiota Is Greater in the Rhizosphere than in the Endorhiza of Barley (Hordeum vulgare L.). Microbial Ecology, 2019, 77, 689-700.	1.4	14
566	C:N ratio shaped both taxonomic and functional structure of microbial communities in livestock and poultry breeding wastewater treatment reactor. Science of the Total Environment, 2019, 651, 625-633.	3.9	76
567	Response of microbial communities to different organochlorine pesticides (OCPs) contamination levels in contaminated soils. Chemosphere, 2019, 215, 461-469.	4.2	41
568	The diversity and biogeography of microeukaryotes in the euphotic zone of the northwestern Pacific Ocean. Science of the Total Environment, 2020, 698, 134289.	3.9	34
569	Grazing Regulates the Spatial Heterogeneity of Soil Microbial Communities Within Ecological Networks. Ecosystems, 2020, 23, 932-942.	1.6	29

#	Article	IF	CITATIONS
570	Increases in aridity lead to drastic shifts in the assembly of dryland complex microbial networks. Land Degradation and Development, 2020, 31, 346-355.	1.8	23
571	Grazing simplifies soil microâ€food webs and decouples their relationships with ecosystem functions in grasslands. Global Change Biology, 2020, 26, 960-970.	4.2	70
572	A comprehensive analysis and source apportionment of metals in riverine sediments of a rural-urban watershed. Journal of Hazardous Materials, 2020, 381, 121230.	6.5	57
573	Effects of microplastics on greenhouse gas emissions and the microbial community in fertilized soil. Environmental Pollution, 2020, 256, 113347.	3.7	272
574	Divergent responses of soil bacterial communities in erosion-deposition plots on the Loess Plateau. Geoderma, 2020, 358, 113995.	2.3	40
575	Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China. ISME Journal, 2020, 14, 202-216.	4.4	508
576	A Tripartite Microbial-Environment Network Indicates How Crucial Microbes Influence the Microbial Community Ecology. Microbial Ecology, 2020, 79, 342-356.	1.4	7
577	Ecological Processes Shaping Bulk Soil and Rhizosphere Microbiome Assembly in a Long-Term Amazon Forest-to-Agriculture Conversion. Microbial Ecology, 2020, 79, 110-122.	1.4	41
578	Dominant soil bacteria and their ecological attributes across the deserts in northern China. European Journal of Soil Science, 2020, 71, 524-535.	1.8	18
579	Elucidating the effect of mixing technologies on dynamics of microbial communities and their correlations with granular sludge properties in a high-rate sulfidogenic anaerobic bioreactor for saline wastewater treatment. Bioresource Technology, 2020, 297, 122397.	4.8	15
580	Interaction and assembly processes of abundant and rare microbial communities during a diatom bloom process. Environmental Microbiology, 2020, 22, 1707-1719.	1.8	60
581	Insights into the long-term pollution trends and sources contributions in Lake Taihu, China using multi-statistic analyses models. Chemosphere, 2020, 242, 125272.	4.2	74
582	Long-term organic fertilization improves the productivity of kiwifruit (Actinidia chinensis Planch.) through increasing rhizosphere microbial diversity and network complexity. Applied Soil Ecology, 2020, 147, 103426.	2.1	56
583	Initial soil community drives heathland fungal community trajectory over multiple years through altered plant–soil interactions. New Phytologist, 2020, 225, 2140-2151.	3.5	15
584	The Xylella fastidiosa-Resistant Olive Cultivar "Leccino―Has Stable Endophytic Microbiota during the Olive Quick Decline Syndrome (OQDS). Pathogens, 2020, 9, 35.	1.2	39
585	Interactions of PAH-degradation and nitrate-/sulfate-reducing assemblages in anaerobic sediment microbial community. Journal of Hazardous Materials, 2020, 388, 122068.	6.5	37
586	Long term effects of management practice intensification on soil microbial community structure and co-occurrence network in a non-timber plantation. Forest Ecology and Management, 2020, 459, 117805.	1.4	49
587	Soil depth and grassland origin cooperatively shape microbial community coâ€occurrence and function. Ecosphere, 2020, 11, e02973.	1.0	41

#	Article	IF	Citations
588	Model-free two-sample test for network-valued data. Computational Statistics and Data Analysis, 2020, 144, 106896.	0.7	2
589	Rapid diagnosis and comprehensive bacteria profiling of sepsis based on cell-free DNA. Journal of Translational Medicine, 2020, 18, 5.	1.8	6
590	Passive and active ecological restoration strategies for abandoned farmland leads to shifts in potential soil nitrogen loss by denitrification and soil denitrifying microbes. Land Degradation and Development, 2020, 31, 1086-1098.	1.8	20
591	Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments. ISME Journal, 2020, 14, 740-756.	4.4	99
592	Positive associations among rare species and their persistence in ecological assemblages. Nature Ecology and Evolution, 2020, 4, 40-45.	3.4	65
593	Soil fertility and crop production are fostered by micro-nano bubble irrigation with associated changes in soil bacterial community. Soil Biology and Biochemistry, 2020, 141, 107663.	4.2	64
594	Large-sized planktonic bioaggregates possess high biofilm formation potentials: Bacterial succession and assembly in the biofilm metacommunity. Water Research, 2020, 170, 115307.	5.3	31
595	Steering root microbiomes of a commercial horticultural crop with plant-soil feedbacks. Applied Soil Ecology, 2020, 150, 103468.	2.1	26
596	Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems. ISME Journal, 2020, 14, 757-770.	4.4	280
597	Characterization and discrimination of microbial community and coâ€occurrence patterns in fresh and strong flavor style flueâ€cured tobacco leaves. MicrobiologyOpen, 2020, 9, e965.	1.2	35
598	Chitin degradation and the temporary response of bacterial chitinolytic communities to chitin amendment in soil under different fertilization regimes. Science of the Total Environment, 2020, 705, 136003.	3.9	27
599	Responses of rhizosphere and bulk substrate microbiome to wastewater-borne sulfonamides in constructed wetlands with different plant species. Science of the Total Environment, 2020, 706, 135955.	3.9	58
600	Biogeographic patterns of microbial association networks in paddy soil within Eastern China. Soil Biology and Biochemistry, 2020, 142, 107696.	4.2	59
601	Cascade dam impoundments restrain the trophic transfer efficiencies in benthic microbial food web. Water Research, 2020, 170, 115351.	5.3	40
602	Spatial-temporal distribution of microplastics in surface water and sediments of Maozhou River within Guangdong-Hong Kong-Macao Greater Bay Area. Science of the Total Environment, 2020, 717, 135187.	3.9	145
603	Specific enrichment of different Geobacter sp. in anode biofilm by varying interspatial distance of electrodes in air-cathode microbial fuel cell (MFC). Electrochimica Acta, 2020, 331, 135388.	2.6	45
604	Can dynamic network modelling be used to identify adaptive microbiomes?. Functional Ecology, 2020, 34, 2065-2074.	1.7	6
605	Differential responses of stream water and bed sediment microbial communities to watershed degradation. Environment International, 2020, 134, 105198.	4.8	46

#	Article	IF	CITATIONS
606	Urbanization significantly impacts the connectivity of soil microbes involved in nitrogen dynamics at a watershed scale. Environmental Pollution, 2020, 258, 113708.	3.7	10
607	Impact of topsoil removal on soil CO2 emission and temperature sensitivity in Chinese Loess Plateau. Science of the Total Environment, 2020, 708, 135102.	3.9	20
608	Benthic archaeal community structure and carbon metabolic profiling of heterotrophic microbial communities in brackish sediments. Science of the Total Environment, 2020, 706, 135709.	3.9	21
609	Successional Change of the Fungal Microbiome Pine Seedling Roots Inoculated With Tricholoma matsutake. Frontiers in Microbiology, 2020, 11, 574146.	1.5	10
610	Environmental and Microbial Interactions Shape Methane-Oxidizing Bacterial Communities in a Stratified Lake. Frontiers in Microbiology, 2020, 11, 579427.	1.5	18
611	Effects of Antibiotics on the Dynamic Balance of Bacteria and Fungi in the Gut of the German Cockroach. Journal of Economic Entomology, 2020, 113, 2666-2678.	0.8	14
612	Rock structure drives the taxonomic and functional diversity of endolithic microbial communities in extreme environments. Environmental Microbiology, 2021, 23, 3937-3956.	1.8	21
613	Identification of microbial interaction network: zero-inflated latent Ising model based approach. BioData Mining, 2020, 13, 16.	2.2	3
614	Disentangling survival of Escherichia coli O157:H7 in soils: From a subpopulation perspective. Science of the Total Environment, 2020, 749, 141649.	3.9	11
615	Mutual environmental drivers of the community composition, functional attributes and co-occurrence patterns of bacterioplankton in the composite aquatic ecosystem of Taihu watershed in China. FEMS Microbiology Ecology, 2020, 96, .	1.3	12
616	Mixed-culture aerobic anoxygenic photosynthetic bacterial consortia reduce nitrate: Core species dynamics, co-interactions and assessment in raw water of reservoirs. Bioresource Technology, 2020, 315, 123817.	4.8	24
617	Source identification and co-occurrence patterns of major elements in South China Sea sediments. Marine Geology, 2020, 428, 106285.	0.9	6
618	Successional trajectory of bacterial communities in soil are shaped by plant-driven changes during secondary succession. Scientific Reports, 2020, 10, 9864.	1.6	26
619	Cooperation between <i>Broussonetia papyrifera</i> and Its Symbiotic Fungal Community To Improve Local Adaptation of the Host. Applied and Environmental Microbiology, 2020, 86, .	1.4	7
620	Distinct Distribution of Archaea From Soil to Freshwater to Estuary: Implications of Archaeal Composition and Function in Different Environments. Frontiers in Microbiology, 2020, 11, 576661.	1.5	16
621	Dose-response efficacy and mechanisms of orally administered CLA-producing Bifidobacterium breve CCFM683 on DSS-induced colitis in mice. Journal of Functional Foods, 2020, 75, 104245.	1.6	19
622	Compositions and Co-occurrence Patterns of Bacterial Communities Associated With Polymer- and ASP-Flooded Petroleum Reservoir Blocks. Frontiers in Microbiology, 2020, 11, 580363.	1.5	7
623	Diversity of Soil Bacterial Community Is Influenced by Spatial Location and Time but Not Potato Cultivar. Phytobiomes Journal, 2020, 4, 225-238.	1.4	10

#	Article	IF	CITATIONS
624	Microbial co-occurrence networks of gut microbiota reveal community conservation and diet-associated shifts in cichlid fishes. Animal Microbiome, 2020, 2, 36.	1.5	21
625	A large-scale assessment of lakes reveals a pervasive signal of land use on bacterial communities. ISME Journal, 2020, 14, 3011-3023.	4.4	51
626	Microbial diversity and co-occurrence patterns in deep soils contaminated by polycyclic aromatic hydrocarbons (PAHs). Ecotoxicology and Environmental Safety, 2020, 203, 110931.	2.9	55
627	Control of Fusarium wilt by wheat straw is associated with microbial network changes in watermelon rhizosphere. Scientific Reports, 2020, 10, 12736.	1.6	23
628	Metagenomic insights into differences in environmental resistome profiles between integrated and monoculture aquaculture farms in China. Environment International, 2020, 144, 106005.	4.8	40
629	Methods and approaches to advance soil macroecology. Global Ecology and Biogeography, 2020, 29, 1674-1690.	2.7	28
630	Soil Fungal Community Composition, Not Assembly Process, Was Altered by Nitrogen Addition and Precipitation Changes at an Alpine Steppe. Frontiers in Microbiology, 2020, 11, 579072.	1.5	19
631	Recent advances in the roles of minerals for enhanced microbial extracellular electron transfer. Renewable and Sustainable Energy Reviews, 2020, 134, 110404.	8.2	35
632	Different types of agricultural land use drive distinct soil bacterial communities. Scientific Reports, 2020, 10, 17418.	1.6	19
633	Response of a methane-driven interaction network to stressor intensification. FEMS Microbiology Ecology, 2020, 96, .	1.3	19
634	The Nexus Between Plant and Plant Microbiome: Revelation of the Networking Strategies. Frontiers in Microbiology, 2020, $11,548037$.	1.5	39
635	Total Arsenic, pH, and Sulfate Are the Main Environmental Factors Affecting the Microbial Ecology of the Water and Sediments in Hulun Lake, China. Frontiers in Microbiology, 2020, 11, 548607.	1.5	18
636	Microbial adaptation in vertical soil profiles contaminated by an antimony smelting plant. FEMS Microbiology Ecology, 2020, 96, .	1.3	23
637	Impact of TiO ₂ and ZnO Nanoparticles on Soil Bacteria and the Enantioselective Transformation of Racemic-Metalaxyl in Agricultural Soil with <i>Lolium perenne</i>): A Wild Greenhouse Cultivation. Journal of Agricultural and Food Chemistry, 2020, 68, 11242-11252.	2.4	10
638	Assessing the strength and sensitivity of the core microbiota approach on a highly diverse sponge reef. Environmental Microbiology, 2020, 22, 3985-3999.	1.8	12
639	Deep Understanding of the Methanogenic Community and Their Interaction in Batch High-Solid Anaerobic Digestion of Ensiled Straw with Leachate Circulation. Energy & Samp; Fuels, 2020, 34, 10980-10988.	2.5	2
640	Both Soil Bacteria and Soil Chemical Property Affected the Micropredator Myxobacterial Community: Evidence from Natural Forest Soil and Greenhouse Rhizosphere Soil. Microorganisms, 2020, 8, 1387.	1.6	8
641	Identification of multidimensional Boolean patterns in microbial communities. Microbiome, 2020, 8, 131.	4.9	5

#	Article	IF	CITATIONS
642	Impact of long-term industrial contamination on the bacterial communities in urban river sediments. BMC Microbiology, 2020, 20, 254.	1.3	23
643	Seasonal and spatial distribution and assembly processes of bacterioplankton communities in a subtropical urban river. FEMS Microbiology Ecology, 2020, 96, .	1.3	8
644	Covariation patterns of phytoplankton and bacterioplankton in hypertrophic shallow lakes. FEMS Microbiology Ecology, 2020, 96, .	1.3	5
645	Data collected by fruit body―and DNAâ€based survey methods yield consistent speciesâ€ŧoâ€species association networks in woodâ€inhabiting fungal communities. Oikos, 2020, 129, 1833-1843.	1.2	8
646	Protistan and fungal diversity in soils and freshwater lakes are substantially different. Scientific Reports, 2020, 10, 20025.	1.6	10
647	Alterations in the Gut Microbiota of Zebrafish (Danio rerio) in Response to Water-Soluble Crude Oil Components and Its Mixture With a Chemical Dispersant. Frontiers in Public Health, 2020, 8, 584953.	1.3	11
648	Distinct Community Assembly Processes of Abundant and Rare Soil Bacteria in Coastal Wetlands along an Inundation Gradient. MSystems, 2020, 5, .	1.7	48
649	Regional Differences in the Structure of <i>Juglans nigra</i> Phytobiome Reflect Geographical Differences in Thousand Cankers Disease Severity. Phytobiomes Journal, 2020, 4, 388-404.	1.4	7
650	Impact of air, water and dock microbial communities on boat microbial community composition. Journal of Applied Microbiology, 2021, 131, 768-779.	1.4	2
651	Measuring the engagement level in encrypted group conversations by using temporal networks. , 2020, , .		1
652	Soil bacterial community varies but fungal community stabilizes along five vertical climate zones. Catena, 2020, 195, 104841.	2.2	32
653	Diatoms Are Selective Segregators in Global Ocean Planktonic Communities. MSystems, 2020, 5, .	1.7	38
654	Divergent Co-occurrence Patterns and Assembly Processes Structure the Abundant and Rare Bacterial Communities in a Salt Marsh Ecosystem. Applied and Environmental Microbiology, 2020, 86, .	1.4	66
655	Bacterial Communities in Stream Biofilms in a Degrading Grassland Watershed on the Qinghai–Tibet Plateau. Frontiers in Microbiology, 2020, 11, 1021.	1.5	13
656	Contribution of influent rivers affected by different types of pollution to the changes of benthic microbial community structure in a large lake. Ecotoxicology and Environmental Safety, 2020, 198, 110657.	2.9	14
657	Construction, comparison and evolution of networks in life sciences and other disciplines. Journal of the Royal Society Interface, 2020, 17, 20190610.	1.5	12
658	Warming and disturbance alter soil microbiome diversity and function in a northern forest ecotone. FEMS Microbiology Ecology, 2020, 96, .	1.3	14
659	Co-occurrence pattern and function prediction of bacterial community in Karst cave. BMC Microbiology, 2020, 20, 137.	1.3	28

#	Article	IF	CITATIONS
660	Structural changes in bacterial and fungal soil microbiome components during biosolarization as related to volatile fatty acid accumulation. Applied Soil Ecology, 2020, 153, 103602.	2.1	10
661	Composition and co-occurrence patterns of the microbiota of different niches of the bovine mammary gland: potential associations with mastitis susceptibility, udder inflammation, and teat-end hyperkeratosis. Animal Microbiome, 2020, 2, 11.	1.5	32
662	Complexity of bacterial and fungal network increases with soil aggregate size in an agricultural Inceptisol. Applied Soil Ecology, 2020, 154, 103640.	2.1	28
663	Spatiotemporal vanadium distribution in soils with microbial community dynamics at vanadium smelting site. Environmental Pollution, 2020, 265, 114782.	3.7	37
664	Biogeographic patterns of microbial co-occurrence ecological networks in six American forests. Soil Biology and Biochemistry, 2020, 148, 107897.	4.2	68
665	Cadmium sulfide nanoparticles-assisted intimate coupling of microbial and photoelectrochemical processes: Mechanisms and environmental applications. Science of the Total Environment, 2020, 740, 140080.	3.9	33
666	Coupling Bacterial Community Assembly to Microbial Metabolism across Soil Profiles. MSystems, 2020, 5, .	1.7	89
667	Metagenomic and network analyses decipher profiles and co-occurrence patterns of antibiotic resistome and bacterial taxa in the reclaimed wastewater distribution system. Journal of Hazardous Materials, 2020, 400, 123170.	6.5	45
668	Correlation and association analyses in microbiome study integrating multiomics in health and disease. Progress in Molecular Biology and Translational Science, 2020, 171, 309-491.	0.9	103
669	Temporal dynamics of aquatic microbiota and their correlation with environmental factors during larviculture of the shrimp Litopenaeus vannamei. Aquaculture, 2020, 529, 735605.	1.7	10
670	Sedimentary ancient DNA metabarcoding delineates the contrastingly temporal change of lake cyanobacterial communities. Water Research, 2020, 183, 116077.	5.3	22
671	Microbial communities network analysis of anaerobic reactors fed with bovine and swine slurry. Science of the Total Environment, 2020, 742, 140314.	3.9	30
672	Potential syntrophic associations in anaerobic naphthenic acids biodegrading consortia inferred with microbial interactome networks. Journal of Hazardous Materials, 2020, 397, 122678.	6.5	10
673	Lifting the veil on arid-to-hyperarid Antarctic soil microbiomes: a tale of two oases. Microbiome, 2020, 8, 37.	4.9	22
674	Responses of Intertidal Bacterial Biofilm Communities to Increasing pCO2. Marine Biotechnology, 2020, 22, 727-738.	1.1	11
675	Response of grass interplanting on bacterial and fungal communities in a jujube orchard in Ningxia, northwest China. Heliyon, 2020, 6, e03489.	1.4	10
676	Resource availability drives bacterial succession during leaf-litter decomposition in a bromeliad ecosystem. FEMS Microbiology Ecology, 2020, 96, .	1.3	9
677	Subgingival Host-Microbial Interactions in Hyperglycemic Individuals. Journal of Dental Research, 2020, 99, 650-657.	2.5	17

#	Article	IF	CITATIONS
678	Microbial community composition, co-occurrence network pattern and nitrogen transformation genera response to biochar addition in cattle manure-maize straw composting. Science of the Total Environment, 2020, 721, 137759.	3.9	136
679	Distinct microbial communities and their networks in an anammox coupled with sulfur autotrophic/mixotrophic denitrification system. Environmental Pollution, 2020, 262, 114190.	3.7	50
680	The ecology of heterogeneity: soil bacterial communities and C dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190249.	1.8	76
681	Adaptive Development of Soil Bacterial Communities to Ecological Processes Caused by Mining Activities in the Loess Plateau, China. Microorganisms, 2020, 8, 477.	1.6	23
682	Differences of the microbial community structures and predicted metabolic potentials in the lake, river, and wetland sediments in Dongping Lake Basin. Environmental Science and Pollution Research, 2020, 27, 19661-19677.	2.7	20
683	Core Rhizosphere Microbiomes of Dryland Wheat Are Influenced by Location and Land Use History. Applied and Environmental Microbiology, 2020, 86, .	1.4	52
684	Sustainable engineering technologies to promote activities of beneficial microbiome., 2020,, 231-275.		1
685	Efficiency of probiotic traits in plant inoculation is determined by environmental constrains. Soil Biology and Biochemistry, 2020, 148, 107893.	4.2	12
686	Mobilization of Antibiotic Resistance: Are Current Approaches for Colocalizing Resistomes and Mobilomes Useful?. Frontiers in Microbiology, 2020, 11, 1376.	1.5	33
687	Microbiome definition re-visited: old concepts and new challenges. Microbiome, 2020, 8, 103.	4.9	903
688	Scoring Species for Synthetic Community Design: Network Analyses of Functional Core Microbiomes. Frontiers in Microbiology, 2020, $11,1361$.	1.5	26
689	Long-term effects of two organic amendments on bacterial communities of calcareous mediterranean soils degraded by mining. Journal of Environmental Management, 2020, 271, 110920.	3.8	30
690	CuO Nanoparticles Alter the Rhizospheric Bacterial Community and Local Nitrogen Cycling for Wheat Grown in a Calcareous Soil. Environmental Science & Eamp; Technology, 2020, 54, 8699-8709.	4.6	65
691	Comparative evaluation of cheese whey microbial composition from four Italian cheese factories by viable counts and 16S rRNA gene amplicon sequencing. International Dairy Journal, 2020, 104, 104656.	1.5	13
692	Disentangling the seasonal co-occurrence patterns and ecological stochasticity of planktonic and benthic bacterial communities within multiple lakes. Science of the Total Environment, 2020, 740, 140010.	3.9	62
693	Strong linkages between dissolved organic matter and the aquatic bacterial community in an urban river. Water Research, 2020, 184, 116089.	5.3	65
694	How biofilms affect the uptake and fate of hydrophobic organic compounds (HOCs) in microplastic: Insights from an In situ study of Xiangshan Bay, China. Water Research, 2020, 184, 116118.	5.3	58
695	Application of biofertilizer containing Bacillus subtilis reduced the nitrogen loss in agricultural soil. Soil Biology and Biochemistry, 2020, 148, 107911.	4.2	80

#	Article	IF	CITATIONS
696	Quantifying Source Apportionment, Coâ€occurrence, and Ecotoxicological Risk of Metals from Upstream, Lower Midstream, and Downstream River Segments, Bangladesh. Environmental Toxicology and Chemistry, 2020, 39, 2041-2054.	2.2	31
697	Geographical Patterns of Algal Communities Associated with Different Urban Lakes in China. International Journal of Environmental Research and Public Health, 2020, 17, 1009.	1.2	16
698	Distinct mechanisms shape soil bacterial and fungal co-occurrence networks in a mountain ecosystem. FEMS Microbiology Ecology, 2020, 96, .	1.3	62
699	Network analysis infers the wilt pathogen invasion associated with non-detrimental bacteria. Npj Biofilms and Microbiomes, 2020, 6, 8.	2.9	68
700	Use of untargeted metabolomics for assessing soil quality and microbial function. Soil Biology and Biochemistry, 2020, 143, 107758.	4.2	80
701	Model-based Comparisons of the Abundance Dynamics of Bacterial Communities in Two Lakes. Scientific Reports, 2020, 10, 2423.	1.6	14
702	Sowing Methods Influence Soil Bacterial Diversity and Community Composition in a Winter Wheat-Summer Maize Rotation System on the Loess Plateau. Frontiers in Microbiology, 2020, 11, 192.	1.5	10
703	Aquatic Macrophytes and Local Factors Drive Bacterial Community Distribution and Interactions in a Riparian Zone of Lake Taihu. Water (Switzerland), 2020, 12, 432.	1.2	3
704	Mainland and island populations of Mussaenda kwangtungensis differ in their phyllosphere fungal community composition and network structure. Scientific Reports, 2020, 10, 952.	1.6	19
705	Impact of Cover Crops on the Soil Microbiome of Tree Crops. Microorganisms, 2020, 8, 328.	1.6	39
706	Linking bacterial community shifts with changes in the dissolved organic matter pool in a eutrophic lake. Science of the Total Environment, 2020, 719, 137387.	3.9	35
707	Characteristics and interactions of bioaerosol microorganisms from wastewater treatment plants. Journal of Hazardous Materials, 2020, 391, 122256.	6.5	42
708	Deploying root microbiome of halophytes to improve salinity tolerance of crops. Plant Biotechnology Reports, 2020, 14, 143-150.	0.9	9
709	Microbiome Dynamics Associated With the Atacama Flowering Desert. Frontiers in Microbiology, 2019, 10, 3160.	1.5	29
710	Different response of bacterial community to the changes of nutrients and pollutants in sediments from an urban river network. Frontiers of Environmental Science and Engineering, 2020, 14 , 1 .	3.3	32
711	Antibiotic resistome associated with microbial communities in an integrated wastewater reclamation system. Water Research, 2020, 173, 115541.	5.3	53
712	Soil microbial diversity drops with landâ€use change in a high mountain temperate forest: a metagenomics survey. Environmental Microbiology Reports, 2020, 12, 185-194.	1.0	23
713	Differences in distribution of functional microorganism at DNA and cDNA levels in cow manure composting. Ecotoxicology and Environmental Safety, 2020, 191, 110161.	2.9	15

#	Article	IF	CITATIONS
714	Response of Isovalerate-Degrading Methanogenic Microbial Community to Inhibitors. Applied Biochemistry and Biotechnology, 2020, 191, 1010-1026.	1.4	5
715	Soil microbial community responses to climate extremes: resistance, resilience and transitions to alternative states. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190112.	1.8	146
716	Rare Species Shift the Structure of Bacterial Communities Across Sphagnum Compartments in a Subalpine Peatland. Frontiers in Microbiology, 2019, 10, 3138.	1.5	18
717	Long-term phosphorus deficiency decreased bacterial-fungal network complexity and efficiency across three soil types in China as revealed by network analysis. Applied Soil Ecology, 2020, 148, 103506.	2.1	34
718	Integrating Computational Methods to Investigate the Macroecology of Microbiomes. Frontiers in Genetics, 2019, 10, 1344.	1.1	7
719	The response of nitrogen cycling and bacterial communities to E. coli invasion in aquatic environments with submerged vegetation. Journal of Environmental Management, 2020, 261, 110204.	3.8	12
720	Shifts in microbial communities and networks are correlated with the soil ionome in a kiwifruit orchard under different fertilization regimes. Applied Soil Ecology, 2020, 149, 103517.	2.1	24
721	Phytobeneficial bacteria improve saline stress tolerance in Vicia faba and modulate microbial interaction network. Science of the Total Environment, 2020, 729, 139020.	3.9	36
722	Contrasting Patterns of the Bacterial Communities in Melting Ponds and Periglacial Rivers of the Zhuxi glacier in the Tibet Plateau. Microorganisms, 2020, 8, 509.	1.6	2
723	Phase changes of continuous cropping obstacles in strawberry (Fragaria × ananassa Duch.) production. Applied Soil Ecology, 2020, 155, 103626.	2.1	59
724	Enhanced biological nitrogen removal from sediment by graphene derivative-mediated community assembly. Bioresource Technology, 2020, 306, 123187.	4.8	26
725	Opportunistic bacteria use quorum sensing to disturb coral symbiotic communities and mediate the occurrence of coral bleaching. Environmental Microbiology, 2020, 22, 1944-1962.	1.8	24
726	Plant-fungal interactions in hybrid zones: Ectomycorrhizal communities of willows (Salix) in an alpine glacier forefield. Fungal Ecology, 2020, 45, 100936.	0.7	13
727	Revealing structure and assembly for rhizophyte-endophyte diazotrophic community in mangrove ecosystem after introduced Sonneratia apetala and Laguncularia racemosa. Science of the Total Environment, 2020, 721, 137807.	3.9	35
728	Biogeography and Assembly of Microbial Communities in Wastewater Treatment Plants in China. Environmental Science & Environmen	4.6	34
729	Plant diversity enhances the reclamation of degraded lands by stimulating plant–soil feedbacks. Journal of Applied Ecology, 2020, 57, 1258-1270.	1.9	22
730	Multifunctionality of biocrusts is positively predicted by network topologies consistent with interspecies facilitation. Molecular Ecology, 2020, 29, 1560-1573.	2.0	23
731	Composition, Predicted Functions and Co-occurrence Networks of Rhizobacterial Communities Impacting Flowering Desert Events in the Atacama Desert, Chile. Frontiers in Microbiology, 2020, 11, 571.	1.5	22

#	Article	IF	CITATIONS
732	Identification of Complex Rumen Microbiome Interaction Within Diverse Functional Niches as Mechanisms Affecting the Variation of Methane Emissions in Bovine. Frontiers in Microbiology, 2020, 11, 659.	1.5	51
733	The Response of the Soil Microbiota to Long-Term Mineral and Organic Nitrogen Fertilization is Stronger in the Bulk Soil than in the Rhizosphere. Genes, 2020, 11, 456.	1.0	14
734	Co-occurrence of rhizobacteria with nitrogen fixation and/or 1-aminocyclopropane-1-carboxylate deamination abilities in the maize rhizosphere. FEMS Microbiology Ecology, 2020, 96, .	1.3	9
735	Comparative analysis of the total and active bacterial communities in the surface sediment of Lake Taihu. FEMS Microbiology Ecology, 2020, 96, .	1.3	8
736	Elucidation of the rhizosphere microbiome linked to Spartina alterniflora phenotype in a salt marsh on Skidaway Island, Georgia, USA. FEMS Microbiology Ecology, 2020, 96, .	1.3	21
737	Soil Microbial Biogeography in a Changing World: Recent Advances and Future Perspectives. MSystems, 2020, 5, .	1.7	84
738	Enhanced Adsorptive Bioremediation of Heavy Metals (Cd2+, Cr6+, Pb2+) by Methane-Oxidizing Epipelon. Microorganisms, 2020, 8, 505.	1.6	10
739	Functional potential and assembly of microbes from sediments in a lake bay and adjoining river ecosystem for polycyclic aromatic hydrocarbon biodegradation. Environmental Microbiology, 2021, 23, 628-640.	1.8	24
740	System Biology Approaches for Nutrition Research. , 2021, , 418-433.		0
741	Long-term agricultural contamination shaped diversity response of sediment microbiome. Journal of Environmental Sciences, 2021, 99, 90-99.	3.2	13
742	Role of MnO2 in controlling iron and arsenic mobilization from illuminated flooded arsenic-enriched soils. Journal of Hazardous Materials, 2021, 401, 123362.	6.5	24
743	nir geneâ€based coâ€occurrence patterns reveal assembly mechanisms of soil denitrifiers in response to fire. Environmental Microbiology, 2021, 23, 239-251.	1.8	9
744	Biogeographic patterns and co-occurrence networks of diazotrophic and arbuscular mycorrhizal fungal communities in the acidic soil ecosystem of southern China. Applied Soil Ecology, 2021, 158, 103798.	2.1	21
745	Biogeography and coâ€occurrence patterns of bacterial generalists and specialists in three subtropical marine bays. Limnology and Oceanography, 2021, 66, 793-806.	1.6	36
746	The Role of Arbuscular Mycorrhizal Fungi Against Root-Knot Nematode Infections in Coffee Plants. Journal of Soil Science and Plant Nutrition, 2021, 21, 364-373.	1.7	19
747	Fine sediment and flow velocity impact bacterial community and functional profile more than nutrient enrichment. Ecological Applications, 2021, 31, e02212.	1.8	8
748	Sewage sludge application alters the composition and co-occurrence pattern of the soil bacterial community in southern China forestlands. Applied Soil Ecology, 2021, 157, 103744.	2.1	18
749	Contrasting bacterial communities and their assembly processes in karst soils under different land use. Science of the Total Environment, 2021, 751, 142263.	3.9	30

#	ARTICLE	IF	CITATIONS
750	Self-regulating microbiome networks ensure functional resilience of biofilms in sand biofilters during manganese load fluctuations. Water Research, 2021, 188, 116473.	5.3	22
751	The mycobiome in murine intestine is more perturbed by food arsenic exposure than in excreted feces. Science of the Total Environment, 2021, 753, 141871.	3.9	4
752	Dramatic change of bacterial assembly process and co-occurrence pattern in Spartina alterniflora salt marsh along an inundation frequency gradient. Science of the Total Environment, 2021, 755, 142546.	3.9	23
7 53	Divergent responses of soil fungal communities to soil erosion and deposition as evidenced in topsoil and subsoil. Science of the Total Environment, 2021, 755, 142616.	3.9	10
754	Successional Dynamics of Molecular Ecological Network of Anammox Microbial Communities under Elevated Salinity. Water Research, 2021, 188, 116540.	5.3	89
7 55	Microbiome community and complexity indicate environmental gradient acclimatisation and potential microbial interaction of endemic coral holobionts in the South China Sea. Science of the Total Environment, 2021, 765, 142690.	3.9	29
756	Soil salinity, pH, and indigenous bacterial community interactively influence the survival of E. coli O157:H7 revealed by multivariate statistics. Environmental Science and Pollution Research, 2021, 28, 5575-5586.	2.7	5
757	Seasonal variation of diversity and co-occurrence patterns of arbuscular mycorrhizal fungal communities in mixed broadleaf-conifer forests. Applied Soil Ecology, 2021, 158, 103782.	2.1	23
758	Conditions that promote the formation of black bloom in aquatic microcosms and its effects on sediment bacteria related to iron and sulfur cycling. Science of the Total Environment, 2021, 751, 141869.	3.9	14
7 59	Insects' potential: Understanding the functional role of their gut microbiome. Journal of Pharmaceutical and Biomedical Analysis, 2021, 194, 113787.	1.4	32
760	High soil <scp>pH</scp> enhances the network interactions among bacterial and archaeal microbiota in alpine grasslands of the Tibetan Plateau. Environmental Microbiology, 2021, 23, 464-477.	1.8	38
761	The microbial network property as a bio-indicator of antibiotic transmission in the environment. Science of the Total Environment, 2021, 758, 143712.	3.9	24
762	Ecological features and global distribution of Asgard archaea. Science of the Total Environment, 2021, 758, 143581.	3.9	12
763	Application of a microbial consortium improves the growth of <i>Camellia sinensis</i> and influences the indigenous rhizosphere bacterial communities. Journal of Applied Microbiology, 2021, 130, 2029-2040.	1.4	25
764	Distinct assembly processes shape bacterial communities along unsaturated, groundwater fluctuated, and saturated zones. Science of the Total Environment, 2021, 761, 143303.	3.9	30
765	Soil prokaryotic community structure and co-occurrence patterns on the fragmented Chinese Loess Plateau: Effects of topographic units of a soil eroding catena. Catena, 2021, 198, 105035.	2.2	7
766	Environment dependent microbial coâ€occurrences across a cyanobacterial bloom in a freshwater lake. Environmental Microbiology, 2021, 23, 327-339.	1.8	6
767	When the going gets tough: Emergence of a complex methane-driven interaction network during recovery from desiccation-rewetting. Soil Biology and Biochemistry, 2021, 153, 108109.	4.2	20

#	Article	IF	CITATIONS
768	Aquatic food webs in deep temperate lakes: Key species establish through their autecological versatility. Molecular Ecology, 2021, 30, 1053-1071.	2.0	13
769	Viral Lysis Alters the Optical Properties and Biological Availability of Dissolved Organic Matter Derived from <i>Prochlorococcus</i> Picocyanobacteria. Applied and Environmental Microbiology, 2021, 87, .	1.4	26
770	Succession of the composition and co-occurrence networks of rhizosphere microbiota is linked to Cd/Zn hyperaccumulation. Soil Biology and Biochemistry, 2021, 153, 108120.	4.2	33
771	Species co-occurrence networks of ground beetles in managed grasslands. Community Ecology, 2021, 22, 29-40.	0.5	9
772	Dams shift microbial community assembly and imprint nitrogen transformation along the Yangtze River. Water Research, 2021, 189, 116579.	5.3	63
773	<scp>T4</scp> â€like myovirus community shaped by dispersal and deterministic processes in the South China Sea. Environmental Microbiology, 2021, 23, 1038-1052.	1.8	5
774	Relationship study among soils physicochemical properties and bacterial communities in urban green space and promotion of its composition and network analysis. Agronomy Journal, 2021, 113, 515-526.	0.9	1
775	Nitrate-assisted biodegradation of polycyclic aromatic hydrocarbons (PAHs) in the water-level-fluctuation zone of the three Gorges Reservoir, China: Insights from in situ microbial interaction analyses and a microcosmic experiment. Environmental Pollution, 2021, 268, 115693.	3.7	34
776	Stochastic processes shape the biogeographic variations in core bacterial communities between aerial and belowground compartments of common bean. Environmental Microbiology, 2021, 23, 949-964.	1.8	25
777	The effects of straw incorporation with plastic film mulch on soil properties and bacterial community structure on the loess plateau. European Journal of Soil Science, 2021, 72, 979-994.	1.8	40
778	Enhanced Metabolic Potentials and Functional Gene Interactions of Microbial Stress Responses to a 4,100-m Elevational Increase in Freshwater Lakes. Frontiers in Microbiology, 2020, 11, 595967.	1.5	5
780	Identification of Functional Microbial Modules Through Network-Based Analysis of Meta-Microbial Features Using Matrix Factorization. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19, 2851-2862.	1.9	3
781	Niche Differentiation of Comammox Nitrospira in the Mudflat and Reclaimed Agricultural Soils Along the North Branch of Yangtze River Estuary. Frontiers in Microbiology, 2020, 11, 618287.	1.5	25
782	Coexistence patterns of soil methanogens are closely tied to methane generation and community assembly in rice paddies. Microbiome, 2021, 9, 20.	4.9	66
783	Common Network PharmacologyÂSoftware. , 2021, , 127-173.		0
784	Merging Fungal and Bacterial Community Profiles via an Internal Control. Microbial Ecology, 2021, 82, 484-497.	1.4	5
785	Soil Bacterial and Fungal Richness and Network Exhibit Different Responses to Long-Term Throughfall Reduction in a Warm-Temperate Oak Forest. Forests, 2021, 12, 165.	0.9	7
786	The Democracy of Dirt: Relating Micro-Scale Dynamics to Macro-Scale Ecosystem Function. Advances in Environmental Microbiology, 2021, , 89-102.	0.1	3

#	Article	IF	Citations
787	Induction of antibiotic specialized metabolism by coâ€culturing in a collection of phyllosphere bacteria. Environmental Microbiology, 2021, 23, 2132-2151.	1.8	12
788	Polarization of microbial communities between competitive and cooperative metabolism. Nature Ecology and Evolution, 2021, 5, 195-203.	3.4	131
789	Fertilization alters protistan consumers and parasites in cropâ€associated microbiomes. Environmental Microbiology, 2021, 23, 2169-2183.	1.8	52
790	Environmental stress destabilizes microbial networks. ISME Journal, 2021, 15, 1722-1734.	4.4	444
791	Household energy consumption: state of the art, research gaps, and future prospects. Environment, Development and Sustainability, 2021, 23, 12479-12504.	2.7	24
792	Metabarcoding and Metagenomics in Soil Ecology Research: Achievements, Challenges, and Prospects. Biology Bulletin Reviews, 2021, 11, 40-53.	0.3	38
793	Small-Scale Variability in Bacterial Community Structure in Different Soil Types. Microbial Ecology, 2021, 82, 470-483.	1.4	5
794	Simultaneous Discovery of Positive and Negative Interactions Among Rhizosphere Bacteria Using Microwell Recovery Arrays. Frontiers in Microbiology, 2020, 11, 601788.	1.5	14
795	New Insights into the Co-Occurrences of Glycoside Hydrolase Genes among Prokaryotic Genomes through Network Analysis. Microorganisms, 2021, 9, 427.	1.6	5
796	Profiling of Microbial Communities in the Sediments of Jinsha River Watershed Exposed to Different Levels of Impacts by the Vanadium Industry, Panzhihua, China. Microbial Ecology, 2021, 82, 623-637.	1.4	10
797	Recovery of Methanotrophic Activity Is Not Reflected in the Methane-Driven Interaction Network after Peat Mining. Applied and Environmental Microbiology, 2021, 87, .	1.4	14
798	Metagenomic Analysis of the Microbial Communities and Resistomes of Veal Calf Feces. Frontiers in Microbiology, 2020, 11, 609950.	1.5	11
799	Different distribution patterns of microorganisms between aquaculture pond sediment and water. Journal of Microbiology, 2021, 59, 376-388.	1.3	16
800	Global projections of the soil microbiome in the Anthropocene. Global Ecology and Biogeography, 2021, 30, 987-999.	2.7	43
801	Effect of different types of anthropogenic pollution on the bacterial community of urban rivers. Water Environment Research, 2021, 93, 1322-1332.	1.3	0
802	Biogeographical patterns and mechanisms of microbial community assembly that underlie successional biocrusts across northern China. Npj Biofilms and Microbiomes, 2021, 7, 15.	2.9	24
803	Response of the microbial community to phosphate-solubilizing bacterial inoculants on Ulmus chenmoui Cheng in Eastern China. PLoS ONE, 2021, 16, e0247309.	1.1	16
804	Soil bacterial communities interact with silicon fraction transformation and promote rice yield after long-term straw return. Soil Ecology Letters, 2021, 3, 395-408.	2.4	16

#	Article	IF	CITATIONS
805	Grazing Affects Bacterial and Fungal Diversities and Communities in the Rhizosphere and Endosphere Compartments of Leymus chinensis through Regulating Nutrient and Ion Distribution. Microorganisms, 2021, 9, 476.	1.6	15
806	Influence of Soil and Water Conservation Measures on Soil Microbial Communities in a Citrus Orchard of Southeast China. Microorganisms, 2021, 9, 319.	1.6	15
807	Soil depth matters: shift in composition and inter-kingdom co-occurrence patterns of microorganisms in forest soils. FEMS Microbiology Ecology, 2021, 97, .	1.3	43
808	Dynamic characteristics and co-occurrence patterns of microbial community in tobacco leaves during the 24-month aging process. Annals of Microbiology, 2021, 71, .	1.1	17
809	Assessing Biotic and Abiotic Interactions of Microorganisms in Amazonia through Co-Occurrence Networks and DNA Metabarcoding. Microbial Ecology, 2021, 82, 746-760.	1.4	8
810	Effects of cotton–maize rotation on soil microbiome structure. Molecular Plant Pathology, 2021, 22, 673-682.	2.0	17
811	Total and denitrifying bacterial communities associated with the interception of nitrate leaching by carbon amendment in the subsoil. Applied Microbiology and Biotechnology, 2021, 105, 2559-2572.	1.7	7
812	Hydrostatic pressure influence activity and assembly of bacterial communities in reservoir sediments. Freshwater Biology, 2021, 66, 1049-1059.	1.2	7
813	Impact of Rocky Desertification Control on Soil Bacterial Community in Karst Graben Basin, Southwestern China. Frontiers in Microbiology, 2021, 12, 636405.	1.5	16
814	Erosion reduces soil microbial diversity, network complexity and multifunctionality. ISME Journal, 2021, 15, 2474-2489.	4.4	273
815	Exploring Biocontrol Agents From Microbial Keystone Taxa Associated to Suppressive Soil: A New Attempt for a Biocontrol Strategy. Frontiers in Plant Science, 2021, 12, 655673.	1.7	43
816	The Effects of Helicobacter pylori Infection on Microbiota Associated With Gastric Mucosa and Immune Factors in Children. Frontiers in Immunology, 2021, 12, 625586.	2.2	13
817	Effects of precipitation change and nitrogen addition on the composition, diversity, and molecular ecological network of soil bacterial communities in a desert steppe. PLoS ONE, 2021, 16, e0248194.	1.1	26
818	Responses of abundant and rare bacterioplankton to temporal change in a subtropical urban reservoir. FEMS Microbiology Ecology, 2021, 97, .	1.3	28
819	Physicochemical and Microbial Diversity Analyses of Indian Hot Springs. Frontiers in Microbiology, 2021, 12, 627200.	1.5	22
820	Temperature Influenced the Comammox Community Composition in Drinking Water and Wastewater Treatment Plants. Microbial Ecology, 2021, 82, 870-884.	1.4	21
821	Microbial community in indoor dusts from university dormitories: Characteristics, potential pathogens and influence factors. Atmospheric Pollution Research, 2021, 12, 321-333.	1.8	15
822	Composition and co-occurrence patterns of Phragmites australis rhizosphere bacterial community. Aquatic Ecology, 2021, 55, 695-710.	0.7	9

#	ARTICLE	IF	CITATIONS
824	Microbial community assembly and metabolic function in top layers of slow sand filters for drinking water production. Journal of Cleaner Production, 2021, 294, 126342.	4.6	19
826	Overlooked Ecological Roles of Influent Wastewater Microflora in Improving Biological Phosphorus Removal in an Anoxic/Aerobic MBR Process. Environmental Science & Environment	4.6	30
827	Eutrophication alters bacterial coâ€occurrence networks and increases the importance of chromophoric dissolved organic matter composition. Limnology and Oceanography, 2021, 66, 2319-2332.	1.6	35
828	Protist diversity and community complexity in the rhizosphere of switchgrass are dynamic as plants develop. Microbiome, 2021, 9, 96.	4.9	54
829	Interactive impacts of boron and organic amendments in plant-soil microbial relationships. Journal of Hazardous Materials, 2021, 408, 124939.	6.5	19
830	Continuous cropping of alfalfa (Medicago sativa L.) reduces bacterial diversity and simplifies cooccurrence networks in aeolian sandy soil. Soil Ecology Letters, 2022, 4, 131-143.	2.4	13
831	Deciphering trophic interactions in a mid-Cambrian assemblage. IScience, 2021, 24, 102271.	1.9	5
832	Assessing the Impact of Rice Cultivation and Off-Season Period on Dynamics of Soil Enzyme Activities and Bacterial Communities in Two Agro-Ecological Regions of Mozambique. Agronomy, 2021, 11, 694.	1.3	7
833	The Sorghum bicolor Root Exudate Sorgoleone Shapes Bacterial Communities and Delays Network Formation. MSystems, 2021, 6, .	1.7	23
834	Soil microbial interconnections along ecological restoration gradients of lowland forests after slash-and-burn agriculture. FEMS Microbiology Ecology, 2021, 97, .	1.3	8
835	Fungal-Bacterial Cooccurrence Patterns Differ between Arbuscular Mycorrhizal Fungi and Nonmycorrhizal Fungi across Soil Niches. MBio, 2021, 12, .	1.8	31
836	Distinct taxonomic composition of soil bacterial community across a native gradient of Cerrado-Ecotone-Caatinga. Applied Soil Ecology, 2021, 161, 103874.	2.1	9
837	Rhizosphere Bacterial Networks, but Not Diversity, Are Impacted by Pea-Wheat Intercropping. Frontiers in Microbiology, 2021, 12, 674556.	1.5	23
838	C4 Bacterial Volatiles Improve Plant Health. Pathogens, 2021, 10, 682.	1.2	22
839	Clomazone improves the interactions between soil microbes and affects C and N cycling functions. Science of the Total Environment, 2021, 770, 144730.	3.9	21
840	Minerals Determined a Special Ecological Niche and Selectively Enriched Microbial Species from Bulk Water Communities in Hot Springs. Microorganisms, 2021, 9, 1020.	1.6	4
841	Increasing Inundation Frequencies Enhance the Stochastic Process and Network Complexity of the Soil Archaeal Community in Coastal Wetlands. Applied and Environmental Microbiology, 2021, 87, .	1.4	15
842	Functional trait relationships demonstrate life strategies in terrestrial prokaryotes. FEMS Microbiology Ecology, 2021, 97, .	1.3	12

#	Article	IF	CITATIONS
843	Predicting the influence of fertilization regimes on potential N fixation through their effect on free-living diazotrophic community structure in double rice cropping systems. Soil Biology and Biochemistry, 2021, 156, 108220.	4.2	33
844	Changes in clover rhizosphere microbial community and diazotrophs in mercury-contaminated soils. Science of the Total Environment, 2021, 767, 145473.	3.9	23
845	Distinct microhabitats affect the relative balance of ecological processes shaping the spatial distribution of bacterial communities in lakeshore habitats. Freshwater Biology, 2021, 66, 1475-1489.	1.2	4
846	Soil bacterial communities reflect changes in soil properties during the tillage years of newly created farmland on the Loess Plateau. Applied Soil Ecology, 2021, 161, 103853.	2.1	10
847	Archaeal and bacterial communities assembly and co-occurrence networks in subtropical mangrove sediments under Spartina alterniflora invasion. Environmental Microbiomes, 2021, 16, 10.	2.2	59
848	Active metabolic pathways of anaerobic methane oxidation in paddy soils. Soil Biology and Biochemistry, 2021, 156, 108215.	4.2	32
849	Temporal Bacterial Community Diversity in the Nicotiana tabacum Rhizosphere Over Years of Continuous Monocropping. Frontiers in Microbiology, 2021, 12, 641643.	1.5	14
850	Metagenomic analysis of urban wastewater resistome and mobilome: A support for antimicrobial resistance surveillance in an endemic country. Environmental Pollution, 2021, 276, 116736.	3.7	30
851	Differential Impacts of Water Table and Temperature on Bacterial Communities in Pore Water From a Subalpine Peatland, Central China. Frontiers in Microbiology, 2021, 12, 649981.	1.5	9
852	Changes in alpine grassland type drive niche differentiation of nitrifying communities on the Qinghai‒Tibetan Plateau. European Journal of Soil Biology, 2021, 104, 103316.	1.4	7
853	Compositional Data Analysis of Periodontal Disease Microbial Communities. Frontiers in Microbiology, 2021, 12, 617949.	1.5	12
854	Identifying changing interspecific associations along gradients at multiple scales using wavelet correlation networks. Ecology, 2021, 102, e03360.	1.5	6
856	Fungi are more sensitive than bacteria to drainage in the peatlands of the Zoige Plateau. Ecological Indicators, 2021, 124, 107367.	2.6	19
857	Genomics, Exometabolomics, and Metabolic Probing Reveal Conserved Proteolytic Metabolism of Thermoflexus hugenholtzii and Three Candidate Species From China and Japan. Frontiers in Microbiology, 2021, 12, 632731.	1.5	8
858	Mobile Genetic Elements Drive the Antibiotic Resistome Alteration in Freshwater Shrimp Aquaculture. Water (Switzerland), 2021, 13, 1461.	1.2	8
859	Soil Bacterial Characteristics Under Four Habitats with Different Vegetation Communities on the Qinghai-Tibetan Plateau. Wetlands, 2021, 41, 1.	0.7	8
860	Studying Microbial Communities through Co-Occurrence Network Analyses during Processes of Waste Treatment and in Organically Amended Soils: A Review. Microorganisms, 2021, 9, 1165.	1.6	20
861	Differences in microbial communities from Quaternary volcanic soils at different stages of development: Evidence from Late Pleistocene and Holocene volcanoes. Catena, 2021, 201, 105211.	2.2	9

#	Article	IF	CITATIONS
862	Divergent Temporal Response of Abundant and Rare Bacterial Communities to Transient Escherichia coli O157:H7 Invasion. Frontiers in Microbiology, 2021, 12, 665380.	1.5	0
863	Variation in Soil Microbial Communities Along an Elevational Gradient in Alpine Meadows of the Qilian Mountains, China. Frontiers in Microbiology, 2021, 12, 684386.	1.5	16
864	Dynamic changes of soil microbial community in Pinus sylvestris var. mongolica plantations in the Mu Us Sandy Land. Journal of Environmental Management, 2021, 287, 112306.	3.8	32
865	Dissolved organic matter (DOM) quality drives biogeographic patterns of soil bacterial communities and their association networks in semi-arid regions. FEMS Microbiology Ecology, 2021, 97, .	1.3	6
866	Nitrogen and phosphorus fertilization consistently favor pathogenic over mutualistic fungi in grassland soils. Nature Communications, 2021, 12, 3484.	5 . 8	116
867	Microbial assembly and association network in watermelon rhizosphere after soil fumigation for Fusarium wilt control. Agriculture, Ecosystems and Environment, 2021, 312, 107336.	2.5	40
868	Microbial community responses to land-use types and its ecological roles in mining area. Science of the Total Environment, 2021, 775, 145753.	3.9	20
869	Long-term phytoremediation using the symbiotic Pongamia pinnata reshaped soil micro-ecological environment. Science of the Total Environment, 2021, 774, 145112.	3.9	9
871	Abundance-Occupancy Relationships Along Taxonomic Ranks Reveal a Consistency of Niche Differentiation in Marine Bacterioplankton With Distinct Lifestyles. Frontiers in Microbiology, 2021, 12, 690712.	1.5	7
872	Network Properties of Local Fungal Communities Reveal the Anthropogenic Disturbance Consequences of Farming Practices in Vineyard Soils. MSystems, 2021, 6, .	1.7	16
873	LDPE microplastics affect soil microbial communities and nitrogen cycling. Science of the Total Environment, 2021, 773, 145640.	3.9	174
875	Edaphic variables are better indicators of soil microbial functional structure than plant-related ones in subtropical broad-leaved forests. Science of the Total Environment, 2021, 773, 145630.	3.9	9
876	Bacillus amyloliquefaciens FH-1 significantly affects cucumber seedlings and the rhizosphere bacterial community but not soil. Scientific Reports, 2021, 11, 12055.	1.6	17
877	mbImpute: an accurate and robust imputation method for microbiome data. Genome Biology, 2021, 22, 192.	3.8	23
878	Rare prokaryotic sub-communities dominate the complexity of ecological networks and soil multinutrient cycling during long-term secondary succession in China's Loess Plateau. Science of the Total Environment, 2021, 774, 145737.	3.9	47
879	Fungal alpha diversity influences stochasticity of bacterial and fungal community assemblies in soil aggregates in an apple orchard. Applied Soil Ecology, 2021, 162, 103878.	2.1	20
880	Diversity and co-occurrence network modularization of bacterial communities determine soil fertility and crop yields in arid fertigation agroecosystems. Biology and Fertility of Soils, 2021, 57, 809-824.	2.3	49
881	Study on the spatial distribution of ureolytic microorganisms in farmland soil around tailings with different heavy metal pollution. Science of the Total Environment, 2021, 775, 144946.	3.9	48

#	Article	IF	CITATIONS
882	Efficient conversion of organic nitrogenous wastewater to nitrate solution driven by comammox Nitrospira. Water Research, 2021, 197, 117088.	5.3	19
883	Quarry restoration treatments from recycled waste modify the physicochemical soil properties, composition and activity of bacterial communities and priming effect in semi-arid areas. Science of the Total Environment, 2021, 774, 145693.	3.9	14
884	Organic management practices shape the structure and associations of soil bacterial communities in tea plantations. Applied Soil Ecology, 2021, 163, 103975.	2.1	17
885	Spatial and Temporal Distribution of Bacterioplankton Molecular Ecological Networks in the Yuan River under Different Human Activity Intensity. Microorganisms, 2021, 9, 1532.	1.6	7
886	Habitats Are More Important Than Seasons in Shaping Soil Bacterial Communities on the Qinghai-Tibetan Plateau. Microorganisms, 2021, 9, 1595.	1.6	9
887	Microbial functions and soil nitrogen mineralisation processes in the soil of a cool temperate forest in northern Japan. Biogeochemistry, 2021, 155, 359-379.	1.7	10
888	Periphytic Biofilm Formation on Natural and Artificial Substrates: Comparison of Microbial Compositions, Interactions, and Functions. Frontiers in Microbiology, 2021, 12, 684903.	1.5	15
889	Metagenomic and viromic data mining reveals viral threats in biologically treated domestic wastewater. Environmental Science and Ecotechnology, 2021, 7, 100105.	6.7	23
890	Changes in the Microbial Community in Soybean Plots Treated with Biochar and Poultry Litter. Agronomy, 2021, 11, 1428.	1.3	6
891	Inventory of the benthic eukaryotic diversity in the oldest European lake. Ecology and Evolution, 2021, 11, 11207-11215.	0.8	2
892	Effects of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonic Acid (PFOS) on Soil Microbial Community. Microbial Ecology, 2022, 83, 929-941.	1.4	23
893	Stochastic processes drive bacterial and fungal community assembly in sustainable intensive agricultural soils of Shanghai, China. Science of the Total Environment, 2021, 778, 146021.	3.9	25
894	Water flow and temperature drove epiphytic microbial community shift: Insight into nutrient removal in constructed wetlands from microbial assemblage and co-occurrence patterns. Bioresource Technology, 2021, 332, 125134.	4.8	40
895	Methanogenic Community, CH ₄ Production Potential and Its Determinants in the Active Layer and Permafrost Deposits on the Tibetan Plateau. Environmental Science & E	4.6	14
896	Response of soil bacterial communities to organic carbon input under soil freeze-thaw in forest ecosystems. European Journal of Soil Biology, 2021, 105, 103333.	1.4	7
897	Generalist Taxa Shape Fungal Community Structure in Cropping Ecosystems. Frontiers in Microbiology, 2021, 12, 678290.	1.5	6
898	Changes in Soil Microbial Community Structure Following Different Tree Species Functional Traits Afforestation. Forests, 2021, 12, 1018.	0.9	2
899	Endophytic Fungal Community of Tobacco Leaves and Their Potential Role in the Formation of "Cherry-Red―Tobacco. Frontiers in Microbiology, 2021, 12, 658116.	1.5	4

#	Article	IF	CITATIONS
900	Exploring the Interactions Between Neurophysiology and Cognitive and Behavioral Changes Induced by a Non-pharmacological Treatment: A Network Approach. Frontiers in Aging Neuroscience, 2021, 13, 696174.	1.7	5
901	Nutrient resource availability mediates niche differentiation and temporal co-occurrence of soil bacterial communities. Applied Soil Ecology, 2021, 163, 103965.	2.1	13
902	Metabolic potential and survival strategies of microbial communities across extreme temperature gradients on Deception Island volcano, Antarctica. Environmental Microbiology, 2021, 23, 4054-4073.	1.8	7
903	Joint species distributions reveal the combined effects of host plants, abiotic factors and species competition as drivers of species abundances in fruit flies. Ecology Letters, 2021, 24, 1905-1916.	3.0	8
904	Effects of Human, Caprine, and Bovine Milk Fat Globules on Microbiota Adhesion and Gut Microecology. Journal of Agricultural and Food Chemistry, 2021, 69, 9778-9787.	2.4	4
905	Gut Microbiome Structure and Association with Host Factors in a Korean Population. MSystems, 2021, 6, e0017921.	1.7	14
906	Local community assembly processes shape βâ€diversity of soil <i>phoD</i> â€harbouring communities in the Northern Hemisphere steppes. Global Ecology and Biogeography, 2021, 30, 2273-2285.	2.7	19
907	Dairy Processing Affects the Gut Digestion and Microecology by Changing the Structure and Composition of Milk Fat Globules. Journal of Agricultural and Food Chemistry, 2021, 69, 10194-10205.	2.4	4
908	Community structure and associated networks of endophytic bacteria in pea roots throughout plant life cycle. Plant and Soil, 2021, 468, 225-238.	1.8	7
909	A Soilscape Network Approach (SNAp) to investigate subsurface phosphorus translocation along slopes. Science of the Total Environment, 2021, 784, 147131.	3.9	4
910	Effects of chronic exposure of antibiotics on microbial community structure and functions in hyporheic zone sediments. Journal of Hazardous Materials, 2021, 416, 126141.	6.5	37
911	Hydrologic and nutrient-driven regime shifts of cyanobacterial and eukaryotic algal communities in a large shallow lake: Evidence from empirical state indicator and ecological network analyses. Science of the Total Environment, 2021, 783, 147059.	3.9	14
912	Microbial Interactions and Roles in Soil Fertility in Seasonal Freeze-Thaw Periods under Different Straw Returning Strategies. Agriculture (Switzerland), 2021, 11, 779.	1.4	8
913	Truffle Microbiome Is Driven by Fruit Body Compartmentalization Rather than Soils Conditioned by Different Host Trees. MSphere, 2021, 6, e0003921.	1.3	10
914	Vertical Niche Partitioning of Archaea and Bacteria Linked to Shifts in Dissolved Organic Matter Quality and Hydrography in North Atlantic Waters. Frontiers in Marine Science, 2021, 8, .	1.2	6
915	Diversity and co-occurrence networks of picoeukaryotes as a tool for indicating underlying environmental heterogeneity in the Western Pacific Ocean. Marine Environmental Research, 2021, 170, 105376.	1.1	16
916	Nitrogen and water addition regulate fungal community and microbial co-occurrence network complexity in the rhizosphere of Alhagi sparsifolia seedlings. Applied Soil Ecology, 2021, 164, 103940.	2.1	24
918	Deciphering the Endophytic and Rhizospheric Microbial Communities of a Metallophyte Commelina communis in Different Cu-Polluted Soils. Microorganisms, 2021, 9, 1689.	1.6	4

#	Article	IF	CITATIONS
919	Plant developmental stage drives the differentiation in ecological role of the maize microbiome. Microbiome, 2021, 9, 171.	4.9	164
920	Mesosulfuron-methyl influenced biodegradability potential and N transformation of soil. Journal of Hazardous Materials, 2021, 416, 125770.	6.5	19
921	Soil microbial community and network changes after long-term use of plastic mulch and nitrogen fertilization on semiarid farmland. Geoderma, 2021, 396, 115086.	2.3	65
922	Ecological Linkages between a Biofilm Ecosystem and Reactor Performance: The Specificity of Biofilm Development Phases. Environmental Science & Enviro	4.6	41
923	Bacterial diversity in petroleum coke based biofilters treating oil sands process water. Science of the Total Environment, 2021, 782, 146742.	3.9	11
924	Effects of methanol on the performance of a novel BDE-47 degrading bacterial consortium QY2 in the co-metabolism process. Journal of Hazardous Materials, 2021, 415, 125698.	6.5	21
925	Thermodynamically favorable reactions shape the archaeal community affecting bacterial community assembly in oil reservoirs. Science of the Total Environment, 2021, 781, 146506.	3.9	14
926	Effects of sulfamethoxazole on nitrogen removal and molecular ecological network in integrated vertical-flow constructed wetland. Ecotoxicology and Environmental Safety, 2021, 219, 112292.	2.9	16
927	Co-occurrence in ant primary parasitoids: a Camponotus rectangularis colony as host of two eucharitid wasp genera. PeerJ, 2021, 9, e11949.	0.9	1
928	Adaptation of Soil Fungal Community Structure and Assembly to Long-Versus Short-Term Nitrogen Addition in a Tropical Forest. Frontiers in Microbiology, 2021, 12, 689674.	1.5	20
929	Seasonal succession of microbes in different size-fractions and their modular structures determined by both macro- and micro-environmental filtering in dynamic coastal waters. Science of the Total Environment, 2021, 784, 147046.	3.9	18
930	Seasonal variations in soil fungal communities and co-occurrence networks along an altitudinal gradient in the cold temperate zone of China: A case study on Oakley Mountain. Catena, 2021, 204, 105448.	2.2	31
931	Fungi-Bacteria Associations in Wilt Diseased Rhizosphere and Endosphere by Interdomain Ecological Network Analysis. Frontiers in Microbiology, 2021, 12, 722626.	1.5	21
932	Isolation, Characterization, and Evaluation of Native Rhizobacterial Consortia Developed From the Rhizosphere of Rice Grown in Organic State Sikkim, India, and Their Effect on Plant Growth. Frontiers in Microbiology, 2021, 12, 713660.	1.5	9
933	Submerged macrophytes recruit unique microbial communities and drive functional zonation in an aquatic system. Applied Microbiology and Biotechnology, 2021, 105, 7517-7528.	1.7	9
934	Macroecological distributions of gene variants highlight the functional organization of soil microbial systems. ISME Journal, 2022, 16, 726-737.	4.4	8
935	Insights into the vertical distribution of the microbiota in steel plant soils with potentially toxic elements and PAHs contamination after 60 years operation: Abundance, structure, co-occurrence network and functionality. Science of the Total Environment, 2021, 786, 147338.	3.9	39
936	Bacterial and fungal communities in the sandstone biofilms of two famous Buddhist grottoes in China. International Biodeterioration and Biodegradation, 2021, 163, 105267.	1.9	17

#	Article	IF	CITATIONS
937	Does the Returning Farmland to Forest Program improve the ecosystem stability of rhizosphere in winter in alpine regions?. Applied Soil Ecology, 2021, 165, 104011.	2.1	11
938	Fungi in Permafrost-Affected Soils of the Canadian Arctic: Horizon- and Site-Specific Keystone Taxa Revealed by Co-Occurrence Network. Microorganisms, 2021, 9, 1943.	1.6	9
939	Community response of arbuscular mycorrhizal fungi to extreme drought in a coldâ€ŧemperate grassland. New Phytologist, 2022, 234, 2003-2017.	3.5	35
940	Aridity modulates belowground bacterial community dynamics in olive tree. Environmental Microbiology, 2021, 23, 6275-6291.	1.8	7
941	Effects of Recreational Boating on Microbial and Meiofauna Diversity in Coastal Shallow Ecosystems of the Baltic Sea. MSphere, 2021, 6, e0012721.	1.3	4
942	Release of tens of thousands of microfibers from discarded face masks under simulated environmental conditions. Science of the Total Environment, 2022, 806, 150458.	3.9	43
943	Continental-Scale Paddy Soil Bacterial Community Structure, Function, and Biotic Interaction. MSystems, 2021, 6, e0136820.	1.7	6
944	Cyanobacterial bloom induces structural and functional succession of microbial communities in eutrophic lake sediments. Environmental Pollution, 2021, 284, 117157.	3.7	27
945	Comparative evaluation of simultaneous nitritation/denitritation and energy recovery in air-cathode microbial fuel cells (ACMFCs) treating low C/N ratio wastewater. Science of the Total Environment, 2021, 788, 147652.	3.9	10
946	Plant-mediated effects of long-term warming on soil microorganisms on the Qinghai-Tibet Plateau. Catena, 2021, 204, 105391.	2.2	32
947	USC $\langle i \rangle \hat{l}^3 \langle i \rangle$ Dominated Community Composition and Cooccurrence Network of Methanotrophs and Bacteria in Subterranean Karst Caves. Microbiology Spectrum, 2021, 9, e0082021.	1.2	11
950	A critical perspective on interpreting amplicon sequencing data in soil ecological research. Soil Biology and Biochemistry, 2021, 160, 108357.	4.2	36
951	Strategies and Structure Feature of the Aboveground and Belowground Microbial Community Respond to Drought in Wild Rice (Oryza longistaminata). Rice, 2021, 14, 79.	1.7	17
952	Effect of epiphytic microbiota from napiergrass andÂSudan grass on fermentation characteristics and bacterial community in oat silage. Journal of Applied Microbiology, 2022, 132, 919-932.	1.4	12
953	Standard and non-standard measurements of acidity and the bacterial ecology of northern temperate mineral soils. Soil Biology and Biochemistry, 2021, 160, 108323.	4.2	8
954	Effects of Sugarcane and Soybean Intercropping on the Nitrogen-Fixing Bacterial Community in the Rhizosphere. Frontiers in Microbiology, 2021, 12, 713349.	1.5	8
955	The rhizosphere effect of native legume Albizzia julibrissin on coastal saline soil nutrient availability, microbial modulation, and aggregate formation. Science of the Total Environment, 2022, 806, 150705.	3.9	18
956	Activity and structure of methanogenic microbial communities in sediments of cascade hydropower reservoirs, Southwest China. Science of the Total Environment, 2021, 786, 147515.	3.9	7

#	Article	IF	Citations
957	Species pool and local ecological assembly processes shape the \hat{l}^2 -diversity of diazotrophs in grassland soils. Soil Biology and Biochemistry, 2021, 160, 108338.	4.2	24
958	Phylogenetic and Phenogenetic Diversity of Synechococcus along a Yellow Sea Section Reveal Its Environmental Dependent Distribution and Co-Occurrence Microbial Pattern. Journal of Marine Science and Engineering, 2021, 9, 1018.	1.2	7
959	The evolution of bacterial community structure and function in microalgal-bacterial consortia with inorganic nitrogen fluctuations in piggery digestate. Journal of Cleaner Production, 2021, 315, 128120.	4.6	5
960	Earthworms accelerated the degradation of the highly toxic acetochlor S-enantiomer by stimulating soil microbiota in repeatedly treated soils. Journal of Hazardous Materials, 2021, 420, 126669.	6.5	26
961	Both pH and salinity shape the microbial communities of the lakes in Badain Jaran Desert, NW China. Science of the Total Environment, 2021, 791, 148108.	3.9	29
962	Co-symbiosis of arbuscular mycorrhizal fungi (AMF) and diazotrophs promote biological nitrogen fixation in mangrove ecosystems. Soil Biology and Biochemistry, 2021, 161, 108382.	4.2	34
963	Microbial interkingdom associations across soil depths reveal network connectivity and keystone taxa linked to soil fine-fraction carbon content. Agriculture, Ecosystems and Environment, 2021, 320, 107559.	2.5	21
964	Soil microbial community and association network shift induced by several tall fescue cultivars during the phytoremediation of a petroleum hydrocarbon-contaminated soil. Science of the Total Environment, 2021, 792, 148411.	3.9	24
965	Homogeneous selection shapes rare biosphere in rhizosphere of medicinal plant. Ecological Indicators, 2021, 129, 107981.	2.6	14
966	Differential impact of Bt-transgenic rice plantings on bacterial community in three niches over consecutive years. Ecotoxicology and Environmental Safety, 2021, 223, 112569.	2.9	10
967	Conventional and conservation tillage practices affect soil microbial co-occurrence patterns and are associated with crop yields. Agriculture, Ecosystems and Environment, 2021, 319, 107534.	2.5	33
968	Co-occurrence patterns and assembly processes of microeukaryotic communities in a semi-enclosed aquaculture bay. Continental Shelf Research, 2021, 228, 104550.	0.9	6
969	Preferences for core microbiome composition and function by different definition methods: Evidence for the core microbiome of Eucommia ulmoides bark. Science of the Total Environment, 2021, 790, 148091.	3.9	19
970	Variation in abundance, diversity, and composition of nirK and nirS containing denitrifying bacterial communities in a red paddy soil as affected by combined organic-chemical fertilization. Applied Soil Ecology, 2021, 166, 104001.	2.1	24
971	Antibiotic resistance genes in pipe wall biofilm under eight disinfection strategies in domestic hot water system: Occurrence, removal and interactions. Journal of Water Process Engineering, 2021, 43, 102244.	2.6	1
972	Groundwater contaminated with short-chain chlorinated paraffins and microbial responses. Water Research, 2021, 204, 117605.	5.3	12
973	K-strategy species plays a pivotal role in the natural attenuation of petroleum hydrocarbon pollution in aquifers. Journal of Hazardous Materials, 2021, 420, 126559.	6.5	14
974	Repeated exposure to fungicide tebuconazole alters the degradation characteristics, soil microbial community and functional profiles. Environmental Pollution, 2021, 287, 117660.	3.7	26

#	Article	IF	Citations
975	Impact of dimethylpyrazole-based nitrification inhibitors on soil-borne bacteria. Science of the Total Environment, 2021, 792, 148374.	3.9	18
976	The role of available phosphorous in vanadate decontamination by soil indigenous microbial consortia. Environmental Pollution, 2021, 289, 117839.	3.7	18
977	Impact of different types of anthropogenic pollution on bacterial community and metabolic genes in urban river sediments. Science of the Total Environment, 2021, 793, 148475.	3.9	21
978	Soil bacterial diversity and functionality are driven by plant species for enhancing polycyclic aromatic hydrocarbons dissipation in soils. Science of the Total Environment, 2021, 797, 149204.	3.9	13
979	Ecological network analysis reveals distinctive microbial modules associated with heavy metal contamination of abandoned mine soils in Korea. Environmental Pollution, 2021, 289, 117851.	3.7	49
980	Characteristics of microbial community composition and its relationship with carbon, nitrogen and sulfur in sediments. Science of the Total Environment, 2021, 795, 148848.	3.9	34
981	Inoculation of phosphate-solubilizing bacteria (Bacillus) regulates microbial interaction to improve phosphorus fractions mobilization during kitchen waste composting. Bioresource Technology, 2021, 340, 125714.	4.8	48
982	Chiral enantiomers of the plant growth regulator paclobutrazol selectively affect community structure and diversity of soil microorganisms. Science of the Total Environment, 2021, 797, 148942.	3.9	12
983	Evaluation of cornstalk as bulking agent on greenhouse gases emission and bacterial community during further composting. Bioresource Technology, 2021, 340, 125713.	4.8	36
984	Homogenization of reservoir eukaryotic algal and cyanobacterial communities is accelerated by dam construction and eutrophication. Journal of Hydrology, 2021, 603, 126842.	2.3	8
985	Nitrate shifted microenvironment: Driven aromatic-ring cleavage microbes and aromatic compounds precursor biodegradation during sludge composting. Bioresource Technology, 2021, 342, 125907.	4.8	9
986	Elevation-related climate trends dominate fungal co-occurrence network structure and the abundance of keystone taxa on Mt. Norikura, Japan. Science of the Total Environment, 2021, 799, 149368.	3.9	17
987	Rhizosphere bacterial and fungal spatial distribution and network pattern of Astragalus mongholicus in representative planting sites differ the bulk soil. Applied Soil Ecology, 2021, 168, 104114.	2.1	20
988	Optimal start-up conditions for the efficient treatment of acid mine drainage using sulfate-reducing bioreactors based on physicochemical and microbiome analyses. Journal of Hazardous Materials, 2022, 423, 127089.	6.5	15
989	Shift of lakeshore cropland to buffer zones greatly reduced nitrogen loss from the soil profile caused by the interaction of lake water and shallow groundwater. Science of the Total Environment, 2022, 803, 150093.	3.9	6
990	Microbial diversity alteration reveals biomarkers of contamination in soil-river-lake continuum. Journal of Hazardous Materials, 2022, 421, 126789.	6.5	30
991	Rhizosphere soil metabolites mediated microbial community changes of Pinus sylvestris var. mongolica across stand ages in the Mu Us Desert. Applied Soil Ecology, 2022, 169, 104222.	2.1	22
992	Comparative effects of environmental factors on bacterial communities in two types of indoor dust: Potential risks to university students. Environmental Research, 2022, 203, 111869.	3.7	14

#	Article	IF	Citations
993	Factors affecting seasonal variation of microbial community structure in Hulun Lake, China. Science of the Total Environment, 2022, 805, 150294.	3.9	45
994	The potential role of fertilizer-derived exogenous bacteria on soil bacterial community assemblage and network formation. Chemosphere, 2022, 287, 132338.	4.2	23
995	Response of soil bacterial community to agricultural reclamation in the Tengger desert, northwestern China. Applied Soil Ecology, 2022, 169, 104189.	2.1	6
996	Silicon fertilization influences microbial assemblages in rice roots and decreases arsenic concentration in grain: A five-season in-situ remediation field study. Journal of Hazardous Materials, 2022, 423, 127180.	6.5	8
997	Seasonal Changes in Pinus tabuliformis Root-Associated Fungal Microbiota Drive N and P Cycling in Terrestrial Ecosystem. Frontiers in Microbiology, 2020, 11, 526898.	1.5	13
998	Inoculation of <i>Mimosa Pudica</i> with <i>Paraburkholderia phymatum</i> Results in Changes to the Rhizoplane Microbial Community Structure. Microbes and Environments, 2021, 36, n/a.	0.7	5
999	<i>Bifidobacterium pseudocatenulatum</i> Ameliorates DSS-Induced Colitis by Maintaining Intestinal Mechanical Barrier, Blocking Proinflammatory Cytokines, Inhibiting TLR4/NF-κB Signaling, and Altering Gut Microbiota. Journal of Agricultural and Food Chemistry, 2021, 69, 1496-1512.	2.4	70
1000	Cable bacteria extend the impacts of elevated dissolved oxygen into anoxic sediments. ISME Journal, 2021, 15, 1551-1563.	4.4	41
1001	Network analysis methods for studying microbial communities: A mini review. Computational and Structural Biotechnology Journal, 2021, 19, 2687-2698.	1.9	130
1002	Indoor heating triggers bacterial ecological links with tap water stagnation during winter: Novel insights into bacterial abundance, community metabolic activity and interactions. Environmental Pollution, 2021, 269, 116094.	3.7	21
1004	Functional redundancy in local spatial scale microbial communities suggests stochastic processes at an urban wilderness preserve in Austin, TX, USA. FEMS Microbiology Letters, 2021, 368, .	0.7	1
1005	Hidden heterogeneity and coâ€occurrence networks of soil prokaryotic communities revealed at the scale of individual soil aggregates. MicrobiologyOpen, 2021, 10, e1144.	1.2	17
1006	Marine Bacterial, Archaeal, and Protistan Association Networks. , 2013, , 1-10.		2
1007	Towards a Microbial Conservation Perspective in High Mountain Lakes. Advances in Global Change Research, 2017, , 157-180.	1.6	10
1008	Co-occurrence network analyses of rhizosphere soil microbial PLFAs and metabolites over continuous cropping seasons in tobacco. Plant and Soil, 2020, 452, 119-135.	1.8	32
1009	Interaction of graphene-family nanomaterials with microbial communities in sequential batch reactors revealed by high-throughput sequencing. Environmental Research, 2020, 184, 109392.	3.7	24
1010	Application of microbial network analysis to discriminate environmental heterogeneity in Fildes Peninsula, Antarctica. Marine Pollution Bulletin, 2020, 156, 111244.	2.3	16
1011	Environmental heterogeneity determines the ecological processes that govern bacterial metacommunity assembly in a floodplain river system. ISME Journal, 2020, 14, 2951-2966.	4.4	104

#	ARTICLE	IF	CITATIONS
1012	Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology and Evolution, 2020, 4, 210-220.	3.4	543
1013	Metagenomic approaches in microbial ecology: an update on whole-genome and marker gene sequencing analyses. Microbial Genomics, 2020, 6, .	1.0	69
1029	Linking belowground microbial network changes to different tolerance level towards Verticillium wilt of olive. Microbiome, 2020, 8, 11.	4.9	78
1030	Genome composition and phylogeny of microbes predict their co-occurrence in the environment. PLoS Computational Biology, 2017, 13, e1005366.	1.5	48
1031	A Bayesian method for detecting pairwise associations in compositional data. PLoS Computational Biology, 2017, 13, e1005852.	1.5	37
1032	Network Analysis Highlights Complex Interactions between Pathogen, Host and Commensal Microbiota. PLoS ONE, 2013, 8, e84772.	1.1	205
1033	The Analysis of Intracellular and Intercellular Calcium Signaling in Human Anterior Lens Capsule Epithelial Cells with Regard to Different Types and Stages of the Cataract. PLoS ONE, 2015, 10, e0143781.	1.1	16
1034	Diversity and Biogeography of Bathyal and Abyssal Seafloor Bacteria. PLoS ONE, 2016, 11, e0148016.	1.1	132
1035	Pyrosequencing Unveils Cystic Fibrosis Lung Microbiome Differences Associated with a Severe Lung Function Decline. PLoS ONE, 2016, 11, e0156807.	1.1	29
1036	Distinctive Feature of Microbial Communities and Bacterial Functional Profiles in Tricholoma matsutake Dominant Soil. PLoS ONE, 2016, 11, e0168573.	1.1	39
1037	Model-based quantification of metabolic interactions from dynamic microbial-community data. PLoS ONE, 2017, 12, e0173183.	1.1	55
1038	The rhizospheric microbial community structure and diversity of deciduous and evergreen forests in Taihu Lake area, China. PLoS ONE, 2017, 12, e0174411.	1.1	49
1039	High-dimensional linear state space models for dynamic microbial interaction networks. PLoS ONE, 2017, 12, e0187822.	1.1	9
1040	Microbial diversity in two traditional bacterial douchi from Gansu province in northwest China using Illumina sequencing. PLoS ONE, 2018, 13, e0194876.	1.1	26
1041	The effects of Bidens alba invasion on soil bacterial communities across different coastal ecosystem land-use types in southern China. PLoS ONE, 2020, 15, e0238478.	1.1	4
1042	High nitrogen concentration alter microbial community in Allium fistulosum rhizosphere. PLoS ONE, 2020, 15, e0241371.	1.1	10
1043	Marine bacterioplankton consortia follow deterministic, non-neutral community assembly rules. Aquatic Microbial Ecology, 2017, 79, 165-175.	0.9	18
1044	Composition and distribution patterns of eukaryotic microbial plankton in the ultra-oligotrophic Eastern Mediterranean Sea. Aquatic Microbial Ecology, 2020, 84, 155-173.	0.9	4

#	Article	IF	Citations
1047	Exploring Soil Factors Determining Composition and Structure of the Bacterial Communities in Saline-Alkali Soils of Songnen Plain. Frontiers in Microbiology, 2019, 10, 2902.	1.5	54
1048	Pathogen Infection and Host-Resistance Interactively Affect Root-Associated Fungal Communities in Watermelon. Frontiers in Microbiology, 2020, 11, 605622.	1.5	12
1049	Determination and Variation of Core Bacterial Community in a Two-Stage Full-Scale Anaerobic Reactor Treating High-Strength Pharmaceutical Wastewater. Journal of Microbiology and Biotechnology, 2017, 27, 1808-1819.	0.9	6
1050	Sediment Bacterial Community Structure Under the Influence of Different Domestic Sewage Types. Journal of Microbiology and Biotechnology, 2020, 30, 1355-1366.	0.9	3
1051	Metagenomes of tropical soil-derived anaerobic switchgrass-adapted consortia with and without iron. Standards in Genomic Sciences, 2013, 7, 382-398.	1.5	12
1055	Niche distribution and influence of environmental parameters in marine microbial communities: a systematic review. Peerl, 2015, 3, e1008.	0.9	36
1056	No apparent correlation between honey bee forager gut microbiota and honey production. PeerJ, 2015, 3, e1329.	0.9	28
1057	Characterization of microbial associations with methanotrophic archaea and sulfate-reducing bacteria through statistical comparison of nested Magneto-FISH enrichments. Peerl, 2016, 4, e1913.	0.9	43
1058	vConTACT: an iVirus tool to classify double-stranded DNA viruses that infect <i>Archaea</i> Archaea	0.9	219
1059	Characterization of shifts of koala (<i>Phascolarctos cinereus)</i> intestinal microbial communities associated with antibiotic treatment. Peerl, 2018, 6, e4452.	0.9	30
1060	Oligotrophic wetland sediments susceptible to shifts in microbiomes and mercury cycling with dissolved organic matter addition. PeerJ, 2018, 6, e4575.	0.9	10
1061	Shifts in community composition and co-occurrence patterns of phyllosphere fungi inhabiting <i>Mussaenda shikokiana </i> li>along an elevation gradient. Peerl, 2018, 6, e5767.	0.9	20
1062	The role of macrobiota in structuring microbial communities along rocky shores. PeerJ, 2014, 2, e631.	0.9	19
1063	Deterministic processes dominate soil microbial community assembly in subalpine coniferous forests on the Loess Plateau. PeerJ, 2019, 7, e6746.	0.9	23
1064	Ecological networks reveal contrasting patterns of bacterial and fungal communities in glacier-fed streams in Central Asia. PeerJ, 2019, 7, e7715.	0.9	17
1065	Analysis of micropollutants in a marine outfall using network analysis and decision tree. Science of the Total Environment, 2022, 806, 150938.	3.9	5
1066	Bacterial Communities Present Distinct Co-occurrence Networks in Sediment and Water of the Thermokarst Lakes in the Yellow River Source Area. Frontiers in Microbiology, 2021, 12, 716732.	1.5	13
1067	Fermentation profile and microbial diversity of temperate grass silage inoculated with epiphytic microbiota from tropical grasses. Archives of Microbiology, 2021, 203, 6007-6019.	1.0	2

#	Article	IF	CITATIONS
1068	Silage fermentation characteristics and microbial diversity of alfalfa (Medicago sativa L.) in response to exogenous microbiota from temperate grasses. World Journal of Microbiology and Biotechnology, 2021, 37, 204.	1.7	6
1069	Assessment of the link between evidence and crime scene through soil bacterial and fungal microbiome: A mock case in forensic study. Forensic Science International, 2021, 329, 111060.	1.3	11
1070	Impact of Hospital Wastewater on the Occurrence and Diversity of Beta-Lactamase Genes During Wastewater Treatment with an Emphasis on Carbapenemase Genes: A Metagenomic Approach. Frontiers in Environmental Science, 2021, 9, .	1.5	9
1071	Ecological Dynamics and Co-occurrences Among Prokaryotes and Microeukaryotes in a Diatom Bloom Process in Xiangshan Bay, China. Microbial Ecology, 2021, , 1.	1.4	4
1072	Microbial communities in paddy soil as influenced by nitrogen fertilization and water regimes. Agronomy Journal, 2022, 114, 379-394.	0.9	5
1073	Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems. Global Change Biology, 2022, 28, 140-153.	4.2	122
1074	Rhizosphere bacterial community structure of three minor grain crops: A caseâ€study from paired field sites in northern China. Land Degradation and Development, 2022, 33, 104-116.	1.8	9
1075	Methods for Studying Bacterial–Fungal Interactions in the Microenvironments of Soil. Applied Sciences (Switzerland), 2021, 11, 9182.	1.3	5
1076	Describing properties of littoral habitats from NW Mediterranean rocky shores through co-occurrence network analysis. Estuarine, Coastal and Shelf Science, 2021, 262, 107623.	0.9	0
1077	Concurrent and rapid recovery of bacteria and protist communities in Canadian boreal forest ecosystems following wildfire. Soil Biology and Biochemistry, 2021, 163, 108452.	4.2	17
1078	Comparative analysis of microbial communities between water and sediment in Laoshan Bay marine ranching with varied aquaculture activities. Marine Pollution Bulletin, 2021, 173, 112990.	2.3	15
1079	Assembly and co-occurrence patterns of rare and abundant bacterial sub-communities in rice rhizosphere soil under short-term nitrogen deep placement. Journal of Integrative Agriculture, 2021, 20, 3299-3311.	1.7	6
1080	Marine Bacterial, Archaeal, and Protistan Association Networks., 2015,, 305-313.		0
1082	Integration of Ecology and Environmental Metagenomics Conceptual and Methodological Frameworks. Current Issues in Molecular Biology, 2017, 24, 1-16.	1.0	0
1084	The response relationship between nitrogen and aerobic methanotrophs in sediment of urban river, Beijing, China. Hupo Kexue/Journal of Lake Sciences, 2018, 30, 1271-1283.	0.3	1
1094	Integrating species and interactions into similarity metrics: a graph theory-based approach to understanding community similarity. PeerJ, 2019, 7, e7013.	0.9	4
1096	Soil Microbial Ecology and Its Role in Soil Carbon Sequestration in Sustainable Agroecosystems Under Climate Change., 2020,, 249-291.		1
1099	Similarity of zooplankton community structure among reservoirs in Yeongsan-Seomjin River basin Korean Journal of Ecology and Environment, 2019, 52, 285-292.	0.3	0

#	Article	IF	CITATIONS
1103	Seasonal Changes in Soil Microbial Community and Co-Occurrence Network of Species of the Genus Corylus. Microorganisms, 2021, 9, 2228.	1.6	8
1104	Structure and diversity of fungal communities in long-term copper-contaminated agricultural soil. Science of the Total Environment, 2022, 806, 151302.	3.9	20
1105	Effects of potassium fulvic acid and potassium humate on microbial biodiversity in bulk soil and rhizosphere soil of Panax ginseng. Microbiological Research, 2022, 254, 126914.	2.5	17
1106	Microbial interaction-driven community differences as revealed by network analysis. Computational and Structural Biotechnology Journal, 2021, 19, 6000-6008.	1.9	15
1107	Comparative analysis of bacterioplankton assemblages from two subtropical karst reservoirs of southwestern China with contrasting trophic status. Scientific Reports, 2020, 10, 22296.	1.6	5
1108	Leaf surface microtopography shaping the bacterial community in the phyllosphere: evidence from 11 tree species. Microbiological Research, 2022, 254, 126897.	2.5	11
1109	Changes in microbial community diversity, composition, and functions upon nitrate and Cr(VI) contaminated groundwater. Chemosphere, 2022, 288, 132476.	4.2	30
1115	Wheat yellow mosaic enhances bacterial deterministic processes in a plant-soil system. Science of the Total Environment, 2022, 812, 151430.	3.9	24
1118	Brazilian Semi-Arid Mangroves-Associated Microbiome as Pools of Richness and Complexity in a Changing World. Frontiers in Microbiology, 2021, 12, 715991.	1.5	2
1119	Changes in soil microbial communities from exposed rocks to arboreal rhizosphere during vegetation succession in a karst mountainous ecosystem. Journal of Plant Interactions, 2021, 16, 550-563.	1.0	7
1120	Nitrifier community assembly and species co-existence in forest and meadow soils across four sites in a temperate to tropical region. Applied Soil Ecology, 2022, 171, 104342.	2.1	3
1121	Selected rhizosphere bacteria are associated with endangered species - Scutellaria tsinyunensis via comparative microbiome analysis. Microbiological Research, 2022, 258, 126917.	2.5	6
1122	Eutrophication dangers the ecological status of coastal wetlands: A quantitative assessment by composite microbial index of biotic integrity. Science of the Total Environment, 2022, 816, 151620.	3.9	11
1123	Spatiotemporal dynamics in microbial communities mediating biogeochemical cycling of nutrients across the Xiaowan Reservoir in Lancang River. Science of the Total Environment, 2022, 813, 151862.	3.9	17
1124	Bacterial Diversity and CAZyme Potential Revealed in Pandanus Rich Thermal Spring Cluster of India: A Non-cultivable 16S rRNA Sequencing Approach. Frontiers in Microbiology, 2021, 12, 760573.	1.5	6
1126	Conversion of grassland to cropland altered soil nitrogen-related microbial communities at large scales. Science of the Total Environment, 2022, 816, 151645.	3.9	13
1127	Enrichment of beneficial rhizosphere microbes in Chinese wheat yellow mosaic virus-resistant cultivars. Applied Microbiology and Biotechnology, 2021, 105, 9371-9383.	1.7	16
1128	Plant diversity enhances soil fungal network stability indirectly through the increase of soil carbon and fungal keystone taxa richness. Science of the Total Environment, 2022, 818, 151737.	3.9	25

#	Article	IF	CITATIONS
1129	Estuarine gradients dictate spatiotemporal variations of microbiome networks in the Chesapeake Bay. Environmental Microbiomes, 2021, 16, 22.	2.2	18
1131	Manure Application Increases Soil Bacterial and Fungal Network Complexity and Alters Keystone Taxa. Journal of Soil Science and Plant Nutrition, 2022, 22, 607-618.	1.7	12
1132	Nitrogen and Sulfur Additions Improved the Diversity of nirK- and nirS-Type Denitrifying Bacterial Communities of Farmland Soil. Biology, 2021, 10, 1191.	1.3	2
1133	Deciphering the generating rules and functionalities of complex networks. Scientific Reports, 2021, 11, 22964.	1.6	24
1134	<i>Bifidobacterium longum</i> Ameliorates Dextran Sulfate Sodium-Induced Colitis by Producing Conjugated Linoleic Acid, Protecting Intestinal Mechanical Barrier, Restoring Unbalanced Gut Microbiota, and Regulating the Toll-Like Receptor-4/Nuclear Factor-ÎB Signaling Pathway. Journal of Agricultural and Food Chemistry, 2021, 69, 14593-14608.	2.4	29
1135	Biogeography, assembly processes and species coexistence patterns of microbial communities in metalloids-laden soils around mining and smelting sites. Journal of Hazardous Materials, 2022, 425, 127945.	6.5	29
1136	Soil heavy metals and phytoremediation by Populus deltoides alter the structure and function of bacterial community in mine ecosystems. Applied Soil Ecology, 2022, 172, 104359.	2.1	12
1137	Pollution Pattern, Risk Assessment, and Microbial Community Structure in Agricultural Soils Contaminated ByÂVanadium from Stone Coal Mining. SSRN Electronic Journal, 0, , .	0.4	O
1138	Contrasting Effects of Local Environmental and Biogeographic Factors on the Composition and Structure of Bacterial Communities in Arid Monospecific Mangrove Soils. Microbiology Spectrum, 2022, 10, e0090321.	1.2	11
1139	Global marine phytoplankton revealed by the Tara Oceans expedition. , 2022, , 531-561.		2
1140	Impacts and mechanisms of nanobubbles level in drip irrigation system on soil fertility, water use efficiency and crop production: The perspective of soil microbial community. Journal of Cleaner Production, 2022, 333, 130050.	4.6	16
1141	Soil Ph Determines Microbial Network Complexity and the Relative Abundance of Keystone Taxa Across Wheat Fields of the North China Plain. SSRN Electronic Journal, 0, , .	0.4	O
1142	Temporal Succession of Bacterial Community Structure, Co-occurrence Patterns, and Community Assembly Process in Epiphytic Biofilms of Submerged Plants in a Plateau Lake. Microbial Ecology, 2023, 85, 87-99.	1.4	8
1143	Seasonal variations and co-occurrence networks of bacterial communities in the water and sediment of artificial habitat in Laoshan Bay, China. PeerJ, 2022, 9, e12705.	0.9	4
1144	Depth effects on bacterial community assembly processes in paddy soils. Soil Biology and Biochemistry, 2022, 165, 108517.	4.2	38
1145	Varied interspecies interactions between anammox and denitrifying bacteria enhanced nitrogen removal in a single-stage simultaneous anammox and denitrification system. Science of the Total Environment, 2022, 813, 152519.	3.9	10
1146	Prevalence of Actinobacteria in the production of 2-methylisoborneol and geosmin, over Cyanobacteria in a temperate eutrophic reservoir. Chemical Engineering Journal Advances, 2022, 9, 100226.	2.4	12
1147	Pollution gradients shape the co-occurrence networks and interactions of sedimentary bacterial communities in Taihu Lake, a shallow eutrophic lake. Journal of Environmental Management, 2022, 305, 114380.	3.8	36

#	Article	IF	Citations
1148	Earthworms reduce the dissemination potential of antibiotic resistance genes by changing bacterial co-occurrence patterns in soil. Journal of Hazardous Materials, 2022, 426, 128127.	6.5	20
1149	Metagenomic analysis reveals the response of microbial community in river sediment to accidental antimony contamination. Science of the Total Environment, 2022, 813, 152484.	3.9	12
1150	Soil microbial co-occurrence networks become less connected with soil development in a high Arctic glacier foreland succession. Science of the Total Environment, 2022, 813, 152565.	3.9	20
1151	Alteration of bacterial communities and co-occurrence networks as a legacy effect upon exposure to polyethylene residues under field environment. Journal of Hazardous Materials, 2022, 426, 128126.	6.5	11
1152	Pine species determine fungal microbiome composition in a common garden experiment. Fungal Ecology, 2022, 56, 101137.	0.7	12
1153	Indole metabolism by phenol-stimulated activated sludges: Performance, microbial communities and network analysis. Environmental Research, 2022, 207, 112660.	3.7	10
1154	Sulfate-reduction behavior in waste-leachate transition zones of landfill sites. Journal of Hazardous Materials, 2022, 428, 128199.	6.5	14
1155	Microbial Diversity in Tobacco Rhizosphere Soil at Different Growth Stages. Journal of Biobased Materials and Bioenergy, 2021, 15, 606-614.	0.1	4
1156	Plant diversity and soil properties regulate the microbial community of monsoon evergreen broad-leaved forest under different intensities of woodland use. Science of the Total Environment, 2022, 821, 153565.	3.9	21
1157	High variation of fungal communities and associated potential plant pathogens induced by long-term addition of N fertilizers rather than P, K fertilizers: A case study in a Mollisol field. Soil Ecology Letters, 2022, 4, 348-361.	2.4	2
1159	Probiotic Bacillus Alleviates Oxidative Stress-Induced Liver Injury by Modulating Gut-Liver Axis in a Rat Model. Antioxidants, 2022, 11, 291.	2.2	22
1161	Land-use intensification differentially affects bacterial, fungal and protist communities and decreases microbiome network complexity. Environmental Microbiomes, 2022, 17, 1.	2.2	48
1162	Microbial Biodiversity in Groundwater Ecosystems. , 2022, , 397-411.		3
1163	Fruit fly phylogeny imprints bacterial gut microbiota. Evolutionary Applications, 2022, 15, 1621-1638.	1.5	5
1164	Vertical Distribution of Soil Bacterial Communities in Different Forest Types Along an Elevation Gradient. Microbial Ecology, 2023, 85, 628-641.	1.4	9
1165	Long-Term Compost Amendment Changes Interactions and Specialization in the Soil Bacterial Community, Increasing the Presence of Beneficial N-Cycling Genes in the Soil. Agronomy, 2022, 12, 316.	1.3	5
1166	Bacterioplankton Diversity and Distribution in Relation to Phytoplankton Community Structure in the Ross Sea Surface Waters. Frontiers in Microbiology, 2022, 13, 722900.	1.5	8
1167	Responses of bacterial taxonomic attributes to mercury species in rhizosphere paddy soil under natural sulphur-rich biochar amendment. Ecotoxicology and Environmental Safety, 2022, 229, 113058.	2.9	6

#	Article	IF	CITATIONS
1168	Cultivated and wild pearl millet display contrasting patterns of abundance and co-occurrence in their root mycobiome. Scientific Reports, 2022, 12, 207.	1.6	5
1169	Comparison of bacterial and fungal diversity and network connectivity in karst and non-karst forests in southwest China. Science of the Total Environment, 2022, 822, 153179.	3.9	27
1170	Dynamic succession patterns and interactions of phyllospheric microorganisms during NOx exposure. Journal of Hazardous Materials, 2022, 430, 128371.	6.5	4
1171	Conservation tillage regulates the assembly, network structure and ecological function of the soil bacterial community in black soils. Plant and Soil, 2022, 472, 207-223.	1.8	19
1172	Slope aspect determines the abundance and composition of nitrogenâ€cycling microbial communities in an alpine ecosystem. Environmental Microbiology, 2022, 24, 3598-3611.	1.8	6
1173	Soil microbial communities of dryland legume plantations are more complex than non-legumes. Science of the Total Environment, 2022, 822, 153560.	3.9	11
1174	Comparative Analysis of Selective Bacterial Colonization by Polyethylene and Polyethylene Terephthalate Microplastics. Frontiers in Microbiology, 2022, 13, 836052.	1.5	2
1175	Alpine constructed wetlands: A metagenomic analysis reveals microbial complementary structure. Science of the Total Environment, 2022, 822, 153640.	3.9	3
1176	Tree decline and mortality following pathogen invasion alters the diversity, composition and network structure of the soil microbiome. Soil Biology and Biochemistry, 2022, 166, 108560.	4.2	16
1177	Cautionary notes on the use of co-occurrence networks in soil ecology. Soil Biology and Biochemistry, 2022, 166, 108534.	4.2	64
1178	Biogeographic patterns of soil microbe communities in the deserts of the Hexi Corridor, northern China. Catena, 2022, 211, 106026.	2.2	14
1179	Vegetation restoration facilitates belowground microbial network complexity and recalcitrant soil organic carbon storage in southwest China karst region. Science of the Total Environment, 2022, 820, 153137.	3.9	66
1180	Monthly Succession of Biofouling Communities and Corresponding Inter-Taxa Associations in the North- and South-West of the Arabian Gulf. Frontiers in Marine Science, 2022, 8, .	1.2	2
1181	Identifying the role of fired clay minerals on reducing of nitrogen loss and immobilization of organic nitrogen during chicken manure composting. Bioresource Technology, 2022, 349, 126839.	4.8	11
1182	Impacts of Continuous Cropping on Fungal Communities in the Rhizosphere Soil of Tibetan Barley. Frontiers in Microbiology, 2022, 13, 755720.	1.5	4
1183	The ecological clusters of soil organisms drive the ecosystem multifunctionality under long-term fertilization. Environment International, 2022, 161, 107133.	4.8	53
1184	Long-term rice-crayfish-turtle co-culture maintains high crop yields by improving soil health and increasing soil microbial community stability. Geoderma, 2022, 413, 115745.	2.3	14
1185	Occurrence and Distribution of Antibiotic Resistance Genes in Municipal Wastewater Treatment Plants with D-Type Filters. Water (Switzerland), 2021, 13, 3398.	1.2	2

#	Article	IF	CITATIONS
1186	The Biogeochemical Responses of Hyporheic Groundwater to the Long-Run Managed Aquifer Recharge: Linking Microbial Communities to Hydrochemistry and Micropollutants. SSRN Electronic Journal, 0, , .	0.4	0
1187	Variation and Influential Factors Underlying P Cycling in Rhizosphere Microbial Communities Along Water Gradients in an Arid Desert Region. SSRN Electronic Journal, 0, , .	0.4	0
1188	Long-Term Nickel Contamination Increased Soil Fungal Diversity and Altered Fungal Community Structure and Co-Occurrence Patterns in Agricultural Soils. SSRN Electronic Journal, 0, , .	0.4	0
1189	Authomicrobial Community Assembly and Co-Occurrence Relationship in the Sediments of the River-Dominated Estuary and the Adjacent Shelfr Statement. SSRN Electronic Journal, 0, , .	0.4	0
1190	Linking Indicator Species and Their Coâ€Occurrences to Straw-Induced Priming Effect in Agricultural Soil Exposed to Longâ€∓erm Nitrogen Fertilization. SSRN Electronic Journal, 0, , .	0.4	0
1191	Comprehensive Risk Assessment of Organchlorine Pesticides (Ocps) Based on a Large Region-Scale Characterization of Ocps in Freshwater Sediments and Multiple Aquatic Foods in China. SSRN Electronic Journal, 0, , .	0.4	1
1192	Contributions of Human-Associated Archaeal Metabolites to Tumor Microenvironment and Carcinogenesis. Microbiology Spectrum, 2022, 10, e0236721.	1.2	15
1193	Community Assembly and Co-Occurrence Patterns of Microeukaryotes in Thermokarst Lakes of the Yellow River Source Area. Microorganisms, 2022, 10, 481.	1.6	7
1194	Impacts of the Biocontrol Strain Pseudomonas simiae PICF7 on the Banana Holobiont: Alteration of Root Microbial Co-occurrence Networks and Effect on Host Defense Responses. Frontiers in Microbiology, 2022, 13, 809126.	1.5	5
1195	Impacts of UV-C Irradiation on Marine Biofilm Community Succession. Applied and Environmental Microbiology, 2022, 88, aem0229821.	1.4	3
1196	Soil pH Filters the Association Patterns of Aluminum-Tolerant Microorganisms in Rice Paddies. MSystems, 2022, 7, e0102221.	1.7	7
1197	Soil Microbiomes in Apple Orchards Are Influenced by the Type of Agricultural Management but Never Match the Complexity and Connectivity of a Semi-natural Benchmark. Frontiers in Microbiology, 2022, 13, 830668.	1.5	2
1198	From diversity to complexity: Microbial networks in soils. Soil Biology and Biochemistry, 2022, 169, 108604.	4.2	67
1199	The Synergism between Methanogens and Methanotrophs and the Nature of their Contributions to the Seasonal Variation of Methane Fluxes in a Wetland: The Case of Dajiuhu Subalpine Peatland. Advances in Atmospheric Sciences, 2022, 39, 1375-1385.	1.9	4
1200	Emergent Diversity and Persistent Turnover in Evolving Microbial Cross-Feeding Networks. Frontiers in Network Physiology, 2022, 2, .	0.8	2
1201	Spatiotemporal Dynamics of Bacterial Taxonomic and Functional Profiles in Estuarine Intertidal Soils of China Coastal Zone. Microbial Ecology, 2023, 85, 383-399.	1.4	15
1202	Differing Roles of Bacterial and Fungal Communities in Cotton Fields by Growth Stage. Agronomy, 2022, 12, 657.	1.3	2
1203	Unique bacterial communities associated with components of an artificial aquarium ecosystem and their possible contributions to nutrient cycling in this microecosystem. World Journal of Microbiology and Biotechnology, 2022, 38, 72.	1.7	2

#	Article	IF	CITATIONS
1204	Network complexity of rubber plantations is lower than tropical forests for soil bacteria but not for fungi. Soil, 2022, 8, 149-161.	2.2	12
1205	Deep sequencing reveals changes in prokaryotic taxonomy and functional diversity of pit muds in different distilleries of China. Annals of Microbiology, 2022, 72, .	1.1	5
1206	Altered diversity and functioning of soil and root-associated microbiomes by an invasive native plant. Plant and Soil, 2022, 473, 235-249.	1.8	20
1207	Short-Term Grazing Exclusion Alters Soil Bacterial Co-occurrence Patterns Rather Than Community Diversity or Composition in Temperate Grasslands. Frontiers in Microbiology, 2022, 13, 824192.	1.5	6
1208	Deciphering the distinct mechanisms shaping the broomcorn millet rhizosphere bacterial and fungal communities in a typical agricultural ecosystem of Northern China. Plant and Soil, 2022, 474, 469-484.	1.8	8
1209	Simplifying the complexity of the soil microbiome to guide the development of nextâ€generation SynComs. , 2022, 1, 9-15.		12
1210	Microbial phylogenetic relatedness links to distinct successional patterns of bacterial and fungal communities. Environmental Microbiology, 2022, 24, 3985-4000.	1.8	11
1211	Keystone microbiome in the rhizosphere soil reveals the effect of long-term conservation tillage on crop growth in the Chinese Loess Plateau. Plant and Soil, 2022, 473, 457-472.	1.8	9
1212	The methane-driven interaction network in terrestrial methane hotspots. Environmental Microbiomes, 2022, 17, 15.	2.2	6
1213	Whole community and functional gene changes of biofilms on marine plastic debris in response to ocean acidification. Microbial Ecology, 2023, 85, 1202-1214.	1.4	1
1214	Community preserving mapping for network hyperbolic embedding. Knowledge-Based Systems, 2022, 246, 108699.	4.0	6
1215	Ride the dust: linking dust dispersal and spatial distribution of microorganisms across an arid landscape. Environmental Microbiology, 2022, 24, 4094-4107.	1.8	7
1216	The microbial communities in <i>Zaopeis</i> , free amino acids in raw liquor, and their correlations for <i>Wuliangyeâ€flavor</i> raw liquor production. Food Science and Nutrition, 0, , .	1.5	3
1217	Changes in sediment methanogenic archaea community structure and methane production potential following conversion of coastal marsh to aquaculture ponds. Environmental Pollution, 2022, 305, 119276.	3.7	11
1218	The phyllosphere microbiome shifts toward combating melanose pathogen. Microbiome, 2022, 10, 56.	4.9	54
1219	Metacommunity dynamics and the detection of species associations in coâ€occurrence analyses: Why patch disturbance matters. Functional Ecology, 2022, 36, 1483-1499.	1.7	2
1220	Do the Reclaimed Fungal Communities Succeed Toward the Original Structure in Eco-Fragile Regions of Coal Mining Disturbances? A Case Study in North China Loess—Aeolian Sand Area. Frontiers in Microbiology, 2022, 13, 770715.	1.5	4
1221	Cropping practices manipulate soil bacterial structure and functions on the Qinghai–Tibet Plateau. Journal of Plant Physiology, 2022, 271, 153666.	1.6	5

#	Article	IF	CITATIONS
1222	Correlating the above- and belowground genotype of Pinus pinaster trees and rhizosphere bacterial communities under drought conditions. Science of the Total Environment, 2022, 832, 155007.	3.9	6
1223	Insight into the role of competition in niche differentiation between ammonia-oxidizing archaea and bacteria in ammonium-rich alkaline soil: A network-based study. Soil Biology and Biochemistry, 2022, 168, 108638.	4.2	9
1224	Characterization and comparison of the bacterial community on environmental surfaces through a fresh-cut vegetables processing line in China. Food Research International, 2022, 155, 111075.	2.9	9
1225	Precipitation balances deterministic and stochastic processes of bacterial community assembly in grassland soils. Soil Biology and Biochemistry, 2022, 168, 108635.	4.2	38
1226	Exploring the gut microbiota composition of Indian major carp, rohu (Labeo rohita), under diverse culture conditions. Genomics, 2022, 114, 110354.	1.3	5
1227	The biogeochemical responses of hyporheic groundwater to the long-run managed aquifer recharge: Linking microbial communities to hydrochemistry and micropollutants. Journal of Hazardous Materials, 2022, 431, 128587.	6.5	16
1228	Halophytes increase rhizosphere microbial diversity, network complexity and function in inland saline ecosystem. Science of the Total Environment, 2022, 831, 154944.	3.9	28
1229	Regulation of soil micro-foodwebs to root secondary metabolites in cultivated and wild licorice plants. Science of the Total Environment, 2022, 828, 154302.	3.9	20
1230	Microbial habitat specificity largely affects microbial co-occurrence patterns and functional profiles in wetland soils. Geoderma, 2022, 418, 115866.	2.3	20
1231	Abundant and rare soil fungi exhibit distinct succession patterns in the forefield of Dongkemadi glacier on the central Qinghai-Tibet Plateau. Science of the Total Environment, 2022, 828, 154563.	3.9	9
1232	Fungal key players of cellulose utilization: Microbial networks in aggregates of long-term fertilized soils disentangled using 13C-DNA-stable isotope probing. Science of the Total Environment, 2022, 832, 155051.	3.9	10
1233	A Review of Big Data Research in Accounting. Intelligent Systems in Accounting, Finance and Management, 2021, 28, 268-283.	2.8	7
1234	Robust bacterial co-occurence community structures are independent of r- and K-selection history. Scientific Reports, 2021, 11, 23497.	1.6	3
1235	Editorial: The Plant Holobiont Volume II: Impacts of the Rhizosphere on Plant Health. Frontiers in Plant Science, 2021, 12, 809291.	1.7	2
1236	Artefactual depiction of predator–prey trophic linkages in global soils. Scientific Reports, 2021, 11, 23861.	1.6	4
1237	Characteristics of the Fungal Communities and Co-occurrence Networks in Hazelnut Tree Root Endospheres and Rhizosphere Soil. Frontiers in Plant Science, 2021, 12, 749871.	1.7	6
1238	The Coexistence Relationship Between Plants and Soil Bacteria Based on Interdomain Ecological Network Analysis. Frontiers in Microbiology, 2021, 12, 745582.	1.5	6
1240	Phylogenetic Correlation and Symbiotic Network Explain the Interdependence Between Plants and Arbuscular Mycorrhizal Fungi in a Tibetan Alpine Meadow. Frontiers in Plant Science, 2021, 12, 804861.	1.7	4

#	Article	IF	CITATIONS
1241	Depth-structuring of multi-kingdom soil communities in agricultural pastures. FEMS Microbiology Ecology, 2021, 97, .	1.3	2
1242	Elevationâ€related climatic factors dominate soil freeâ€living nematode communities and their coâ€occurrence patterns on Mt. Halla, South Korea. Ecology and Evolution, 2021, 11, 18540-18551.	0.8	4
1244	Soil Bacterial Community Shifts Are Driven by Soil Nutrient Availability along a Teak Plantation Chronosequence in Tropical Forests in China. Biology, 2021, 10, 1329.	1.3	16
1245	Brazilian Semi-Arid Mangroves-Associated Microbiome as Pools of Richness and Complexity in a Changing World. Frontiers in Microbiology, 2021, 12, 715991.	1.5	10
1246	Network-based analysis reveals differences in plant assembly between the native and the invaded ranges. NeoBiota, 0, 72, 157-181.	1.0	0
1247	The Coupling Response between Different Bacterial Metabolic Functions in Water and Sediment Improve the Ability to Mitigate Climate Change. Water (Switzerland), 2022, 14, 1203.	1.2	6
1248	Metagenomics Insights Into the Microbial Diversity and Microbiome Network Analysis on the Heterogeneity of Influent to Effluent Water. Frontiers in Microbiology, 2022, 13, 779196.	1.5	14
1249	Environmental filtering dominated the antibiotic resistome assembly in river networks. Science of the Total Environment, 2022, 834, 155293.	3.9	5
1250	Integrated network analysis reveals that exogenous cadmium-tolerant endophytic bacteria inhibit cadmium uptake in rice. Chemosphere, 2022, 301, 134655.	4.2	7
1251	Factors Affecting Multimodal Transport during COVID-19: A Thai Service Provider Perspective. Sustainability, 2022, 14, 4838.	1.6	7
1252	Macroaggregates Serve as Micro-Hotspots Enriched With Functional and Networked Microbial Communities and Enhanced Under Organic/Inorganic Fertilization in a Paddy Topsoil From Southeastern China. Frontiers in Microbiology, 2022, 13, 831746.	1.5	4
1253	Simulated microgravity shapes the endophytic bacterial community by affecting wheat root metabolism. Environmental Microbiology, 2022, 24, 3355-3368.	1.8	4
1254	Microbial Community Composition and Activity in Saline Soils of Coastal Agro–Ecosystems. Microorganisms, 2022, 10, 835.	1.6	11
1255	Integrating 16S rRNA amplicon metagenomics and selective culture for developing thermophilic bacterial inoculants to enhance manure composting. Waste Management, 2022, 144, 357-365.	3.7	10
1256	Dynamic changes in bacterial community structure are associated with distinct priming effect patterns. Soil Biology and Biochemistry, 2022, 169, 108671.	4.2	37
1257	Comparative analysis of diversity and environmental niches of soil bacterial, archaeal, fungal and protist communities reveal niche divergences along environmental gradients in the Alps. Soil Biology and Biochemistry, 2022, 169, 108674.	4.2	17
1424	Nitrapyrin Addition Mitigated CO ₂ Emission from a Calcareous Soil Was Closely Associated with Its Effect on Decreasing Cellulolytic Fungal Community Diversity. Journal of Agricultural and Food Chemistry, 2022, 70, 5299-5309.	2.4	2
1425	Soil Bacterial Communities of Rice is Dependent on Root Compartment Niches But Independent of Growth Stages in Mollisols of Northeast China. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
1426	An Integrated View of Diatom Interactions. , 2022, , 59-86.		1
1427	Soil Bacterial Communities of Rice is Dependent on Root Compartment Niches But Independent of Growth Stages in Mollisols of Northeast China. SSRN Electronic Journal, 0, , .	0.4	0
1428	Even shortâ€term revegetation complicates soil food webs and strengthens their links with ecosystem functions. Journal of Applied Ecology, 2022, 59, 1721-1733.	1.9	9
1429	Composition and Diversity of Soil Microbial Community Associated With Land Use Types in the Agro–Pastoral Area in the Upper Yellow River Basin. Frontiers in Plant Science, 2022, 13, 819661.	1.7	6
1430	Contrasting elevational patterns and underlying drivers of stream bacteria and fungi at the regional scale on the Tibetan Plateau. FEMS Microbiology Ecology, 2022, 98, .	1.3	2
1431	Bacterial community response to chronic heavy metal contamination in marine sediments of the East China Sea. Environmental Pollution, 2022, 307, 119280.	3.7	17
1432	Role of autotrophic microbes in organic matter accumulation in soils degraded by erosion. Land Degradation and Development, 2022, 33, 2092-2102.	1.8	2
1433	The Effects of Helicobacter pylori Infection on Gastric Microbiota in Children With Duodenal Ulcer. Frontiers in Microbiology, 2022, 13, 853184.	1.5	1
1434	Plants Play Stronger Effects on Soil Fungal than Bacterial Communities and Co-Occurrence Network Structures in a Subtropical Tree Diversity Experiment. Microbiology Spectrum, 2022, 10, e0013422.	1.2	8
1435	Interactive Effects between the Bio-Reactivity Continuum and the Ecological Role of Soluble Microbial Products during Biotransformation. ACS ES&T Water, 2022, 2, 883-894.	2.3	5
1436	Roots with larger specific root length and C: N ratio sustain more complex rhizosphere nematode community. Plant and Soil, 2022, 477, 693-706.	1.8	6
1437	Beyond the snapshot: identification of the timeless, enduring indicator microbiome informing soil fertility and crop production in alkaline soils. Environmental Microbiomes, 2022, 17, 25.	2.2	3
1438	Multitrophic diversity and biotic associations influence subalpine forest ecosystem multifunctionality. Ecology, 2022, 103, e3745.	1.5	18
1439	Crop diversification reinforces soil microbiome functions and soil health. Plant and Soil, 2022, 476, 375-383.	1.8	17
1440	Successions and interactions of phyllospheric microbiome in response to NH3 exposure. Science of the Total Environment, 2022, 837, 155805.	3.9	6
1441	Long-term nickel contamination increased soil fungal diversity and altered fungal community structure and co-occurrence patterns in agricultural soils. Journal of Hazardous Materials, 2022, 436, 129113.	6.5	19
1442	Dynamics in diversity, co-occurrence pattern, and community assembly of a perennial desert plant root-associated bacteria. Rhizosphere, 2022, 22, 100526.	1.4	6
1443	Rotation cropping and organic fertilizer jointly promote soil health and crop production. Journal of Environmental Management, 2022, 315, 115190.	3.8	19

#	Article	IF	CITATIONS
1444	Characteristics of microplastic pollution and analysis of colonized-microbiota in a freshwater aquaculture system Environmental Pollution, 2022, 306, 119385.	3.7	16
1445	How the development of barren land into orchards affects soil ecosystem in Tibet, China. Pedosphere, 2022, 32, 616-628.	2.1	1
1446	Spartina alterniflora invasion and mangrove restoration alter diversity and composition of sediment diazotrophic community. Applied Soil Ecology, 2022, 177, 104519.	2.1	12
1447	Maize (Zea mays L.) genotypes induce the changes of rhizosphere microbial communities. Archives of Microbiology, 2022, 204, 321.	1.0	1
1448	Patterns and drivers of species co-occurrence networks in a tropical stream fish metacommunity. Hydrobiologia, 0 , 1 .	1.0	1
1449	Factors Impacting Microplastic Biofilm Community and Biological Risks Posed by Microplastics in Drinking Water Sources. Water, Air, and Soil Pollution, 2022, 233, .	1.1	9
1450	Differences between the effects of plant species and compartments on microbiome composition in two halophyte <i>Suaeda</i> species. Bioengineered, 2022, 13, 12475-12488.	1.4	6
1451	Distinct strategies of the habitat generalists and specialists in sediment of Tibetan lakes. Environmental Microbiology, 2022, 24, 4153-4166.	1.8	12
1452	Characterization of soil microbial community activity and structure for reducing available Cd by rice straw biochar and Bacillus cereus RC-1. Science of the Total Environment, 2022, 839, 156202.	3.9	13
1453	Polychaete Bioturbation Alters the Taxonomic Structure, Co-occurrence Network, and Functional Groups of Bacterial Communities in the Intertidal Flat. Microbial Ecology, 2023, 86, 112-126.	1.4	4
1454	Large-scale microbiome data integration enables robust biomarker identification. Nature Computational Science, 2022, 2, 307-316.	3.8	30
1455	Characteristics of soil carbon emissions and bacterial community composition in peatlands at different stages of vegetation succession. Science of the Total Environment, 2022, 839, 156242.	3.9	13
1456	Micro(nano)plastic size and concentration co-differentiate nitrogen transformation, microbiota dynamics, and assembly patterns in constructed wetlands. Water Research, 2022, 220, 118636.	5. 3	37
1457	Recovery of anammox process performance after substrate inhibition: Reactor performance, sludge morphology, and microbial community. Bioresource Technology, 2022, 357, 127351.	4.8	29
1458	Effects of long-term exposure to the herbicide nicosulfuron on the bacterial community structure in a factory field. Environmental Pollution, 2022, 307, 119477.	3.7	13
1459	Lower Compositional Variation and Higher Network Complexity of Rhizosphere Bacterial Community in Constructed Wetland Compared to Natural Wetland. Microbial Ecology, 2023, 85, 965-979.	1.4	4
1460	A Case Study Demonstrates That the Litter of the Rare Species Cinnamomum migao Composed of Different Tissues Can Affect the Chemical Properties and Microbial Community Diversity in Topsoil. Microorganisms, 2022, 10, 1125.	1.6	2
1461	Gene network Analysis Defines a Subgroup of Small Cell Lung Cancer patients With Short Survival. Clinical Lung Cancer, 2022, 23, 510-521.	1.1	2

#	Article	IF	CITATIONS
1462	Fungal-bacterial network in PAH–contaminated coastal marine sediment. Environmental Science and Pollution Research, 0, , .	2.7	8
1463	Appropriate Irrigation and Fertilization Regime Restrain Indigenous Soil Key Ammonia-Oxidizing Archaeal and Bacterial Consortia to Mitigate Greenhouse Gas Emissions. Sustainability, 2022, 14, 6113.	1.6	1
1464	Disentangling the Mechanisms Shaping the Prokaryotic Communities in a Eutrophic Bay. Microbiology Spectrum, 2022, 10 , .	1.2	3
1465	Biological Microbial Interactions from Cooccurrence Networks in a High Mountain Lacustrine District. MSphere, 2022, 7, .	1.3	1
1466	Plant Gender Affects Soil Fungal Microbiota Associated with Welwitschia mirabilis, an Unusual Desert Gymnosperm. Microbial Ecology, 2023, 86, 200-212.	1.4	2
1467	The plant rhizosheath–root niche is an edaphic "mini-oasis―in hyperarid deserts with enhanced microbial competition. ISME Communications, 2022, 2, .	1.7	18
1468	Different roles of core and noncore bacterial taxa in maintaining soil multinutrient cycling and microbial network stability in arid fertigation agroecosystems. Journal of Applied Ecology, 2022, 59, 2154-2165.	1.9	5
1469	Community assembly of microbial habitat generalists and specialists in urban aquatic ecosystems explained more by habitat type than pollution gradient. Water Research, 2022, 220, 118693.	5.3	24
1470	Micron-scale biogeography reveals conservative intra anammox bacteria spatial co-associations. Water Research, 2022, 220, 118640.	5.3	12
1471	Achieving simultaneous nitrification, denitrification, and phosphorus removal in pilot-scale flow-through biofilm reactor with low dissolved oxygen concentrations: Performance and mechanisms. Bioresource Technology, 2022, 358, 127373.	4.8	9
1472	Impacts of land-use change on soil microbial communities and their function in the Amazon Rainforest. Advances in Agronomy, 2022, , 179-258.	2.4	3
1473	An Assessment of the Suitability of a Moving Bed Biofilm Reactor for Stormwater Treatment. SSRN Electronic Journal, 0, , .	0.4	0
1474	Linking Soil Microbial Community to the Molecular Composition of Dissolved Organic Matter in a Boreal Forest During Freeze-Thaw Cycles. SSRN Electronic Journal, 0, , .	0.4	0
1475	Partial organic fertilizer substitution promotes soil multifunctionality by increasing microbial community diversity and complexity. Pedosphere, 2023, 33, 407-420.	2.1	15
1476	Variation in soybean root-associated microbiome between lateral roots with and without nodules. Plant and Soil, 2022, 479, 481-494.	1.8	4
1477	Soil microbial network complexity predicts ecosystem function along elevation gradients on the Tibetan Plateau. Soil Biology and Biochemistry, 2022, 172, 108766.	4.2	80
1478	Changes in Temporal Dynamics and Factors Influencing the Environment of the Bacterial Community in Mangrove Rhizosphere Sediments in Hainan. Sustainability, 2022, 14, 7415.	1.6	2
1479	Spatial Patterns and Composition Traits of Soil Microbial Nitrogen-Metabolism Genes in the Robinia pseudoacacia Forests at a Regional Scale. Frontiers in Microbiology, 0, 13, .	1.5	2

#	Article	IF	CITATIONS
1480	MicNet toolbox: Visualizing and unraveling a microbial network. PLoS ONE, 2022, 17, e0259756.	1.1	1
1481	Specific Plant Mycorrhizal Responses Are Linked to Mycorrhizal Fungal Species Interactions. Frontiers in Plant Science, 0, 13, .	1.7	8
1482	Variations in Soil Nutrient Dynamics and Bacterial Communities After the Conversion of Forests to Long-Term Tea Monoculture Systems. Frontiers in Microbiology, 0, 13, .	1.5	7
1483	Continentalâ€scale niche differentiation of dominant topsoil archaea in drylands. Environmental Microbiology, 2022, 24, 5483-5497.	1.8	3
1484	Soil Microbial Network Complexity Varies With pH as a Continuum, Not a Threshold, Across the North China Plain. Frontiers in Microbiology, $0,13,.$	1.5	9
1485	High stability of autochthonous dissolved organic matter in karst aquatic ecosystems: Evidence from fluorescence. Water Research, 2022, 220, 118723.	5.3	20
1486	Cyanobacterial bloom intensities determine planktonic eukaryote community structure and stability. Science of the Total Environment, 2022, 838, 156637.	3.9	10
1487	Network analysis reveals the root endophytic fungi associated with Fusarium root rot invasion. Applied Soil Ecology, 2022, 178, 104567.	2.1	10
1488	Fertilizing-induced changes in the nitrifying microbiota associated with soil nitrification and crop yield. Science of the Total Environment, 2022, 841, 156752.	3.9	12
1489	Erosion-deposition positively reconstruct the bacterial community and negatively weaken the fungal community. Catena, 2022, 217, 106471.	2.2	8
1490	Constructed wetlands treating synthetic wastewater in response to day-night alterations: Performance and mechanisms. Chemical Engineering Journal, 2022, 446, 137460.	6.6	42
1491	Land-use type strongly affects soil microbial community assembly process and inter-kingdom co-occurrence pattern in a floodplain ecosystem. Applied Soil Ecology, 2022, 179, 104574.	2.1	11
1492	Performance and Microbial Community of Mbbrs Under Three Maintenance Strategies for Intermittent Stormwater Treatment. SSRN Electronic Journal, O, , .	0.4	0
1493	Metagenomic Insights into the Influence of Thallium Spill on Sediment Microbial Community. SSRN Electronic Journal, 0, , .	0.4	0
1494	Conductive Carrier Promotes Synchronous Biofilm Formation and Granulation of Anammox Bacteria. SSRN Electronic Journal, 0, , .	0.4	0
1495	Ecological clusters of soil taxa within bipartite networks are highly sensitive to climatic conditions in global drylands. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	1.8	4
1496	Potential of Meta-Omics to Provide Modern Microbial Indicators for Monitoring Soil Quality and Securing Food Production. Frontiers in Microbiology, 0, 13, .	1.5	14
1497	Changes in soil free-living diazotrophic community and co-occurrence patterns along desert wetland degradation gradient in the Mu Us Desert, northern China. Pedosphere, 2023, 33, 638-648.	2.1	3

#	Article	IF	CITATIONS
1498	Structural and functional characteristics of soil microbial community in a <i>Pinus massoniana</i> forest at different elevations. PeerJ, 0, 10, e13504.	0.9	3
1499	Xylella fastidiosa Infection Reshapes Microbial Composition and Network Associations in the Xylem of Almond Trees. Frontiers in Microbiology, 0, 13 , .	1.5	10
1500	Inoculum Concentration and Mineral Fertilization: Effects on the Endophytic Microbiome of Soybean. Frontiers in Microbiology, $0,13,.$	1.5	6
1501	Community structure and co-occurrence network analysis of bacteria and fungi in wheat fields vs fruit orchards. Archives of Microbiology, 2022, 204, .	1.0	5
1502	Root stoichiometry explains wheat endophytes and their link with crop production after four decades of fertilization. Science of the Total Environment, 2022, 846, 157407.	3.9	4
1503	Fallow Land Enhances Carbon Sequestration in Glomalin and Soil Aggregates Through Regulating Diversity and Network Complexity of Arbuscular Mycorrhizal Fungi Under Climate Change in Relatively High-Latitude Regions. Frontiers in Microbiology, 0, 13, .	1.5	4
1504	Biogeographic responses and niche occupancy of microbial communities following long-term land-use change. Antonie Van Leeuwenhoek, 0, , .	0.7	0
1505	Land use alters diazotroph community structure by regulating bacterivores in Mollisols in Northeast China. Frontiers in Microbiology, $0,13,1$	1.5	0
1506	A large geographic-scale characterization of organochlorine pesticides (OCPs) in surface sediments and multiple aquatic foods of inland freshwater aquaculture ponds in China: Co-occurrence, source and risk assessment. Environmental Pollution, 2022, 308, 119716.	3.7	14
1507	Evaluating the effects of aquaculture on the freshwater lake from the perspective of plankton communities: The diversity, co-occurrence patterns and their underlying mechanisms. Environmental Pollution, 2022, 309, 119741.	3.7	3
1508	Interactions between suspended sediments and submerged macrophytes-epiphytic biofilms under water flow in shallow lakes. Water Research, 2022, 222, 118911.	5.3	15
1509	Absence of stressâ€promoted facilitation coupled with a competition decrease in the microbiome of ephemeral saline lakes. Ecology, 2022, 103, .	1.5	4
1510	High-fat diet-induced intestinal dysbiosis is associated with the exacerbation of Sjogren's syndrome. Frontiers in Microbiology, 0, 13, .	1.5	5
1511	Environmental filtering drives the establishment of the distinctive rhizosphere, bulk, and root nodule bacterial communities of Sophora davidii in hilly and gully regions of the Loess Plateau of China. Frontiers in Microbiology, $0,13,\ldots$	1.5	6
1512	The bacterial and fungal microbiomes of ectomycorrhizal roots from stone oaks and Yunnan pines in the subtropical forests of the Ailao Mountains of Yunnan. Frontiers in Microbiology, 0, 13, .	1.5	4
1513	Causality and correlation analysis for deciphering the microbial interactions in activated sludge. Frontiers in Microbiology, $0,13,.$	1.5	0
1514	Temporal patterns of algae in different urban lakes and their correlations with environmental variables in Xi'an, China. Journal of Environmental Sciences, 2023, 133, 138-151.	3.2	5
1515	Spatial Variations of Aquatic Bacterial Community Structure and Co-Occurrence Patterns in a Coal Mining Subsidence Lake. Diversity, 2022, 14, 674.	0.7	1

#	Article	IF	CITATIONS
1516	Influence of revegetation on soil microbial community and its assembly process in the open-pit mining area of the Loess Plateau, China. Frontiers in Microbiology, 0, 13, .	1.5	4
1517	Predicting the humification degree of multiple organic solid waste during composting using a designated bacterial community. Waste Management, 2022, 150, 257-266.	3.7	2
1518	Metataxonomic insights into the microbial ecology of farm-scale hay, grass or legume, and corn silage produced with and without inoculants. Frontiers in Systems Biology, 0, 2, .	0.5	5
1519	Soil microbial communities response to different fertilization regimes in young Catalpa bungei plantation. Frontiers in Microbiology, $0,13,.$	1.5	10
1520	Slower antibiotics degradation and higher resistance genes enrichment in plastisphere. Water Research, 2022, 222, 118920.	5. 3	22
1521	SCNIC: Sparse correlation network investigation for compositional data. Molecular Ecology Resources, 2023, 23, 312-325.	2.2	13
1522	Impact of soil amendments on nitrous oxide emissions and the associated denitrifying communities in a semi-arid environment. Frontiers in Microbiology, $0,13,13$	1.5	1
1523	Microbiome composition and autochthonous probiotics from contrasting probiosis/dysbiosis states in cobia (Rachycentron canadum) fish epitheliocystis. Access Microbiology, 2022, 4, .	0.2	1
1524	Antibiotic resistance genes correlate with metal resistances and accumulate in the deep water layers of the Black Sea. Environmental Pollution, 2022, 312, 120033.	3.7	4
1525	The Resistome of ESKAPEE Pathogens in Untreated and Treated Wastewater: A Polish Case Study. Biomolecules, 2022, 12, 1160.	1.8	2
1526	Different Responses of Bacteria and Microeukaryote to Assembly Processes and Co-occurrence Pattern in the Coastal Upwelling. Microbial Ecology, 2023, 86, 174-186.	1.4	13
1527	Fungi stabilize multiâ€kingdom community in a high elevation timberline ecosystem. , 2022, 1, .		19
1528	Sustainable decision-making for contaminated site risk management: A decision tree model using machine learning algorithms. Journal of Cleaner Production, 2022, 371, 133612.	4.6	25
1529	Successional dynamics of microbial communities in response to concentration perturbation in constructed wetland system. Bioresource Technology, 2022, 361, 127733.	4.8	13
1530	Effects of combined pollution of organic pollutants and heavy metals on biodiversity and soil multifunctionality in e-waste contaminated soil. Journal of Hazardous Materials, 2022, 440, 129727.	6.5	20
1531	Unraveling the ecological mechanisms of bacterial succession in epiphytic biofilms on Vallisneria natans and Hydrilla verticillata during bioremediation of phenanthrene and pyrene polluted wetland. Journal of Environmental Management, 2022, 321, 115986.	3.8	8
1532	Microbial community regulation and performance enhancement in gas biofilters by interrupting bacterial communication. Microbiome, 2022, 10, .	4.9	6
1533	Hydrological connectivity promotes coalescence of bacterial communities in a floodplain. Frontiers in Microbiology, 0, 13, .	1.5	5

#	Article	IF	CITATIONS
1534	Body size as key trait determining aquatic metacommunity assemblies in benthonic and planktonic habitats of Dongting Lake, China. Ecological Indicators, 2022, 143, 109355.	2.6	2
1535	Comparison of soil quality indexes calculated by network and principal component analysis for carbonated soils under different uses. Ecological Indicators, 2022, 143, 109374.	2.6	21
1536	Ecological niche differences regulate the assembly of bacterial community in endophytic and rhizosphere of Eucalyptus. Forest Ecology and Management, 2022, 524, 120521.	1.4	9
1537	Bacterial and fungal co-occurrence patterns in agricultural soils amended with compost and bokashi. Soil Biology and Biochemistry, 2022, 174, 108831.	4.2	6
1538	Dynamic changes in the diversity and function of bacterial community during black tea processing. Food Research International, 2022, 161, 111856.	2.9	13
1539	Co-occurrence patterns and community assembly mechanisms of benthic foraminiferal communities in South Chinese bays. Ecological Indicators, 2022, 144, 109489.	2.6	1
1540	Performance and microbial community of MBBRs under three maintenance strategies for intermittent stormwater treatment. Science of the Total Environment, 2022, 851, 158578.	3.9	3
1541	Indigenous rhizosphere microbial community characteristics of the phytostabilizer Athyrium wardii (Hook.) grown in a Pb/Zn mine tailing. Chemosphere, 2022, 308, 136552.	4.2	5
1542	Insight into the shaping of microbial communities in element sulfur-based denitrification at different temperatures. Environmental Research, 2022, 215, 114348.	3.7	4
1543	The fecal arsenic excretion, tissue arsenic accumulation, and metabolomics analysis in sub-chronic arsenic-exposed mice after in situ arsenic-induced fecal microbiota transplantation. Science of the Total Environment, 2023, 854, 158583.	3.9	3
1544	Network analysis reveals significant joint effects of microplastics and tetracycline on the gut than the gill microbiome of marine medaka. Journal of Hazardous Materials, 2023, 442, 129996.	6.5	16
1545	Nutrient Dynamics and Microbial Community Response in Macrophyte-Dominated Lakes: Implications for Improved Restoration Strategies. SSRN Electronic Journal, 0, , .	0.4	0
1546	Denitrification Performance and Bacterial Ecological Network of a Reactor Using Biodegradable Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) as an Electron Donor for Nitrate Removal from Aquaculture Wastewater. SSRN Electronic Journal, 0, , .	0.4	0
1547	Contrasting prokaryotic and eukaryotic community assembly and species coexistence in acid mine drainage-polluted waters. Science of the Total Environment, 2023, 856, 158954.	3.9	11
1548	Host Plant Selection Imprints Structure and Assembly of Fungal Community along the Soil-Root Continuum. MSystems, 2022, 7, .	1.7	9
1550	Higher <scp>pH</scp> is associated with enhanced coâ€occurrence network complexity, stability and nutrient cycling functions in the rice rhizosphere microbiome. Environmental Microbiology, 2022, 24, 6200-6219.	1.8	9
1551	Effects of Irrigation Using Activated Brackish Water on the Bacterial Community Structure of Rhizosphere Soil. Journal of Soil Science and Plant Nutrition, 2022, 22, 4008-4023.	1.7	4
1552	Seed coating with fungicide causes a beneficial shift in rootâ€associated microbiomes of mature soybean. Soil Science Society of America Journal, 2023, 87, 43-62.	1.2	2

#	Article	IF	CITATIONS
1553	Combating biotic stresses in plants by synthetic microbial communities: Principles, applications and challenges. Journal of Applied Microbiology, 2022, 133, 2742-2759.	1.4	9
1554	Microbial co-occurrence network in the rhizosphere microbiome: its association with physicochemical properties and soybean yield at a regional scale. Journal of Microbiology, 2022, 60, 986-997.	1.3	3
1555	Aridity differentially alters the stability of soil bacterial and fungal networks in coastal and inland areas of Australia. Environmental Microbiology, 2022, 24, 5574-5582.	1.8	2
1556	Dynamic distribution and potential transmission of antibiotic resistance genes in activated sludge. Applied Microbiology and Biotechnology, 2022, 106, 6785-6797.	1.7	1
1557	Community Assembly of Fungi and Bacteria along Soil-Plant Continuum Differs in a Zoige Wetland. Microbiology Spectrum, 2022, 10, .	1,2	1
1559	Network-based gut microbiome analysis in dogs. Italian Journal of Animal Science, 2022, 21, 1465-1475.	0.8	0
1560	Relationship between Topological Structure and Ecosystem Services of Forest Grass Ecospatial Network in China. Remote Sensing, 2022, 14, 4700.	1.8	8
1561	Untangling microbial diversity and assembly patterns in rare earth element mine drainage in South China. Water Research, 2022, 225, 119172.	5. 3	4
1562	Effective data filtering is prerequisite for robust microbial association network construction. Frontiers in Microbiology, 0, 13, .	1.5	1
1563	Biodiesel Co-Product enhances microbial stability and beneficial microbial communities along a gradient of soil water content. Science of the Total Environment, 2023, 856, 159204.	3.9	5
1564	Microbiomes in agroecosystem: Diversity, function and assembly mechanisms. Environmental Microbiology Reports, 2022, 14, 833-849.	1.0	21
1565	Soil microbial community assembly and stability are associated with potato (Solanum tuberosum L.) fitness under continuous cropping regime. Frontiers in Plant Science, 0, 13, .	1.7	12
1566	Exploring the effects of warming and nitrogen deposition on desert steppe based on soil nematodes. Land Degradation and Development, 2023, 34, 682-697.	1.8	1
1567	Changes in community assembly processes and co-occurrence networks of soil diazotrophs along an elevational gradient in Tibetan alpine meadows. European Journal of Soil Biology, 2022, 113, 103445.	1.4	2
1568	Phosphorus addition decreases soil fungal richness and alters fungal guilds in two tropical forests. Soil Biology and Biochemistry, 2022, 175, 108836.	4.2	12
1569	Similar assembly mechanisms but distinct co-occurrence patterns of free-living vs. particle-attached bacterial communities across different habitats and seasons in shallow, eutrophic Lake Taihu. Environmental Pollution, 2022, 314, 120305.	3.7	15
1570	Effects of wind-wave disturbance and nutrient addition on aquatic bacterial diversity, community composition, and co-occurrence patterns: A mesocosm study. Current Research in Microbial Sciences, 2022, 3, 100168.	1.4	1
1571	Biocontrol of Geosmin Production by Inoculation of Native Microbiota during the Daqu-Making Process. Fermentation, 2022, 8, 588.	1.4	1

#	Article	IF	CITATIONS
1572	Nematodes and their bacterial prey improve phosphorus acquisition by wheat. New Phytologist, 2023, 237, 974-986.	3.5	9
1573	Soil pqqC-harboring bacterial community response to increasing aridity in semi-arid grassland ecosystems: Diversity, co-occurrence network, and assembly process. Frontiers in Microbiology, 0, 13 , .	1.5	1
1574	Characteristics of Bacterial Community in Pelteobagrus fulvidraco Integrated Multi-Trophic Aquaculture System. Water (Switzerland), 2022, 14, 3192.	1.2	2
1575	A comparison of microbial composition under three tree ecosystems using the stochastic process and network complexity approaches. Frontiers in Microbiology, $0,13,.$	1.5	13
1576	Microbial assembly and co-occurrence network in an aquifer under press perturbation. Annals of Microbiology, 2022, 72, .	1.1	2
1577	Droplet microfluidics-based high-throughput bacterial cultivation for validation of taxon pairs in microbial co-occurrence networks. Scientific Reports, 2022, 12, .	1.6	5
1578	Effects of elevated <scp>CO₂</scp> and warming on the rootâ€associated microbiota in an agricultural ecosystem. Environmental Microbiology, 2022, 24, 6252-6266.	1.8	4
1579	Partitioning the Effects of Soil Legacy and Pathogen Exposure Determining Soil Suppressiveness via Induced Systemic Resistance. Plants, 2022, 11, 2816.	1.6	1
1580	Global airborne bacterial community—interactions with Earth's microbiomes and anthropogenic activities. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	29
1581	Dynamic trophic shifts in bacterial and eukaryotic communities during the first 30 years of microbial succession following retreat of an Antarctic glacier. FEMS Microbiology Ecology, 2022, 98, .	1.3	3
1582	Response of Soil Bacterial Diversity, Predicted Functions and Co-Occurrence Patterns to Nanoceria and Ionic Cerium Exposure. Microorganisms, 2022, 10, 1982.	1.6	1
1583	Short-Term Vegetation Restoration Enhances the Complexity of Soil Fungal Network and Decreased the Complexity of Bacterial Network. Journal of Fungi (Basel, Switzerland), 2022, 8, 1122.	1.5	6
1584	Absolute microbiome profiling highlights the links among microbial stability, soil health, and crop productivity under long-term sod-based rotation. Biology and Fertility of Soils, 2022, 58, 883-901.	2.3	7
1585	Impact of Soil Fertilized with Biomass Ash on Depth-Related Variability of Culturable Bacterial Diversity and Selected Physicochemical Parameters in Spring Barley Cultivation. International Journal of Environmental Research and Public Health, 2022, 19, 13721.	1.2	1
1586	Responses of soil bacterial communities to precipitation change in the semi-arid alpine grassland of Northern Tibet. Frontiers in Plant Science, 0, 13, .	1.7	6
1587	Spatial pattern and co-occurrence network of microbial community in response to extreme environment of salt lakes on the Qinghai-Tibet Plateau. Environmental Science and Pollution Research, 2023, 30, 20615-20630.	2.7	1
1588	Plant types shape soil microbial composition, diversity, function, and coâ€occurrence patterns in cultivated land of a karst area. Land Degradation and Development, 2023, 34, 1097-1109.	1.8	7
1589	Soil bacterial community response to cover crop introduction in a wheat-based dryland cropping system. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	2

#	Article	IF	CITATIONS
1590	Microbial community structure and function in paddy soil as affected by water-saving irrigation mode. European Journal of Soil Biology, 2022, 113, 103450.	1.4	6
1591	Metagenomic characterization of bacterial community and antibiotic resistance genes found in the mass transit system in Seoul, South Korea. Ecotoxicology and Environmental Safety, 2022, 246, 114176.	2.9	3
1592	Lake sediments from littoral and profundal zones are heterogeneous but equivalent sources of methane produced by distinct methanogenic communities ―a case study from Lake Remoray. Journal of Geophysical Research G: Biogeosciences, O, , .	1.3	0
1593	Water quality assessment and contribution rates of main pollution sources in Baiyangdian Lake, northern China. Environmental Impact Assessment Review, 2023, 98, 106965.	4.4	12
1594	Nutrient dynamics and microbial community response in macrophyte-dominated lakes: Implications for improved restoration strategies. Journal of Environmental Management, 2023, 325, 116372.	3.8	2
1595	Risk assessment and microbial community structure in agricultural soils contaminated by vanadium from stone coal mining. Chemosphere, 2023, 310, 136916.	4.2	2
1596	Wastewater treatment effectiveness is facilitated by crucial bacterial communities in the wetland ecosystem. Science of the Total Environment, 2023, 857, 159375.	3.9	11
1597	Grassland degradation-induced declines in soil fungal complexity reduce fungal community stability and ecosystem multifunctionality. Soil Biology and Biochemistry, 2023, 176, 108865.	4.2	25
1598	Denitrification performance and bacterial ecological network of a reactor using biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) as an electron donor for nitrate removal from aquaculture wastewater. Science of the Total Environment, 2023, 857, 159637.	3.9	1
1599	Long-term N addition accelerated organic carbon mineralization in aggregates by shifting microbial community composition. Agriculture, Ecosystems and Environment, 2023, 342, 108249.	2.5	9
1600	Assembly of abundant and rare maize root-associated bacterial communities under film mulch. Applied Soil Ecology, 2023, 182, 104682.	2.1	5
1601	Principle and application of co-occurrence networks for freshwater ecosystem assessment. Hupo Kexue/Journal of Lake Sciences, 2022, 34, 1765-1787.	0.3	2
1602	Impacts of iron amendments and per-fluoroalkyl substances' bio-availability to the soil microbiome in wheat ecosystem. Chemosphere, 2023, 311, 137140.	4.2	2
1603	Linking nitrogen- and straw-sensitive indicator species and their co-occurrences to priming effect in agricultural soil exposed to long-term nitrogen fertilization. Soil Biology and Biochemistry, 2023, 176, 108881.	4.2	8
1604	Variations of microbiota in three types of typical military contaminated sites: Diversities, structures, influence factors, and co-occurrence patterns. Journal of Hazardous Materials, 2023, 443, 130290.	6.5	8
1605	Stochastic and deterministic processes shape bioenergy crop microbiomes along a vertical soil niche. Environmental Microbiology, 2023, 25, 352-366.	1.8	3
1606	Adaptive changes of coral Galaxea fascicularis holobiont in response to nearshore stress. Frontiers in Microbiology, 0, 13 , .	1.5	7
1607	Inconsistent Response of Abundant and Rare Bacterial Communities to the Developmental Chronosequence of Pinus massoniana. Forests, 2022, 13, 1904.	0.9	1

#	Article	IF	CITATIONS
1608	Cross-validation of correlation networks using modular structure. Applied Network Science, 2022, 7,	0.8	1
1609	Bacterial Microbiota and Soil Fertility of Crocus sativus L. Rhizosphere in the Presence and Absence of Fusarium spp Land, 2022, 11, 2048.	1.2	2
1610	Maize-soybean intercropping facilitates chemical and microbial transformations of phosphorus fractions in a calcareous soil. Frontiers in Microbiology, $0,13,.$	1.5	3
1611	Depth-dependent patterns of soil microbial community in the E-waste dismantling area. Journal of Hazardous Materials, 2023, 444, 130379.	6.5	13
1612	Environmental factors and stochasticity affect the fungal community structures in the water and sediments of Hulun Lake, China. Ecology and Evolution, 2022, 12, .	0.8	3
1613	Spatial and temporal change determined co-occurrence networks stability and community assembly processes of epipelagic seawater microbial community in the Nordic Sea. Science of the Total Environment, 2023, 859, 160321.	3.9	3
1614	Diversity and metabolic potentials of microbial communities associated with pollinator and cheater fig wasps in fig-fig wasp mutualism system. Frontiers in Microbiology, 0, 13, .	1.5	0
1615	Investigating the Assemblages of Two Groups of Collembola (Strong Furca and Weak Furca) under Different Agricultural Management Systems, Northeastern China. Diversity, 2022, 14, 994.	0.7	1
1616	Response of bacterial communities to shrub encroachment and forage planting in alpine grassland of the Qinghai-Tibetan Plateau. Ecological Engineering, 2023, 186, 106837.	1.6	1
1617	Long-term effects of biochar application on rhizobacteria community and winter wheat growth on the Loess Plateau in China. Geoderma, 2023, 429, 116250.	2.3	7
1618	Correlations among core species corresponding to the clinical staging of periodontitis. Biocell, 2023, 47, 431-439.	0.4	0
1619	Elevational distribution patterns and drivers of soil microbial diversity in the Sygera Mountains, southeastern Tibet, China. Catena, 2023, 221, 106738.	2.2	7
1620	Arsenic-triggered bacterial minorities correlate with arsenic accumulation in cabbage. Geoderma, 2023, 429, 116278.	2.3	0
1621	Presence and distribution of triazine herbicides and their effects on microbial communities in the Laizhou Bay, Northern China. Marine Pollution Bulletin, 2023, 186, 114460.	2.3	7
1622	Comparison of the microbial communities in pits with different sealing methods for Chinese strong-flavor liquor production. LWT - Food Science and Technology, 2023, 173, 114248.	2.5	0
1623	Metagenomic insights into the influence of thallium spill on sediment microbial community. Environmental Pollution, 2023, 317, 120660.	3.7	8
1624	Trophic interactions regulate microbial responses to environmental conditions and partially counteract nitrogen transformation potential in urban river bends. Journal of Environmental Management, 2023, 327, 116889.	3.8	1
1625	Spatio-temporal succession of microbial communities in plastisphere and their potentials for plastic degradation in freshwater ecosystems. Water Research, 2023, 229, 119406.	5.3	26

#	Article	IF	CITATIONS
1626	Changes in diversity patterns and assembly processes of soil nematode communities during forest secondary succession on the Loess Plateau. Forest Ecology and Management, 2023, 529, 120734.	1.4	3
1627	Taxonomic and functional dynamics of the soil microbiome from a tropical dry forest in kraft lignin-amended microcosms. Applied Soil Ecology, 2023, 183, 104766.	2.1	0
1628	Microbial community dynamics responding to nutrient allocation associated with soybean cultivar â€Jake' ozone adaptation. Science of the Total Environment, 2023, 864, 161008.	3.9	3
1629	Predatory protists play predominant roles in suppressing soil-borne fungal pathogens under organic fertilization regimes. Science of the Total Environment, 2023, 863, 160986.	3.9	12
1630	Rhizosphere effect and water constraint jointly determined the roles of microorganism in soil phosphorus cycling in arid desert regions. Catena, 2023, 222, 106809.	2.2	6
1631	Nitrogen transformation promotes the anaerobic degradation of PAHs in water level fluctuation zone of the Three Gorges Reservoir in Yangtze River, China: Evidences derived from in-situ experiment. Science of the Total Environment, 2023, 864, 161034.	3.9	3
1632	Novel insights into aerobic denitrifying bacterial communities augmented denitrification capacity and mechanisms in lake waters. Science of the Total Environment, 2023, 864, 161011.	3.9	7
1633	Soil nutrients shape the composition and function of fungal communities in abandoned ancient rice terraces. Journal of Environmental Management, 2023, 329, 117064.	3.8	7
1634	Natural vegetation regeneration facilitated soil organic carbon sequestration and microbial community stability in the degraded karst ecosystem. Catena, 2023, 222, 106856.	2.2	4
1635	A longitudinal census of the bacterial community in raw milk correlated with Staphylococcus aureus clinical mastitis infections in dairy cattle. Animal Microbiome, 2022, 4, .	1.5	3
1636	Dietary Supplementation of Fruit from Nitraria tangutorum Improved Immunity and Abundance of Beneficial Ruminal Bacteria in Hu Sheep. Animals, 2022, 12, 3211.	1.0	3
1637	Abundant fungi dominate the complexity of microbial networks in soil of contaminated site: High-precision community analysis by full-length sequencing. Science of the Total Environment, 2023, 861, 160563.	3.9	8
1638	Interactions among heavy metals and methane-metabolizing microorganisms and their effects on methane emissions in Dajiuhu peatland. Environmental Science and Pollution Research, 0, , .	2.7	0
1639	Microbial community diversity and function analysis of Aconitum carmichaelii Debeaux in rhizosphere soil of farmlands in Southwest China. Frontiers in Microbiology, $0,13,.$	1.5	3
1640	Phagotrophic protist-mediated control of Polymyxa graminis in the wheat rhizosphere. Plant and Soil, 2023, 485, 333-347.	1.8	5
1641	The Endophytic Root Microbiome Is Different in Healthy and Ralstonia solanacearum-Infected Plants and Is Regulated by a Consortium Containing Beneficial Endophytic Bacteria. Microbiology Spectrum, 2023, 11, .	1.2	5
1642	Inference of dynamic interaction networks: A comparison between Lotka-Volterra and multivariate autoregressive models. Frontiers in Bioinformatics, 0, 2, .	1.0	2
1643	Methane supply drives prokaryotic community assembly and networks at cold seeps of the South China Sea. Molecular Ecology, 2023, 32, 660-679.	2.0	9

#	Article	IF	CITATIONS
1644	Habitats within the plant root differ in bacterial network topology and taxonomic assortativity. Molecular Plant-Microbe Interactions, 0 , , .	1.4	0
1646	Effects of Moss-Dominated Biocrusts on Soil Microbial Community Structure in an Ionic Rare Earth Tailings Area of Southern China. Toxics, 2022, 10, 782.	1.6	0
1647	A national-scale distribution of organochlorine pesticides (OCPs) in cropland soils and major types of food crops in China: Co-occurrence and associated risks. Science of the Total Environment, 2023, 861, 160637.	3.9	6
1648	Combined organic-inorganic fertilization builds higher stability of soil and root microbial networks than exclusive mineral or organic fertilization. Soil Ecology Letters, 2023, 5, .	2.4	7
1649	Prokaryotic and eukaryotic microbial communities associated with coral species have high host specificity in the South China Sea. Science of the Total Environment, 2023, 867, 161185.	3.9	7
1650	Quercus ilex Phyllosphere Microbiome Environmental-Driven Structure and Composition Shifts in a Mediterranean Contex. Plants, 2022, 11, 3528.	1.6	4
1651	Ecological co-occurrence and soil physicochemical factors drive the archaeal community in Amazonian soils. Archives of Microbiology, 2023, 205, .	1.0	0
1652	ITS Metabarcoding Reveals the Effects of Oregano Essential Oil on Fusarium oxysporum and Other Fungal Species in Soil Samples. Plants, 2023, 12, 62.	1.6	1
1653	Microbial-Based Products to Control Soil-Borne Pathogens: Methods to Improve Efficacy and to Assess Impacts on Microbiome. Microorganisms, 2023, 11, 224.	1.6	6
1654	Diversity and Biogeography of Soil Bacterial Communities. Climate Change Management, 2023, , 1-13.	0.6	0
1655	Enhanced biodegradation of PAHs by biochar and a TiO2@biochar composite under light irradiation: Photocatalytic mechanism, toxicity evaluation and ecological response. Chemical Engineering Journal, 2023, 458, 141495.	6.6	19
1656	Altered Organic Matter Chemical Functional Groups and Bacterial Community Composition Promote Crop Yield under Integrated Soil–Crop Management System. Agriculture (Switzerland), 2023, 13, 134.	1.4	3
1657	Response of Microbial Communities on Cathode with Different Potentials in a Single-Chamber Reactor. Current Microbiology, 2023, 80, .	1.0	0
1658	A guide for comparing microbial coâ€occurrence networks. , 2023, 2, .		4
1659	Continuous-cropping-tolerant soybean cultivars alleviate continuous cropping obstacles by improving structure and function of rhizosphere microorganisms. Frontiers in Microbiology, 0, 13, .	1.5	3
1660	Urbanization increases stochasticity and reduces the ecological stability of microbial communities in amphibian hosts. Frontiers in Microbiology, $0,13,.$	1.5	4
1661	Preliminary analysis of mucosal and salivary bacterial communities in oral lichen planus. Oral Diseases, 2023, 29, 2710-2722.	1.5	0
1662	Microbial coexistence in the rhizosphere and the promotion of plant stress resistance: A review. Environmental Research, 2023, 222, 115298.	3.7	17

#	Article	IF	CITATIONS
1663	Ecological influence by colonization of fluoride-resistant Streptococcus mutans in oral biofilm. Frontiers in Cellular and Infection Microbiology, $0,12,12$	1.8	1
1664	Response of soil microbial communities and rice yield to nitrogen reduction with green manure application in karst paddy areas. Frontiers in Microbiology, 0, 13 , .	1.5	3
1665	Effect of metal pollution on the distribution and co-occurrence pattern of bacterial, archaeal and fungal communities throughout the soil profiles. Chemosphere, 2023, 315, 137692.	4.2	8
1666	Enhancement of nitrogen fixation and diazotrophs by long-term polychlorinated biphenyl contamination in paddy soil. Journal of Hazardous Materials, 2023, 446, 130697.	6.5	5
1667	Changes in bacterial diversity, co-occurrence pattern, and potential pathogens following digestate fertilization: Extending pathogen management to field for anaerobic digestion of livestock manure. Waste Management, 2023, 158, 107-115.	3.7	4
1668	Conductive carrier promotes synchronous biofilm formation and granulation of anammox bacteria. Journal of Hazardous Materials, 2023, 447, 130754.	6.5	10
1669	Microbial population properties in the hierarchically structured aerobic granular sludge: Phenotype and genotype. Science of the Total Environment, 2023, 867, 161164.	3.9	4
1670	Soil bacterial community structure and functions but not assembly processes are affected by the conversion from monospecific Cunninghamia lanceolata plantations to mixed plantations. Applied Soil Ecology, 2023, 185, 104775.	2.1	4
1671	The putative maintaining mechanism of gut bacterial ecosystem in giant pandas and its potential application in conservation. Evolutionary Applications, 2023, 16, 36-47.	1.5	2
1672	Structure and Function Analysis of Cultivated Meconopsis integrifolia Soil Microbial Community Based on High-Throughput Sequencing and Culturability. Biology, 2023, 12, 160.	1.3	2
1674	Measuring Spatiotemporal Civil War Dimensions Using Community-Based Dynamic Network Representation (CoDNet). IEEE Transactions on Computational Social Systems, 2024, 11, 1506-1516.	3.2	0
1675	Grass-microbial inter-domain ecological networks associated with alpine grassland productivity. Frontiers in Microbiology, 0, 14 , .	1.5	5
1676	Divergence of epibacterial community assemblage correlates with malformation disease severity in Saccharina japonica seedlings. Frontiers in Marine Science, $0,10,10$	1.2	2
1677	Changes in physiological profiles and co-occurrence patterns of soil microbial community following exposure to nanoceria and ionic cerium. Environmental Science: Nano, 2023, 10, 879-890.	2.2	1
1678	Response of Rhizosphere Bacterial Communities to Near-Natural Forest Management and Tree Species within Chinese Fir Plantations. Microbiology Spectrum, 2023, 11 , .	1,2	5
1679	Seasonal succession of microbial community co-occurrence patterns and community assembly mechanism in coal mining subsidence lakes. Frontiers in Microbiology, 0, 14, .	1.5	8
1680	A synthetic community of siderophore-producing bacteria increases soil selenium bioavailability and plant uptake through regulation of the soil microbiome. Science of the Total Environment, 2023, 871, 162076.	3.9	7
1681	Co-occurrence pattern of bacteria and fungi on the leaves of the invasive aquatic plant <i>Alternanthera philoxeroides</i> . FEMS Microbiology Ecology, 2023, 99, .	1.3	1

#	Article	IF	CITATIONS
1683	Plant species shape the bacterial communities on the phyllosphere in a hyper-arid desert. Microbiological Research, 2023, 269, 127314.	2.5	4
1684	Relation analysis of bacterial community in soils of coal mines with potential ecological risk from heavy metals. Environmental Technology and Innovation, 2023, 30, 103125.	3.0	2
1685	Natural restoration enhances soil multitrophic network complexity and ecosystem functions in the Loess Plateau. Catena, 2023, 226, 107059.	2.2	3
1686	Biochar loaded with bacteria enhanced Cd/Zn phytoextraction by facilitating plant growth and shaping rhizospheric microbial community. Environmental Pollution, 2023, 327, 121559.	3.7	9
1687	Effects of tillage management on cbbL-carrying bacteria and soil organic carbon dynamics across aggregate size classes in the farmland of North China Plain. Ecological Indicators, 2023, 150, 110213.	2.6	7
1688	Pollution caused by mining reshaped the structure and function of bacterial communities in Chinaâ∈™s largest ion-adsorption rare earth mine watershed. Journal of Hazardous Materials, 2023, 451, 131221.	6. 5	5
1689	Concurrent reductive decontamination of chromium (VI) and uranium (VI) in groundwater by Fe(0)-based autotrophic bioprocess. Journal of Hazardous Materials, 2023, 452, 131222.	6.5	2
1690	Distinct community assembly processes and habitat specialization driving the biogeographic patterns of abundant and rare bacterioplankton in a brackish coastal lagoon. Science of the Total Environment, 2023, 879, 163109.	3.9	8
1691	Specialist species of fungi and bacteria are more important than the intermediate and generalist species in near-urban agricultural soils. Applied Soil Ecology, 2023, 188, 104894.	2.1	1
1692	Weathering extents and anthropogenic influences shape the soil bacterial community along a subsurface zonation. Science of the Total Environment, 2023, 876, 162570.	3.9	1
1693	Rare microbial communities drive ecosystem multifunctionality in acidic soils of southern China. Applied Soil Ecology, 2023, 189, 104895.	2.1	8
1694	Soil bacterial communities of paddy are dependent on root compartment niches but independent of growth stages from Mollisols of Northeast China. Frontiers in Microbiology, 0, 14, .	1.5	0
1695	Assembly processes of bacterial and fungal communities in metal(loid)s smelter soil. Journal of Hazardous Materials, 2023, 451, 131153.	6.5	9
1698	Microbial dynamics and bioreactor performance are interlinked with organic matter removal from wastewater treatment plant effluent. Bioresource Technology, 2023, 372, 128659.	4.8	2
1699	Disturbance and restoration of soil microbial communities after in-situ thermal desorption in a chlorinated hydrocarbon contaminated site. Journal of Hazardous Materials, 2023, 448, 130870.	6.5	8
1700	Interactions between dissolved organic matter and the microbial community are modified by microplastics and heat waves. Journal of Hazardous Materials, 2023, 448, 130868.	6.5	13
1701	Linking soil microbial community to the chemical composition of dissolved organic matter in a boreal forest during freeze–thaw cycles. Geoderma, 2023, 431, 116359.	2.3	5
1702	New insights into the microbial-driven metal reductive dissolution for enhanced phosphorus release from iron-rich sludge. Journal of Cleaner Production, 2023, 392, 136290.	4.6	4

#	Article	IF	CITATIONS
1703	Altered Gut Microbiota Composition and Its Potential Association in Patients with Advanced Hepatocellular Carcinoma. Current Oncology, 2023, 30, 1818-1830.	0.9	9
1704	Glacial Influence Affects Modularity in Bacterial Community Structure in Three Deep Andean North-Patagonian Lakes. Microbial Ecology, 2023, 86, 1869-1880.	1.4	1
1705	Non-additive effects of bamboo-derived biochar and dicyandiamide on soil greenhouse gas emissions, enzyme activity and bacterial community. Industrial Crops and Products, 2023, 194, 116385.	2.5	8
1706	Carbon amendment rather than nitrate fertilization dominated the reassembly of the total, denitrifying, and DNRA bacterial community in the anaerobic subsoil. Journal of Soils and Sediments, 2023, 23, 1913-1926.	1.5	0
1707	Dietary supplementation of solubles from shredded, steam-exploded pine particles modulates cecal microbiome composition in broiler chickens. Journal of Animal Science and Technology, 0, , .	0.8	1
1708	Co-cultivation of microalgae-activated sludge for municipal wastewater treatment: Exploring the performance, microbial co-occurrence patterns, microbiota dynamics and function during the startup stage. Bioresource Technology, 2023, 374, 128733.	4.8	14
1709	Inter-basin water diversion homogenizes microbial communities mainly through stochastic assembly processes. Environmental Research, 2023, 223, 115473.	3.7	10
1710	Environmental DNA metabarcoding reveals the influence of human activities on microeukaryotic plankton along the Chinese coastline. Water Research, 2023, 233, 119730.	5.3	12
1711	Temporal assessment of N-cycle microbial functions in a tropical agricultural soil using gene co-occurrence networks. PLoS ONE, 2023, 18, e0281442.	1.1	2
1712	Assembly and enrichment of rhizosphere and bulk soil microbiomes in Robinia pseudoacacia plantations during long-term vegetation restoration. Applied Soil Ecology, 2023, 187, 104835.	2.1	3
1713	Determinants and Assembly Mechanism of Bacterial Community Structure in Ningxia Section of the Yellow River. Microorganisms, 2023, 11, 496.	1.6	0
1714	Unravelling microalgal-bacterial interactions in aquatic ecosystems through 16S rRNA gene-based co-occurrence networks. Scientific Reports, 2023, 13, .	1.6	8
1715	New perspective: Symbiotic pattern and assembly mechanism of Cantharellus cibarius-associated bacteria. Frontiers in Microbiology, 0, 14, .	1.5	1
1716	Geographical shifts in the successional dynamics of inland dune shrub communities. Ecology and Evolution, 2023, 13, .	0.8	0
1717	Insights into the Methodological, Biotic and Abiotic Factors Influencing the Characterization of Xylem-Inhabiting Microbial Communities of Olive Trees. Plants, 2023, 12, 912.	1.6	5
1718	Cooperation of arbuscular mycorrhizal fungi and bacteria to facilitate the host plant growth dependent on soil pH. Frontiers in Microbiology, 0, 14, .	1.5	2
1719	Best practices for generating and analyzing $16S\ rRNA$ amplicon data to track coral microbiome dynamics. Frontiers in Microbiology, $0,13,.$	1.5	3
1720	Rock Traits Drive Complex Microbial Communities at the Edge of Life. Astrobiology, 2023, 23, 395-406.	1.5	2

#	Article	IF	CITATIONS
1721	From guest to host: parasite Cistanche deserticola shapes and dominates bacterial and fungal community structure and network complexity. Environmental Microbiomes, 2023, 18, .	2.2	1
1722	Bacterial taxonomic and functional profiles from Bohai Sea to northern Yellow Sea. Frontiers in Microbiology, 0, 14, .	1.5	0
1723	Network analysis of 16S rRNA sequences suggests microbial keystone taxa contribute to marine N2O cycling. Communications Biology, 2023, 6 , .	2.0	0
1724	Dietary intake of table olives exerts antihypertensive effects in association with changes in gut microbiota in spontaneously hypertensive rats. Food and Function, 2023, 14, 2793-2806.	2.1	2
1725	A Deep Seamount Effect Enhanced the Vertical Connectivity of the Planktonic Community Across 1,000Âm Above Summit. Journal of Geophysical Research: Oceans, 2023, 128, .	1.0	1
1728	A New Technique for Use in Culturing Prokaryotes Comprising the Mouse Intestinal Microbiome. Advances in Microbiology, 2023, 13, 119-147.	0.3	0
1729	CNN_FunBar: Advanced Learning Technique for Fungi ITS Region Classification. Genes, 2023, 14, 634.	1.0	2
1730	Multivariate statistical and bioinformatic analyses for the seasonal variations of actinobacterial community structures in a drinking water reservoir. Journal of Environmental Sciences, 2024, 137, 1-17.	3.2	3
1731	Community response of soil microorganisms to combined contamination of polycyclic aromatic hydrocarbons and potentially toxic elements in a typical coking plant. Frontiers in Microbiology, 0, 14, .	1.5	1
1732	Bacterial diversity and coâ€occurrence patterns differ across a worldâ€wide spatial distribution of habitats in glacier ecosystems. Functional Ecology, 2023, 37, 1520-1535.	1.7	2
1733	Assembly processes underlying bacterial community differentiation among geographically close mangrove forests., 2023, 2, 73-88.		3
1734	Microbial community structure in rice rhizosheaths under drought stress. Journal of Plant Ecology, 2023, 16, .	1.2	3
1735	Seasonal variations of soil bacterial and fungal communities in a subtropical Eucalyptus plantation and their responses to throughfall reduction. Frontiers in Microbiology, 0, 14, .	1.5	1
1736	Diversity and assembly of root-associated microbiomes of rubber trees. Frontiers in Plant Science, 0, 14, .	1.7	1
1737	Bacterial co-occurrence patterns are more complex but less stable than archaea in enhanced oil recovery applied oil reservoirs. Process Biochemistry, 2023, 130, 40-49.	1.8	3
1738	Meadow transformations alter above―and belowâ€ground ecological networks and ecosystem multifunctionality. Functional Ecology, 0, , .	1.7	0
1739	Facilitative interaction networks in experimental microbial community dynamics. Frontiers in Microbiology, 0, 14 , .	1.5	4
1740	Effects of the synbiotic composed of mangiferin and Lactobacillus reuteri 1–12 on type 2 diabetes mellitus rats. Frontiers in Microbiology, 0, 14, .	1.5	1

#	Article	IF	CITATIONS
1741	Network Analysis to Evaluate Complexities in Relationships Among Fermentation Variables Measured Within Continuous Culture Experiments. Journal of Animal Science, 0, , .	0.2	1
1742	Effects of biochar addition on aeolian soil microbial community assembly and structure. Applied Microbiology and Biotechnology, 0, , .	1.7	0
1743	An introduction to current and future aspect on growth promoting microbiome., 2023,, 87-110.		0
1744	Soil microbial diversity, soil health and agricultural sustainability. , 2023, , 107-126.		1
1815	Rebound effects of energy efficiency improvement based on computable general equilibrium models: a systematic review. Energy Efficiency, 2023, 16, .	1.3	0
1961	An Overview of Biodiversity and Network Modeling Approaches: Applications to Sedimentary DNA Records. Developments in Paleoenvironmental Research, 2023, , 379-391.	7.5	0
1994	Physiological and biochemical methods for studying soil biota and their functions., 2024,, 193-227.		0
2018	Microbial-Based Products and Soil Management Practices to Control Nematodes in Organic Horticultural Crops. Sustainability in Plant and Crop Protection, 2024, , 3-31.	0.2	0