Lactate stimulates angiogenesis and accelerates the heavounds in mice

Angiogenesis 15, 581-592

DOI: 10.1007/s10456-012-9282-0

Citation Report

#	Article	IF	Citations
1	Combined effect of PLGA and curcumin on wound healing activity. Journal of Controlled Release, 2013, 171, 208-215.	4.8	217
2	Lactate Engages Receptor Tyrosine Kinases Axl, Tie2, and Vascular Endothelial Growth Factor Receptor 2 to Activate Phosphoinositide 3-Kinase/Akt and Promote Angiogenesis. Journal of Biological Chemistry, 2013, 288, 21161-21172.	1.6	134
3	Microdialysis of Inflammatory Mediators in the Skin: A Review. Acta Dermato-Venereologica, 2014, 94, 501-511.	0.6	15
4	Endothelial PFKFB3 Plays a Critical Role in Angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1231-1239.	1.1	193
5	Optimized polymeric film-based nitric oxide delivery inhibits bacterial growth in a mouse burn wound model. Acta Biomaterialia, 2014, 10, 4136-4142.	4.1	73
6	PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing. Journal of Controlled Release, 2014, 194, 138-147.	4.8	193
7	Dichloroacetate and cancer: New home for an orphan drug?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1846, 617-629.	3.3	137
8	Skin Electroporation of a Plasmid Encoding hCAP-18/LL-37 Host Defense Peptide Promotes Wound Healing. Molecular Therapy, 2014, 22, 734-742.	3.7	64
9	Application of Electron Paramagnetic Resonance (EPR) Oximetry to Monitor Oxygen in Wounds in Diabetic Models. PLoS ONE, 2015, 10, e0144914.	1.1	20
10	Lactate does not activate NF-κB in oxidative tumor cells. Frontiers in Pharmacology, 2015, 6, 228.	1.6	27
11	Common Responses of Tumors and Wounds to Hypoxia. Cancer Journal (Sudbury, Mass), 2015, 21, 75-87.	1.0	44
12	Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1551-1573.	1.7	211
13	Effects of decreased lactate accumulation after dichloroacetate administration on exercise training-induced mitochondrial adaptations in mouse skeletal muscle. Physiological Reports, 2015, 3, e12555.	0.7	31
14	Combined effects of PLGA and vascular endothelial growth factor promote the healing of non-diabetic and diabetic wounds. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1975-1984.	1.7	101
15	Lactate, a Neglected Factor for Diabetes and Cancer Interaction. Mediators of Inflammation, 2016, 2016, 1-12.	1.4	63
16	Lactate Contribution to the Tumor Microenvironment: Mechanisms, Effects on Immune Cells and Therapeutic Relevance. Frontiers in Immunology, 2016, 7, 52.	2.2	364
17	Nutrient Exploitation within the Tumor–Stroma Metabolic Crosstalk. Trends in Cancer, 2016, 2, 736-746.	3.8	41
18	Engineered Nanomaterials for Infection Control and Healing Acute and Chronic Wounds. ACS Applied Materials & Samp; Interfaces, 2016, 8, 10049-10069.	4.0	206

#	Article	IF	CITATIONS
19	Three-dimensional printed polymeric system to encapsulate human mesenchymal stem cells differentiated into islet-like insulin-producing aggregates for diabetes treatment. Journal of Tissue Engineering, 2016, 7, 204173141663819.	2.3	41
20	Monocarboxylate transporters in the brain and in cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2481-2497.	1.9	291
21	PLGA based drug delivery systems: Promising carriers for wound healing activity. Wound Repair and Regeneration, 2016, 24, 223-236.	1.5	138
22	Metabolic changes associated with tumor metastasis, part 1: tumor pH, glycolysis and the pentose phosphate pathway. Cellular and Molecular Life Sciences, 2016, 73, 1333-1348.	2.4	191
23	The microRNA-dependent cell fate of multipotent stromal cells differentiating to endothelial cells. Experimental Cell Research, 2016, 341, 139-146.	1.2	4
24	The Regulation and Function of Lactate Dehydrogenase A: Therapeutic Potential in Brain Tumor. Brain Pathology, 2016, 26, 3-17.	2.1	388
25	Sequential enzymatic derivatization coupled with online microdialysis sampling for simultaneous profiling of mouse tumor extracellular hydrogen peroxide, lactate, and glucose. Analytica Chimica Acta, 2017, 956, 24-31.	2.6	5
26	Mathematical modeling links Wnt signaling to emergent patterns of metabolism in colon cancer. Molecular Systems Biology, 2017, 13, 912.	3.2	30
27	Cancer metabolism in space and time: Beyond the Warburg effect. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 556-572.	0.5	147
28	Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1. Nature Communications, 2017, 8, 15557.	5.8	321
29	No evidence of ischemia in stroke-like lesions of mitochondrial POLG encephalopathy. Mitochondrion, 2017, 32, 10-15.	1.6	13
30	Lactic Acid: No Longer an Inert and End-Product of Glycolysis. Physiology, 2017, 32, 453-463.	1.6	170
31	Vasculogenesis and angiogenesis initiation under normoxic conditions through Wnt/ \hat{l}^2 -catenin pathway in gliomas. Reviews in the Neurosciences, 2017, 29, 71-91.	1.4	102
32	Antibiotic incorporation in jet-sprayed nanofibrillar biodegradable scaffolds for wound healing. International Journal of Pharmaceutics, 2017, 532, 802-812.	2.6	18
33	Recent advances in biomaterials for the treatment of diabetic foot ulcers. Biomaterials Science, 2017, 5, 1962-1975.	2.6	70
34	Impact of the Tumor Microenvironment on Tumor-Infiltrating Lymphocytes: Focus on Breast Cancer. Breast Cancer: Basic and Clinical Research, 2017, 11, 117822341773156.	0.6	36
36	Novel nanofibrous dressings containing rhEGF and Aloe vera for wound healing applications. International Journal of Pharmaceutics, 2017, 523, 556-566.	2.6	145
37	Applications of bioresorbable polymers in skin and eardrum. , 2017, , 423-444.		3

#	ARTICLE	IF	CITATIONS
38	Lactic acid of PLGA coating promotes angiogenesis on the interface between porous titanium and diabetic bone. Journal of Materials Chemistry B, 2018, 6, 2274-2288.	2.9	21
39	Nanomedicines and gene therapy for the delivery of growth factors to improve perfusion and oxygenation in wound healing. Advanced Drug Delivery Reviews, 2018, 129, 262-284.	6.6	70
40	Metabolic interactions in cancer: cellular metabolism at the interface between the microenvironment, the cancer cell phenotype and the epigenetic landscape. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2018, 10, e1397.	6.6	47
41	Endothelial Cell Metabolism in Health and Disease. Trends in Cell Biology, 2018, 28, 224-236.	3.6	208
42	Plasticity of Adipose Tissue-Derived Stem Cells and Regulation of Angiogenesis. Frontiers in Physiology, 2018, 9, 1656.	1.3	45
43	Resveratrol Delivery from Porous Poly(lactide- <i>co</i> -glycolide) Scaffolds Promotes an Anti-Inflammatory Environment within Visceral Adipose Tissue. ACS Applied Materials & Samp; Interfaces, 2018, 10, 43363-43374.	4.0	21
44	Lactate dehydrogenase A: A key player in carcinogenesis and potential target in cancer therapy. Cancer Medicine, 2018, 7, 6124-6136.	1.3	371
45	PLGA: From a classic drug carrier to a novel therapeutic activity contributor. Journal of Controlled Release, 2018, 289, 10-13.	4.8	48
46	Modern Wound Dressing Using Polymers/Biopolymers. Journal of Material Science & Engineering, 2018, 07, .	0.2	5
47	Lactate potentiates angiogenesis and neurogenesis in experimental intracerebral hemorrhage. Experimental and Molecular Medicine, 2018, 50, 1-12.	3.2	58
48	Effects of amniotic membrane extract and deferoxamine on angiogenesis in wound healing: an <i>in vivo</i> model. Journal of Wound Care, 2018, 27, S26-S32.	0.5	22
49	Acellular and cellular approaches to improve diabetic wound healing. Advanced Drug Delivery Reviews, 2019, 146, 267-288.	6.6	150
50	Compression-induced expression of glycolysis genes in CAFs correlates with EMT and angiogenesis gene expression in breast cancer. Communications Biology, 2019, 2, 313.	2.0	38
51	NAD-Biosynthetic and Consuming Enzymes as Central Players of Metabolic Regulation of Innate and Adaptive Immune Responses in Cancer. Frontiers in Immunology, 2019, 10, 1720.	2.2	52
52	Müller Cell–Localized G-Protein–Coupled Receptor 81 (Hydroxycarboxylic Acid Receptor 1) Regulates Inner Retinal Vasculature via Norrin/Wnt Pathways. American Journal of Pathology, 2019, 189, 1878-1896.	1.9	28
53	Insights Into Mechanisms of Tumor and Immune System Interaction: Association With Wound Healing. Frontiers in Oncology, 2019, 9, 1115.	1.3	21
54	Bacteria-Targeted Clindamycin Loaded Polymeric Nanoparticles: Effect of Surface Charge on Nanoparticle Adhesion to MRSA, Antibacterial Activity, and Wound Healing. Pharmaceutics, 2019, 11, 236.	2.0	65
55	Advances in surgical applications of growth factors for wound healing. Burns and Trauma, 2019, 7, 10.	2.3	178

#	Article	IF	Citations
56	Insulin Promotes Wound Healing by Inactivating NFkβP50/P65 and Activating Protein and Lipid Biosynthesis and alternating Pro/Anti-inflammatory Cytokines Dynamics. Biomolecular Concepts, 2019, 10, 11-24.	1.0	27
57	Spatiotemporal release of VEGF from biodegradable polylactic-co-glycolic acid microspheres induces angiogenesis in chick chorionic allantoic membrane assay. International Journal of Pharmaceutics, 2019, 561, 236-243.	2.6	1
58	Fabrication and Characterization of Chitosan–Vitamin C–Lactic Acid Composite Membrane for Potential Skin Tissue Engineering. International Journal of Polymer Science, 2019, 2019, 1-8.	1.2	36
59	Cancer Metabolism Drives a Stromal Regenerative Response. Cell Metabolism, 2019, 29, 576-591.	7.2	92
60	Nanomaterials for Regenerative Medicine. Pancreatic Islet Biology, 2019, , .	0.1	1
61	Composite nanofibrous membranes of PLGA/Aloe vera containing lipid nanoparticles for wound dressing applications. International Journal of Pharmaceutics, 2019, 556, 320-329.	2.6	55
62	Advanced drug delivery systems and artificial skin grafts for skin wound healing. Advanced Drug Delivery Reviews, 2019, 146, 209-239.	6.6	369
63	Intravitreal Delivery of VEGF-A165-loaded PLGA Microparticles Reduces Retinal Vaso-Obliteration in an In Vivo Mouse Model of Retinopathy of Prematurity. Current Eye Research, 2019, 44, 275-286.	0.7	16
64	How glucose, glutamine and fatty acid metabolism shape blood and lymph vessel development. Developmental Biology, 2019, 447, 90-102.	0.9	48
65	Imaging in Chronic Wound Diagnostics. Advances in Wound Care, 2020, 9, 245-263.	2.6	40
66	Monocarboxylate transporters in cancer. Molecular Metabolism, 2020, 33, 48-66.	3.0	346
67	Metabolism in the Tumor Microenvironment. Annual Review of Cancer Biology, 2020, 4, 17-40.	2.3	61
68	Topical antimicrobial peptide formulations for wound healing: Current developments and future prospects. Acta Biomaterialia, 2020, 103, 52-67.	4.1	221
69	Irradiated lactic acid-stimulated tumour cells promote the antitumour immunity as a therapeutic vaccine. Cancer Letters, 2020, 469, 367-379.	3.2	5
70	Sprayable and biodegradable, intrinsically adhesive wound dressing with antimicrobial properties. Bioengineering and Translational Medicine, 2020, 5, e10149.	3.9	47
71	Lactate and Acidity in the Cancer Microenvironment. Annual Review of Cancer Biology, 2020, 4, 141-158.	2.3	64
72	Aerobic glycolysis is a metabolic requirement to maintain the M2-like polarization of tumor-associated macrophages. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118604.	1.9	54
73	The Warburg Effect 97 Years after Its Discovery. Cancers, 2020, 12, 2819.	1.7	153

#	Article	IF	Citations
74	Pyruvate dehydrogenase kinase/lactate axis: a therapeutic target for neovascular age-related macular degeneration identified by metabolomics. Journal of Molecular Medicine, 2020, 98, 1737-1751.	1.7	12
75	Modulation of Inflammatory Dynamics by Insulin to Promote Wound Recovery of Diabetic Ulcers., 2020,,.		1
76	Collagen-functionalized electrospun smooth and porous polymeric scaffolds for the development of human skin-equivalent. RSC Advances, 2020, 10, 26594-26603.	1.7	21
77	Promotion of Proangiogenic Secretome from Mesenchymal Stromal Cells via Hierarchically Structured Biodegradable Microcarriers. Advanced Biology, 2020, 4, e2000062.	3.0	10
78	Advances in delivery systems for the therapeutic application of LL37. Journal of Drug Delivery Science and Technology, 2020, 60, 102016.	1.4	6
79	Prospects for the application of growth factors in wound healing. Growth Factors, 2020, 38, 25-34.	0.5	14
80	Biomaterials for diabetic wound-healing therapies. , 2020, , 273-304.		1
81	Endothelial Lactate Controls Muscle Regeneration from Ischemia by Inducing M2-like Macrophage Polarization. Cell Metabolism, 2020, 31, 1136-1153.e7.	7.2	233
82	Biocompatible indocyanine green loaded PLA nanofibers for in situ antimicrobial photodynamic therapy. Materials Science and Engineering C, 2020, 115, 111068.	3.8	25
83	Novel probiotic-bound oxidized Bletilla striata polysaccharide-chitosan composite hydrogel. Materials Science and Engineering C, 2020, 117, 111265.	3.8	46
84	Metabolism in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1263, 1-11.	0.8	11
87	Lactic acid and its transport system. , 2020, , 99-123.		0
88	PKM2 regulates angiogenesis of VRâ€EPCs through modulating glycolysis, mitochondrial fission, and fusion. Journal of Cellular Physiology, 2020, 235, 6204-6217.	2.0	30
89	Lactate Metabolism and Signaling in Tuberculosis and Cancer: A Comparative Review. Frontiers in Cellular and Infection Microbiology, 2021, 11, 624607.	1.8	18
90	L″actate promotes intestinal epithelial cell migration to inhibit colitis. FASEB Journal, 2021, 35, e21554.	0.2	6
91	The Importance of Mitochondrial Pyruvate Carrier in Cancer Cell Metabolism and Tumorigenesis. Cancers, 2021, 13, 1488.	1.7	29
92	Identification of Lactate as a Cardiac Protectant by Inhibiting Inflammation and Cardiac Hypertrophy Using a Zebrafish Acute Heart Failure Model. Pharmaceuticals, 2021, 14, 261.	1.7	5
93	The pentose phosphate pathway mediates hyperoxia-induced lung vascular dysgenesis and alveolar simplification in neonates. JCl Insight, 2021, 6, .	2.3	14

#	ARTICLE	IF	CITATIONS
94	Development of a Topical Insulin Polymeric Nanoformulation for Skin Burn Regeneration: An Experimental Approach. International Journal of Molecular Sciences, 2021, 22, 4087.	1.8	6
95	Detection of metabolic change in glioblastoma cells after radiotherapy using hyperpolarized ¹³ Câ€MRI. NMR in Biomedicine, 2021, 34, e4514.	1.6	6
96	Current State of SLC and ABC Transporters in the Skin and Their Relation to Sweat Metabolites and Skin Diseases. Proteomes, 2021, 9, 23.	1.7	9
97	Molecular Characterisation of Uterine Endometrial Proteins during Early Stages of Pregnancy in Pigs by MALDI TOF/TOF. International Journal of Molecular Sciences, 2021, 22, 6720.	1.8	7
98	Effects of bicarbonate/lactate-buffered neutral peritoneal dialysis fluids on angiogenesis-related proteins in patients undergoing peritoneal dialysis. Renal Replacement Therapy, 2021, 7, .	0.3	0
99	Participation of L-Lactate and Its Receptor HCAR1/GPR81 in Neurovisual Development. Cells, 2021, 10, 1640.	1.8	17
100	Biomaterials in skin tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 993-1011.	1.8	13
101	Evaluation of the in vitro cytotoxicity and modulation of the inflammatory response by the bioresorbable polymers poly(D,L-lactide-co-glycolide) and poly(L-lactide-co-glycolide). Acta Biomaterialia, 2021, 134, 261-275.	4.1	10
102	Lactate: a multifunctional signaling molecule. Yeungnam University Journal of Medicine, 2021, 38, 183-193.	0.7	39
103	First we eat, then we do everything else: The dynamic metabolic regulation of efferocytosis. Cell Metabolism, 2021, 33, 2126-2141.	7.2	30
104	Antimicrobial Peptides: The Promising Therapeutics for Cutaneous Wound Healing. Macromolecular Bioscience, 2021, 21, e2100103.	2.1	26
105	A microenvironment of high lactate and low pH created by the blastocyst promotes endometrial receptivity and implantation. Reproductive BioMedicine Online, 2022, 44, 14-26.	1.1	15
106	Ovarian tissue damage after grafting: systematic review of strategies to improve follicle outcomes. Reproductive BioMedicine Online, 2021, 43, 351-369.	1.1	11
107	Antimicrobial peptides – Unleashing their therapeutic potential using nanotechnology. , 2022, 232, 107990.		44
108	Area light sourceâ€triggered latent angiogenic molecular mechanisms intensify therapeutic efficacy of adult stem cells. Bioengineering and Translational Medicine, 2022, 7, e10255.	3.9	5
109	Mechanisms Governing Metabolic Heterogeneity in Breast Cancer and Other Tumors. Frontiers in Oncology, 2021, 11, 700629.	1.3	17
110	A bioactive multi-functional heparin-grafted aligned poly(lactide-co-glycolide)/curcumin nanofiber membrane to accelerate diabetic wound healing. Materials Science and Engineering C, 2021, 120, 111689.	3.8	36
111	ECM-mimicking nanofibrous scaffold enriched with dual growth factor carrying nanoparticles for diabetic wound healing. Nanoscale Advances, 2021, 3, 3085-3092.	2.2	26

#	Article	IF	CITATIONS
112	Nanomaterials for Wound Healing. Pancreatic Islet Biology, 2019, , 81-117.	0.1	3
113	Lactate and Lactate Transporters as Key Players in the Maintenance of the Warburg Effect. Advances in Experimental Medicine and Biology, 2020, 1219, 51-74.	0.8	37
114	Regulation of glycolysis and the Warburg effect in wound healing. JCI Insight, 2020, 5, .	2.3	52
115	Metabolic regulation of exercise-induced angiogenesis. Vascular Biology (Bristol, England), 2019, 1, H1-H8.	1.2	36
116	Poly (Lactic Acid) membrane and Sedum dendroideum extract favors the repair of burns in rats. Acta Cirurgica Brasileira, 2020, 35, e202000302.	0.3	6
117	Nanoparticles for the Treatment of Wounds. Current Pharmaceutical Design, 2015, 21, 4329-4341.	0.9	67
118	Drug Delivery Systems for Wound Healing. Current Pharmaceutical Biotechnology, 2015, 16, 621-629.	0.9	46
119	Receptor tyrosine kinase structure and function in health and disease. AIMS Biophysics, 2015, 2, 476-502.	0.3	12
120	Comparison and Evaluation of Seven Animal Models of Ischemic Skin Wound: A Review Article. Journal of Pharmaceutical Research International, 0, , 1-37.	1.0	4
121	Nanotechnology-based therapeutic applications: <i>in vitro and in vivo</i> clinical studies for diabetic wound healing. Biomaterials Science, 2021, 9, 7705-7747.	2.6	29
122	Inhibition of Mitochondrial Metabolism Leads to Selective Eradication of Cells Adapted to Acidic Microenvironment. International Journal of Molecular Sciences, 2021, 22, 10790.	1.8	6
123	Lactate Is a Metabolic Mediator That Shapes Immune Cell Fate and Function. Frontiers in Physiology, 2021, 12, 688485.	1.3	55
124	Microbes in the Treatment of Diabetes and Its Complications. , 2018, , 383-393.		0
125	Mitochondrial metabolism coordinates stage-specific repair processes in macrophages during wound healing. Cell Metabolism, 2021, 33, 2398-2414.e9.	7.2	89
126	Oxygen, pH, Lactate, and Metabolism—How Old Knowledge and New Insights Might Be Combined for New Wound Treatment. Medicina (Lithuania), 2021, 57, 1190.	0.8	17
127	The Key Role of the WNT/ \hat{l}^2 -Catenin Pathway in Metabolic Reprogramming in Cancers under Normoxic Conditions. Cancers, 2021, 13, 5557.	1.7	36
128	Role of Growth Factors in the Treatment of Diabetic Foot Ulceration. , 2021, , 233-249.		0
131	Electrostatic flocking of salt-treated microfibers and nanofiber yarns for regenerative engineering. Materials Today Bio, 2021, 12, 100166.	2.6	11

#	Article	IF	CITATIONS
132	Acidosis Significantly Alters Immune Checkpoint Expression Profiles of T Cells. SSRN Electronic Journal, 0, , .	0.4	0
133	Resistance to antiangiogenic treatments: A review. , 2022, , 147-197.		1
134	Nanomaterials-based Drug Delivery Approaches for Wound Healing. Current Pharmaceutical Design, 2022, 28, 711-726.	0.9	12
135	Redefining the importance of polylactide-co-glycolide acid (PLGA) in drug delivery. Annales Pharmaceutiques Francaises, 2022, 80, 603-616.	0.4	15
136	Poly Lactic-co-Glycolic Acid-Coated Toluidine Blue Nanoparticles for the Antibacterial Therapy of Wounds. Nanomaterials, 2021, 11, 3394.	1.9	2
137	Stem Cell's Secretome Delivery Systems. Advanced Pharmaceutical Bulletin, 2023, 13, 244-258.	0.6	3
138	A review of current advancements for wound healing: Biomaterial applications and medical devices. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 2542-2573.	1.6	52
139	Chlorella spameliorated undesirable microenvironment promotes diabetic wound healing. Acta Pharmaceutica Sinica B, 2023, 13, 410-424.	5.7	13
140	Acidosis significantly alters immune checkpoint expression profiles of T cells from oesophageal adenocarcinoma patients. Cancer Immunology, Immunotherapy, 2023, 72, 55-71.	2.0	8
141	Controlled drug delivery system for wound healing: formulations and delivery required therapeutic agents., 2022,, 75-102.		1
142	Recent Progress in Development of Dressings Used for Diabetic Wounds with Special Emphasis on Scaffolds. BioMed Research International, 2022, 2022, 1-43.	0.9	12
143	Improving Vascularization of Biomaterials for Skin and Bone Regeneration by Surface Modification: A Narrative Review on Experimental Research. Bioengineering, 2022, 9, 298.	1.6	4
144	Effect of Polymeric Nanoparticles with Entrapped Fish Oil or Mupirocin on Skin Wound Healing Using a Porcine Model. International Journal of Molecular Sciences, 2022, 23, 7663.	1.8	2
145	The generation of a lactate-rich environment stimulates cell cycle progression and modulates gene expression on neonatal and hiPSC-derived cardiomyocytes., 2022, 139, 213035.		10
146	Design, Synthesis, and Evaluation of Novel Pyruvate Dehydrogenase Kinase Inhibitors. Medicinal Chemistry, 2023, 19, 276-296.	0.7	1
147	Chitosan/PLGA shell nanoparticles as Tylotoin delivery platform for advanced wound healing. International Journal of Biological Macromolecules, 2022, 220, 395-405.	3.6	4
148	Injectable nanofiber-reinforced bone cement with controlled biodegradability for minimally-invasive bone regeneration. Bioactive Materials, 2023, 21, 267-283.	8.6	16
149	Inhibition of monocarboxylate transporters (<scp>MCT</scp>) 1 and 4 reduces exercise capacity in mice. Physiological Reports, 2022, 10, .	0.7	5

#	Article	IF	CITATIONS
150	Evolutionary Origins of Metabolic Reprogramming in Cancer. International Journal of Molecular Sciences, 2022, 23, 12063.	1.8	0
151	PLGA/Gelatin/Hyaluronic Acid Fibrous Membrane Scaffold for Therapeutic Delivery of Adipose-Derived Stem Cells to Promote Wound Healing. Biomedicines, 2022, 10, 2902.	1.4	9
152	Antimicrobial peptide-grafted PLGA-PEG nanoparticles to fight bacterial wound infections. Biomaterials Science, 2023, 11, 499-508.	2.6	4
153	Changes in miRNA expression in patients with peripheral arterial vascular disease during moderate-and vigorous-intensity physical activity. European Journal of Applied Physiology, 0, , .	1.2	0
154	Long noncoding RNA DIO3OS induces glycolytic-dominant metabolic reprogramming to promote aromatase inhibitor resistance in breast cancer. Nature Communications, 2022, 13, .	5.8	18
155	The effect of pre-exercise alkalosis on lactate/pH regulation and mitochondrial respiration following sprint-interval exercise in humans. Frontiers in Physiology, 0, 14, .	1.3	0
156	Particles-based medicated wound dressings: a comprehensive review. Therapeutic Delivery, 2022, 13, 489-505.	1.2	1
157	The Key Role of Mitochondrial Function in Health and Disease. Antioxidants, 2023, 12, 782.	2.2	30
158	Silymarin chitosan-modified penetration enhancer microvesicles as a promising wound healing tool. Journal of Drug Delivery Science and Technology, 2023, 84, 104430.	1.4	1
159	Exercise-induced skeletal muscle angiogenesis: impact of age, sex, angiocrines and cellular mediators. European Journal of Applied Physiology, 2023, 123, 1415-1432.	1.2	8
160	Development of L-Lysine-Loaded PLGA Microparticles as a Controlled Release System for Angiogenesis Enhancement. Pharmaceutics, 2023, 15, 479.	2.0	5
161	Comparison of the Effect of Different Conditioning Media on the Angiogenic Potential of Hypoxia Preconditioned Blood-Derived Secretomes: Towards Engineering Next-Generation Autologous Growth Factor Cocktails. International Journal of Molecular Sciences, 2023, 24, 5485.	1.8	1
162	Immediate-sustained lactate release using alginate hydrogel assembled to proteinase K/polymer electrospun fibers. International Journal of Biological Macromolecules, 2023, 238, 124117.	3.6	3
163	Do diabetes-related foot ulcer wound fluid measures have clinical utility as biomarkers for healing? A systematic review. Journal of Wound Care, 2023, 32, xlvii-lxii.	0.5	0
164	Silk fibroin hydrogel: A novel biopolymer for sustained release of vancomycin drug for diabetic wound healing. Journal of Molecular Structure, 2023, 1286, 135548.	1.8	4
168	How pH deregulation favors the hallmarks of cancer. , 2023, , 101-121.		0
171	Sustainable Design of Natural and Synthetic Biomaterials for Wound Healing Applications. , 2023, , 357-394.		0