Quiescent water-in-oil Pickering emulsions as a route t chocolate confectionary

Journal of Materials Chemistry 22, 19289 DOI: 10.1039/c2jm34233b

Citation Report

#	Article	IF	CITATIONS
1	Stabilization of Colloidal Suspensions: Competing Effects of Nanoparticle Halos and Depletion Mechanism. Langmuir, 2012, 28, 16022-16028.	1.6	24
2	High internal phase agar hydrogel dispersions in cocoa butter and chocolate as a route towards reducing fat content. Food and Function, 2013, 4, 1314.	2.1	20
3	Moldable high internal phase emulsion hydrogel objects from non-covalently crosslinked poly(N-isopropylacrylamide) nanogel dispersions. Chemical Communications, 2013, 49, 1524.	2.2	64
4	Macroporous Nanocomposite Materials Prepared by Solvent Evaporation from Pickering Emulsion Templates. Macromolecular Materials and Engineering, 2014, 299, 1070-1080.	1.7	6
5	Tuning the Particle–Surface Interactions in Aqueous Solutions by Soft Microgel Particles. Langmuir, 2014, 30, 13182-13190.	1.6	8
6	Mineralization and drug release of hydroxyapatite/poly(l -lactic acid) nanocomposite scaffolds prepared by Pickering emulsion templating. Colloids and Surfaces B: Biointerfaces, 2014, 122, 559-565.	2.5	60
7	Inertial effects of adsorbed glycerol monostearate crystals on the shear rheology of water/canola oil interfaces. Journal of Food Engineering, 2014, 125, 112-118.	2.7	12
8	Deformation of the Water/Oil Interface during the Adsorption of Sterically Stabilized Particles. Langmuir, 2014, 30, 7327-7333.	1.6	7
9	Tuning the Wettability of Halloysite Clay Nanotubes by Surface Carbonization for Optimal Emulsion Stabilization. Langmuir, 2015, 31, 13700-13707.	1.6	40
10	Functional food microstructures for macronutrient release and delivery. Food and Function, 2015, 6, 663-678.	2.1	111
11	Pickering Emulsions for Food Applications: Background, Trends, and Challenges. Annual Review of Food Science and Technology, 2015, 6, 263-297.	5.1	524
12	Current status on novel ways for stabilizing food dispersions by oleosins, particles and microgels. Current Opinion in Food Science, 2015, 3, 94-109.	4.1	54
13	Pickering high internal phase emulsion-based hydroxyapatite–poly(ε-caprolactone) nanocomposite scaffolds. Journal of Materials Chemistry B, 2015, 3, 3848-3857.	2.9	54
14	Colloids in Food: Ingredients, Structure, and Stability. Annual Review of Food Science and Technology, 2015, 6, 211-233.	5.1	174
15	Confectionery and Sugar-Based Foods. , 2016, , .		11
16	Foams stabilized with solid particles carrying stimuli-responsive polymer hairs. Soft Matter, 2016, 12, 4794-4804.	1.2	29
17	Pickering and Network Stabilization of Biocompatible Emulsions Using Chitosan-Modified Silica Nanoparticles. Langmuir, 2016, 32, 13446-13457.	1.6	77
18	Emulsions of fluorinated oils stabilised by fluorinated silica nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 494, 125-138.	2.3	9

#	Article	IF	CITATIONS
19	Food-grade particles for emulsion stabilization. Trends in Food Science and Technology, 2016, 50, 159-174.	7.8	288
20	Facile fabrication of poly(L-lactic acid) microsphere-incorporated calcium alginate/hydroxyapatite porous scaffolds based on Pickering emulsion templates. Colloids and Surfaces B: Biointerfaces, 2016, 140, 382-391.	2.5	41
21	Tailoring flow behavior and texture of water based cocoa suspensions. Food Hydrocolloids, 2016, 52, 167-174.	5.6	22
22	The effect of colloidal aggregates on fat crystal networks. Food and Function, 2017, 8, 352-359.	2.1	16
23	Hierarchical and reversible assembly of graphene oxide/polyvinyl alcohol hybrid stabilized Pickering emulsions and their templating for macroporous composite hydrogels. Carbon, 2017, 111, 38-47.	5.4	46
24	Engineering effective nanoscale nutrient carriers. , 2017, , 141-176.		2
25	Joint Effects of Granule Size and Degree of Substitution on Octenylsuccinated Sweet Potato Starch Granules As Pickering Emulsion Stabilizers. Journal of Agricultural and Food Chemistry, 2018, 66, 4541-4550.	2.4	30
26	Modeling the Interfacial Energy of Surfactant-Free Amphiphilic Janus Nanoparticles from Phase Inversion in Pickering Emulsions. Langmuir, 2018, 34, 1225-1233.	1.6	33
27	Water-In-Oil Pickering Emulsions Stabilized by Water-Insoluble Polyphenol Crystals. Langmuir, 2018, 34, 10001-10011.	1.6	100
28	Review on the Stability Mechanism and Application of Waterâ€inâ€Oil Emulsions Encapsulating Various Additives. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 1660-1675.	5.9	108
29	Air Templated Macroporous Epoxy Foams with Silica Particles as Property-Defining Additive. ACS Applied Polymer Materials, 2019, 1, 335-343.	2.0	19
30	Hybrid hydrogel dispersed low fat and heat resistant chocolate. Journal of Food Engineering, 2019, 256, 9-17.	2.7	35
31	Water-in-oil Pickering emulsions stabilized by an interfacial complex of water-insoluble polyphenol crystals and protein. Journal of Colloid and Interface Science, 2019, 548, 88-99.	5.0	99
32	Self-assembling GO/modified HEC hybrid stabilized pickering emulsions and template polymerization for biomedical hydrogels. Carbohydrate Polymers, 2019, 207, 694-703.	5.1	32
33	Cocoa Consumption and Prevention of Cardiometabolic Diseases and Other Chronic Diseases. , 2019, , 317-345.		0
34	Ultrasound-based formation of nano-Pickering emulsions investigated via in-situ SAXS. Journal of Colloid and Interface Science, 2019, 536, 281-290.	5.0	23
35	Water-in-oil emulsions stabilized by surfactants, biopolymers and/or particles: a review. Trends in Food Science and Technology, 2020, 104, 49-59.	7.8	138
36	Structuring Edible Oils With Fumed Silica Particles. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	14

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
37	The Effect of Particle Shell on Cooling Rates in Oil-in-Oil Magnetic Pickering Emulsions. Materials, 2020, 13, 4783.	1.3	9
38	Food-grade Pickering emulsions for encapsulation and delivery of bioactives. Trends in Food Science and Technology, 2020, 100, 320-332.	7.8	172
39	Stabilization of Pickering emulsions using starch nanocrystals treated with alkaline solution. International Journal of Biological Macromolecules, 2020, 155, 273-285.	3.6	33
40	A new inverse olive oil emulsion plus carrot powder to replace animal fat in model meat batters. LWT - Food Science and Technology, 2021, 135, 110044.	2.5	28
41	Self-assembling graphene oxide/modified amphipathic hydroxyethyl cellulose hybrid stabilized Pickering emulsion polymerization for functional hydrogel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125742.	2.3	13
42	Recent Innovations in Emulsion Science and Technology for Food Applications. Journal of Agricultural and Food Chemistry, 2021, 69, 8944-8963.	2.4	73
43	Pickering emulsions stabilized by colloidal surfactants: Role of solid particles. Particuology, 2022, 64, 153-163.	2.0	72
44	Response to "Comment on Bulk Nanobubbles or Not Nanobubbles: That is the Questionâ€: Langmuir, 2021, 37, 596-601.	1.6	9
45	Formulation of a Food Grade Water-In-Oil Nanoemulsion: Factors Affecting on Stability. Pharmaceutical Sciences, 2015, 21, 220-224.	0.8	21
46	EDITORIAL - Perspectives on Chocolate Consumption and Risk of Cardiovascular Dis-eases and Cognitive Function. The Open Nutraceuticals Journal, 2012, 5, 207-212.	0.2	9
47	Stability and Release Behavior of Bioactive Compounds (with Antioxidant Activity) Encapsulated by Pickering Emulsion. Food Bioactive Ingredients, 2020, , 287-309.	0.3	1
48	Cocoa and chocolate consumption and prevention of cardiovascular diseases and other chronic diseases. , 2022, , 279-299.		1
49	Supersmall Dendritic Mesoporous Silica Nanospheres as Antioxidant Nanocarriers for Pickering Emulsifiers. Journal of Agricultural and Food Chemistry, 2021, 69, 14893-14905.	2.4	6
50	Development of water-in-oil Pickering emulsions from sodium oleate surface-modified nano-hydroxyapatite. Surfaces and Interfaces, 2022, 29, 101759.	1.5	3
51	Ethyl cellulose-chitosan complex particles stabilized W/O Pickering emulsion as a recyclable bio-catalytic microreactor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 639, 128375.	2.3	11
52	Review on the Regulation of Plant Polyphenols on the Stability of Polyunsaturated-Fatty-Acid-Enriched Emulsions: Partitioning Kinetic and Interfacial Engineering. Journal of Agricultural and Food Chemistry, 2022, 70, 3569-3584.	2.4	9
53	Water-In-Oil Pickering Emulsions Stabilized by Microcrystalline Phytosterols in Oil: Fabrication Mechanism and Application as a Salt Release System. Journal of Agricultural and Food Chemistry, 2022, 70, 5408-5416.	2.4	7
54	Preparation of Pickering Emulsions Stabilized by Modified Silica Nanoparticles via the Taguchi Approach. Pharmaceutics, 2022, 14, 1561.	2.0	3

CITATION REPORT

#	Article	IF	CITATIONS
55	Properties and microstructure of pickering emulsion synergistically stabilized by silica particles and soy hull polysaccharides. Food Hydrocolloids, 2023, 134, 108084.	5.6	18
56	Water-in-oil Pickering emulsions stabilized by phytosterol/chitosan complex particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 657, 130489.	2.3	8
57	Pea protein isolates: emulsification properties as affected by preliminary pretreatments. Italian Journal of Food Science, 2022, 34, 25-32.	1.5	4
58	New food, new technology: innovative spreadable cream with strawberry syrup. European Food Research and Technology, 0, , .	1.6	0
59	Pickering Emulsions Based in Inorganic Solid Particles: From Product Development to Food Applications. Molecules, 2023, 28, 2504.	1.7	7
60	Pickering Emulsions. , 2023, , 181-206.		0
62	Functionalized Nanoemulsions: Could Be a Promising Approach for Theranostic Applications. , 2023, , 145-161.		0