Large-scale association analysis provides insights into t pathophysiology of type 2 diabetes

Nature Genetics 44, 981-990

DOI: 10.1038/ng.2383

Citation Report

#	Article	IF	CITATIONS
2	The Metabochip, a Custom Genotyping Array for Genetic Studies of Metabolic, Cardiovascular, and Anthropometric Traits. PLoS Genetics, 2012, 8, e1002793.	1.5	448
3	The Complex Interplay of Genetic and Lifestyle Risk Factors in Type 2 Diabetes: An Overview. Scientifica, 2012, 2012, 1-11.	0.6	20
4	Resident risks. Nature, 2012, 490, 44-46.	13.7	0
5	Type 2 diabetes: the evolution of a disease. British Journal of Diabetes and Vascular Disease, 2012, 12, 290-298.	0.6	2
6	Bayesian refinement of association signals for 14 loci in 3 common diseases. Nature Genetics, 2012, 44, 1294-1301.	9.4	469
7	Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nature Genetics, 2012, 44, 991-1005.	9.4	746
8	Exome sequencing and complex disease: practical aspects of rare variant association studies. Human Molecular Genetics, 2012, 21, R1-R9.	1.4	114
9	Enhanced brain performance in mice following postnatal stress. Journal of Endocrinology, 2012, 215, 413-424.	1.2	7
11	Associations of the FTO rs9939609 and the MC4R rs17782313 polymorphisms with type 2 diabetes are modulated by diet, being higher when adherence to the Mediterranean diet pattern is low. Cardiovascular Diabetology, 2012, 11, 137.	2.7	129
12	Mining Genes in Type 2 Diabetic Islets and Finding Gold. Cell Metabolism, 2012, 16, 555-557.	7.2	4
13	What Will Diabetes Genomes Tell Us?. Current Diabetes Reports, 2012, 12, 643-650.	1.7	10
14	Regulation of insulin and typeÂ1 insulinâ€ŀike growth factor signaling and action by the <scp>G</scp> rb10/14 and <scp>SH</scp> 2 <scp>B</scp> 1/ <scp>B</scp> 2 adaptor proteins. FEBS Journal, 2013, 280, 794-816.	2.2	49
15	Finding Genetic Risk Factors of Gestational Diabetes. Genomics and Informatics, 2012, 10, 239.	0.4	22
16	Mechanisms behind the immediate effects of Roux-en-Y gastric bypass surgery on type 2 diabetes. Theoretical Biology and Medical Modelling, 2013, 10, 45.	2.1	28
17	Genetic Modifiers of Cystic Fibrosis–Related Diabetes. Diabetes, 2013, 62, 3627-3635.	0.3	148
18	Association of glucokinase regulatory protein polymorphism with type 2 diabetes and fasting plasma glucose: a meta-analysis. Molecular Biology Reports, 2013, 40, 3935-3942.	1.0	26
19	Biomarkers for Type 2 Diabetes and Impaired Fasting Glucose Using a Nontargeted Metabolomics Approach. Diabetes, 2013, 62, 4270-4276.	0.3	356
20	Diabetes genes identified by genome-wide association studies are regulated in mice by nutritional factors in metabolically relevant tissues and by glucose concentrations in islets. BMC Genetics, 2013, 14, 10	2.7	23

#	Article	IF	CITATIONS
21	Analysis of the contribution of FTO, NPC1, ENPP1, NEGR1, GNPDA2 and MC4Rgenes to obesity in Mexican children. BMC Medical Genetics, 2013, 14, 21.	2.1	55
22	What psychiatric genetics has taught us about the nature of psychiatric illness and what is left to learn. Molecular Psychiatry, 2013, 18, 1058-1066.	4.1	157
23	Evaluation of variant A45T in NEUROD1/BETA2 for its association with type 2 diabetes mellitus. Endocrine, 2013, 44, 99-106.	1.1	4
24	Pleiotropic effects of obesity-susceptibility loci on metabolic traits: a meta-analysis of up to 37,874 individuals. Diabetologia, 2013, 56, 2134-2146.	2.9	32
25	Identification of genetic variation that determines human trehalase activity and its association with type 2 diabetes. Human Genetics, 2013, 132, 697-707.	1.8	19
26	Genetic Information and the Prediction of Incident Type 2 Diabetes in a High-Risk Multiethnic Population. Diabetes Care, 2013, 36, 2836-2842.	4.3	22
27	Association Between a Genetic Variant Related to Glutamic Acid Metabolism and Coronary Heart Disease in Individuals With Type 2 Diabetes. JAMA - Journal of the American Medical Association, 2013, 310, 821.	3.8	122
28	Identification of <i>HKDC1</i> and <i>BACE2</i> as Genes Influencing Glycemic Traits During Pregnancy Through Genome-Wide Association Studies. Diabetes, 2013, 62, 3282-3291.	0.3	119
30	The Role of Pharmacogenetics in Drug Disposition and Response of Oral Glucose-Lowering Drugs. Clinical Pharmacokinetics, 2013, 52, 833-854.	1.6	27
31	Dissecting Quantitative Traits in Mice. Annual Review of Genomics and Human Genetics, 2013, 14, 421-439.	2.5	28
32	PPARC2 Pro12Ala and ADAMTS9 rs4607103 as "insulin resistance loci―and "insulin secretion loci―in Italian individuals. The GENFIEV study and the Verona Newly Diagnosed Type 2 Diabetes Study (VNDS) 4. Acta Diabetologica, 2013, 50, 401-408.	1.2	33
33	A low-frequency GLIS3 variant associated with resistance to Japanese type 1 diabetes. Biochemical and Biophysical Research Communications, 2013, 437, 521-525.	1.0	17
34	Association of Ketone Body Levels With Hyperglycemia and Type 2 Diabetes in 9,398 Finnish Men. Diabetes, 2013, 62, 3618-3626.	0.3	105
35	Strong Parent-of-Origin Effects in the Association of <i>KCNQ1</i> Variants With Type 2 Diabetes in American Indians. Diabetes, 2013, 62, 2984-2991.	0.3	60
36	Systems Epidemiology: A New Direction in Nutrition and Metabolic Disease Research. Current Nutrition Reports, 2013, 2, 225-235.	2.1	43
37	Bridging the Gap Between Genetic Associations and Molecular Mechanisms for Type 2 Diabetes. Current Diabetes Reports, 2013, 13, 778-785.	1.7	10
38	Evaluating empirical bounds on complex disease genetic architecture. Nature Genetics, 2013, 45, 1418-1427.	9.4	147
39	Cell-type, allelic, and genetic signatures in the human pancreatic beta cell transcriptome. Genome Research, 2013, 23, 1554-1562.	2.4	161

#	Article	IF	CITATIONS
40	Assessing the Clinical Utility of a Genetic Risk Score Constructed Using 49 Susceptibility Alleles for Type 2 Diabetes in a Japanese Population. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E1667-E1673.	1.8	37
41	Whole-Exome Sequencing of 2,000 Danish Individuals and the Role of Rare Coding Variants in Type 2 Diabetes. American Journal of Human Genetics, 2013, 93, 1072-1086.	2.6	124
42	Using Phenotypic Heterogeneity to Increase the Power of Genomeâ€Wide Association Studies: Application to Age at Onset of Ischaemic Stroke Subphenotypes. Genetic Epidemiology, 2013, 37, 495-503.	0.6	10
43	Allelic expression imbalance screening of genes in chromosome 1q21–24 region to identify functional variants for Type 2 diabetes susceptibility. Physiological Genomics, 2013, 45, 509-520.	1.0	9
44	A Genomeâ€Wide Search for Type 2 Diabetes Susceptibility Genes in an Extended Arab Family. Annals of Human Genetics, 2013, 77, 488-503.	0.3	28
45	Trans-ethnic fine mapping identifies a novel independent locus at the 3′ end of CDKAL1 and novel variants of several susceptibility loci for type 2 diabetes in a Han Chinese population. Diabetologia, 2013, 56, 2619-2628.	2.9	27
46	Prediction of type 2 diabetes in women with a history of gestational diabetes using a genetic risk score. Diabetologia, 2013, 56, 2556-2563.	2.9	44
47	Studies of association of AGPAT6variants with type 2 diabetes and related metabolic phenotypes in 12,068 Danes. BMC Medical Genetics, 2013, 14, 113.	2.1	2
48	Common Sources of Bias in Gene–Lifestyle Interaction Studies of Cardiometabolic Disease. Current Nutrition Reports, 2013, 2, 251-257.	2.1	1
49	Type 2 diabetes in East Asians: similarities and differences with populations in Europe and the United States. Annals of the New York Academy of Sciences, 2013, 1281, 64-91.	1.8	606
50	Implications of sexâ€specific selection for the genetic basis of disease. Evolutionary Applications, 2013, 6, 1208-1217.	1.5	31
51	Obesity genomics: assessing the transferability of susceptibility loci across diverse populations. Genome Medicine, 2013, 5, 55.	3.6	97
52	Genetics and Genomics for the Prevention and Treatment of Cardiovascular Disease: Update. Circulation, 2013, 128, 2813-2851.	1.6	100
53	Chromatin marks identify critical cell types for fine mapping complex trait variants. Nature Genetics, 2013, 45, 124-130.	9.4	553
54	Rare-variant genome-wide association studies: a new frontier in genetic analysis of complex traits. Pharmacogenomics, 2013, 14, 413-424.	0.6	37
55	Cellular and animal models of type 2 diabetes GWAS gene polymorphisms: what can we learn?. Drug Discovery Today: Disease Models, 2013, 10, e59-e64.	1.2	0
56	Towards a personalised diagnosis of type 2 diabetes. Lancet Diabetes and Endocrinology,the, 2013, 1, 6-7.	5.5	0
57	Systems Biology Approaches and Applications in Obesity, Diabetes, and Cardiovascular Diseases. Current Cardiovascular Risk Reports, 2013, 7, 73-83.	0.8	49

ARTICLE IF CITATIONS # Recent Developments in the Genetic and Genomic Basis of Type 2 Diabetes. Current Cardiovascular Risk 58 0.8 0 Reports, 2013, 7, 66-72. The genetics of type 2 diabetes and its clinical relevance. Clinical Genetics, 2013, 83, 297-306. 59 1.0 60 Diabetes Mellitus and Inflammation. Current Diabetes Reports, 2013, 13, 435-444. 1.7 554 Systematic evaluation of validated type 2 diabetes and glycaemic trait loci for association with insulin clearance. Diabetologia, 2013, 56, 1282-1290. Type 2 Diabetes Risk Alleles Near <i>BCAR1</i> and in <i>ANK1</i> Associate With Decreased Î²-Cell Function Whereas Risk Alleles Near <i>ANKRD55</i> and <i>GRB14</i> Associate With Decreased Insulin 1.8 62 60 Sensitivity in the Danish Inter99 Cohort. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E801-E806. Genetics of type 2 diabetes and potential clinical implications. Archives of Pharmacal Research, 2013, 36, 167-177 Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nature Genetics, 2013, 64 9.4 960 45, 353-361. Clinical and Genetic Risk Factors for Type 2 Diabetes at Early or Late Post Partum After Gestational 1.8 92 Diabetes Mellitus. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E744-E752. Positive selection of protective variants for type 2 diabetes from the Neolithic onward: a case study in 1.4 66 35 Central Asia. European Journal of Human Genetics, 2013, 21, 1146-1151. Recent progress in the use of genetics to understand links between type 2 diabetes and related metabolic traits. Genome Biology, 2013, 14, 203. New insights in the regulation of skeletal muscle PGC-11[±] by exercise and metabolic diseases. Drug 68 1.2 6 Discovery Today: Disease Models, 2013, 10, e79-e85. Pesticides and human diabetes: a link worth exploring?. Diabetic Medicine, 2013, 30, 1268-1271. 1.2 Clinical utility of genetic risk testing in primary care: the example of Type 2 diabetes. Personalized 71 0.8 15 Medicine, 2013, 10, 549-563. Diabetes Subphenotypes and Metabolomics: The Key to Discovering Laboratory Markers for Personalized Medicine?. Clinical Chemistry, 2013, 59, 1294-1296. 1.5 The <i>CTRB1/2</i> Locus Affects Diabetes Susceptibility and Treatment via the Incretin Pathway. 73 0.3 96 Diabetes, 2013, 62, 3275-3281. Cell-Specific Actions of a Human LHX3 Gene Enhancer During Pituitary and Spinal Cord Development. Molecular Endocrinology, 2013, 27, 2013-2027. 74 Pharmacogenetic Perturbations in Humans as a Tool to Generate Mechanistic Insight. Diabetes, 2013, 75 0.37 62, 3019-3021. Can genetic information change patient behavior to reduce Type 2 diabetes risk?. Personalized Medicine, 2013, 10, 9-12.

#	Article	IF	CITATIONS
77	"Prediction Is Very Hard, Especially About the Future― New Biomarkers for Type 2 Diabetes?. Diabetes, 2013, 62, 1384-1385.	0.3	17
78	Genetic Risk Score of 46 Type 2 Diabetes Risk Variants Associates With Changes in Plasma Glucose and Estimates of Pancreatic β-Cell Function Over 5 Years of Follow-Up. Diabetes, 2013, 62, 3610-3617.	0.3	42
79	Gene-Environment and Gene-Treatment Interactions in Type 2 Diabetes. Diabetes Care, 2013, 36, 1413-1421.	4.3	128
80	On the simple and the complex in psychiatry, with reference to DSM 5 and Research Domain Criteria. Journal of Psychiatry and Neuroscience, 2013, 38, 148-151.	1.4	8
81	Expression Profiling of Type 2 Diabetes Susceptibility Genes in the Pancreatic Islets, Adipose Tissue and Liver of Obese Mice. Experimental and Clinical Endocrinology and Diabetes, 2013, 121, 413-419.	0.6	3
82	Genetic Screening for the Risk of Type 2 Diabetes. Diabetes Care, 2013, 36, S120-S126.	4.3	134
83	GLIS3, a Susceptibility Gene for Type 1 and Type 2 Diabetes, Modulates Pancreatic Beta Cell Apoptosis via Regulation of a Splice Variant of the BH3-Only Protein Bim. PLoS Genetics, 2013, 9, e1003532.	1.5	151
84	tRNA Methyltransferase Homolog Gene TRMT10A Mutation in Young Onset Diabetes and Primary Microcephaly in Humans. PLoS Genetics, 2013, 9, e1003888.	1.5	103
85	Bioenergetics in human evolution and disease: implications for the origins of biological complexity and the missing genetic variation of common diseases. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120267.	1.8	102
86	Allele-Specific Transcriptional Activity at Type 2 Diabetes-Associated Single Nucleotide Polymorphisms in Regions of Pancreatic Islet Open Chromatin at the JAZF1 Locus. Diabetes, 2013, 62, 1756-1762.	0.3	42
87	Schizophrenia at a Genetics Crossroads: Where to Now?. Schizophrenia Bulletin, 2013, 39, 490-495.	2.3	12
88	Genome-wide association study identifies ZFHX1B as a susceptibility locus for severe myopia. Human Molecular Genetics, 2013, 22, 5288-5294.	1.4	59
89	Association of risk variants for type 2 diabetes and hyperglycemia with gestational diabetes. European Journal of Endocrinology, 2013, 169, 291-297.	1.9	102
90	Protein Sets Define Disease States and Predict In Vivo Effects of Drug Treatment. Molecular and Cellular Proteomics, 2013, 12, 1965-1979.	2.5	29
91	Animal Models of GWAS-Identified Type 2 Diabetes Genes. Journal of Diabetes Research, 2013, 2013, 1-12.	1.0	28
92	Novel locus including FGF21 is associated with dietary macronutrient intake. Human Molecular Genetics, 2013, 22, 1895-1902.	1.4	167
93	Insights into the genetic basis of type 2 diabetes. Journal of Diabetes Investigation, 2013, 4, 233-244.	1.1	51
94	The Krüppel-Like Protein Gli-Similar 3 (Glis3) Functions as a Key Regulator of Insulin Transcription. Molecular Endocrinology, 2013, 27, 1692-1705.	3.7	50

#	Article	IF	CITATIONS
95	Replication study for the association of a single-nucleotide polymorphism, rs3746876, within KCNJ15, with susceptibility to type 2 diabetes in a Japanese population. Journal of Human Genetics, 2013, 58, 490-493.	1.1	8
96	An omnibus permutation test on ensembles of two-locus analyses can detect pure epistasis and genetic heterogeneity in genome-wide association studies. SpringerPlus, 2013, 2, 230.	1.2	2
97	Lack of interaction of beta-cell-function-associated variants with hypertension on change in fasting glucose and diabetes risk. Journal of Hypertension, 2013, 31, 1001-1009.	0.3	0
98	Type 2 Diabetes. Deutsches Ärzteblatt International, 2013, 110, 331-7.	0.6	45
99	The Risk of Type 2 Diabetes in Men Is Synergistically Affected by Parental History of Diabetes and Overweight. PLoS ONE, 2013, 8, e61763.	1.1	25
100	The Impact of Phenotypic and Genetic Heterogeneity on Results of Genome Wide Association Studies of Complex Diseases. PLoS ONE, 2013, 8, e76295.	1.1	177
101	Plasma Metabolomics Reveal Alterations of Sphingo- and Glycerophospholipid Levels in Non-Diabetic Carriers of the Transcription Factor 7-Like 2 Polymorphism rs7903146. PLoS ONE, 2013, 8, e78430.	1.1	21
102	Replication Study for the Association of 9 East Asian GWAS-Derived Loci with Susceptibility to Type 2 Diabetes in a Japanese Population. PLoS ONE, 2013, 8, e76317.	1.1	43
103	MicroRNAs and Long Non-Coding RNAs in Pancreatic Beta Cell Function. , 2014, , 379-392.		0
104			0
104	Altered Pancreatic Growth and Insulin Secretion in WSB/EIJ Mice. PLoS ONE, 2014, 9, e88352.	1.1	8
104	The Role of the Niemann-Pick Disease, Type C1 Protein in Adipocyte Insulin Action. PLoS ONE, 2014, 9, e88352.	1.1	8
104 105 106	Altered Pancreatic Growth and Insulin Secretion in WSB/EIJ Mice. PLoS ONE, 2014, 9, e88352. The Role of the Niemann-Pick Disease, Type C1 Protein in Adipocyte Insulin Action. PLoS ONE, 2014, 9, e95598. Evaluation of Common Type 2 Diabetes Risk Variants in a South Asian Population of Sri Lankan Descent. PLoS ONE, 2014, 9, e98608.	1.1 1.1 1.1	8 21 8
104 105 106 107	Altered Pancreatic Growth and Insulin Secretion in WSB/EIJ Mice. PLoS ONE, 2014, 9, e88352. The Role of the Niemann-Pick Disease, Type C1 Protein in Adipocyte Insulin Action. PLoS ONE, 2014, 9, e95598. Evaluation of Common Type 2 Diabetes Risk Variants in a South Asian Population of Sri Lankan Descent. PLoS ONE, 2014, 9, e98608. A Combined Analysis of 48 Type 2 Diabetes Genetic Risk Variants Shows No Discriminative Value to Predict Time to First Prescription of a Glucose Lowering Drug in Danish Patients with Screen Detected Type 2 Diabetes. PLoS ONE, 2014, 9, e104837.	1.1 1.1 1.1 1.1	8 21 8 9
104 105 106 107 108	Altered Pancreatic Growth and Insulin Secretion in WSB/EIJ Mice. PLoS ONE, 2014, 9, e88352. The Role of the Niemann-Pick Disease, Type C1 Protein in Adipocyte Insulin Action. PLoS ONE, 2014, 9, e95598. Evaluation of Common Type 2 Diabetes Risk Variants in a South Asian Population of Sri Lankan Descent. PLoS ONE, 2014, 9, e98608. A Combined Analysis of 48 Type 2 Diabetes Genetic Risk Variants Shows No Discriminative Value to Predict Time to First Prescription of a Glucose Lowering Drug in Danish Patients with Screen Detected Type 2 Diabetes. PLoS ONE, 2014, 9, e104837. Identification of Allelic Heterogeneity at Type-2 Diabetes Loci and Impact on Prediction. PLoS ONE, 2014, 9, e113072.	1.1 1.1 1.1 1.1	8 21 8 9 6
104 105 106 107 108 109	 Altered Pancreatic Growth and Insulin Secretion in WSB/EJ Mice. PLoS ONE, 2014, 9, e88352. The Role of the Niemann-Pick Disease, Type C1 Protein in Adipocyte Insulin Action. PLoS ONE, 2014, 9, e95598. Evaluation of Common Type 2 Diabetes Risk Variants in a South Asian Population of Sri Lankan Descent. PLoS ONE, 2014, 9, e98608. A Combined Analysis of 48 Type 2 Diabetes Genetic Risk Variants Shows No Discriminative Value to Predict Time to First Prescription of a Glucose Lowering Drug in Danish Patients with Screen Detected Type 2 Diabetes. PLoS ONE, 2014, 9, e104837. Identification of Allelic Heterogeneity at Type-2 Diabetes Loci and Impact on Prediction. PLoS ONE, 2014, 9, e113072. The Human Pancreas Proteome Defined by Transcriptomics and Antibody-Based Profiling. PLoS ONE, 2014, 9, e115421. 	1.1 1.1 1.1 1.1 1.1	8 21 8 9 6 35
104 105 106 107 108 109 110	 Attered Pancreatic Growth and Insulin Secretion in WSB/EIJ Mice. PLoS ONE, 2014, 9, e88352. The Role of the Niemann-Pick Disease, Type C1 Protein in Adipocyte Insulin Action. PLoS ONE, 2014, 9, e95598. Evaluation of Common Type 2 Diabetes Risk Variants in a South Asian Population of Sri Lankan Descent. PLoS ONE, 2014, 9, e98608. A Combined Analysis of 48 Type 2 Diabetes Genetic Risk Variants Shows No Discriminative Value to Predict Time to First Prescription of a Glucose Lowering Drug in Danish Patients with Screen Detected Type 2 Diabetes. PLoS ONE, 2014, 9, e104837. Identification of Allelic Heterogeneity at Type-2 Diabetes Loci and Impact on Prediction. PLoS ONE, 2014, 9, e113072. The Human Pancreas Proteome Defined by Transcriptomics and Antibody-Based Profiling. PLoS ONE, 2014, 9, e115421. Genetic and Epigenetics of Type 2 Diabetes. , 2014, , 467-476. 	1.1 1.1 1.1 1.1 1.1	8 21 8 9 6 35 0
104 105 106 107 108 109 110 111	 Attered Pancreatic Growth and insulin Secretion in WSB/EI) Mice. PLoS ONE, 2014, 9, e88352. The Role of the Niemann-Pick Disease, Type C1 Protein in Adipocyte Insulin Action. PLoS ONE, 2014, 9, e95598. Evaluation of Common Type 2 Diabetes Risk Variants in a South Asian Population of Sri Lankan Descent. PLoS ONE, 2014, 9, e98608. A Combined Analysis of 48 Type 2 Diabetes Genetic Risk Variants Shows No Discriminative Value to Predict Time to First Prescription of a Clucose Lowering Drug in Danish Patients with Screen Detected Type 2 Diabetes. PLoS ONE, 2014, 9, e104837. Identification of Allelic Heterogeneity at Type-2 Diabetes Loci and Impact on Prediction. PLoS ONE, 2014, 9, e113072. The Human Pancreas Proteome Defined by Transcriptomics and Antibody-Based Profiling. PLoS ONE, 2014, 9, e115421. Genetic and Epigenetics of Type 2 Diabetes. , 2014, , 467-476. Genetic Dissection of the Physiological Role of Skeletal Muscle in Metabolic Syndrome. New Journal of Science, 2014, 2014, 1-21. 	1.1 1.1 1.1 1.1 1.1 1.1 1.1	8 21 8 9 6 35 0 7

#	Article	IF	CITATIONS
113	Letter: Genome-Wide Association Study Identifies Two Novel Loci with Sex-Specific Effects for Type 2 Diabetes Mellitus and Glycemic Traits in a Korean Population (Diabetes Metab J2014;38:375-87). Diabetes and Metabolism Journal, 2014, 38, 484.	1.8	1
114	Genome-Wide Association Study Identifies Two Novel Loci with Sex-Specific Effects for Type 2 Diabetes Mellitus and Glycemic Traits in a Korean Population. Diabetes and Metabolism Journal, 2014, 38, 375.	1.8	30
115	Genetic and epigenetic catalysts in early-life programming of adult cardiometabolic disorders. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2014, 7, 575.	1.1	12
117	Gene-Physical Activity Interactions and Their Impact on Diabetes. Medicine and Sport Science, 2014, 60, 94-103.	1.4	13
118	Genome-wide association studies: the good, the bad and the ugly. Clinical Medicine, 2014, 14, 428-431.	0.8	20
119	Impact of Type 2 Diabetes Susceptibility Variants on Quantitative Glycemic Traits Reveals Mechanistic Heterogeneity. Diabetes, 2014, 63, 2158-2171.	0.3	297
120	Multiple Nonglycemic Genomic Loci Are Newly Associated With Blood Level of Glycated Hemoglobin in East Asians. Diabetes, 2014, 63, 2551-2562.	0.3	61
122	TM6SF2 is a regulator of liver fat metabolism influencing triglyceride secretion and hepatic lipid droplet content. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8913-8918.	3.3	290
123	Shared common variants in prostate cancer and blood lipids. International Journal of Epidemiology, 2014, 43, 1205-1214.	0.9	45
124	Fast and accurate imputation of summary statistics enhances evidence of functional enrichment. Bioinformatics, 2014, 30, 2906-2914.	1.8	173
125	A cistrome roadmap for understanding pancreatic islet biology. Nature Genetics, 2014, 46, 95-96.	9.4	0
126	Moving into a new era of periodontal genetic studies: relevance of large case–control samples using severe phenotypes for genomeâ€wide association studies. Journal of Periodontal Research, 2014, 49, 683-695.	1.4	40
127	An integrated epigenomic analysis for type 2 diabetes susceptibility loci in monozygotic twins. Nature Communications, 2014, 5, 5719.	5.8	100
128	The Architecture of Risk for Type 2 Diabetes: Understanding Asia in the Context of Global Findings. International Journal of Endocrinology, 2014, 2014, 1-21.	0.6	36
129	The Causal Effect of Vitamin D Binding Protein (DBP) Levels on Calcemic and Cardiometabolic Diseases: A Mendelian Randomization Study. PLoS Medicine, 2014, 11, e1001751.	3.9	62
130	Gene-Lifestyle Interaction and Type 2 Diabetes: The EPIC InterAct Case-Cohort Study. PLoS Medicine, 2014, 11, e1001647.	3.9	180
131	Genome-Wide Associations between Genetic and Epigenetic Variation Influence mRNA Expression and Insulin Secretion in Human Pancreatic Islets. PLoS Genetics, 2014, 10, e1004735.	1.5	151
132	Identification of a Regulatory Variant That Binds FOXA1 and FOXA2 at the CDC123/CAMK1D Type 2 Diabetes GWAS Locus. PLoS Genetics, 2014, 10, e1004633.	1.5	80

		CITATION R	REPORT	
#	Article		IF	CITATIONS
133	A Central Role for GRB10 in Regulation of Islet Function in Man. PLoS Genetics, 2014, 2	l0, e1004235.	1.5	164
134	Genetic Susceptibility to Type 2 Diabetes and Obesity: Follow-Up of Findings from Gen Association Studies. International Journal of Endocrinology, 2014, 2014, 1-13.	ome-Wide	0.6	62
135	Genetics of Type 2 Diabetes: Insights into the Pathogenesis and Its Clinical Application. Research International, 2014, 2014, 1-15.	BioMed	0.9	81
136	ABCC5, a Gene That Influences the Anterior Chamber Depth, Is Associated with Primary Glaucoma. PLoS Genetics, 2014, 10, e1004089.	Angle Closure	1.5	68
137	A Population Genetic Signal of Polygenic Adaptation. PLoS Genetics, 2014, 10, e10044	·12.	1.5	447
138	Meta-Analysis of Genome-Wide Association Studies in African Americans Provides Insig Genetic Architecture of Type 2 Diabetes. PLoS Genetics, 2014, 10, e1004517.	hts into the	1.5	191
139	GPA: A Statistical Approach to Prioritizing GWAS Results by Integrating Pleiotropy and PLoS Genetics, 2014, 10, e1004787.	Annotation.	1.5	189
140	Association Mapping across Numerous Traits Reveals Patterns of Functional Variation i Genetics, 2014, 10, e1004845.	n Maize. PLoS	1.5	171
141	TCF7L2 is a master regulator of insulin production and processing. Human Molecular G 23, 6419-6431.	enetics, 2014,	1.4	166
142	Insights into �-Cell Biology and Type 2 Diabetes Pathogenesis from Studies of the Isl Frontiers in Diabetes, 2014, , 111-121.	et Transcriptome.	0.4	0
143	An Integrated Cell Purification and Genomics Strategy Reveals Multiple Regulators of P Development. PLoS Genetics, 2014, 10, e1004645.	ancreas	1.5	49
144	The Three Genetics (Nuclear DNA, Mitochondrial DNA, and Gut Microbiome) of Longevi Considered as Metaorganisms. BioMed Research International, 2014, 2014, 1-14.	ty in Humans	0.9	25
145	Challenges in Elucidating the Genetics of Diabetic Retinopathy. JAMA Ophthalmology, 2	2014, 132, 96.	1.4	85
146	Identification of a Novel Gene for Diabetic Traits in Rats, Mice, and Humans. Genetics, 2	2014, 198, 17-29.	1.2	44
147	Genetic characterization of Greek population isolates reveals strong genetic drift at mi trait-associated variants. Nature Communications, 2014, 5, 5345.	ssense and	5.8	60
148	Gene-carbohydrate and gene-fiber interactions and type 2 diabetes in diverse populatic National Health and Nutrition Examination Surveys (NHANES) as part of the Epidemiolo Architecture for Genes Linked to Environment (EAGLE) study. BMC Genetics, 2014, 15,	ns from the ogic 69.	2.7	30
149	Genome-Wide Association Studies in Type 2 Diabetes. Frontiers in Diabetes, 2014, , 1-1	13.	0.4	0
150	Two novel type 2 diabetes loci revealed through integration of TCF7L2 DNA occupancy association data. BMJ Open Diabetes Research and Care, 2014, 2, e000052.	and SNP	1.2	17

#	Article	IF	CITATIONS
151	Repurposing cAMP-Modulating Medications to Promote Î ² -Cell Replication. Molecular Endocrinology, 2014, 28, 1682-1697.	3.7	31
152	Grg3/TLE3 and Grg1/TLE1 Induce Monohormonal Pancreatic β-Cells While Repressing α-Cell Functions. Diabetes, 2014, 63, 1804-1816.	0.3	22
153	<i><scp>CDKAL1</scp></i> and <i><scp>HHEX</scp></i> are associated with type 2 diabetesâ€related traits among <scp>Y</scp> up'ik people (在å°ਞू≋®å‹ä≌ç¾ਝू≺i>CDKAL1å'Œ <i>HHEX</i> äŽ2型糖尿ç— 251-259.	ç> (å.8 . ³ ç%	‰¹å¥≉œœ‰å
154	<i>ABCC5</i> Transporter is a Novel Type 2 Diabetes Susceptibility Gene in European and African American Populations. Annals of Human Genetics, 2014, 78, 333-344.	0.3	11
155	Methodology for the analysis of rare genetic variation in genome-wide association and re-sequencing studies of complex human traits. Briefings in Functional Genomics, 2014, 13, 362-370.	1.3	18
156	Association of adiponectin (<i><scp>ADIPOQ</scp></i>) rs2241766 polymorphism and dyslipidemia in <scp>HIV</scp> / <scp>HCV</scp> â€coinfected patients. European Journal of Clinical Investigation, 2014, 44, 453-462.	1.7	12
157	A genetic variant in <i><scp>SLC</scp>6A20</i> is associated with Type 2 diabetes in whiteâ€European and Chinese populations. Diabetic Medicine, 2014, 31, 1350-1356.	1.2	7
158	Polygenic Type 2 Diabetes Prediction at the Limit of Common Variant Detection. Diabetes, 2014, 63, 2172-2182.	0.3	127
159	Epidemiology of diabetes. Medicine, 2014, 42, 698-702.	0.2	345
160	<scp>IRS2</scp> integrates insulin/ <scp>IGF1</scp> signalling with metabolism, neurodegeneration and longevity. Diabetes, Obesity and Metabolism, 2014, 16, 4-15.	2.2	69
162	A genome-wide association study identifies a LEPR gene as a novel predisposing factor for childhood fasting plasma glucose. Genomics, 2014, 104, 594-598.	1.3	3
163	Genetic Evidence for a Normal-Weight "Metabolically Obese―Phenotype Linking Insulin Resistance, Hypertension, Coronary Artery Disease, and Type 2 Diabetes. Diabetes, 2014, 63, 4369-4377.	0.3	185
164	Predicting cognitive ability in ageing cohorts using Type 2 diabetes genetic risk. Diabetic Medicine, 2014, 31, 714-720.	1.2	13
165	Association of physical activity with lower type 2 diabetes incidence is weaker among individuals at high genetic risk. Diabetologia, 2014, 57, 2530-2534.	2.9	26
166	Genotype-based treatment of type 2 diabetes with an α _{2A} -adrenergic receptor antagonist. Science Translational Medicine, 2014, 6, 257ra139.	5.8	58
167	Pancreatic Î ² -Cell Proliferation in Obesity. Advances in Nutrition, 2014, 5, 278-288.	2.9	97
168	Fine Mapping of Type 2 Diabetes Susceptibility Loci. Current Diabetes Reports, 2014, 14, 549.	1.7	22
169	When to suspect â€~funny' diabetes. Clinical Medicine, 2014, 14, 663-666.	0.8	5

#	Article	IF	CITATIONS
170	The eGenVar data management system—cataloguing and sharing sensitive data and metadata for the life sciences. Database: the Journal of Biological Databases and Curation, 2014, 2014, bau027.	1.4	10
171	The pancreatic β-cell transcriptome and integrated-omics. Current Opinion in Endocrinology, Diabetes and Obesity, 2014, 21, 83-88.	1.2	8
172	Methodological Challenges in Mendelian Randomization. Epidemiology, 2014, 25, 427-435.	1.2	405
173	Type 2 Diabetes. , 2014, , .		1
174	Clinical and Genetic Determinants of Progression of Type 2 Diabetes: A DIRECT Study. Diabetes Care, 2014, 37, 718-724.	4.3	59
175	Association of a Low-Frequency Variant in <i>HNF1A</i> With Type 2 Diabetes in a Latino Population. JAMA - Journal of the American Medical Association, 2014, 311, 2305.	3.8	230
176	Genetic Testing and Type 2 Diabetes Risk Awareness. The Diabetes Educator, 2014, 40, 427-433.	2.6	4
177	Association of Levels of Fasting Glucose and Insulin With Rare Variants at the Chromosome 11p11.2- <i>MADD</i> Locus. Circulation: Cardiovascular Genetics, 2014, 7, 374-382.	5.1	12
178	A rare SNP in pre-miR-34a is associated with increased levels of miR-34a in pancreatic beta cells. Acta Diabetologica, 2014, 51, 325-329.	1.2	30
179	Sleep duration does not mediate or modify association of common genetic variants with type 2 diabetes. Diabetologia, 2014, 57, 339-346.	2.9	10
180	Targeting the pancreatic \hat{l}^2 -cell to treat diabetes. Nature Reviews Drug Discovery, 2014, 13, 278-289.	21.5	228
181	Explaining additional genetic variation in complex traits. Trends in Genetics, 2014, 30, 124-132.	2.9	128
182	mtDNA mutations in human aging and longevity: Controversies and new perspectives opened by high-throughput technologies. Experimental Gerontology, 2014, 56, 234-244.	1.2	39
183	Genome-wide association study identifies three novel loci for type 2 diabetes. Human Molecular Genetics, 2014, 23, 239-246.	1.4	158
184	Clinical Interpretation and Implications of Whole-Genome Sequencing. JAMA - Journal of the American Medical Association, 2014, 311, 1035.	3.8	398
185	Transcriptional and epigenetic regulation in human islets. Diabetologia, 2014, 57, 451-454.	2.9	12
186	Estimating the heritability of colorectal cancer. Human Molecular Genetics, 2014, 23, 3898-3905.	1.4	114
187	Identification of low-frequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes. Nature Genetics, 2014, 46, 294-298.	9.4	294

#	Article	IF	CITATIONS
188	Pleiotropic effects of HNF1A rs1183910 in a population-based study of 60,283 individuals. Diabetologia, 2014, 57, 729-737.	2.9	8
189	Current Insights into the Joint Genetic Basis of Type 2 Diabetes and Coronary Heart Disease. Current Cardiovascular Risk Reports, 2014, 8, 368.	0.8	20
190	Nutrigenetics: Bridging Two Worlds to Understand Type 2 Diabetes. Current Diabetes Reports, 2014, 14, 477.	1.7	11
191	Genetics, genomics and metabolomics: new insights into maternal metabolism during pregnancy. Diabetic Medicine, 2014, 31, 254-262.	1.2	43
192	Laying a solid foundation for Manhattan – â€~setting the functional basis for the post-GWAS era'. Trends in Genetics, 2014, 30, 140-149.	2.9	84
193	Type 2 diabetes mellitusâ€related genetic polymorphisms in <scp>microRNAs</scp> and <scp>microRNA</scp> target sites (MicroRNAsä,ä,Ž2型糖尿ç—ç›,å³çš"基å›åﷺ€æ€§åŠmicroRNAé¶ä½). J	0.8 ournal of∣	Diabetes, 201
194	Rare variants and cardiovascular disease. Briefings in Functional Genomics, 2014, 13, 384-391.	1.3	12
195	The Inflammatory Gene Pathway Is Not a Major Contributor to Polycystic Ovary Snydrome. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E567-E571.	1.8	7
196	Large-scale genomics unveils the genetic architecture of psychiatric disorders. Nature Neuroscience, 2014, 17, 782-790.	7.1	321
197	A Genome-Wide Association Study in American Indians Implicates <i>DNER</i> as a Susceptibility Locus for Type 2 Diabetes. Diabetes, 2014, 63, 369-376.	0.3	63
198	The Genome of the Netherlands: design, and project goals. European Journal of Human Genetics, 2014, 22, 221-227.	1.4	246
199	Diabetes in Europe: An update. Diabetes Research and Clinical Practice, 2014, 103, 206-217.	1.1	210
200	The many faces of diabetes: a disease with increasing heterogeneity. Lancet, The, 2014, 383, 1084-1094.	6.3	497
201	Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet, The, 2014, 383, 1068-1083.	6.3	1,230
202	Adult tissue sources for new \hat{l}^2 cells. Translational Research, 2014, 163, 418-431.	2.2	11
203	Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. Nature Genetics, 2014, 46, 136-143.	9.4	475
204	The potential of novel biomarkers to improve risk prediction of type 2 diabetes. Diabetologia, 2014, 57, 16-29.	2.9	63
205	Realizing the promise of cancer predisposition genes. Nature, 2014, 505, 302-308.	13.7	483

	CITATION	Report	
#	Article	IF	CITATIONS
206	Joint effect of insulin signaling genes on all-cause mortality. Atherosclerosis, 2014, 237, 639-644.	0.4	7
207	Alleles that increase risk for type 2 diabetes mellitus are not associated with increased risk for Alzheimer's disease. Neurobiology of Aging, 2014, 35, 2883.e3-2883.e10.	1.5	9
208	Multiple Metabolic Genetic Risk Scores and Type 2 Diabetes Risk in Three Racial/Ethnic Groups. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E1814-E1818.	1.8	20
209	Cross-Tissue and Tissue-Specific eQTLs: Partitioning the Heritability of a Complex Trait. American Journal of Human Genetics, 2014, 95, 521-534.	2.6	82
210	Extensive changes in the transcriptional profile of human adipose tissue including genes involved in oxidative phosphorylation after a 6â€month exercise intervention. Acta Physiologica, 2014, 211, 188-200.	1.8	62
211	Insights into the Genetic Susceptibility to Type 2 Diabetes from Genome-Wide Association Studies of Glycaemic Traits. Current Diabetes Reports, 2014, 14, 551.	1.7	38
212	Does genetic heterogeneity account for the divergent risk of type 2 diabetes in South Asian and white European populations?. Diabetologia, 2014, 57, 2270-2281.	2.9	29
213	A comparison of type 2 diabetes risk allele load between African Americans and European Americans. Human Genetics, 2014, 133, 1487-1495.	1.8	49
214	RNA Sequencing Identifies Dysregulation of the Human Pancreatic Islet Transcriptome by the Saturated Fatty Acid Palmitate. Diabetes, 2014, 63, 1978-1993.	0.3	226
215	Recessive Mutations in <i>PCBD1</i> Cause a New Type of Early-Onset Diabetes. Diabetes, 2014, 63, 3557-3564.	0.3	41
216	Genetics of lipid traits: Genome-wide approaches yield new biology and clues to causality in coronary artery disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 2010-2020.	1.8	9
217	A RAG driver on the road to pediatric ALL. Nature Genetics, 2014, 46, 96-98.	9.4	2
218	Susceptibility to type 2 diabetes mellitus—from genes to prevention. Nature Reviews Endocrinology, 2014, 10, 198-205.	4.3	54
219	<i><scp>IL</scp>28<scp>RA</scp></i> polymorphism (rs10903035) is associated with insulin resistance in <scp>HIV</scp> / <scp>HCV</scp> â€coinfected patients. Journal of Viral Hepatitis, 2014, 21, 189-197.	1.0	5
221	Gene-Diet Interactions in Type 2 Diabetes. Current Nutrition Reports, 2014, 3, 302-323.	2.1	4
222	Association of genetic variants of the incretin-related genes with quantitative traits and occurrence of type 2 diabetes in Japanese. Molecular Genetics and Metabolism Reports, 2014, 1, 350-361.	0.4	8
223	Gene-Lifestyle Interactions in Complex Diseases: Design and Description of the GLACIER and VIKING Studies. Current Nutrition Reports, 2014, 3, 400-411.	2.1	15
224	Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13924-13929.	3.3	407

		CITATION R	EPORT	
#	Article		IF	CITATIONS
225	Genetics of metabolic syndrome. Reviews in Endocrine and Metabolic Disorders, 2014,	15, 243-252.	2.6	67
226	Overlap of Genetic Susceptibility to Type 1 Diabetes, Type 2 Diabetes, and Latent Autoi Adults. Current Diabetes Reports, 2014, 14, 550.	mmune Diabetes in	1.7	40
227	Genetic, nongenetic and epigenetic risk determinants in developmental programming c Acta Obstetricia Et Gynecologica Scandinavica, 2014, 93, 1099-1108.	of type 2 diabetes.	1.3	48
228	Pleiotropic Effects of Lipid Genes on Plasma Glucose, HbA1c, and HOMA-IR Levels. Diab 3149-3158.	etes, 2014, 63,	0.3	61
229	How important are rare variants in common disease?. Briefings in Functional Genomics, 353-361.	2014, 13,	1.3	76
230	Rare-Variant Association Analysis: Study Designs and Statistical Tests. American Journal Genetics, 2014, 95, 5-23.	of Human	2.6	837
231	Genetic variants underlying risk of endometriosis: insights from meta-analysis of eight g association and replication datasets. Human Reproduction Update, 2014, 20, 702-716.	;enome-wide	5.2	171
232	Utility of large consanguineous family-based model for investigating the genetics of typ mellitus. Gene, 2014, 548, 22-28.	e 2 diabetes	1.0	4
233	The contribution of biogeographical ancestry and socioeconomic status to racial/ethnic type 2 diabetes mellitus: results from the Boston Area Community Health Survey. Anna Epidemiology, 2014, 24, 648-654.e1.	disparities in Is of	0.9	30
234	The pancreatic Î ² cell: recent insights from human genetics. Trends in Endocrinology an 2014, 25, 425-434.	d Metabolism,	3.1	29
235	Genome-wide association study identifies multiple susceptibility loci for pancreatic can Genetics, 2014, 46, 994-1000.	cer. Nature	9.4	294
236	Genome-wide association meta-analysis of human longevity identifies a novel locus con survival beyond 90 years of age. Human Molecular Genetics, 2014, 23, 4420-4432.	ferring	1.4	227
237	Exploring genetic variants predisposing to diabetes mellitus and their association with i socioeconomic status. BMC Public Health, 2014, 14, 609.	ndicators of	1.2	1
238	Applying metabolomics to uncover novel biology in ARDS. American Journal of Physiolo Cellular and Molecular Physiology, 2014, 306, L957-L961.	gy - Lung	1.3	34
239	Type 2 diabetes-related genetic risk scores associated with variations in fasting plasma development of impaired glucose homeostasis in the prospective DESIR study. Diabeto 1601-1610.	glucose and Iogia, 2014, 57,	2.9	38
240	Type 2 diabetes susceptibility gene variants predispose to adult-onset autoimmune dial Diabetologia, 2014, 57, 1859-1868.	betes.	2.9	59
241	Association of African genetic ancestry with fasting glucose and HbA1c levels in non-dia individuals: the Boston Area Community Health (BACH) Prediabetes Study. Diabetologi. 1850-1858.	abetic a, 2014, 57,	2.9	16
242	A Common Functional Regulatory Variant at a Type 2 Diabetes Locus Upregulates ARAF the Pancreatic Beta Cell. American Journal of Human Genetics, 2014, 94, 186-197.	1 Expression in	2.6	67

ARTICLE IF CITATIONS # Redundant enhancers and causal variants in the TCF7L2 gene. European Journal of Human Genetics, 243 1.4 6 2014, 22, 1243-1246. Genetics of Diabetic Retinopathy. Current Diabetes Reports, 2014, 14, 515. 244 1.7 69 245 Genetic Counseling for Diabetes Mellitus. Current Genetic Medicine Reports, 2014, 2, 56-67. 1.9 16 Ambient Air Pollution and Type 2 Diabetes Mellitus: A Systematic Review of Epidemiologic Research. 246 Current Environmental Health Reports, 2014, 1, 275-286. Evaluation of a target region capture sequencing platform using monogenic diabetes as a 247 2.7 51 study-model. BMC Genetics, 2014, 15, 13. The MTMR9 rs2293855 polymorphism is associated with glucose tolerance, insulin secretion, insulin sensitivity and increased risk of prediabetes. Gene, 2014, 546, 150-155. 248 1.0 Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 249 9.4 959 diabetes susceptibility. Nature Genetics, 2014, 46, 234-244. The Role of Environmental Heterogeneity in Meta-Analysis of Gene-Environment Interactions With 250 0.6 Quantitative Traits. Genetic Epidemiology, 2014, 38, 416-429. A common Greenlandic TBC1D4 variant confers muscle insulin resistance and type 2 diabetes. Nature, 251 13.7 338 2014, 512, 190-193. Sex differences in disease genetics: evidence, evolution, and detection. Trends in Genetics, 2014, 30, 453-463 Metabolite Traits and Genetic Risk Provide Complementary Information for the Prediction of Future 253 4.387 Type 2 Diabetes. Diabetes Care, 2014, 37, 2508-2514. An Excess of Risk-Increasing Low-Frequency Variants Can Be a Signal of Polygenic Inheritance in 254 2.6 Complex Diseases. American Journal of Human Genetics, 2014, 94, 437-452 Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nature Genetics, 2014, 46, 255 9.4 428 357-363. Potential epigenetic dysregulation of genes associated with MODY and type 2 diabetes in humans exposed to a diabetic intrauterine environment: An analysis of genome-wide DNA methylation. 1.5 59 Metabolism: Clinical and Experimental, 2014, 63, 654-660. SPG7 Variant Escapes Phosphorylation-Regulated Processing by AFG3L2, Elevates Mitochondrial ROS, 257 2.9 39 and Is Associated with Multiple Clinical Phenotypes. Cell Reports, 2014, 7, 834-847. The bigger picture of FTO—the first GWAS-identified obesity gene. Nature Reviews Endocrinology, 2014, 10, 51-61. 490 Zinc–rs13266634 and the Arrival of Diabetes Pharmacogenetics: The \hat{a} €∞Zinc Mystique― Diabetes, 2014, 63, 0.3 259 6 1463-1464. Expression of Phosphofructokinase in Skeletal Muscle Is Influenced by Genetic Variation and Associated With Insulin Sensitivity. Diabetes, 2014, 63, 1154-1165.

#	Article	IF	CITATIONS
261	Genetic susceptibility to type 2 diabetes and obesity: from genome-wide association studies to rare variants and beyond. Diabetologia, 2014, 57, 1528-1541.	2.9	162
262	Genetics of Coronary Artery Disease. Circulation Research, 2014, 114, 1890-1903.	2.0	111
263	Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nature Genetics, 2014, 46, 714-721.	9.4	560
268	Protein–protein interactions and genetic diseases: The interactome. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1971-1980.	1.8	105
269	Genome-wide Association Studies: Findings at the Major Histocompatibility Complex Locus in Psychosis. Biological Psychiatry, 2014, 75, 276-283.	0.7	115
270	Recent advances in the molecular genetics of type 2 diabetes mellitus. World Journal of Diabetes, 2014, 5, 128.	1.3	97
271	Roles of IncRNAs in pancreatic beta cell identity and diabetes susceptibility. Frontiers in Genetics, 2014, 5, 193.	1.1	34
273	Fine Mapping Type 2 Diabetes Susceptibility Loci. Frontiers in Diabetes, 2014, , 14-28.	0.4	1
274	Genome-Wide Association Studies of Glycaemic Traits: A MAGICal Journey. Frontiers in Diabetes, 2014, , 42-57.	0.4	0
275	Likelihood ratio-based integrated personal risk assessment of type 2 diabetes. Endocrine Journal, 2014, 61, 967-988.	0.7	1
276	Physiology Helps GWAS Take a Step Closer to Mechanism. Diabetes, 2014, 63, 1836-1837.	0.3	5
277	Translating Genetic Association Signals for Diabetes and Metabolic Traits into Molecular Mechanisms for Disease. Frontiers in Diabetes, 2014, , 133-145.	0.4	0
278	Translating Advances in Our Understanding of the Genetics of Diabetes into the Clinic. Frontiers in Diabetes, 2014, , 173-186.	0.4	0
279	The developmental environment, epigenetic biomarkers and long-term health. Journal of Developmental Origins of Health and Disease, 2015, 6, 399-406.	0.7	87
280	Progress and promise in understanding the genetic basis of common diseases. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151684.	1.2	147
281	Human leukocyte telomere length is associated with DNA methylation levels in multiple subtelomeric and imprinted loci. Scientific Reports, 2014, 4, 4954.	1.6	85
282	Copy number variations play important roles in heredity of common diseases: a novel method to calculate heritability of a polymorphism. Scientific Reports, 2015, 5, 17156.	1.6	6
283	Type 2 diabetes mellitus. Nature Reviews Disease Primers, 2015, 1, 15019.	18.1	1,308

#	Article	IF	CITATIONS
284	Childhood cognitive ability moderates later-life manifestation of type 2 diabetes genetic risk Health Psychology, 2015, 34, 915-919.	1.3	7
286	The Hunt for Low-Frequency Alleles Predisposing to Type 2 Diabetes and Related Cardiovascular Risk Factors. Current Cardiovascular Risk Reports, 2015, 9, 1.	0.8	Ο
287	Sequence Kernel Association Analysis of Rare Variant Set Based on the Marginal Regression Model for Binary Traits. Genetic Epidemiology, 2015, 39, 399-405.	0.6	15
288	Assessing <scp><i>FOXO1A</i></scp> as a potential susceptibility locus for type 2 diabetes and obesity in <scp>A</scp> merican <scp>I</scp> ndians. Obesity, 2015, 23, 1960-1965.	1.5	11
289	Instrumental Variable Estimation in a Survival Context. Epidemiology, 2015, 26, 402-410.	1.2	157
290	Pancreatic islet cell development and regeneration. Current Opinion in Endocrinology, Diabetes and Obesity, 2015, 22, 255-264.	1.2	46
291	Alcohol Dependence Genetics: Lessons Learned From Genome-Wide Association Studies (GWAS) and Post-GWAS Analyses. Alcoholism: Clinical and Experimental Research, 2015, 39, 1312-1327.	1.4	121
292	Evidence of a Causal Association Between Insulinemia and Endometrial Cancer: A Mendelian Randomization Analysis. Journal of the National Cancer Institute, 2015, 107, .	3.0	129
293	Using Genetic Variation to Predict and Extend Long-term Kidney Transplant Function. Transplantation, 2015, 99, 2038-2048.	0.5	9
294	Mendelian randomization studies of biomarkers and type 2 diabetes. Endocrine Connections, 2015, 4, 249-260.	0.8	18
295	Pharmacogenetics and individual responses to treatment of hyperglycemia in type 2 diabetes. Pharmacogenetics and Genomics, 2015, 25, 475-484.	0.7	5
296	Characterizing the genetic risk for Type 2 diabetes in a Malaysian multiâ€ethnic cohort. Diabetic Medicine, 2015, 32, 1377-1384.	1.2	7
297	Association of MC4R codon 42 polymorphism with obese/diabetic ethnic Kashmiri population. Asian Journal of Medical and Biological Research, 2015, 1, 149-157.	0.1	0
298	The role of NOS2A -954G/C and vascular endothelial growth factor +936C/T polymorphisms in type 2 diabetes mellitus and diabetic nonproliferative retinopathy risk management. Therapeutics and Clinical Risk Management, 2015, 11, 1743.	0.9	15
299	DNA Methylation and MicroRNA-Based Biomarkers for Risk of Type 2 Diabetes. Current Diabetes Reviews, 2015, 12, 20-29.	0.6	15
300	Genetics of Type 2 Diabetes and Clinical Utility. Genes, 2015, 6, 372-384.	1.0	34
301	No Evidence of a Causal Relationship between Plasma Homocysteine and Type 2 Diabetes: A Mendelian Randomization Study. Frontiers in Cardiovascular Medicine, 2015, 2, 11.	1.1	22
302	Connecting SNPs in Diabetes: A Spatial Analysis of Meta-GWAS Loci. Frontiers in Endocrinology, 2015, 6, 102.	1.5	18

ARTICLE IF CITATIONS New insights from monogenic diabetes for \tilde{A} ¢ \hat{a} , $\neg \hat{A}$ "common \tilde{A} ¢ \hat{a} , $\neg \hat{A}$ •type 2 diabetes. Frontiers in Genetics, 2015, 303 1.1 29 6,251. Evaluation of Genome Wide Association Study Associated Type 2 Diabetes Susceptibility Loci in Sub 304 1.1 Saharan Africans. Frontiers in Genetics, 2015, 6, 335. Genomic-based tools for the risk assessment, management, and prevention of type 2 diabetes. The 305 9 1.4 Application of Clinical Genetics, 2015, 8, 1. Pleiotropy among Common Genetic Loci Identified for Cardiometabolic Disorders and C-Reactive 306 1.1 Protein. PLoS ONE, 2015, 10, e0118859. Assessment of Whole-Genome Regression for Type II Diabetes. PLoS ONE, 2015, 10, e0123818. 307 1.1 5 The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale 308 1.5 331 Genome-Wide Interaction Study. PLoS Genetics, 2015, 11, e1005378 Discovery and Fine-Mapping of Glycaemic and Obesity-Related Trait Loci Using High-Density Imputation. 309 1.5 77 PLoS Genetics, 2015, 11, e1005230. Transcript Expression Data from Human Islets Links Regulatory Signals from Genome-Wide Association Studies for Type 2 Diabetes and Glycemic Traits to Their Downstream Effectors. PLoS Genetics, 2015, 11, 310 1.5 e1005694. Genome-Wide Scan Informed by Age-Related Disease Identifies Loci for Exceptional Human Longevity. 311 1.5 128 PLoS Genetics, 2015, 11, e1005728. Associations between Potentially Modifiable Risk Factors and Alzheimer Disease: A Mendelian 153 Randomization Study. PLoS Medicine, 2015, 12, e1001841. Type 2 Diabetes Monocyte MicroRNA and mRNA Expression: Dyslipidemia Associates with Increased 313 1.1 23 Differentiation-Related Genes but Not Inflammatory Activation. PLoS ONE, 2015, 10, e0129421. A multi-functional analyzer uses parameter constraints to improve the efficiency of model-based 0.5 gene-set analysis. Annáls of Applied Statistics, 2015, 9, . Identification and validation of N-acetyltransferase 2 as an insulin sensitivity gene. Journal of Clinical 315 3.9 94 Investigation, 2015, 125, 1739-1751. Genetic Regulation of Puberty Timing in Humans. Neuroendocrinology, 2015, 102, 247-255. 1.2 Coffee intake and risk of obesity, metabolic syndrome and type 2 diabetes: a Mendelian randomization 317 0.9 148 study. International Journal of Epidemiology, 2015, 44, 551-565. A Bayesian Partitioning Model for the Detection of Multilocus Effects in Case-Control Studies. Human Heredity, 2015, 79, 69-79. Statistical colocalization of genetic risk variants for related autoimmune diseases in the context of 319 9.4 128 common controls. Nature Genetics, 2015, 47, 839-846. A Mendelian randomization study of the effect of type-2 diabetes on coronary heart disease. Nature 5.8 Communications, 2015, 6, 7060.

#	Article	IF	CITATIONS
321	Genetic polymorphism of APOB is associated with diabetes mellitus in sickle cell disease. Human Genetics, 2015, 134, 895-904.	1.8	20
322	Genetic Predisposition to Central Obesity and Risk of Type 2 Diabetes: Two Independent Cohort Studies. Diabetes Care, 2015, 38, 1306-1311.	4.3	54
323	Variation in Glucose Homeostasis Traits Associated With P2RX7 Polymorphisms in Mice and Humans. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E688-E696.	1.8	26
324	A Mendelian Randomization Study of Circulating Uric Acid and Type 2 Diabetes. Diabetes, 2015, 64, 3028-3036.	0.3	98
325	Genetic Determinants for Gestational Diabetes Mellitus and Related Metabolic Traits in Mexican Women. PLoS ONE, 2015, 10, e0126408.	1.1	53
326	Association Between <i>KCNQ1</i> Genetic Variants and Type 2 Diabetes in the Uyghur Population. Genetic Testing and Molecular Biomarkers, 2015, 19, 698-702.	0.3	3
327	Epigenetic Alterations in Human Liver From Subjects With Type 2 Diabetes in Parallel With Reduced Folate Levels. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E1491-E1501.	1.8	150
328	Serum Lipid Levels, Body Mass Index, and Their Role in Coronary Artery Calcification. Circulation: Cardiovascular Genetics, 2015, 8, 327-333.	5.1	17
329	Do personality traits moderate the manifestation of type 2 diabetes genetic risk?. Journal of Psychosomatic Research, 2015, 79, 303-308.	1.2	13
330	Insights into the Genetic Susceptibility to Type 2 Diabetes from Genome-Wide Association Studies of Obesity-Related Traits. Current Diabetes Reports, 2015, 15, 83.	1.7	47
331	Diabetes Pathology and Risk of Primary Open-Angle Glaucoma: Evaluating Causal Mechanisms by Using Genetic Information. American Journal of Epidemiology, 2016, 183, kwv204.	1.6	34
332	Pathways Targeted by Antidiabetes Drugs Are Enriched for Multiple Genes Associated With Type 2 Diabetes Risk. Diabetes, 2015, 64, 1470-1483.	0.3	31
333	Genetic and environmental components of family history in type 2 diabetes. Human Genetics, 2015, 134, 259-267.	1.8	39
334	New genetic loci link adipose and insulin biology to body fat distribution. Nature, 2015, 518, 187-196.	13.7	1,328
335	Genetic studies of body mass index yield new insights for obesity biology. Nature, 2015, 518, 197-206.	13.7	3,823
336	Association between circulating 25-hydroxyvitamin D and incident type 2 diabetes: a mendelian randomisation study. Lancet Diabetes and Endocrinology,the, 2015, 3, 35-42.	5.5	164
337	Metabolic factors and genetic risk mediate familial type 2 diabetes risk in the Framingham Heart Study. Diabetologia, 2015, 58, 988-996.	2.9	12
338	LRP5 Regulates Human Body Fat Distribution by Modulating Adipose Progenitor Biology in a Dose- and Depot-Specific Fashion. Cell Metabolism, 2015, 21, 262-273.	7.2	87

		CITATION R	EPORT	
#	Article		IF	Citations
339	Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature, 2015, 5	20, 558-562.	13.7	323
340	Rare and Common Genetic Events in Type 2 Diabetes: What Should Biologists Know?. Ce 2015, 21, 357-368.	ll Metabolism,	7.2	128
341	Low-frequency and rare exome chip variants associate with fasting glucose and type 2 dia susceptibility. Nature Communications, 2015, 6, 5897.	abetes	5.8	173
342	Cohort Profile: Estonian Biobank of the Estonian Genome Center, University of Tartu. Inte Journal of Epidemiology, 2015, 44, 1137-1147.	ernational	0.9	314
343	A systems view of epigenetic networks regulating pancreas development and βâ€cell fur Interdisciplinary Reviews: Systems Biology and Medicine, 2015, 7, 1-11.	iction. Wiley	6.6	19
344	LD Score regression distinguishes confounding from polygenicity in genome-wide associa Nature Genetics, 2015, 47, 291-295.	ition studies.	9.4	3,905
345	A systematic heritability analysis of the human whole blood transcriptome. Human Genet 343-358.	ics, 2015, 134,	1.8	35
346	Thoughts on the progression of type 2 diabetes drug discovery. Expert Opinion on Drug 1 2015, 10, 107-110.	Discovery,	2.5	10
347	Data interpretation: deciphering the biological function of Type 2 diabetes associated ris Diabetologica, 2015, 52, 789-800.	۱oci. Acta	1.2	6
348	Mouse-Human Experimental Epigenetic Analysis Unmasks Dietary Targets and Genetic Lia Diabetic Phenotypes. Cell Metabolism, 2015, 21, 138-149.	ability for	7.2	98
349	Latent autoimmune diabetes of the adult: current knowledge and uncertainty. Diabetic N 32, 843-852.	1edicine, 2015,	1.2	136
350	Comprehensive Metabolomic Profiling of Type 2 Diabetes. Clinical Chemistry, 2015, 61, 4	53-455.	1.5	11
351	A pharmacogenetic association between a variation in calpain 10 (CAPN10) gene and the metformin treatment in patients with type 2 diabetes. European Journal of Clinical Pharm 71, 59-63.	e response to acology, 2015,	0.8	16
352	Gene Therapy for Diabetes. , 2015, , 115-128.			0
353	Epigenetic mechanisms underlying type 2 diabetes mellitus. Nature Reviews Endocrinolog 261-263.	зу, 2015, 11,	4.3	18
354	Discovery of Coding Genetic Variants Influencing Diabetes-Related Serum Biomarkers and on Risk of Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2015, 100,	l Their Impact E664-E671.	1.8	23
355	Des mutations du gène SLC30A8 protègent contre le diabète de type 2. Medecine Des Metaboliques, 2015, 9, 25-26.	Maladies	0.1	0
356	Marqueurs génétiques du diabète de type 2 : quel impact métabolique ?. Medeci Metaboliques, 2015, 9, 29-30.	ne Des Maladies	0.1	0

# 357	ARTICLE GREGOR: evaluating global enrichment of trait-associated variants in epigenomic features using a	IF 1.8	CITATIONS
358	Insulin-induced cell division is controlled by the adaptor Grb14 in a Chfr-dependent manner. Cellular Signalling, 2015, 27, 798-806.	1.7	11
359	Automated, high-throughput derivation, characterization and differentiation of induced pluripotent stem cells. Nature Methods, 2015, 12, 885-892.	9.0	214
360	Shared genetic etiology underlying Alzheimer's disease and type 2 diabetes. Molecular Aspects of Medicine, 2015, 43-44, 66-76.	2.7	63
361	Role of Established Type 2 Diabetes–Susceptibility Genetic Variants in a High Prevalence American Indian Population. Diabetes, 2015, 64, 2646-2657.	0.3	34
362	Genetic variants primarily associated with type 2 diabetes are related to coronary artery disease risk. Atherosclerosis, 2015, 241, 419-426.	0.4	26
363	Insm1 cooperates with <scp>N</scp> eurod1 and <scp>F</scp> oxa2 to maintain mature pancreatic βâ€cell function. EMBO Journal, 2015, 34, 1417-1433.	3.5	77
364	Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-control study. Lancet Diabetes and Endocrinology,the, 2015, 3, 526-534.	5.5	396
365	Recent advances in understanding the genetic architecture of type 2 diabetes. Human Molecular Genetics, 2015, 24, R85-R92.	1.4	107
366	Using Genetic Variants to Assess the Relationship Between Circulating Lipids and Type 2 Diabetes. Diabetes, 2015, 64, 2676-2684.	0.3	114
367	The loss-of-function PCSK9 p.R46L genetic variant does not alter glucose homeostasis. Diabetologia, 2015, 58, 2051-2055.	2.9	49
368	Triglyceride-Increasing Alleles Associated with Protection against Type-2 Diabetes. PLoS Genetics, 2015, 11, e1005204.	1.5	21
369	An explained varianceâ€based genetic risk score associated with gestational diabetes antecedent and with progression to preâ€diabetes and type 2 diabetes: a cohort study. BJOG: an International Journal of Obstetrics and Gynaecology, 2015, 122, 411-419.	1.1	26
370	Effect of Bile Acid Sequestrants on the Risk of Cardiovascular Events. Circulation: Cardiovascular Genetics, 2015, 8, 618-627.	5.1	61
371	Genetics of cardiovascular disease: Importance of sex and ethnicity. Atherosclerosis, 2015, 241, 219-228.	0.4	92
372	Genetic Variation Determines PPARÎ ³ Function and Anti-diabetic Drug Response InÂVivo. Cell, 2015, 162, 33-44.	13.5	107
373	Mendelian randomization analysis supports the causal role of dysglycaemia and diabetes in the risk of coronary artery disease. European Heart Journal, 2015, 36, 1454-1462.	1.0	106
374	Identification and Functional Characterization of G6PC2 Coding Variants Influencing Glycemic Traits Define an Effector Transcript at the G6PC2-ABCB11 Locus. PLoS Genetics, 2015, 11, e1004876.	1.5	95

#	Article	IF	CITATIONS
375	Integrated genomic and BMI analysis for type 2 diabetes risk assessment. Frontiers in Genetics, 2015, 6, 75.	1.1	1
376	Genetics of Type 2 Diabetes—Pitfalls and Possibilities. Genes, 2015, 6, 87-123.	1.0	337
377	TM6SF2: Catch-22 in the Fight Against Nonalcoholic Fatty Liver Disease and Cardiovascular Disease?. Gastroenterology, 2015, 148, 679-684.	0.6	75
378	Future Translational Applications From the Contemporary Genomics Era. Circulation, 2015, 131, 1715-1736.	1.6	38
379	Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. European Journal of Epidemiology, 2015, 30, 543-552.	2.5	799
380	Does Type 2 Diabetes Genetic Testing and Counseling Reduce Modifiable Risk Factors? A Randomized Controlled Trial of Veterans. Journal of General Internal Medicine, 2015, 30, 1591-1598.	1.3	33
381	Replication study of the association of rs7578597 in THADA, rs10886471 in GRK5, and rs7403531 in RASGRP1 with susceptibility to type 2 diabetes among a Japanese population. Diabetology International, 2015, 6, 306-312.	0.7	1
382	Advances in Risk Prediction of Type 2 Diabetes: Integrating Genetic Scores With Framingham Risk Models. Diabetes, 2015, 64, 1495-1497.	0.3	17
383	Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World Journal of Diabetes, 2015, 6, 456.	1.3	802
384	Omics: Potential Role in Early-Phase Drug Development. , 2015, , 189-222.		0
384 385	Omics: Potential Role in Early-Phase Drug Development. , 2015, , 189-222. Are There Genetic Paths Common to Obesity, Cardiovascular Disease Outcomes, and Cardiovascular Risk Factors?. Circulation Research, 2015, 116, 909-922.	2.0	0
384 385 386	Omics: Potential Role in Early-Phase Drug Development. , 2015, , 189-222. Are There Genetic Paths Common to Obesity, Cardiovascular Disease Outcomes, and Cardiovascular Risk Factors?. Circulation Research, 2015, 116, 909-922. I'm Eating for Two: Parental Dietary Effects on Offspring Metabolism. Cell, 2015, 161, 93-105.	2.0	0 106 213
384 385 386 387	Omics: Potential Role in Early-Phase Drug Development., 2015,, 189-222. Are There Genetic Paths Common to Obesity, Cardiovascular Disease Outcomes, and Cardiovascular Risk Factors?. Circulation Research, 2015, 116, 909-922. I'm Eating for Two: Parental Dietary Effects on Offspring Metabolism. Cell, 2015, 161, 93-105. Cardiometabolic effects of genetic upregulation of the interleukin 1 receptor antagonist: a Mendelian randomisation analysis. Lancet Diabetes and Endocrinology, the, 2015, 3, 243-253.	2.0 13.5 5.5	0 106 213 115
384 385 386 387 388	Omics: Potential Role in Early-Phase Drug Development., 2015,, 189-222. Are There Genetic Paths Common to Obesity, Cardiovascular Disease Outcomes, and Cardiovascular Risk Factors?. Circulation Research, 2015, 116, 909-922. I'm Eating for Two: Parental Dietary Effects on Offspring Metabolism. Cell, 2015, 161, 93-105. Cardiometabolic effects of genetic upregulation of the interleukin 1 receptor antagonist: a Mendelian randomisation analysis. Lancet Diabetes and Endocrinology, the, 2015, 3, 243-253. Unique and Shared Metabolic Regulation in Clonal β-Cells and Primary Islets Derived From Rat Revealed by Metabolomics Analysis. Endocrinology, 2015, 156, 1995-2005.	2.0 13.5 5.5 1.4	0 106 213 115 23
384 385 386 387 388	Omics: Potential Role in Early-Phase Drug Development. , 2015, , 189-222. Are There Genetic Paths Common to Obesity, Cardiovascular Disease Outcomes, and Cardiovascular Risk Factors?. Circulation Research, 2015, 116, 909-922. I'm Eating for Two: Parental Dietary Effects on Offspring Metabolism. Cell, 2015, 161, 93-105. Cardiometabolic effects of genetic upregulation of the interleukin 1 receptor antagonist: a Mendelian randomisation analysis. Lancet Diabetes and Endocrinology, the, 2015, 3, 243-253. Unique and Shared Metabolic Regulation in Clonal β-Cells and Primary Islets Derived From Rat Revealed by Metabolomics Analysis. Endocrinology, 2015, 156, 1995-2005. Myocardial Infarction–Associated SNP at 6p24 Interferes With MEF2 Binding and Associates With <i>PHACTR1</i> Expression Levels in Human Coronary Arteries. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1472-1479.	2.0 13.5 5.5 1.4 1.1	0 106 213 115 23 78
384 385 386 387 388 389	Omics: Potential Role in Early-Phase Drug Development. , 2015, , 189-222. Are There Genetic Paths Common to Obesity, Cardiovascular Disease Outcomes, and Cardiovascular Risk Factors?. Circulation Research, 2015, 116, 909-922. Iae™m Eating for Two: Parental Dietary Effects on Offspring Metabolism. Cell, 2015, 161, 93-105. Cardiometabolic effects of genetic upregulation of the interleukin 1 receptor antagonist: a Mendelian randomisation analysis. Lancet Diabetes and Endocrinology, the, 2015, 3, 243-253. Unique and Shared Metabolic Regulation in Clonal β-Cells and Primary Islets Derived From Rat Revealed by Metabolomics Analysis. Endocrinology, 2015, 156, 1995-2005. Myocardial Infarctionã€ ^{ce} Associated SNP at 6p24 Interferes With MEF2 Binding and Associates With <i>PHACTR1</i> PHACTR1Expression Levels in Human Coronary Arteries. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1472-1479. Novel Observations From Next-Ceneration RNA Sequencing of Highly Purified Human Adult and Fetal Islet Cell Subsets. Diabetes, 2015, 64, 3172-3181.	2.0 13.5 5.5 1.4 1.1	0 106 213 115 23 78 268
 384 385 386 387 388 389 390 391 	Omics: Potential Role in Early-Phase Drug Development., 2015, , 189-222. Are There Genetic Paths Common to Obesity, Cardiovascular Disease Outcomes, and Cardiovascular Risk Factors?. Circulation Research, 2015, 116, 909-922. I@€™m Eating for Two: Parental Dietary Effects on Offspring Metabolism. Cell, 2015, 161, 93-105. Cardiometabolic effects of genetic upregulation of the interleukin 1 receptor antagonist: a Mendelian randomisation analysis. Lancet Diabetes and Endocrinology,the, 2015, 3, 243-253. Unique and Shared Metabolic Regulation in Clonal β-Cells and Primary Islets Derived From Rat Revealed by Metabolomics Analysis. Endocrinology, 2015, 156, 1995-2005. Myocardial Infarctionâ€"Associated SNP at 6p24 Interferes With MEF2 Binding and Associates With (1> PHACTR1 < (1> Expression Levels in Human Coronary Arteries. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1472-1479. Novel Observations From Next-Generation RNA Sequencing of Highly Purified Human Adult and Fetal Islet Cell Subsets. Diabetes, 2015, 64, 3172-3181. Mendelian Randomization: New Applications in the Coming Age of Hypothesis-Free Causality. Annual Review of Genomics and Human Genetics, 2015, 16, 327-350.	2.0 13.5 5.5 1.4 1.1 0.3 2.5	0 106 213 115 23 78 268 298

#	Article	IF	CITATIONS
393	Epigenetic modifications and long noncoding RNAs influence pancreas development and function. Trends in Genetics, 2015, 31, 290-299.	2.9	45
395	The genetics of diabetic complications. Nature Reviews Nephrology, 2015, 11, 277-287.	4.1	124
396	Genome-wide enrichment analysis between endometriosis and obesity-related traits reveals novel susceptibility loci. Human Molecular Genetics, 2015, 24, 1185-1199.	1.4	71
397	Whole-genome sequencing to understand the genetic architecture of common gene expression and biomarker phenotypes. Human Molecular Genetics, 2015, 24, 1504-1512.	1.4	8
398	Pleiotropy Analysis of Quantitative Traits at Gene Level by Multivariate Functional Linear Models. Genetic Epidemiology, 2015, 39, 259-275.	0.6	52
399	Genetically Determined Height and Coronary Artery Disease. New England Journal of Medicine, 2015, 372, 1608-1618.	13.9	220
400	Genomic medicine at the heart of diabetes management. Diabetologia, 2015, 58, 1725-1729.	2.9	17
401	Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores. American Journal of Human Genetics, 2015, 97, 576-592.	2.6	1,098
402	Molecular mechanisms underlying variations in lung function: a systems genetics analysis. Lancet Respiratory Medicine,the, 2015, 3, 782-795.	5.2	66
403	Partitioning heritability by functional annotation using genome-wide association summary statistics. Nature Genetics, 2015, 47, 1228-1235.	9.4	2,045
404	An atlas of genetic correlations across human diseases and traits. Nature Genetics, 2015, 47, 1236-1241.	9.4	3,145
405	Association of a 62 Variants Type 2 Diabetes Genetic Risk Score With Markers of Subclinical Atherosclerosis. Circulation: Cardiovascular Genetics, 2015, 8, 507-515.	5.1	12
406	MicroRNAs enrichment in GWAS of complex human phenotypes. BMC Genomics, 2015, 16, 304.	1.2	24
407	Identification of type 2 diabetes subgroups through topological analysis of patient similarity. Science Translational Medicine, 2015, 7, 311ra174.	5.8	426
408	Novel Risk Factors for Type 2 Diabetes in African-Americans. Current Diabetes Reports, 2015, 15, 103.	1.7	17
409	Genetics, genomics and personalized medicine in Type 2 diabetes: a perspective on the Arab region. Personalized Medicine, 2015, 12, 417-431.	0.8	5
410	HDL Cholesterol and Risk of Type 2 Diabetes: A Mendelian Randomization Study. Diabetes, 2015, 64, 3328-3333.	0.3	127
411	Expression quantitative trait locus analysis for translational medicine. Genome Medicine, 2015, 7, 60.	3.6	69

ARTICLE IF CITATIONS # Current Applications of Genetic Risk Scores to Cardiovascular Outcomes and Subclinical Phenotypes. 412 1.1 70 Current Epidemiology Reports, 2015, 2, 180-190. The use of genetic information in the prediction of Type 2 diabetes. Personalized Medicine, 2015, 12, 413 0.8 483-496. Exercise genomicsâ€"a paradigm shift is needed: a commentary: TableÂ1. British Journal of Sports 414 3.154 Medicine, 2015, 49, 1492-1496. Dietary polyunsaturated fatty acids and the Pro12Ala polymorphisms of PPARG regulate serum lipids 1.2 through divergent pathways: a randomized crossover clinical trial. Genes and Nutrition, 2015, 10, 43. Genome-wide association studies of human adiposity: Zooming in on synapses. Molecular and Cellular 416 1.6 8 Endocrinology, 2015, 418, 90-100. Common type 2 diabetes risk variant in MTNR1B worsens the deleterious effect of melatonin on 1.5 glucose tolerance in humans. Metabolism: Clinical and Experimental, 2015, 64, 1650-1657. 418 Genetics of Type 2 Diabetes., 2015, , 1-21. 0 Differences in Common Genetic Predisposition to Ischemic Stroke by Age and Sex. Stroke, 2015, 46, 419 1.0 28 3042-3047. Association between CETP gene polymorphism, insulin resistance and risk of diabetes mellitus in 420 0.4 9 patients with vascular disease. Atherosclerosis, 2015, 242, 605-610. Genome-wide association studies and contribution to cardiovascular physiology. Physiological 1.0 Genomics, 2015, 47, 365-375. Novel epigenetic determinants of type 2 diabetes in Mexican-American families. Human Molecular 422 1.4 128 Genetics, 2015, 24, 5330-5344. Genetics of Type 2 Diabetes in African Americans. Current Diabetes Reports, 2015, 15, 74. Population genetic differentiation of height and body mass index across Europe. Nature Genetics, 2015, 424 9.4 227 47, 1357-1362. A comprehensive 1000 Genomes–based genome-wide association meta-analysis of coronary artery disease. Nature Genetics, 2015, 47, 1121-1130. 9.4 2,054 Cytoskeleton Dynamics in Health and Disease: Role of Molecular Switches and Rheostats., 2015, , 11-62. 426 2 Recent Progress in the Understanding of Obesity: Contributions of Genome-Wide Association Studies. 427 Current Obesity Reports, 2015, 4, 401-410. Allelic Expression Imbalance: Tipping the Scales to Elucidate the Function of Type 2 428 0.3 3 Diabetes–Associated Loci: Figure 1. Diabetes, 2015, 64, 1102-1104. 429 Genome-wide patterns of selection in 230 ancient Eurasians. Nature, 2015, 528, 499-503. 1,160

#	Article	IF	CITATIONS
430	Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nature Genetics, 2015, 47, 1415-1425.	9.4	365
431	Developmental regulation of human cortex transcription and its clinical relevance at single base resolution. Nature Neuroscience, 2015, 18, 154-161.	7.1	142
432	T2DM GWAS in the Lebanese population confirms the role of TCF7L2 and CDKAL1 in disease susceptibility. Scientific Reports, 2014, 4, 7351.	1.6	25
433	Sixty-Five Common Genetic Variants and Prediction of Type 2 Diabetes. Diabetes, 2015, 64, 1830-1840.	0.3	91
435	An epidemiological perspective of personalized medicine: the <scp>E</scp> stonian experience. Journal of Internal Medicine, 2015, 277, 188-200.	2.7	22
436	Targeted Allelic Expression Profiling in Human Islets Identifies <i>cis</i> -Regulatory Effects for Multiple Variants Identified by Type 2 Diabetes Genome-Wide Association Studies. Diabetes, 2015, 64, 1484-1491.	0.3	31
437	Bilirubin as a Potential Causal Factor in Type 2 Diabetes Risk: A Mendelian Randomization Study. Diabetes, 2015, 64, 1459-1469.	0.3	91
438	Novel genomic signals of recent selection in an Ethiopian population. European Journal of Human Genetics, 2015, 23, 1085-1092.	1.4	25
439	Homogeneous case subgroups increase power in genetic association studies. European Journal of Human Genetics, 2015, 23, 863-869.	1.4	24
440	Multifactoriality in Psychiatric Disorders: A Computational Study of Schizophrenia. Schizophrenia Bulletin, 2015, 41, 980-988.	2.3	10
442	Proteomic and genomic evidence implicates the postsynaptic density in schizophrenia. Molecular Psychiatry, 2015, 20, 424-432.	4.1	140
443	Gene by stress genome-wide interaction analysis and path analysis identify EBF1 as a cardiovascular and metabolic risk gene. European Journal of Human Genetics, 2015, 23, 854-862.	1.4	42
444	HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials. Lancet, The, 2015, 385, 351-361.	6.3	562
445	Admixture mapping for disease gene discovery. , 0, , 89-105.		0
446	Survey of the Heritability and Sparse Architecture of Gene Expression Traits across Human Tissues. PLoS Genetics, 2016, 12, e1006423.	1.5	143
447	Role of Conventional Risk Factors in Genetic Susceptibility to Cardiovascular Diseases. , 2016, , 159-176.		0
448	ForestPMPlot: A Flexible Tool for Visualizing Heterogeneity Between Studies in Meta-analysis. G3: Genes, Genomes, Genetics, 2016, 6, 1793-1798.	0.8	30
449	Conserved Metabolic Changes in Nondiabetic and Type 2 Diabetic Bariatric Surgery Patients: Global Metabolomic Pilot Study. Journal of Diabetes Research, 2016, 2016, 1-10.	1.0	34

#	Article	IF	CITATIONS
450	The Importance of Context: Uncovering Species- and Tissue-Specific Effects of Genetic Risk Variants for Type 2 Diabetes. Frontiers in Endocrinology, 2016, 7, 112.	1.5	3
451	Predicting gene targets from integrative analyses of summary data from GWAS and eQTL studies for 28 human complex traits. Genome Medicine, 2016, 8, 84.	3.6	91
452	Meta-Analyses of Genome-Wide Association Data Hold New Promise for Addiction Genetics. Journal of Studies on Alcohol and Drugs, 2016, 77, 676-680.	0.6	29
453	The MKK7 p.Glu116Lys Rare Variant Serves as a Predictor for Lung Cancer Risk and Prognosis in Chinese. PLoS Genetics, 2016, 12, e1005955.	1.5	14
454	CERAMIC: Case-Control Association Testing in Samples with Related Individuals, Based on Retrospective Mixed Model Analysis with Adjustment for Covariates. PLoS Genetics, 2016, 12, e1006329.	1.5	17
455	Association between DNA Methylation in Whole Blood and Measures of Glucose Metabolism: KORA F4 Study. PLoS ONE, 2016, 11, e0152314.	1.1	81
456	Genome-Wide Interaction with Insulin Secretion Loci Reveals Novel Loci for Type 2 Diabetes in African Americans. PLoS ONE, 2016, 11, e0159977.	1.1	7
457	GenToS: Use of Orthologous Gene Information to Prioritize Signals from Human GWAS. PLoS ONE, 2016, 11, e0162466.	1.1	2
458	Metabolic Disorders and Developmental Origins of Health and Disease. , 2016, , 267-289.		2
459	Polymorphism, Carbohydrates, Fat, and Type 2 Diabetes. , 2016, , 301-311.		0
460	Type 2 Diabetes Risk Allele UBE2E2 Is Associated With Decreased Glucose-Stimulated Insulin Release in Elderly Chinese Han Individuals. Medicine (United States), 2016, 95, e3604.	0.4	10
461	The genetic architecture of type 2 diabetes. Nature, 2016, 536, 41-47.	13.7	952
462	Still a geneticist's nightmare. Nature, 2016, 536, 37-38.	13.7	26
463	Type 2 diabetes: genetic data sharing to advance complex disease research. Nature Reviews Genetics, 2016, 17, 535-549.	7.7	128
464	Diabetic Phenotypes and Late-Life Dementia Risk. Alzheimer Disease and Associated Disorders, 2016, 30, 15-20.	0.6	27
465	A missense variant in <i><scp>GLP1R</scp></i> gene is associated with the glycaemic response to treatment with gliptins. Diabetes, Obesity and Metabolism, 2016, 18, 941-944.	2.2	38
466	Evaluation of a Two‣tage Approach in Transâ€Ethnic Metaâ€Analysis in Genomeâ€Wide Association Studies. Genetic Epidemiology, 2016, 40, 284-292.	0.6	8
467	USAT: A Unified Scoreâ€Based Association Test for Multiple Phenotypeâ€Genotype Analysis. Genetic Epidemiology, 2016, 40, 20-34.	0.6	42

#	Article	IF	CITATIONS
468	Genome-wide changes in IncRNA, splicing, and regional gene expression patterns in autism. Nature, 2016, 540, 423-427.	13.7	603
469	Variation in <i>PCSK9</i> and <i>HMGCR</i> and Risk of Cardiovascular Disease and Diabetes. New England Journal of Medicine, 2016, 375, 2144-2153.	13.9	596
470	Bias due to participant overlap in twoâ€sample Mendelian randomization. Genetic Epidemiology, 2016, 40, 597-608.	0.6	961
471	Genetic Component of Type 2 Diabetes in a Mexican Population. Archives of Medical Research, 2016, 47, 496-505.	1.5	14
472	Association between PPAR-γ2 Pro12Ala genotype and insulin resistance is modified by circulating lipids in Mexican children. Scientific Reports, 2016, 6, 24472.	1.6	23
473	Assessment of causality between serum gamma-glutamyltransferase and type 2 diabetes mellitus using publicly available data: a Mendelian randomization study. International Journal of Epidemiology, 2016, 45, dyw306.	0.9	24
476	Genetics: Implications for Prevention and Management of Coronary Artery Disease. Journal of the American College of Cardiology, 2016, 68, 2797-2818.	1.2	92
477	Shotgun Metagenomics of 250 Adult Twins Reveals Genetic and Environmental Impacts on the Gut Microbiome. Cell Systems, 2016, 3, 572-584.e3.	2.9	261
478	Phenotypic Characterization of GeneticallyÂLowered Human Lipoprotein(a) Levels. Journal of the American College of Cardiology, 2016, 68, 2761-2772.	1.2	186
479	Liver Enzymes and Risk of Ischemic Heart Disease and Type 2 Diabetes Mellitus: A Mendelian Randomization Study. Scientific Reports, 2016, 6, 38813.	1.6	45
480	Harveian Oration 2016: Some observations on the causes and consequences of obesity. Clinical Medicine, 2016, 16, 551-564.	0.8	13
481	Identification of Shared and Unique Serum Lipid Profiles in Diabetes Mellitus and Myocardial Infarction. Journal of the American Heart Association, 2016, 5, .	1.6	12
482	The genetic regulatory signature of type 2 diabetes in human skeletal muscle. Nature Communications, 2016, 7, 11764.	5.8	114
483	Epigenetic Biomarkers and Global Health. , 2016, , 159-175.		0
484	Definition of a Skp2-c-Myc Pathway to Expand Human Beta-cells. Scientific Reports, 2016, 6, 28461.	1.6	14
485	Introduction to statistical methods in genome-wide association studies. , 0, , 26-52.		0
486	Soluble transferrin receptor levels are positively associated with insulin resistance but not with the metabolic syndrome or its individual components. British Journal of Nutrition, 2016, 116, 1165-1174.	1.2	15
487	Monogenic Diabetes: What It Teaches Us on the Common Forms of Type 1 and Type 2 Diabetes. Endocrine Reviews, 2016, 37, 190-222.	8.9	100

#	Article	IF	Citations
488	Transducinâ€like enhancer of splitâ€1 is expressed and functional in human macrophages. FEBS Letters, 2016, 590, 43-52.	1.3	6
489	Common and Rare Genetic Variation in <i>CCR2</i> , <i>CCR5</i> , or <i>CX3CR1</i> and Risk of Atherosclerotic Coronary Heart Disease and Glucometabolic Traits. Circulation: Cardiovascular Genetics, 2016, 9, 250-258.	5.1	20
490	Uncovering Adaptation from Sequence Data: Lessons from Genome Resequencing of Four Cattle Breeds. Genetics, 2016, 203, 433-450.	1.2	93
491	Population-based approaches to genetics of migraine. Cephalalgia, 2016, 36, 692-703.	1.8	11
492	A three-step programmed method for the identification of causative gene mutations of maturity onset diabetes of the young (MODY). Gene, 2016, 588, 141-148.	1.0	5
493	SUGP1 is a novel regulator of cholesterol metabolism. Human Molecular Genetics, 2016, 25, ddw151.	1.4	18
494	Novel Grb14-Mediated Cross Talk between Insulin and p62/Nrf2 Pathways Regulates Liver Lipogenesis and Selective Insulin Resistance. Molecular and Cellular Biology, 2016, 36, 2168-2181.	1.1	18
495	Iron Regulation of Pancreatic Beta-Cell Functions and Oxidative Stress. Annual Review of Nutrition, 2016, 36, 241-273.	4.3	73
496	Detection and interpretation of shared genetic influences on 42 human traits. Nature Genetics, 2016, 48, 709-717.	9.4	990
497	Multi-ethnic genome-wide association study identifies novel locus for type 2 diabetes susceptibility. European Journal of Human Genetics, 2016, 24, 1175-1180.	1.4	69
498	Genetics of Type 2 Diabetes: the Power of Isolated Populations. Current Diabetes Reports, 2016, 16, 65.	1.7	25
499	Novel Insights into the Multiple Sclerosis Risk Gene <i>ANKRD55</i> . Journal of Immunology, 2016, 196, 4553-4565.	0.4	21
500	From Association to Function: KCNJ11 and ABCC8. , 2016, , 363-377.		0
501	Nutrigenetics of Type 2 Diabetes. , 2016, , 539-560.		0
502	Genetics of Type 2 Diabetes. Endocrine Development, 2016, 31, 203-220.	1.3	59
503	Found in Translation: A Type 1 Diabetes Genetic Risk Score Applied to Clinical Diagnosis. Diabetes Care, 2016, 39, 330-332.	4.3	7
504	Combining information on multiple instrumental variables in Mendelian randomization: comparison of allele score and summarized data methods. Statistics in Medicine, 2016, 35, 1880-1906.	0.8	593
505	PPARD rs2016520 polymorphism is associated with metabolic traits in a large population of Chinese adults. Gene, 2016, 585, 191-195.	1.0	11

#	Article	IF	CITATIONS
507	Common and rare forms of diabetes mellitus: towards a continuum of diabetes subtypes. Nature Reviews Endocrinology, 2016, 12, 394-406.	4.3	112
508	Assessing the genetic architecture of epithelial ovarian cancer histological subtypes. Human Genetics, 2016, 135, 741-756.	1.8	19
509	Gene-Environment Interaction: Methods and Examples in Type 2 Diabetes and Obesity. , 2016, , 259-273.		0
510	Genome-Wide Association Studies of Type 2 Diabetes. , 2016, , 13-61.		8
511	Minireview: Genome Editing of Human Pluripotent Stem Cells for Modeling Metabolic Disease. Molecular Endocrinology, 2016, 30, 575-586.	3.7	5
512	Evaluation of type 2 diabetes genetic risk variants in Chinese adults: findings from 93,000 individuals from the China Kadoorie Biobank. Diabetologia, 2016, 59, 1446-1457.	2.9	41
513	Computational Intelligence Techniques in Health Care. SpringerBriefs in Applied Sciences and Technology, 2016, , .	0.2	1
514	Pharmacogenomics in diabetes mellitus: insights into drug action and drug discovery. Nature Reviews Endocrinology, 2016, 12, 337-346.	4.3	47
515	Improved Performance of Dynamic Measures of Insulin Response Over Surrogate Indices to Identify Genetic Contributors of Type 2 Diabetes: The GUARDIAN Consortium. Diabetes, 2016, 65, 2072-2080.	0.3	4
516	Selenoproteins: Antioxidant selenoenzymes and beyond. Archives of Biochemistry and Biophysics, 2016, 595, 113-119.	1.4	229
517	Catechol-O-methyltransferase association with hemoglobin A1c. Metabolism: Clinical and Experimental, 2016, 65, 961-967.	1.5	14
518	Islet biology, the CDKN2A/B locus and type 2 diabetes risk. Diabetologia, 2016, 59, 1579-1593.	2.9	71
519	Are elevated plasma amino acids causally linked to type 2 diabetes, or are they rather innocent bystanders?. Nutrition, Metabolism and Cardiovascular Diseases, 2016, 26, 549-550.	1.1	1
520	Maladie coronarienne et diabète de type 2 : des liens génétiques. Medecine Des Maladies Metaboliques, 2016, 10, 21-22.	0.1	1
521	Discovery and refinement of genetic loci associated with cardiometabolic risk using dense imputation maps. Nature Genetics, 2016, 48, 1303-1312.	9.4	66
522	Integration of Clinical Genetic Testing in Cardiovascular Care. Current Genetic Medicine Reports, 2016, 4, 107-118.	1.9	0
523	Genetic analysis of emerging risk factors in coronary artery disease. Atherosclerosis, 2016, 254, 35-41.	0.4	11
524	Genome-wide associations for birth weight and correlations with adult disease. Nature, 2016, 538, 248-252.	13.7	406

#	Article	IF	CITATIONS
525	What is the probability of replicating a statistically significant association in genome-wide association studies?. Briefings in Bioinformatics, 2017, 18, bbw091.	3.2	3
526	Association Between Low-Density Lipoprotein Cholesterol–Lowering Genetic Variants and Risk of Type 2 Diabetes. JAMA - Journal of the American Medical Association, 2016, 316, 1383.	3.8	310
527	Predictive utility of a genetic risk score of common variants associated with type 2 diabetes in a black South African population. Diabetes Research and Clinical Practice, 2016, 122, 1-8.	1.1	17
528	Topological analysis of metabolic networks integrating co-segregating transcriptomes and metabolomes in type 2 diabetic rat congenic series. Genome Medicine, 2016, 8, 101.	3.6	19
529	Association of Lipid Fractions With Risks for Coronary Artery Disease and Diabetes. JAMA Cardiology, 2016, 1, 692.	3.0	233
530	Destruction of discrete charge. Nature, 2016, 536, 38-39.	13.7	0
531	Modulation of type 1 and type 2 diabetes risk by the intestinal microbiome. Pediatric Diabetes, 2016, 17, 469-477.	1.2	58
532	Increased 4E-BP1 Expression Protects against Diet-Induced Obesity and Insulin Resistance in Male Mice. Cell Reports, 2016, 16, 1903-1914.	2.9	52
533	Variation in the glucose transporter gene SLC2A2 is associated with glycemic response to metformin. Nature Genetics, 2016, 48, 1055-1059.	9.4	165
534	Genomewide metaâ€analysis identifies loci associated with <scp>IGF</scp> â€l and <scp>IGFBP</scp> â€3 levels with impact on ageâ€related traits. Aging Cell, 2016, 15, 811-824.	3.0	83
535	Gene set analysis for interpreting genetic studies. Human Molecular Genetics, 2016, 25, R133-R140.	1.4	12
536	Genetic markers of type 2 diabetes: Progress in genomeâ€wide association studies and clinical application for risk prediction. Journal of Diabetes, 2016, 8, 24-35.	0.8	64
537	Genetics of cardiovascular and renal complications in diabetes. Journal of Diabetes Investigation, 2016, 7, 139-154.	1.1	43
538	Making the cut: improved ranking and selection for large-scale inference. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2016, 78, 781-804.	1.1	15
539	Plasma Taurine, Diabetes Genetic Predisposition, and Changes of Insulin Sensitivity in Response to Weight-Loss Diets. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 3820-3826.	1.8	26
540	JAM: A Scalable Bayesian Framework for Joint Analysis of Marginal SNP Effects. Genetic Epidemiology, 2016, 40, 188-201.	0.6	74
541	Impact of statistical models on the prediction of type 2 diabetes using non-targeted metabolomics profiling. Molecular Metabolism, 2016, 5, 918-925.	3.0	18
542	Pleiotropic Analysis of Lung Cancer and Blood Triglycerides. Journal of the National Cancer Institute, 2016, 108, djw167.	3.0	17

#	Article	IF	CITATIONS
543	Systematic Functional Characterization of Candidate Causal Genes for Type 2 Diabetes Risk Variants. Diabetes, 2016, 65, 3805-3811.	0.3	79
544	Gene and Network Analysis of Common Variants Reveals Novel Associations in Multiple Complex Diseases. Genetics, 2016, 204, 783-798.	1.2	56
545	DNA methylation patterns associated with oxidative stress in an ageing population. BMC Medical Genomics, 2016, 9, 72.	0.7	37
546	Statistical power considerations in genotype-based recall randomized controlled trials. Scientific Reports, 2016, 6, 37307.	1.6	10
547	Habitual coffee consumption and risk of type 2 diabetes, ischemic heart disease, depression and Alzheimer's disease: a Mendelian randomization study. Scientific Reports, 2016, 6, 36500.	1.6	55
548	A new structural approach to genomic discovery of disease: example of adult-onset diabetes. Biological Cybernetics, 2016, 110, 383-391.	0.6	1
549	Epigenetic programming of adipose-derived stem cells in low birthweight individuals. Diabetologia, 2016, 59, 2664-2673.	2.9	36
550	The Difficult Journey from Genome-wide Association Studies to Pathophysiology: The Melatonin Receptor 1B (MT2) Paradigm. Cell Metabolism, 2016, 24, 345-347.	7.2	17
551	Genetic Background Limits Generalizability of Genotype-Phenotype Relationships. Neuron, 2016, 91, 1253-1259.	3.8	209
552	The Role of TCF7L2 rs7903146 in Diabetes After Kidney Transplant. Transplantation, 2016, 100, 1750-1758.	0.5	12
553	Genome-Wide Association Study of the Modified Stumvoll Insulin Sensitivity Index Identifies <i>BCL2</i> and <i>FAM19A2</i> as Novel Insulin Sensitivity Loci. Diabetes, 2016, 65, 3200-3211.	0.3	67
554	Early Neolithic genomes from the eastern Fertile Crescent. Science, 2016, 353, 499-503.	6.0	230
555	Non-targeted metabolomics combined with genetic analyses identifies bile acid synthesis and phospholipid metabolism as being associated with incident type 2 diabetes. Diabetologia, 2016, 59, 2114-2124.	2.9	74
556	BMI as a Modifiable Risk Factor for Type 2 Diabetes: Refining and Understanding Causal Estimates Using Mendelian Randomization. Diabetes, 2016, 65, 3002-3007.	0.3	144
557	Role of long nonâ€coding <scp>RNAs</scp> in the determination of βâ€cell identity. Diabetes, Obesity and Metabolism, 2016, 18, 41-50.	2.2	20
558	Lineage-Specific Genome Architecture Links Enhancers and Non-coding Disease Variants to Target Gene Promoters. Cell, 2016, 167, 1369-1384.e19.	13.5	863
559	A novel type 2 diabetes risk allele increases the promoter activity of the muscle-specific small ankyrin 1 gene. Scientific Reports, 2016, 6, 25105.	1.6	16
560	Personalised nutrition: What makes you soÂspecial?. Nutrition Bulletin, 2016, 41, 353-359.	0.8	51

#	Article	IF	Citations
561	Genetic Drivers of Epigenetic and Transcriptional Variation in Human Immune Cells. Cell, 2016, 167, 1398-1414.e24.	13.5	573
562	Novel genetic loci associated with long-term deterioration in blood lipid concentrations and coronary artery disease in European adults. International Journal of Epidemiology, 2016, 46, dyw245.	0.9	17
563	Ranking factors involved in diabetes remission after bariatric surgery using machine-learning integrating clinical and genomic biomarkers. Npj Genomic Medicine, 2016, 1, 16035.	1.7	21
564	Associations of Plasma FGF2 Levels and Polymorphisms in the FGF2 Gene with Obesity Phenotypes in Han Chinese Population. Scientific Reports, 2016, 6, 19868.	1.6	19
565	A genomic approach to therapeutic target validation identifies a glucose-lowering <i>GLP1R</i> variant protective for coronary heart disease. Science Translational Medicine, 2016, 8, 341ra76.	5.8	100
566	Two-stage association study to identify the genetic susceptibility of a novel common variant of rs2075290 in ZPR1 to type 2 diabetes. Scientific Reports, 2016, 6, 29586.	1.6	42
567	The Application of Genomics in Diabetes: Barriers to Discovery and Implementation. Diabetes Care, 2016, 39, 1858-1869.	4.3	25
568	Genetics—Current and Future Role in the Prevention and Management of Coronary Artery Disease. Current Atherosclerosis Reports, 2016, 18, 78.	2.0	5
569	Genetic Correlation Analysis Suggests Association between Increased Self-Reported Sleep Duration in Adults and Schizophrenia and Type 2 Diabetes. Sleep, 2016, 39, 1853-1857.	0.6	19
570	Heritability and Genome-Wide Association Analyses of Sleep Duration in Children: The EAGLE Consortium. Sleep, 2016, 39, 1859-1869.	0.6	34
571	A 19-SNP coronary heart disease gene score profile in subjects with type 2 diabetes: the coronary heart disease risk in type 2 diabetes (CoRDia study) study baseline characteristics. Cardiovascular Diabetology, 2016, 15, 141.	2.7	8
572	Insights into islet development and biology through characterization of a human iPSC-derived endocrine pancreas model. Islets, 2016, 8, 83-95.	0.9	21
573	Genetic susceptibility to diabetes and long-term improvement of insulin resistance and β cell function during weight loss: the Preventing Overweight Using Novel Dietary Strategies (POUNDS LOST) trial. American Journal of Clinical Nutrition, 2016, 104, 198-204.	2.2	30
574	Air pollution and diabetes association: Modification by type 2 diabetes genetic risk score. Environment International, 2016, 94, 263-271.	4.8	35
575	Is Transforming Stem Cells to Pancreatic Beta Cells Still the Holy Grail for Type 2 Diabetes?. Current Diabetes Reports, 2016, 16, 70.	1.7	13
576	Transethnic Genetic-Correlation Estimates from Summary Statistics. American Journal of Human Genetics, 2016, 99, 76-88.	2.6	265
577	Incident Type 2 Diabetes Risk is Influenced by Obesity and Diabetes in Social Contacts: a Social Network Analysis. Journal of General Internal Medicine, 2016, 31, 1127-1133.	1.3	25
578	Historical Overview of Gene Discovery Methodologies in Type 2 Diabetes. , 2016, , 3-12.		1

#	Article	IF	CITATIONS
579	Epigenetics in Type 2 Diabetes. , 2016, , 241-258.		0
580	SLC30A8: A Complex Road from Association to Function. , 2016, , 379-401.		1
581	Type 2 Diabetes Prediction. , 2016, , 425-440.		0
582	Diabetes Prevention. , 2016, , 521-537.		0
583	Epilogue: What the Future Holds: Genomic Medicine at the Heart of Diabetes Management. , 2016, , 561-570.		0
584	Genome-Wide Association Studies of Quantitative Glycaemic Traits. , 2016, , 63-89.		0
585	Fine-Mapping of Type 2 Diabetes Loci. , 2016, , 127-151.		0
586	Several type 2 diabetes-associated variants in genes annotated to WNT signaling interact with dietary fiber in relation to incidence of type 2 diabetes. Genes and Nutrition, 2016, 11, 6.	1.2	25
587	Identification of the BRD1 interaction network and its impact on mental disorder risk. Genome Medicine, 2016, 8, 53.	3.6	29
588	The influence of menstrual cycle and endometriosis on endometrial methylome. Clinical Epigenetics, 2016, 8, 2.	1.8	57
589	Genome-wide interrogation reveals hundreds of long intergenic noncoding RNAs that associate with cardiometabolic traits. Human Molecular Genetics, 2016, 25, ddw154.	1.4	30
590	Reclassification of genetic-based risk predictions as GWAS data accumulate. Genome Medicine, 2016, 8, 20.	3.6	26
591	The impact of personalized medicine of Type 2 diabetes mellitus in the global health context. Personalized Medicine, 2016, 13, 381-393.	0.8	3
592	Genetics of Insulin Resistance and the Metabolic Syndrome. Current Cardiology Reports, 2016, 18, 75.	1.3	195
593	Contrasting the Genetic Architecture of 30 Complex Traits from Summary Association Data. American Journal of Human Genetics, 2016, 99, 139-153.	2.6	348
594	Genetics of Gestational Diabetes Mellitus and Maternal Metabolism. Current Diabetes Reports, 2016, 16, 15.	1.7	70
595	Xenopus as a model system for studying pancreatic development and diabetes. Seminars in Cell and Developmental Biology, 2016, 51, 106-116.	2.3	11
5 <u>96</u>	Nuclear Mechanisms of Insulin Resistance. Trends in Cell Biology, 2016, 26, 341-351.	3.6	60 _

#	Article	IF	CITATIONS
597	Genetic risk of type 2 diabetes in populations of the African continent: A systematic review and meta-analyses. Diabetes Research and Clinical Practice, 2016, 114, 136-150.	1.1	22
598	Genetics of Type 2 Diabetes. , 2016, , 141-157.		0
599	Genome-wide association studies in the Japanese population identify seven novel loci for type 2 diabetes. Nature Communications, 2016, 7, 10531.	5.8	149
600	Meta-analysis of Complex Diseases at Gene Level with Generalized Functional Linear Models. Genetics, 2016, 202, 457-470.	1.2	18
601	Innate biology versus lifestyle behaviour in the aetiology of obesity and type 2 diabetes: the GLACIER Study. Diabetologia, 2016, 59, 462-471.	2.9	13
602	Genome-wide Association Studies Identify Genetic Loci Associated With Albuminuria in Diabetes. Diabetes, 2016, 65, 803-817.	0.3	131
603	Polygenic risk for type 2 diabetes mellitus among individuals with psychosis and their relatives. Journal of Psychiatric Research, 2016, 77, 52-58.	1.5	22
604	Variants in the FTO and CDKAL1 loci have recessive effects on risk of obesity and type 2 diabetes, respectively. Diabetologia, 2016, 59, 1214-1221.	2.9	65
605	Exploring the Genetic Patterns of Complex Diseases via the Integrative Genome-Wide Approach. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2016, 13, 557-564.	1.9	10
606	New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk. Nature Communications, 2016, 7, 10495.	5.8	245
607	Causal Assessment of Serum Urate Levels inÂCardiometabolic Diseases Through a Mendelian Randomization Study. Journal of the American College of Cardiology, 2016, 67, 407-416.	1.2	138
608	Does bilirubin protect against developing diabetes mellitus?. Journal of Diabetes and Its Complications, 2016, 30, 728-737.	1.2	5
609	Prebiotics: Definition and protective mechanisms. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2016, 30, 27-37.	1.0	120
610	Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels. Nature Communications, 2016, 7, 10494.	5.8	153
611	Beyond sex differences: new approaches for thinking about variation in brain structure and function. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150451.	1.8	105
612	Tobacco smoking is associated with DNA methylation of diabetes susceptibility genes. Diabetologia, 2016, 59, 998-1006.	2.9	43
613	Exposure to pesticides and diabetes: A systematic review and meta-analysis. Environment International, 2016, 91, 60-68.	4.8	173
614	Transancestral fine-mapping of four type 2 diabetes susceptibility loci highlights potential causal regulatory mechanisms. Human Molecular Genetics, 2016, 25, 2070-2081	1.4	21

#	Article	IF	CITATIONS
615	Genetic Evidence for Causal Relationships Between Maternal Obesity-Related Traits and Birth Weight. JAMA - Journal of the American Medical Association, 2016, 315, 1129.	3.8	220
616	A Perspective on Implementing a Quantitative Systems Pharmacology Platform for Drug Discovery and the Advancement of Personalized Medicine. Journal of Biomolecular Screening, 2016, 21, 521-534.	2.6	46
617	Mendelian Randomization and Type 2 Diabetes. Cardiovascular Drugs and Therapy, 2016, 30, 51-57.	1.3	22
618	Power estimation and sample size determination for replication studies of genome-wide association studies. BMC Genomics, 2016, 17, 3.	1.2	17
619	Tissue-specific regulatory circuits reveal variable modular perturbations across complex diseases. Nature Methods, 2016, 13, 366-370.	9.0	306
620	Noninvasivein vivoimaging of embryonic β-cell development in the anterior chamber of the eye. Islets, 2016, 8, 35-47.	0.9	4
621	Diabetes and Risk of Arterial Stiffness: A Mendelian Randomization Analysis. Diabetes, 2016, 65, 1731-1740.	0.3	62
622	Recent progress in genetic and epigenetic research on type 2 diabetes. Experimental and Molecular Medicine, 2016, 48, e220-e220.	3.2	140
623	Lack of Prox1 Downregulation Disrupts the Expansion and Maturation of Postnatal Murine β-Cells. Diabetes, 2016, 65, 687-698.	0.3	18
624	Assessment of established HDL-C loci for association with HDL-C levels and type 2 diabetes in Pima Indians. Diabetologia, 2016, 59, 481-491.	2.9	16
625	Genetic association of long-chain acyl-CoA synthetase 1 variants with fasting glucose, diabetes, and subclinical atherosclerosis. Journal of Lipid Research, 2016, 57, 433-442.	2.0	24
626	Loss-of-Function Mutations in the Cell-Cycle Control Gene <i>CDKN2A</i> Impact on Glucose Homeostasis in Humans. Diabetes, 2016, 65, 527-533.	0.3	38
627	10-year trajectory of β-cell function and insulin sensitivity in the development of type 2 diabetes: a community-based prospective cohort study. Lancet Diabetes and Endocrinology,the, 2016, 4, 27-34.	5.5	145
628	Mapping DNA methylation across development, genotype and schizophrenia in the human frontal cortex. Nature Neuroscience, 2016, 19, 40-47.	7.1	417
629	Methylation QTLs in the developing brain and their enrichment in schizophrenia risk loci. Nature Neuroscience, 2016, 19, 48-54.	7.1	306
630	A Type 1 Diabetes Genetic Risk Score Can Aid Discrimination Between Type 1 and Type 2 Diabetes in Young Adults. Diabetes Care, 2016, 39, 337-344.	4.3	231
631	Diabetes at the crossroads: relevance of disease classification to pathophysiology and treatment. Diabetologia, 2016, 59, 13-20.	2.9	151
632	Identifying Novel Gene Variants in Coronary Artery Disease and Shared Genes With Several Cardiovascular Risk Factors. Circulation Research, 2016, 118, 83-94.	2.0	52

N REPORT

#	Article	IF	CITATIONS
633	Airway Epithelial Expression Quantitative Trait Loci Reveal Genes Underlying Asthma and Other Airway Diseases. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 177-187.	1.4	28
634	The Mechanisms of Insulin Action. , 2016, , 556-585.e13.		7
635	Prevalence of type 2 diabetes–associated complications in Pakistan. International Journal of Diabetes in Developing Countries, 2016, 36, 179-188.	0.3	5
636	A review of instrumental variable estimators for Mendelian randomization. Statistical Methods in Medical Research, 2017, 26, 2333-2355.	0.7	821
637	Computational analyses of type 2 diabetesâ€associated loci identified by genomeâ€wide association studies. Journal of Diabetes, 2017, 9, 362-377.	0.8	16
638	Concise Review: Induced Pluripotent Stem Cell Research in the Era of Precision Medicine. Stem Cells, 2017, 35, 545-550.	1.4	67
639	GWAS meta-analysis reveals novel loci and genetic correlates for general cognitive function: a report from the COGENT consortium. Molecular Psychiatry, 2017, 22, 336-345.	4.1	194
640	Loss of Cyclin-dependent Kinase 2 in the Pancreas Links Primary β-Cell Dysfunction to Progressive Depletion of β-Cell Mass and Diabetes. Journal of Biological Chemistry, 2017, 292, 3841-3853.	1.6	41
641	Whole-Genome Bisulfite Sequencing of Human Pancreatic Islets Reveals Novel Differentially Methylated Regions in Type 2 Diabetes Pathogenesis. Diabetes, 2017, 66, 1074-1085.	0.3	122
642	Clinical relevance of epigenetics in the onset and management of type 2 diabetes mellitus. Epigenetics, 2017, 12, 401-415.	1.3	60
643	Exploring the predictive power of polygenic scores derived from genome-wide association studies: a study of 10 complex traits. Bioinformatics, 2017, 33, 886-892.	1.8	39
644	The Metabolic Syndrome in Men study: a resource for studies of metabolic and cardiovascular diseases. Journal of Lipid Research, 2017, 58, 481-493.	2.0	147
645	Decreased STARD10 Expression Is Associated with Defective Insulin Secretion in Humans and Mice. American Journal of Human Genetics, 2017, 100, 238-256.	2.6	60
646	dUTPase (<i>DUT</i>) Is Mutated in a Novel Monogenic Syndrome With Diabetes and Bone Marrow Failure. Diabetes, 2017, 66, 1086-1096.	0.3	22
647	Integrating Gene Expression with Summary Association Statistics to Identify Genes Associated with 30 Complex Traits. American Journal of Human Genetics, 2017, 100, 473-487.	2.6	248
648	Genetically predicted milk consumption and bone health, ischemic heart disease and type 2 diabetes: a Mendelian randomization study. European Journal of Clinical Nutrition, 2017, 71, 1008-1012.	1.3	44
649	Genomic variants at 20p11 associated with body fat mass in the European population. Obesity, 2017, 25, 757-764.	1.5	10
650	The relationship between <i>Multidrug Resistance Protein 1(rs1045642)</i> and <i>Cholesterol 24</i> - <i>hydroxylase (rs754203)</i> genes polymorphism with type 2 diabetes mellitus. British Journal of Biomedical Science, 2017, 74, 30-35.	1.2	7
#	Article	IF	CITATIONS
-----	--	-----	-----------
651	Functional annotation of sixty-five type-2 diabetes risk SNPs and its application in risk prediction. Scientific Reports, 2017, 7, 43709.	1.6	4
652	Functional variation in allelic methylomes underscores a strong genetic contribution and reveals novel epigenetic alterations in the human epigenome. Genome Biology, 2017, 18, 50.	3.8	71
653	Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases. JAMA Oncology, 2017, 3, 636.	3.4	376
654	Genomics of Islet (Dys)function and Type 2 Diabetes. Trends in Genetics, 2017, 33, 244-255.	2.9	55
655	A molecular census of arcuate hypothalamus and median eminence cell types. Nature Neuroscience, 2017, 20, 484-496.	7.1	635
656	En route to precision medicine through the integration of biological sex into pharmacogenomics. Clinical Science, 2017, 131, 329-342.	1.8	31
657	Sexual dimorphisms in genetic loci linked to body fat distribution. Bioscience Reports, 2017, 37, .	1.1	58
658	A Genomewide Association Study Identifies Two Sexâ€Specific Loci, at <i>SPTB</i> and <i>IZUMO3</i> , Influencing Pediatric Bone Mineral Density at Multiple Skeletal Sites. Journal of Bone and Mineral Research, 2017, 32, 1274-1281.	3.1	30
659	Genetic Regulation of Adipose Gene Expression and Cardio-Metabolic Traits. American Journal of Human Genetics, 2017, 100, 428-443.	2.6	141
660	TM6SF2 rs58542926 variant affects postprandial lipoprotein metabolism and glucose homeostasis in NAFLD. Journal of Lipid Research, 2017, 58, 1221-1229.	2.0	40
661	Genetics of Type 2 Diabetes in U.S. Hispanic/Latino Individuals: Results From the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Diabetes, 2017, 66, 1419-1425.	0.3	60
662	Genetic Association of Waist-to-Hip Ratio With Cardiometabolic Traits, Type 2 Diabetes, and Coronary Heart Disease. JAMA - Journal of the American Medical Association, 2017, 317, 626.	3.8	313
663	Systematic Evaluation of Pleiotropy Identifies 6 Further Loci Associated WithÂCoronary ArteryÂDisease. Journal of the American College of Cardiology, 2017, 69, 823-836.	1.2	214
665	A Mendelian randomization study of the effect of calcium on coronary artery disease, myocardial infarction and their risk factors. Scientific Reports, 2017, 7, 42691.	1.6	26
666	De novo RNA sequence assembly during in vivo inflammatory stress reveals hundreds of unannotated lincRNAs in human blood CD14+ monocytes and in adipose tissue. Physiological Genomics, 2017, 49, 287-305.	1.0	9
667	Improved imputation accuracy of rare and low-frequency variants using population-specific high-coverage WGS-based imputation reference panel. European Journal of Human Genetics, 2017, 25, 869-876.	1.4	181
668	Effect of handgrip on coronary artery disease and myocardial infarction: a Mendelian randomization study. Scientific Reports, 2017, 7, 954.	1.6	42
669	Genetics of common complex diseases: a view from Iceland. European Journal of Internal Medicine, 2017, 41, 3-9.	1.0	3

#	Article	IF	CITATIONS
670	Genetic Variation at the Sulfonylurea Receptor, Type 2 Diabetes, and Coronary Heart Disease. Diabetes, 2017, 66, 2310-2315.	0.3	20
671	Type-2 diabetes-associated variants with cross-trait relevance: Post-GWAs strategies for biological function interpretation. Molecular Genetics and Metabolism, 2017, 121, 43-50.	0.5	13
672	Causal Associations of Adiposity and Body Fat Distribution With Coronary Heart Disease, Stroke Subtypes, and Type 2 Diabetes Mellitus. Circulation, 2017, 135, 2373-2388.	1.6	304
673	Using genetics to inform new therapeutics for diabetes. Expert Review of Endocrinology and Metabolism, 2017, 12, 159-169.	1.2	0
674	Thyroid Signaling, Insulin Resistance, and 2 Diabetes Mellitus: A Mendelian Randomization Study. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 1960-1970.	1.8	33
675	Common genetic variation drives molecular heterogeneity in human iPSCs. Nature, 2017, 546, 370-375.	13.7	491
676	A Genome-Wide Association Study of IVGTT-Based Measures of First-Phase Insulin Secretion Refines the Underlying Physiology of Type 2 Diabetes Variants. Diabetes, 2017, 66, 2296-2309.	0.3	102
677	FGF21 Is a Sugar-Induced Hormone Associated with Sweet Intake and Preference in Humans. Cell Metabolism, 2017, 25, 1045-1053.e6.	7.2	169
678	High-Resolution Genetic Maps Identify Multiple Type 2 Diabetes Loci at Regulatory Hotspots in African Americans and Europeans. American Journal of Human Genetics, 2017, 100, 803-816.	2.6	17
679	GWAB: a web server for the network-based boosting of human genome-wide association data. Nucleic Acids Research, 2017, 45, W154-W161.	6.5	29
680	Increased identification of novel variants in type 2 diabetes, birth weight and their pleiotropic loci. Journal of Diabetes, 2017, 9, 898-907.	0.8	21
681	GENOME-WIDE INTERACTION WITH SELECTED TYPE 2 DIABETES LOCI REVEALS NOVEL LOCI FOR TYPE 2 DIABETES IN AFRICAN AMERICANS. , 2017, 22, 242-253.		5
682	PCSK9 genetic variants and risk of type 2 diabetes: a mendelian randomisation study. Lancet Diabetes and Endocrinology,the, 2017, 5, 97-105.	5.5	298
683	Meta-Analysis of Genome-Wide Association Studies for Abdominal Aortic Aneurysm Identifies Four New Disease-Specific Risk Loci. Circulation Research, 2017, 120, 341-353.	2.0	166
684	Genetic architecture of epigenetic and neuronal ageing rates in human brain regions. Nature Communications, 2017, 8, 15353.	5.8	92
685	Exploring the Causal Pathway From Telomere Length to Coronary Heart Disease. Circulation Research, 2017, 121, 214-219.	2.0	74
686	Interaction between genes and macronutrient intake on the risk of developing type 2 diabetes: systematic review and findings from European Prospective Investigation into Cancer (EPIC)-InterAct. American Journal of Clinical Nutrition, 2017, 106, 263-275.	2.2	46
687	Predicting type 2 diabetes using genetic and environmental risk factors in a multi-ethnic Malaysian cohort. Public Health, 2017, 149, 31-38.	1.4	11

#	Article	IF	CITATIONS
688	Causal Effect of Plasminogen Activator Inhibitor Type 1 on Coronary Heart Disease. Journal of the American Heart Association, 2017, 6, .	1.6	89
689	Genetic susceptibility to cardiovascular disease and risk of dementia. Translational Psychiatry, 2017, 7, e1142-e1142.	2.4	15
690	Insulin Resistance and Mitochondrial Dysfunction. Advances in Experimental Medicine and Biology, 2017, 982, 465-520.	0.8	110
691	An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans. Diabetes, 2017, 66, 2888-2902.	0.3	615
692	Cholesterol and fatty acids regulate cysteine ubiquitylation of ACAT2 through competitive oxidation. Nature Cell Biology, 2017, 19, 808-819.	4.6	81
693	Association analyses of East Asian individuals and trans-ancestry analyses with European individuals reveal new loci associated with cholesterol and triglyceride levels. Human Molecular Genetics, 2017, 26, 1770-1784.	1.4	135
694	Gamma-glutamyltransferase levels, prediabetes and type 2 diabetes: a Mendelian randomization study. International Journal of Epidemiology, 2017, 46, 1400-1409.	0.9	21
695	Obstacles to Translating Genotype-Phenotype Correlates in Metabolic Disease. Physiology, 2017, 32, 42-50.	1.6	2
697	Genetic variants associated with type 2 diabetes and adiposity and risk of intracranial and abdominal aortic aneurysms. European Journal of Human Genetics, 2017, 25, 758-762.	1.4	13
698	Genetically Driven Hyperglycemia Increases Risk of Coronary Artery Disease Separately From Type 2 Diabetes. Diabetes Care, 2017, 40, 687-693.	4.3	45
699	How Can Genetic Studies Help Us to Understand Links Between Birth Weight and Type 2 Diabetes?. Current Diabetes Reports, 2017, 17, 22.	1.7	28
700	Emerging roles of GLIS3 in neonatal diabetes, type 1 and type 2 diabetes. Journal of Molecular Endocrinology, 2017, 58, R73-R85.	1.1	45
701	Role of miRNAs in the pathogenesis and susceptibility of diabetes mellitus. Journal of Human Genetics, 2017, 62, 141-150.	1.1	68
702	Evaluating Sequence-Based Genomic Prediction with an Efficient New Simulator. Genetics, 2017, 205, 939-953.	1.2	39
703	Biological and translational insights from T2DM genetics. Nature Reviews Endocrinology, 2017, 13, 71-72.	4.3	9
704	Differentiation of Diabetes by Pathophysiology, Natural History, and Prognosis. Diabetes, 2017, 66, 241-255.	0.3	454
705	A Mendelian Randomization Study of the Effect of Type-2 Diabetes and Glycemic Traits on Bone Mineral Density. Journal of Bone and Mineral Research, 2017, 32, 1072-1081.	3.1	44
706	Exome-wide association study of plasma lipids in >300,000 individuals. Nature Genetics, 2017, 49, 1758-1766.	9.4	470

#	Δρτιςι ε	IF	CITATIONS
π 707	Prediabetes in youths: mechanisms and biomarkers. The Lancet Child and Adolescent Health, 2017, 1, 240-248	2.7	46
708	A pathway analysis of genome-wide association study highlights novel type 2 diabetes risk pathways. Scientific Reports, 2017, 7, 12546.	1.6	5
709	A machine-learning heuristic to improve gene score prediction of polygenic traits. Scientific Reports, 2017, 7, 12665.	1.6	69
710	Prospects of Fine-Mapping Trait-Associated Genomic Regions by Using Summary Statistics from Genome-wide Association Studies. American Journal of Human Genetics, 2017, 101, 539-551.	2.6	200
711	Complement C3 Associates With Incidence of Diabetes, but No Evidence of a Causal Relationship. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 4477-4485.	1.8	22
712	A Loss-of-Function Splice Acceptor Variant in <i>IGF2</i> Is Protective for Type 2 Diabetes. Diabetes, 2017, 66, 2903-2914.	0.3	52
713	Evidence-based prioritisation and enrichment of genes interacting with metformin in type 2 diabetes. Diabetologia, 2017, 60, 2231-2239.	2.9	4
714	<i>GLIS3</i> and <i>TYK2</i> Single Nucleotide Polymorphisms Are Not Associated with Dermatomyositis/Polymyositis in Chinese Han Population. Genetic Testing and Molecular Biomarkers, 2017, 21, 565-570.	0.3	1
715	A Mendelian Randomization Study of Metabolite Profiles, Fasting Glucose, and Type 2 Diabetes. Diabetes, 2017, 66, 2915-2926.	0.3	40
716	Linking Alzheimer's disease and type 2 diabetes: Novel shared susceptibility genes detected by cFDR approach. Journal of the Neurological Sciences, 2017, 380, 262-272.	0.3	40
717	The role of glycaemic and lipid risk factors in mediating the effect of BMI on coronary heart disease: a two-step, two-sample Mendelian randomisation study. Diabetologia, 2017, 60, 2210-2220.	2.9	75
718	Glucose-Induced Changes in Gene Expression in Human Pancreatic Islets: Causes or Consequences of Chronic Hyperglycemia. Diabetes, 2017, 66, 3013-3028.	0.3	61
719	Linkage disequilibrium–dependent architecture of human complex traits shows action of negative selection. Nature Genetics, 2017, 49, 1421-1427.	9.4	400
720	Association of ANK1 variants with new-onset type 2 diabetes in a Han Chinese population from northeast China. Experimental and Therapeutic Medicine, 2017, 14, 3184-3190.	0.8	15
721	Epidemiology in Germany—general development and personal experience. European Journal of Epidemiology, 2017, 32, 635-656.	2.5	3
722	Thyroid function and ischemic heart disease: a Mendelian randomization study. Scientific Reports, 2017, 7, 8515.	1.6	31
723	Stigmasterol prevents glucolipotoxicity induced defects in glucose-stimulated insulin secretion. Scientific Reports, 2017, 7, 9536.	1.6	33
724	Obesity and the Risk for Type 2 Diabetes. , 2017, , 677-689.		0

#	Article	IF	CITATIONS
725	Genetic analysis in UK Biobank links insulin resistance and transendothelial migration pathways to coronary artery disease. Nature Genetics, 2017, 49, 1392-1397.	9.4	190
726	Association of HSD11B1 gene polymorphisms with type 2 diabetes and metabolic syndrome in South Indian population. Diabetes Research and Clinical Practice, 2017, 131, 142-148.	1.1	14
727	Transcribing β-cell mitochondria in health and disease. Molecular Metabolism, 2017, 6, 1040-1051.	3.0	56
728	Mechanisms of Type 2 Diabetes Risk Loci. Current Diabetes Reports, 2017, 17, 72.	1.7	39
729	The Role of Obesity, Type 2 Diabetes, and Metabolic Factors in Pancreatic Cancer: A Mendelian Randomization Study. Journal of the National Cancer Institute, 2017, 109, .	3.0	185
730	Evidence of selection on splicing-associated loci in human populations and relevance to disease loci mapping. Scientific Reports, 2017, 7, 5980.	1.6	10
731	Genetic variants including markers from the exome chip and metabolite traits of type 2 diabetes. Scientific Reports, 2017, 7, 6037.	1.6	12
732	Prioritising Causal Genes at Type 2 Diabetes Risk Loci. Current Diabetes Reports, 2017, 17, 76.	1.7	25
733	Effect of sequence variants on variance in glucose levels predicts type 2 diabetes risk and accounts for heritability. Nature Genetics, 2017, 49, 1398-1402.	9.4	20
734	What do polymorphisms tell us about the mechanisms of COPD?. Clinical Science, 2017, 131, 2847-2863.	1.8	15
735	Towards a personalized assessment of pancreatic function in diabetes. Expert Review of Precision Medicine and Drug Development, 2017, 2, 275-285.	0.4	0
736			
	Inference of the Distribution of Selection Coefficients for New Nonsynonymous Mutations Using Large Samples. Genetics, 2017, 206, 345-361.	1.2	170
737	Inference of the Distribution of Selection Coefficients for New Nonsynonymous Mutations Using Large Samples. Genetics, 2017, 206, 345-361. Novel Common Variants Associated with Obesity and Type 2 Diabetes Detected Using a cFDR Method. Scientific Reports, 2017, 7, 16397.	1.2	170
737 738	Inference of the Distribution of Selection Coefficients for New Nonsynonymous Mutations Using Large Samples. Genetics, 2017, 206, 345-361.Novel Common Variants Associated with Obesity and Type 2 Diabetes Detected Using a cFDR Method. Scientific Reports, 2017, 7, 16397.A Decade of Genetic and Metabolomic Contributions to Type 2 Diabetes Risk Prediction. Current Diabetes Reports, 2017, 17, 135.	1.2 1.6 1.7	170 11 19
737 738 739	Inference of the Distribution of Selection Coefficients for New Nonsynonymous Mutations Using Large Samples. Genetics, 2017, 206, 345-361. Novel Common Variants Associated with Obesity and Type 2 Diabetes Detected Using a cFDR Method. Scientific Reports, 2017, 7, 16397. A Decade of Genetic and Metabolomic Contributions to Type 2 Diabetes Risk Prediction. Current Diabetes Reports, 2017, 17, 135. Modern probabilistic and statistical approaches to search for nucleotide sequence options associated with integrated diseases. Russian Journal of Genetics, 2017, 53, 1091-1104.	1.2 1.6 1.7 0.2	170 11 19 3
737 738 739 740	Inference of the Distribution of Selection Coefficients for New Nonsynonymous Mutations Using Large Samples. Genetics, 2017, 206, 345-361. Novel Common Variants Associated with Obesity and Type 2 Diabetes Detected Using a cFDR Method. Scientific Reports, 2017, 7, 16397. A Decade of Genetic and Metabolomic Contributions to Type 2 Diabetes Risk Prediction. Current Diabetes Reports, 2017, 17, 135. Modern probabilistic and statistical approaches to search for nucleotide sequence options associated with integrated diseases. Russian Journal of Genetics, 2017, 53, 1091-1104. Multiethnic polygenic risk scores improve risk prediction in diverse populations. Genetic Epidemiology, 2017, 41, 811-823.	1.2 1.6 1.7 0.2 0.6	170 11 19 3 248
737 738 739 740 741	Inference of the Distribution of Selection Coefficients for New Nonsynonymous Mutations Using Large Samples. Genetics, 2017, 206, 345-361. Novel Common Variants Associated with Obesity and Type 2 Diabetes Detected Using a cFDR Method. Scientific Reports, 2017, 7, 16397. A Decade of Genetic and Metabolomic Contributions to Type 2 Diabetes Risk Prediction. Current Diabetes Reports, 2017, 17, 135. Modern probabilistic and statistical approaches to search for nucleotide sequence options associated with integrated diseases. Russian Journal of Genetics, 2017, 53, 1091-1104. Multiethnic polygenic risk scores improve risk prediction in diverse populations. Genetic Epidemiology, 2017, 41, 811-823. Give CWAS a Chance. Diabetes, 2017, 66, 2741-2742.	1.2 1.6 1.7 0.2 0.6 0.3	170 11 19 3 248 8

#	ARTICLE	IF	CITATIONS
743	Selenium increases hepatic DNA methylation and modulates one-carbon metabolism in the liver of mice. Journal of Nutritional Biochemistry, 2017, 48, 112-119.	1.9	44
744	A Type 2 Diabetes–Associated Functional Regulatory Variant in a Pancreatic Islet Enhancer at the <i>ADCY5</i> Locus. Diabetes, 2017, 66, 2521-2530.	0.3	54
745	Expression quantitative trait loci (eQTLs) in human placentas suggest developmental origins of complex diseases. Human Molecular Genetics, 2017, 26, 3432-3441.	1.4	58
746	Cognitive ability and physical health: a Mendelian randomization study. Scientific Reports, 2017, 7, 2651.	1.6	34
747	10 Years of GWAS Discovery: Biology, Function, and Translation. American Journal of Human Genetics, 2017, 101, 5-22.	2.6	2,793
748	IgG glycan patterns are associated with type 2 diabetes in independent European populations. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2240-2249.	1.1	93
749	Network-based regularization for high dimensional SNP data in the case–control study of Type 2 diabetes. BMC Genetics, 2017, 18, 44.	2.7	18
750	Messenger RNA and MicroRNA transcriptomic signatures of cardiometabolic risk factors. BMC Genomics, 2017, 18, 139.	1.2	33
751	Genetic pleiotropy between age-related macular degeneration and 16 complex diseases and traits. Genome Medicine, 2017, 9, 29.	3.6	52
752	Introduction of the DiaGene study: clinical characteristics, pathophysiology and determinants of vascular complications of type 2 diabetes. Diabetology and Metabolic Syndrome, 2017, 9, 47.	1.2	18
753	Type 2 Diabetes Variants Disrupt Function of SLC16A11 through Two Distinct Mechanisms. Cell, 2017, 170, 199-212.e20.	13.5	121
754	Type 2 diabetes, glucose, insulin, BMI, and ischemic stroke subtypes. Neurology, 2017, 89, 454-460.	1.5	84
755	Mechanistic Pathways of Sex Differences in Cardiovascular Disease. Physiological Reviews, 2017, 97, 1-37.	13.1	444
756	Dissecting the genetics of complex traits using summary association statistics. Nature Reviews Genetics, 2017, 18, 117-127.	7.7	379
757	Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. Nature Genetics, 2017, 49, 17-26.	9.4	452
758	The Genetics of Skin Aging. , 2017, , 537-550.		0
759	Oneâ€hour postload plasma glucose concentration in people with normal glucose homeostasis predicts future diabetes mellitus: a 12â€year communityâ€based cohort study. Clinical Endocrinology, 2017, 86, 513-519.	1.2	32
760	Sex-Based Genetic Association Study Identifies <i>CELSR1</i> as a Possible Chronic Obstructive Pulmonary Disease Risk Locus among Women. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 332-341.	1.4	28

#	Article	IF	CITATIONS
761	Investigating shared aetiology between type 2 diabetes and major depressive disorder in a population based cohort. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 227-234.	1.1	27
762	Endophenotype best practices. International Journal of Psychophysiology, 2017, 111, 115-144.	0.5	62
763	Markers of Psychological Differences and Social and Health Inequalities: Possible Genetic and Phenotypic Overlaps. Journal of Personality, 2017, 85, 104-117.	1.8	9
764	Personalized risk prediction for type 2 diabetes: the potential of genetic risk scores. Genetics in Medicine, 2017, 19, 322-329.	1.1	127
765	Systolic Blood Pressure and Risk of Type 2 Diabetes: A Mendelian Randomization Study. Diabetes, 2017, 66, 543-550.	0.3	45
766	LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics, 2017, 33, 272-279.	1.8	822
767	A scored human protein–protein interaction network to catalyze genomic interpretation. Nature Methods, 2017, 14, 61-64.	9.0	534
768	Epigenetic control of Î ² -cell function and failure. Diabetes Research and Clinical Practice, 2017, 123, 24-36.	1.1	28
769	Integrating embeddings of multiple gene networks to prioritize complex disease-associated genes. , 2017, , .		6
770	Evolution of the Human Genome I. Evolutionary Studies, 2017, , .	0.2	1
771	Simultaneous inference of phenotype-associated genes and relevant tissues from GWAS data via Bayesian integration of multiple tissue-specific gene networks. Journal of Molecular Cell Biology, 2017, 9, 436-452.	1.5	10
772	Genomics of Type 2 Diabetes Mellitus and Glycemic Traits. International Journal of Human Genetics, 2017, 17, 140-144.	0.1	0
773	Genetic aetiology of glycaemic traits: approaches and insights. Human Molecular Genetics, 2017, 26, R172-R184.	1.4	9
774	Education and coronary heart disease: mendelian randomisation study. BMJ: British Medical Journal, 2017, 358, j3542.	2.4	191
775	Genetics of Diabetes: Are They Thrifty Genotype?. Evolutionary Studies, 2017, , 265-272.	0.2	0
776	Plasma levels of the anti-coagulation protein C and the risk of ischaemic heart disease. Thrombosis and Haemostasis, 2017, 117, 262-268.	1.8	7
778	Dnmt3a is an epigenetic mediator of adipose insulin resistance. ELife, 2017, 6, .	2.8	97
	Developmental Ovising of Haalth and Diseases A Lifesesway Annual to the Devention of		

#	Article	IF	CITATIONS
780	Gene-Diet Interaction and Precision Nutrition in Obesity. International Journal of Molecular Sciences, 2017, 18, 787.	1.8	140
781	Mouse Models of Human GWAS Hits for Obesity and Diabetes in the Post Genomic Era: Time for Reevaluation. Frontiers in Endocrinology, 2017, 8, 11.	1.5	9
782	Pancreatic Islet Protein Complexes and Their Dysregulation in Type 2 Diabetes. Frontiers in Genetics, 2017, 8, 43.	1.1	19
783	Epigenetic Combinatorial Patterns Predict Disease Variants. Frontiers in Genetics, 2017, 8, 71.	1.1	2
784	Diabetes in <i>HFE</i> Hemochromatosis. Journal of Diabetes Research, 2017, 2017, 1-16.	1.0	42
785	Nonalcoholic fatty liver disease: Evolving paradigms. World Journal of Gastroenterology, 2017, 23, 6571-6592.	1.4	138
786	Early Life Nutrition and its Effect on the Development of Type-2 Diabetes. , 2017, , 301-331.		0
788	A novel TCF7L2 type 2 diabetes SNP identified from fine mapping in African American women. PLoS ONE, 2017, 12, e0172577.	1.1	9
789	graph-GPA: A graphical model for prioritizing GWAS results and investigating pleiotropic architecture. PLoS Computational Biology, 2017, 13, e1005388.	1.5	12
790	Leveraging functional annotations in genetic risk prediction for human complex diseases. PLoS Computational Biology, 2017, 13, e1005589.	1.5	134
791	Diverse type 2 diabetes genetic risk factors functionally converge in a phenotype-focused gene network. PLoS Computational Biology, 2017, 13, e1005816.	1.5	15
792	Association of Body Mass Index with DNA Methylation and Gene Expression in Blood Cells and Relations to Cardiometabolic Disease: A Mendelian Randomization Approach. PLoS Medicine, 2017, 14, e1002215.	3.9	246
793	The role and function of HDL in patients with diabetes mellitus and the related cardiovascular risk. Lipids in Health and Disease, 2017, 16, 207.	1.2	95
794	Modifiable pathways in Alzheimer's disease: Mendelian randomisation analysis. BMJ: British Medical Journal, 2017, 359, j5375.	2.4	239
795	Genetics and Diabetes. , 2017, , 659-675.		1
796	Genome-wide analysis of insomnia disorder. Molecular Psychiatry, 2018, 23, 2238-2250.	4.1	71
797	Susceptibility of brain atrophy to <i>TRIB3</i> in Alzheimer's disease, evidence from functional prioritization in imaging genetics. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3162-3167.	3.3	41
798	Progress in defining the genetic contribution to type 2 diabetes susceptibility. Current Opinion in Genetics and Development, 2018, 50, 41-51.	1.5	25

#	ARTICLE	IF	CITATIONS
799	Integrative omics for health and disease. Nature Reviews Genetics, 2018, 19, 299-310.	7.7	676
800	A two-step method for variable selection in the analysis of a case-cohort study. International Journal of Epidemiology, 2018, 47, 597-604.	0.9	6
801	Genetic Contributions and Personalized Medicine. , 2018, , 3-16.		1
802	Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits. Nature Communications, 2018, 9, 918.	5.8	250
803	Patterns of differential gene expression in a cellular model of human islet development, and relationship to type 2 diabetes predisposition. Diabetologia, 2018, 61, 1614-1622.	2.9	14
804	Implications of publicly available genomic data resources in searching for therapeutic targets of obesity and type 2 diabetes. Experimental and Molecular Medicine, 2018, 50, 1-13.	3.2	2
805	CC-401 Promotes Î ² -Cell Replication via Pleiotropic Consequences of DYRK1A/B Inhibition. Endocrinology, 2018, 159, 3143-3157.	1.4	48
806	Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nature Genetics, 2018, 50, 559-571.	9.4	356
807	Regulatory variants at KLF14 influence type 2 diabetes risk via a female-specific effect on adipocyte size and body composition. Nature Genetics, 2018, 50, 572-580.	9.4	143
808	The Extending Spectrum of NPC1-Related Human Disorders: From Niemann–Pick C1 Disease to Obesity. Endocrine Reviews, 2018, 39, 192-220.	8.9	32
809	Pathogenesis of Type 2 Diabetes Mellitus. Endocrinology, 2018, , 1-74.	0.1	0
810	The Genetic Link Between Diabetes and Atherosclerosis. Canadian Journal of Cardiology, 2018, 34, 565-574.	0.8	15
811	Cartilage intermediate layer protein-1 alleviates pressure overload-induced cardiac fibrosis via interfering TGF-β1 signaling. Journal of Molecular and Cellular Cardiology, 2018, 116, 135-144.	0.9	40
812	<i>CDKN2A/B</i> T2D Genome-Wide Association Study Risk SNPs Impact Locus Gene Expression and Proliferation in Human Islets. Diabetes, 2018, 67, 872-884.	0.3	41
813	The contribution of family history to the burden of diagnosed diabetes, undiagnosed diabetes, and prediabetes in the United States: analysis of the National Health and Nutrition Examination Survey, 2009–2014. Genetics in Medicine, 2018, 20, 1159-1166.	1.1	17
814	Shared genetic effects on chromatin and gene expression indicate a role for enhancer priming in immune response. Nature Genetics, 2018, 50, 424-431.	9.4	253
815	A systematic analysis highlights multiple long non-coding RNAs associated with cardiometabolic disorders. Journal of Human Genetics, 2018, 63, 431-446.	1.1	17
816	Precision medicine in diabetes: an opportunity for clinical translation. Annals of the New York Academy of Sciences, 2018, 1411, 140-152.	1.8	32

#	Article	IF	CITATIONS
817	The Interaction of Genetic Predisposition and Socioeconomic Position With Type 2 Diabetes Mellitus: Cross-Sectional and Longitudinal Analyses From the Lifelines Cohort and Biobank Study. Psychosomatic Medicine, 2018, 80, 252-262.	1.3	6
818	Association of polymorphisms in LEPR with type 2 diabetes and related metabolic traits in a Chinese population. Lipids in Health and Disease, 2018, 17, 2.	1.2	14
819	Heart Disease and Stroke Statistics—2018 Update: A Report From the American Heart Association. Circulation, 2018, 137, e67-e492.	1.6	5,228
820	Genetics of Atherosclerosis. , 2018, , 101-118.		0
821	Genetic variants in sex hormone pathways and the risk of type 2 diabetes among African American, Hispanic American, and European American postmenopausal women in the US. Journal of Diabetes, 2018, 10, 524-533.	0.8	3
822	DNA methylation of the Klf14 gene region in whole blood cells provides prediction for the chronic inflammation in the adipose tissue. Biochemical and Biophysical Research Communications, 2018, 497, 908-915.	1.0	23
823	Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels. Nature Communications, 2018, 9, 260.	5.8	295
824	Polygenic Contribution in Individuals With Early-Onset Coronary Artery Disease. Circulation Genomic and Precision Medicine, 2018, 11, e001849.	1.6	41
825	Replication of MACF1 gene variant rs2296172 with type 2 diabetes susceptibility in the Bania population group of Punjab, India. International Journal of Diabetes in Developing Countries, 2018, 38, 387-390.	0.3	2
826	Evaluating the contribution of rare variants to type 2 diabetes and related traits using pedigrees. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 379-384.	3.3	28
827	Bivariate Genome-Wide Association Study of Depressive Symptoms With Type 2 Diabetes and Quantitative Glycemic Traits. Psychosomatic Medicine, 2018, 80, 242-251.	1.3	31
828	Dietary factors influence the association of cyclin D2 polymorphism rs11063069 with the risk of metabolic syndrome. Nutrition Research, 2018, 52, 48-56.	1.3	3
829	<i>TCF7L2</i> Genetic Variation Augments Incretin Resistance and Influences Response to a Sulfonylurea and Metformin: The Study to Understand the Genetics of the Acute Response to Metformin and Glipizide in Humans (SUGAR-MGH). Diabetes Care, 2018, 41, 554-561.	4.3	35
830	Type 2 Diabetes Genetic Risk Scores Are Associated With Increased Type 2 Diabetes Risk Among African Americans by Cardiometabolic Status. Clinical Medicine Insights: Endocrinology and Diabetes, 2018, 11, 117955141774894.	1.0	9
831	Functional and association analysis of an Amerindian-derived population-specific p.(Thr280Met) variant in RBPJL, a component of the PTF1 complex. European Journal of Human Genetics, 2018, 26, 238-246.	1.4	9
832	FUN-LDA: A Latent Dirichlet Allocation Model for Predicting Tissue-Specific Functional Effects of Noncoding Variation: Methods and Applications. American Journal of Human Genetics, 2018, 102, 920-942.	2.6	75
833	Design of Arab Diabetes Gene-Centric Array (ADGCA) in population with an epidemic of Type 2 Diabetes: A population specific SNP evaluation. Gene, 2018, 663, 157-164.	1.0	5
834	Clinical and research uses of genetic risk scores in type 1 diabetes. Current Opinion in Genetics and Development, 2018, 50, 96-102.	1.5	23

#	Article	IF	CITATIONS
835	Cystic Fibrosis Disease Modifiers: Complex Genetics Defines the Phenotypic Diversity in a Monogenic Disease. Annual Review of Genomics and Human Genetics, 2018, 19, 201-222.	2.5	54
836	High-sensitivity C-reactive protein, low-grade systemic inflammation and type 2 diabetes mellitus: A two-sample Mendelian randomization study. Nutrition, Metabolism and Cardiovascular Diseases, 2018, 28, 795-802.	1.1	18
837	Circulating Fetuin-A and Risk of Type 2 Diabetes: A Mendelian Randomization Analysis. Diabetes, 2018, 67, 1200-1205.	0.3	17
838	Genetic Drivers of Pancreatic Islet Function. Genetics, 2018, 209, 335-356.	1.2	54
839	Identification and characterization of <i>cis</i> -regulatory elements â€~insulator and repressor' in <i>PPARD</i> gene. Epigenomics, 2018, 10, 613-627.	1.0	3
840	Genome-wide analysis of nuclear magnetic resonance metabolites revealed parent-of-origin effect on triglycerides in medium very low-density lipoprotein in <i>PTPRD</i> gene. Biomarkers in Medicine, 2018, 12, 439-446.	0.6	2
842	Interplay between genetic predisposition, macronutrient intake and type 2 diabetes incidence: analysis within EPIC-InterAct across eight European countries. Diabetologia, 2018, 61, 1325-1332.	2.9	20
843	Large-Scale Genomic Biobanks and Cardiovascular Disease. Current Cardiology Reports, 2018, 20, 22.	1.3	8
844	Association of VEGFA variants with altered VEGF secretion and type 2 diabetes: A case-control study. Cytokine, 2018, 106, 29-34.	1.4	29
845	Blood Eosinophil Count and Metabolic, Cardiac and Pulmonary Outcomes: A Mendelian Randomization Study. Twin Research and Human Genetics, 2018, 21, 89-100.	0.3	11
846	Jointly determining significance levels of primary and replication studies by controlling the false discovery rate in two-stage genome-wide association studies. Statistical Methods in Medical Research, 2018, 27, 2795-2808.	0.7	1
847	Estimation of indirect effect when the mediator is a censored variable. Statistical Methods in Medical Research, 2018, 27, 3010-3025.	0.7	6
848	Comparative genomic evidence for the involvement of schizophrenia risk genes in antipsychotic effects. Molecular Psychiatry, 2018, 23, 708-712.	4.1	27
849	Proper joint analysis of summary association statistics requires the adjustment of heterogeneity in SNP coverage pattern. Briefings in Bioinformatics, 2018, 19, 1337-1343.	3.2	2
850	Epigenetic modification of TLE1 induce abnormal differentiation in diabetic mice intestinal epithelium. Molecular and Cellular Biochemistry, 2018, 438, 85-96.	1.4	4
851	An efficient algorithm for generating the internal branches of a Kingman coalescent. Theoretical Population Biology, 2018, 122, 57-66.	0.5	1
852	Cohort Profile: The Oxford Biobank. International Journal of Epidemiology, 2018, 47, 21-21g.	0.9	39
853	Improved detection of genetic loci in estimated glomerular filtration rate and type 2 diabetes using a pleiotropic cFDR method. Molecular Genetics and Genomics, 2018, 293, 225-235.	1.0	14

#	Article	IF	CITATIONS
854	Biochemical and cellular properties of insulin receptor signalling. Nature Reviews Molecular Cell Biology, 2018, 19, 31-44.	16.1	486
855	Phenotypic Consequences of a Genetic Predisposition to Enhanced Nitric Oxide Signaling. Circulation, 2018, 137, 222-232.	1.6	87
856	Genome organization: connecting the developmental origins of disease and genetic variation. Journal of Developmental Origins of Health and Disease, 2018, 9, 260-265.	0.7	0
857	Genetically determined schizophrenia is not associated with impaired glucose homeostasis. Schizophrenia Research, 2018, 195, 286-289.	1.1	21
858	Frequency and phenotype of type 1 diabetes in the first six decades of life: a cross-sectional, genetically stratified survival analysis from UK Biobank. Lancet Diabetes and Endocrinology,the, 2018, 6, 122-129.	5.5	291
859	Genetic architecture: the shape of the genetic contribution to human traits and disease. Nature Reviews Genetics, 2018, 19, 110-124.	7.7	335
860	Cdkn2a deficiency promotes adipose tissue browning. Molecular Metabolism, 2018, 8, 65-76.	3.0	35
861	Proteomic analysis of postsynaptic proteins in regions of the human neocortex. Nature Neuroscience, 2018, 21, 130-138.	7.1	65
862	A genetic risk score for fasting plasma glucose is independently associated with arterial stiffness. Journal of Hypertension, 2018, 36, 809-814.	0.3	25
863	Glutathione Sâ€ŧransferase genes and the risk of type 2 diabetes mellitus: Role of sexual dimorphism, gene–gene and gene–smoking interactions in disease susceptibility. Journal of Diabetes, 2018, 10, 398-407.	0.8	21
864	Genetic prediction of type 2 diabetes using deep neural network. Clinical Genetics, 2018, 93, 822-829.	1.0	15
865	Genetic Approaches to the Study of Gene Variants and Their Impact on the Pathophysiology of Type 2 Diabetes. Biochemical Genetics, 2018, 56, 22-55.	0.8	20
866	Genetics of metabolic syndrome: potential clues from wild-derived inbred mouse strains. Physiological Genomics, 2018, 50, 35-51.	1.0	13
867	Family history of diabetes is associated with enhanced adipose lipolysis: Evidence for the implication of epigenetic factors. Diabetes and Metabolism, 2018, 44, 155-159.	1.4	16
868	Genetic Risks for Chronic Conditions: Implications for Long-term Wellbeing. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 477-483.	1.7	19
869	Epigenetic dysregulation in pancreatic islets and pathogenesis of type 2 diabetes. Journal of Diabetes Investigation, 2018, 9, 475-477.	1.1	6
870	Identification of 55,000 Replicated DNA Methylation QTL. Scientific Reports, 2018, 8, 17605.	1.6	157
871	Hypertension genomics and cardiovascular prevention. Annals of Translational Medicine, 2018, 6, 291-291.	0.7	21

#	Article	IF	CITATIONS
872	DNAJC3 mutation in Thai familial type 2 diabetes mellitus. International Journal of Molecular Medicine, 2018, 42, 1064-1073.	1.8	6
873	A hPSC-based platform to discover gene-environment interactions that impact human β-cell and dopamine neuron survival. Nature Communications, 2018, 9, 4815.	5.8	29
874	Evidence for genetic contribution to the increased risk of type 2 diabetes in schizophrenia. Translational Psychiatry, 2018, 8, 252.	2.4	73
875	Expression quantitative trait loci in the developing human brain and their enrichment in neuropsychiatric disorders. Genome Biology, 2018, 19, 194.	3.8	126
876	Exposing the Causal Effect of C-Reactive Protein on the Risk of Type 2 Diabetes Mellitus: A Mendelian Randomization Study. Frontiers in Genetics, 2018, 9, 657.	1.1	70
877	Intensive Glucose Control Reduces the Risk Effect of TRIB3, SMARCD3, and ATF6 Genetic Variation on Diabetic Vascular Complications. Frontiers in Pharmacology, 2018, 9, 1422.	1.6	10
878	Large-scale genome-wide meta-analysis of polycystic ovary syndrome suggests shared genetic architecture for different diagnosis criteria. PLoS Genetics, 2018, 14, e1007813.	1.5	341
879	Association of Genetic Variants Related to Gluteofemoral vs Abdominal Fat Distribution With Type 2 Diabetes, Coronary Disease, and Cardiovascular Risk Factors. JAMA - Journal of the American Medical Association, 2018, 320, 2553.	3.8	152
880	Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science, 2018, 362, .	6.0	805
881	Comprehensive functional genomic resource and integrative model for the human brain. Science, 2018, 362, .	6.0	618
882	The transcription factor POU3F2 regulates a gene coexpression network in brain tissue from patients with psychiatric disorders. Science Translational Medicine, 2018, 10, .	5.8	81
883	Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nature Genetics, 2018, 50, 1505-1513.	9.4	1,331
884	Public resources aid diabetes gene discovery. Nature Genetics, 2018, 50, 1499-1500.	9.4	2
885	The Impact of Pancreatic Beta Cell Heterogeneity on Type 1 Diabetes Pathogenesis. Current Diabetes Reports, 2018, 18, 112.	1.7	17
886	Genetic Determinants of Glycemic Traits and the Risk of Gestational Diabetes Mellitus. Diabetes, 2018, 67, 2703-2709.	0.3	30
887	Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: A soft clustering analysis. PLoS Medicine, 2018, 15, e1002654.	3.9	373
888	Molecular Biomarkers for Gestational Diabetes Mellitus. International Journal of Molecular Sciences, 2018, 19, 2926.	1.8	73
889	Phenotype-Specific Enrichment of Mendelian Disorder Genes near GWAS Regions across 62 Complex Traits. American Journal of Human Genetics, 2018, 103, 535-552.	2.6	90

#	Article	IF	CITATIONS
890	Facial Genetics: A Brief Overview. Frontiers in Genetics, 2018, 9, 462.	1.1	79
891	Discovering human diabetes-risk gene function with genetics and physiological assays. Nature Communications, 2018, 9, 3855.	5.8	47
892	First Genome-Wide Association Study of Latent Autoimmune Diabetes in Adults Reveals Novel Insights Linking Immune and Metabolic Diabetes. Diabetes Care, 2018, 41, 2396-2403.	4.3	99
893	A type 2 diabetes disease module with a high collective influence for Cdk2 and PTPLAD1 is localized in endosomes. PLoS ONE, 2018, 13, e0205180.	1.1	5
894	Genetics of Coronary Atherosclerosis. , 2018, , 33-44.		0
895	Pathogenesis of Type 2 Diabetes Mellitus. Endocrinology, 2018, , 181-253.	0.1	7
896	Recovery of novel association loci in Arabidopsis thaliana and Drosophila melanogaster through leveraging INDELs association and integrated burden test. PLoS Genetics, 2018, 14, e1007699.	1.5	16
897	Genetic variants in nuclear DNA along with environmental factors modify mitochondrial DNA copy number: a population-based exome-wide association study. BMC Genomics, 2018, 19, 752.	1.2	16
898	Birthweight, Type 2 Diabetes Mellitus, and Cardiovascular Disease. Circulation Genomic and Precision Medicine, 2018, 11, e002054.	1.6	96
899	Two Novel Candidate Genes for Insulin Secretion Identified by Comparative Genomics of Multiple Backcross Mouse Populations. Genetics, 2018, 210, 1527-1542.	1.2	17
900	Cross-tissue eQTL enrichment of associations in schizophrenia. PLoS ONE, 2018, 13, e0202812.	1.1	6
901	Identification of 13 novel susceptibility loci for early-onset myocardial infarction, hypertension, or chronic kidney disease. International Journal of Molecular Medicine, 2018, 42, 2415-2436.	1.8	33
902	Association of Genetically Enhanced Lipoprotein Lipase–Mediated Lipolysis and Low-Density Lipoprotein Cholesterol–Lowering Alleles With Risk of Coronary Disease and Type 2 Diabetes. JAMA Cardiology, 2018, 3, 957.	3.0	55
903	Additional common variants associated with type 2 diabetes and coronary artery disease detected using a pleiotropic cFDR method. Journal of Diabetes and Its Complications, 2018, 32, 1105-1112.	1.2	5
904	Genome-wide DNA methylation analysis of human peripheral blood reveals susceptibility loci of diabetes-related hearing loss. Journal of Human Genetics, 2018, 63, 1241-1250.	1.1	5
905	GPS2 Deficiency Triggers Maladaptive White Adipose Tissue Expansion in Obesity via HIF1A Activation. Cell Reports, 2018, 24, 2957-2971.e6.	2.9	48
906	Epigenetic Control of Pancreatic Regeneration in Diabetes. Genes, 2018, 9, 448.	1.0	5
907	Identification of novel variants associated with osteoporosis, type 2 diabetes and potentially pleiotropic loci using pleiotropic cFDR method. Bone, 2018, 117, 6-14.	1.4	19

#	Article	IF	CITATIONS
908	Super-enhancers are transcriptionally more active and cell type-specific than stretch enhancers. Epigenetics, 2018, 13, 910-922.	1.3	37
909	Assessment of the genetic and clinical determinants of fracture risk: genome wide association and mendelian randomisation study. BMJ: British Medical Journal, 2018, 362, k3225.	2.4	190
910	Associations of serum indolepropionic acid, a gut microbiota metabolite, with type 2 diabetes and low-grade inflammation in high-risk individuals. Nutrition and Diabetes, 2018, 8, 35.	1.5	147
911	The Roles of 27 Genera of Human Gut Microbiota in Ischemic Heart Disease, Type 2 Diabetes Mellitus, and Their Risk Factors: A Mendelian Randomization Study. American Journal of Epidemiology, 2018, 187, 1916-1922.	1.6	66
912	Analysis of type 2 diabetes and obesity genetic variants in Mexican Pima Indians: Marked allelic differentiation among Amerindians at <i>HLA</i> . Annals of Human Genetics, 2018, 82, 287-299.	0.3	10
913	Integration of multi-omics data and deep phenotyping enables prediction of cytokine responses. Nature Immunology, 2018, 19, 776-786.	7.0	103
914	Circulating Selenium and Prostate Cancer Risk: A Mendelian Randomization Analysis. Journal of the National Cancer Institute, 2018, 110, 1035-1038.	3.0	84
915	A joint view on genetic variants for adiposity differentiates subtypes with distinct metabolic implications. Nature Communications, 2018, 9, 1946.	5.8	33
916	GLIS1–3 transcription factors: critical roles in the regulation of multiple physiological processes and diseases. Cellular and Molecular Life Sciences, 2018, 75, 3473-3494.	2.4	66
917	Stratification of type 2 diabetes based on routine clinical markers. Diabetes Research and Clinical Practice, 2018, 141, 275-283.	1.1	41
918	Controllability in an islet specific regulatory network identifies the transcriptional factor NFATC4, which regulates Type 2 Diabetes associated genes. Npj Systems Biology and Applications, 2018, 4, 25.	1.4	25
919	Integration of human pancreatic islet genomic data refines regulatory mechanisms at Type 2 Diabetes susceptibility loci. ELife, 2018, 7, .	2.8	103
920	Associations of Combined Genetic and Lifestyle Risks With Incident Cardiovascular Disease and Diabetes in the UK Biobank Study. JAMA Cardiology, 2018, 3, 693.	3.0	310
921	Reproducibility in Biomedical Research. , 2018, , 1-66.		1
922	Using an atlas of gene regulation across 44 human tissues to inform complex disease- and trait-associated variation. Nature Genetics, 2018, 50, 956-967.	9.4	389
923	Trans-eQTLs identified in whole blood have limited influence on complex disease biology. European Journal of Human Genetics, 2018, 26, 1361-1368.	1.4	3
924	Genetic variants of gestational diabetes mellitus: a study of 112 SNPs among 8722 women in two independent populations. Diabetologia, 2018, 61, 1758-1768.	2.9	77
925	Identification of novel high-impact recessively inherited type 2 diabetes risk variants in the Greenlandic population. Diabetologia, 2018, 61, 2005-2015.	2.9	14

#	Article	IF	CITATIONS
926	Identification of four genes as novel susceptibility loci for early‑onset type 2 diabetes mellitus, metabolic syndrome, or hyperuricemia. Biomedical Reports, 2018, 9, 21-36.	0.9	6
927	Emerging applications of genome-editing technology to examine functionality of GWAS-associated variants for complex traits. Physiological Genomics, 2018, 50, 510-522.	1.0	17
928	Efficient pathway enrichment and network analysis of GWAS summary data using GSA-SNP2. Nucleic Acids Research, 2018, 46, e60-e60.	6.5	80
929	Evidence of genetic predisposition for metabolically healthy obesity and metabolically obese normal weight. Physiological Genomics, 2018, 50, 169-178.	1.0	38
930	Wnt/β-Catenin Signaling and Obesity. Frontiers in Physiology, 2018, 9, 792.	1.3	96
931	Improving glycemic control in critically ill patients: personalized care to mimic the endocrine pancreas. Critical Care, 2018, 22, 182.	2.5	42
932	Genetic interaction effects reveal lipid-metabolic and inflammatory pathways underlying common metabolic disease risks. BMC Medical Genomics, 2018, 11, 54.	0.7	13
933	Association study between a polymorphic poly-T repeat sequence in the promoter of the somatostatin gene and metabolic syndrome. BMC Medical Genetics, 2018, 19, 130.	2.1	1
934	Association Analysis between Body Mass Index and Genomic DNA Methylation across 15 Major Cancer Types. Journal of Cancer, 2018, 9, 2532-2542.	1.2	10
935	Arylsulphatase A Pseudodeficiency (ARSA-PD), hypertension and chronic renal disease in Aboriginal Australians. Scientific Reports, 2018, 8, 10912.	1.6	5
936	Type 2 diabetes risk alleles in PAM impact insulin release from human pancreatic β-cells. Nature Genetics, 2018, 50, 1122-1131.	9.4	59
937	Dietary and genetic risk scores and incidence of type 2 diabetes. Genes and Nutrition, 2018, 13, 13.	1.2	32
938	Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nature Communications, 2018, 9, 2941.	5.8	570
939	High-Throughput Approaches onto Uncover (Epi)Genomic Architecture of Type 2 Diabetes. Genes, 2018, 9, 374.	1.0	22
940	Epidemiological Investigation of Type 2 Diabetes and Alzheimer's Disease in a Pakistani Population. International Journal of Environmental Research and Public Health, 2018, 15, 1582.	1.2	6
941	Genome-Wide Association Studies and Risk Scores for Coronary Artery Disease: Sex Biases. Advances in Experimental Medicine and Biology, 2018, 1065, 627-642.	0.8	13
942	Developmental and genetic regulation of the human cortex transcriptome illuminate schizophrenia pathogenesis. Nature Neuroscience, 2018, 21, 1117-1125.	7.1	300
943	A Study on the Association Between Polymorphisms in the Cytochrome P450 Family 17 Subfamily A Member 1 Gene Region and Type 2 Diabetes Mellitus in Han Chinese. Frontiers in Endocrinology, 2018, 9, 323.	1.5	7

		CITATION REPORT		
#	Article		IF	CITATIONS
944	Jointly Modelling Single Nucleotide Polymorphisms With Longitudinal and Time-to-Even Application to Type 2 Diabetes and Fasting Plasma Glucose. Frontiers in Genetics, 2018	t Trait: An , 9, 210.	1.1	1
945	Sample Size for Successful Genome-Wide Association Study of Major Depressive Disord Genetics, 2018, 9, 227.	ler. Frontiers in	1.1	31
946	DNA methylation landscapes in the pathogenesis of type 2 diabetes mellitus. Nutrition 2018, 15, 47.	and Metabolism,	1.3	33
947	Genome-wide association study of developmental dysplasia of the hip identifies an asso GDF5. Communications Biology, 2018, 1, 56.	ciation with	2.0	45
948	Evaluation and application of summary statistic imputation to discover new height-asso PLoS Genetics, 2018, 14, e1007371.	ociated loci.	1.5	43
949	Genetic variants in long noncoding RNA H19 and MEG3 confer risk of type 2 diabetes ir population. Gene, 2018, 675, 265-271.	an Iranian	1.0	38
950	Genetic variation of SORBS1 gene is associated with glucose homeostasis and age at o A SAPPHIRe Cohort Study. Scientific Reports, 2018, 8, 10574.	nset of diabetes:	1.6	29
951	Identification and functional analysis of glycemic trait loci in the China Health and Nutri PLoS Genetics, 2018, 14, e1007275.	tion Survey.	1.5	30
952	Type 2 Diabetes Mellitus: Integrative Analysis of Multiomics Data for Biomarker Discove Journal of Integrative Biology, 2018, 22, 514-523.	ry. OMICS A	1.0	40
953	Admixture mapping and fine-mapping of birth weight loci in the Black Women's He Genetics, 2018, 137, 535-542.	alth Study. Human	1.8	6
954	Genetics of coronary artery disease in the light of genome-wide association studies. Cli in Cardiology, 2018, 107, 2-9.	nical Research	1.5	46
955	Addendum: A joint view on genetic variants for adiposity differentiates subtypes with d metabolic implications. Nature Communications, 2018, 9, 2861.	Istinct	5.8	16
956	Association of mean platelet volume with incident type 2 diabetes mellitus risk: the Dor cohort study. Diabetology and Metabolic Syndrome, 2018, 10, 29.	ıgfeng–Tongji	1.2	6
957	Genetics of Diabetes and Diabetic Complications. Endocrinology, 2018, , 1-60.		0.1	0
958	Exploring the phenotypic consequences of tissue specific gene expression variation infe GWAS summary statistics. Nature Communications, 2018, 9, 1825.	rred from	5.8	748
959	Waist-hip ratio related genetic loci are associated with risk of impaired fasting glucose children: a case control study. Nutrition and Metabolism, 2018, 15, 34.	n Chinese	1.3	6
960	Association of melatonin & amp; MTNR1B variants with type 2 diabetes in Gujarat popul Biomedicine and Pharmacotherapy, 2018, 103, 429-434.	ation.	2.5	34
961	Type 2 Diabetes Mellitus in Youth. , 2018, , 737-753.			1

#	Article	IF	CITATIONS
962	Transethnic differences in GWAS signals: A simulation study. Annals of Human Genetics, 2018, 82, 280-286.	0.3	21
963	Association of eNOS and ACE gene polymorphisms as a genetic risk factor in gestational diabetes in Iranian women. Journal of Diabetes and Metabolic Disorders, 2018, 17, 123-127.	0.8	5
964	Glucose and Insulin-Related Traits, Type 2 Diabetes and Risk of Schizophrenia: A Mendelian Randomization Study. EBioMedicine, 2018, 34, 182-188.	2.7	34
965	Fetal undernutrition, placental insufficiency, and pancreatic β-cell development programming in utero. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R867-R878.	0.9	27
966	Are serum concentrations of vitamin B-12 causally related to cardiometabolic risk factors and disease? A Mendelian randomization study. American Journal of Clinical Nutrition, 2018, 108, 398-404.	2.2	22
967	Admixture mapping and fine-mapping of type 2 diabetes susceptibility loci in African American women. Journal of Human Genetics, 2018, 63, 1109-1117.	1.1	10
968	Cohort Profile: Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS). International Journal of Epidemiology, 2018, 47, 380-381j.	0.9	59
969	Association analysis of copy number variations in type 2 diabetes-related susceptible genes in a Chinese population. Acta Diabetologica, 2018, 55, 909-916.	1.2	8
970	Diet during Pregnancy is Implicated in the Regulation of Hypothalamic RNA Methylation and Risk of Obesity in Offspring. Molecular Nutrition and Food Research, 2018, 62, e1800134.	1.5	12
971	Leveraging multiple gene networks to prioritize GWAS candidate genes via network representation learning. Methods, 2018, 145, 41-50.	1.9	12
972	Genomic insights into the causes of type 2 diabetes. Lancet, The, 2018, 391, 2463-2474.	6.3	110
973	Human Genetics of Obesity and Type 2 Diabetes Mellitus. Circulation Genomic and Precision Medicine, 2018, 11, e002090.	1.6	58
974	Appraising the role of previously reported risk factors in epithelial ovarian cancer risk: A Mendelian randomization analysis. PLoS Medicine, 2019, 16, e1002893.	3.9	78
975	Evolutionary history of diseaseâ€susceptibility loci identified in longitudinal exomeâ€wide association studies. Molecular Genetics & Genomic Medicine, 2019, 7, e925.	0.6	1
976	Pleiotropy Complicates Human Gene Editing: CCR5Δ32 and Beyond. Frontiers in Genetics, 2019, 10, 669.	1.1	13
977	Evaluating causal associations between chronotype and fatty acids and between fatty acids and type 2 diabetes: A Mendelian randomization study. Nutrition, Metabolism and Cardiovascular Diseases, 2019, 29, 1176-1184.	1.1	7
978	Cell type-specific epigenetic links to schizophrenia risk in the brain. Genome Biology, 2019, 20, 135.	3.8	76
979_	Type 2 Diabetes: Multiple Genes, Multiple Diseases. Current Diabetes Reports, 2019, 19, 55.	1.7	48 _

#	Article	IF	CITATIONS
980	Commentary: Mendelian randomization and women's health. International Journal of Epidemiology, 2019, 48, 830-833.	0.9	5
981	Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa. Nature Genetics, 2019, 51, 1207-1214.	9.4	641
982	The preparation and performance of Au loads TiO ₂ nanomaterials. Materials Research Express, 2019, 6, 095041.	0.8	8
983	A flexible and parallelizable approach to genomeâ€wide polygenic risk scores. Genetic Epidemiology, 2019, 43, 730-741.	0.6	32
984	Quality of dietary fat and genetic risk of type 2 diabetes: individual participant data meta-analysis. BMJ: British Medical Journal, 2019, 366, l4292.	2.4	28
985	Therapeutic Silencing of Centromere Protein X Ameliorates Hyperglycemia in Zebrafish and Mouse Models of Type 2 Diabetes Mellitus. Frontiers in Genetics, 2019, 10, 693.	1.1	3
986	The effect of mid-life insulin resistance and type 2 diabetes on older-age cognitive state: the explanatory role of early-life advantage. Diabetologia, 2019, 62, 1891-1900.	2.9	11
987	Genome-wide Association Study of Change in Fasting Glucose over time in 13,807 non-diabetic European Ancestry Individuals. Scientific Reports, 2019, 9, 9439.	1.6	5
988	Lifestyle intervention modifies the effect of the MC4R genotype on changes in insulin resistance among women with prior gestational diabetes: Tianjin Gestational Diabetes Mellitus Prevention Program. American Journal of Clinical Nutrition, 2019, 110, 750-758.	2.2	9
989	Identification of Novel Causal Blood Biomarkers Linking Metabolically Favorable Adiposity With Type 2 Diabetes Risk. Diabetes Care, 2019, 42, 1800-1808.	4.3	12
990	Association Mapping and Disease: Evolutionary Perspectives. Methods in Molecular Biology, 2019, 1910, 533-553.	0.4	0
991	Sequence variants with large effects on cardiac electrophysiology and disease. Nature Communications, 2019, 10, 4803.	5.8	28
992	Causal Association between Rheumatoid Arthritis with the Increased Risk of Type 2 Diabetes: A Mendelian Randomization Analysis. Journal of Rheumatic Diseases, 2019, 26, 131.	0.4	15
993	Association of genetic and behavioral characteristics with the onset of diabetes. BMC Public Health, 2019, 19, 1297.	1.2	2
994	Interactome of the Autoimmune Risk Protein ANKRD55. Frontiers in Immunology, 2019, 10, 2067.	2.2	13
995	Geneâ€diet quality interactions on haemoglobin A1c and type 2 diabetes risk: The Airwave Health Monitoring Study. Endocrinology, Diabetes and Metabolism, 2019, 2, e00074.	1.0	5
996	A genome-wide association study implicates multiple mechanisms influencing raised urinary albumin–creatinine ratio. Human Molecular Genetics, 2019, 28, 4197-4207.	1.4	16
997	Disentangling the genetics of lean mass. American Journal of Clinical Nutrition, 2019, 109, 276-287.	2.2	38

#	Article	IF	CITATIONS
998	Accelerated evolution of oligodendrocytes in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24334-24342.	3.3	43
999	The Burden of Atherosclerotic Cardiovascular Disease in South Asians Residing in Canada: A Reflection From the South Asian Heart Alliance. CJC Open, 2019, 1, 271-281.	0.7	14
1000	HOPS: a quantitative score reveals pervasive horizontal pleiotropy in human genetic variation is driven by extreme polygenicity of human traits and diseases. Genome Biology, 2019, 20, 222.	3.8	47
1001	Sex differences in the burden of type 2 diabetes and cardiovascular risk across the life course. Diabetologia, 2019, 62, 1761-1772.	2.9	200
1002	Persistent C-peptide secretion in Type 1 diabetes and its relationship to the genetic architecture of diabetes. BMC Medicine, 2019, 17, 165.	2.3	43
1003	Circulating Vitamin E Levels and Risk of Coronary Artery Disease and Myocardial Infarction: A Mendelian Randomization Study. Nutrients, 2019, 11, 2153.	1.7	35
1004	Identification of <i>C2CD4A</i> as a human diabetes susceptibility gene with a role in β cell insulin secretion. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20033-20042.	3.3	38
1005	Increased Expression of Lipid Metabolism Genes in Early Stages of Wooden Breast Links Myopathy of Broilers to Metabolic Syndrome in Humans. Genes, 2019, 10, 746.	1.0	34
1006	Decreased expression of microRNAs targeting type-2 diabetes susceptibility genes in peripheral blood of patients and predisposed individuals. Endocrine, 2019, 66, 226-239.	1.1	38
1007	Integrating predicted transcriptome from multiple tissues improves association detection. PLoS Genetics, 2019, 15, e1007889.	1.5	239
1008	GARFIELD classifies disease-relevant genomic features through integration of functional annotations with association signals. Nature Genetics, 2019, 51, 343-353.	9.4	147
1009	Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms. Nature Communications, 2019, 10, 343.	5.8	417
1010	Identification of 12 genetic loci associated with human healthspan. Communications Biology, 2019, 2, 41.	2.0	89
1011	Heart Disease and Stroke Statistics—2019 Update: A Report From the American Heart Association. Circulation, 2019, 139, e56-e528.	1.6	6,192
1012	Differential vulnerability to neighbourhood disorder: a gene×environment interaction study. Journal of Epidemiology and Community Health, 2019, 73, 388-392.	2.0	14
1013	Genome-wide gene-based analyses of weight loss interventions identify a potential role for NKX6.3 in metabolism. Nature Communications, 2019, 10, 540.	5.8	25
1014	Genetic Correlations Between Diabetes and Glaucoma: An Analysis of Continuous and Dichotomous Phenotypes. American Journal of Ophthalmology, 2019, 206, 245-255.	1.7	12
1015	The Burmese cat as a genetic model of type 2 diabetes in humans. Animal Genetics, 2019, 50, 319-325.	0.6	13

#	Article	IF	CITATIONS
1016	Measuring gene–gene interaction using Kullback–Leibler divergence. Annals of Human Genetics, 2019, 83, 405-417.	0.3	5
1017	Diabetes and orthopaedic surgery: a review. Orthopaedics and Trauma, 2019, 33, 212-216.	0.2	3
1018	Association Between Genetic Risk and Development of Type 2 Diabetes in a General Japanese Population: The Hisayama Study. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 3213-3222.	1.8	12
1019	Genome-wide analysis of dental caries and periodontitis combining clinical and self-reported data. Nature Communications, 2019, 10, 2773.	5.8	183
1020	No significant association of type 2 diabetesâ€related genetic risk scores with glycated haemoglobin levels after initiating metformin or sulphonylurea derivatives. Diabetes, Obesity and Metabolism, 2019, 21, 2267-2273.	2.2	5
1021	The association of elevated maternal genetic risk scores for hypertension, type 2 diabetes and obesity and having a child with a congenital heart defect. PLoS ONE, 2019, 14, e0216477.	1.1	8
1022	Integrated analysis of environmental and genetic influences on cord blood DNA methylation in new-borns. Nature Communications, 2019, 10, 2548.	5.8	94
1023	Exome sequencing of 20,791Âcases of type 2 diabetes and 24,440Âcontrols. Nature, 2019, 570, 71-76.	13.7	248
1024	Adipocyte Metabolism and Insulin Signaling Perturbations: Insights from Genetics. Trends in Endocrinology and Metabolism, 2019, 30, 396-406.	3.1	17
1025	Liver Function and Risk of Type 2 Diabetes: Bidirectional Mendelian Randomization Study. Diabetes, 2019, 68, 1681-1691.	0.3	79
1026	GScluster: network-weighted gene-set clustering analysis. BMC Genomics, 2019, 20, 352.	1.2	12
1027	Causal Factors for Knee, Hip, and Hand Osteoarthritis: AÂMendelian Randomization Study in the <scp>UK</scp> Biobank. Arthritis and Rheumatology, 2019, 71, 1634-1641.	2.9	109
1028	A Positive Causal Influence of IL-18 Levels on the Risk of T2DM: A Mendelian Randomization Study. Frontiers in Genetics, 2019, 10, 295.	1.1	19
1029	Genome-wide association study of medication-use and associated disease in the UK Biobank. Nature Communications, 2019, 10, 1891.	5.8	140
1030	Functional Implications of DNA Methylation in Adipose Biology. Diabetes, 2019, 68, 871-878.	0.3	40
1031	Human Gain-of-Function MC4R Variants Show Signaling Bias and Protect against Obesity. Cell, 2019, 177, 597-607.e9.	13.5	192
1032	Genome-wide association study of type 2 diabetes in Africa. Diabetologia, 2019, 62, 1204-1211.	2.9	56
1033	Association between resting heart rate and incident diabetes risk: a Mendelian randomization study. Acta Diabetologica, 2019, 56, 1037-1044.	1.2	12

#	Article	IF	CITATIONS
1034	Gene Lifestyle Interactions With Relation to Obesity, Cardiometabolic, and Cardiovascular Traits Among South Asians. Frontiers in Endocrinology, 2019, 10, 221.	1.5	15
1035	Postmortem brain tissue as an underutilized resource to study the molecular pathology of neuropsychiatric disorders across different ethnic populations. Neuroscience and Biobehavioral Reviews, 2019, 102, 195-207.	2.9	9
1036	Effects of variants of 50 genes on diabetes risk among the Chinese population born in the early 1960s. Journal of Diabetes, 2019, 11, 857-868.	0.8	6
1037	Progress in the discovery of naturally occurring anti-diabetic drugs and in the identification of their molecular targets. FA¬toterapA¬A¢, 2019, 134, 270-289.	1.1	63
1038	<i>deTS</i> : tissue-specific enrichment analysis to decode tissue specificity. Bioinformatics, 2019, 35, 3842-3845.	1.8	51
1039	Osteogenesis depends on commissioning of a network of stem cell transcription factors that act as repressors of adipogenesis. Nature Genetics, 2019, 51, 716-727.	9.4	156
1040	The Genetic Basis of Metabolic Disease. Cell, 2019, 177, 146-161.	13.5	104
1041	Assessing the causal association of glycine with risk of cardio-metabolic diseases. Nature Communications, 2019, 10, 1060.	5.8	85
1042	The Association Between First-Degree Family History of Diabetes and Metabolic Syndrome. Endocrine Practice, 2019, 25, 678-683.	1.1	14
1043	Ancestryâ€specific association mapping in admixed populations. Genetic Epidemiology, 2019, 43, 506-521.	0.6	26
1044	Discovering metabolic disease gene interactions by correlated effects on cellular morphology. Molecular Metabolism, 2019, 24, 108-119.	3.0	13
1045	Omics: Potential Role in Early Phase Drug Development. , 2019, , 309-347.		0
1046	The Future of Genomic Studies Must Be Globally Representative: Perspectives from PAGE. Annual Review of Genomics and Human Genetics, 2019, 20, 181-200.	2.5	33
1047	Developing a network view of type 2 diabetes risk pathways through integration of genetic, genomic and functional data. Genome Medicine, 2019, 11, 19.	3.6	33
1048	Heterogeneous impact of type 2 diabetes mellitus-related genetic variants on gestational glycemic traits: review and future research needs. Molecular Genetics and Genomics, 2019, 294, 811-847.	1.0	7
1049	Body Composition and Diabetes Risk in South Asians: Findings From the MASALA and MESA Studies. Diabetes Care, 2019, 42, 946-953.	4.3	35
1050	Genetic risk variants for brain disorders are enriched in cortical H3K27ac domains. Molecular Brain, 2019, 12, 7.	1.3	21
1051	Exposing the Causal Effect of Body Mass Index on the Risk of Type 2 Diabetes Mellitus: A Mendelian Randomization Study. Frontiers in Genetics, 2019, 10, 94.	1.1	55

#	Article	IF	CITATIONS
1052	Influence of obesity, parental history of diabetes, and genes in type 2 diabetes: A case-control study. Scientific Reports, 2019, 9, 2748.	1.6	21
1053	Identification of novel genetic variants for type 2 diabetes, childhood obesity, and their pleiotropic loci. Journal of Human Genetics, 2019, 64, 369-377.	1.1	6
1054	Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution. Nature Genetics, 2019, 51, 452-469.	9.4	89
1055	Genomic annotation of disease-associated variants reveals shared functional contexts. Diabetologia, 2019, 62, 735-743.	2.9	5
1056	PyMINEr Finds Gene and Autocrine-Paracrine Networks from Human Islet scRNA-Seq. Cell Reports, 2019, 26, 1951-1964.e8.	2.9	61
1057	Dusp8 affects hippocampal size and behavior in mice and humans. Scientific Reports, 2019, 9, 19483.	1.6	5
1058	Epigenome-Wide Association Study of Incident Type 2 Diabetes in a British Population: EPIC-Norfolk Study. Diabetes, 2019, 68, 2315-2326.	0.3	77
1059	Causal association of type 2 diabetes with amyotrophic lateral sclerosis: new evidence from Mendelian randomization using GWAS summary statistics. BMC Medicine, 2019, 17, 225.	2.3	63
1060	Joint Analysis of Multiple Interaction Parameters in Genetic Association Studies. Genetics, 2019, 211, 483-494.	1.2	12
1061	The influence of obesity-related factors in the etiology of renal cell carcinoma—A mendelian randomization study. PLoS Medicine, 2019, 16, e1002724.	3.9	59
1062	Genetically Determined Levels of Circulating Cytokines and Risk of Stroke. Circulation, 2019, 139, 256-268.	1.6	147
1063	Schizophrenia Polygenic Risk Score as a Predictor of Antipsychotic Efficacy in First-Episode Psychosis. American Journal of Psychiatry, 2019, 176, 21-28.	4.0	127
1064	Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nature Genetics, 2019, 51, 63-75.	9.4	1,594
1065	Mediation analysis in a caseâ€control study when the mediator is a censored variable. Statistics in Medicine, 2019, 38, 1213-1229.	0.8	5
1066	The Neurocan-cartilage Intermediate Layer Protein 2 (NCAN-CILP2) Region and Plasma Lipid Levels. , 2019, , 237-248.		1
1067	Type 2 Diabetes and Hypertension. Circulation Research, 2019, 124, 930-937.	2.0	136
1068	Stem-cell based organ-on-a-chip models for diabetes research. Advanced Drug Delivery Reviews, 2019, 140, 101-128.	6.6	55
1069	High throughput profiling of whole plasma N-glycans in type II diabetes mellitus patients and healthy individuals: A perspective from a Ghanaian population. Archives of Biochemistry and Biophysics, 2019, 661, 10-21.	1.4	23

#	Article	IF	CITATIONS
1070	Circulating Phylloquinone Concentrations and Risk of Type 2 Diabetes: A Mendelian Randomization Study. Diabetes, 2019, 68, 220-225.	0.3	27
1071	Sequence variants associating with urinary biomarkers. Human Molecular Genetics, 2019, 28, 1199-1211.	1.4	28
1072	Modelling the endocrine pancreas in health and disease. Nature Reviews Endocrinology, 2019, 15, 155-171.	4.3	71
1073	Pharmacogenetics of type 2 diabetes mellitus, the route toward tailored medicine. Diabetes/Metabolism Research and Reviews, 2019, 35, e3109.	1.7	70
1074	Estimating crossâ€population genetic correlations of causal effect sizes. Genetic Epidemiology, 2019, 43, 180-188.	0.6	70
1075	Clinical and genetic characteristics of abnormal glucose tolerance in Japanese women in the first year after gestational diabetes mellitus. Journal of Diabetes Investigation, 2019, 10, 817-826.	1.1	8
1076	An analytical enrichmentâ€based review of structural genetic studies on keratoconus. Journal of Cellular Biochemistry, 2019, 120, 4748-4756.	1.2	8
1077	Associations of obesity and circulating insulin and glucose with breast cancer risk: a Mendelian randomization analysis. International Journal of Epidemiology, 2019, 48, 795-806.	0.9	81
1078	Genetic-based signatures of the latitudinal differences in chronotype. Biological Rhythm Research, 2019, 50, 255-271.	0.4	3
1079	Two novel susceptibility loci for type 2 diabetes mellitus identified by longitudinal exome-wide association studies in a Japanese population. Genomics, 2019, 111, 34-42.	1.3	5
1080	A critique of life history approaches to human trait covariation. Evolution and Human Behavior, 2020, 41, 527-535.	1.4	74
1081	Diet–Gene Interactions. , 2020, , 371-376.		0
1082	Additive and Multiplicative Interactions Between Genetic Risk Score and Family History and Lifestyle in Relation to Risk of Type 2 Diabetes. American Journal of Epidemiology, 2020, 189, 445-460.	1.6	17
1083	Gut microbiota composition explains more variance in the host cardiometabolic risk than genetic ancestry. Gut Microbes, 2020, 11, 191-204.	4.3	11
1084	Mediterranean Diet Adherence Modulates Anthropometric Measures by TCF7L2 Genotypes among Puerto Rican Adults. Journal of Nutrition, 2020, 150, 167-175.	1.3	12
1085	Lipid lowering and Alzheimer disease risk: A mendelian randomization study. Annals of Neurology, 2020, 87, 30-39.	2.8	64
1086	Autoimmunity plays a role in the onset of diabetes after 40 years of age. Diabetologia, 2020, 63, 266-277.	2.9	15
1005			

		CITATION R	EPORT	
# 1088	ARTICLE Schizophrenia, Bipolar Disorder, and Alzheimer's Disease are not Causal Factors of Bo	one Mineral	IF 1.5	CITATIONS 8
1089	Genetic Risk, a Healthy Lifestyle, and Type 2 Diabetes: the Dongfeng-Tongji Cohort Study Clinical Endocrinology and Metabolism, 2020, 105, 1242-1250.	. Journal of	1.8	17
1090	LPM: a latent probit model to characterize the relationship among complex traits using su statistics from multiple GWASs and functional annotations. Bioinformatics, 2020, 36, 25	ummary 06-2514.	1.8	11
1091	Precision medicine at the academic-industry interface. , 2020, , 545-560.			1
1092	A Bayesian hierarchical variable selection prior for pathwayâ€based GWAS using summar Statistics in Medicine, 2020, 39, 724-739.	y statistics.	0.8	3
1093	Genetic variants that associate with cirrhosis have pleiotropic effects on human traits. Liv International, 2020, 40, 405-415.	er	1.9	38
1094	Statin-induced LDL cholesterol response and type 2 diabetes: a bidirectional two-sample I randomization study. Pharmacogenomics Journal, 2020, 20, 462-470.	Viendelian	0.9	18
1095	Risk of diabetes among related and unrelated family members. Diabetes Research and Cli 2020, 160, 107997.	nical Practice,	1.1	8
1096	Role of Highâ€Density Lipoproteins in Cholesterol Homeostasis and Glycemic Control. Jou American Heart Association, 2020, 9, e013531.	ırnal of the	1.6	27
1097	Active Cigarette Smoking Is Associated With an Exacerbation of Genetic Susceptibility to Diabetes, 2020, 69, 2819-2829.	Diabetes.	0.3	11
1098	Emerging Roles for the INK4a/ARF (CDKN2A) Locus in Adipose Tissue: Implications for Ob Diabetes. Biomolecules, 2020, 10, 1350.	esity and Type 2	1.8	16
1099	PheMap: a multi-resource knowledge base for high-throughput phenotyping within electr records. Journal of the American Medical Informatics Association: JAMIA, 2020, 27, 1675-	onic health 1687.	2.2	28
1100	Transcription factor GLIS3: Critical roles in thyroid hormone biosynthesis, hypothyroidism pancreatic beta cells and diabetes. , 2020, 215, 107632.	,		26
1101	Genome plasticity and endocrine diseases. , 2020, , 211-235.			1
1102	Accelerated MRI-predicted brain ageing and its associations with cardiometabolic and bra Scientific Reports, 2020, 10, 19940.	in disorders.	1.6	31
1103	Diabetes Mellitus Is a Chronic Disease that Can Benefit from Therapy with Induced Pluripe Cells. International Journal of Molecular Sciences, 2020, 21, 8685.	btent Stem	1.8	13
1104	Disentangling the heterogeneity of adulthood-onset non-autoimmune diabetes: a little cle more to do. Current Opinion in Pharmacology, 2020, 55, 157-164.	oser but lot	1.7	4
1105	Using genetics to decipher the link between type 2 diabetes and cancer: shared aetiology downstream consequence?. Diabetologia, 2020, 63, 1706-1717.	or	2.9	20

#	Article	IF	CITATIONS
1106	Metabolic and genetic studies of glimepiride and metformin and their association with type 2 diabetes. Gene Reports, 2020, 21, 100787.	0.4	0
1107	Allele-specific open chromatin in human iPSC neurons elucidates functional disease variants. Science, 2020, 369, 561-565.	6.0	77
1108	Pro12Ala PPAR-γ2 and +294T/C PPAR-Î′ Polymorphisms and Association with Metabolic Traits in Teenagers from Northern Mexico. Genes, 2020, 11, 776.	1.0	10
1109	Causal Pathways from Body Components and Regional Fat to Extensive Metabolic Phenotypes: A Mendelian Randomization Study. Obesity, 2020, 28, 1536-1549.	1.5	13
1110	Evaluating the impact of AMPK activation, a target of metformin, on risk of cardiovascular diseases and cancer in the UK Biobank: a Mendelian randomisation study. Diabetologia, 2020, 63, 2349-2358.	2.9	28
1111	Can increasing years of schooling reduce type 2 diabetes (T2D)?: Evidence from a Mendelian randomization of T2D and 10 of its risk factors. Scientific Reports, 2020, 10, 12908.	1.6	9
1112	Nutrient consumption-dependent association of a glucagon-like peptide-1 receptor gene polymorphism with insulin secretion. Scientific Reports, 2020, 10, 16382.	1.6	5
1113	Molecular insights into therapeutic promise of targeting of Wnt/β-catenin signaling pathway in obesity. Molecular Biology Reports, 2020, 47, 8091-8100.	1.0	7
1114	Intestinal microbial metabolites in human metabolism and type 2 diabetes. Diabetologia, 2020, 63, 2533-2547.	2.9	56
1115	Pharmacogenetics of Type 2 Diabetes—Progress and Prospects. International Journal of Molecular Sciences, 2020, 21, 6842.	1.8	34
1116	A framework for pathway knowledge driven prioritization in genomeâ€wide association studies. Genetic Epidemiology, 2020, 44, 841-853.	0.6	2
1117	A population-based phenome-wide association study of cardiac and aortic structure and function. Nature Medicine, 2020, 26, 1654-1662.	15.2	98
1118	Coffee Consumption, Genetic Polymorphisms, and the Risk of Type 2 Diabetes Mellitus: A Pooled Analysis of Four Prospective Cohort Studies. International Journal of Environmental Research and Public Health, 2020, 17, 5379.	1.2	8
1119	Genetic Architecture Modulates Diet-Induced Hepatic mRNA and miRNA Expression Profiles in Diversity Outbred Mice. Genetics, 2020, 216, 241-259.	1.2	6
1120	An investigation of causal relationships between prediabetes and vascular complications. Nature Communications, 2020, 11, 4592.	5.8	37
1121	In Vivo Reporter Assays Uncover Changes in Enhancer Activity Caused by Type 2 Diabetes–Associated Single Nucleotide Polymorphisms. Diabetes, 2020, 69, 2794-2805.	0.3	4
1122	Selective inhibition of CBP/p300 HAT by A-485 results in suppression of lipogenesis and hepatic gluconeogenesis. Cell Death and Disease, 2020, 11, 745.	2.7	24
1123	Mapping the genetic basis of diabetes mellitus in the Australian Burmese cat (Felis catus). Scientific Reports, 2020, 10, 19194.	1.6	12

#	Article	IF	CITATIONS
1124	Ten SNPs May Affect Type 2 Diabetes Risk in Interaction with Prenatal Exposure to Chinese Famine. Nutrients, 2020, 12, 3880.	1.7	7
1125	Genetic predisposition to hypertension is associated with preeclampsia in European and Central Asian women. Nature Communications, 2020, 11, 5976.	5.8	102
1126	Diabetes-associated genetic variation in TCF7L2 alters pulsatile insulin secretion in humans. JCI Insight, 2020, 5, .	2.3	14
1127	Genetic architecture of cardiometabolic risks in people living with HIV. BMC Medicine, 2020, 18, 288.	2.3	11
1128	Genetic predisposition in type 2 diabetes: A promising approach toward a personalized management of diabetes. Clinical Genetics, 2020, 98, 525-547.	1.0	33
1129	Smoking-by-genotype interaction in type 2 diabetes risk and fasting glucose. PLoS ONE, 2020, 15, e0230815.	1.1	10
1130	Circulating Protein Signatures and Causal Candidates for Type 2 Diabetes. Diabetes, 2020, 69, 1843-1853.	0.3	64
1131	Use of genetic variation to separate the effects of early and later life adiposity on disease risk: mendelian randomisation study. BMJ, The, 2020, 369, m1203.	3.0	181
1132	Identifying novel associations in GWAS by hierarchical Bayesian latent variable detection of differentially misclassified phenotypes. BMC Bioinformatics, 2020, 21, 178.	1.2	7
1133	Discovery of Highly Selective Inhibitors of Calmodulin-Dependent Kinases That Restore Insulin Sensitivity in the Diet-Induced Obesity <i>in Vivo</i> Mouse Model. Journal of Medicinal Chemistry, 2020, 63, 6784-6801.	2.9	12
1134	Fine-tuning of Genome-Wide Polygenic Risk Scores and Prediction of Gestational Diabetes in South Asian Women. Scientific Reports, 2020, 10, 8941.	1.6	25
1135	Genome-wide associations of human gut microbiome variation and implications for causal inference analyses. Nature Microbiology, 2020, 5, 1079-1087.	5.9	144
1136	Validating the doubly weighted genetic risk score for the prediction of type 2 diabetes in the Lifelines and Estonian Biobank cohorts. Genetic Epidemiology, 2020, 44, 589-600.	0.6	6
1137	Impact of glucose on risk of dementia: Mendelian randomisation studies in 115,875 individuals. Diabetologia, 2020, 63, 1151-1161.	2.9	25
1138	Polygenic risk score for schizophrenia was not associated with glycemic level (HbA1c) in patients with non-affective psychosis: Genetic Risk and Outcome of Psychosis (GROUP) cohort study. Journal of Psychosomatic Research, 2020, 132, 109968.	1.2	7
1139	CpC-SNP site methylation regulates allele-specific expression of MTHFD1 gene in type 2 diabetes. Laboratory Investigation, 2020, 100, 1090-1101.	1.7	8
1140	Systematic Review of Polygenic Risk Scores for Type 1 and Type 2 Diabetes. International Journal of Molecular Sciences, 2020, 21, 1703.	1.8	46
1141	A novel mutation of indoleamine 2,3-dioxygenase 1 causes a rapid proteasomal degradation and compromises protein function. Journal of Autoimmunity, 2020, 115, 102509.	3.0	14

#	Article	IF	CITATIONS
1142	Genome-wide association for metabolic clusters in early-lactation Holstein dairy cows. Journal of Dairy Science, 2020, 103, 6392-6406.	1.4	3
1143	A Conserved Notochord Enhancer Controls Pancreas Development in Vertebrates. Cell Reports, 2020, 32, 107862.	2.9	5
1144	Ancestry effects on type 2 diabetes genetic risk inference in Hispanic/Latino populations. BMC Medical Genetics, 2020, 21, 132.	2.1	17
1145	IgG Glycosylation Profile and the Glycan Score Are Associated with Type 2 Diabetes in Independent Chinese Populations: A Case-Control Study. Journal of Diabetes Research, 2020, 2020, 1-8.	1.0	13
1146	Apolipoprotein M and Risk of Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 3046-3057.	1.8	8
1147	Reduced Expression of the Co-regulator TLE1 in Type 2 Diabetes Is Associated with Increased Islet α-Cell Number. Endocrinology, 2020, 161, .	1.4	8
1148	Heritability of Curve Patterns in Oral Glucose Tolerance Test. Twin Research and Human Genetics, 2020, 23, 39-44.	0.3	6
1149	Association of UCP1 polymorphisms with type 2 diabetes mellitus and their interaction with physical activity and sedentary behavior. Gene, 2020, 739, 144497.	1.0	6
1150	The Growing Epidemic of Diabetes Mellitus. Current Vascular Pharmacology, 2020, 18, 104-109.	0.8	188
1151	Leveraging effect size distributions to improve polygenic risk scores derived from summary statistics of genome-wide association studies. PLoS Computational Biology, 2020, 16, e1007565.	1.5	32
1152	Clinical and genetic analysis of two wolfram syndrome families with high occurrence of wolfram syndrome and diabetes type II: a case report. BMC Medical Genetics, 2020, 21, 13.	2.1	7
1153	Genetic risk, adherence to a healthy lifestyle, and type 2 diabetes risk among 550,000 Chinese adults: results from 2 independent Asian cohorts. American Journal of Clinical Nutrition, 2020, 111, 698-707.	2.2	38
1154	Heart Disease and Stroke Statistics—2020 Update: A Report From the American Heart Association. Circulation, 2020, 141, e139-e596.	1.6	5,545
1155	Heterogeneity in Obesity: Genetic Basis and Metabolic Consequences. Current Diabetes Reports, 2020, 20, 1.	1.7	25
1156	Association of adiponectin gene polymorphisms and their haplotypes with type 2 diabetes and related metabolic traits in an Iranian population. International Journal of Diabetes in Developing Countries, 2020, 40, 216-222.	0.3	2
1157	Glucose stimulates microRNA-199 expression in murine pancreatic β-cells. Journal of Biological Chemistry, 2020, 295, 1261-1270.	1.6	10
1158	Genome-wide association study identifies novel risk variants from RPS6KA1, CADPS, VARS, and DHX58 for fasting plasma glucose in Arab population. Scientific Reports, 2020, 10, 152.	1.6	16
1159	Promoter-anchored chromatin interactions predicted from genetic analysis of epigenomic data. Nature Communications, 2020, 11, 2061.	5.8	8

#	Article	IF	CITATIONS
1160	Islet-expressed circular RNAs are associated with type 2 diabetes status in human primary islets and in peripheral blood. BMC Medical Genomics, 2020, 13, 64.	0.7	30
1161	A Mendelian Randomization Study Provides Evidence That Adiposity and Dyslipidemia Lead to Lower Urinary Albumin-to-Creatinine Ratio, a Marker of Microvascular Function. Diabetes, 2020, 69, 1072-1082.	0.3	10
1162	Liability threshold modeling of case–control status and family history of disease increases association power. Nature Genetics, 2020, 52, 541-547.	9.4	60
1164	DLL1- and DLL4-Mediated Notch Signaling Is Essential for Adult Pancreatic Islet Homeostasis. Diabetes, 2020, 69, 915-926.	0.3	24
1165	Assessing Digital Phenotyping to Enhance Genetic Studies of Human Diseases. American Journal of Human Genetics, 2020, 106, 611-622.	2.6	42
1166	Framingham's Contribution to Gene Identification for CV Risk Factors and Coronary Disease. Global Heart, 2013, 8, 59.	0.9	3
1167	The -514C>T polymorphism in the LIPC gene modifies type 2 diabetes risk through modulation of HDL-cholesterol levels in Mexicans. Journal of Endocrinological Investigation, 2021, 44, 557-565.	1.8	8
1168	SLC30A8 gene polymorphism rs13266634 associated with increased risk for developing type 2 diabetes mellitus in Jordanian population. Gene, 2021, 768, 145279.	1.0	13
1169	Metabolic Inflammation in Obesity—At the Crossroads between Fatty Acid and Cholesterol Metabolism. Molecular Nutrition and Food Research, 2021, 65, e1900482.	1.5	19
1170	Haploinsufficiency of the NF1 gene is associated with protection against diabetes. Journal of Medical Genetics, 2021, 58, 378-384.	1.5	4
1171	7-chloro-4-(phenylselanyl) quinoline co-treatment prevent oxidative stress in diabetic-like phenotype induced by hyperglycidic diet in Drosophila melanogaster. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2021, 239, 108892.	1.3	3
1172	Genetic variation in the body mass index of adult survivors of childhood acute lymphoblastic leukemia: A report from the Childhood Cancer Survivor Study and the St. Jude Lifetime Cohort. Cancer, 2021, 127, 310-318.	2.0	6
1173	Whole exome sequencing identifies the novel putative gene variants related with type 2 diabetes in Mizo population, northeast India. Gene, 2021, 769, 145229.	1.0	5
1174	Acute metabolic effects of melatonin—A randomized crossover study in healthy young men. Journal of Pineal Research, 2021, 70, e12706.	3.4	15
1175	A Guillain-Barré syndrome-associated SIGLEC10 rare variant impairs its recognition of gangliosides. Journal of Autoimmunity, 2021, 116, 102571.	3.0	10
1176	Autosomal dominant diabetes associated with a novel ZYG11A mutation resulting in cell cycle arrest in beta-cells. Molecular and Cellular Endocrinology, 2021, 522, 111126.	1.6	3
1177	Diabetes type 2 risk gene Dusp8 is associated with altered sucrose reward behavior in mice and humans. Brain and Behavior, 2021, 11, e01928.	1.0	2
1178	A Polygenic Score for Type 2 Diabetes Risk Is Associated With Both the Acute and Sustained Response to Sulfonylureas. Diabetes, 2021, 70, 293-300.	0.3	22

#	Article	IF	CITATIONS
1179	Genome-Wide Association Analysis of Pancreatic Beta-Cell Glucose Sensitivity. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 80-90.	1.8	5
1180	Sex-specific genetic effects across biomarkers. European Journal of Human Genetics, 2021, 29, 154-163.	1.4	48
1181	A network analysis framework of genetic and nongenetic risks for type 2 diabetes. Reviews in Endocrine and Metabolic Disorders, 2021, 22, 461-469.	2.6	4
1182	Incretin Hormones in Obesity and Related Cardiometabolic Disorders: The Clinical Perspective. Nutrients, 2021, 13, 351.	1.7	28
1183	Genome-Wide Meta-Analysis Identifies the Organic Anion-Transporting Polypeptide Gene <i>SLCO1B1</i> and Statins as Modifiers of Glycemic Response to Sulfonylureas. SSRN Electronic Journal, 0, , .	0.4	0
1185	Interaction Between Physical Activity and Polygenic Score on Type 2 Diabetes Mellitus in Older Black and White Participants From the Health and Retirement Study. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 1214-1221.	1.7	3
1186	Educational attainment protects against type 2 diabetes independently of cognitive performance: a Mendelian randomization study. Acta Diabetologica, 2021, 58, 567-574.	1.2	13
1187	Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability. Nature Communications, 2021, 12, 24.	5.8	87
1188	What HaveWe Learned fromGWAS?. , 2021, , 159-183.		0
1189	Preconception tests at advanced maternal age. Best Practice and Research in Clinical Obstetrics and Gynaecology, 2021, 70, 28-50.	1.4	5
1190	Genomic risk score provides predictive performance for type 2 diabetes in the UK biobank. Acta Diabetologica, 2021, 58, 467-474.	1.2	11
1191	Interaction of diabetes genetic risk and successful lifestyle modification in the Diabetes Prevention Programme. Diabetes, Obesity and Metabolism, 2021, 23, 1030-1040.	2.2	12
1192	Hypothalamus and weight loss in amyotrophic lateral sclerosis. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 180, 327-338.	1.0	7
1193	Associations between depression and cardiometabolic health: A 27-year longitudinal study. Psychological Medicine, 2022, 52, 3007-3017.	2.7	16
1194	Genetic Liability to Depression and Risk of Coronary Artery Disease, Myocardial Infarction, and Other Cardiovascular Outcomes. Journal of the American Heart Association, 2021, 10, e017986.	1.6	51
1196	GWAS of peptic ulcer disease implicates Helicobacter pylori infection, other gastrointestinal disorders and depression. Nature Communications, 2021, 12, 1146.	5.8	93
1197	Variation of <scp>IgG N</scp> â€linked glycosylation profile in diabetic retinopathy. Journal of Diabetes, 2021, 13, 672-680.	0.8	12
1198	Heart Disease and Stroke Statistics—2021 Update. Circulation, 2021, 143, e254-e743.	1.6	3,444

#	Article	IF	CITATIONS
1199	Genome-wide discovery of genetic loci that uncouple excess adiposity from its comorbidities. Nature Metabolism, 2021, 3, 228-243.	5.1	70
1200	A multilayered post-GWAS assessment on genetic susceptibility to pancreatic cancer. Genome Medicine, 2021, 13, 15.	3.6	15
1201	An Improved Genome-Wide Polygenic Score Model for Predicting the Risk of Type 2 Diabetes. Frontiers in Genetics, 2021, 12, 632385.	1.1	19
1202	Chromatin 3D interaction analysis of the STARD10 locus unveils FCHSD2 as a regulator of insulin secretion. Cell Reports, 2021, 34, 108703.	2.9	4
1203	Smoking and heart failure: a Mendelian randomization and mediation analysis. ESC Heart Failure, 2021, 8, 1954-1965.	1.4	22
1204	Genetic disruption of serine biosynthesis is a key driver of macular telangiectasia type 2 aetiology and progression. Genome Medicine, 2021, 13, 39.	3.6	15
1205	Gene-expression correlates of the oscillatory signatures supporting human episodic memory encoding. Nature Neuroscience, 2021, 24, 554-564.	7.1	12
1206	Identification of genetic factors influencing metabolic dysregulation and retinal support for MacTel, a retinal disorder. Communications Biology, 2021, 4, 274.	2.0	26
1207	What factors explain the much higher diabetes prevalence in Russia compared with Norway? Major sex differences in the contribution of adiposity. BMJ Open Diabetes Research and Care, 2021, 9, e002021.	1.2	4
1208	Proteomic profiling reveals biomarkers and pathways in type 2 diabetes risk. JCI Insight, 2021, 6, .	2.3	26
1210	Causal effect of education on type 2 diabetes: A network Mendelian randomization study. World Journal of Diabetes, 2021, 12, 261-277.	1.3	3
1211	Type 2 Diabetes and Cognitive Status in the Health and Retirement Study: A Mendelian Randomization Approach. Frontiers in Genetics, 2021, 12, 634767.	1.1	15
1212	Hypertension Gene Risk Score in Diagnosis and Prediction of Complications. RUHS Journal of Health Sciences, 2021, 6, .	0.1	1
1213	A Dual Systems Genetics Approach Identifies Common Genes, Networks, and Pathways for Type 1 and 2 Diabetes in Human Islets. Frontiers in Genetics, 2021, 12, 630109.	1.1	16
1214	A model and test for coordinated polygenic epistasis in complex traits. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
1215	Progenitor-like characteristics in a subgroup of UCP1+ cells within white adipose tissue. Developmental Cell, 2021, 56, 985-999.e4.	3.1	25
1216	Leveraging expression from multiple tissues using sparse canonical correlation analysis and aggregate tests improves the power of transcriptome-wide association studies. PLoS Genetics, 2021, 17, e1008973.	1.5	35
1217	Geographic variation in the polygenic score of height in Japan. Human Genetics, 2021, 140, 1097-1108.	1.8	6

#	Article	IF	CITATIONS
1218	Pharmacogenetics of new classes of antidiabetic drugs. Bosnian Journal of Basic Medical Sciences, 2021, 21, 659-671.	0.6	6
1219	Diabetes and Renin-Angiotensin-Aldosterone System: Pathophysiology and Genetics. , 0, , .		3
1220	Alternative exon splicing and differential expression in pancreatic islets reveals candidate genes and pathways implicated in early diabetes development. Mammalian Genome, 2021, 32, 153-172.	1.0	2
1221	PPARÎ ³ and Diabetes: Beyond the Genome and Towards Personalized Medicine. Current Diabetes Reports, 2021, 21, 18.	1.7	23
1222	Identification of novel functional CpG-SNPs associated with Type 2 diabetes and birth weight. Aging, 2021, 13, 10619-10658.	1.4	5
1224	Insulin resistance-associated genetic variants in type 1 diabetes. Journal of Diabetes and Its Complications, 2021, 35, 107842.	1.2	8
1225	Progress in Defining the Genetic Contribution to Type 2 Diabetes in Individuals of East Asian Ancestry. Current Diabetes Reports, 2021, 21, 17.	1.7	5
1226	Genetic perturbation of PU.1 binding and chromatin looping at neutrophil enhancers associates with autoimmune disease. Nature Communications, 2021, 12, 2298.	5.8	32
1227	Gene-Environmental Interactions as Metabolic Drivers of Nonalcoholic Steatohepatitis. Frontiers in Endocrinology, 2021, 12, 665987.	1.5	17
1228	Assessment of genetic risk of type 2 diabetes among Pakistanis based on GWAS-implicated loci. Gene, 2021, 783, 145563.	1.0	7
1229	GEM: scalable and flexible gene–environment interaction analysis in millions of samples. Bioinformatics, 2021, 37, 3514-3520.	1.8	17
1230	Dualâ€specificity phosphataseÂ8: A gatekeeper in hypothalamic control of glucose metabolism in males. Journal of Diabetes Investigation, 2021, 12, 1138-1140.	1.1	2
1231	Dissecting polygenic signals from genome-wide association studies on human behaviour. Nature Human Behaviour, 2021, 5, 686-694.	6.2	57
1232	Protocol for a prospective, observational, deep phenotyping study on adipose epigenetic and lipidomic determinants of metabolic homoeostasis in South Asian Indians: the Indian Diabetes and Metabolic Health (InDiMeT) study. BMJ Open, 2021, 11, e043644.	0.8	1
1233	Evidence for a causal association between milk intake and cardiometabolic disease outcomes using a two-sample Mendelian Randomization analysis in up to 1,904,220 individuals. International Journal of Obesity, 2021, 45, 1751-1762.	1.6	14
1234	scGRNom: a computational pipeline of integrative multi-omics analyses for predicting cell-type disease genes and regulatory networks. Genome Medicine, 2021, 13, 95.	3.6	21
1236	Learning a genome-wide score of human–mouse conservation at the functional genomics level. Nature Communications, 2021, 12, 2495.	5.8	12
1237	Gene–environment correlations and causal effects of childhood maltreatment on physical and mental health: a genetically informed approach. Lancet Psychiatry,the, 2021, 8, 373-386.	3.7	84

#	Article	IF	CITATIONS
1238	DNA Methylation Patterning and the Regulation of Beta Cell Homeostasis. Frontiers in Endocrinology, 2021, 12, 651258.	1.5	27
1239	Genetics of canine myxomatous mitral valve disease. Animal Genetics, 2021, 52, 409-421.	0.6	9
1240	ABCB10 exports mitochondrial biliverdin, driving metabolic maladaptation in obesity. Science Translational Medicine, 2021, 13, .	5.8	27
1241	Brain gene co-expression networks link complement signaling with convergent synaptic pathology in schizophrenia. Nature Neuroscience, 2021, 24, 799-809.	7.1	44
1242	The trans-ancestral genomic architecture of glycemic traits. Nature Genetics, 2021, 53, 840-860.	9.4	341
1243	Comparison of genetic risk prediction models to improve prediction of coronary heart disease in two large cohorts of the MONICA/KORA study. Genetic Epidemiology, 2021, 45, 633-650.	0.6	6
1244	Genetic Determinants of Peripheral Artery Disease. Circulation Research, 2021, 128, 1805-1817.	2.0	9
1245	Causal inference for heritable phenotypic risk factors using heterogeneous genetic instruments. PLoS Genetics, 2021, 17, e1009575.	1.5	36
1246	Pro12Ala polymorphism of peroxisome proliferator activated receptor gamma 2 may be associated with adverse neurodevelopment in European preterm babies. Brain and Behavior, 2021, 11, e2256.	1.0	3
1247	A genome-wide association study identifies 5 loci associated with frozen shoulder and implicates diabetes as a causal risk factor. PLoS Genetics, 2021, 17, e1009577.	1.5	23
1248	Exocrine pancreas proteases regulate \hat{l}^2 -cell proliferation in zebrafish ciliopathy models and in murine systems. Biology Open, 2021, 10, .	0.6	5
1249	Prenatal Nicotine Exposure Induces Low Birthweight and Hyperinsulinemia in Male Rats. Frontiers in Endocrinology, 2021, 12, 694336.	1.5	2
1250	Adipose Tissue Epigenetic Profile in Obesity-Related Dysglycemia -ÂA Systematic Review. Frontiers in Endocrinology, 2021, 12, 681649.	1.5	9
1251	Gene Set Enrichment Analsyes Identify Pathways Involved in Genetic Risk for Diabetic Retinopathy. American Journal of Ophthalmology, 2022, 233, 111-123.	1.7	7
1252	Framingham Heart Study. Journal of the American College of Cardiology, 2021, 77, 2680-2692.	1.2	35
1253	Novel loci and potential mechanisms of major depressive disorder, bipolar disorder, and schizophrenia. Science China Life Sciences, 2022, 65, 167-183.	2.3	9
1254	RNA m6A reader IMP2/IGF2BP2 promotes pancreatic \hat{I}^2 -cell proliferation and insulin secretion by enhancing PDX1 expression. Molecular Metabolism, 2021, 48, 101209.	3.0	28
1255	Structural basis of ethnic-specific variants of PAX4 associated with type 2 diabetes. Human Genome Variation, 2021, 8, 25.	0.4	5

#	Article	IF	CITATIONS
1256	Placental mTOR complex 1 regulates fetal programming of obesity and insulin resistance in mice. JCI Insight, 2021, 6, .	2.3	13
1258	RP11-362K2.2:RP11-767I20.1 Genetic Variation Is Associated with Post-Reperfusion Therapy Parenchymal Hematoma. A GWAS Meta-Analysis. Journal of Clinical Medicine, 2021, 10, 3137.	1.0	6
1259	DR15-DQ6 remains dominantly protective against type 1 diabetes throughout the first five decades of life. Diabetologia, 2021, 64, 2258-2265.	2.9	8
1260	Genomic atlas of the proteome from brain, CSF and plasma prioritizes proteins implicated in neurological disorders. Nature Neuroscience, 2021, 24, 1302-1312.	7.1	105
1261	Constrained maximum likelihood-based Mendelian randomization robust to both correlated and uncorrelated pleiotropic effects. American Journal of Human Genetics, 2021, 108, 1251-1269.	2.6	104
1262	Insulin action at a molecular level – 100 years of progress. Molecular Metabolism, 2021, 52, 101304.	3.0	103
1263	Causal Associations of Urate With Cardiovascular Risk Factors: Two-Sample Mendelian Randomization. Frontiers in Genetics, 2021, 12, 687279.	1.1	8
1264	Causal relationship from coffee consumption to diseases and mortality: a review of observational and Mendelian randomization studies including cardiometabolic diseases, cancer, gallstones and other diseases. European Journal of Nutrition, 2022, 61, 573-587.	1.8	18
1266	Identification of Gene Signature Associated with Type 2 Diabetes Mellitus by Integrating Mutation and Expression Data. Current Gene Therapy, 2021, 22, 51-58.	0.9	3
1267	Resolving cellular and molecular diversity along the hippocampal anterior-to-posterior axis in humans. Neuron, 2021, 109, 2091-2105.e6.	3.8	71
1268	A novel transcriptional risk score for risk prediction of complex human diseases. Genetic Epidemiology, 2021, 45, 811-820.	0.6	3
1269	Novel Reclassification of Adult Diabetes Is Useful to Distinguish Stages of Î ² -Cell Function Linked to the Risk of Vascular Complications: The DOLCE Study From Northern Ukraine. Frontiers in Genetics, 2021, 12, 637945.	1.1	15
1270	Distinct nuclear compartment-associated genome architecture in the developing mammalian brain. Nature Neuroscience, 2021, 24, 1235-1242.	7.1	28
1271	Genetic architecture modulates diet-induced hepatic mRNA and miRNA expression profiles in Diversity Outbred mice. Genetics, 2021, 218, .	1.2	4
1272	Low Plasma Adiponectin in Risk of Type 2 Diabetes: Observational Analysis and One- and Two-Sample Mendelian Randomization Analyses in 756,219 Individuals. Diabetes, 2021, 70, 2694-2705.	0.3	17
1273	Informed choice and attitudes regarding a genomic test to predict risk of colorectal cancer in general practice. Patient Education and Counseling, 2022, 105, 987-995.	1.0	7
1274	Can I Buy My Health? A Genetically Informed Study of Socioeconomic Status and Health. Annals of Behavioral Medicine, 2021, , .	1.7	0
1275	Identification of EP300 as a Key Gene Involved in Antipsychotic-Induced Metabolic Dysregulation Based on Integrative Bioinformatics Analysis of Multi-Tissue Gene Expression Data. Frontiers in Pharmacology, 2021, 12, 729474.	1.6	3

#	Article	IF	CITATIONS
1276	Effect of Diet Quality and Genetic Predisposition on Hemoglobin A1c and Type 2 Diabetes Risk: Gene-Diet Interaction Analysis of 357,419 Individuals. Diabetes Care, 2021, 44, 2470-2479.	4.3	26
1277	Multiethnic Genome-Wide Association Study of Subclinical Atherosclerosis in Individuals With Type 2 Diabetes. Circulation Genomic and Precision Medicine, 2021, 14, e003258.	1.6	4
1278	Effect of dietary fat intake and genetic risk on glucose and insulin-related traits in Brazilian young adults. Journal of Diabetes and Metabolic Disorders, 2021, 20, 1337-1347.	0.8	3
1279	GPR119 agonists: Novel therapeutic agents for type 2 diabetes mellitus. Bioorganic Chemistry, 2021, 113, 104998.	2.0	15
1280	The Link between Type 2 Diabetes Mellitus and the Polymorphisms of Glutathione-Metabolizing Genes Suggests a New Hypothesis Explaining Disease Initiation and Progression. Life, 2021, 11, 886.	1.1	15
1281	Involvement of miR-3180-3p and miR-4632-5p in palmitic acid-induced insulin resistance. Molecular and Cellular Endocrinology, 2021, 534, 111371.	1.6	6
1282	Genetics of Type 2 Diabetes: Opportunities for Precision Medicine. Journal of the American College of Cardiology, 2021, 78, 496-512.	1.2	12
1283	Lower Dietary Intake of Plant Protein Is Associated with Genetic Risk of Diabetes-Related Traits in Urban Asian Indian Adults. Nutrients, 2021, 13, 3064.	1.7	4
1284	Multi-Trait Genomic Risk Stratification for Type 2 Diabetes. Frontiers in Medicine, 2021, 8, 711208.	1.2	9
1286	Human genetic analyses of organelles highlight the nucleus in age-related trait heritability. ELife, 2021, 10, .	2.8	20
1287	Relationship between glucose homeostasis and obesity in early life—a study of Italian children and adolescents. Human Molecular Genetics, 2022, 31, 816-826.	1.4	10
1288	Physical Activity and Risks of Cardiovascular Diseases: A Mendelian Randomization Study. Frontiers in Cardiovascular Medicine, 2021, 8, 722154.	1.1	16
1290	Educational level as a cause of type 2 diabetes mellitus: Caution from triangulation of observational and genetic evidence. Acta Diabetologica, 2022, 59, 127-135.	1.2	0
1291	Polymorphisms in GLIS3 and susceptibility to diabetes mellitus: A systematic review and meta-analysis. Meta Gene, 2021, 29, 100898.	0.3	1
1292	TM6SF2: A Novel Genetic Player in Nonalcoholic Fatty Liver and Cardiovascular Disease. Hepatology Communications, 2022, 6, 448-460.	2.0	51
1293	Nicotinamide Adenine Dinucleotide Phosphate Oxidases in Glucose Homeostasis and Diabetes-Related Endothelial Cell Dysfunction. Cells, 2021, 10, 2315.	1.8	16
1294	Association of polymorphic loci of susceptibility to diabetes mellitus type 2 in various ethnic groups of the Russian Federation. Diabetes Mellitus, 2021, 24, 262-272.	0.5	1
1295	Associations of young onset age and genetic risk of beta cell dysfunction with glycaemic progression in individuals with type 2 diabetes. Diabetes and Metabolism, 2021, 47, 101238.	1.4	6

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
1296	Prediction and classification of diabetes mellitus using genomic data. , 2021, , 235-292.			6
1297	Combining Structural-Equation Modeling with Genomic-Relatedness-Matrix Restricted Maxi Likelihood in OpenMx. Behavior Genetics, 2021, 51, 331-342.	num	1.4	11
1298	Why Obesity in Parents Matters. , 2016, , 1-9.			1
1299	Gene-Environment Interaction and Individual Susceptibility to Metabolic Disorders. , 2020, ,	81-94.		1
1300	Parkinson's Disease and Aging. , 2016, , 229-255.			1
1301	Confluence of Genes Related to the Combined Etiology DOISm (Diabetes, Obesity, Inflamm 22-37.	ation and) Tj ETQq1 I	1 0.784314 1.0	rgBT /Ove 1
1302	Bioinformatics, Genomics and Diabetes. SpringerBriefs in Applied Sciences and Technology,	2016, , 1-18.	0.2	1
1303	Genome-Wide Association Study for Type 2 Diabetes. , 2019, , 49-86.			2
1304	Identification of a novel proinsulin-associated SNP and demonstration that proinsulin is unli be a causal factor in subclinical vascular remodelling using Mendelian randomisation. Atherosclerosis, 2017, 266, 196-204.	kely to	0.4	3
1305	Beta-Cell Fragility As a Common Underlying Risk Factor in Type 1 and Type 2 Diabetes. Tren Molecular Medicine, 2017, 23, 181-194.	ds in	3.5	53
1306	Glucose stimulates microRNA-199 expression in murine pancreatic β-cells. Journal of Biolog Chemistry, 2020, 295, 1261-1270.	cal	1.6	9
1307	Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways coronary heart disease. Nature Genetics, 2017, 49, 1450-1457.	with	9.4	218
1308	Genetic variant effects on gene expression in human pancreatic islets and their implications Nature Communications, 2020, 11, 4912.	for T2D.	5.8	89
1309	Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associa stroke and stroke subtypes. Nature Genetics, 2018, 50, 524-537.	ted with	9.4	1,124
1310	Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population. N Genetics, 2019, 51, 379-386.	ature	9.4	164
1387	Cardiac Imaging of Aortic Valve Area From 34 287 UK Biobank Participants Reveals Novel G Associations and Shared Genetic Comorbidity With Multiple Disease Phenotypes. Circulatio and Precision Medicine, 2020, 13, e003014.	enetic n Genomic	1.6	16
1388	Genetics Insights in the Relationship Between Type 2 Diabetes and Coronary Heart Disease. Research, 2020, 126, 1526-1548.	Circulation	2.0	58
1389	Trimeprazine increases IRS2 in human islets and promotes pancreatic Î ² cell growth and fun mice. JCI Insight, 2016, 1, .	ction in	2.3	8
#	Article	IF	CITATIONS	
------	--	-----	-----------	
1390	Type 2 diabetes risk gene Dusp8 regulates hypothalamic Jnk signaling and insulin sensitivity. Journal of Clinical Investigation, 2020, 130, 6093-6108.	3.9	17	
1391	Maternal diet–induced microRNAs and mTOR underlie β cell dysfunction in offspring. Journal of Clinical Investigation, 2014, 124, 4395-4410.	3.9	96	
1392	Microsatellite and Single Nucleotide Polymorphisms in the Insulin-Like Growth Factor 1 Promoter with Insulin Sensitivity and Insulin Secretion. Medical Science Monitor, 2017, 23, 3722-3736.	0.5	7	
1393	Genome-edited human stem cell-derived beta cells: a powerful tool for drilling down on type 2 diabetes GWAS biology. F1000Research, 2016, 5, 1711.	0.8	10	
1394	A CRISPR/Cas9 genome editing pipeline in the EndoC-βH1 cell line to study genes implicated in beta cell function. Wellcome Open Research, 2019, 4, 150.	0.9	21	
1395	A CRISPR/Cas9 genome editing pipeline in the EndoC-βH1 cell line to study genes implicated in beta cell function. Wellcome Open Research, 2019, 4, 150.	0.9	16	
1397	Evaluating the Performance of Fine-Mapping Strategies at Common Variant GWAS Loci. PLoS Genetics, 2015, 11, e1005535.	1.5	67	
1398	A Powerful Procedure for Pathway-Based Meta-analysis Using Summary Statistics Identifies 43 Pathways Associated with Type II Diabetes in European Populations. PLoS Genetics, 2016, 12, e1006122.	1.5	34	
1399	Genome-Wide Association Analyses in 128,266 Individuals Identifies New Morningness and Sleep Duration Loci. PLoS Genetics, 2016, 12, e1006125.	1.5	308	
1400	High-Throughput Characterization of Blood Serum Proteomics of IBD Patients with Respect to Aging and Genetic Factors. PLoS Genetics, 2017, 13, e1006565.	1.5	41	
1401	Joint modeling of genetically correlated diseases and functional annotations increases accuracy of polygenic risk prediction. PLoS Genetics, 2017, 13, e1006836.	1.5	70	
1402	The population genomics of archaeological transition in west Iberia: Investigation of ancient substructure using imputation and haplotype-based methods. PLoS Genetics, 2017, 13, e1006852.	1.5	122	
1403	LabWAS: Novel findings and study design recommendations from a meta-analysis of clinical labs in two independent biobanks. PLoS Genetics, 2020, 16, e1009077.	1.5	14	
1404	A powerful method for pleiotropic analysis under composite null hypothesis identifies novel shared loci between Type 2 Diabetes and Prostate Cancer. PLoS Genetics, 2020, 16, e1009218.	1.5	49	
1405	Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis. PLoS Medicine, 2016, 13, e1002179.	3.9	324	
1406	Systems Biology Approach Reveals Genome to Phenome Correlation in Type 2 Diabetes. PLoS ONE, 2013, 8, e53522.	1.1	56	
1407	Rs4074134 Near BDNF Gene Is Associated with Type 2 Diabetes Mellitus in Chinese Han Population Independently of Body Mass Index. PLoS ONE, 2013, 8, e56898.	1.1	17	
1408	The Value of Genetic Information for Diabetes Risk Prediction – Differences According to Sex, Age, Family History and Obesity. PLoS ONE, 2013, 8, e64307.	1.1	33	

#	Article	IF	CITATIONS
1409	Genetic Associations with Diabetes: Meta-Analyses of 10 Candidate Polymorphisms. PLoS ONE, 2013, 8, e70301.	1.1	14
1410	Population Genomics of Cardiometabolic Traits: Design of the University College London-London School of Hygiene and Tropical Medicine-Edinburgh-Bristol (UCLEB) Consortium. PLoS ONE, 2013, 8, e71345.	1.1	39
1411	Beta Cell 5′-Shifted isomiRs Are Candidate Regulatory Hubs in Type 2 Diabetes. PLoS ONE, 2013, 8, e73240.	1.1	85
1412	Genomic Data and Disease Forecasting: Application to Type 2 Diabetes (T2D). PLoS ONE, 2014, 9, e85684.	1.1	3
1413	First Genome-Wide Association Study in an Australian Aboriginal Population Provides Insights into Genetic Risk Factors for Body Mass Index and Type 2 Diabetes. PLoS ONE, 2015, 10, e0119333.	1.1	35
1414	The Type 2 Diabetes Risk Allele of TMEM154-rs6813195 Associates with Decreased Beta Cell Function in a Study of 6,486 Danes. PLoS ONE, 2015, 10, e0120890.	1.1	27
1415	Replication Study in a Japanese Population to Evaluate the Association between 10 SNP Loci, Identified in European Genome-Wide Association Studies, and Type 2 Diabetes. PLoS ONE, 2015, 10, e0126363.	1.1	14
1416	Modelling the Interplay between Lifestyle Factors and Genetic Predisposition on Markers of Type 2 Diabetes Mellitus Risk. PLoS ONE, 2015, 10, e0131681.	1.1	8
1417	A HuGE Review and Meta-Analyses of Genetic Associations in New Onset Diabetes after Kidney Transplantation. PLoS ONE, 2016, 11, e0147323.	1.1	22
1418	A Simple Test of Class-Level Genetic Association Can Reveal Novel Cardiometabolic Trait Loci. PLoS ONE, 2016, 11, e0148218.	1.1	8
1419	Replication Study in a Japanese Population of Six Susceptibility Loci for Type 2 Diabetes Originally Identified by a Transethnic Meta-Analysis of Genome-Wide Association Studies. PLoS ONE, 2016, 11, e0154093.	1.1	10
1420	Association of DPP4 Gene Polymorphisms with Type 2 Diabetes Mellitus in Malaysian Subjects. PLoS ONE, 2016, 11, e0154369.	1.1	21
1421	A Common Susceptibility Gene for Type 2 Diabetes Is Associated with Drug Response to a DPP-4 Inhibitor: Pharmacogenomic Cohort in Okinawa Japan. PLoS ONE, 2016, 11, e0154821.	1.1	17
1422	Replication and Relevance of Multiple Susceptibility Loci Discovered from Genome Wide Association Studies for Type 2 Diabetes in an Indian Population. PLoS ONE, 2016, 11, e0157364.	1.1	25
1423	Functional Analysis of Mouse G6pc1 Mutations Using a Novel In Situ Assay for Glucose-6-Phosphatase Activity and the Effect of Mutations in Conserved Human G6PC1/G6PC2 Amino Acids on G6PC2 Protein Expression. PLoS ONE, 2016, 11, e0162439.	1.1	9
1424	Role of Hypothalamic Creb-Binding Protein in Obesity and Molecular Reprogramming of Metabolic Substrates. PLoS ONE, 2016, 11, e0166381.	1.1	14
1425	Common and rare exonic MUC5B variants associated with type 2 diabetes in Han Chinese. PLoS ONE, 2017, 12, e0173784.	1.1	10
1426	Bi-stability in type 2 diabetes mellitus multi-organ signalling network. PLoS ONE, 2017, 12, e0181536.	1.1	10

$\mathcal{O} = \mathcal{O}$	 D	_
	REDU	ND T
CITAT	NLFU	

#	Article	IF	CITATIONS
1427	ShinyGPA: An interactive visualization toolkit for investigating pleiotropic architecture using GWAS datasets. PLoS ONE, 2018, 13, e0190949.	1.1	3
1428	Integrative analysis of super enhancer SNPs for type 2 diabetes. PLoS ONE, 2018, 13, e0192105.	1.1	17
1429	EXOME SEQUENCING AND THE DIAGNOSTICS OF COMPLEX DISEASE PREDISPOSITION IN PREVENTIVE MEDICINE. Cardiovascular Therapy and Prevention (Russian Federation), 2013, 12, 24-28.	0.4	5
1430	LDL-C plays a causal role on T2DM: a Mendelian randomization analysis. Aging, 2020, 12, 2584-2594.	1.4	14
1431	Glycemic traits and Alzheimer's disease: a mendelian randomization study. Aging, 2020, 12, 22688-22699.	1.4	18
1432	Identification of five genetic variants as novel determinants of type 2 diabetes mellitus in Japanese by exome-wide association studies. Oncotarget, 2017, 8, 80492-80505.	0.8	3
1433	Genetic overlap between type 2 diabetes and major depressive disorder identified by bioinformatics analysis. Oncotarget, 2016, 7, 17410-17414.	0.8	21
1434	Complex Genetics of Type 2 Diabetes and Effect Size: What have We Learned from Isolated Populations?. Review of Diabetic Studies, 2015, 12, 299-319.	0.5	19
1435	Diabetes in Population Isolates: Lessons from Greenland. Review of Diabetic Studies, 2015, 12, 320-329.	0.5	11
1436	Inherited pancreatic cancer. Chinese Clinical Oncology, 2017, 6, 58-58.	0.4	26
1438	The Landscape of Pervasive Horizontal Pleiotropy in Human Genetic Variation is Driven by Extreme Polygenicity of Human Traits and Diseases. SSRN Electronic Journal, 0, , .	0.4	3
1439	The Role of Genetic Polymorphism in the Formation of Arterial Hypertension, Type 2 Diabetes and their Comorbidity. Current Pharmaceutical Design, 2019, 25, 218-227.	0.9	11
1440	A Mendelian Randomization Study on Infant Length and Type 2 Diabetes Mellitus Risk. Current Gene Therapy, 2019, 19, 224-231.	0.9	15
1441	Self-care improvement after a pharmaceutical intervention in elderly type 2 diabetic patients. Current Diabetes Reviews, 2015, 12, 120-128.	0.6	14
1442	Genetic Aspects of Latent Autoimmune Diabetes in Adults: A Mini-Review. Current Diabetes Reviews, 2019, 15, 194-198.	0.6	11
1443	Genetic components in diabetic retinopathy. Indian Journal of Ophthalmology, 2016, 64, 55.	0.5	19
1444	Epidemiologic study of familial Type 2 diabetes in Tehran. Journal of Advanced Pharmaceutical Technology and Research, 2018, 9, 56.	0.4	6
1445	Genetic Susceptibility to Type 2 Diabetes and Implications for Therapy. Journal of Diabetes & Metabolism, 2013, 04, .	0.2	5

#	Article	IF	CITATIONS
1446	Two SNPs Associated with Type 2 Diabetes and Obesity at Melanocortin-4 Receptor Gene Loci Exhibited High Fst Values and Natural Selection. Journal of Diabetes & Metabolism, 2012, , .	0.2	2
1447	Expression quantitative trait analyses to identify causal genetic variants for type 2 diabetes susceptibility. World Journal of Diabetes, 2014, 5, 97.	1.3	18
1448	Pathway Analysis of Metabolic Syndrome Using a Genome-Wide Association Study of Korea Associated Resource (KARE) Cohorts. Genomics and Informatics, 2014, 12, 195.	0.4	13
1449	Epigenetic profiling of growth plate chondrocytes sheds insight into regulatory genetic variation influencing height. ELife, 2017, 6, .	2.8	35
1450	Genetic effects on promoter usage are highly context-specific and contribute to complex traits. ELife, 2019, 8, .	2.8	53
1451	PDX1 and MC4R genetic polymorphisms are associated with type 2 diabetes mellitus risk in the Chinese Han population. BMC Medical Genomics, 2021, 14, 249.	0.7	4
1452	Genome-Wide Meta-analysis Identifies Genetic Variants Associated With Glycemic Response to Sulfonylureas. Diabetes Care, 2021, 44, 2673-2682.	4.3	23
1455	Sequence complementarity between human noncoding RNAs and SARS-CoV-2 genes: What are the implications for human health?. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166291.	1.8	5
1456	N-Glycosylation Profiling of Human Blood in Type 2 Diabetes by Capillary Electrophoresis: A Preliminary Study. Molecules, 2021, 26, 6399.	1.7	3
1457	Mediation model with a categorical exposure and a censored mediator with application to a genetic study. PLoS ONE, 2021, 16, e0257628.	1.1	2
1458	Genome-Wide Association Study of Peripheral Artery Disease. Circulation Genomic and Precision Medicine, 2021, 14, e002862.	1.6	24
1459	Expression profiling of putative type 2 diabetes susceptibility genes in human islets and in rat beta cell lines. Journal of Diabetes Mellitus, 2013, 03, 27-32.	0.1	0
1463	Prevention of type 2 diabetes - where is the evidence?. Eastern Mediterranean Health Journal, 2014, 20, 677-678.	0.3	0
1465	Genetic Determinants of Type 2 Diabetes in Asians. International Journal of Diabetology & Vascular Disease Research, 2015, 2015, 1-9.	0.2	11
1468	Genetics of Endocrinology. , 2016, , 49-68.		1
1479	CONVERGE dataset: 12,000 whole-genome sequences representative of the Han Chinese population. GigaScience, 2016, 5, .	3.3	0
1492	Genetics of Diabetes and Diabetic Complications. Endocrinology, 2018, , 81-139.	0.1	1
1505	Prehypertension in theÂEra of Personalized Medicine in 2017. Updates in Hypertension and Cardiovascular Protection, 2019, , 657-675.	0.1	0

#	Article	IF	CITATIONS
1507	The Multifaceted Legacy of the Human Genome Program for Evolutionary Biology: An Epistemological Perspective. Perspectives on Science, 2019, 27, 117-152.	0.3	3
1522	DNA Methylation and Type 2 Diabetes: Novel Biomarkers for Risk Assessment?. International Journal of Molecular Sciences, 2021, 22, 11652.	1.8	17
1523	Pathophysiology and Risk Factors of Diabetes. Stroke Revisited, 2021, , 15-24.	0.2	0
1524	Epigenetics and Chronic Inflammation: Role in Early Detection of Type 2 Diabetes. , 2020, , 237-247.		0
1525	Biobehavioral Factors Related to the Development and Course of Type 2 Diabetes and Cardiometabolic Impairment in Adults: The Critical Role of Weight, Diet, Physical Activity, and Other Lifestyle Behaviors. , 2020, , 279-301.		0
1526	Normal-weight Obesity: A Hidden Pandemic. , 2020, , 347-359.		2
1531	TCF7L2 rs7903146 Is Associated With Increased Risk of New-Onset Diabetes After Transplant: A Meta-analysis of Literature. Transplantation Proceedings, 2021, 53, 2820-2820.	0.3	0
1535	The association of clinical phenotypes to known AD/FTD genetic risk loci and their inter-relationship. PLoS ONE, 2020, 15, e0241552.	1.1	7
1537	Developmental origins of genotype-phenotype correlations in chronic diseases of old age. , 2012, 3, 385-403.		1
1538	Pleiotropy and pathway analyses of genetic variants associated with both type 2 diabetes and prostate cancer. International Journal of Molecular Epidemiology and Genetics, 2013, 4, 49-60.	0.4	3
1539	Genetic insights into cardiometabolic risk factors. Clinical Biochemist Reviews, 2014, 35, 15-36.	3.3	28
1540	Association of Type 2 Diabetes Mellitus related SNP genotypes with altered serum adipokine levels and metabolic syndrome phenotypes. International Journal of Clinical and Experimental Medicine, 2015, 8, 4464-71.	1.3	3
1541	Association of rs7754840 G/C polymorphisms in CDKAL1 with type 2 diabetes: a meta-analysis of 70141 subjects. International Journal of Clinical and Experimental Medicine, 2015, 8, 17392-405.	1.3	10
1542	Genetic Correlation and Bidirectional Causal Association Between Type 2 Diabetes and Pulmonary Function. Frontiers in Endocrinology, 2021, 12, 777487.	1.5	2
1543	Oxytocin-pathway polygenic scores for severe mental disorders and metabolic phenotypes in the UK Biobank. Translational Psychiatry, 2021, 11, 599.	2.4	2
1544	Combining the strengths of inverse-variance weighting and Egger regression in Mendelian randomization using a mixture of regressions model. PLoS Genetics, 2021, 17, e1009922.	1.5	74
1546	Deletion of ABCB10 in beta-cells protects from high-fat diet induced insulin resistance. Molecular Metabolism, 2022, 55, 101403.	3.0	0
1547	Type 2 diabetes mellitus increases risk of erectile dysfunction independent of obesity and dyslipidemia: A Mendelian randomization study. Andrology, 2022, 10, 518-524.	1.9	13

#	Article	IF	CITATIONS
1548	Causal Inference of Carnitine on Blood Pressure and potential mediation by uric acid: A mendelian randomization analysis. International Journal of Cardiology Cardiovascular Risk and Prevention, 2021, 11, 200120.	0.4	3
1549	Stem Cell-Derived β Cells: A Versatile Research Platform to Interrogate the Genetic Basis of β Cell Dysfunction. International Journal of Molecular Sciences, 2022, 23, 501.	1.8	4
1550	Scales for assessing the genetic risk of developing type 2 diabetes mellitus. Profilakticheskaya Meditsina, 2021, 24, 115.	0.2	3
1551	Heart Disease and Stroke Statistics—2022 Update: A Report From the American Heart Association. Circulation, 2022, 145, CIR00000000000001052.	1.6	2,561
1552	Identification of genetic loci simultaneously associated with multiple cardiometabolic traits. Nutrition, Metabolism and Cardiovascular Diseases, 2022, 32, 1027-1034.	1.1	4
1553	Meta-imputation of transcriptome from genotypes across multiple datasets by leveraging publicly available summary-level data. PLoS Genetics, 2022, 18, e1009571.	1.5	3
1554	A data-adaptive Bayesian regression approach for polygenic risk prediction. Bioinformatics, 2022, 38, 1938-1946.	1.8	1
1555	Estimating the Effect of Liver and Pancreas Volume and Fat Content on Risk of Diabetes: A Mendelian Randomization Study. Diabetes Care, 2022, 45, 460-468.	4.3	27
1556	Mendelian randomization study of obesity and type 2 diabetes in hospitalized COVID-19 patients. Metabolism: Clinical and Experimental, 2022, 129, 155156.	1.5	17
1557	iPSCs in insulin resistance, type 2 diabetes, and the metabolic syndrome. , 2022, , 275-302.		0
1558	Celebrities in the heart, strangers in the pancreatic beta cell: Voltageâ€gated potassium channels K _v 7.1 and K _v 11.1 bridge long QT syndrome with hyperinsulinaemia as well as type 2 diabetes. Acta Physiologica, 2022, 234, e13781.	1.8	6
1559	Harnessing tissue-specific genetic variation to dissect putative causal pathways between body mass index and cardiometabolic phenotypes. American Journal of Human Genetics, 2022, 109, 240-252.	2.6	15
1560	Associations of Visceral Adipose Tissue, Circulating Protein Biomarkers, and Risk of Cardiovascular Diseases: A Mendelian Randomization Analysis. Frontiers in Cell and Developmental Biology, 2022, 10, 840866.	1.8	14
1562	A Role for IncRNAs in Regulating Inflammatory and Autoimmune Responses Underlying Type 1 Diabetes. Advances in Experimental Medicine and Biology, 2022, 1363, 97-118.	0.8	2
1563	Multi-ancestry genome-wide association study of gestational diabetes mellitus highlights genetic links with type 2 diabetes. Human Molecular Genetics, 2022, 31, 3377-3391.	1.4	47
1564	Diabetes and Its Cardiovascular Complications: Comprehensive Network and Systematic Analyses. Frontiers in Cardiovascular Medicine, 2022, 9, 841928.	1.1	7
1566	HNF1A Mutations and Beta Cell Dysfunction in Diabetes. International Journal of Molecular Sciences, 2022, 23, 3222.	1.8	23
1567	Clinical and Genetic Predictors of Glycemic Control and Weight Loss Response to Liraglutide in Patients with Type 2 Diabetes. Journal of Personalized Medicine, 2022, 12, 424.	1.1	10

#	Article	IF	CITATIONS
1568	Insights Into Genome-Wide Association Study for Diabetes: A Bibliometric and Visual Analysis From 2001 to 2021. Frontiers in Endocrinology, 2022, 13, 817620.	1.5	7
1569	Association Between Metabolically Different Adiposity Subtypes and Osteoarthritis: A Mendelian Randomization Study. Arthritis Care and Research, 2023, 75, 885-892.	1.5	5
1570	Study of the association between GLIS3 rs10758593 and type 2 diabetes mellitus in Egyptian population. Egyptian Journal of Medical Human Genetics, 2022, 23, .	0.5	0
1572	Immune disease variants modulate gene expression in regulatory CD4+ TÂcells. Cell Genomics, 2022, 2, 100117.	3.0	20
1573	Human pancreatic islet miRNA-mRNA networks of altered miRNAs due to glycemic status. IScience, 2022, 25, 103995.	1.9	7
1574	Genetics of cancer therapy-associated cardiotoxicity. Journal of Molecular and Cellular Cardiology, 2022, 167, 85-91.	0.9	10
1575	Statistical models and computational tools for predicting complex traits and diseases. Genomics and Informatics, 2021, 19, e36.	0.4	8
1577	Circulating Nucleic Acid-Based Biomarkers of Type 2 Diabetes. International Journal of Molecular Sciences, 2022, 23, 295.	1.8	8
1578	Genetic liability for prescription opioid use and risk of cardiovascular diseases: a multivariable Mendelian randomization study. Addiction, 2022, 117, 1382-1391.	1.7	33
1579	A Novel Optimized Method forÂFeature Selection Using Non-linear Kernel-Free Twin Quadratic Surface Support Vector Machine. Communications in Computer and Information Science, 2022, , 339-353.	0.4	3
1580	Research for type 2 diabetes mellitus in endemic arsenism areas in central China: role of low level of arsenic exposure and KEAP1 rs11545829 polymorphism. Archives of Toxicology, 2022, 96, 1673-1683.	1.9	10
1581	Multidimensional chromatin profiling of zebrafish pancreas to uncover and investigate disease-relevant enhancers. Nature Communications, 2022, 13, 1945.	5.8	5
1597	Generation of Isogenic hiPSCs with Targeted Edits at Multiple Intronic SNPs to Study the Effects of the Type 2 Diabetes Associated KCNQ1 Locus in American Indians. Cells, 2022, 11, 1446.	1.8	3
1598	Shared components of heritability across genetically correlated traits. American Journal of Human Genetics, 2022, 109, 989-1006.	2.6	7
1599	Glucose-Related Traits and Risk of Migraine—A Potential Mechanism and Treatment Consideration. Genes, 2022, 13, 730.	1.0	5
1600	Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nature Genetics, 2022, 54, 560-572.	9.4	250
1601	A practical problem with Egger regression in Mendelian randomization. PLoS Genetics, 2022, 18, e1010166.	1.5	4
1602	Causal relationship between physical activity, leisure sedentary behaviors and COVID-19 risk: a Mendelian randomization study. Journal of Translational Medicine, 2022, 20, 216.	1.8	84

#	Article	IF	CITATIONS
1603	Type 2 Diabetes-Related Variants Influence the Risk of Developing Prostate Cancer: A Population-Based Case-Control Study and Meta-Analysis. Cancers, 2022, 14, 2376.	1.7	6
1604	The role of glutathione transferase polymorphisms in the development of diabetic nephropathy. , 2021, 12, 193-203.	0.0	0
1605	Mendelian randomization highlights the causal association of obesity with periodontal diseases. Journal of Clinical Periodontology, 2022, 49, 662-671.	2.3	11
1606	Cardiorespiratory fitness, genetic susceptibility, inflammation and risk of incident type 2 diabetes: A population-based longitudinal study. Metabolism: Clinical and Experimental, 2022, 132, 155215.	1.5	7
1607	Robust inference of bi-directional causal relationships in presence of correlated pleiotropy with GWAS summary data. PLoS Genetics, 2022, 18, e1010205.	1.5	5
1609	Genome-Wide Association Study Statistical Models: A Review. Methods in Molecular Biology, 2022, , 43-62.	0.4	10
1610	Metabolic polygenic risk scores effect on antipsychotic-induced metabolic dysregulation: A longitudinal study in a first episode psychosis cohort. Schizophrenia Research, 2022, 244, 101-110.	1.1	8
1611	HLA-A*03, the hemochromatosis ancestral haplotype, and phenotypes of referred hemochromatosis probands with HFE p.C282Y homozygosity. Hereditas, 2022, 159, .	0.5	3
1612	A Genome-Wide Association Study of Prediabetes Status Change. Frontiers in Endocrinology, 0, 13, .	1.5	2
1613	Prediction of type 2 diabetes mellitus onset using logistic regression-based scorecards. ELife, 0, 11, .	2.8	7
1614	The Senescence Markers p16INK4A, p14ARF/p19ARF, and p21 in Organ Development and Homeostasis. Cells, 2022, 11, 1966.	1.8	35
1615	Associations of Polymorphisms in the Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1 Alpha Gene With Subsequent Coronary Heart Disease: An Individual-Level Meta-Analysis. Frontiers in Physiology, 0, 13, .	1.3	1
1616	ZMIZ proteins: partners in transcriptional regulation and risk factors for human disease. Journal of Molecular Medicine, 2022, 100, 973-983.	1.7	12
1617	The Role of Insulin Resistance in Fueling NAFLD Pathogenesis: From Molecular Mechanisms to Clinical Implications. Journal of Clinical Medicine, 2022, 11, 3649.	1.0	19
1618	Insulin resistance in children. Current Opinion in Pediatrics, 2022, 34, 400-406.	1.0	2
1619	Effect of Cheese Intake on Cardiovascular Diseases and Cardiovascular Biomarkers. Nutrients, 2022, 14, 2936.	1.7	25
1620	Estimating the causal effect of liability to disease on healthcare costs using Mendelian Randomization. Economics and Human Biology, 2022, 46, 101154.	0.7	7
1621	The genetics of bipolar disorder with obesity and type 2 diabetes. Journal of Affective Disorders, 2022, 313, 222-231.	2.0	6

#	Article	IF	CITATIONS
1622	Clinician Scientists in Public Sector Hospitals—Why and How?. Annals of the Academy of Medicine, Singapore, 2014, 43, 566-568.	0.2	2
1624	Animal Models in Type 2 Diabetes Mellitus Research: Pros and Cons. Jordan Journal of Agricultural Sciences, 2021, 17, 425-440.	0.1	2
1625	A Mendelian randomization study to assess the genetic liability of gastroesophageal reflux disease for cardiovascular diseases and risk factors. Human Molecular Genetics, 2022, 31, 4275-4285.	1.4	12
1626	A Recent Update on the Epigenetic Repertoire and Chromatin Modifying Therapy in Diabetes Mellitus: A Comprehensive Review. Current Medicinal Chemistry, 2023, 30, 2020-2038.	1.2	0
1627	Genetics of Type 2 Diabetes: Past, Present, and Future. Nutrients, 2022, 14, 3201.	1.7	24
1628	Association of ANKRD55 Gene Polymorphism with HT: A Protective Factor for Disease Susceptibility. International Journal of Endocrinology, 2022, 2022, 1-7.	0.6	0
1629	Whole cell response to receptor stimulation involves many deep and distributed subcellular biochemical processes. Journal of Biological Chemistry, 2022, , 102325.	1.6	0
1630	Non-Alcoholic Fatty Liver Disease and Steatohepatitis. , 2023, , 610-621.		2
1631	Early life nutrition and its effect on the development of obesity and type-2 diabetes. , 2022, , 281-307.		0
1632	Association of Genetic Predisposition and Physical Activity With Risk of Gestational Diabetes in Nulliparous Women. JAMA Network Open, 2022, 5, e2229158.	2.8	5
1634	On the Verge of Precision Medicine in Diabetes. Drugs, 2022, 82, 1389-1401.	4.9	0
1635	A Century-long Journey From the Discovery of Insulin to the Implantation of Stem Cell–derived Islets. Endocrine Reviews, 2023, 44, 222-253.	8.9	13
1637	Lessons learned during the process of reporting individual genomic results to participants of a population-based biobank. European Journal of Human Genetics, 0, , .	1.4	0
1640	Using Data to Improve the Management of Diabetes: The Tayside Experience. Diabetes Care, 2022, 45, 2828-2837.	4.3	4
1641	Genetic variants for prediction of gestational diabetes mellitus and modulation of susceptibility by a nutritional intervention based on a Mediterranean diet. Frontiers in Endocrinology, 0, 13, .	1.5	2
1642	The HUNT study: A population-based cohort for genetic research. Cell Genomics, 2022, 2, 100193.	3.0	20
1643	Assessment of the genetic and clinical determinants of hip fracture risk: Genome-wide association and Mendelian randomization study. Cell Reports Medicine, 2022, 3, 100776.	3.3	11
1644	The common genes involved in the pathogenesis of Alzheimer's disease and type 2 diabetes and their implication for drug repositioning. Neuropharmacology, 2023, 223, 109327.	2.0	8

#	Article	IF	CITATIONS
1645	Immunotropic effects of hypoglycemic agents on coronavirus infection: a view from the perspective of pharmacogenetics. Reviews on Clinical Pharmacology and Drug Therapy, 2022, 20, 269-279.	0.2	1
1646	Indolepropionic Acid, a Gut Bacteria-Produced Tryptophan Metabolite and the Risk of Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease. Nutrients, 2022, 14, 4695.	1.7	11
1647	An update of the consensus statement on insulin resistance in children 2010. Frontiers in Endocrinology, 0, 13, .	1.5	4
1648	Insight into genetic, biological, and environmental determinants of sexual-dimorphism in type 2 diabetes and glucose-related traits. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	0
1652	Prevalence of gestational diabetes mellitus in women with a family history of type 2 diabetes in first- and second-degree relatives. Acta Diabetologica, 2023, 60, 345-351.	1.2	6
1653	Mendelian randomization analyses in ocular disease: a powerful approach to causal inference with human genetic data. Journal of Translational Medicine, 2022, 20, .	1.8	7
1654	Integrating Common Risk Factors with Polygenic Scores Improves the Prediction of Type 2 Diabetes. International Journal of Molecular Sciences, 2023, 24, 984.	1.8	4
1655	Progress in genetics of type 2 diabetes and diabetic complications. Journal of Diabetes Investigation, 2023, 14, 503-515.	1.1	11
1656	Clinical characteristics and genetic analysis of a Chinese pedigree of type 2 diabetes complicated with interstitial lung disease. Frontiers in Endocrinology, 0, 13, .	1.5	0
1657	Estimation and implications of the genetic architecture of fasting and non-fasting blood glucose. Nature Communications, 2023, 14, .	5.8	1
1658	Biochemical Activation and Regulatory Functions of Trans-Regulatory KLF14 and Its Association with Genetic Polymorphisms. Metabolites, 2023, 13, 199.	1.3	0
1659	Heart Disease and Stroke Statistics—2023 Update: A Report From the American Heart Association. Circulation, 2023, 147, .	1.6	2,130
1660	Microalgae as a Nutraceutical Tool to Antagonize the Impairment of Redox Status Induced by SNPs: Implications on Insulin Resistance. Biology, 2023, 12, 449.	1.3	1
1661	Fast and accurate Bayesian polygenic risk modeling with variational inference. American Journal of Human Genetics, 2023, 110, 741-761.	2.6	3
1662	Nilpotent Singularities and Periodic Perturbation of a \$\$Gleta \$\$ Model: A Pathway to Glucose Disorder. Journal of Nonlinear Science, 2023, 33, .	1.0	2
1663	Structure and Mechanism of Human ABC Transporters. Annual Review of Biophysics, 2023, 52, 275-300.	4.5	20
1664	Wolfram Syndrome 1: A Pediatrician's and Pediatric Endocrinologist's Perspective. International Journal of Molecular Sciences, 2023, 24, 3690.	1.8	0
1665	Gene–Nutrient Interactions in Obesity: COBLL1 Genetic Variants Interact with Dietary Fat Intake to Modulate the Incidence of Obesity. International Journal of Molecular Sciences, 2023, 24, 3758.	1.8	0

#	Article	IF	CITATIONS
1666	THADA inhibition in mice protects against type 2 diabetes mellitus by improving pancreatic \hat{l}^2 -cell function and preserving \hat{l}^2 -cell mass. Nature Communications, 2023, 14, .	5.8	9
1667	Rare and Common Variants in GALNT3 May Affect Bone Mass Independently of Phosphate Metabolism. Journal of Bone and Mineral Research, 2020, 38, 678-691.	3.1	0
1668	Association of gastric inhibitory polypeptide receptor (CIPR) gene polymorphism with type 2 diabetes mellitus in iranian patients. BMC Medical Genomics, 2023, 16, .	0.7	1
1669	Diabetes and Other Comorbidities: Microvascular and Macrovascular Diseases Diabetes and Cancer. , 2023, , 21-39.		4
1670	The genetic basis of endometriosis and comorbidity with other pain and inflammatory conditions. Nature Genetics, 2023, 55, 423-436.	9.4	50
1671	Knocking Down CDKN2A in 3D hiPSC-Derived Brown Adipose Progenitors Potentiates Differentiation, Oxidative Metabolism and Browning Process. Cells, 2023, 12, 870.	1.8	0
1672	Investigation of risk factors associated with impaired glucose regulation: Using the momentum equation to assess the impact of risk factors on community residents. Frontiers in Endocrinology, 0, 14, .	1.5	1
1673	Genetic variation in cis-regulatory domains suggests cell type-specific regulatory mechanisms in immunity. Communications Biology, 2023, 6, .	2.0	3
1674	Pharmacogenetic interactions of medications administered for weight loss in adults: a systematic review and meta-analysis. Pharmacogenomics, 2023, 24, 283-295.	0.6	0
1677	Common and rare variants associated with cardiometabolic traits across 98,622 whole-genome sequences in the All of Us research program. Journal of Human Genetics, 2023, 68, 565-570.	1.1	1
1697	Genetic Contributions and Personalized Medicine. , 2023, , 3-17.		0
1703	Genetics of Coronary Artery Disease in Diabetes Mellitus. Contemporary Cardiology, 2023, , 129-157.	0.0	1
1704	Utility of genetic risk scores in type 1 diabetes. Diabetologia, 2023, 66, 1589-1600.	2.9	3
1711	Emerging therapeutic options in the management of diabetes: recent trends, challenges and future directions. International Journal of Obesity, 2023, 47, 1179-1199.	1.6	2
1728	Genetics of Type 2 Diabetes. , 2024, , 1-17.		0
1737	The role of genetic and epigenetic factors in familial clustering of metabolic syndrome. , 2024, , 219-234.		0
1740	Genetics of Type 2 Diabetes. , 2023, , 145-161.		0
1743	Precision Medicine and Epigenetics. Advances in Bioinformatics and Biomedical Engineering Book Series, 2024, , 288-309.	0.2	0

ARTICLE

IF CITATIONS